WorldWideScience

Sample records for raft river geoscience

  1. Raft river geoscience case study, volume 1

    Science.gov (United States)

    Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A.; Garber, R.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (1) produced from fractures found at the contact metamorphic zone apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (2) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (3) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (4) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  2. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  3. 78 FR 17087 - Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL

    Science.gov (United States)

    2013-03-20

    ...-AA08 Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL AGENCY: Coast Guard... on the New River in Fort Lauderdale, Florida during the Rotary Club of Fort Lauderdale New River Raft... States during the Rotary Club of Fort Lauderdale New River Raft Race. On March 23, 2013, Fort Lauderdale...

  4. Toward a Value for Guided Rafting on Southern Rivers

    Science.gov (United States)

    J. Michael Bowker; Donald B.K. English; Jason A. Donovan

    1996-01-01

    This study examines per trip consumer surplus associated with guided whitewater rafting on two southern rivers. First, household recreation demand functions are estimated based on the individual travel cost model using truncated count data regression methods and alternative price specifications. Findings show mean per trip consumer surplus point estimates between $89...

  5. 33 CFR 100.102 - Great Connecticut River Raft Race, Middletown, CT.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Connecticut River Raft Race, Middletown, CT. 100.102 Section 100.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Raft Race, Middletown, CT. (a) Regulated Area. That section of the Connecticut River between Dart...

  6. Economic impacts of guided whitewater rafting: a study of five rivers

    Science.gov (United States)

    Donald B.K. English; J. Michael Bowker

    1996-01-01

    This paper presents estimates of the statewide economic impacts of guided whitewater rafting on five rivers in six states: the Nantahala (North Carolina), Gauley (West Virginia), Kennebec (Maine), Middle Fork of the Salmon (Idaho), and Chattooga (Georgia-South Carolina). Except for the Chattooga and Middle Fork, rafting is dependent on upstream dam releases. Guide fees...

  7. Fault and joint geometry at Raft River Geothermal Area, Idaho

    Science.gov (United States)

    Guth, L. R.; Bruhn, R. L.; Beck, S. L.

    1981-07-01

    Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.

  8. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  9. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  10. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  11. Helium isotopes in geothermal systems: Iceland, The Geysers, Raft River and Steamboat Springs

    International Nuclear Information System (INIS)

    Torgersen, T.

    1982-01-01

    Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios and in terms of the processes which can alter the isotopic ratio. Using this interpretational scheme, Iceland is found to be an area of hot-spot magmatic He implying an active volcanic source although the data are suggestive of high-temperature weathering release of crustal He incorporated in the geothermal fluids. By comparison to fumarolic gases from Hawaii and Juan De Fuca and Cayman Trench basaltic glass samples, The Geysers contains MOR type magmatic He again implying an active volcanic source possibly a 'leaky' transform related to the San Andreas Fault System. Raft River contains only crustal He indicating no active volcanic sources. Steamboat Springs He isotope ratios are distinctly less than typical plate margin volcanics but must still have a magmatic source. (author)

  12. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  13. Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

  14. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  15. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  16. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    Science.gov (United States)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    The Raft River geothermal field, located in southern Idaho, roughly 100 miles northwest of Salt Lake City, is the site of a Department of Energy Enhanced Geothermal System project designed to develop new techniques for enhancing the permeability of geothermal wells. RRG-9 ST1, the target stimulation well, was drilled to a measured depth of 5962 ft. and cased to 5551 ft. The open-hole section of the well penetrates Precambrian quartzite and quartz monzonite. The well encountered a temperature of 282 °F at its base. Thermal and hydraulic stimulation was initiated in June 2013. Several injection strategies have been employed. These strategies have included the continuous injection of water at temperatures ranging from 53 to 115 °F at wellhead pressures of approximately 275 psi and three short-term hydraulic stimulations at pressures up to approximately 1150 psi. Flow rates, wellhead and line pressures and fluid temperatures are measured continuously. These data are being utilized to assess the effectiveness of the stimulation program. As of August 2014, nearly 90 million gallons have been injected. A modified Hall plot has been used to characterize the relationships between the bottom-hole flowing pressure and the cumulative injection fluid volume. The data indicate that the skin factor is decreased, and/or the permeability around the wellbore has increased since the stimulation program was initiated. The injectivity index also indicates a positive improvement with values ranging from 0.15 gal/min psi in July 2013 to 1.73 gal/min psi in February 2015. Absolute flow rates have increased from approximately 20 to 475 gpm by February 2 2015. Geologic, downhole temperature and seismic data suggest the injected fluid enters a fracture zone at 5650 ft and then travels upward to a permeable horizon at the contact between the Precambrian rocks and the overlying Tertiary sedimentary and volcanic deposits. The reservoir simulation program FALCON developed at the Idaho National

  17. Multi-Patient Rabies Exposure on a Colorado River Rafting Expedition: Urgent vs. Emergent Transport Decision Making in an Austere Setting.

    Science.gov (United States)

    Pearce, Emily A; Farney, Aaron N; Banks, Laura; Harrell, Andrew J

    2018-01-01

    We present a case of rabies exposure on a private river rafting trip on Grand Canyon National Park's Colorado River. Five individuals were exposed to an erratically acting bat; one of the individuals sustained a direct bite to the upper lip while sleeping. This case illustrates the challenges of austere medical care and evacuation in remote conditions while highlighting the importance of risk mitigation considerations in all austere situations.

  18. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  19. Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States

    Science.gov (United States)

    Wells, M.L.; Snee, L.W.; Blythe, A.E.

    2000-01-01

    Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine the above for the top-to-the-east Raft River detachment fault and shear zone by study of spatial gradients in 40Ar/39Ar and fission track cooling ages of footwall rocks and cooling histories and by comparison of cooling histories with deformation temperatures. Mica 40Ar/39Ar cooling ages indicate that extension-related cooling began at ???25-20 Ma, and apatite fission track ages show that motion on the Raft River detachment proceeded until ???7.4 Ma. Collective cooling curves show acceleration of cooling rates during extension, from 5-10??C/m.y. to rates in excess of 70-100??C/m.y. The apparent slip rate along the Raft River detachment, recorded in spatial gradients of apatite fission track ages, is 7 mm/yr between 13.5 and 7.4 Ma and is interpreted to record the rate of migration of a rolling hinge. Microstructural study of footwall mylonite indicates that deformation conditions were no higher than middle greenschist facies and that deformation occurred during cooling to cataclastic conditions. These data show that the shear zone and detachment fault represent a continuum produced by progressive exhumation and shearing during Miocene extension and preclude the possibility of a Mesozoic age for the ductile shear zone. Moderately rapid cooling in middle Eocene time likely records exhumation resulting from an older, oppositely rooted, extensional shear zone along the west side of the Grouse Creek, Raft River, and Albion Mountains. Copyright 2000 by the American Geophysical Union.

  20. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  1. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    International Nuclear Information System (INIS)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits

  2. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    Science.gov (United States)

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    In order to better define the size of the thermal anomaly in the Raft River Valley, Idaho, the U.S. Geological Survey drilled a series of intermediate-depth (nominal 500-ft depth) wells in 1977 and 1978.  This report presents geologic, geophysical, and temperature data for these drill holes, along with data for five wells drilled by the Idaho National Engineering Laboratory with U.S. Department of Energy Funding.  Data previously reported for other drill holes are also included in order to make them available as digital files.

  3. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  4. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  5. IMPROVING THE RAFT DESIGN FOR THE ALLOY OF TIMBER DOWN THE RIVERS WITH SMALL DEPTHS Совершенствование конструкции плота для сплава древесины по рекам с малыми глубинами

    OpenAIRE

    Afonichev D. N.; Vasiliev V. V.; Paponov N. N.

    2012-01-01

    We describe the construction of the raft, formed of flat raft sections; it is shown, that the given raft has deeper draft, which increases during the voyage. The construc-tion of the raft, formed from flat raft sections of stabi-lized buoyancy is presented. The proposed raft has less draft, the intensity of increase of which is not signifi-cant when navigating; it allows it to go through the sec-tions of rivers with smaller depths. A description of raft formation is given

  6. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    2001-01-01

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS

  7. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  8. Life raft stabilizer

    Science.gov (United States)

    Radnofsky, M. I.; Barnett, J. H., Jr.; Harrison, F. L.; Marak, R. J. (Inventor)

    1973-01-01

    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft.

  9. Self Righting Life Raft

    Science.gov (United States)

    1982-01-01

    The Givens Buoy Raft was designed and manufactured for inventor Jim Givens of Givens Marine Survival Co. Inc., by RPR Industries, Inc. The Raft consists of a canopied topside and an underwater hemispheric ballast chamber. It has a heavy ballast stabilization system, adopted from NASA technology, which negates the capsizing problem. A "flapper valve" admits large amounts of water to the hemisphere chamber providing ballast to keep the center of gravity constant; stabilization system compensates for changes in wave angle and weight shifting of raft occupants. Mr. Givens has an exclusive patent license for use of the NASA technology. Produced in various sizes, capacities range from six to 20 persons. Raft is housed in a canister, available in several configurations. A pull on a line triggers the automatic inflation process, which takes 12 seconds. The raft has been credited with saving 230 lives in the last five years. It has found wide acceptance with operators of fishing boats, pleasure craft and other vessels. The Coast Guard is purchasing the rafts for use on its rescue helicopters and the Navy has a development program to adapt the system. The Coast Guard last year announced a proposed amendment of its regulations that would require large ballast chambers on inflatable life rafts.

  10. Sinking a Granular Raft

    Science.gov (United States)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  11. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  13. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  14. Development and land use conflicts on the Ash River, South Africa ...

    African Journals Online (AJOL)

    There are two white water rafting operators along the Ash River, both run by typical lifestyle entrepreneurs, who have dedicated considerable time, talent and capital resources to developing the rafting industry on the Ash. It is estimated that river rafting generates R1.6 million p.a. directly for the local economy and the ...

  15. 33 CFR 207.270 - Tallahatchie River, Miss., between Batesville and the mouth; logging.

    Science.gov (United States)

    2010-07-01

    ... Tallahatchie River, Miss., between Batesville and the mouth; logging. (a) The floating of “sack”, rafts, or of... sufficient capacity to properly manage the movement of the raft and to keep it from being an obstruction to...

  16. Geoscience on television

    NARCIS (Netherlands)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-01-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be

  17. Future Careers in Geoscience

    Science.gov (United States)

    van der Vink, G. E.; van der Vink, G. E.

    2001-05-01

    A new generation of Geoscientists are abandoning the traditional pathways of oil exploration and academic research to pursue careers in public policy, international affairs, business, education and diplomacy. They are using their backgrounds in Geoscience to address challenging, multi-disciplinary problems of societal concern. To prepare for such careers, students are developing a broad understanding of science and a basic literacy in economics, international affairs, and policy-making.

  18. A Compilation and Review of over 500 Geoscience Misconceptions

    Science.gov (United States)

    Francek, Mark

    2013-01-01

    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the…

  19. Sensitivity of whitewater rafting consumers surplus to pecuniary travel cost specifications

    Science.gov (United States)

    Donald B.K. English; J. Michael Bowker

    1996-01-01

    Considerable research has examined how different ways of accounting for onsite and travel time affect surplus estimates from travel cost models. However, little has been done regarding different definitions of out-of-pocket costs. Estimates of per trip consumer surplus are developed for a zonal travel cost model for outfitted rafting on the Chattooga River. Nine price...

  20. A comparative study on the raft chemical properties of various alginate antacid raft-forming products.

    Science.gov (United States)

    Dettmar, Peter W; Gil-Gonzalez, Diana; Fisher, Jeanine; Flint, Lucy; Rainforth, Daniel; Moreno-Herrera, Antonio; Potts, Mark

    2018-01-01

    Research to measure the chemical characterization of alginate rafts for good raft performance and ascertain how formulation can affect chemical parameters. A selection of alginate formulations was investigated all claiming to be proficient raft formers with significance between products established and ranked. Procedures were selected which demonstrated the chemical characterization allowing rafts to effectively impede the reflux into the esophagus or in severe cases to be refluxed preferentially into the esophagus and exert a demulcent effect, with focus of current research on methods which complement previous studies centered on physical properties. The alginate content was analyzed by a newly developed HPLC method. Methods were used to determine the neutralization profile and the acid neutralization within the raft determined along with how raft structure affects neutralization. Alginate content of Gaviscon Double Action (GDA) within the raft was significantly superior (p raft acid neutralization capacity were GDA and Rennie Duo, the latter product not being a raft former. Raft structure was key and GDA had the right level of porosity to allow for longer duration of neutralization. Alginate formulations require three chemical reactions to take place simultaneously: transformation to alginic acid, sodium carbonate reacting to form carbon dioxide, calcium releasing free calcium ions to bind with alginic acid providing strength to raft formation. GDA was significantly superior (p <.0001) to all other comparators.

  1. Writing fiction about geoscience

    Science.gov (United States)

    Andrews, S.

    2013-12-01

    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  2. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  3. Enhancing Diversity in the Geosciences

    Science.gov (United States)

    Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Rodrigue, Christine M.; Lee, Christopher T.; Behl, Richard J.; Larson, Daniel O.; Francis, Robert D.; Hold, Gregory

    2005-01-01

    An innovative interdisciplinary project at California State University, Long Beach, was designed to increase the attractiveness of the geosciences (physical geography, geology, and archaeology) to underrepresented groups. The goal was to raise awareness of the geosciences by providing summer research opportunities for underrepresented high school…

  4. RAFT polymerization and some of its applications.

    Science.gov (United States)

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Native Geosciences: Strengthening the Future Through Tribal Traditions

    Science.gov (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand and elevate Native geosciences knowledge, specifically in the areas of earth, wind, fire and water. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native tradition and our inherent understanding of what is "sacred above is sacred below" is the foundation for an emerging multi-faceted approach to increasing the representation of Natives in geosciences. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies as well as building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and South Dakota School of Mines and Technology in partnership with Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning communities connected to Tribal Sacred Sites and natural resources. These sites include the Black Hills (Mato Paha, Mato Tiplia, Hinhan Kaga Paha, Mako Sica etc.), Klamath River (Ishkêesh), and Hoopa Valley (Natinixwe). Native geosciences learning is centered on the themes of earth, wind, fire and water and Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal

  6. HC-130 Wing Life Raft Replacement Study

    National Research Council Canada - National Science Library

    Scher, Bob

    1997-01-01

    The U.S. Coast Guard (USCG) uses HC-130 aircraft for search and rescue (SAR) and other missions. The aircraft are presently equipped with two to four 20 person inflatable life rafts, stowed in cells in the wings...

  7. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  8. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  9. Evidence for multiphase water-escape during rafting of shelly marine sediments at Clava, Inverness-shire, NE Scotland

    Science.gov (United States)

    Phillips, Emrys; Merritt, Jon

    2008-05-01

    The Pleistocene shelly glaciomarine sediments exposed at Clava, near Inverness, northeast Scotland, occur in a series of thrust-bound rafts accreted at on the up-ice side of a bedrock high (150 m above OD) on the SE side of the valley of the River Nairn. These sediments originally formed part of a coarsening upwards deltaic or subaqueous fan sequence deposited in the marine fjord of the Loch Ness basin, located some 50 km to the SW. The geometry of these allochthonous rafts, coupled with the associated thrusting and large-scale folding of these bodies, are typical of many glacially transported rafts described in literature. However, at Clava, macro- and microscopic evidence indicates that these ice-rafted sediments were not frozen, with liquefaction, hydrofracturing and water-escape occurring repeatedly during their transport and accretion. The presence of large-scale detachments within the sequence has led to the development of a purely glacitectonic model for rafting at Clava. The detachments acted as a focus for fluid flow which lubricated these décollement surfaces, aiding in the subglacial transport of the rafts.

  10. Open Geoscience Database

    Science.gov (United States)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  11. The Settlement Behavior of Piled Raft Interaction in Undrained Soil

    DEFF Research Database (Denmark)

    Ghalesari, Abbasali Taghavi; Barari, Amin; Amini, Pedram Fardad

    2013-01-01

    Offshore piled raft foundations are one of the most commonly used foundations in offshore structures. When a raft foundation alone does not satisfy the design requirements, the addition of piles may improve both the ultimate load capacity and the settlement performance of the raft. In this paper......, the behavior of a piled raft on undrained soil is studied based on a series of parametric studies on the average and differential settlement of piled raft using three-dimensional finite element analysis. The settlement behavior is found to be dependent on the number of piles and raft thickness....

  12. Accessible Geoscience - Digital Fieldwork

    Science.gov (United States)

    Meara, Rhian

    2017-04-01

    Accessible Geoscience is a developing field of pedagogic research aimed at widening participation in Geography, Earth and Environmental Science (GEES) subjects. These subjects are often less commonly associated with disabilities, ethnic minorities, low income socio-economic groups and females. While advancements and improvements have been made in the inclusivity of these subject areas in recent years, access and participation of disabled students remains low. While universities are legally obligated to provide reasonable adjustments to ensure accessibility, the assumed incompatibility of GEES subjects and disability often deters students from applying to study these courses at a university level. Instead of making reasonable adjustments if and when they are needed, universities should be aiming to develop teaching materials, spaces and opportunities which are accessible to all, which in turn will allow all groups to participate in the GEES subjects. With this in mind, the Swansea Geography Department wish to enhance the accessibility of our undergraduate degree by developing digital field work opportunities. In the first instance, we intend to digitise three afternoon excursions which are run as part of a 1st year undergraduate module. Each of the field trips will be digitized into English- and Welsh-medium formats. In addition, each field trip will be digitized into British Sign Language (BSL) to allow for accessibility for D/deaf and hard of hearing students. Subtitles will also be made available in each version. While the main focus of this work is to provide accessible fieldwork opportunities for students with disabilities, this work also has additional benefits. Students within the Geography Department will be able to revisit the field trips, to revise and complete associated coursework. The use of digitized field work should not replace opportunities for real field work, but its use by the full cohort of students will begin to "normalize" accessible field

  13. GIS in geoscience education- geomorphometric study

    Digital Repository Service at National Institute of Oceanography (India)

    Mahender, K.; Yogita, K.; Kunte, P.D.

    The educational institutions around the world have realised the possibility of using GIS in geosciences teaching along with in many other subjects. GIS is been used in a large number of geoscience applications viz. mapping, mineral and petroleum...

  14. Examining sexism in the geosciences

    Science.gov (United States)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  15. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  16. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents

    NARCIS (Netherlands)

    Bussels, R.; Bergman-Göttgens, C.M.; Meuldijk, J.; Koning, C.E.

    2005-01-01

    Triblock copolymers were synthesized in aqueous dispersions in two polymerization steps using a low molar mass difunctional dithiocarbamate-based RAFT agent, and in merely one polymerization step using a macromolecular difunctional dithiocarbamate-based RAFT agent. Segmented block copolymers

  17. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  18. Oceanic rafting by a coastal community.

    Science.gov (United States)

    Fraser, Ceridwen I; Nikula, Raisa; Waters, Jonathan M

    2011-03-07

    Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400-600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.

  19. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Science.gov (United States)

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  20. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  1. Regulation of AMPA receptor localization in lipid rafts

    OpenAIRE

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2008-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the...

  2. Tracking the Health of the Geoscience Workforce

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.

    2008-12-01

    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  3. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms.

    Science.gov (United States)

    Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2017-11-01

    Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.

  4. Wrinkles, folds, and plasticity in granular rafts

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  5. Summary outline of DOE geoscience and geoscience - related research

    International Nuclear Information System (INIS)

    1982-02-01

    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions

  6. Application of QA geoscience investigations

    International Nuclear Information System (INIS)

    Henderson, J.T.

    1980-01-01

    This paper discusses the evolution of a classical hardware QA program (as currently embodied in DOE/ALO Manual Chapter 08XA; NRC 10CFR Part 50, Appendix B; and other similar documents) into the present geoscience quality assurance programs that address eventual NRC licensing, if required. In the context of this paper, QA will be restricted to the tasks associated with nuclear repositories, i.e. site identification, selection, characterization, verification, and utilization

  7. Spatiotemporal Thinking in the Geosciences

    Science.gov (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  8. Opportunities at Geoscience in Veracruz

    Science.gov (United States)

    Welsh-Rodríguez, C.

    2006-12-01

    The State of Veracruz is located in the central part of the Gulf of Mexico. It has enormous natural, economic and cultural wealth, is the third most populous state in Mexico, with nearly 33 % of the nation's water resources. It has an enormous quantity of natural resources, including oil, and is strategically located in Mexico. On one hand, mountains to the east are a natural border on the other lies the Gulf of Mexico. Between these two barriers are located tropical forests, mountain forests, jungles, wetlands, reefs, etc., and the land is one of the richest in biodiversity within the Americas. Veracruz, because of its geographical characteristics, presents an opportunity for research and collaboration in the geosciences. The region has experienced frequent episodes of torrential rainfalls, which have caused floods resulting in large amounts of property damage to agriculture, housing, infrastructure and, in extreme situations, loss of human life. In 2004 Veracruz University initiated a bachelor degree in Geography, which will prepare professionals to use their knowledge of geosciences to understand and promote integrated assessment of the prevailing problems in the State. Along with the geography program, the Earth Science Center offers other research programs in seismology, vulcanology, climatology, sustainable development and global change. Because of these characteristics, Veracruz is an optimal environment for active research in the geosciences, as well as for sharing the results of this research with educators, students, and all learners. We look forward to facilitating these efforts in the coming years.

  9. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students

    Science.gov (United States)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.

    2012-12-01

    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and

  10. Geoscience is Important? Show Me Why

    Science.gov (United States)

    Boland, M. A.

    2017-12-01

    "The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all

  11. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    Science.gov (United States)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  12. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  13. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  14. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  16. Molecularly Imprinted Polymer Synthesis Using RAFT Polymerisation

    International Nuclear Information System (INIS)

    Cormack, P.A.G.; Faizatul Shimal Mehamod; Faizatul Shimal Mehamod

    2013-01-01

    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material. (author)

  17. International Convergence on Geoscience Cyberinfrastructure

    Science.gov (United States)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote

  18. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    Science.gov (United States)

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  19. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  20. Membrane raft association is a determinant of plasma membrane localization.

    Science.gov (United States)

    Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya

    2014-06-10

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.

  1. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    Science.gov (United States)

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  2. Two-dimensional Forster resonance energy transfer (2-D FRET) and the membrane raft hypothesis

    OpenAIRE

    Acasandrei, Maria; Dale, Robert; VAN DE VEN, Martin; AMELOOT, Marcel

    2006-01-01

    A model for analyzing Forster resonance energy transfer (FRET) data in relation to the cell plasma membrane raft hypothesis is developed to take into account: (a) the distribution of FRET donors and acceptors at the surface of probing antibody fragments specific for a putative raft component; (b) partitioning of the raft component between raft and non-raft areas of the membrane; and (c) the dependence of the raft partition on the expression level of the considered component. Analysis of relev...

  3. Summary outline of ERDA geosciences and geoscience-related research

    International Nuclear Information System (INIS)

    1976-08-01

    The Division of Biomedical and Environmental Research (DBER) supports long-range, basic geosciences research in those areas of the life sciences which are relevant to current or planned ERDA programs. A central objective of the DBER geosciences program is to understand the mechanisms by which radionuclides and non-nuclear pollutants move through and interact with ecological systems including the air, land, inland waters, and oceans. Principal areas of interest include, in the field of atmospheric sciences: studies of the troposphere, particle formation, particulate matter, behavior of aerosols and gases, atmospheric transport and diffusion of fossil fuel pollutants, radionuclides, radionuclide global distribution patterns, nuclear emergency response systems, precipitation scavenging and dry deposition, regional relationships between pollutant sources and ambient atmospheric concentrations; and oceanographic studies of radioactivity that may be directly added to the environment from waste disposal activities and reactor operations or indirectly from nuclear explosions and transportation, the source term characterization, transport, fate, and effects of these pollutants in the marine environment; and studies of thermal effects on biological systems, mixing and circulation of water, distribution of radionuclides in ocean waters and sediments, and geochronology.A summary outline of the research programs is presented

  4. Geoscience Diversity Enhancement Project: Student Responses.

    Science.gov (United States)

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  5. Inquiring with Geoscience Datasets: Instruction and Assessment

    Science.gov (United States)

    Zalles, D.; Quellmalz, E.; Gobert, J.

