WorldWideScience

Sample records for radstram radiological source

  1. RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Tracy A [ORNL; Walker, Randy M [ORNL; Hill, David E [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Abercrombie, Robert K [ORNL

    2008-12-01

    This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies.

  2. RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report

    International Nuclear Information System (INIS)

    Warren, Tracy A.; Walker, Randy M.; Hill, David E.; Gross, Ian G.; Smith, Cyrus M.; Abercrombie, Robert K.

    2008-01-01

    This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies

  3. Source term and radiological consequences of the Chernobyl accident

    International Nuclear Information System (INIS)

    Mourad, R.

    1987-09-01

    This report presents the results of a study of the source term and radiological consequences of the Chernobyl accident. The results two parts. The first part was performed during the first 2 months following the accident and dealt with the evaluation of the source term and an estimate of individual doses in the European countries outside the Soviet Union. The second part was performed after August 25-29, 1986 when the Soviets presented in a IAEA Conference in Vienna detailed information about the accident, including source term and radiological consequences in the Soviet Union. The second part of the study reconfirms the source term evaluated in the first part and in addition deals with the radiological consequences in the Soviet Union. Source term and individual doses are calculated from measured post-accident data, reported by the Soviet Union and European countries, microcomputer program PEAR (Public Exposure from Accident Releases). 22 refs

  4. Radiological and chemical source terms for Solid Waste Operations Complex

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1994-01-01

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ''source term'' means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements

  5. CONCEPT OF OPERATIONS PLANS for Phase I the INTERNATIONAL PILOT FOR Global Radiological source SORTING, Tracking, AND MONITORING (GradSStraM) Using eMERGING RFID AND WEB 2.0 TECHNOLOGIES TO PROVIDE TOTAL ASSET AND INFORMATION VISUALIZATIONA United States-European Union Lighthouse Priority Project for fostering trade and reducing regulatory burden

    International Nuclear Information System (INIS)

    Walker, Randy M.

    2009-01-01

    Thousands of shipments of radioisotopes developed in the United States (US) are transported domestically and internationally for medical and industrial applications, including to partner laboratories in European Union (EU) countries. Over the past five years, the Environmental Protection Agency (EPA), the Department of Energy (DOE), and Oak Ridge National Laboratory (ORNL) have worked with state regulatory compliance personnel, key private sector shippers and carriers, the Department of Homeland Security (DHS), the Department of Transportation (DOT), the Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC) on Radio Frequency Identification (RFID) tracking and monitoring of medical and industrial radioisotopes in commerce. The EPA Radiological Source Tracking and Monitoring (RadSTraM) project tested, evaluated, and integrated RFID technologies in laboratory settings, and at multiple private-sector shipping and distribution facilities (Perkin Elmer and DHL) using common radioisotopes used in everyday commerce. The RFID tracking was also tested in association with other deployed technologies including radiation detection, chemical/explosives detection, advanced imaging, lasers, and infrared scanning. At the 2007 EU-US Summit, the leaders of the US Department of Commerce (DOC) and EU European Commission (EC) committed to pursue jointly directed Lighthouse Priority Projects. These projects are intended to 'foster cooperation' and 'reduce regulatory burdens' with respect to transatlantic commerce. The Transatlantic Economic Council (TEC) Lighthouse Project on Radio Frequency Identification (RFID) has been directed to 'develop a joint framework for cooperation on identification and development of best practices for Radio Frequency Identification (RFID) technologies.' The RFID Lighthouse Priority Project commits both sides to endeavor to align U.S. and EU regulatory and policy approaches on RFID technologies, including pilot projects in the public sector

  6. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  7. Efficient radiologic reading environment by using an open-source macro program as connection software.

    Science.gov (United States)

    Lee, Young Han

    2012-01-01

    The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Efficient radiologic reading environment by using an open-source macro program as connection software

    International Nuclear Information System (INIS)

    Lee, Young Han

    2012-01-01

    Purpose: The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. Materials and methods: The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. Results: The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. Conclusion: A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software.

  9. Global Radiological Source Sorting, Tracking, And Monitoring (GRADSSTRAM) Using Emerging RFID AND WEB 2.0; Paper at 2009 INMM

    International Nuclear Information System (INIS)

    Walker, Randy M.; Kopsick, Deborah A.; Gorman, Bryan L.; Ganguly, Auroop R.; Ferren, Mitch; Shankar, Mallikarjun

    2009-01-01

    Thousands of shipments of radioisotopes developed in the United States (U.S.) are transported domestically and internationally for medical and industrial applications, including to partner laboratories in European Union (EU) countries. Over the past five years, the Environmental Protection Agency (EPA), the Department of Energy (DOE), and Oak Ridge National Laboratory (ORNL)1 have worked with state first responder personnel, key private sector supply chain stakeholders, the Department of Homeland Security (DHS), the Department of Transportation (DOT), the Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC) on Radio Frequency Identification (RFID) tracking and monitoring of medical, research and industrial radioisotopes in commerce. ORNL was the pioneer of the international radioisotope shipping and production business. Most radioisotopes made and used today were either made or discovered at ORNL. While most of the radioisotopes used in the commercial sector are now produced and sold by the private market, ORNL still leads the world in the production of exotic, high-value and/or sensitive industrial, medical and research isotopes. The ORNL-EPA-DOE Radiological Source Tracking and Monitoring (RadSTraM) project tested, evaluated, and integrated RFID technologies in laboratory settings and at multiple private-sector shipping and distribution facilities (Perkin Elmer and DHL) to track and monitor common radioisotopes used in everyday commerce. The RFID tracking capability was also tested in association with other deployed technologies including radiation detection, chemical/explosives detection, advanced imaging, lasers, and infrared scanning. At the 2007 EU-U.S. Summit, the leaders of the US Department of Commerce (DOC) and EU European Commission (EC) committed to pursue jointly directed Lighthouse Priority Projects. These projects are intended to foster cooperation and reduce regulatory burdens with respect to transatlantic commerce. The

  10. U.S.-China Radiological Source Security Project: Continuing And Expanding Bilateral Cooperation

    International Nuclear Information System (INIS)

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-01-01

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy's National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  11. U.S.-CHINA RADIOLOGICAL SOURCE SECURITY PROJECT: CONTINUING AND EXPANDING BILATERAL COOPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-10-07

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy’s National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  12. Data-Fusion for a Vision-Aided Radiological Detection System: Sensor dependence and Source Tracking

    Science.gov (United States)

    Stadnikia, Kelsey; Martin, Allan; Henderson, Kristofer; Koppal, Sanjeev; Enqvist, Andreas

    2018-01-01

    The University of Florida is taking a multidisciplinary approach to fuse the data between 3D vision sensors and radiological sensors in hopes of creating a system capable of not only detecting the presence of a radiological threat, but also tracking it. The key to developing such a vision-aided radiological detection system, lies in the count rate being inversely dependent on the square of the distance. Presented in this paper are the results of the calibration algorithm used to predict the location of the radiological detectors based on 3D distance from the source to the detector (vision data) and the detectors count rate (radiological data). Also presented are the results of two correlation methods used to explore source tracking.

  13. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    Science.gov (United States)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  14. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  15. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  16. Medical and industrial radiation sources as radiological weapons

    International Nuclear Information System (INIS)

    Bielefeld, T.; Fischer, H.W.

    2006-01-01

    The execution of attacks with radiological weapons are well within the capabilities of both local terrorist groups and transnational terrorist networks. In a research project, plausible attack scenarios have been developed, based on medical and industrial radioactive sources widely used in Germany. Special emphasis was put on how such sources could be obtained applying criminal tactics. To this end, working procedures in hospitals and companies have been analyzed. Furthermore, by means of simulations, the consequences of a terrorist attack using such sources were estimated. None of the scenarios we investigated led to doses at the site of the explosion which might cause acute radiation effects. However, in some scenarios, an attack would result in the necessity of a potentially very costly clean-up of large urban areas. Therefore, improvements in sources security are recommended. (orig.)

  17. Radiological source tracking in oil/gas, medical and other industries: requirements and specifications for passive RFID technology

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, Farid U. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-01

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources. This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.

  18. Guide for prepare the plan for radiological emergency by the users of ionizing radiation sources

    International Nuclear Information System (INIS)

    1992-01-01

    The Radiological Emergency Plan foresees all the possible radiological accidents with the ionizing sources the entity is using. The measures should be adopted by every factor is supped to take part in the emergencies created. The effectiveness of the guaranteed. THis guide establishes the model for elaborating the radiological Emergency Plans

  19. Orphan sources and the challenges: requirement for the prevention of malevolent use of radioactive sources and preparedness for radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.

    2006-01-01

    Challenges from smuggled or illegally transported radioactive sources with intention of causing threats to the society are similar to the radiological emergencies possible from misplaced/lost radioactive sources. While large number of radioactive sources are transported and are in use world over, the emergency preparedness and response system is not adequately developed compared to that for nuclear facilities. After the terrorist attack on W.T.C., there is concern world over about the malicious use of radioactive material calling for improving the emergency response system and international cooperation for preventing illicit trafficking of radioactive sources/material. Extremely sensitive state-of-the art monitoring systems installed at appropriate locations and periodic mobile radiation monitoring around suspected areas can be deterrent and can prevent the illicit trafficking of radioactive sources. Unless every nation ensures strict administrative control over the sources and implement usage of state-of-the art systems and methodology for early detection/prevention of illegal movement of sources within the territory and across its boundaries, the challenges from the orphan sources will remain for ever. The issues and challenges of man made radiological emergencies, remedial measures and the methodology for prevention and management of such emergencies are discussed here. The threat from an orphan source depends on many parameters. The type and quantity of the radionuclide, physical and chemical form influencing dispersion in air, deposition, solubility, migration in soil etc., can vary the radiological consequences when the source gets crushed accidentally along with scrap or is used for malevolent purposes. Depending on the level of environmental contamination, long term effects of the radiological emergency can significantly vary. Development of capability for quick detection, assessment and response are essential if prevention of theft/misuse of such sources

  20. Development of a technical guide for the identification of radiological sources of potential exposure and/or contamination

    International Nuclear Information System (INIS)

    Reyes, R.; Scott, A.; Falo, G.; Collins, J.; Szrom, F.; Collins, D.

    1999-01-01

    Radiological assessment of sites with radioactive residues starts with the identification of potential sources. The US Army Center for Health Promotion and Preventive Medicine (USACHPPM) has developed a technical guide that summarizes sources of potential radiological exposures of both civilian and military origin. These sources include those found in the natural environment, in the nuclear fuel cycle, in medical and industrial settings, in the transportation of radioactive materials, in US Army commodities and foreign materiel, and in the use and storage of nuclear weapons. This technical guide is intended to foster awareness of radiological hazards and to provide the reader with the knowledge necessary to take the first step in radiological health risk assessment: recognition of the hazard. Furthermore, this guide can be used in conjunction with other technical guides for performing radiological surveys and field dose assessments in war or peacetime operations. (author)

  1. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  2. Workshop on the first response in a radiological emergency. Lost source. Tabletop exercise

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this exercise is that the participants can apply their knowledge in a radiological accident occurred in a Hospital. A teletherapy unit has been damaged during a work in the installations. In the cancer treatment center a Cesium source disappeared so the dosimeters alarm was activated. The first responders have to know who are the actors involved in the radiologic emergency

  3. Data Fusion for a Vision-Radiological System for Source Tracking and Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas; Koppal, Sanjeev [University of Florida, Gainesville, FL, 32606 (United States)

    2015-07-01

    A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for the purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and

  4. Data Fusion for a Vision-Radiological System for Source Tracking and Discovery

    International Nuclear Information System (INIS)

    Enqvist, Andreas; Koppal, Sanjeev

    2015-01-01

    A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for the purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and

  5. Radiological protection issues in endovascular use of radiation sources

    International Nuclear Information System (INIS)

    2006-02-01

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  6. Radiological emergency system in Madagascar, case of loss of a source of industrial radiography

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Raoelina Andriambololona; Zafimanjato, J.L.R.

    2012-06-01

    In Madagascar, a national radiological emergency response is not formally established. However, an Ad Hoc Committee of safety and nuclear safety and radiological is in place. The committee is composed of several Government entities and the role of each is identified. This Ad Hoc Committee has demonstrated its effectiveness for real action in 2010 with the loss of industrial radiography Container with Ir-192 source, the emergency is classified in threat category IV. Concerning the theft, the communication with the public and the other state entities, the search for the source and the source recovery were conducted in coordination between the different members. And of course, the lessons were reported during the operation which lasted more than three months

  7. The role of open-source software in innovation and standardization in radiology.

    Science.gov (United States)

    Erickson, Bradley J; Langer, Steve; Nagy, Paul

    2005-11-01

    The use of open-source software (OSS), in which developers release the source code to applications they have developed, is popular in the software industry. This is done to allow others to modify and improve software (which may or may not be shared back to the community) and to allow others to learn from the software. Radiology was an early participant in this model, supporting OSS that implemented the ACR-National Electrical Manufacturers Association (now Digital Imaging and Communications in Medicine) standard for medical image communications. In radiology and in other fields, OSS has promoted innovation and the adoption of standards. Popular OSS is of high quality because access to source code allows many people to identify and resolve errors. Open-source software is analogous to the peer-review scientific process: one must be able to see and reproduce results to understand and promote what is shared. The authors emphasize that support for OSS need not threaten vendors; most vendors embrace and benefit from standards. Open-source development does not replace vendors but more clearly defines their roles, typically focusing on areas in which proprietary differentiators benefit customers and on professional services such as implementation planning and service. Continued support for OSS is essential for the success of our field.