    2005-12-01

    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  6. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  7. Rebirth of the Cheat River

    Science.gov (United States)

    The Cheat River in West Virginia is again a haven for whitewater rafting and smallmouth bass fishing after years of Clean Water Act funding and the efforts of a local non-profit group and others to control pollution from old abandoned mines.

  8. Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization

    NARCIS (Netherlands)

    Lima, V.G.R.; Jiang, X.; Brokken-Zijp, J.C.M.; Schoenmakers, P.J.; Klumperman, B.; Linde, van der R.

    2005-01-01

    The reversible addn.-fragmentation chain transfer (RAFT) polymn. technique has been employed to synthesize linear a,w -telechelic polymers with either hydroxyl or carboxyl end groups. Me methacrylate, Bu methacrylate, and Bu acrylate were polymd. with RAFT polymn. The polymns. exhibited the usual

  9. Synthesis and characterization of telechelic polymers prepared by RAFT

    NARCIS (Netherlands)

    Lima, V.G.R.; Brokken-Zijp, J.C.M.; Klumperman, B.; Benthem - van Duuren, van A.M.G.; Linde, van der R.

    2003-01-01

    The reversible addn.-fragmentation chain transfer (RAFT) polymn. technique was employed to synthesize telechelic polymers. Me methacrylate, Bu methacrylate were polymd. using RAFT polymn. The polymns. exhibit the usual characteristics of living processes, and were followed by a two-step chain-end

  10. The Geoscience Internet of Things

    Science.gov (United States)

    Lehnert, K.; Klump, J.

    2012-04-01

    Internet of Things is a term that refers to "uniquely identifiable objects (things) and their virtual representations in an Internet-like structure" (Wikipedia). We here use the term to describe new and innovative ways to integrate physical samples in the Earth Sciences into the emerging digital infrastructures that are developed to support research and education in the Geosciences. Many Earth Science data are acquired on solid earth samples through observations and experiments conducted in the field or in the lab. The application and long-term utility of sample-based data for science is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location where the sample was collected, time of sampling, sampling method, etc. (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Neither of these requirements could be achieved in the past due to incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows researchers to find a sample's archiving location. New internet-based capabilities have been developed over the past few years for the registration and unique identification of samples that make it possible to overcome these problems. Services for the registration and unique identification of samples are provided by the System for Earth Sample Registration SESAR (www.geosamples.org). SESAR developed the International Geo Sample Number, or IGSN, as a unique identifier for samples and specimens collected from our natural environment. Since December 2011, the IGSN is governed by an international organization, the IGSN eV (www.igsn.org), which endorses and promotes an internationally unified approach for registration and discovery of physical specimens in the Geoscience community and is establishing a new modular and

  11. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP

    2004-07-01

    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  12. Nurturing a growing field: Computers & Geosciences

    Science.gov (United States)

    Mariethoz, Gregoire; Pebesma, Edzer

    2017-10-01

    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  13. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces...... functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither...... major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present...

  14. Geoscience at Community Colleges: Availability of Programs and Geoscience Student Pathways

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    Community colleges served over 7.5 million students in 2009, and have a more diverse student population than four-year institutions. In 2008, 58% of community college students were women and 33% of students were underrepresented minorities. Community colleges provide a large diverse pool of untapped talent for the geosciences and for all science and engineering disciplines. The most recent data from NSF's 2006 NSCRG database indicate that within the physical sciences, 43% of Bachelor's, 31% of Master's and 28% of Doctoral recipients had attended community college. Until recently, fine-grained datasets for examining the prevalence of community college education in geoscience students' academic pathways has not been available. Additionally, there has been limited information regarding the availability of geoscience programs and courses at community colleges. In 2011, the American Geological Institute (AGI) expanded its Directory of Geoscience Departments (DGD) to cover 434 community colleges that offer either geoscience programs and/or geoscience curriculum, and launched the first pilot of a standardized National Geoscience Exit Survey. The survey collects information not only about students' pathways in the university system and future academic and career plans, but also about community college attendance including geoscience course enrollments and Associate's degrees. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year, and will also establish a longitudinal survey effort to track students through their careers. Whereas the updated DGD now provides wider coverage of geoscience faculty members and programs at community colleges, the Exit Survey provides a rich dataset for mapping the flow of students from community colleges to university geoscience programs. We will discuss the availability of geoscience courses and programs at community

  15. Summaries of FY 1993 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  16. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  17. Illuminate Knowledge Elements in Geoscience Literature

    Science.gov (United States)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.

    2015-12-01

    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  18. Analysis of lipid raft molecules in the living brain slices.

    Science.gov (United States)

    Kotani, Norihiro; Nakano, Takanari; Ida, Yui; Ito, Rina; Hashizume, Miki; Yamaguchi, Arisa; Seo, Makoto; Araki, Tomoyuki; Hojo, Yasushi; Honke, Koichi; Murakoshi, Takayuki

    2017-08-24

    Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of RAFT Agent on the Selective Approach of Molecularly Imprinted Polymers

    OpenAIRE

    Asman, Saliza; Mohamad, Sharifah; Sarih, Norazilawati

    2015-01-01

    Two types of reversible addition-fragmentation chain transfer molecularly imprinted polymers (RAFT-MIPs) were synthesized using different monomers, which were methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) and 2-hydroxyethyl methacrylate functionalized β-cyclodextrin (HEMA-β-CD), via reversible addition-fragmentation chain transfer (RAFT) polymerization, and were represented as RAFT-MIP(MAA-β-CD) and RAFT-MIP(HEMA-β-CD), respectively. Both RAFT-MIPs were systematically characterize...

  20. Functional Proteomic Analysis of Lipid Raft Kinase Complexes

    Science.gov (United States)

    2009-08-01

    0.0 623 + + + + + IPI00219425 PVR Isoform Beta of Poliovirus receptor precursor Non-raft 9 86/372 + + + + + 19.0 1.5 12.7 17 3 5.7 21 0 70.0 1st EXP...Counts No. Prob. Both Acc.Number Gene Symbol Description Fraction Uni. Pep. IPI00219425 PVR Isoform Beta of Poliovirus receptor precursor Raft 2 25...372 + + 1.0 0.0 3.3 1 0 3.3 1 0 3.3 624 + + + + + IPI00022661 PVRL2 Isoform Delta of Poliovirus receptor-related protein 2 precursor Non-raft 7 92/538

  1. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  2. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  3. Defining the Geoscience Community through a Quantitative Perspective

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  4. Geoscience on television: a review of science communication literature in the context of geosciences

    Science.gov (United States)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-06-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  5. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    Science.gov (United States)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  6. Proceedings of the geosciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  7. Career Paths for Geosciences Students (Invited)

    Science.gov (United States)

    Bowers, T. S.; Flewelling, S. A.

    2013-12-01

    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  8. optimizing conventional des concrete raft ng conventional design

    African Journals Online (AJOL)

    eobe

    concrete cross section area of raft slab foundation ... accurately modeling boundary cond never be ... the design of reinforced concrete flat ... undation and soil layer configuration adopted for the finite element analy .... After the application of.

  9. Geoscience and the 21st Century Workforce

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  10. Summaries of FY 92 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  11. Summaries of FY 91 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  12. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Duliu, Octavian G.

    2002-01-01

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  13. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  14. Social Technologies to Jump Start Geoscience Careers

    Science.gov (United States)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  15. Visual Analytics for Heterogeneous Geoscience Data

    Science.gov (United States)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  16. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  17. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas

  18. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  19. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  20. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    Directory of Open Access Journals (Sweden)

    Sabine Rech

    Full Text Available Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas and the Australian barnacle (Austrominius modestus. The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a

  1. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna

    Science.gov (United States)

    Borrell Pichs, Yaisel J.; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  2. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    Science.gov (United States)

    Rech, Sabine; Borrell Pichs, Yaisel J; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  3. Generation of organotypic raft cultures from primary human keratinocytes.

    Science.gov (United States)

    Anacker, Daniel; Moody, Cary

    2012-02-22

    The development of organotypic epithelial raft cultures has provided researchers with an efficient in vitro system that faithfully recapitulates epithelial differentiation. There are many uses for this system. For instance, the ability to grow three-dimensional organotypic raft cultures of keratinocytes has been an important milestone in the study of human papillomavirus (HPV)(1). The life cycle of HPV is tightly linked to the differentiation of squamous epithelium(2). Organotypic epithelial raft cultures as demonstrated here reproduce the entire papillomavirus life cycle, including virus production(3,4,5). In addition, these raft cultures exhibit dysplastic lesions similar to those observed upon in vivo infection with HPV. Hence this system can also be used to study epithelial cell cancers, as well as the effect of drugs on epithelial cell differentiation in general. Originally developed by Asselineau and Prunieras(6) and modified by Kopan et al.(7), the organotypic epithelial raft culture system has matured into a general, relatively easy culture model, which involves the growth of cells on collagen plugs maintained at an air-liquid interface (Figure 1A). Over the course of 10-14 days, the cells stratify and differentiate, forming a full thickness epithelium that produces differentiation-specific cytokeratins. Harvested rafts can be examined histologically, as well as by standard molecular and biochemical techniques. In this article, we describe a method for the generation of raft cultures from primary human keratinocytes. The same technique can be used with established epithelial cell lines, and can easily be adapted for use with epithelial tissue from normal or diseased biopsies(8). Many viruses target either the cutaneous or mucosal epithelium as part of their replicative life cycle. Over the past several years, the feasibility of using organotypic raft cultures as a method of studying virus-host cell interactions has been shown for several herpesviruses, as

  4. High temperature initiator-free RAFT polymerization of methyl methacrylate in a microwave reactor

    NARCIS (Netherlands)

    Paulus, R.M.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The reversible additionfragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was investigated under microwave irradiation. At first, a comparison was made between microwave and thermal heating for the RAFT polymerization of MMA with azobis(isobutyronitrile) (AIBN) as

  5. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  6. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  7. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  8. RAFT: a computer program for fault tree risk calculations

    International Nuclear Information System (INIS)

    Seybold, G.D.

    1977-11-01

    A description and user instructions are presented for RAFT, a FORTRAN computer code for calculation of a risk measure for fault tree cut sets. RAFT calculates release quantities and a risk measure based on the product of probability and release quantity for cut sets of fault trees modeling the accidental release of radioactive material from a nuclear fuel cycle facility. Cut sets and their probabilities are supplied as input to RAFT from an external fault tree analysis code. Using the total inventory available of radioactive material, along with release fractions for each event in a cut set, the release terms are calculated for each cut set. Each release term is multiplied by the cut set probability to yield the cut set risk measure. RAFT orders the dominant cut sets on the risk measure. The total risk measure of processed cut sets and their fractional contributions are supplied as output. Input options are available to eliminate redundant cut sets, apply threshold values on cut set probability and risk, and control the total number of cut sets output. Hash addressing is used to remove redundant cut sets from the analysis. Computer hardware and software restrictions are given along with a sample problem and cross-reference table of the code. Except for the use of file management utilities, RAFT is written exclusively in FORTRAN language and is operational on a Control Data, CYBER 74-18--series computer system. 4 figures

  9. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    Science.gov (United States)

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Research status of wave energy conversion (WEC) device of raft structure

    Science.gov (United States)

    Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng

    2017-10-01

    This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.

  11. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...

  12. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    Science.gov (United States)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  13. Raft-like membrane domains in pathogenic microorganisms.

    Science.gov (United States)

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Rapid, long-distance dispersal by pumice rafting.

    Directory of Open Access Journals (Sweden)

    Scott E Bryan

    Full Text Available Pumice is an extremely effective rafting agent that can dramatically increase the dispersal range of a variety of marine organisms and connect isolated shallow marine and coastal ecosystems. Here we report on a significant recent pumice rafting and long-distance dispersal event that occurred across the southwest Pacific following the 2006 explosive eruption of Home Reef Volcano in Tonga. We have constrained the trajectory, and rate, biomass and biodiversity of transfer, discovering more than 80 species and a substantial biomass underwent a >5000 km journey in 7-8 months. Differing microenvironmental conditions on the pumice, caused by relative stability of clasts at the sea surface, promoted diversity in biotic recruitment. Our findings emphasise pumice rafting as an important process facilitating the distribution of marine life, which have implications for colonisation processes and success, the management of sensitive marine environments, and invasive pest species.

  15. With or without rafts? Alternative views on cell membranes.

    Science.gov (United States)

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. © 2015 WILEY Periodicals, Inc.

  16. RAFT technology for the production of advanced photoresist polymers

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Okazaki, Hiroshi; Sounik, James R.; Clark, George

    2008-03-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) technology has been developed for use in producing high yield low polydispersity (PD) polymers for many applications. RAFT technology is being used to produce low PD polymers and to allow control of the polymer architecture. A variety of polymers are being synthesized for use in advanced photoresists using this technique. By varying the RAFT reagent used we can modulate the system reactivity of the RAFT reagent and optimize it for use in acrylate or methacrylate monomer systems (193 and 193i photoresist polymers) or for use in styrenic monomer systems (248 nm photoresist polymers) to achieve PD as low as 1.05. RAFT polymerization technology also allows us to produce block copolymers using a wide variety of monomers. These block copolymers have been shown to be useful in self assembly polymer applications to produce unique and very small feature sizes. The mutual compatibilities of all the components within a single layer 193 photoresist are very important in order to achieve low LWR and low defect count. The advent of immersion imaging demands an additional element of protection at the solid/liquid interface. We have used RAFT technology to produce block copolymers comprising a random "resist" block with composition and size based on conventional dry photoresist materials, and a "low surface energy" block for use in 193i lithography. The relative block lengths and compositions may be varied to tune solution behavior, surface energy, contact angles, and solubility in developer. The use of this technique will be explored to produce polymers used in hydrophobic single layer resists as well as additives compatible with the main photoresist polymer.

  17. Teaching Geoethics Across the Geoscience Curriculum

    Science.gov (United States)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel

    2015-04-01

    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  18. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  19. Visualizing Geoscience Concepts Through Textbook Art (Invited)

    Science.gov (United States)

    Marshak, S.

    2013-12-01

    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  20. Building a Community for Art and Geoscience

    Science.gov (United States)

    Eriksson, S. C.; Ellins, K. K.

    2014-12-01

    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at www.bellaroca.org and http://geologyinart.blogspot.com, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  1. Development of optimum design from static response of pile–raft interaction

    DEFF Research Database (Denmark)

    Taghavi Ghalesari, A; Barari, Amin; Fardad Amini, P

    2015-01-01

    Piled raft foundations are among the most commonly used support structures for offshore projects. When a raft foundation alone does not satisfy the design requirements, piles may be added to improve the ultimate load capacity and the settlement performance of the raft. In this study, design...... for the piled raft were highly influenced by the number of piles and the raft thickness. Optimal design configurations of piles for cohesive soils are discussed. Increasing the pile spacing decreased the pile butt load ratio by allowing for a more uniform load distribution between the piles....

  2. Summaries of FY 1994 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  3. Geoscience Digital Data Resource and Repository Service

    Science.gov (United States)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.

    2017-12-01

    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  4. History of Geoscience Research Matters to You

    Science.gov (United States)

    Fleming, J. R.

    2017-12-01

    The geosciences have a long, distinguished, and very useful history Today's science is tomorrow's history of science. If we don't study the past, then every decision we face will seem unprecedented. If we don't study the history of science and apply its lessons, then I don't think we can say we really understand science. Actual research results and ongoing programs will be highlighted, with a focus on public understanding and support for atmospheric science and global change.

  5. Smartphones: Powerful Tools for Geoscience Education

    Science.gov (United States)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  6. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).

    Science.gov (United States)

    Fairbanks, Benjamin D; Gunatillake, Pathiraja A; Meagher, Laurence

    2015-08-30

    RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired. Copyright © 2015. Published by Elsevier B.V.

  7. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    Science.gov (United States)

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  8. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)

    1978-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences which relate to DOE's many missions. This research may be conducted in the major DOE laboratories, industry, universities and other government agencies. Such support provides for payment of salaries, purchase of equipment and other materials, an allowance for overhead costs, and is formalized by a contract between the Department and the organization performing the work. The summaries in this document, prepared by the investigators, describe the work performed during 1977, include the scope of the work to be performed in 1978 and provide information regarding some of the research planned for 1979. The Division of Engineering, Mathematics, and Geosciences, which is a part of the Office of Energy Research, supports, under its Geoscience Program, research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary relationships, as well as their relationship to the Department's technological needs

  9. Programming and Technology for Accessibility in Geoscience

    Science.gov (United States)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  10. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  11. Effectiveness of combinations of raft foundation with aprons as a ...

    Indian Academy of Sciences (India)

    B A Vijayasree

    2018-03-10

    Mar 10, 2018 ... bridge projects vary from exposed hard rock to pure sand for a considerable .... arrangements were made to dissipate the energy during inletting of water .... This endorsed the fact that the use of raft foundation in Case 2 reduced the ... at the downstream side, which extended to the wake region of horseshoe ...

  12. Direct surface PEGylation of nanodiamond via RAFT polymerization

    International Nuclear Information System (INIS)

    Shi, Yingge; Liu, Meiying; Wang, Ke; Huang, Hongye; Wan, Qing; Tao, Lei; Fu, Lihua; Zhang, Xiaoyong; Wei, Yen

    2015-01-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  13. Research Applications for Teaching (RAFT) Project. Final Report.

    Science.gov (United States)

    Thomson, James R., Jr.; Handley, Herbert M.

    A report is given of the development and progress of the Research Applications for Teaching (RAFT) project, developed at Mississippi State University. Based upon research findings relative to effective teaching and effective schooling, five curriculum modules were prepared and implemented in instruction. In the second year of the project the…

  14. NMR spectroscopy in the optimization and evaluation of RAFT agents

    NARCIS (Netherlands)

    Klumperman, B.; McLeary, J.B.; van den Dungen, E.; Pound, G.

    2007-01-01

    The selection of a suitable mediating agent in Reversible Addition-Fragmentation Chain Transfer (RAFT) mediated polymerization is crucial to the degree of control that can be achieved. An overview of work from the Stellenbosch group is presented in which the use of NMR spectroscopy as a tool for

  15. Radical-induced oxidation of RAFT agents : a kinetic study

    NARCIS (Netherlands)

    Li, Changxi; He, Junpo; Zhou, Yanwu; Gu, Yuankai; Yang, Yuliang

    2011-01-01

    Radical-induced oxidn. of reversible addn.-fragmentation chain transfer (RAFT) agents is studied with respect to the effect of mol. structure on oxidn. rate. The radicals are generated by homolysis of either azobisisobutyronitrile or alkoxyamine and transformed in situ immediately into peroxy

  16. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  17. Lipid rafts and their roles in T-cell activation

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav

    2005-01-01

    Roč. 7, č. 2 (2005), s. 310-316 ISSN 1286-4579 R&D Projects: GA MŠk(CZ) LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : lipid rafts * T- cell * immunoreceptor signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.154, year: 2005

  18. The roles of membrane microdomains (rafts) in T cell activation

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav

    2003-01-01

    Roč. 191, - (2003), s. 148-164 ISSN 0105-2896 R&D Projects: GA MŠk LN00A026 Grant - others:Wellcome Trust(GB) J1116W24Z Institutional research plan: CEZ:AV0Z5052915 Keywords : membrane microdomain * raft * T cell Subject RIV: EC - Immunology Impact factor: 7.052, year: 2003

  19. Modifying Lipid Rafts Promotes Regeneration and Functional Recovery

    Directory of Open Access Journals (Sweden)

    Nardos G. Tassew

    2014-08-01

    Full Text Available Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhancing survival and regeneration. We show that bone morphogenetic protein (BMP and RGMa-dependent recruitment of Neogenin into lipid rafts requires an interaction between RGMa and Neogenin subdomains. RGMa or Neogenin peptides that prevent this interaction, BMP inhibition by Noggin, or reduction of membrane cholesterol all block Neogenin raft localization, promote axon outgrowth, and prevent neuronal apoptosis. Blocking Neogenin raft association influences axonal pathfinding, enhances survival in the developing CNS, and promotes survival and regeneration in the injured adult optic nerve and spinal cord. Moreover, lowering cholesterol disrupts rafts and restores locomotor function after spinal cord injury. These data reveal a unified strategy to promote both survival and regeneration in the CNS.

  20. Astronaut Tamara Jernigan deploys life raft during WETF training

    Science.gov (United States)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, deploys a life raft during a session of emergency bailout training. The training took place in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Jernigan was joined by her crew mates for the training session. Several SCUBA-equipped divers who assisted in the training can be seen in this photograph.

  1. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels

    Science.gov (United States)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.

    2012-12-01

    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  2. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  3. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  4. EarthCube Data Discovery Hub: Enhancing, Curating and Finding Data across Multiple Geoscience Data Sources.

    Science.gov (United States)

    Zaslavsky, I.; Valentine, D.; Richard, S. M.; Gupta, A.; Meier, O.; Peucker-Ehrenbrink, B.; Hudman, G.; Stocks, K. I.; Hsu, L.; Whitenack, T.; Grethe, J. S.; Ozyurt, I. B.

    2017-12-01

    EarthCube Data Discovery Hub (DDH) is an EarthCube Building Block project using technologies developed in CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) to enable geoscience users to explore a growing portfolio of EarthCube-created and other geoscience-related resources. Over 1 million metadata records are available for discovery through the project portal (cinergi.sdsc.edu). These records are retrieved from data facilities, including federal, state and academic sources, or contributed by geoscientists through workshops, surveys, or other channels. CINERGI metadata augmentation pipeline components 1) provide semantic enhancement based on a large ontology of geoscience terms, using text analytics to generate keywords with references to ontology classes, 2) add spatial extents based on place names found in the metadata record, and 3) add organization identifiers to the metadata. The records are indexed and can be searched via a web portal and standard search APIs. The added metadata content improves discoverability and interoperability of the registered resources. Specifically, the addition of ontology-anchored keywords enables faceted browsing and lets users navigate to datasets related by variables measured, equipment used, science domain, processes described, geospatial features studied, and other dataset characteristics that are generated by the pipeline. DDH also lets data curators access and edit the automatically generated metadata records using the CINERGI metadata editor, accept or reject the enhanced metadata content, and consider it in updating their metadata descriptions. We consider several complex data discovery workflows, in environmental seismology (quantifying sediment and water fluxes using seismic data), marine biology (determining available temperature, location, weather and bleaching characteristics of coral reefs related to measurements in a given coral reef survey), and river geochemistry (discovering

  5. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  6. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Science.gov (United States)

    McGraw, Kathy L; Basiorka, Ashley A; Johnson, Joseph O; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.

  7. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner

    2009-01-01

    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  8. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    NARCIS (Netherlands)

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2010-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal

  9. Linking Undergraduate Geoscience and Education Departments

    Science.gov (United States)

    Ireton, F. W.; McManus, D. A.

    2001-05-01

    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  10. Transforming Indigenous Geoscience Education and Research (TIGER)

    Science.gov (United States)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  11. A Model Collaborative Platform for Geoscience Education

    Science.gov (United States)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  12. Agent Based Modeling Applications for Geosciences

    Science.gov (United States)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  13. Summaries of FY 1995 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  14. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: marteau@ipnl.in2p3.fr [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)

    2012-12-11

    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  15. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  16. OERL: A Tool For Geoscience Education Evaluators

    Science.gov (United States)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  17. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    Science.gov (United States)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  18. Building an Outdoor Classroom for Field Geology: The Geoscience Garden

    Science.gov (United States)

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna

    2016-01-01

    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  19. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...... of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-beta-cyclodextrin, filipin III, or 5-cholestene-5-beta-ol. Lipid raft disruption did not affect...... in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid...

  20. Study on design method and vibration reduction characteristic of floating raft with periodic structure

    Science.gov (United States)

    Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang

    2018-03-01

    The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.

  1. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect analysis of geometric parameters of floating raft on isolation performance

    Directory of Open Access Journals (Sweden)

    LI Shangda

    2017-12-01

    Full Text Available [Objectives] This paper focuses on the effects of the geometric parameters of a floating raft on isolation performance.[Methods] Based on the idea that the weight of a floating raft remains constant, a parametric finite element model is established using geometric parameters, and the effects of the geometric parameters when isolation performance is measured by vibration level difference are discussed.[Results] The effects of the geometric parameters of a floating raft on isolation performance are mainly reflected in the middle and high frequency areas. The most important geometric parameters which have an impact on isolation performance are the raft's height, length to width ratio and number of ribs. Adjusting the geometric parameters of the raft is one effective way to avoid the vibration frequency of mechanical equipment.[Conclusions] This paper has some practical value for the engineering design of floating raft isolation systems.

  3. Geoscience Education Research: A Brief History, Context and Opportunities

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  4. Tissue Engineering the Cornea: The Evolution of RAFT

    Science.gov (United States)

    Levis, Hannah J.; Kureshi, Alvena K.; Massie, Isobel; Morgan, Louise; Vernon, Amanda J.; Daniels, Julie T.

    2015-01-01

    Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro. PMID:25809689

  5. Circular Raft Footings Strengthened by Stone Columns under Static Loads

    OpenAIRE

    R. Ziaie Moayed; B. Mohammadi-Haji

    2016-01-01

    Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of ...

  6. Diversifying the Geosciences: Examples from the Arctic

    Science.gov (United States)

    Holmes, R. M.

    2017-12-01

    Like other realms of the geosciences, the scientists who comprise the Arctic research community tends to be white and male. For example, a survey of grants awarded over a 5-year period beginning in 2010 by NSF's Arctic System Science and Arctic Natural Sciences programs showed that over 90% of PIs were white whereas African Americans, Hispanics, and Native Americans together accounted for only about 1% of PIs. Over 70% of the PIs were male. I will suggest that involving diverse upper-level undergraduate students in authentic field research experiences may be one of the shortest and surest routes to diversifying the Arctic research community, and by extension, the geoscientific research community overall. Upper-level undergraduate students are still open to multiple possibilities, but an immersive field research experience often helps solidify graduate school and career trajectories. Though an all-of-the-above strategy is needed, focusing on engaging a diverse cohort of upper-level undergraduate students may provide one of the most efficient means of diversifying the geosciences over the coming years and decades.

  7. Progress toward Modular UAS for Geoscience Applications

    Science.gov (United States)

    Dahlgren, R. P.; Clark, M. A.; Comstock, R. J.; Fladeland, M.; Gascot, H., III; Haig, T. H.; Lam, S. J.; Mazhari, A. A.; Palomares, R. R.; Pinsker, E. A.; Prathipati, R. T.; Sagaga, J.; Thurling, J. S.; Travers, S. V.

    2017-12-01

    Small Unmanned Aerial Systems (UAS) have become accepted tools for geoscience, ecology, agriculture, disaster response, land management, and industry. A variety of consumer UAS options exist as science and engineering payload platforms, but their incompatibilities with one another contribute to high operational costs compared with those of piloted aircraft. This research explores the concept of modular UAS, demonstrating airframes that can be reconfigured in the field for experimental optimization, to enable multi-mission support, facilitate rapid repair, or respond to changing field conditions. Modular UAS is revolutionary in allowing aircraft to be optimized around the payload, reversing the conventional wisdom of designing the payload to accommodate an unmodifiable aircraft. UAS that are reconfigurable like Legos™ are ideal for airborne science service providers, system integrators, instrument designers and end users to fulfill a wide range of geoscience experiments. Modular UAS facilitate the adoption of open-source software and rapid prototyping technology where design reuse is important in the context of a highly regulated industry like aerospace. The industry is now at a stage where consolidation, acquisition, and attrition will reduce the number of small manufacturers, with a reduction of innovation and motivation to reduce costs. Modularity leads to interface specifications, which can evolve into de facto or formal standards which contain minimum (but sufficient) details such that multiple vendors can then design to those standards and demonstrate interoperability. At that stage, vendor coopetition leads to robust interface standards, interoperability standards and multi-source agreements which in turn drive costs down significantly.

  8. Fundamental geosciences program. Annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Apps, J.A.

    1977-01-01

    The geoscience program relating to geothermal energy consists of four projects. In the project on reservoir dynamics, sophisticated codes have been written to simulate the dynamics of heat flow in geothermal reservoir systems. These codes have also been applied to the investigations of natural aquifers as a storage system for thermal energy. In the second project, core samples are studied to determine the high temperature and high pressure behavior of aquifers in the presence of saturating fluids. The third project covers the systematic evaluation of the thermodynamic properties of electrolytes in order to interpret the behavior of geothermal fluids. The fourth project involves hydrothermal solubility measurements of various minerals to elucidate the chemistry and mass transfer in geothermal systems. The second major program includes four projects which involve precise measurements and analysis of physical and chemical properties of geologic materials. These include measurements of the thermodynamic properties (viscosity, density and heat capacity) of silicate materials to help understand magma genesis and evolution, high-precision neutron activation analysis of rare and trace elements in magmatic materials, and the precise measurement of seismic wave velocities near geological faults, in order to determine the buildup of stress in the earth's crust. Third, the development program in fundamental geosciences includes six innovative projects. These projects include research in the in situ leaching of uranium ore, properties of magmas, removal of pyrite from coal, properties of soils and soft rocks, stress flow behavior of fractured rock systems, and high-precision mass spectrometry.

  9. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  10. The foundation mass concrete construction technology of Hongyun Building B tower raft

    Science.gov (United States)

    Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness and 2800mm beside side of the core tube. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing.

  11. Effect of modeling of super-structure on the behaviour of reactor building raft

    International Nuclear Information System (INIS)

    Mondal, A.; Singh, A.K.; Roy, Raghupati; Verma, U.S.P.; Warudkar, A.S.

    2003-01-01

    The behaviour of the reactor building raft was studied when the stiffness of the super-structural elements is included in the analysis as compared to the results of conventional analysis ignoring the stiffness of the super-structural elements. The effect of the stiffness of the super-structures on the loss of contact of the raft under seismic environment was also investigated. In order to study the effect of horizontal springs on the behaviour of the raft particularly near the stressing gallery under seismic environment, a separate study has been carried out considering a 3D model consisting of solid elements supported on both horizontal and vertical springs. The model was analysed for all the forces applied at the top of the raft and the analysis results were compared with those of shell model. The following conclusions are drawn: (i) Idealisation of the reactor building raft using shell elements is adequate for estimating the design forces/moments on the raft. The design forces/moments obtained from FE model consisting of solid elements closely matches with those obtained from FE model with shell elements. Idealisation of the RB raft using shell elements will also reduce the problem size and the related computational efforts. (ii) The stiffness of the super-structure has significant effect on the behaviour of the raft. Consideration of the stiffness of the super structure reduces the design forces/moments significantly and hence, modelling of the stiffness of the super structure is necessary for economical design. (iii) Modelling of horizontal stiffness of the raft in terms of horizontal springs at the interface of the raft and the rock does not have significant effect on the behaviour of the raft and as such, is not required to be considered in the FE model. However, it is necessary to ensure adequate factor of safety against the overall stability of the raft

  12. Geosciences Information for Teachers (GIFT) in Catalonia

    Science.gov (United States)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  13. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  14. Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist.

    Science.gov (United States)

    Prajapati, Shailesh T; Mehta, Anant P; Modhia, Ishan P; Patel, Chhagan N

    2012-10-01

    The purpose of this research work was to formulate raft-forming chewable tablets of H2 antagonist (Famotidine) using a raft-forming agent along with an antacid- and gas-generating agent. Tablets were prepared by wet granulation and evaluated for raft strength, acid neutralisation capacity, weight variation, % drug content, thickness, hardness, friability and in vitro drug release. Various raft-forming agents were used in preliminary screening. A 2(3) full-factorial design was used in the present study for optimisation. The amount of sodium alginate, amount of calcium carbonate and amount sodium bicarbonate were selected as independent variables. Raft strength, acid neutralisation capacity and drug release at 30 min were selected as responses. Tablets containing sodium alginate were having maximum raft strength as compared with other raft-forming agents. Acid neutralisation capacity and in vitro drug release of all factorial batches were found to be satisfactory. The F5 batch was optimised based on maximum raft strength and good acid neutralisation capacity. Drug-excipient compatibility study showed no interaction between the drug and excipients. Stability study of the optimised formulation showed that the tablets were stable at accelerated environmental conditions. It was concluded that raft-forming chewable tablets prepared using an optimum amount of sodium alginate, calcium carbonate and sodium bicarbonate could be an efficient dosage form in the treatment of gastro oesophageal reflux disease.

  15. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  17. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.

    2017-12-01

    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who

  18. On the applicability of Benford's Law in the Geosciences

    Science.gov (United States)

    Sambridge, M.; Tkalcic, H.; Jackson, A.

    2009-12-01

    Benford's Law is a curious property of numerous datasets whereby the frequency distribution of the first digit (i.e. first non zero number from the left) follows a well defined logarithmic function, namely P_D = log_b(1+1/D), where D is the first digit and b is the base of the data. This was initially observed by Newcomb (1881) and later quantified and expanded by Benford (1938). The latter author first put forward a set of 20 distinct data sets with differing physical dimension and character which collectively obeyed this 1st digit law. The nature of each data is the most startling feature of all in that they range from physical properties of matter such as molecular weight and specific heat capacity through river areas and drainage rates to population numbers in the USA as well as American baseball league averages of 1936. A universal law of digits was proposed by Benford and in recent times has been widely accepted. Investigations into the nature and use of Benford's Law have continued in multiple fields. Mathematicians have more recently proven the correctness of this universal law of digits under general conditions and Nigrini (1992) has made use of it for uncovering anomalous data errors and fraud in accountancy practices. To date Benford's Law appears to have received no attention within the Geosciences. Here we demonstrate its widespread applicability for geophysical data sets as well as models derived from data of varying type and physical dimension. Specifically we verify Benford's Law holds for a geomagnetic Field model of the Earth (gufm1), Seismic models obtained from tomography (including mantle shear wave and regional body wave P and S models for various parts of the globe), and the GRACE gravity model up to degree 160. It would appear that Benford's Law has widespread applicability to geoscience data. Departures from Benford's Law are of interest as they seem to indicate changes in the local character of data, possibly due to fraud, error, or

  19. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  20. Unidata: A cyberinfrastrucuture for the geosciences

    Science.gov (United States)

    Ramamurthy, Mohan

    2016-04-01

    Data are the lifeblood of the geosciences. Rapid advances in computing, communications, and observational technologies - along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system - are revolutionizing nearly every aspect of our field. The result is a dramatic proliferation of data from diverse sources; data that are consumed by an evolving and ever-broadening community of users and that are becoming the principal engine for driving scientific advances. Data-enabled research has emerged as a Fourth Paradigm of science, alongside experiments, theoretical studies, and computer simulations Unidata is a data facility, sponsored by the NSF, and our mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation in the geosciences. For more nearly thirty years, Unidata has worked in concert with the atmospheric science education and research community to develop and provide innovative data systems, tools, techniques, and resources to support data-enabled science to understand the Earth system. In doing so, Unidata has maintained a close, synergistic relationship with the universities, engaging them in collaborative efforts to exploit data and technologies, and removing roadblocks to data discovery, access, analysis, and effective use. As a community-governed program, Unidata depends on guidance and feedback from educators, researchers, and students in the atmospheric and related sciences. The Unidata Program helps researchers and educators acquire and use earth-related data. Most of the data are provided in "real time" or "near-real time" - that is, the data are sent to participants almost as soon as the observations are made. Unidata also develops, maintains, and supports a variety of software packages. Most of these packages are developed at the Unidata Program Center (UPC), while a few others

  1. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  2. GeoMod 2014 - Modelling in geoscience

    Science.gov (United States)

    Leever, Karen; Oncken, Onno

    2016-08-01

    GeoMod is a biennial conference to review and discuss latest developments in analogue and numerical modelling of lithospheric and mantle deformation. GeoMod2014 took place at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Its focus was on rheology and deformation at a wide range of temporal and spatial scales: from earthquakes to long-term deformation, from micro-structures to orogens and subduction systems. It also addressed volcanotectonics and the interaction between tectonics and surface processes (Elger et al., 2014). The conference was followed by a 2-day short course on "Constitutive Laws: from Observation to Implementation in Models" and a 1-day hands-on tutorial on the ASPECT numerical modelling software.

  3. Radon applications in geosciences - Progress & perspectives

    Science.gov (United States)

    Barbosa, S. M.; Donner, R. V.; Steinitz, G.

    2015-05-01

    During the last decades, the radioactive noble gas radon has found a variety of geoscientific applications, ranging from its utilization as a potential earthquake precursor and proxy of tectonic stress over its specific role in volcanic environments to a wide range of applications as a tracer in marine and hydrological settings. This topical issue summarizes the current state of research as exemplified by some original research articles covering the aforementioned as well as other closely related aspects and points to some important future directions of radon application in geosciences. This editorial provides a more detailed overview of the contents of this volume, a brief summary of the rationale underlying the diverse applications, and outlines some important perspectives.

  4. Mentored undergraduate research in the geosciences

    Science.gov (United States)

    Judge, Shelley; Pollock, Meagen; Wiles, Greg; Wilson, Mark

    2012-09-01

    There is little argument about the merits of undergraduate research, but it can seem like a complex, resource-intensive endeavor [e.g., Laursen et al., 2010; Lopatto, 2009; Hunter et al., 2006]. Although mentored undergraduate research can be challenging, the authors of this feature have found that research programs are strengthened when students and faculty collaborate to build new knowledge. Faculty members in the geology department at The College of Wooster have conducted mentored undergraduate research with their students for more than 60 years and have developed a highly effective program that enhances the teaching, scholarship, and research of our faculty and provides life-changing experiences for our students. Other colleges and universities have also implemented successful mentored undergraduate research programs in the geosciences. For instance, the 18 Keck Geology Consortium schools (http://keckgeology.org/), Princeton University, and other institutions have been recognized for their senior capstone experiences by U.S. News & World Report.

  5. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  6. Data assimilation techniques and modelling uncertainty in geosciences

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available "You cannot step into the same river twice". Perhaps this ancient quote is the best phrase to describe the dynamic nature of the earth system. If we regard the earth as a several mixed systems, we want to know the state of the system at any time. The state could be time-evolving, complex (such as atmosphere or simple and finding the current state requires complete knowledge of all aspects of the system. On one hand, the Measurements (in situ and satellite data are often with errors and incomplete. On the other hand, the modelling cannot be exact; therefore, the optimal combination of the measurements with the model information is the best choice to estimate the true state of the system. Data assimilation (DA methods are powerful tools to combine observations and a numerical model. Actually, DA is an interaction between uncertainty analysis, physical modelling and mathematical algorithms. DA improves knowledge of the past, present or future system states. DA provides a forecast the state of complex systems and better scientific understanding of calibration, validation, data errors and their probability distributions. Nowadays, the high performance and capabilities of DA have led to extensive use of it in different sciences such as meteorology, oceanography, hydrology and nuclear cores. In this paper, after a brief overview of the DA history and a comparison with conventional statistical methods, investigated the accuracy and computational efficiency of two main classical algorithms of DA involving stochastic DA (BLUE and Kalman filter and variational DA (3D and 4D-Var, then evaluated quantification and modelling of the errors. Finally, some of DA applications in geosciences and the challenges facing the DA are discussed.

  7. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  8. Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle

    International Nuclear Information System (INIS)

    Triantafilou, Kathy; Triantafilou, Martha

    2003-01-01

    Lipid rafts have an important property to preferentially concentrate some proteins, while excluding others. Lipid rafts can also act as functional platforms for multiple signalling and trafficking processes. Several reports have shown that lipid rafts play a crucial role in the assembly of several enveloped viruses and possibly their cell entry. In this study we investigated the importance of lipid raft formation in Coxsackievirus A9 (CAV-9) entry and cell infection. Here by using a variety of biochemical and biophysical methods, we report that receptor molecules integrin αvβ3 and GRP78, which are implicated in CAV-9 infection as well as accessory molecules such as MHC class I, are accumulated in increased concentrations in lipid rafts following CAV-9 infection. In addition our studies revealed that raft integrity is essential for this virus since CAV-9 activates the Raf/MAPK signalling pathway within the raft and raft-disrupting drugs such as nystatin and MCD can successfully inhibit CAV-9 infection

  9. Lipid raft organization and function in the small intestinal brush border

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge

    2008-01-01

    proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry...... to the organism....

  10. Characterization of Z-RAFT star polymerization of butyl acrylate by size-exclusion chromatography

    NARCIS (Netherlands)

    Boschmann, D.; Edam, R.; Schoenmakers, P.J.; Vana, P.

    2009-01-01

    Z-RAFT star polymerization of butyl acrylate using multifunctional trithiocarbonate-type RAFT agents carrying methyl propionate as the leaving group were used to form star polymers having 3, 4, and 6 arms. The polymerizations showed well controlled behavior up to high monomer conversions. By using a

  11. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  12. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  13. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting

  14. Probing the RAFT process using a model reaction between alkoxyamine and dithioester

    NARCIS (Netherlands)

    Zhou, Y.

    2012-01-01

    A small-molecular model reaction was designed to probe the reversible addition–fragmentation chain transfer (RAFT) process. In this reaction, alkoxyamine releases radicals that react in situ with dithioester through the RAFT process, generating new radicals through the fragmentation of the

  15. Research Note 2: Egg raft density and feeding preference of Culex ...

    African Journals Online (AJOL)

    ... useful for estimating the number of eggs in a culicine egg raft, making a decision on larvae food preference and using the easily available table sugar instead of the more expensive sucrose in adult rearing. Keywords:mosquito eggs, mosquito larvae, culicine mosquito, egg raft density. Nigerian Journal of Parasitology Vol.

  16. RAFTing with Raptors: Connecting Science, English Language Arts, and the Common Core State Standards

    Science.gov (United States)

    Senn, Gary J.; McMurtrie, Deborah H.; Coleman, Bridget K.

    2013-01-01

    This article explores using the RAFT strategy (Role, Audience, Format, Topic) for writing in science classes. The framework of the RAFT strategy will be explained, and connections with Common Core State Standards (CCSS) for ELA/Literacy will be discussed. Finally, there will be a discussion of a professional learning experience for teachers in…

  17. The raft foundation reinforcement construction technology of Hongyun Building B tower

    Science.gov (United States)

    Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness include four kinds of reinforcement Φ32, Φ28, Φ12 and 12 steel grade two, in respective. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing. According to the characteristics with large volume and thickness of the engineering of raft foundation, the construction of the reinforced force was calculated and the quality control measures were used to the reinforcement binding and connection, so it is success that Hongyun Building B tower raft foundation reinforced construction.

  18. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  19. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes

    DEFF Research Database (Denmark)

    Navarrete Santos, A; Roentsch, J; Danielsen, E M

    2000-01-01

    as in adhesion and cell-cell interactions. Here, we report for the first time that aminopeptidase N/CD13 in monocytes is partially localized in detergent-insoluble membrane microdomains enriched in cholesterol, glycolipids, and glycosylphosphoinositol-anchored proteins, referred to as "rafts." Raft fractions...... of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly...... reduces raft localization of aminopeptidase N/CD13 without affecting ala-p-nitroanilide cleaving activity of cells....

  20. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  1. Geoscience Education Research, Development, and Practice at Arizona State University

    Science.gov (United States)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  2. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    Science.gov (United States)

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  4. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    2017-03-15

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  5. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    International Nuclear Information System (INIS)

    Carolli, Mauro; Geneletti, Davide; Zolezzi, Guido

    2017-01-01

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  6. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction...... and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other...

  7. Geoscience as an Agent for Change in Higher Education

    Science.gov (United States)

    Manduca, C. A.; Orr, C. H.; Kastens, K.

    2016-12-01

    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major

  8. Portrayal of the Geosciences in the New York Times

    Science.gov (United States)

    Wysession, M. E.; Lindstrom, A.

    2017-12-01

    An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For

  9. Promoting research integrity in the geosciences

    Science.gov (United States)

    Mayer, Tony

    2015-04-01

    Conducting research in a responsible manner in compliance with codes of research integrity is essential. The geosciences, as with all other areas of research endeavour, has its fair share of misconduct cases and causes celebres. As research becomes more global, more collaborative and more cross-disciplinary, the need for all concerned to work to the same high standards becomes imperative. Modern technology makes it far easier to 'cut and paste', to use Photoshop to manipulate imagery to falsify results at the same time as making research easier and more meaningful. So we need to promote the highest standards of research integrity and the responsible conduct of research. While ultimately, responsibility for misconduct rests with the individual, institutions and the academic research system have to take steps to alleviate the pressure on researchers and promote good practice through training programmes and mentoring. The role of the World Conferences on Research Integrity in promoting the importance of research integrity and statements about good practice will be presented and the need for training and mentoring programmes will be discussed

  10. BCube: Building a Geoscience Brokering Framework

    Science.gov (United States)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  11. Why research into the history of geosciences?

    Science.gov (United States)

    Schröder, Wilfried

    Study of the history of various sciences is rather heterogeneous. Some disciplines, such as medicine, mathematics, and astronomy, have numerous noteworthy compendia and even specialized journals where papers on the history of these sciences can be published.The situation in geophysics, meteorology, and other subdivisions of the geosciences is far less favorable. This neglect is an outcome of a dogma of autonomy that is essentially oriented toward progress in understanding, without much reference to historical developments. But even the geoscientists cannot ignore that the phenomenon ‘science’ must be viewed in the context of sociological processes. In the initial stages, sociologists and some philosophers, in the context of the general theory of perception, began research into the development of scientific thought, but the geoscientists and other natural scientists contributed very little. It has since become clear that research on these topics requires historical assessment and more insight. The development of the ‘science of science’ is directed toward understanding and explanation of the complex human involvement in science, not only in the sense of theorizing about the scientific processes but also in sociological, political, and historical context [Kuhn, 1973; Burrichter, 1979; Sandkühler and Plath, 1979.

  12. Developing Short Films of Geoscience Research

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.

    2015-12-01

    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  13. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  14. GIRAF 2009 - Taking action on geoscience information across Africa

    Science.gov (United States)

    Asch, Kristine

    2010-05-01

    A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a

  15. The Relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dmitri Svistounov

    Full Text Available Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished.

  16. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  17. Teaching Geosciences With Visualizations: Challenges for Spatial Thinking and Abilities

    Science.gov (United States)

    Montello, D. R.