  8. Radiological consequence evaluation of DBAs with alternative source term method for a Chinese PWR

    International Nuclear Information System (INIS)

    Li, J.X.; Cao, X.W.; Tong, L.L.; Huang, G.F.

    2012-01-01

    Highlights: ► Radiological consequence evaluation of DBAs with alternative source term method for a Chinese 900 MWe PWR has been investigated. ► Six typical DBA sequences are analyzed. ► The doses of control room, EAB and outer boundary of LPZ are acceptable. ► The differences between AST method and TID-14844 method are investigated. - Abstract: Since a large amount of fission products may releases into the environment, during the accident progression in nuclear power plants (NPPs), which is a potential hazard to public risk, the radiological consequence should be evaluated for alleviating the hazard. In most Chinese NPPs the method of TID-14844, in which the whole body and thyroid dose criteria is employed as dose criteria, is currently adopted to evaluate the radiological consequences for design-basis accidents (DBAs), but, due to the total effective dose equivalent is employed as dose criteria in alternative radiological source terms (AST) method, it is necessary to evaluate the radiological consequences for DBAs with AST method and to discuss the difference between two methods. By using an integral safety analysis code, an analytical model of the 900 MWe pressurized water reactor (PWR) is built and the radiological consequences in DBAs at control room (CR), exclusion area boundary (EAB), low population zone (LPZ) are analyzed, which includes LOCA and non-LOCA DBAs, such as fuel handling accident (FHA), rod ejection accident (REA), main steam line break (MSLB), steam generator tube rupture (SGTR), locked rotor accident (LRA) by using the guidance of the RG 1.183. The results show that the doses in CR, EAB and LPZ are acceptable compared with dose criteria in RG 1.183 and the differences between AST method and TID-14844 method are also discussed.

  9. Introduction of radiological protection; Pengenalan kepada perlindungan radiologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: basic principles of radiological protection , dose limit which was suggested, stochastic and nonstochastic effects, equivalent dose and alternative of it`s calculation, limit for the publics, ICRP (International Commission for Radiological Protection) recommendations, and the principles of radiological protection. Dangerous radiation sources also briefly summarized i.e. x-ray generators, reactor nucleus.

  10. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site

  11. Radiological safety of decayed source removal facility (DSRF) - an overview

    International Nuclear Information System (INIS)

    Rajput, Raksha; George, Jain Reji; Pathak, B.K.

    2018-01-01

    Industrial radiography is one of the major applications of radioisotope in engineering industry for Non-Destructive Testing (NDT). The equipment used for this purpose is called Industrial Radiography Exposure Device (IGRED) or radiography (RG) camera. In India, more than 1800 IGREDs including imported cameras are being used in NDT industry. These cameras are of different types and have various capacities to house different radioisotopes. Generally, 192 Ir sources are being used for NDT work. The sources are being supplied by BRIT to the users. After the useful period of the utilization of gamma intensity, the decayed source is returned to BRIT in RG camera. The decayed source is removed from the camera in the Decayed Source Removal Facility (DSRF). This facility serves the purpose of a miniature hot-cell with the capability of storing the decayed sources which are removed from the cameras. The empty camera is inspected for its mechanical functions and sent to BRIT's hot-cell for loading the new source. DSRF is situated at BRIT Vashi Complex. This paper deals with the radiological safety in the operation of DSRF for removing decayed sources from industrial radiography cameras

  12. Status of ion sources at National Institute of Radiological Sciences.

    Science.gov (United States)

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  13. Business intelligence tools for radiology: creating a prototype model using open-source tools.

    Science.gov (United States)

    Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin

    2010-04-01

    Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.

  14. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  15. Radioactive sources of main radiological concern in the Kola-Barents region

    International Nuclear Information System (INIS)

    Bergman, R.; Baklanov, A.

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  16. Radioactive sources of main radiological concern in the Kola-Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Baklanov, A

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  17. Derivation of the source term, dose results and associated radiological consequences for the Greek Research Reactor – 1

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Charalampos, E-mail: chpappas@ipta.demokritos.gr; Ikonomopoulos, Andreas; Sfetsos, Athanasios; Andronopoulos, Spyros; Varvayanni, Melpomeni; Catsaros, Nicolas

    2014-07-01

    Highlights: • Source term derivation of postulated accident sequences in a research reactor. • Various containment ventilation scenarios considered for source term calculations. • Source term parametric analysis performed in case of lack of ventilation. • JRODOS employed for dose calculations under eighteen modeled scenarios. • Estimation of radiological consequences during typical and adverse weather scenarios. - Abstract: The estimated source term, dose results and radiological consequences of selected accident sequences in the Greek Research Reactor – 1 are presented and discussed. A systematic approach has been adopted to perform the necessary calculations in accordance with the latest computational developments and IAEA recommendations. Loss-of-coolant, reactivity insertion and fuel channel blockage accident sequences have been selected to derive the associated source terms under three distinct containment ventilation scenarios. Core damage has been conservatively assessed for each accident sequence while the ventilation has been assumed to function within the efficiency limits defined at the Safety Analysis Report. In case of lack of ventilation a parametric analysis is also performed to examine the dependency of the source term on the containment leakage rate. A typical as well as an adverse meteorological scenario have been defined in the JRODOS computational platform in order to predict the effective, lung and thyroid doses within a region defined by a 15 km radius downwind from the reactor building. The radiological consequences of the eighteen scenarios associated with the accident sequences are presented and discussed.

  18. A Platform for Innovation and Standards Evaluation: a Case Study from the OpenMRS Open-Source Radiology Information System.

    Science.gov (United States)

    Gichoya, Judy W; Kohli, Marc; Ivange, Larry; Schmidt, Teri S; Purkayastha, Saptarshi

    2018-05-10

    Open-source development can provide a platform for innovation by seeking feedback from community members as well as providing tools and infrastructure to test new standards. Vendors of proprietary systems may delay adoption of new standards until there are sufficient incentives such as legal mandates or financial incentives to encourage/mandate adoption. Moreover, open-source systems in healthcare have been widely adopted in low- and middle-income countries and can be used to bridge gaps that exist in global health radiology. Since 2011, the authors, along with a community of open-source contributors, have worked on developing an open-source radiology information system (RIS) across two communities-OpenMRS and LibreHealth. The main purpose of the RIS is to implement core radiology workflows, on which others can build and test new radiology standards. This work has resulted in three major releases of the system, with current architectural changes driven by changing technology, development of new standards in health and imaging informatics, and changing user needs. At their core, both these communities are focused on building general-purpose EHR systems, but based on user contributions from the fringes, we have been able to create an innovative system that has been used by hospitals and clinics in four different countries. We provide an overview of the history of the LibreHealth RIS, the architecture of the system, overview of standards integration, describe challenges of developing an open-source product, and future directions. Our goal is to attract more participation and involvement to further develop the LibreHealth RIS into an Enterprise Imaging System that can be used in other clinical imaging including pathology and dermatology.

  19. Analysis of the Variability of Classified and Unclassified Radiological Source term Inventories in the Frenchman Flat Area, Nevada test Site

    International Nuclear Information System (INIS)

    Zhao, P.; Zavarin, M.

    2008-01-01

    It has been proposed that unclassified source terms used in the reactive transport modeling investigations at NTS CAUs should be based on yield-weighted source terms calculated using the average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 10 underground nuclear tests conducted in the Frenchman Flat (FF) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 10 tests and (2) compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 10 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t 0 ) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site

  20. Implementation of a remote system for monitoring of radiological areas of radiological areas

    International Nuclear Information System (INIS)

    Velazquez E, Walter; Galuppo G, Emiliano; Gutierrez G, Jorge; Reyes R, Jerson

    2008-01-01

    Full text: Introduction: The present work shows the development of a radiation remote monitoring system which control radiological areas in the principal facilities at CCHEN and the development in the last years to use this system called SMARR (Remote Radiological Area Monitoring System). This is an important issue in radiological safety is to know 'on line' and in a 'continuously way' the radiological variables of areas, especially if in these areas people manage radioactive sources or material, the monitoring system are operative on La Reina and Lo Aguirre Nuclear Centers. This 'knowledge' gets a good support to the radiological safety to safeguard the environment and people in the facilities. Nuclear Chilean Commission: Actually, this system is daily operating to register the background radiation and level operation, for example of the facilities research reactor, cyclone, irradiators, in order to probe the behaviors under operational requirements. The system was made using common Geiger Muller and NaI detectors. This signal is received, data by data, for a collector computer which uses a Labview program to do this displayed on a screen computer using graphics to show the activity on a radiological area, and when the lectures pass a setting value automatically the system send by e-mail and text message which also can be received for cell phones enabled for this for the supervisor. Each monitored facility is completely independent of each other and store a data backup, also every installation are monitoring with server computer, it's concentrating the information and allow to view it on line in real time, trough the intranet and internet network. In addition, the information is stored in the special report in the server and available for to do a statistics and identify the operation periods, and control of radioactive sources. The Industry: The radiological protection on industry is necessary today, the typical instrumentation on the industry is growing up in the

  1. Description of apparatus for determining radiological source terms of nuclear fuels

    International Nuclear Information System (INIS)

    Baldwin, D.L.; Woodley, R.E.; Holt, F.E.; Archer, D.V.; Steele, R.T.; Whitkop, P.G.

    1985-01-01

    New apparatus have been designed, built and are currently being employed to measure the release of volatile fission products from irradiated nuclear fuel. The system is capable of measuring radiological source terms, particularly for cesium-137, cesium-134, iodine-129 and krypton-85, in various atmospheres at temperatures up to 1200 0 C. The design allows a rapid transient heatup from ambient to full temperature, a hold at maximum temperature for a specified period, and rapid cooldown. Released fission products are measured as deposition on a platinum thermal gradient tube or in a filter/charcoal trap. Noble gases pass through to a multi-channel gamma analyzer. 1 ref., 4 figs

  2. Radiological hazards

    International Nuclear Information System (INIS)

    Hamilton, M.

    1984-01-01

    The work of the (United Kingdom) National Radiological Protection Board is discussed. The following topics are mentioned: relative contributions to genetically significant doses of radiation from various sources; radon gas in non-coal mines and in dwelling houses; effects of radiation accidents; radioactive waste disposal; radiological protection of the patient in medicine; microwaves, infrared radiation and cataracts; guidance notes for use with forthcoming Ionising Radiations Regulations; training courses; personal dosimetry service; work related to European Communities. (U.K.)

  3. A fast and simple approach for the estimation of a radiological source from localised measurements after the explosion of a radiological dispersal device

    International Nuclear Information System (INIS)

    Urso, L.; Kaiser, J.C.; Woda, C.; Helebrant, J.; Hulka, J.; Kuca, P.; Prouza, Z.

    2014-01-01

    After an explosion of a radiological dispersal device, decision-makers need to implement countermeasures as soon as possible to minimise the radiation-induced risks to the population. In this work, the authors present a tool, which can help providing information about the approximate size of source term and radioactive contamination based on a Gaussian Plume model with the use of available measurements for liquid or aerosolised radioactivity. For two-field tests, the source term and spatial distribution of deposited radioactivity are estimated. A sensitivity analysis of the dependence on deposition velocity is carried out. In case of weak winds, a diffusive process along the wind direction is retained in the model. (authors)

  4. Radiological emergencies due to unaccounted sources or failures of the control system in developing countries

    International Nuclear Information System (INIS)

    Stainhaeusler, F.; Wieland, P.

    1998-01-01

    The widespread use of radiological sources in developing countries represents a potentially significant risk. Two examples of accident scenarios of different severities - one in El Salvador, the other in Taiwan - are reviewed in the light of their causes, effects on man and the environment, and economic consequences. Recent operational and regulatory advances on improved emergency management are discussed. The international dimension of these issues is significant, as over 160 industrial irradiation facilities comparable to the installation in El Salvador are currently in operation worldwide and close to 40 cases are known of radioactive sources accidentally smelted with recycled metal, as is likely to have happened in Taiwan. (author)

  5. Bookshelf on radiological health

    International Nuclear Information System (INIS)

    Wilms, H.G.; Moss, C.E.

    1975-01-01

    This bookshelf is an attempt to list, categorize, and present details on the many varied sources of information available to personnel working in the field of radiological health. This particular bookshelf will not cover those sources listed in a previous publication (Bureau of Radiological Health Training Publication TP-198), but will concentrate on those sources published or revised after 1965. It is hoped that this bookshelf will help schools, public health officials, teachers, students, and others in updating their existing sources of information. It is obvious that any such attempt at developing a master list of this type has to contain only representative sources of information. The authors invite readers to inform them of any omissions or errors. Finally, this bookshelf attempts, where applicable, to restrict the number of sources to those more associated with public health aspects. The bookshelf is divided into four main sections. They are textbooks, current literature, training and educational materials, and other sources. Each one of these sections is further stratified into additional details

  6. Pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, G.

    1997-01-01

    Pediatric radiology is an important subsection of diagnostic radiology involving specific difficulties, but unfortunately is quite too often neglected as a subject of further education and training. The book therefore is not intended for specialists in the field, but for radiologists wishing to plunge deeper into the matter of pediatric radiology and to acquire a sound, basic knowledge and information about well-proven modalities, the resulting diagnostic images, and interpretation of results. The book is a compact guide and a helpful source of reference and information required for every-day work, or in special cases. With patients who are babies or children, the challenges are different. The book offers all the information needed, including important experience from pediatric hospital units that may be helpful in diagnostic evaluation, information about specific dissimilarities in anatomy and physiology which affect the imaging results, hints for radiology planning and performance, as well as information about the various techniques and their indication and achievements. The book presents a wide spectrum of informative and annotated images. (orig./CB) [de