    2004-12-01

    It is widely recognized that the geosciences are very spatial disciplines. Their subject matter includes phenomena on, under, and above the Earth surface whose spatial properties are critical to understanding them. Important spatial properties of geoscience structures and processes include location (both absolute and relative), size, shape, and pattern; temporal changes in spatial properties are also of interest. Information visualizations that depict spatiality are thus critically important to teaching in the geosciences, at all levels from K-12 to Ph.D. work; verbal and mathematical descriptions are quite insufficient by themselves. Such visualizations range from traditional maps and diagrams to digital animations and virtual environments. These visualizations are typically rich and complex because they are attempts to communicate rich and complex realities. Thus, understanding geoscience visualizations accurately and efficiently involves complex spatial thinking. Over a century of psychometric and experimental research reveals some of the cognitive components of spatial thinking, and provides insight into differences among individuals and groups of people in their abilities to think spatially. Some research has specifically examined these issues within the context of geoscience education, and recent research is expanding these investigations into the realm of new digital visualizations that offer the hope of using visualizations to teach complex geoscience concepts with unprecedented effectiveness. In this talk, I will briefly highlight some of the spatial cognitive challenges to understanding geoscience visualizations, including the pervasive and profound individual and group differences in spatial abilities. I will also consider some visualization design issues that arise because of the cognitive and ability challenges. I illustrate some of these research issues with examples from research being conducted by my colleagues and me, research informed by

  18. Outdoor Experiential Learning to Increase Student Interest in Geoscience Careers

    Science.gov (United States)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Outdoor-focused experiential learning opportunities are uncommon for students in large introductory geology courses, despite evidence that field experiences are a significant pathway for students to enter the geoscience pipeline. We address this deficiency by creating an extracurricular program for geology service courses that allows students to engage with classmates to foster a positive affective environment in which they are able to explore their geoscience interests, encouraged to visualize themselves as potential geoscientists, and emboldened to continue on a geoscience/geoscience-adjacent career path. Students in introductory-level geology courses were given pre- and post-semester surveys to assess the impact of these experiential learning experiences on student attitudes towards geoscience careers and willingness to pursue a major/minor in geology. Initial results indicate that high achieving students overall increase their interest in pursuing geology as a major regardless of their participation in extracurricular activities, while low achieving students only demonstrate increased interest in a geology major if they did not participate in extra credit activities. Conversely, high achieving, non-participant students showed no change in interest of pursuing a geology minor, while high achieving participants were much more likely to demonstrate interest in a minor at the end of the course. Similar to the trends of interest in a geology major, low achieving students only show increased interest in a minor if they were non-participants. These initial results indicate that these activities may be more effective in channeling students towards geology minors rather than majors, and could increase the number of students pursuing geoscience-related career paths. There also seem to be several competing factors at play affecting the different student populations, from an increased interest due to experience or a displeasure that geology is not simply `rocks for jocks

  19. Broadening Participation in the Geosciences through Participatory Research

    Science.gov (United States)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  20. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus.

    Science.gov (United States)

    Marquet-de Rougé, Perrine; Clamagirand, Christine; Facchinetti, Patricia; Rose, Christiane; Sargueil, Françoise; Guihenneuc-Jouyaux, Chantal; Cynober, Luc; Moinard, Christophe; Allinquant, Bernadette

    2013-10-01

    The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.

  1. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    Science.gov (United States)

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD. Copyright

  2. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    Science.gov (United States)

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  3. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.

    Directory of Open Access Journals (Sweden)

    David R Taylor

    2009-11-01

    Full Text Available In prion diseases, the cellular form of the prion protein, PrP(C, undergoes a conformational conversion to the infectious isoform, PrP(Sc. PrP(C associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs. We show that heparin displaces PrP(C from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrP(C. We then utilised a transmembrane-anchored form of PrP (PrP-TM, which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrP(C to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrP(C from rafts, promoting its endocytosis. Glypican-1 and PrP(C colocalised on the cell surface and both PrP(C and PrP(Sc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrP(Sc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrP(C on the beta-secretase cleavage of the Alzheimer's amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrP(C and PrP(Sc in lipid rafts.

  4. Regional economic impacts of Grand Canyon river runners.

    Science.gov (United States)

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  5. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  6. Sustaining Public Communication of Geoscience in the Mass Media Market

    Science.gov (United States)

    Keane, Christopher

    2017-04-01

    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  7. Engaging teachers & students in geosciences by exploring local geoheritage sites

    Science.gov (United States)

    Gochis, E. E.; Gierke, J. S.

    2014-12-01

    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  8. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P.A. (eds.)

    2011-07-01

    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable

  9. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P A [eds.

    2011-07-01

    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable development of

  10. Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3.

    Science.gov (United States)

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E; Donowitz, Mark; Yun, C Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2013-01-01

    Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Detergent resistant membranes ("lipid rafts") were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3(-) mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. © 2013 S. Karger AG, Basel.

  11. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    Science.gov (United States)

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...... dynamics simulations, complemented by extensive comparison to experimental data. The discussion is divided into four sections. The first part investigates the properties of one-component SM bilayers and compares them to bilayers with phosphatidylcholine (PC), the focus being on a detailed analysis...... examples of this issue. The third part concentrates on the specificity of intermolecular interactions in three-component mixtures of SM, PC and cholesterol (CHOL) under conditions where the concentrations of SM and CHOL are dilute with respect to that of PC. The results show how SM and CHOL favor one...

  13. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  14. Being Alive to the Present: Perceiving Meaning on a Wilderness River Journey

    Science.gov (United States)

    Morse, Marcus

    2015-01-01

    In an earlier paper I identified two key forms of "meaningful experience" for participants on a wilderness river rafting journey, namely a feeling of humility and being alive to the present. However, space considerations led me to describe only the first of these forms in any detail. In this paper I identify and describe the qualities of…

  15. Leveraging biology interest to broaden participation in the geosciences

    Science.gov (United States)

    Perin, S.; Conner, L.; Oxtoby, L.

    2017-12-01

    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  16. Interdisciplinary cooperation and studies in geoscience in the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU

    2012-06-01

    Full Text Available An interdisciplinary approach to geoscience is particularly important in this vast research field, as the more innovative studies are increasingly crossing discipline boundaries and thus benefitting from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by supporting and promoting the creation of “meeting places” able to provide a framework for researchers and scholars involved in geoscience research to find common grounds for discussion and collaboration. Most recently, this was achieved by organizing the 1st Workshop on “Interdisciplinarity in Geosciences in the Carpathian Basin” (IGCB held in the Department of Geography at the University of Suceava (Romania, between the 18th and 22nd October 2012. This event brought together both an international group of scientists and local researchers which created opportunities for collaboration in research topics such as geography, environment, geology and botany, biology and ecology in the Carpathian Basin.

  17. Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation

    NARCIS (Netherlands)

    Barner-Kowollik, C.; Buback, M.; Charleux, B.; Coote, M.L.; Drache, M.; Fukuda, T.; Goto, A.; Klumperman, B.; Lowe, A.B.; McLeary, J.B.; Moad, G.; Monteiro, M.J.; Sanderson, R.D.; Tonge, M.P.; Vana, P.

    2006-01-01

    Investigations into the kinetics and mechanism of dithiobenzoate-mediated Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerizations, which exhibit nonideal kinetic behavior, such as induction periods and rate retardation, are comprehensively reviewed. The appreciable uncertainty in the

  18. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  19. FEM analysis of foundation raft for 500 MWe pressurized heavy water reactor building

    International Nuclear Information System (INIS)

    Kulkarni, N.N.; Goray, J.S.; Joshi, M.H.; Paramasivam, V.

    1989-01-01

    Foundation raft supports the containment structure and internals for 500 MWe PHW reactor building. It also serves as bottom envelop of the containment structure. In view of this, the design of foundation raft assumes great importance. The foundation raft is subjected to various load, most significant of them are dead load of structure, equipment loads transferred through a system of floors, walls and structural steel columns, pressure load during accident conditions, seismic loads, earth pressure, uplift due to buoyancy loads, foundation reaction etc. In order to achieve optimum design, the detailed structural analysis is required to be performed methodically and in most realistic manner. Finite element methods which have come in vogue with the developments in digital computers can be successfully applied in this area. The paper describes the above methods in detail for the analysis of foundation raft for the various load combinations required to be considered for safe and optimum design

  20. Intermediate Radical Termination Theory in Elucidation of RAFT Kinetics and Comparison to Experimental Data

    Directory of Open Access Journals (Sweden)

    M. Baqeri-Jagharq

    2008-12-01

    Full Text Available In current work a comprehensive mechanism based on intermediate radical termination theory is assumed for RAFT polymerization of styrene over cumyl dithiobenzoate as RAFT agent. Rate constants for addition (ka and fragmentation reactions (kf are set to 6×106 and 5×104 respectively, which lead to an equilibrium constant value of K = ka/kf = 1.2 x 102. Moment equations method was used to model this mechanism and the results were compared to experimental data to verify modeling. The effects of changing RAFT agent concentration on conversion, molecular weight and polydispersity index of the final product were investigated through the modeling. According to the results, the likelihood of living polymerization increases with raising RAFT agent concentration which leads to linearity of conversion and molecular weight curves and therefore lowering the polydispersity index and narrowing the molecular weight distribution.

  1. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  2. Experimental and Numerical Investigation of Towing Resistance of the Innovative Pneumatic Life Raft

    Directory of Open Access Journals (Sweden)

    Burciu Zbigniew

    2017-06-01

    Full Text Available The paper presents the experimental and numerical investigations of a novel design of a pneumatic life raft in calm water conditions. Two main issues were considered: the life raft performance under tow and its resistance in calm water conditions. The experiment and CFD simulations were performed by using the full scale prototype to eliminate the scale effect. The towing tank tests confirmed the results of numerical computations. The compatibility of the results of numerical and experimental tests was high mainly because the new life raft does not deform under the hydrodynamic and aerodynamic loads. The characteristics similar to rigid body behaviour result mainly from a new construction and materials used for manufacturing the life raft.

  3. Well-Defined Macromolecules Using Horseradish Peroxidase as a RAFT Initiase.

    Science.gov (United States)

    Danielson, Alex P; Bailey-Van Kuren, Dylan; Lucius, Melissa E; Makaroff, Katherine; Williams, Cameron; Page, Richard C; Berberich, Jason A; Konkolewicz, Dominik

    2016-02-01

    Enzymatic catalysis and control over macromolecular architectures from reversible addition-fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein-polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of a movable active vibration control system on a floating raft

    Science.gov (United States)

    Wang, Zhen; Mak, Cheuk Ming

    2018-02-01

    This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.

  5. DAGIK: A data-showcase system of geoscience in KML

    Science.gov (United States)

    Yoshida, D.; Saito, A.

    2009-12-01

    We are developing a system to display geoscience data of various databases on virtual globe. This system is designed to be a showcase of databases. Users can browse various types of data of databases on this system. When they find data of interest, they can follow the network link to the WWW-based database and study it in detail. This system is served as a portal to geoscience databases. We call this system DAGIK (DAta-showcase system of Geoscience In Kml). It uses Google Earth as a browser. The reason to use Google Earth is that it has 1) four-dimensional data presentation capability, 2) scalability in time and space, 3) network capability. Virtual globe can show the data in intuitive way. It is a very powerful tool to show the characteristics of data for those who are not familiar with the data. DAGIK started in 2007 for geospace data, and was expanded to cover the geoscience in 2009. The sequence of usage of DAGIK is as follows: 1) user downloads the start up file, dagik.kml, from the DAGIK server (http://www-step.kugi.kyoto-u.ac.jp/dagik/) with a WWW browser, 2) it can be opened with Google Earth, 3) user select year, month and day, 4) for the selected date, the data list file will be downloaded from the DAGIK server, 5) user can select the data type from the data list, 6) and the KML/KMZ plot files will be downloaded from the DAGIK server or the other KML/KMZ server to display on Google Earth. There are several databases that provide their data plots in KML/KMZ format for DAGIK. DAGIK, a data-showcase system of geoscience, can bridge the gap between databases and novice users of the geoscience data.

  6. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report

    Science.gov (United States)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.

    2017-12-01

    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  7. A framework for high-school teacher support in Geosciences

    Science.gov (United States)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.

    2012-04-01

    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  8. National Geoscience Data Repository System: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  9. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  10. Characterization of the functions and proteomes associated with membrane rafts in chicken sperm.

    Directory of Open Access Journals (Sweden)

    Ai Ushiyama

    Full Text Available Cellular membranes are heterogeneous, and this has a great impact on cellular function. Despite the central role of membrane functions in multiple cellular processes in sperm, their molecular mechanisms are poorly understood. Membrane rafts are specific membrane domains enriched in cholesterol, ganglioside GM1, and functional proteins, and they are involved in the regulation of a variety of cellular functions. Studies of the functional characterization of membrane rafts in mammalian sperm have demonstrated roles in sperm-egg binding and the acrosomal reaction. Recently, our biochemical and cell biological studies showed that membrane rafts are present and might play functional roles in chicken sperm. In this study, we isolated membrane rafts from chicken sperm as a detergent-resistant membranes (DRM floating on a density gradient in the presence of 1% Triton X-100, and characterized the function and proteomes associated with these domains. Biochemical comparison of the DRM between fresh and cryopreserved sperm demonstrated that cryopreservation induces cholesterol loss specifically from membrane rafts, indicating the functional connection with reduced post-thaw fertility in chicken sperm. Furthermore, using an avidin-biotin system, we found that sperm DRM is highly enriched in a 60 KDa single protein able to bind to the inner perivitelline layer. To identify possible roles of membrane rafts, quantitative proteomics, combined with a stable isotope dimethyl labeling approach, identified 82 proteins exclusively or relatively more associated with membrane rafts. Our results demonstrate the functional distinctions between membrane domains and provide compelling evidence that membrane rafts are involved in various cellular pathways inherent to chicken sperm.

  11. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    Science.gov (United States)

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  12. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  13. Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights

    Directory of Open Access Journals (Sweden)

    Steffen Eggers

    2017-12-01

    Full Text Available The combination of reversible addition–fragmentation chain transfer (RAFT and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydrophobicity at the usually high polymerization temperatures. In this work, we present a straightforward surfactant-free RAFT emulsion polymerization to obtain thermoresponsive styrenic block copolymers with molecular weights of around 100 kDa and their well-defined latexes. The stability of the aqueous latexes is achieved by adding 20 vol % of the cosolvent 1,4-dioxane (DOX, increasing the phase transition temperature (PTT of the used thermoresponsive poly(N-acryloylpyrrolidine (PAPy macroRAFT agents above the polymerization temperature. Furthermore, this cosolvent approach is combined with the use of poly(N,N-dimethylacrylamide-block-poly(N-acryloylpiperidine-co-N-acryloylpyrrolidine (PDMA-b-P(APi-co-APy as the macroRAFT agent owning a short stabilizing PDMA end block and a widely adjustable PTT of the P(APi-co-APy block in between 4 and 47 °C. The temperature-induced collapse of the latter under emulsion polymerization conditions leads to the formation of RAFT nanoreactors, which allows for a very fast chain growth of the polystyrene (PS block. In dynamic light scattering (DLS, as well as cryo-transmission electron microscopy (cryoTEM, moreover, all created latexes indeed reveal a high (temperature stability and a reversible collapse of the thermoresponsive coronal block upon heating. Hence, this paper pioneers a versatile way towards amphiphilic thermoresponsive high-molecular-weight block copolymers and their nano-objects with tailored corona switchability.

  14. Analysis of raft foundations for spent fuel pool in nuclear facilities

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Kashikar, A.V.; Nath, C.; Shintre, C.C.

    2005-01-01

    Foundation rafts are analysed as a plate on elastic foundation with the representation of the foundation media using the Winkler idealisation i.e. series of linear uncoupled springs. The elastic constant of the Winkler springs is derived using the sub-grade modulus. However, the Winkler approach has limitations due to incompatibility of the deflections at raft-soil interface. The deflection of the raft at the point of contact and the deformation of the foundation media at this point of contact are incompatible in this approach. This particularly influences flexible rafts and further if the foundation media is soil. This paper discusses the analysis of raft, in general, and the analysis of the foundation raft for a Spent Fuel pool facility using 'variable k approach' where deformations at a node and influencing nodes are computed using Boussinesq's theory. The limitations stated above are overcome in this approach. Some studies on the sensitivity of parameters were carried out in the form of variation of moduli of elasticity of concrete and deformation modulus of soil. Analysis is also performed with conventional method using 'Winkler' soil springs. It is concluded that the Winkler model does not correctly predict the behaviour of the mat both qualitatively and quantitatively and could lead to underestimation of soil pressures leading to unconservative design. The approach involving soil structure interaction like the one presented here is hence recommended for important structures like those involved in Nuclear facilities. (authors)

  15. The shedding activity of ADAM17 is sequestered in lipid rafts

    International Nuclear Information System (INIS)

    Tellier, Edwige; Canault, Matthias; Rebsomen, Laure; Bonardo, Bernadette; Juhan-Vague, Irene; Nalbone, Gilles; Peiretti, Franck

    2006-01-01

    The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts

  16. Constitutive modeling of creep behavior in single crystal superalloys: Effects of rafting at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ya-Nan, E-mail: fanyn12@mails.tsinghua.edu.cn; Shi, Hui-Ji, E-mail: shihj@mail.tsinghua.edu.cn; Qiu, Wen-Hui

    2015-09-17

    Rafting and creep modeling of single crystal superalloys at high temperatures are important for the safety assessment and life prediction in practice. In this research, a new model has been developed to describe the rafting evolution and incorporated into the Cailletaud single crystal plasticity model to simulate the creep behavior. The driving force of rafting is assumed to be the relaxation of the strain energy, and it is calculated with the local stress state, a superposition of the external and misfit stress tensors. In addition, the isotropic coarsening is introduced by the cube root dependence of the microstructure periodicity on creep time based on Ostwal ripening. Then the influence of rafting on creep deformation is taken into account as the Orowan stress in the single crystal plasticity model. The capability of the proposed model is validated with creep experiments of CMSX-4 at 950 °C and 1050 °C. It is able to predict the rafting direction at complex loading conditions and evaluate the channel width during rafting. For [001] tensile creep tests, good agreement has been shown between the model predictions and experimental results at different temperatures and stress levels. The creep acceleration can be captured with this model and is attributed to the microstructure degradation caused by the precipitate coarsening.

  17. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  18. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?

    DEFF Research Database (Denmark)

    Rog, T.; Vattulainen, I.

    2014-01-01

    Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with pote......Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units...... with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has...... emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible...

  19. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    Science.gov (United States)

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  1. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  2. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  3. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism

    Science.gov (United States)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan

    2010-10-01

    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  4. Geoscience Videos and Their Role in Supporting Student Learning

    Science.gov (United States)

    Wiggen, Jennifer; McDonnell, David

    2017-01-01

    A series of short (5 to 7 minutes long) geoscience videos were created to support student learning in a flipped class setting for an introductory geology class at North Carolina State University. Videos were made using a stylus, tablet, microphone, and video editing software. Essentially, we narrate a slide, sketch a diagram, or explain a figure…

  5. Information extraction and knowledge graph construction from geoscience literature

    Science.gov (United States)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  6. Undergraduate research projects help promote diversity in the geosciences

    Science.gov (United States)

    Young, De'Etra; Trimboli, Shannon; Toomey, Rick S.; Byl, Thomas D.

    2016-01-01

    A workforce that draws from all segments of society and mirrors the ethnic, racial, and gender diversity of the United States population is important. The geosciences (geology, hydrology, geospatial sciences, environmental sciences) continue to lag far behind other science, technology, engineering and mathematical (STEM) disciplines in recruiting and retaining minorities (Valsco and Valsco, 2010). A report published by the National Science Foundation in 2015, “Women, Minorities, and Persons with Disabilities in Science and Engineering” states that from 2002 to 2012, less than 2% of the geoscience degrees were awarded to African-American students. Data also show that as of 2012, approximately 30% of African-American Ph.D. graduates obtained a bachelor’s degree from a Historic Black College or University (HBCU), indicating that HBCUs are a great source of diverse students for the geosciences. This paper reviews how an informal partnership between Tennessee State University (a HBCU), the U.S. Geological Survey, and Mammoth Cave National Park engaged students in scientific research and increased the number of students pursuing employment or graduate degrees in the geosciences.

  7. Embedding Data Stewardship in Geoscience Australia

    Science.gov (United States)

    Bastrakova, I.; Fyfe, S.

    2013-12-01

    Ten years of technological innovation now enable vast amounts of data to be collected, managed, processed and shared. At the same time, organisations have witnessed government legislative and policy requirements for open access to public sector data, and a demand for flexibility in access to data by both machine-to-machine and human consumption. Geoscience Australia (GA) has adopted Data Stewardship as an organisation-wide initiative to improve the way we manage and share our data. The benefits to GA including: - Consolidated understanding of GA's data assets and their value to the Agency; - Recognition of the significant role of data custodianship and data management; - Well-defined governance, policies, standards, practices and accountabilities that promote the accessibility, quality and interoperability of GA's data; - Integration of disparate data sets into cohesive information products available online in real time and equally accessible to researchers, government, industry and the public. Although the theory behind data stewardship is well-defined and accepted and the benefits are generally well-understood, practical implementation requires an organisation to prepare for a long-term commitment of resources, both financial and human. Fundamentally this involves: 1. Raising awareness in the organisation of the need for data stewardship and the challenges this entails; 2. Establishing a data stewardship framework including a data governance office to set policy and drive organisational change; and 3. Embedding the functions and a culture of data stewardship into business as usual operations. GA holds a vast amount of data ranging from petabytes of Big Data to significant quantities of relatively small ';long tail' geoscientific observations and measurements. Over the past four years, GA has undertaken strategic activities that prepare us for Data Stewardship: - Organisation-wide audits of GA's data holdings and identification of custodians for each dataset

  8. Making a Difference: a Global Geoscience Initiative

    Science.gov (United States)

    Nickless, E.

    2013-05-01

    Since 2009, an informal group, comprising four former board members of the International Year of Planet Earth, has been promoting the concept of a so-called Global Geoscientific Initiative. The GGI should: i.Be inclusive, involve a geoscience community, which is broad both in terms of discipline and nationality, and involve the social sciences; ii.Have a clear socio-economic context and global societal relevance; iii.Focus on a globally significant science theme and preferably involve global processes; iv.Attract the support of geoscientific communities, funding agencies, governments and other institutions in many countries, under the umbrella of UNESCO, ICSU and its geoscientific unions. A series of five town hall meetings have been held at which usually three invited, well-respected figures from the geoscientific community gave presentations. Those presentations were followed by discussion about the importance or otherwise of particular areas of science, and the need to engage better with legislators, policy makers, the media and the lay public. No one challenged the desirability of a large-scale programme that would attract researchers from many geoscientific disciplines and potentially involve the geo-unions. The discussions can be summarised under three broad themes: i.Mineral and hydrocarbon resources and their waste products; ii.Living with natural hazards; iii.Strategic Earth science in Africa through the Africa Alive corridors. During the course of development of the GGI, ICSU has issued a number of papers, most recently a strategic plan, covering the period 2012-2017, working parties have been undertaking foresight analysis and there have also been discussions concerning regional environmental change: human action and adaptation with the question "what does it take to meet the Belmont challenge?". The Belmont Forum brings together a number of funding agencies and could provide the resource to enable some initiative to go forward. More recently a programme

  9. Building Strong Geoscience Departments Through the Visiting Workshop Program

    Science.gov (United States)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  10. The Quantitative Preparation of Future Geoscience Graduate Students

    Science.gov (United States)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  11. AMIDST: Attracting Minorities to Geosciences Through Involved Digital Story Telling

    Science.gov (United States)

    Prakash, A.; Ohler, J.; Cooper, C.; McDermott, M.; Heinrich, J.; Johnson, R.; Leeper, L.; Polk, N.; Wimer, T.