  7. American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.

    Science.gov (United States)

    Devlin, Phillip M; Gaspar, Laurie E; Buzurovic, Ivan; Demanes, D Jeffrey; Kasper, Michael E; Nag, Subir; Ouhib, Zoubir; Petit, Joshua H; Rosenthal, Seth A; Small, William; Wallner, Paul E; Hartford, Alan C

    This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy. The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes. The parameter reviews the published clinical data with regard to ELS results in skin, breast, and other cancers. This technical standard recommends appropriate qualifications of the involved personnel. The parameter reviews the technical issues relating to equipment specifications as well as patient and personnel safety. Regarding suggestions for educational programs with regard to this parameter,it is suggested that the training level for clinicians be equivalent to that for other radiation therapies. It also suggests that ELS must be done using the same standards of quality and safety as those in place for other forms of radiation therapy. Copyright © 2017 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Operational experience, the open joint stock company IZOTOP, on reducing radiological threat in Russia and Commonwealth of Independent States countries from radioactive sources at the end of their life cycle

    International Nuclear Information System (INIS)

    Akakiev, B.V.; Makarevich, I.M.; Nesterov, V.P.; Gasselblat, A.D.; Filatov, K.V.

    2010-01-01

    Full text: The issues of radiological threat from radioactive sources at the end of their life cycle is described in the paper. The order of works execution is described by the example of radioisotope irradiation facilities discharge including works on transportation and preparation for radioactive sources storage. The procedure of development and agreement of organizational and technical documentation on un-shipping of ionizing radiation sources is described. The safe work organization structure and transportation of radioactive materials to Joint Stock Company IZOTOP is considered. Standard examples of taking over the control of different radioactive sources is presented, which presents radiological threat. Sources disposal technology in Russia is shown. Summary of Joint Stock Company IZOTOP activities in 2004-2009 years in Russia and Commonwealth of Independent States member-countries on radiological threat is provided.

  9. The management of uncertainties in radiological data

    International Nuclear Information System (INIS)

    Funtowicz, S.O.

    1989-01-01

    A prototype framework for representing uncertainties in radiological data is introduced. Through this framework, inherent variability in the quality of radiological data can be managed and communicated efficiently, systematically and consistently. Codings derived from the framework have applicability to radiological data, irrespective of the source from which the data are obtained. and irrespective of the context in which they may be used. The coding, in effect, can itself become part of a radiological base. (author)

  10. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    Science.gov (United States)

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  11. Radiological Source Terms for Tank Farms Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  12. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  13. Radiological control in fires involving radiation sources

    International Nuclear Information System (INIS)

    Franco, J.O.A.; Coelho, C.P.

    1984-01-01

    The copies used during the chatter by techniques from CDTN in the I Mineiro Symposium of Fire Engineering, are presented. The chatter was based on emergency radiation control course, given by CDTN. Basic concepts, such as nuclear physics fundaments, radiation nature and detection, radiation protection and practical aspects of radiological fire emergency, were enphasized. (M.C.K.) [pt

  14. Consequences of radiological emergencies at Goiania and Mayapuri

    International Nuclear Information System (INIS)

    Sharma, Ranjit; Pradeepkumar, K.S.; Singh, Rajvir

    2012-01-01

    Radiological accidents due to orphan sources can lead to emergencies in the public domain, as reported worldwide. Inadequate regulatory control, lack of accountability and improper disposal of radioactive materials in scrap have resulted in radiological emergencies. Apart from few fatalities, they lead to environmental contamination, economic loss and social and psychological impact on the society. The 137 Cs and 60 Co sources of strength TBq to PBq activity level may pose high radiation exposure risk if shielding integrity is affected in any accident. There had been few radiological accidents reported world over which resulted in radiation injuries, environmental contamination and out of proportion panic in the society. The response actions for both these radiological emergencies included search, recovery of sources, decontamination and waste removal for reducing the radiation/contamination levels at the affected site. In both cases, encapsulated sources were damaged by the persons unknowingly. Response operations were carried out for longer period at Goiania compared to Mayapuri because of large scale contamination. 60 Co source being metallic in nature, even after the breaking of sources at Mayapuri the spread of contamination was confined to a small area. In Goiania, the granules of Cesium Chloride were distributed to many people because of its glowing nature in dark which caused spread of contamination to a large area and the accident was detected early as more persons reported with radiation injuries. The detection of Mayapuri accident was delayed as affected personnel reported to the hospital after three weeks of exposure to radiation. The lack of expertise in identifying radiation injuries by medical professionals contributed to further delay in reporting and detection of this emergency. The fatalities in both accidents resulted from acute radiation exposures and delay in getting medical support. The experience gained at radiological emergencies of Goiania

  15. Reducing the global threat of radiological terrorism in Central Asia and Caucus regions. The global threat reduction initiative approach to radioactive source security

    International Nuclear Information System (INIS)

    Smith, E.

    2010-01-01

    The security of radioactive sources is of worldwide concern, due to their wide use in civilian commerce and the potentially devastating effects of their misuse. In cooperation with host countries and international partners, the Global Threat Reduction Initiative has utilized a proven process for providing technical and financial assistance to protect radioactive sources in diverse uses and unique circumstances at hundreds of sites worldwide. The mission of the Department of Energy, National Nuclear Security Administration's program includes reducing the risk posed by vulnerable radiological materials that could be used in a Radioactive Dispersal Device). The program's objectives are to identify, consolidate, secure, and/or dispose of high-activity radiological materials to prevent their theft and malicious use. The Global Threat Reduction Initiative Program's scope is global, with projects in over 100 countries at more than 755 radiological sites, including industrial, medical and commercial facilities. In addition to working bilaterally, the Program works closely with the International Atomic Energy Agency (IAEA) and other partner countries. (author)

  16. Radiological Assessment for the Vance Road Facility Source Vault, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Morton, J. R.

    2000-01-01

    From the 1950s, the Vance Road laboratories had been used for a broad range of nuclear medicine research involving numerous radionuclides. These radionuclides were stored in the a source vault located on the first floor of the facility. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault after it had been remediated and in preparation for converting the area to office space

  17. Improved radiological/nuclear source localization in variable NORM background: An MLEM approach with segmentation data

    Energy Technology Data Exchange (ETDEWEB)

    Penny, Robert D., E-mail: robert.d.penny@leidos.com [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Crowley, Tanya M.; Gardner, Barbara M.; Mandell, Myron J.; Guo, Yanlin; Haas, Eric B.; Knize, Duane J.; Kuharski, Robert A.; Ranta, Dale; Shyffer, Ryan [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Labov, Simon; Nelson, Karl; Seilhan, Brandon [Lawrence Livermore National Laboratory, Livermore, CA (United States); Valentine, John D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-06-01

    A novel approach and algorithm have been developed to rapidly detect and localize both moving and static radiological/nuclear (R/N) sources from an airborne platform. Current aerial systems with radiological sensors are limited in their ability to compensate for variable naturally occurring radioactive material (NORM) background. The proposed approach suppresses the effects of NORM background by incorporating additional information to segment the survey area into regions over which the background is likely to be uniform. The method produces pixelated Source Activity Maps (SAMs) of both target and background radionuclide activity over the survey area. The task of producing the SAMs requires (1) the development of a forward model which describes the transformation of radionuclide activity to detector measurements and (2) the solution of the associated inverse problem. The inverse problem is ill-posed as there are typically fewer measurements than unknowns. In addition the measurements are subject to Poisson statistical noise. The Maximum-Likelihood Expectation-Maximization (MLEM) algorithm is used to solve the inverse problem as it is well suited for under-determined problems corrupted by Poisson noise. A priori terrain information is incorporated to segment the reconstruction space into regions within which we constrain NORM background activity to be uniform. Descriptions of the algorithm and examples of performance with and without segmentation on simulated data are presented.

  18. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    Science.gov (United States)

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web. © RSNA, 2014.

  19. Comparison of the distribution of non-radiological and radiological fatal risk in Ontario industries (addendum)

    International Nuclear Information System (INIS)

    Davis, C.K.; Forbes, W.F.; Hayward, L.M.

    1986-09-01

    Occupational limits for exposure to ionizing radiation, in force in Canada, are based on recommendations of international bodies, particularly the International Commission on Radiological Protection (ICRP). To determine whether the ICRP assertions concerning the similarity of the distributions of occupational risk at the higher risk levels (from non-radiation and from radiation work) to Canada a study of the high end of the distributions of non-radiological risk of occupational fatalities in the province of Ontario was performed. For the present study total doses from exposure to sources of ionizing radiation for Ontario workers were converted to relative risk rates to allow direct comparison with the non-radiological results. In addition, absolute values for the radiological risk rates (RRR) were derived. The radiological risk estimates are based on workers who work both from nuclear reactions and from X-rays. The conclusion is made that the radiological and non-radiological risk rate (NRRR) distributions are similar in shape, but the RRR are approximately 1 to 27 percent of the NRRR, depending on the industry concerned

  20. Radiological risk assessment for the public under the loss of medium and large sources using bayesian methodology

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Jang, Han Ki; Lee, Jai Ki

    2005-01-01

    Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5% Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative for risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety

  1. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  2. Radiological mapping of Mumbai-Arakkonam rail route

    International Nuclear Information System (INIS)

    Chavan, R.V.; Patil, S.S.; Solase, S.; Saindane, S.S.; Murali, S.

    2018-01-01

    Presently usage of sources of radiation in various fields of application has increased significantly. If such radiation sources get misplaced, lost from administrative control mechanism or smuggled out, it is advisable to have the countrywide baseline data on radiological aspects. As a part of emergency preparedness programme, it had been planned to generate the radiological baseline data for various road routes and cities in India. The radiological mapping is useful for updates on the trend of the radiation level at various locations/routes. The radiation mapping of Mumbai-Arakkonam rail route was carried out by using various state of the art monitoring systems/instruments. The radiological data at every railway stations were analyzed thoroughly. The overall increase in radiation level was found mainly due to the presence of higher concentration of naturally occurring radionuclide's in the environment mainly 40 K and 232 Th

  3. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  4. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  5. Conventional radiology and genetic dose

    International Nuclear Information System (INIS)

    Gonzalez-Vila, V.; Fernandez, A.; Rivera, F.; Martinez, M.; Gomez, A.; Luis, J.

    1992-01-01

    A research project was established in 1984 to evaluate the expected genetic abnormalities due to radiation received by the population attending the Outpatient Radiological Service due to medical radiological practices. The study was conducted in 1985 (12 weeks chosen by random). The equivalent gonadal dose was the chosen parameter, representing the social cost of the radiology. Samples of 2945 men and 2929 women were considered in the study. The number of genetic abnormalities, in relation to the mean age of reproduction (a generation every 30 years), was 2.13 cases per million in the first generation and 15.97 cases per million at equilibrium. The authors interpretation is that both the method and the expected genetic detriment are suitable procedures for the characterisation of the Radiological Service as a radiation source. (author)

  6. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  7. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  8. Evaluation of Stress and a Stress-Reduction Program Among Radiologic Technologists.

    Science.gov (United States)

    Reingold, Lynn

    2015-01-01

    To investigate stress levels and causes of stress among radiologic technologists and determine whether an intervention could reduce stress in a selected radiologic technologist population. Demographic characteristics and data on preintervention stress sources and levels were collected through Internet-based questionnaires. A 6-week, self-administered, mindfulness-based stress-reduction program was conducted as a pilot intervention with 42 radiologic technologists from the Veterans Administration Medical Center. Data also were collected postintervention. Identified sources of stress were compared with findings from previous studies. Some radiologic technologists experienced improvement in their perceptions of stress after the intervention. Sources of stress for radiologic technologists were similar to those shown in earlier research, including inconsistent management, poor management communication, conflicting demands, long work hours, excessive workloads, lack of work breaks, and time pressures. The mindfulness-based stress-reduction program is an example of an inexpensive method that could improve personal well-being, reduce work errors, improve relationships in the workplace, and increase job satisfaction. More research is needed to determine the best type of intervention for stress reduction in a larger radiologic technologist population.

  9. Radiological Control Technician: Phase 1, Site academic training study guides

    International Nuclear Information System (INIS)

    1992-10-01

    This volume is a study guide for training Radiological Control Technicians. Provided herein are support materials for learning radiological documentation, communication systems, counting errors and statistics, dosimetry, contamination control, airborne sampling program methods, respiratory protection, radiological source control, environmental monitoring, access control and work area setup, radiological work coverage, shipment and receipt for radioactive material, radiological incidents and emergencies, personnel decontamination, first aid, radiation survey instrumentation, contamination monitoring, air sampling, and counting room equipment

  10. Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.

    Science.gov (United States)

    Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L

    2010-11-01

    Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. ©RSNA, 2010

  11. Advantages and Disadvantages in Image Processing with Free Software in Radiology.

    Science.gov (United States)

    Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan

    2018-01-15

    Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.