    2009-12-01

    Attracting Minorities to Geosciences Through Involved Digital Story Telling (AMIDST) is a project funded by the Geoscience Directorate of the National Science Foundation through their program entitled Opportunities for Enhancing Diversity in Geosciences. This project centers around the idea of integrating place-based geoscience education with culturally sensitive digital story telling, to engage and attract Alaska’s native and rural children from grades 3 through 5 to geosciences. In Spring 2008 we brought together a team 2 native elders, a group of scientists and technicians, an evaluator, 2 teachers and their 24 third grade students from Fairbanks (interior Alaska) to create computer-based digital stories around the geoscience themes of permafrost, and forest fires. These two to four minutes digital narratives consisted of a series of images accompanied by music and a voice-over narration by the children. In Fall 2008 we worked with a similar group from Nome (coastal town in western Alaska). The geoscience themes were climate change, and gold in Alaska. This time the students used the same kind of “green screen” editing so prevalent in science fiction movies. Students enacted and recorded their stories in front of a green screen and in post-production replaced the green background with photos, drawings and scientific illustrations related to their stories. Evaluation involved pre and post project tests for all participants, mid-term individual interviews and exit-interviews of selected participants. Project final assessment results from an independent education evaluator showed that both students and teachers improved their geo science content knowledge about permafrost, forest fires, gold mining, and sea ice changes. Teachers and students went through a very steep learning curve and gained experience and new understanding in digital storytelling in the context of geologic phenomena of local interest. Children took pride in being creators, directors and

  12. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    Science.gov (United States)

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Science.gov (United States)

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo

    International Nuclear Information System (INIS)

    Cuadras, Mariela A.; Greenberg, Harry B.

    2003-01-01

    The pathway by which rotavirus is released from the cell is poorly understood but recent work has shown that, prior to cell lysis, rotavirus is released almost exclusively from the apical surface of the infected cell. By virtue of their unique biochemical and physical properties, viruses have exploited lipid rafts for host cell entry and/or assembly. Here we characterized the association of rhesus rotavirus (RRV) with lipid rafts during the rotavirus replication cycle. We found that newly synthesized infectious virus associates with rafts in vitro and in vivo. RRV proteins cosegregated with rafts on density gradients. Viral infectivity and genomic dsRNA also cosegregated with the raft fractions. Confocal microscopic analysis of raft and RRV virion proteins demonstrated colocalization within the cell. In addition, cholesterol depletion interfered with the association of RRV particles with rafts and reduced the release of infectious particles from the cell. Furthermore, murine rotavirus associates with lipid rafts in intestinal epithelial cells during a natural infection in vivo. Our results confirm the association of rotavirus infectious particles with rafts during replication in vitro and in vivo and strongly support the conclusion that this virus uses these microdomains for transport to the cell surface during replication

  15. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    Science.gov (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  16. GOLD: Building capacity for broadening participation in the Geosciences

    Science.gov (United States)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  17. Challenges of the NGSS for Future Geoscience Education

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.

    2013-12-01

    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  18. Automatic User Interface Generation for Visualizing Big Geoscience Data

    Science.gov (United States)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.

    2016-12-01

    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  19. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    Science.gov (United States)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  20. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.

    Directory of Open Access Journals (Sweden)

    Alessandro Pristerà

    Full Text Available Voltage-gated sodium channels (VGSCs play a key role in the initiation and propagation of action potentials in neurons. Na(V1.8 is a tetrodotoxin (TTX resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD and 7-ketocholesterol (7KC led to the dissociation between rafts and Na(V1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V1.8 in nociceptors and highlight the importance of the association between Na(V1.8 and lipid rafts in the control of nociceptor excitability.

  1. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  2. US Geoscience Information Network, Web Services for Geoscience Information Discovery and Access

    Science.gov (United States)

    Richard, S.; Allison, L.; Clark, R.; Coleman, C.; Chen, G.

    2012-04-01

    The US Geoscience information network has developed metadata profiles for interoperable catalog services based on ISO19139 and the OGC CSW 2.0.2. Currently data services are being deployed for the US Dept. of Energy-funded National Geothermal Data System. These services utilize OGC Web Map Services, Web Feature Services, and THREDDS-served NetCDF for gridded datasets. Services and underlying datasets (along with a wide variety of other information and non information resources are registered in the catalog system. Metadata for registration is produced by various workflows, including harvest from OGC capabilities documents, Drupal-based web applications, transformation from tabular compilations. Catalog search is implemented using the ESRI Geoportal open-source server. We are pursuing various client applications to demonstrated discovery and utilization of the data services. Currently operational applications allow catalog search and data acquisition from map services in an ESRI ArcMap extension, a catalog browse and search application built on openlayers and Django. We are developing use cases and requirements for other applications to utilize geothermal data services for resource exploration and evaluation.

  3. The Role of Standards-Based Education in Fostering Scientific Literacy in the Geosciences

    Science.gov (United States)

    Moosavi, S. C.

    2008-12-01

    Societal controversy over the content taught in K-12 science classrooms continues at a time of increasing demand for teacher and school accountability enacted through legislative mandates such as the No Child Left Behind Law. As teachers are held increasingly to nationally-inspired state standards, building blocks for future controversy are being built via inclusion of social and environmental policy agendas related to diversity, multiculturalism and environmental stewardship into these same science standards. While the authors' attempts to include such policies are well intended, they undermine the narrow answer to the question, "What is science?" leaving the door open to inclusion of pseudo-scientific content into the science curriculum in compliance with the perceived mandate of the standards. Disparate interpretation of the language and intent of the standards between that written by scientists, science educators and policy makers relative to that of the teachers, school administrators and parents tasked to implement and work within these standards leaves room for inclusion of much content that most scientists would object to. The resulting controversy and confusion have the potential to undermine public confidence in the scientific community's opinions on geoscience issues precisely at the time that full societal engagement is necessary to deal with climate change and other major environmental challenges. Results from this study suggest using the standards to mandate opening the scientific curriculum to political and social agendas, even under the guise of diversity, multiculturalism and environmental awareness, has created a whole raft of unintended consequences. These same mandates can be interpreted by the general public as also opening the curriculum to other views of science ranging from traditional religious and cultural views to intelligent design and alternative ways of knowing, thereby undermining scientific literacy in the general population

  4. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    Science.gov (United States)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  5. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    Science.gov (United States)

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  6. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    Science.gov (United States)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  7. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    Petitprin, A.

    2013-01-01

    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90 Y-RAFT-RGD or 177 Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90 Y-RAFT-RAD or 177 Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90 Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90 Y-RAFT-RGD and 177 Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  8. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    Science.gov (United States)

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-06

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  10. Identification of Novel Raft Marker Protein, FlotP in Bacillus anthracis.

    Science.gov (United States)

    Somani, Vikas K; Aggarwal, Somya; Singh, Damini; Prasad, Tulika; Bhatnagar, Rakesh

    2016-01-01

    Lipid rafts are dynamic, nanoscale assemblies of specific proteins and lipids, distributed heterogeneously on eukaryotic membrane. Flotillin-1, a conserved eukaryotic raft marker protein (RMP) harbor SPFH (Stomatin, Prohibitin, Flotillin, and HflK/C) and oligomerization domains to regulate various cellular processes through its interactions with other signaling or transport proteins. Rafts were thought to be absent in prokaryotes hitherto, but recent report of its presence and significance in physiology of Bacillus subtilis prompted us to investigate the same in pathogenic bacteria (PB) also. In prokaryotes, proteins of SPFH2a subfamily show highest identity to SPFH domain of Flotillin-1. Moreover, bacterial genome organization revealed that Flotillin homolog harboring SPFH2a domain exists in an operon with an upstream gene containing NFeD domain. Here, presence of RMP in PB was initially investigated in silico by analyzing the presence of SPFH2a, oligomerization domains in the concerned gene and NfeD domain in the adjacent upstream gene. After investigating 300 PB, four were found to harbor RMP. Among them, domains of Bas0525 (FlotP) of Bacillus anthracis (BA) showed highest identity with characteristic domains of RMP. Considering the global threat of BA as the bioterror agent, it was selected as a model for further in vitro characterization of rafts in PB. In silico and in vitro analysis showed significant similarity of FlotP with numerous attributes of Flotillin-1. Its punctate distribution on membrane with exclusive localization in detergent resistant membrane fraction; strongly favors presence of raft with RMP FlotP in BA. Furthermore, significant effect of Zaragozic acid (ZA), a raft associated lipid biosynthesis inhibitor, on several patho-physiological attributes of BA such as growth, morphology, membrane rigidity etc., were also observed. Specifically, a considerable decrease in membrane rigidity, strongly recommended presence of an unknown raft associated

  11. Juvenile-onset loss of lipid-raft domains in attractin-deficient mice

    International Nuclear Information System (INIS)

    Azouz, Abdallah; Gunn, Teresa M.; Duke-Cohan, Jonathan S.

    2007-01-01

    Mutations at the attractin (Atrn) locus in mice result in altered pigmentation on an agouti background, higher basal metabolic rate and juvenile-onset hypomyelination leading to neurodegeneration, while studies on human immune cells indicate a chemotaxis regulatory function. The underlying biochemical defect remains elusive. In this report we identify a role for attractin in plasma membrane maintenance. In attractin's absence there is a decline in plasma membrane glycolipid-enriched rafts from normal levels at 8 weeks to a complete absence by 24 weeks. The structural integrity of lipid rafts depends upon cholesterol and sphingomyelin, and can be identified by partitioning within of ganglioside GM 1 . Despite a significant fall in cellular cholesterol with maturity, and a lesser fall in both membrane and total cellular GM 1 , these parameters lag behind raft loss, and are normal when hypomyelination/neurodegeneration has already begun thus supporting consequence rather than cause. These findings can be recapitulated in Atrn-deficient cell lines propagated in vitro. Further, signal transduction through complex membrane receptor assemblies is not grossly disturbed despite the complete absence of lipid rafts. We find these results compatible with a role for attractin in plasma membrane maintenance and consistent with the proposal that the juvenile-onset hypomyelination and neurodegeneration represent a defect in attractin-mediated raft-dependent myelin biogenesis

  12. Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts.

    Science.gov (United States)

    Watad, A A; Kochba, M; Nissim, A; Gaba, V

    1995-03-01

    An efficient method was developed using floating membrane rafts (Liferaft(™)) for the micropropagation of Aconitum napellus (Ranunculaceae), a cut flower crop with a low natural propagation rate. This was achieved by introducing shoot tips into culture on Murashige and Skoog's (1962) solid medium, or liquid medium-supported rafts, supplemented by different levels of benzyl adenine (BA). Optimum shoot proliferation on solid medium required 4mg/l BA, whereas for expiants supported on rafts optimal proliferation was achieved at 0.25mg/l BA. Maximum shoot proliferation was found using the floating rafts (propagation ratio of 4.2 per month), 45% higher than the maximum value on solid medium. A similar value could be obtained on solid medium after a period of 2 months. The optimal response to BA was similar for fresh weight gain and shoot length. Growth in a shallow layer of liquid in shake flasks gives a similar shoot multiplication rate to that on floating rafts; however, submerged leaves brown and die.

  13. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  14. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    Science.gov (United States)

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  15. Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse.

    Science.gov (United States)

    Bryndina, Irina G; Shalagina, Maria N; Sekunov, Alexey V; Zefirov, Andrei L; Petrov, Alexey M

    2018-01-18

    Disuse-induced skeletal muscle dysfunction is a serious consequence of long-term spaceflight, numerous diseases and conditions for which treatment possibilities are still strictly limited. We have previously shown that acute hindlimb suspension (HS)-mediated disuse disrupts membrane lipid rafts in the unloaded muscle. Here, we investigated whether pretreatment of rats with the inhibitor of acid sphingomyelinase, clomipramine (1.25mg/g/day, intramuscularly, for 5days before HS), is able to hinder the loss in lipid raft integrity in response to 12h of HS. Clomipramine pretreatment significantly counteracted the decrease in labeling of the plasma membranes with lipid raft markers (fluorescent cholera toxin B subunit and bodipy-GM1-ganglioside) specifically in the junctional regions of the suspended soleus muscle. This was associated with: a) enhancing raft disrupting potential of exogenous sphingomyelinase in the junctional membranes; b) prevention of both ceramide accumulation and cholesterol loss; c) prevention of decline in nicotinic acetylcholine receptor labeling in the unloaded muscle. Our data suggest that sphingomyelinase-mediated raft disturbance serves as one of the earlier events in HS effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  17. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model

    Science.gov (United States)

    Santos, Guido; Díaz, Mario; Torres, Néstor V.

    2016-01-01

    A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease. PMID:27014089

  18. Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2014-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.

  19. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Pedersen, Esben D K; Immerdal, Lissi

    2005-01-01

    a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin...

  20. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  1. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes

    NARCIS (Netherlands)

    Garnier, J.; Warnant, J.; Lacroix-Desmazes, P.; Dufils, P.E.; Vinas, J.; Herk, van A.M.

    2013-01-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl

  2. The silent buzz of geosciences: the challenge of geosciences communication in the Italian framework

    Science.gov (United States)

    Rapisardi, Elena; Di Franco, Sabina; Giardino, Marco

    2015-04-01

    environmental dynamics and their interaction with human activity (preparedness). We suspect, that in the Italian framework, this raises from a sort of original sin: a "resistance" to science, that, for people with little or poor scientific knowledge, swings between pseudoscientific simplifications (which, unfortunately, web is variously "dotted" [Quattrociocchi et al. 2014]) and, as the sociologist Franco Ferrarotti would say, pre-scientific traditions [Peppoloni, 2011]. The "logos" of geology and the geological "narrative" are of fundamental importance in the Anthropocene, allowing to shift the focus back on the human/environment interaction. Geologists are often ignored, as bearers of uncomfortable messages, especially in a country where there is no longer a National Geological Survey, but it is unquestionable the importance of Earth Sciences and the social role of the geologist (geoethics) for Disaster Resilience. This is the next challenge of Geosciences, and of the whole community of geoscientists. Develop a coordinated communication approach for geosciences as an ethical imperative, and also as a pre-requisite to risk and emergency communication: geologists and geology are the authoritative interpreters of natural processes and risk, holders of scientific knowledge that if explained and shared allow people and decision makers to better cope with risks, and to enable Disaster Resilience.

  3. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  4. SAN-b-P4VP block copolymer synthesis by chain extension from RAFT-functional poly(4-vinylpyridine) in solution and in emulsion

    NARCIS (Netherlands)

    Bozovic, J.S.; Tello Manon, H.M; Meuldijk, J.; Koning, C.E.; Klumperman, B.

    2007-01-01

    Reversible addition fragmentation chain transfer (RAFT)-mediated polymerization was successfully applied for the synthesis of poly(4-vinylpyridine) (P4VP) polymers of predetermined molar mass and of low polydispersity index. These RAFT end-functionalized polymers were then used as macro-RAFT agents

  5. Activation of c-Src and Fyn kinases by protein tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization

    DEFF Research Database (Denmark)

    Vacaresse, Nathalie; Møller, Bente; Danielsen, Erik Michael

    2008-01-01

    and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPa is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPa. Forced concentration of RPTPa into lipid rafts is compatible...

  6. Carleton College: Geoscience Education for the Liberal Arts and the Geoscience Profession

    Science.gov (United States)

    Savina, M. E.

    2008-12-01

    Carleton College is a small (current enrollment ~1950), four-year, residential liberal arts college that has graduated more than 900 geology majors since the inception of the geology department inception in 1933. Since 1974, an average of more than 20 geology students have graduated each year. The department curriculum aims to educate at least six overlapping groups of students, who, however, may not place themselves into one of these groups until well after graduating. These groups include students in non- science majors who take geology for breadth or because of interest; science majors; geology majors who end up in other professions; and geology majors who pursue careers related to geology, most of whom ultimately earn a higher, professional degree. Goals for these groups of students differ and the department focuses its curriculum on developing skills and providing student experiences that will serve all groups well. The department has a strong focus on field geology and communication skills, solving complex problems in many project-based courses (culminating in a senior independent project for each student), and much group work. These characteristics correlate well with Carleton institutional goals. The senior independent projects (all reported in written, visual and oral forms) form the basis for outcomes assessment. We also regularly survey alumni who are in graduate programs of all kinds (not just geoscience), asking them about how well their undergraduate education has prepared them. Finally, the staff meet at least annually to discuss the curriculum, its goals, values, skills and content, and do a formal self-study with external and internal reviewers at least once a decade. The success of Carleton geology alumni in government, research, industry, education, consulting and other professions is the ultimate assessment tool.

  7. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts

    Science.gov (United States)

    Saavedra V., Oscar; Elettro, Hervé; Melo, Francisco

    2018-04-01

    Confined two-dimensional assemblies of floating particles, known as granular rafts, are prone to develop a highly nonlinear response under compression. Here we investigate the transition to the friction-dominated jammed state and map the gradual development of the internal stress profile with flexible pressure sensors distributed along the raft surface. Surprisingly, we observe that the surface stress screening builds up much more slowly than previously thought and that the typical screening distance later dramatically decreases. We explain this behavior in terms of progressive friction mobilization, where the full amplitude of the frictional forces is only reached after a macroscopic local displacement. At further stages of compression, rafts of large length-to-width aspect ratio experience much stronger screenings than the full mobilization limit described by the Janssen's model. We solve this paradox using a simple mathematical analysis and show that such enhanced screening can be attributed to a localized compaction front, essentially shielding the far field from compressive stresses.

  8. Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography.

    Science.gov (United States)

    Carlton, James T; Chapman, John W; Geller, Jonathan B; Miller, Jessica A; Carlton, Deborah A; McCuller, Megan I; Treneman, Nancy C; Steves, Brian P; Ruiz, Gregory M

    2017-09-29

    The 2011 East Japan earthquake generated a massive tsunami that launched an extraordinary transoceanic biological rafting event with no known historical precedent. We document 289 living Japanese coastal marine species from 16 phyla transported over 6 years on objects that traveled thousands of kilometers across the Pacific Ocean to the shores of North America and Hawai'i. Most of this dispersal occurred on nonbiodegradable objects, resulting in the longest documented transoceanic survival and dispersal of coastal species by rafting. Expanding shoreline infrastructure has increased global sources of plastic materials available for biotic colonization and also interacts with climate change-induced storms of increasing severity to eject debris into the oceans. In turn, increased ocean rafting may intensify species invasions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.

    Science.gov (United States)

    Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier

    2016-08-04

    Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L

    2001-01-01

    in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural...... from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T......-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes...

  11. Uptake of raft components into amyloid β-peptide aggregates and membrane damage.

    Science.gov (United States)

    Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko

    2015-07-15

    Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  13. International Geoscience Workforce Trends: More Challenges for Federal Agencies

    Science.gov (United States)

    Groat, C. G.

    2005-12-01

    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in

  14. Preparing for a Professional Career in the Geosciences with AEG

    Science.gov (United States)

    Barry, T.; Troost, K. G.

    2012-12-01

    The Association of Environmental and Engineering Geologists offers multiple resources to students and faculty about careers in the geosciences, such as description of what employers are looking for, career options, mentoring, and building your professional network. Our website provides easy access to these and other resources. Most of AEG's 3000 members found their first job through association with another AEG member and more than 75% of our membership is working in applied geoscience jobs. We know that employers are looking for the following qualities: passion for your career and the geosciences, an enthusiastic personality, flexibility, responsibility, ability to communicate well in oral and written modes, and the ability to work well in teams or independently. Employers want candidates with a strong well-rounded geoscience education and the following skills/experience: attendance at field camp, working knowledge of field methodologies, strong oral and written communication skills, basic to advanced computer skills, and the ability to conduct research. In addition, skill with GIS applications, computer modeling, and 40-hour OSHA training are desired. The most successful technique for finding a job is to have and use a network. Students can start building their network by attending regular AEG or other professional society monthly meetings, volunteering with the society, attending annual meetings, going on fieldtrips and participating in other events. Students should research what kind of job they want and build a list of potential preferred employers, then market themselves to people within those companies using networking opportunities. Word-of-mouth sharing of job openings is the most powerful tool for getting hired, and if students have name recognition established within their group of preferred employers, job interviews will occur at a faster rate than otherwise.

  15. Geosciences program annual report 1978. [LBL Earth Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.

    1978-01-01

    This report is a reprint of the Geosciences section of the LBL Earth Sciences Division Annual Report 1978 (LBL-8648). It contains summary papers that describe fundamental studies addressing a variety of earth science problems of interest to the DOE. They have applications in such diverse areas as geothermal energy, oil recovery, in situ coal gasification, uranium resource evaluation and recovery, and earthquake prediction. Completed work has been reported or likely will be in the usual channels. (RWR)

  16. The role of karst in engineering and environmental geosciences

    Directory of Open Access Journals (Sweden)

    H. C. Ho

    2011-08-01

    Full Text Available Karst is a unique landform developed by soluble rock. It usually relates to the groundwater drainage system, and provides important water resources. Current researches indicate that karst is closely related to the Earth system and environmental protection, and it can also create potential natural hazards such as sinkhole flooding and land subsidence in urban area. Its relationship with hydrogeology has also been an important factor for studying water pollution and nutrient cycles in engineering geosciences and agricultural geology.

  17. Tube Maps for Effective Geoscience Career Planning and Development

    Science.gov (United States)

    Keane, C. M.; Wilson, C. E.; Houlton, H. R.

    2013-12-01

    One of the greatest challenges faced by students and new graduates is the advice that they must take charge of their own career planning. This is ironic as new graduates are least prepared to understand the full spectrum of options and the potential pathways to meeting their personal goals. We will examine the rationale, tools, and utility of an approach aimed at assisting individuals in career planning nicknamed a "tube map." In particular, this approach has been used in support of geoscientist recruitment and career planning in major European energy companies. By utilizing information on the occupational sequences of geoscience professionals within an organization or a community, a student or new hire can quickly understand the proven pathways towards their eventual career goals. The tube map visualizes the career pathways of individuals in the form of a subway map, with specific occupations represented as "stations" and pathway interconnections represented as "transfers." The major application of this approach in the energy sector was to demonstrate both the logical career pathways to either senior management or senior technical positions, as well as present the reality that time must be invested in "lower level" jobs, thereby nullifying a persistent overinflated sense of the speed of upward mobility. To this end, we have run a similar occupational analysis on several geoscience employers, including one with somewhat non-traditional geoscience positions and another that would be considered a very traditional employer. We will examine the similarities and differences between the resulting 'tube maps,' critique the tools used to create the maps, and assess the utility of the product in career development planning for geoscience students and new hires.

  18. History and development of ABCDEFG: a data standard for geosciences

    OpenAIRE

    Petersen, Mareike; Glöckler, Falko; Kiessling, Wolfgang; Döring, Markus; Fichtmüller, David; Laphakorn, Lertsutham; Baltruschat, Brian; Hoffmann, Jana

    2018-01-01

    Museums and their collections have specially customized databases in order to optimally gather and record their contents and associated metadata associated with their specimens. To share, exchange, and publish data, an appropriate data standard is essential. ABCD (Access to Biological Collection Data) is a standard for biological collection units, including living and preserved specimen, together with field observation data. Its extension, EFG (Extension for Geoscience), ena...

  19. Virtual Reality as a Story Telling Platform for Geoscience Communication

    Science.gov (United States)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.

  20. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  1. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  2. A hybrid personalized data recommendation approach for geoscience data sharing

    Science.gov (United States)

    WANG, M.; Wang, J.

    2016-12-01

    Recommender systems are effective tools helping Internet users overcome information overloading. The two most widely used recommendation algorithms are collaborating filtering (CF) and content-based filtering (CBF). A number of recommender systems based on those two algorithms were developed for multimedia, online sells, and other domains. Each of the two algorithms has its advantages and shortcomings. Hybrid approaches that combine these two algorithms are better choices in many cases. In geoscience data sharing domain, where the items (datasets) are more informative (in space and time) and domain-specific, no recommender system is specialized for data users. This paper reports a dynamic weighted hybrid recommendation algorithm that combines CF and CBF for geoscience data sharing portal. We first derive users' ratings on items with their historical visiting time by Jenks Natural Break. In the CBF part, we incorporate the space, time, and subject information of geoscience datasets to compute item similarity. Predicted ratings were computed with k-NN method separately using CBF and CF, and then combined with weights. With training dataset we attempted to find the best model describing ideal weights and users' co-rating numbers. A logarithmic function was confirmed to be the best model. The model was then used to tune the weights of CF and CBF on user-item basis with test dataset. Evaluation results show that the dynamic weighted approach outperforms either solo CF or CBF approach in terms of Precision and Recall.