  12. Hazardous radiological waste-dental and environmental perspective

    International Nuclear Information System (INIS)

    Tripathi, Anurag

    2014-01-01

    Dental radiology is concerned with maxillo-facial radiological diagnostic procedure. It is meant for patient welfare and to generate diagnostically useful information, which can be utilized for patient welfare. If injudiciously used, it can become a source of harmful effluents and solid waste, which may pose risk to health and environment. Professionals of dental radiology should be aware about their responsibility to dispose such waste in the rightful manner to fulfil their medical pledge and ethics of doing no harm. (author)

  13. Development of mobile radiological assessment laboratory

    International Nuclear Information System (INIS)

    Pujari, R.N.; Saindane, Shashank S.; Jain, Amit; Parmar, Jayesh; Narsaiah, M.V.R.; Pote, M.B.; Murali, S.; Chaudhury, Probal

    2018-01-01

    During any emergency situations real-time radiation measurements and the fast analysis of the measured radiological data are of crucial importance. The newly developed mobile vehicle based laboratory known as 'Radiological Assessment Laboratory' (RAL) can be used for real time measurements in different radiation emergency scenarios, such as the release of radioactive materials from a radiological/nuclear incident, during search of an orphan source or during radioisotope transportation. RAL is equipped with several high sensitive detectors/systems such as NaI(Tl) gamma spectrometers, large size plastic scintillators and air-sampler, along with GPS and data transfer capability through GSM modem

  14. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  15. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  16. Methodology for and uses of a radiological source term assessment for potential impacts to stormwater and groundwater

    International Nuclear Information System (INIS)

    Teare, A.; Hansen, K.; DeWilde, J.; Yu, L.; Killey, D.

    2001-01-01

    A Radiological Source Term Assessment (RSTA) was conducted by Ontario Power Generation Inc. (OPG) at the Pickering Nuclear Generating Station (PNGS). Tritium had been identified in the groundwater at several locations under the station, and OPG initiated the RSTA as part of its ongoing efforts to improve operations and to identify potential sources of radionuclide impact to groundwater and stormwater at the station. The RSTA provides a systematic approach to collecting information and assessing environmental risk for radioactive contaminants based on a ranking system developed for the purpose. This paper provides an overview of the RSTA focusing on the investigative approach and how it was applied. This approach can find application at other generating stations. (author)

  17. Planning for a radiological emergency in health care institutions

    International Nuclear Information System (INIS)

    Jerez Vegueria, S.F.; Jerez Vegueria, P.F.

    1998-01-01

    The possible occurrence of accidents involving sources of ionizing radiation calls for response plans to mitigate the consequences of radiological accidents. An emergency planning framework is suggested for institutions which use medical applications of ionizing radiation. Bearing in mind that the prevention of accidents is of prime importance in dealing with radioactive materials and other sources of ionizing radiation, it is recommended that emergency instructions and procedures address certain aspects of the causes of these radiological events. Issues such as identification of radiological events in medical practices and their consequences, protective measures, planning for an emergency response and maintenance of emergency capacity are considered. (author)

  18. Prevention and preparedness for response to nuclear and radiological threats

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2016-01-01

    Challenges from smuggled or illegally transported radioactive sources with malevolent intention of causing potential threats to the society are much higher to those potential radiological emergencies from misplaced, orphan or lost radioactive sources. Large number of radioactive sources world over is transported for its application in various fields. The emergency preparedness and response system is less developed for potential radiological emergencies caused by them compared to those at nuclear facilities which are kept in readiness to respond to any kind of emergency. After the terrorist attack on WTC of 2001, there is significant concern world over about the malicious use of nuclear and other radioactive material. This calls for prevention of stealing/smuggling of radioactive materials and improving the emergency response system. Use of Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) are considered as possible radiological and nuclear threats, can lead to large area contamination in addition to the injuries caused by blast and thermal effects. (author)

  19. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education

    OpenAIRE

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  20. Radiology

    International Nuclear Information System (INIS)

    Bigot, J.M.; Moreau, J.F.; Nahum, H.; Bellet, M.

    1990-01-01

    The 17th International Congress of Radiology was conducted in two separate scientific sessions, one for radiodiagnosis and one for radiation oncology. Topics covered are: Radiobiology -radioprotection; imaging and data processing; contrast media; MRI; nuclear medicine; radiology and disasters; radiology of tropical diseases; cardiovascular radiology; interventional radiology; imaging of trauma; imaging of chest, gastro-intestinal tract, breast and genito-urinary tract; imaging in gynecology;imaging in oncology; bone and joint radiology; head and neck-radiology; neuro-radiology. (H.W.). refs.; fig.; tabs

  1. The role of radiologic technologist in radiation protection and quality assurance programs

    International Nuclear Information System (INIS)

    Djurovic, B.; Spasci -Jokic, V.; Misovic, M.

    2001-01-01

    The most important sources of ionizing radiation for general public are medical sources. Good working protocols and radiological protections measurements provided significant reduction of patients and professional doses. Medical users of ionizing radiation are radiological technologists. The purpose of this paper is to point out to several facts and errors in radiation protection educational programs for radiological technologists. Medical College educational program covers main specific topics in radiation protection, but there are some omissions in training process. Radiological technologists must be actively involved in radiation protection. Following ethical standards they will reach higher standards than the law requires

  2. FDH radiological design review guidelines

    International Nuclear Information System (INIS)

    Millsap, W.J.

    1998-01-01

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information

  3. FDH radiological design review guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  4. Radiological Dispersion Devices: are we prepared?

    Energy Technology Data Exchange (ETDEWEB)

    Sohier, Alain [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)]. E-mail: asohier@sckcen.be; Hardeman, Frank [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)

    2006-07-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue.

  5. Radiological Dispersion Devices: are we prepared?

    International Nuclear Information System (INIS)

    Sohier, Alain; Hardeman, Frank

    2006-01-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue

  6. Radiological protection Program of CDTN

    International Nuclear Information System (INIS)

    1983-01-01

    Radiological protection program of CDTN, its purposes and rules, responsabilities, physical control, monitoring, personnel radiation protection, radiation sources and radioactive wastes control, emergency and accidents and siting are described. (C.M.) [pt

  7. The year book of diagnostic radiology 1981

    International Nuclear Information System (INIS)

    Whitehouse, W.M.; Adams, D.F.; Bookstein, J.J.; Gabrielsen, T.O.; Holt, J.F.; Martel, W.; Silver, T.M.; Thornbury, J.R.

    1981-01-01

    The 1981 edition of the Year Book of Diagnostic Radiology fulfills the standards of excellence established by previous volumes in this series. The abstracts were carefully chosen, are concise, and are well illustrated. The book is recommended for all practicing radiologists: for the resident it is a good source from which to select articles to be carefully studied, and as review source before board examinations; for the subspecialist it provides a means to maintain contact with all areas of diagnostic radiology; and for the general radiologist, it is a convenient and reliable guide to new developments in the specialty

  8. A Transparent Framework for guiding Radiological and Non-Radiological Contaminated Land Risk Assessments

    International Nuclear Information System (INIS)

    Lee, Alex; Mathers, Dan

    2003-01-01

    A framework is presented that may be used as a transparent guidance to both radiological and non-radiological risk assessments. This framework has been developed by BNFL, with external consultation, to provide a systematic approach for identifying key system drivers and to guide associated research packages in light of data deficiencies and sources of model uncertainty. The process presented represents an advance on existing working practices yet combines regulator philosophy to produce a robust, comprehensive, cost-effective and transparent work package. It aims at lending added confidence to risk models thereby adding value to the decision process

  9. Laboratory of environmental radiological surveillance

    International Nuclear Information System (INIS)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M.