  3. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  4. Characterization of lipid rafts in human platelets using nuclear magnetic resonance: A pilot study

    Directory of Open Access Journals (Sweden)

    Joshua F. Ceñido

    2017-07-01

    Full Text Available Lipid microdomains (‘lipid rafts’ are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR, but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13 and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing

  5. The concrete technology of post pouring zone of raft foundation of Hongyun Building B tower

    Science.gov (United States)

    Yin, Suhua; Yu, Liu; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness concreted pouring amount of large and the late poured band in the pouring settlement formed. The temperature of the pouring settlement was controlled in order to prevent the crack of the construction of the late poured band. The steel of post pouring band was designed and monitorred. The quality of post pouring band quality is guaranteed in the raft concrete foundation of Hongyun Building B tower.

  6. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L

    2013-01-01

    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-azidopropyl)methacrylamide (AzMA) was synthesized and copolymerized with HPMA using RAFT polymerization to provide p(HPMA-co-AzMA) copolymers with high control of molecular weight (∼10–54 kDa) and polydispersity (≤1.06). The utility of the side-chain azide functionality by Cu(I)-catalyzed azide...

  7. Gravity-induced encapsulation of liquids by destabilization of granular rafts

    Science.gov (United States)

    Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.

    2013-05-01

    Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.

  8. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  9. Graft Copolymerization of Styrene from Poly(vinyl alcohol via RAFT Process

    Directory of Open Access Journals (Sweden)

    Gholam Ali Koohmareh

    2011-01-01

    Full Text Available Polystyrene, PS, was grafted from poly(vinyl alcohol, PVA, backbone by reversible addition-fragmentation chain transfer (RAFT polymerization. The hydroxyl groups of the PVA were converted into aromatic dithioester RAFT agent and polymerization began in the presence of this agent. The structure of compounds was confirmed by FT-IR and 1HNMR spectroscopy. The graft copolymer was characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Grafted polystyrene chains were cleaved from the PVA backbone by acidic hydrolysis of the PVA-g-PS, and its polydispersity index, PDI, was determined by gel permeation chromatography (GPC showing narrow molecular weight distribution.

  10. Telemedicina en Bolivia: proyecto RAFT-Altiplano, experiencias, perspectivas y recomendaciones

    OpenAIRE

    Vargas, Alejandro; Ugalde, Miguel; Vargas, Reynaldo; Narvaez, Ramiro; Geissbuhler, Antoine

    2014-01-01

    OBJETIVO: El objetivo del proyecto RAFT-Altiplano (RAFT, Red Africana Francófona de Telemedicina) es evaluar la viabilidad, potencialidad y riesgos de la implementación y el desarrollo de una red de telemedicina en el contexto de un país en desarrollo, como es el caso del Altiplano de Bolivia, para mejorar el acceso a la atención médica y la formación continua en el área rural. En este estudio se describe el desarrollo de dicho proyecto entre 2011 y 2013. MÉTODOS: Se donaron equipos de teleme...

  11. Web-based Academic Roadmaps for Careers in the Geosciences

    Science.gov (United States)

    Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.

    2007-12-01

    To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly

  12. "YouTube Geology" - Increasing Geoscience Visibility Through Short Films

    Science.gov (United States)

    Piispa, E. J.; Lerner, G. A.

    2016-12-01

    Researchers have the responsibility to communicate their science to a broad audience: scientists, non-scientist, young and old. Effective ways of reaching these groups include using pathways that genuinely spark interest in the target audience. Communication techniques should evolve as the means of communication evolve. Here we talk about our experiences using short films to increase geoscience visibility and appreciation. At a time when brevity and quick engagement are vital to capturing people's attention, creating videos that fit popular formats is an effective way to draw and hold people's interest, and spreading these videos on popular sites is a good way to reach a non-academic audience. Creating videos that are fun, exciting, and catchy in order to initially increase awareness and interest is equally important as the educational content. The visual medium can also be powerful way to make complex scientific concepts seem less intimidating. We have experimented with this medium of geoscience communication by creating a number of short films that target a variety of audiences: short summaries of research topics, mock movie trailers, course advertisements, fieldwork highlight reels and geology lessons for elementary school children. Our two rules of thumb are to put the audience first and use style as a vital element. This allows for the creation of films that are more engaging and often less serious than standard informational (and longer-format) videos. Science does not need to be dry and dull - it can be humorous and entertaining while remaining highly accurate. Doing these short films has changed our own mindset as well - thinking about what to film while doing research helps keep the practical applications of our research in focus. We see a great deal of potential for collaboration between geoscientists and amateur or professional filmmakers creating hip and edgy videos that further raise awareness and interest. People like movies. We like movies. We like

  13. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  14. Meeting the Challenges for Gender Diversity in the Geosciences

    Science.gov (United States)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.

    2003-12-01

    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  15. Geoscience Information for Teachers (GIFT) Workshops of the European Geoscience Union General Assembly

    Science.gov (United States)

    Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; King, Chris; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert

    2017-04-01

    GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly in Vienna, and also elsewhere in the world usually associated with large geoscience conferences. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "The solar system and beyond", "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water" and "Evolution and Biodiversity". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 800 teachers from more than 25 nations. At all

  16. Development of Virtual Field Experiences for undergraduate geoscience using 3D models from aerial drone imagery and other data

    Science.gov (United States)

    Karchewski, B.; Dolphin, G.; Dutchak, A.; Cooper, J.

    2017-12-01

    In geoscience one must develop important skills related to data collection, analysis and interpretation in the field. The quadrupling of student enrollment in geoscience at the University of Calgary in recent years presents a unique challenge in providing field experience. With introductory classes ranging from 300-500 students, field trips are logistical impossibilities and the impact on the quality of student learning and engagement is major and negative. Field experience is fundamental to geoscience education, but is presently lacking prior to the third year curriculum. To mitigate the absence of field experience in the introductory curricula, we are developing a set of Virtual Field Experiences (VFEs) that approximate field experiences via inquiry-based exploration of geoscientific principles. We incorporate a variety of data into the VFEs including gigapan photographs, geologic maps and high resolution 3D models constructed from aerial drone imagery. We link the data using a web-based platform to support lab exercises guided by a set of inquiry questions. An important feature that distinguishes a VFE is that students explore the data in a nonlinear fashion to construct and revise models that explain the nature of the field site. The aim is to approximate an actual field experience rather than provide a virtual guided tour where the explanation of the site comes pre-packaged. Thus far, our group has collected data at three sites in Southern Alberta: Mt. Yamnuska, Drumheller environs and the North Saskatchewan River valley near the toe of the Saskatchewan Glacier. The Mt. Yamnuska site focusses on a prominent thrust fault in the front ranges of the Western Cordillera. The Drumheller environs site demonstrates the siliciclastic sedimentation and stratigraphy typical of southeastern Alberta. The Saskatchewan Glacier site highlights periglacial geomorphology and glacial recession. All three sites were selected because they showcase a broad range of geoscientific

  17. Adsorption study of a macro-RAFT agent onto SiO2-coated Gd2O3:Eu3+ nanorods: Requirements and limitations

    Science.gov (United States)

    Zou, Hua; Melro, Liliana; de Camargo Chaparro, Thaissa; de Souza Filho, Isnaldi Rodrigues; Ananias, Duarte; Bourgeat-Lami, Elodie; dos Santos, Amilton Martins; Barros-Timmons, Ana

    2017-02-01

    The use of a macromolecular RAFT (macro-RAFT) agent to encapsulate anisotropic nano-objects via emulsion polymerization is an emerging route to prepare polymer/inorganic colloidal nanocomposites. However, a number of requirements have to be fulfilled. This work aims at highlighting the effects of the preparative procedure and dispersion method on the amount of macro-RAFT agent adsorbed onto SiO2-coated Gd2O3:Eu3+ nanorods. The adsorption of macro-RAFT agent was studied using the depletion method with UV-vis spectrophotometry. Measurements were performed at a fixed concentration of nanorods and varying concentrations of the macro-RAFT agent in aqueous dispersion at room temperature. The adsorption isotherms showed that for the same initial macro-RAFT agent concentration, the highest adsorption capacity of the macro-RAFT agent on nanorods was usually achieved for non-calcined thin SiO2-coated nanorods under mild bath sonication.

  18. 76 FR 62301 - Safety Zone; Rotary Club of Fort Lauderdale New River Raft Race, New River, Fort Lauderdale, FL

    Science.gov (United States)

    2011-10-07

    ... a designated representative via VHF radio on channel 16. The Coast Guard will provide notice of the... effects, distributive impacts, and equity). Executive Order 13563 emphasizes the importance of quantifying... Government and Indian Tribes, or on the distribution of power and responsibilities between the Federal...

  19. 76 FR 43958 - Safety Zone; Rotary Club of Fort Lauderdale New River Raft Race, New River, Fort Lauderdale, FL

    Science.gov (United States)

    2011-07-22

    ... have questions on this proposed rule, call or e-mail Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A.Steiner@uscg.mil . If you have... Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A...

  20. Proximate biochemical composition and caloric potential in the raft-grown green mussel Perna viridis

    Digital Repository Service at National Institute of Oceanography (India)

    Rivonker, C.U.; Parulekar, A.H.

    The biochemical components of the mussel tissue, cultured on the raft were estimated. The range of variation in the content of moisture, protein, carbohydrates, lipid, organic carbon and ash were 66.8-90.1; 46.2-67.4; 11.7-18.6; 2.9-7.4; 19...

  1. Effect of tamoxifen in RAFT miniemulsion polymerization during the synthesis of polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Tailane Sant'Anna Moreira

    2014-01-01

    Full Text Available Tamoxifen (TXF is currently the only hormonal agent used for treatment of breast cancer. Although very effective, TXF presents low solubility in water, which affects its absorption and bioavailability. A common strategy to overcome this barrier is the formulation of a drug delivery system (DDS in order to increase the drug stability and improve the treatment effectiveness. Reversible addition-fragmentation chain transfer (RAFT polymerization is the most versatile method of controlled/living radical polymerization (CLRP, allowing for synthesis of well-defined polymers and being adapted to a wide range of polymerization systems. Miniemulsion polymerization is a dispersed system that is commonly used to prepare nanoparticles (NP with 50 to 500 nm of diameter. The aim of this work was to evaluate the effect of the in situ incorporation of TXF during miniemulsion conventional and RAFT polymerizations, using methyl methacrylate (MMA as monomer. Although the in situ addition of TXF promoted a slight reduction of the reaction rate, it did not affect the final particle size distribution of the latex or the molecular weight control exerted by the RAFT agent. The obtained results suggest that in situ incorporation of TXF during the synthesis of polymer NP via RAFT polymerization allows for production of a polymer DDS for different uses, such as the breast cancer treatment.

  2. In Plant and Animal Cells, Detergent-Resistant Membranes Do Not Define Functional Membrane Rafts

    Czech Academy of Sciences Publication Activity Database

    Tanner, W.; Malínský, Jan; Opekarová, Miroslava

    2011-01-01

    Roč. 23, č. 4 (2011), s. 1191-1193 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50200510 Keywords : plasma-membrane * lipod rafts * proteins Subject RIV: EA - Cell Biology Impact factor: 8.987, year: 2011

  3. A new type of membrane raft-like microdomains and their possible involvement in TCR signaling

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Pavel; Angelisová, Pavla; Hrdinka, Matouš; Brdička, Tomáš; Novák, Petr; Drbal, Karel; Hořejší, Václav

    2010-01-01

    Roč. 184, č. 7 (2010), s. 3689-3696 ISSN 0022-1767 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50200510 Keywords : membrane rafts * LAT * T-receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.745, year: 2010

  4. Designing materials for advanced microelectronic patterning applications using controlled polymerization RAFT technology

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Chambers, Charles R.; Tran, Hoang V.; Okazaki, Hiroshi; Brun, Yefim; Romberger, Matthew L.; Sounik, James R.

    2011-04-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization technology enables the production of polymers possessing low polydispersity (PD) in high yield for many applications. RAFT technology also enables control over polymer architecture. With synthetic control over these polymer characteristics, a variety of polymers can be designed and manufactured for use in advanced electronic applications. By matching the specific RAFT reagent and monomer combinations, we can accommodate monomer reactivity and optimize acrylate or methacrylate polymerizations (193 and 193i photoresist polymers) or optimize styrenic monomer systems (248 nm photoresist polymers) to yield polymers with PD as low as 1.05. For 193i lithography, we have used RAFT technology to produce block copolymers comprising of a random "resist" block with composition and size based on conventional dry photoresist materials and a "low surface energy" block The relative block lengths and compositions may be varied to tune solution migration behavior, surface energy, contact angles, and solubility in developer. Directed self assembly is proving to be an interesting and innovative method to make 2- and even 3-dimensional periodic, uniform patterns. Two keys to acceptable performance of directed self assembly from block copolymers are the uniformity and the purity of the materials will be discussed.

  5. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    International Nuclear Information System (INIS)

    Ma Qian; Zhang Hui; Zhao Jiang; Gong Yongkuan

    2012-01-01

    Highlights: ► Cell membrane mimetic antifouling polymer brush was grown on polysulfone surface. ► Graft density and polymerization degree were calculated from XPS results. ► Water contact angle measurements showed an extremely hydrophilic surface. ► Platelet adhesion and protein adsorption results suggested excellent antifouling ability. - Abstract: Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4′-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  6. Clinical and laboratory studies of the antacid and raft-forming properties of Rennie alginate suspension.

    Science.gov (United States)

    Tytgat, G N; Simoneau, G

    2006-03-15

    Acid pockets at the gastro-oesophageal junction escape buffering from meals in the stomach. Combining high-dose antacid with alginate may therefore be of benefit in gastro-oesophageal reflux disease. To characterize the antacid and raft-forming properties of Rennie alginate suspension (containing high-dose antacid and alginate; Bayer Consumer Care, Bladel, the Netherlands). The in vitro acid-neutralizing capacity of Rennie algniate was compared with Gaviscon (Reckitt Benckiser, Slough, UK) by pH-recorded HCl titration. Alginate raft weight formed in vitro at different pH was used to evaluate the pH dependency of raft formation with each product. A double-blind, placebo-controlled, randomized crossover study also compared the antacid activity of Rennie alginate vs. placebo in vivo using continuous intragastric pH monitoring in 12 healthy fasting volunteers. Compared with Gaviscon, Rennie alginate had a higher acid-neutralizing capacity, greater maximum pH and longer duration of antacid activity in vitro. However, the two products produced comparable alginate rafts at each pH evaluated. In vivo, Rennie alginate provided rapid, effective and long-lasting acid neutralization, with an onset of action of <5 min, and duration of action of almost 90 min. The dual mode of action of Rennie alginate offers an effective treatment option for mild symptomatic gastro-oesophageal reflux disease particularly considering recent findings regarding 'acid pockets'.

  7. Clinical and laboratory studies of the antacid and raft-forming properties of Rennie alginate suspension

    NARCIS (Netherlands)

    Tytgat, G. N.; Simoneau, G.

    2006-01-01

    BACKGROUND: Acid pockets at the gastro-oesophageal junction escape buffering from meals in the stomach. Combining high-dose antacid with alginate may therefore be of benefit in gastro-oesophageal reflux disease. AIM: To characterize the antacid and raft-forming properties of Rennie alginate

  8. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie

    2011-01-01

    corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...

  9. Multiblock Copolymers of Styrene and Butyl Acrylate via Polytrithiocarbonate-Mediated RAFT Polymerization

    Directory of Open Access Journals (Sweden)

    Bastian Ebeling

    2011-03-01

    Full Text Available When linear polytrithiocarbonates as Reversible Addition-Fragmentation chain Transfer (RAFT agents are employed in a radical polymerization, the resulting macromolecules consist of several homogeneous polymer blocks, interconnected by the functional groups of the respective RAFT agent. Via a second polymerization with another monomer, multiblock copolymers—polymers with alternating segments of both monomers—can be prepared. This strategy was examined mechanistically in detail based on subsequent RAFT polymerizations of styrene and butyl acrylate. Size-exclusion chromatography (SEC of these polymers showed that the examined method yields low-disperse products. In some cases, resolved peaks for molecules with different numbers of blocks (polymer chains separated by the trithiocarbonate groups could be observed. Cleavage of the polymers at the trithiocarbonate groups and SEC analysis of the products showed that the blocks in the middle of the polymers are longer than those at the ends and that the number of blocks corresponds to the number of functional groups in the initial RAFT agent. Furthermore, the produced multiblock copolymers were analyzed via differential scanning calorimetry (DSC. This work underlines that the examined methodology is very well suited for the synthesis of well-defined multiblock copolymers.

  10. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    International Nuclear Information System (INIS)

    Dai Qun; Zhang Jun; Pruett, Stephen B.

    2005-01-01

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-α production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-α. The suppressive effect of EtOH on LPS-induced TNF-α production was additive with that of methyl-β-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling

  11. RAFT Miniemulsion Polymerization of MMA with Cumyl Dithiobenzoate as Chain Transfer Agent

    Institute of Scientific and Technical Information of China (English)

    Tian Ying GUO; Dong Lin TANG; Jing Wei ZHU; Mou Dao SONG; Bang Hua ZHANG

    2006-01-01

    Reversible addition-fragmentation transfer (RAFT) miniemulsion polymerizations for PMMA with cumyl dithiobenzoate (CDB) as a chain transfer agent (CTA) has been carried out.Higher temperature made the polymerization much faster and the PDI remained below 1.20, when the temperature was upon 70 ℃.

  12. Incidence, predictors, and procedural results of upgrade to resynchronization therapy: the RAFT upgrade substudy.

    Science.gov (United States)

    Essebag, Vidal; Joza, Jacqueline; Birnie, David H; Sapp, John L; Sterns, Laurence D; Philippon, Francois; Yee, Raymond; Crystal, Eugene; Kus, Teresa; Rinne, Claus; Healey, Jeffrey S; Sami, Magdi; Thibault, Bernard; Exner, Derek V; Coutu, Benoit; Simpson, Chris S; Wulffhart, Zaev; Yetisir, Elizabeth; Wells, George; Tang, Anthony S L

    2015-02-01

    The resynchronization-defibrillation for ambulatory heart failure trial (RAFT) study demonstrated that adding cardiac resynchronization therapy (CRT) in selected patients requiring de novo implantable cardiac defibrillators (ICD) reduced mortality as compared with ICD therapy alone, despite an increase in procedure-related adverse events. Data are lacking regarding the management of patients with ICD therapy who develop an indication for CRT upgrade. Participating RAFT centers provided data regarding de novo CRT-D (CRT with ICD) implant, upgrade to CRT-D during RAFT (study upgrade), and upgrade within 6 months after presentation of study results (substudy). Substudy centers enrolled 1346 (74.9%) patients in RAFT, including 644 de novo, 80 study upgrade, and 60 substudy CRT attempts. The success rate (initial plus repeat attempts) was 95.2% for de novo versus 96.3% for study upgrade and 90.0% for substudy CRT attempts (P=0.402). Acute complications occurred among 26.2% of de novo versus 18.8% of study upgrade and 3.4% of substudy CRT implantation attempts (PRAFT study and other trials. © 2014 American Heart Association, Inc.

  13. Controlled growth of protein resistant PHEMA brushes via S-RAFT polymerization

    Czech Academy of Sciences Publication Activity Database

    Zamfir, M.; Rodriguez-Emmenegger, Cesar; Bauer, S.; Barner, L.; Rosenhahn, A.; Barner-Kowollik, C.

    2013-01-01

    Roč. 1, č. 44 (2013), s. 6027-6034 ISSN 2050-750X R&D Projects: GA ČR GAP205/12/1702; GA ČR GAP106/12/1451 Institutional support: RVO:61389013 Keywords : surface RAFT * polymer brushes * antifouling Subject RIV: CD - Macromolecular Chemistry

  14. Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.

    Science.gov (United States)

    Eggers, Steffen; Abetz, Volker

    2018-04-01

    Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation for Instruction. A Module of Instruction in Teacher Education. Prepared for Project RAFT.

    Science.gov (United States)

    Handley, Herbert M., Ed.

    This module, developed by the Research Applications for Teaching (RAFT) project, was written to assist students to write lesson plans that are effective and interactive. Students are given directions for the preparation of behavioral objectives and for the selection of appropriate instructional methodologies to meet the widely varying needs of…

  16. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    Science.gov (United States)

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Gert H; Dalskov, Stine-Mathilde; Rasmussen, Christina Rehné

    2005-01-01

    The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internaliz......The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its...... accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating...... that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border...

  18. Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection

    Directory of Open Access Journals (Sweden)

    Sónia O. Pereira

    2018-02-01

    Full Text Available Colloidal gold nanoparticles (Au NPs have been used in several biological applications, which include the exploitation of size- and shape-dependent Localized Surface Plasmon Resonance (LSPR in biosensing devices. In order to obtain functional and stable Au NPs in a physiological medium, surface modification and functionalization are crucial steps in these endeavors. Reversible addition-fragmentation chain transfer (RAFT polymerization meets this need offering the possibility of control over the composition and architecture of polymeric shells coating Au NPs. Furthermore, playing with a careful choice of monomers, RAFT polymerization allows the possibility to design a polymer shell with the desired functional groups aiming at Au based nanocomposites suitable for biorecognition and biotargeting. This review provides important aspects concerning the synthesis and optical properties of Au NPs as well as concepts of RAFT polymerization. Understanding these concepts is crucial to appreciate the chemical strategies available towards RAFT-polymer coated Au core-shell nanostructures, which are here reviewed. Finally, examples of applications in opto-biodetection devices are provided and the potential of responsive “smart” nanomaterials based on such structures can be applied to other biological applications.

  19. Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training

    Science.gov (United States)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Brown will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  20. The Role of Lipid Rafts in the Early Stage of Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yong-Zhe Zhu

    2015-02-01

    Full Text Available Background/Aims: Although it has been widely accepted that Enterovirus 71 (EV71 enters permissive cells via receptor-mediated endocytosis, the details of entry mechanism for EV71 still need more exploration. This study aimed to investigate the role of lipid rafts in the early stage of EV71 Infection. Methods: The effect of cholesterol depletion or addition of exogenous cholesterol was detected by immunofluorescence assays and quantitative real-time PCR. Effects of cholesterol depletion on the association of EV71 with lipid rafts were determined by flow cytometry and co-immunoprecipitation assays. Localization and internalization of EV71 and its receptor were assayed by confocal microscpoy and sucrose gradient analysis. The impact of cholesterol on the activation of phosphoinositide 3'-kinase/Akt signaling pathway during initial virus infection was analyzed by Western-blotting. Results: Disruption of membrane cholesterol by a pharmacological agent resulted in a significant reduction in the infectivity of EV71. The inhibitory effect could be reversed by the addition of exogenous cholesterol. Cholesterol depletion post-infection did not affect EV71 infection. While virus bound equally to cholesterol-depleted cells, EV71 particles failed to be internalized by cholesterol-depleted cells. EV71 capsid protein co-localized with cholera toxin B, a lipid-raft-dependent internalization marker. Conclusion: Lipid rafts play a critical role in virus endocytosis and in the activation of PI3K/Akt signaling pathway in the early stage of EV71 infection.

  1. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    International Nuclear Information System (INIS)

    Mulari, Mika T.K.; Nars, Martin; Laitala-Leinonen, Tiina; Kaisto, Tuula; Metsikkoe, Kalervo; Sun Yi; Vaeaenaenen, H. Kalervo

    2008-01-01

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-β-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption

  2. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    International Nuclear Information System (INIS)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-01-01

    It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1 -/- cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  3. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through

  4. Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase

    Science.gov (United States)

    Oneyama, Chitose; Suzuki, Takashi; Okada, Masato

    2014-01-01

    The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741

  5. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    Science.gov (United States)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  6. Field Studies—Essential Cognitive Foundations for Geoscience Expertise

    Science.gov (United States)

    Goodwin, C.; Mogk, D. W.

    2010-12-01

    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they

  7. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions

    Science.gov (United States)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.

    2009-12-01

    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  8. Integrated Design for Geoscience Education with Upward Bound Students

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  9. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    2008-07-01

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  10. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    Science.gov (United States)

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.

    Science.gov (United States)

    Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang

    2017-09-13

    Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.

  12. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  13. Spinning Your Own Story - Marketing the Geosciences to the Public

    Science.gov (United States)

    Sturm, D.; Jones, T. S.

    2006-12-01

    Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga

  14. An Integrated Model for Improving Undergraduate Geoscience Workforce Readiness

    Science.gov (United States)

    Keane, C. M.; Houlton, H. R.

    2017-12-01

    Within STEM fields, employers are reporting a widening gap in the workforce readiness of new graduates. As departments continue to be squeezed with new requirements, chasing the latest technologies and scientific developments and constrained budgets, formal undergraduate programs struggle to fully prepare students for the workforce. One major mechanisms to address gaps within formal education is in life-long learning. Most technical and professional fields have life-long learning requirements, but it is not common in the geosciences, as licensing requirements remain limited. By introducing the concept of career self-management and life-long learning into the formal education experience of students, we can build voluntary engagement and shift some of the preparation burden from existing degree programs. The Geoscience Online Learning Initiative (GOLI) seeks to extend professional life-long learning into the formal education realm. By utilizing proven, effective means to capture expert knowledge, the GOLI program constructs courses in the OpenEdX platform, where the content authors and society staff continuously refine the material into effective one- to two-hour long asynchronous modules. The topical focus of these courses are outside of the usual scope of the academic curriculum, but are aligned with applied technical or professional issues. These courses are provided as open education resources, but also qualify for CEUs as the ongoing professional microcredential in the profession. This way, interested faculty can utilize these resources as focused modules in their own course offerings or students can engage in the courses independently and upon passing the assessments and paying of a nominal fee, be awarded CEUs which count towards their professional qualifications. Establishing a continuum of learning over one's career is a critical cultural change needed for students to succeed and be resilient through the duration of a career. We will examine how this

  15. LaURGE: Louisiana Undergraduate Recruitment and Geoscience Education

    Science.gov (United States)

    Nunn, J. A.; Agnew, J.

    2009-12-01

    NSF and the Shell Foundation sponsor a program called Louisiana Undergraduate Recruitment and Geoscience Education (LaURGE). Goals of LaURGE are: 1) Interweave geoscience education into the existing curriculum; 2) Provide teachers with lesson plans that promote interest in geoscience, critical thinking by students, and are consistent with current knowledge in geoscience; and 3) Provide teachers with supplies that make these lessons the highlights of the course. Biology workshops were held at LSU in Baton Rouge and Centenary College in Shreveport in July 2009. 25 teachers including 5 African-Americans attended the workshops. Teachers were from public and private schools in seven different parishes. Teacher experience ranged from 3 years to 40 years. Courses impacted are Biology, Honors Biology, AP Biology, and Environmental Science. The workshops began with a field trip to Mississippi to collect fossil shark teeth and create a virtual field trip. After the field trip, teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic concepts such as geologic time, superposition, and faunal succession. Teachers were also given a $200 budget from which to select fossils for use in their classrooms. One of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth have an excellent fossil record and show continuous transitions in morphology from the Eocene to Pliocene. We take advantage of the curiosity of sharks shared by most people, and allow teachers to explore the variations among different shark teeth and to explain the causes of those variations. Objectives are to have teachers (and their students): 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships; and 3) describe and interpret evolutionary trends in the fossil Megatoothed

  16. Association for Women Geoscientists: enhancing gender diversity in the geosciences.

    Science.gov (United States)

    Holmes, M.; O'Connell, S.; Foos, A.

    2001-12-01

    The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986

  17. Building Strong Geoscience Programs: Perspectives From Three New Programs

    Science.gov (United States)

    Flood, T. P.; Munk, L.; Anderson, S. W.

    2005-12-01

    During the past decade, at least sixteen geoscience departments in the U.S. that offer a B.S. degree or higher have been eliminated or dispersed. During that same time, three new geoscience departments with degree-granting programs have been developed. Each program has unique student demographics, affiliation (i.e. public institution versus private liberal arts college), geoscience curricula and reasons for initiation. Some of the common themes for each program include; 1) strong devotion to providing field experiences, 2) commitment to student-faculty collaborative research, 3) maintaining traditional geology program elements in the core curriculum and 4) placing students into high quality graduate programs and geoscience careers. Although the metrics for each school vary, each program can claim success in the area of maintaining solid enrollments. This metric is critical because programs are successful only if they have enough students, either in the major and/or general education courses, to convince administrators that continued support of faculty, including space and funding is warranted. Some perspectives gained through the establishment of these new programs may also be applicable to established programs. The success and personality of a program can be greatly affected by the personality of a single faculty member. Therefore, it may not be in the best interest of a program to distribute programmatic work equally among all faculty. For example, critical responsibilities such as teaching core and introductory courses should be the responsibility of faculty who are fully committed to these pursuits. However, if these responsibilities reduce scholarly output, well-articulated arguments should be developed in order to promote program quality and sustainability rather than individual productivity. Field and undergraduate research experiences should be valued as much as high-quality classroom and laboratory instruction. To gain the support of the administration

  18. Enhancing Geoscience Education within a Minority-Serving Preservice Teacher Population

    Science.gov (United States)

    Ellins, Katherine K.; Olson, Hilary Clement

    2012-01-01

    The University of Texas Institute for Geophysics and Huston-Tillotson University collaborated on a proof of concept project to offer a geoscience course to undergraduate students and preservice teachers in order to expand the scope of geoscience education within the local minority student and teacher population. Students were exposed to rigorous…

  19. The Oil Game: Generating Enthusiasm for Geosciences in Urban Youth in Newark, NJ

    Science.gov (United States)

    Gates, Alexander E.; Kalczynski, Michael J.

    2016-01-01

    A hands-on game based upon principles of oil accumulation and drilling was highly effective at generating enthusiasm toward the geosciences in urban youth from underrepresented minority groups in Newark, NJ. Participating 9th-grade high school students showed little interest in the geosciences prior to participating in the oil game, even if they…

  20. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    Science.gov (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  1. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    Science.gov (United States)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before

  2. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks

  3. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    Science.gov (United States)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  4. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  5. XML — an opportunity for data standards in the geosciences

    Science.gov (United States)

    Houlding, Simon W.

    2001-08-01

    Extensible markup language (XML) is a recently introduced meta-language standard on the Web. It provides the rules for development of metadata (markup) standards for information transfer in specific fields. XML allows development of markup languages that describe what information is rather than how it should be presented. This allows computer applications to process the information in intelligent ways. In contrast hypertext markup language (HTML), which fuelled the initial growth of the Web, is a metadata standard concerned exclusively with presentation of information. Besides its potential for revolutionizing Web activities, XML provides an opportunity for development of meaningful data standards in specific application fields. The rapid endorsement of XML by science, industry and e-commerce has already spawned new metadata standards in such fields as mathematics, chemistry, astronomy, multi-media and Web micro-payments. Development of XML-based data standards in the geosciences would significantly reduce the effort currently wasted on manipulating and reformatting data between different computer platforms and applications and would ensure compatibility with the new generation of Web browsers. This paper explores the evolution, benefits and status of XML and related standards in the more general context of Web activities and uses this as a platform for discussion of its potential for development of data standards in the geosciences. Some of the advantages of XML are illustrated by a simple, browser-compatible demonstration of XML functionality applied to a borehole log dataset. The XML dataset and the associated stylesheet and schema declarations are available for FTP download.

  6. OntoSoft: A Software Commons for Geosciences

    Science.gov (United States)

    Gil, Y.

    2015-12-01

    The goal of the EarthCube OntoSoft project is to enable the creation of a germinal ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets in an open transparent mode that enables broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a scientific software repository that contains more than 600 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance. This training program is part of a Geoscience Papers of the Future Initiative, where scientists learn as they are writing a journal paper that can be submitted to a Special Section of the AGU Earth and Space Science Journal.

  7. OntoSoft: A Software Registry for Geosciences

    Science.gov (United States)

    Garijo, D.; Gil, Y.

    2017-12-01

    The goal of the EarthCube OntoSoft project is to enable the creation of an ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets. By sharing software metadata in OntoSoft, scientists enable broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a distributed scientific software repository that contains more than 750 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software and allows them to crowdsource its corresponding metadata. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance, and we are using OntoSoft to show them the benefits of publishing their software metadata. This training program is part of a Geoscience Papers of the Future Initiative, where scientists are reflecting on their current practices, benefits and effort for sharing software and data. This journal paper can be submitted to a Special Section of the AGU Earth and Space Science Journal.

  8. Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling.

    Science.gov (United States)

    Chowdhury, Saiful M; Zhu, Xuewei; Aloor, Jim J; Azzam, Kathleen M; Gabor, Kristin A; Ge, William; Addo, Kezia A; Tomer, Kenneth B; Parks, John S; Fessler, Michael B

    2015-07-01

    Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1(-/-) macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1(+/+) and Abca1(-/-) macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1(+/+) macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1(-/-) rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response. © 2015 by The American Society for Biochemistry and

  9. Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling*

    Science.gov (United States)

    Chowdhury, Saiful M.; Zhu, Xuewei; Aloor, Jim J.; Azzam, Kathleen M.; Gabor, Kristin A.; Ge, William; Addo, Kezia A.; Tomer, Kenneth B.; Parks, John S.; Fessler, Michael B.

    2015-01-01

    Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1−/− macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1+/+ and Abca1−/− macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1+/+ macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1−/− rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response. PMID:25910759

  10. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    Science.gov (United States)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  11. Academic provenance: Investigation of pathways that lead students into the geosciences

    Science.gov (United States)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  12. High Demand, Core Geosciences, and Meeting the Challenges through Online Approaches

    Science.gov (United States)

    Keane, Christopher; Leahy, P. Patrick; Houlton, Heather; Wilson, Carolyn

    2014-05-01

    As the geosciences has evolved over the last several decades, so too has undergraduate geoscience education, both from a standpoint of curriculum and educational experience. In the United States, we have been experiencing very strong growth in enrollments in geoscience, as well as employment demand for the last 7 years. That growth has been largely fueled by all aspects of the energy boom in the US, both from the energy production side and the environmental management side. Interestingly the portfolio of experiences and knowledge required are strongly congruent as evidenced from results of the American Geosciences Institute's National Geoscience Exit Survey. Likewise, the demand for new geoscientists in the US is outstripping even the nearly unprecedented growth in enrollments and degrees, which is calling into question the geosciences' inability to effectively reach into the largest growing segments of the U.S. College population - underrepresented minorities. We will also examine the results of the AGI Survey on Geoscience Online Learning and examine how the results of that survey are rectified with Peter Smith's "Middle Third" theory on "wasted talent" because of spatial, economic, and social dislocation. In particular, the geosciences are late to the online learning game in the United States and most faculty engaged in such activities are "lone wolves" in their department operating with little knowledge of the support structures that exist in such development. Yet the most cited barriers for faculty not engaging actively in online learning is the assertion that laboratory and field experiences will be lost and thus fight engaging in this medium. However, the survey shows that faculty are discovering novel approaches to address these issues, many of which have great application to enabling geoscience programs in the United States to meet the expanding demand for geoscience degrees.

  13. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert H; Pedersen, Jens; Niels-Christiansen, Lise-Lotte

    2003-01-01

    microdomains. Deep-apical tubules were positioned close to the actin rootlets of adjacent microvilli in the terminal web region, which had a diameter of 50-100 nm, and penetrated up to 1 microm into the cytoplasm. Markers for transcytosis, IgA and the polymeric immunoglobulin receptor, as well as the resident...... lipid raft-containing compartments, but little is otherwise known about these raft microdomains. We therefore studied in closer detail apical lipid-raft compartments in enterocytes by immunogold electron microscopy and biochemical analyses. Novel membrane structures, deep-apical tubules, were visualized...... brush-border enzyme aminopeptidase N, were present in these deep-apical tubules. We propose that deep-apical tubules are a specialized lipid-raft microdomain in the brush-border region functioning as a hub in membrane trafficking at the brush border. In addition, the sensitivity to cholesterol depletion...

  14. Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection

    International Nuclear Information System (INIS)

    Brown, Gaie; Jeffree, Chris E.; McDonald, Terence; McL Rixon, Helen W.; Aitken, James D.; Sugrue, Richard J.

    2004-01-01

    The assembly of respiratory syncytial virus (RSV) in lipid-rafts was examined in Hep2 cells. Confocal and electron microscopy showed that during RSV assembly, the cellular distribution of the complement regulatory proteins, decay accelerating factor (CD55) and CD59, changes and high levels of these cellular proteins are incorporated into mature virus filaments. The detergent-solubility properties of CD55, CD59, and the RSV fusion (F) protein were found to be consistent with each protein being located predominantly within lipid-raft structures. The levels of these proteins in cell-released virus were examined by immunoelectronmicroscopy and found to account for between 5% and 15% of the virus attachment (G) glycoprotein levels. Collectively, our findings suggest that an intimate association exists between RSV and lipid-raft membranes and that significant levels of these host-derived raft proteins, such as those regulating complement activation, are subsequently incorporated into the envelope of mature virus particles

  15. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing compartments

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Immerdal, Lissi

    1999-01-01

    BACKGROUND & AIMS: Glycolipid "rafts" have been shown to play a role in apical membrane trafficking in the enterocyte. The present study characterized the membrane compartments of the enterocyte involved in transepithelial transport of small intestinal immunoglobulin A (IgA). Methods: Immunogold...... electron microscopy and radioactive labeling of mouse small intestinal explants were performed. RESULTS: IgA and the polymeric immunoglobulin receptor/secretory component were present in a raft compartment. Raft association occurred posttranslationally within 30 minutes, preceding secretion...... and were also frequently seen associated with the same vesicular profiles of glycolipid rafts. Colocalization of IgA and rab17, a small guanosine triphosphatase involved in transcytosis, was seen mainly along the basolateral plasma membrane and over basolateral endosomes and vesicles, but also...

  16. Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting

    Science.gov (United States)

    Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun

    2018-01-01

    Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.

  17. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance

    Science.gov (United States)

    Miller, G.; Schoof, J. T.; Therrell, M. D.

    2011-12-01

    Even though climate change and an unhealthy environment have a disproportionate affect on persons of color, there is a poor record of diversity in geoscience-related fields where researchers are investigating ways to improve the quality of the environment and human health. This low percentage of representation in the geosciences is equally troubling at the university where we are beginning the third and final year of a project funded through the National Science Foundation's (NSF) Opportunities to Enhance Diversity in the Geosciences (OEDG). The purpose of this project is to explore a novel approach to using the social sciences to help students, specifically underrepresented minorities, discover the geosciences' cultural relevance and consider a career in the earth, atmospheric, and ocean sciences. To date, over 800 college freshmen have participated in a design study to evaluate the curriculum efficacy of a geoscience reader. Over half of these participants are students of color. The reader we designed allows students to analyze multiple, and sometimes conflicting, sources such as peer-reviewed journal articles, political cartoons, and newspaper articles. The topic for investigation in the reader is the 1995 Chicago Heat Wave, a tragic event that killed over 700 residents. Students use this reader in a core university course required for entering freshmen with low reading comprehension scores on standardized tests. To support students' comprehension, evaluation, and corroboration of these sources, we incorporated instructional supports aligned with the principles of Universal Design for Learning (UDL), reciprocal teaching, historical reasoning, media literacy, and quantitative reasoning. Using a digital format allows students to access multiple versions of the sources they are analyzing and definitions of challenging vocabulary and scientific concepts. Qualitative and quantitative data collected from participating students and their instructors included focus

  18. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  19. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    OpenAIRE

    Patricia Pérez-Salinas; Gabriel Jaramillo-Soto; Alberto Rosas-Aburto; Humberto Vázquez-Torres; María Josefa Bernad-Bernad; Ángel Licea-Claverie; Eduardo Vivaldo-Lima

    2017-01-01

    There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP) processes, such as reversible addition-fragmentation radical transfer (RAFT) copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP). In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA) and ethylene glycol dimet...

  20. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    Science.gov (United States)

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization.

    Science.gov (United States)

    Keddie, Daniel J

    2014-01-21

    The discovery of reversible-deactivation radical polymerization (RDRP) has provided an avenue for the synthesis of a vast array of polymers with a rich variety of functionality and architecture. The preparation of block copolymers has received significant focus in this burgeoning research field, due to their diverse properties and potential in a wide range of research environments. This tutorial review will address the important concepts behind the design and synthesis of block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is arguably the most versatile of the RDRP methods due to its compatibility with a wide range of functional monomers and reaction media along with its relative ease of use. With an ever increasing array of researchers that possess a variety of backgrounds now turning to RDRP, and RAFT in particular, to prepare their required polymeric materials, it is pertinent to discuss the important points which enable the preparation of high purity functional block copolymers with targeted molar mass and narrow molar mass distribution using RAFT polymerization. The key principles of appropriate RAFT agent selection, the order of monomer addition in block synthesis and potential issues with maintaining high end-group fidelity are addressed. Additionally, techniques which allow block copolymers to be accessed using a combination of RAFT polymerization and complementary techniques are touched upon.

  2. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie; Rixon, Helen W. McL.; Sugrue, Richard J.

    2004-01-01

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells

  3. Grand Canyon as a universally accessible virtual field trip for intro Geoscience classes using geo-referenced mobile game technology

    Science.gov (United States)

    Bursztyn, N.; Pederson, J. L.; Shelton, B.

    2012-12-01

    There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological

  4. Numbers of women faculty in the geosciences increasing, but slowly

    Science.gov (United States)

    Wolfe, C. J.

    2001-12-01

    Why are there so few women faculty in the geosciences, while there are large numbers of women undergraduate and graduate students? According to National Science Foundation (NSF) estimates for 1995 in the Earth, atmospheric, and oceanic sciences, women made up 34% of the bachelor's degrees awarded, 35% of the graduate students enrolled, and 22% of the doctorates granted. Yet progress has been slower in achieving adequate representation of women geoscientists in academia, where women represent only 12% of the overall faculty. This talk will present the results of a survey I conducted on the status of women faculty at the 20 top-ranked geology programs, which was originally published as a feature article in Eos [Wolfe, 1999]. Data from the 1997 AGI Directory of Geoscience Departments were used to compare the numbers of women faculty at different departments, as well as to consider the distribution of men and women faculty by year of Ph.D. Strong inequities were found to exist between the individual departments. The percentages of women in the departments ranged from 0% to as high as 23%, and 37% of the departments had either one woman faculty member or none. Histograms of the faculty sorted by year of Ph.D. showed that clear generational differences existed between the sets of men and women faculty. Thirty-nine percent of the men obtained their Ph.D. prior to 1970, whereas only 3% of the women obtained their Ph.D. before this date. The majority of women faculty members (64%) received their Ph.D. after 1980, but a minority of men (31%) received their degrees after 1980. In the 1960s and 1970s, the geosciences expanded and departments employed a high percentage of recent Ph.D.s, but hiring of young faculty decreased in the 1980s and 1990s. In contrast, the numbers of women graduate students only began to rise after 1970, and thus the quantity of women Ph.D.s increased as the number of young hires decreased. Two problems appeared evident from this study using 1997 data

  5. Making Geoscience Data Relevant for Students, Teachers, and the Public

    Science.gov (United States)

    Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.

    2009-12-01

    The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis

  6. Alliances With the Potential to Transform Geoscience Education

    Science.gov (United States)

    Barron, E. J.

    2005-12-01

    Geoscience problems and disciplines are inherently global, and today's opportunities for students to join the workforce also increasingly involve every country and every place on the planet. We have reached the point where the need to create global educational experiences and to make global connections are more important than ever. First, there is enormous benefit to all students if they can contribute within the context of an increasingly globalized world. Second, our primary objective as educators is to build human capacity. The reach and impact of any university is severely limited if our efforts to build this capacity is limited to students within our own classroom. The Alliances that have the potential to transform Geoscience education then have two pathways. The first is to internationalize the curriculum and to provide international educational and research opportunities. This includes: (1) establishing formal undergraduate exchange opportunities specially for the Geosciences, (2) providing opportunities within our course frameworks to enable students to gain international competences, (3) promoting international field experiences and research projects, (4) developing collaborative educational projects with international partners, and (5) creating institutional structures that are charged with promoting, proposing, reviewing, monitoring and assessing international opportunities. The second is to recognize that developing strong educational programs across the world will have a greater impact on education and research, and hence the global workforce, then for select countries to educate small populations of international students. The Alliance for Earth Science, Engineering and Development in Africa (AESEDA), created at Penn State in 2003, is establishing the partnerships with universities in Africa and with HCBUs within the U.S. that both internationalize the education of Penn State students and enable capacity building within the participating universities

  7. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  8. Infusing Geoethics One Geoscience Course at a Time

    Science.gov (United States)

    Cronin, V. S.

    2016-12-01

    Positive change is sometimes difficult to accomplish within a university. While it might be easy to get faculty members and administrators to agree that facilitating the development of students as ethical geoscientists is a desirable goal in the abstract, formally proposing concrete plans to achieve that goal might generate negative responses and even roadblocks. For example, it might be a challenge to pass a course in geoethics through a college curriculum committee, because ethics is a topic usually taught by the philosophy faculty. Although there are recognized subfields in engineering, medical, business, and legal ethics that are commonly taught by faculty members in those respective departments, geoethics is not yet recognized in this way. A more productive approach might be to begin with change that can be accomplished simply, within existing courses. Faculty members are usually granted broad discretionary authority to decide how material is to be presented in geoscience courses, including required core courses. My suggestion is to structure a course that presents all of the material normally expected under that course title, but in such a way that the ethical dimensions are intentionally and consistently highlighted. As with any change in the way we present course material, there is a startup cost to be borne by the teacher. One cost is the time needed to deepen our understanding of applied professional and scientific ethics; however, this is more of a personal and professional benefit than a cost in the long run. Infusing a course with an awareness of ethical issues also takes prior thought and planning to be successful. But, of course, that is no different from any other improvement in science education. Impressions from a semester's effort to include geoethics in a required core course in structural geology to about 25 students will be shared. The main course topic is not particularly relevant, because there are a number of ethical questions that students

  9. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  10. Workshop Results: Teaching Geoscience to K-12 Teachers

    Science.gov (United States)

    Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.

    2012-12-01

    A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these

  11. An overview of recent projects to study thermal protection in life rafts, lifeboats and immersion suits

    Energy Technology Data Exchange (ETDEWEB)

    Mak, L.; DuCharme, M. B.; Farnworth, B.; Wissler, E. H.; Brown, R.; Kuczora, A. [Maritime and Arctic Survival Scientific and Engineering Ressearch Team (Canada)

    2011-07-01

    Survival during a marine evacuation in cold regions is very challenging. However international regulations do not require specific thermal protection or ventilation performance criteria for lifeboats. In the same way, the testing methods for approval testing of immersion suits are not standardised. This paper investigated recent projects completed or on-going to study thermal protection in life rafts, lifeboats and immersion suits. An overview of several projects from the Maritime and Arctic Survival Scientific and Engineering Research Team (MASSERT) was conducted. This review provided the necessary knowledge to advance international standards and develop the thermal protection requirements for survival in the Arctic. The results showed the MASSERT correlated thermal insulation values between human subjects and thermal manikins in life rafts and in immersion suits. It was found that the manikins are a valuable evaluation tool, as well as the computerised models used as prediction tools.

  12. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  13. Three-dimensional analysis for piled raft machine foundation embedded in sand

    Directory of Open Access Journals (Sweden)

    Mahmood Mahmood

    2018-01-01

    Full Text Available Three-dimensional analysis for the dynamic response of a piled raft foundation subjected to vertical vibration is presented in this study. The analysis considers several factors affecting the amplitude of displacement for deep foundation such as pile cap embedment, pile cap thickness, relative density of the sand and the boundary effect. A validation for an experimental piled raft model depending on a scale factor of (20 using at (Plaxis 3D computer program was performed. The sand is simulated using Mohr-Coloumb model while the concrete is simulated as linear elastic material. It has been found that embedding the pile cap in the soil and increasing its thickness lead to decrease the maximum amplitude of displacement. Furthermore, the predictions showed that increasing the distance between the foundation and the boundaries and increasing the relative density of the sand can significantly minimize the dynamic response of the foundation.

  14. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    International Nuclear Information System (INIS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko

    2016-01-01

    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR–FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields. - Highlights: • Ethylenediamine (EDA) was immobilized to cellulose-g-PGMA copolymers. • FTIR, XPS, SEM, EA and CA measurements were used for characterization. • The useful qualities of the RAFT were combined with the versatility of PGMA.

  15. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    Science.gov (United States)

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization.

    Science.gov (United States)

    Yeow, Jonathan; Joshi, Sanket; Chapman, Robert; Boyer, Cyrille Andre Jean Marie

    2018-04-25

    Translating controlled/living radical polymerization (CLRP) from batch to the high throughput production of polymer libraries presents several challenges in terms of both polymer synthesis and characterization. Although recently there have been significant advances in the field of low volume, high throughput CLRP, techniques able to simultaneously monitor multiple polymerizations in an "online" manner have not yet been developed. Here, we report our discovery that 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) is a self-reporting photocatalyst that can mediate PET-RAFT polymerization as well as report on monomer conversion via changes in its fluorescence properties. This enables the use of a microplate reader to conduct high throughput "online" monitoring of PET-RAFT polymerizations performed directly in 384-well, low volume microtiter plates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    Science.gov (United States)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  18. FE-simulation of the initial stages of rafting in nickel-base superalloys

    International Nuclear Information System (INIS)

    Bioermann, H.; Feng Hua; Mughrabi, H.

    2000-01-01

    In the present work, the model of Socrate and Parks which takes into account the plastic deformation and which applies the method of finite elements (FE) using an energy-perturbation approach will be extended by the introduction of a further contribution to the driving force for rafting, cf. This additional driving force is based on the local variation of the hydrostatic stresses arising from the anisotropic distribution of dislocations after deformation, in combination with the different lattice parameters of the two phases γ and γ'. It is an alternative formulation of the driving force introduced recently. With the present model, the initial stages of rafting and the build-up of internal stresses and strains are determined. (orig.)

  19. Investigating physiological characteristics of mint in the Raft aquaponic system and perlite medium

    OpenAIRE

    H. R. Roosta; A. R. Sajjadinia

    2010-01-01

    Aquaponic is a combination of fish and plant cultivated in recirculating systems. Fish culture in closed recirculating systems causes organic waste accumulation in the system. If these metabolites are used for plant nutrition, they are not mere waste, but have economical value and however benefit the fish production systems. Most aquaponic systems are designed as perlite-filled media, thin layer of nutrient solution, or Raft system. Photosynthesis parameters and water relations are good index...

  20. Use of social information in seabirds: compass rafts indicate the heading of food patches.

    Science.gov (United States)

    Weimerskirch, Henri; Bertrand, Sophie; Silva, Jaime; Marques, Jose Carlos; Goya, Elisa

    2010-03-29

    Ward and Zahavi suggested in 1973 that colonies could serve as information centres, through a transfer of information on the location of food resources between unrelated individuals (Information Centre Hypothesis). Using GPS tracking and observations on group movements, we studied the search strategy and information transfer in two of the most colonial seabirds, Guanay cormorants (Phalacrocorax bougainvillii) and Peruvian boobies (Sula variegata). Both species breed together and feed on the same prey. They do return to the same feeding zone from one trip to the next indicating high unpredictability in the location of food resources. We found that the Guanay cormorants use social information to select their bearing when departing the colony. They form a raft at the sea surface whose position is continuously adjusted to the bearing of the largest returning columns of cormorants. As such, the raft serves as a compass signal that gives an indication on the location of the food patches. Conversely, Peruvian boobies rely mainly on personal information based on memory to take heading at departure. They search for food patches solitarily or in small groups through network foraging by detecting the white plumage of congeners visible at long distance. Our results show that information transfer does occur and we propose a new mechanism of information transfer based on the use of rafts off colonies. The use of rafts for information transfer may be common in central place foraging colonial seabirds that exploit short lasting and/or unpredictably distributed food patches. Over the past decades Guanay cormorants have declined ten times whereas Peruvian boobies have remained relatively stable. We suggest that the decline of the cormorants could be related to reduced social information opportunities and that social behaviour and search strategies have the potential to play an important role in the population dynamics of colonial animals.

  1. Use of social information in seabirds: compass rafts indicate the heading of food patches.

    Directory of Open Access Journals (Sweden)

    Henri Weimerskirch

    Full Text Available Ward and Zahavi suggested in 1973 that colonies could serve as information centres, through a transfer of information on the location of food resources between unrelated individuals (Information Centre Hypothesis. Using GPS tracking and observations on group movements, we studied the search strategy and information transfer in two of the most colonial seabirds, Guanay cormorants (Phalacrocorax bougainvillii and Peruvian boobies (Sula variegata. Both species breed together and feed on the same prey. They do return to the same feeding zone from one trip to the next indicating high unpredictability in the location of food resources. We found that the Guanay cormorants use social information to select their bearing when departing the colony. They form a raft at the sea surface whose position is continuously adjusted to the bearing of the largest returning columns of cormorants. As such, the raft serves as a compass signal that gives an indication on the location of the food patches. Conversely, Peruvian boobies rely mainly on personal information based on memory to take heading at departure. They search for food patches solitarily or in small groups through network foraging by detecting the white plumage of congeners visible at long distance. Our results show that information transfer does occur and we propose a new mechanism of information transfer based on the use of rafts off colonies. The use of rafts for information transfer may be common in central place foraging colonial seabirds that exploit short lasting and/or unpredictably distributed food patches. Over the past decades Guanay cormorants have declined ten times whereas Peruvian boobies have remained relatively stable. We suggest that the decline of the cormorants could be related to reduced social information opportunities and that social behaviour and search strategies have the potential to play an important role in the population dynamics of colonial animals.

  2. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  3. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    International Nuclear Information System (INIS)

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.; Wong, Phillip; Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy; Moreira, André L.; Downey, Robert J.; Steer, Clifford J.; Subramanian, Subbaya; Manova-Todorova, Katia; Moore, Malcolm A.S.; Lou, Emil

    2014-01-01

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  4. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.

    Science.gov (United States)

    Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights

  5. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi

    Czech Academy of Sciences Publication Activity Database

    Malínský, Jan; Opekarová, Miroslava; Grossmann, G.; Tanner, W.

    2013-01-01

    Roč. 64, April (2013), s. 501-529 ISSN 1543-5008 R&D Projects: GA ČR(CZ) GAP302/11/0146; GA ČR GAP205/12/0720 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:61388971 ; RVO:68378041 Keywords : membrane microdomain * lipid raft * detergent resistant membranes Subject RIV: EB - Genetics ; Molecular Biology; EA - Cell Biology (MBU-M) Impact factor: 18.900, year: 2013

  6. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling

    International Nuclear Information System (INIS)

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-01-01

    Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P 2 and PI(4,5)P 2 -synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P 2 . PIP5-kinase Iα bound PI(4,5)P 2 , and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P 2 . Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P 2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P 2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P 2

  7. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists

    Science.gov (United States)

    Mogk, D. W.

    2015-12-01

    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education

  8. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  9. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes.

    Science.gov (United States)

    Noël, Geoffroy; Tham, Daniel Kai Long; Moukhles, Hakima

    2009-07-17

    Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.

  10. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  11. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Science.gov (United States)

    Martín, César; Uribe, Kepa B; Gómez-Bilbao, Geraxane; Ostolaza, Helena

    2011-02-23

    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  12. Chiral twist drives raft formation and organization in membranes composed of rod-like particles

    Science.gov (United States)

    Lubensky, Tom C.

    2017-01-01

    Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes. PMID:27999184

  13. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    Science.gov (United States)

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  14. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs

    Science.gov (United States)

    Kinoshita, Masanao; Suzuki, Kenichi G.N.; Takada, Misa; Ano, Hikaru; Abe, Mitsuhiro; Makino, Asami; Kobayashi, Toshihide; Hirosawa, Koichiro M.; Fujiwara, Takahiro K.; Murata, Michio

    2017-01-01

    Sphingomyelin (SM) has been proposed to form cholesterol-dependent raft domains and sphingolipid domains in the plasma membrane (PM). How SM contributes to the formation and function of these domains remains unknown, primarily because of the scarcity of suitable fluorescent SM analogs. We developed new fluorescent SM analogs by conjugating a hydrophilic fluorophore to the SM choline headgroup without eliminating its positive charge, via a hydrophilic nonaethylene glycol linker. The new analogs behaved similarly to the native SM in terms of their partitioning behaviors in artificial liquid order-disorder phase-separated membranes and detergent-resistant PM preparations. Single fluorescent molecule tracking in the live-cell PM revealed that they indirectly interact with each other in cholesterol- and sphingosine backbone–dependent manners, and that, for ∼10–50 ms, they undergo transient colocalization-codiffusion with a glycosylphosphatidylinositol (GPI)-anchored protein, CD59 (in monomers, transient-dimer rafts, and clusters), in CD59-oligomer size–, cholesterol-, and GPI anchoring–dependent manners. These results suggest that SM continually and rapidly exchanges between CD59-associated raft domains and the bulk PM. PMID:28330937

  15. Experimental study on the shear behavior of the interface between cushion materials and the concrete raft

    Science.gov (United States)

    Li, Yaokun; Han, Xiaolei; Galal, Khaled; Ji, Jing

    2018-01-01

    Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P v, material type and cushion thickness h c were taken as variables. Conclusions include: 1) under monotonic loading, P v is the most significant factor; the shear resistance P hmax increases as P v increases, but the normalized factor of resistance μ n has an opposite tendency; 2) for the materials used in this study, μ n varies from 0.40 to 0.70, the interface friction angle δ s varies from 20° to 35°, while u max varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ n, the displacement u 1 and stiffness K 1 of the elastic stage, the displacement u 2 and stiffness K 2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K 1, K 2 and μ n have been obtained.

  16. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    Science.gov (United States)

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  17. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    Science.gov (United States)

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  18. [Application of rafting K-wire technique for tibial plateau fractures].

    Science.gov (United States)

    Zhang, Xing-zhou; Yu, Wei-zhong; Li, Yun-feng; Liu, Yan-hui

    2015-12-01

    To summarize application of rafting K-wires technique for tibial plateau fractures. From January 2013 to January 2015,45 patients with tibial plateau fractures were treated by locking plate with rafting K-wires, including 33 males and 12 females with an average of 44.2 years old ranging from 22 to 56 years old. According to Schatzker classification, 6 cases were type II, 8 were type Ill, 4 were type IV, 4 were type V, and 5 were type VI. Allogeneic bone graft were performed for bone defects. All patients were fixed with two to five K-wires. Part of weight loading were encouraged at 3 months after operation,and full weight-loading were done at 5 months after operation. Postoperative complications were observed,and Rasmussen clinical and radiological assessment were used to evaluate clinical results. All Patients were followed up from 10 to 23 months with average of 14 months. According to Rasmussen clinical and radiological assessment, clinical scores 23.58 ± 6.33, radiological scores were 14.00 ± 6.33; and excellent and good rates were 82.2% and 77.8% respectively. Four patients occurred severe osteoporosis and collapse of articular surface; 5 patients occurred traumatic arthritis. Rafting K-wires technique with anatomized armor plate could effective fix and support platform collapse and joint bone fragments, increase support surface area and reduce postoperative reduction loss rate.

  19. Strategic Roadmap for the U.S. Geoscience Information Network

    Science.gov (United States)

    Allison, M. L.; Gallagher, K. T.; Richard, S. M.; Hutchison, V. B.

    2012-04-01

    An external advisory working group has prepared a 5-year strategic roadmap for the U.S. Geoscience Information Network (USGIN). USGIN is a partnership of the Association of American State Geologists (AASG) and the U.S. Geological Survey (USGS), who formally agreed in 2007 to develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new Web services and clients. The intention of the USGIN is to benefit the geological surveys by reducing the cost of online data publication and access provision, and to benefit society through easier (lower cost) access to public domain geoscience data. This information supports environmental planning, resource-development, hazard mitigation design, and decision-making. USGIN supposes that sharing resources for system development and maintenance, standardizing data discovery and creating better access mechanisms, causes cost of data access and maintenance to be reduced. Standardization in a wide variety of business domains provides economic benefits that range between 0.2 and 0.9% of the gross national product. We suggest that the economic benefits of standardization also apply in the informatics domain. Standardized access to rich data resources will create collaborative opportunities in science and business. Development and use of shared protocols and interchange formats for data publication will create a market for user applications, facilitating geoscience data discovery and utility for the benefit of society. The USGIN Working Group envisions further development of tools and capabilities, in addition to extending the community of practice that currently involves geoinformatics practitioners from the USGS and AASG. Promoting engagement and participation of the state geological surveys, and increasing communication between the states, USGS, and other

  20. Supporting REU Leaders and Effective Workforce Development in the Geosciences

    Science.gov (United States)

    Sloan, V.; Haacker, R.

    2014-12-01

    Research shows that research science experiences for undergraduates are key to the engagement of students in science, and teach critical thinking and communication, as well as the professional development skills. Nonetheless, undergraduate research programs are time and resource intensive, and program managers work in relative isolation from each other. The benefits of developing an REU community include sharing strategies and policies, developing collaborative efforts, and providing support to each other. This paper will provide an update on efforts to further develop the Geoscience REU network, including running a national workshop, an email listserv, workshops, and the creation of online resources for REU leaders. The goal is to strengthen the connections between REU community members, support the sharing of best practices in a changing REU landscape, and to make progress in formalizing tools for REU site managers.

  1. Exploring Various Monte Carlo Simulations for Geoscience Applications

    Science.gov (United States)

    Blais, R.

    2010-12-01

    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  2. Exploring Monte Carlo Simulation Strategies for Geoscience Applications

    Science.gov (United States)

    Blais, J.; Grebenitcharsky, R.; Zhang, Z.

    2008-12-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.

  3. Righting the balance: Gender diversity in the geosciences

    Science.gov (United States)

    Bell, Robin E.; Kastens, Kim A.; Cane, Mark; Muller, Roberta B.; Mutter, John C.; Pfirman, Stephanie

    The blatant barriers are down. Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments, and funding agencies. Nonetheless, barriers remain. Women continue to be under-represented in the Earth, ocean, and atmospheric sciences. Let's do the numbers: As of 1997, women received 41% of all Ph.D.s in science and engineering, but only 29% of the doctorates in the Earth, atmospheric, and oceanographic sciences [NSF, 1999a]. Women were 23% of employed Ph.D.s across all fields of science, but only accounted for 13% in the geosciences. Women's salaries also lag: the median salary for all Ph.D. geoscientists was $60,000; for women, the figure is $47,000 [NSF, 1999b]. The growing number of women students is a step in the right direction, but only a step.

  4. Geoscience in Developing Countries of South Asia and International Cooperation

    Science.gov (United States)

    Gupta, K.

    2007-12-01

    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  5. History and development of ABCDEFG: a data standard for geosciences

    Directory of Open Access Journals (Sweden)

    M. Petersen

    2018-01-01

    Full Text Available Museums and their collections have specially customized databases in order to optimally gather and record their contents and associated metadata associated with their specimens. To share, exchange, and publish data, an appropriate data standard is essential. ABCD (Access to Biological Collection Data is a standard for biological collection units, including living and preserved specimen, together with field observation data. Its extension, EFG (Extension for Geoscience, enables sharing and publishing data related to paleontological, mineralogical, and petrological objects. The standard is very granular and allows detailed descriptions, including information about the collection event itself, the holding institution, stratigraphy, chemical analysis, and host rock. The standard extension was developed in 2006 and has been used since then by different initiatives and applied for the publication of collection-related data in domain-specific and interdisciplinary portals.

  6. Number of women faculty in the geosciences increasing, but slowly

    Science.gov (United States)

    Wolfe, Cecily J.

    Why are there so few women faculty in the geosciences, while there are large numbers of women undergraduate and graduate students? According to National Science Foundation (NSF) estimates [e.g.,NSF, 1996] for 1995 in the Earth, atmospheric, and oceanic sciences, women made up 34% of the bachelor's degrees awarded, 35% of the graduate students enrolled, and 22% of the doctorates granted. Yet progress has been slower in achieving adequate representation of women geoscientists in academia, where women represent only 12% of the faculty. The barriers confronting the advancement of women scientists are complex and difficult to unravel. Proposed factors include cultural stereotypes, childhood socialization, lack of women mentors and role models, lack of critical mass, family responsibilities, dual-career-couple status, isolation from collegial networks, different research and publishing strategy, and less adequate access to institutional resources [c.f., Widnall, 1988; Zuckerman et al., 1991].

  7. Geoscience research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Whitaker, S.H.

    1987-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the concept of deep disposal of nuclear fuel waste in plutonic rock. As part of that assessment, a broad program of geoscience and geotechnical work has been undertaken to develop methods for characterizing sites, incorporating geotechnical data into disposal facility design, and incorporating geotechnical data into environmental and safety assessment of the disposal system. General field investigations are conducted throughout the Precambrian Shield, subsurface investigations are conducted at designated field research areas, and in situ rock mass experiments are being conducted in an Underground Research Laboratory. Samples from the field research areas and elsewhere are subjected to a wide range of tests and experiments in the laboratory to develop an understanding of the physical and chemical processes involved in ground-water-rock-waste interactions. Mathematical models to simulate these processes are developed, verified and validated. 114 refs.; 13 figs

  8. Geosciences: An Open Access Journal on Earth and Planetary Sciences and Their Interdisciplinary Approaches

    Directory of Open Access Journals (Sweden)

    Jesus Martinez-Frias

    2011-05-01

    Full Text Available On behalf of the Editorial Board and the editorial management staff of MDPI, it is my great pleasure to introduce this new journal Geosciences. Geosciences is an international, peer-reviewed open access journal, which publishes original papers, rapid communications, technical notes and review articles, and discussions about all interdisciplinary aspects of the earth and planetary sciences. Geosciences may also include papers presented at scientific conferences (proceedings or articles on a well defined topic assembled by individual editors or organizations/institutions (special publications.

  9. 3D Immersive Visualization: An Educational Tool in Geosciences

    Science.gov (United States)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  10. Helping geoscience students improve their numeracy using online quizzes

    Science.gov (United States)

    Nuttall, Anne-Marie; Stott, Tim; Sparke, Shaun

    2010-05-01

    This project aims to help geoscience undergraduates improve their competence and confidence in numeracy using online quizzes delivered via the Blackboard virtual learning environment. Numeracy materials are being developed based on actual examples used in a range of modules in the geoscience degree programmes taught at Liverpool John Moores University. This is to ensure the subject relevance which is considered vital to maintaining student interest & motivation. These materials are delivered as a collection of Blackboard quizzes on specific numeracy topics which students can access at any point in their studies, either on or off campus. Feedback and guidance is provided immediately so that a student gains a confidence boost if they get it right or else they can learn where they have gone wrong. It is intended that positive feedback and repetition/reinforcement will help build the confidence in numeracy which so many students seem to lack. The anonymous nature of the delivery means that students avoid the common fear of ‘asking a stupid question' in class, which can hamper their progress. The fact that students can access the quizzes anytime and from anywhere means that they can use the materials flexibly to suit their individual learning needs. In preliminary research, 70% of the students asked felt that they were expected to have greater numeracy skills than they possessed and 65% said that they would use numeracy support materials on Blackboard. Once fully developed and evaluated, the Blackboard quizzes can be opened up to other departments who may wish to use them with their own students.

  11. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  12. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  13. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    Science.gov (United States)

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.

  14. Building a Network of Internships for a Diverse Geoscience Community

    Science.gov (United States)

    Sloan, V.; Haacker-Santos, R.; Pandya, R.

    2011-12-01

    Individual undergraduate internship programs, however effective, are not sufficient to address the lack of diversity in the geoscience workforce. Rather than competing with each other for a small pool of students from historically under-represented groups, REU and internship programs might share recruiting efforts and application processes. For example, in 2011, the RESESS program at UNAVCO and the SOARS program at UCAR shared recruiting websites and advertising. This contributed to a substantial increase in the number of applicants to the RESESS program, the majority of which were from historically under-represented groups. RESESS and SOARS shared qualified applications with other REU/internship programs and helped several additional minority students secure summer internships. RESESS and SOARS also leveraged their geographic proximity to pool resources for community building activities, a two-day science field trip, a weekly writing workshop, and our final poster session. This provided our interns with an expanded network of peers and gave our staff opportunities to work together on planning. Recently we have reached out to include other programs and agencies in activities for our interns, such as mentoring high-school students, leading outreach to elementary school students, and exposing our interns to geoscience careers options and graduate schools. Informal feedback from students suggests that they value these interactions and appreciate learning with interns from partner programs. Through this work, we are building a network of program managers who support one another professionally and share effective strategies. We would like to expand that network, and future plans include a workshop with university partners and an expanded list of REU programs to explore further collaborations.

  15. 3D Printing and Digital Rock Physics for the Geosciences

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  16. The AR Sandbox: Augmented Reality in Geoscience Education

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.; Reed, S.; Hsi, S.; Yikilmaz, M. B.; Schladow, G.; Segale, H.; Chan, L.

    2016-12-01

    The AR Sandbox is a combination of a physical box full of sand, a 3D (depth) camera such as a Microsoft Kinect, a data projector, and a computer running open-source software, creating a responsive and interactive system to teach geoscience concepts in formal or informal contexts. As one or more users shape the sand surface to create planes, hills, or valleys, the 3D camera scans the surface in real-time, the software creates a dynamic topographic map including elevation color maps and contour lines, and the projector projects that map back onto the sand surface such that real and projected features match exactly. In addition, users can add virtual water to the sandbox, which realistically flows over the real surface driven by a real-time fluid flow simulation. The AR Sandbox can teach basic geographic and hydrologic skills and concepts such as reading topographic maps, interpreting contour lines, formation of watersheds, flooding, or surface wave propagation in a hands-on and explorative manner. AR Sandbox installations in more than 150 institutions have shown high audience engagement and long dwell times of often 20 minutes and more. In a more formal context, the AR Sandbox can be used in field trip preparation, and can teach advanced geoscience skills such as extrapolating 3D sub-surface shapes from surface expression, via advanced software features such as the ability to load digital models of real landscapes and guiding users towards recreating them in the sandbox. Blueprints, installation instructions, and the open-source AR Sandbox software package are available at http://arsandbox.org .

  17. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  18. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contract