    1991-12-01

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  10. Management of a radiological emergency. Organization and operation

    International Nuclear Information System (INIS)

    Dubiau, Ph.

    2007-01-01

    After a recall of potential radiological emergency situations and their associated risks, this article describes the organization in France of the crisis management and its operation at the national and international scale: 1 - Nuclear or radiological emergency situations and their associated risks: inventory of ionising radiation sources, accidental situations, hazards; 2 - crisis organization in situation of radiological or nuclear emergency: organization at the local scale, organization at the national scale; 3 - management of emergency situations: accident at a facility, action circle, radiological emergency situations outside nuclear facilities, international management of crisis, situations that do not require the implementation of an emergency plan. (J.S.)

  11. Spectrum of diagnostic errors in radiology.

    Science.gov (United States)

    Pinto, Antonio; Brunese, Luca

    2010-10-28

    Diagnostic errors are important in all branches of medicine because they are an indication of poor patient care. Since the early 1970s, physicians have been subjected to an increasing number of medical malpractice claims. Radiology is one of the specialties most liable to claims of medical negligence. Most often, a plaintiff's complaint against a radiologist will focus on a failure to diagnose. The etiology of radiological error is multi-factorial. Errors fall into recurrent patterns. Errors arise from poor technique, failures of perception, lack of knowledge and misjudgments. The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Every radiologist should understand the sources of error in diagnostic radiology as well as the elements of negligence that form the basis of malpractice litigation. Error traps need to be uncovered and highlighted, in order to prevent repetition of the same mistakes. This article focuses on the spectrum of diagnostic errors in radiology, including a classification of the errors, and stresses the malpractice issues in mammography, chest radiology and obstetric sonography. Missed fractures in emergency and communication issues between radiologists and physicians are also discussed.

  12. Worker radiological protection: occupational medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez Gomez, Isis Maria

    2008-01-01

    Radiation exposures experienced by workers are widely explained. The first evidences of biological effects, the implications for human health and the radiological protection have been covered. The conceptual structure that covers the radiological protection and adequate protection without limiting benefits, the scientific basis of radiology, the benefits and risks of the radiological protection are specified. The effective per capita doses are exposed in medical uses both for Latin America and for other regions in the average radiology, dental radiology, nuclear medicine and radiotherapy. The manners of occupational exposures in the medicine are presented. Industrial uses have also its average effective dose in the industrial irradiation, industrial radiography and radioisotopes production. Within the natural radiation the natural sources can significantly contribute to occupational exposure and have their average effective dose. Occupational medical surveillance to be taken into industrial sites is detailed. In addition, the plan of international action for the solution of dilemmas of occupational exposures is mentioned and the different dilemmas of radioactive exposure are showed. The external irradiation, the acute diseases by radiations, the cutaneous syndrome of the chronic radiation, the radioactive contamination, the internal radioactive contamination, the combined lesion and accidental exposures are also treated [es

  13. 512-S Facility, Actinide Removal Process Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Nathan, S.J.

    2004-01-01

    This report contains top-level requirements for the various areas of radiological protection for workers. Detailed quotations of the requirements for applicable regulatory documents can be found in the Radiological Design Summary Report Implementation Guide. For the purposes of demonstrating compliance with these requirements, per Engineering Standard 01064, ''shall consider / shall evaluate'' indicates that the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This report describes how the Building 512-S, Actinide Removal Process meets the required radiological design criteria and requirements based on 10CFR835, DOE Order 420.1A, WSRC Manual 5Q and various other DOE guides and handbooks. The analyses supporting this Radiological Design Summary Report initially used a source term of 10.6 Ci/gallon of Cs-137 as the basis for bulk shielding calculations. As the project evolved, the source term was reduced to 1.1 Ci/gallon of Cs-137. This latter source term forms the basis for later dose rate evaluations

  14. Radiological security for industrial radiography

    International Nuclear Information System (INIS)

    Montoya G, Manuel.

    1985-04-01

    This report comprises the basic notions of nucleonics, simple calculations for point sources, X-rays, calculations for coatings, standards for radiation protection and industrial radiography instruments. The preceding sums up with the biological effects of ionizing radiation. This is a guide for people who wish to pass examinations, to get the license for radiological safety, for operators on gamma-graphic sources, which work in the country. It is a requirement for work with this kind of radioactive sources

  15. Synopsis of radiologic anatomy

    International Nuclear Information System (INIS)

    Meschan, I.

    1987-01-01

    The book is a compact version of earlier publications that appeared in 1975 as a one- and a two-volume issue under the title 'Atlas of Radiologic Anatomy'. A chapter on computed tomography has been added as this novel technique requires a new approach to radiologic anatomy. The radiologist will find all the information on the anatomic conditions he needs for analysing radiographs and CT pictures. More than 600 radiographs and CT pictures are given that illustrate typical and rare findings. The book also is useful as a source of reference for making good radiographs and evaluating the quality of radiographs or CT pictures. With 1413 figs., 18 tabs [de

  16. Radiological safety in petroleum industry. Towards prevention culture

    International Nuclear Information System (INIS)

    Truppa, Walter A.

    2007-01-01

    Within the frame of regulatory control of industrial applications the audit of sealed and open radioactive sources in oil uses is one of the most relevant. The handling of radioactive sources, the requirement of procedures and training are just a few examples among all those that make up the radiological safety culture. A number of requirements divided into three main groups: operational safety at the storage area of radioactive sources, during transportation and during the applications (Cementation, well logging and use of radiotracers) are highlighted. Due to the great number of aspects that have to be taken in account as well as the interrelation of all control processes it is highly recommended that aspects of safety culture and quality should be considered and improvements regarding prevention, should be introduced so as to correct deviations that could arise in order to avoid radiological risk situations, emphasizing risk perception situations, attitude training, implementation of audit and level of safety in the facilities and control of duties, involving radiological material handling, described in the present work. (author) [es

  17. Dose assessment in radiological accidents

    International Nuclear Information System (INIS)

    Donkor, S.

    2013-04-01

    The applications of ionizing radiation bring many benefits to humankind, ranging from power generation to uses in medicine, industry and agriculture. Facilities that use radiation source require special care in the design and operation of equipment to prevent radiation injury to workers or to the public. Despite considerable development of radiation safety, radiation accidents do happen. The purpose of this study is therefore to discuss how to assess doses to people who will be exposed to a range of internal and external radiation sources in the event of radiological accidents. This will go a long way to complement their medical assessment thereby helping to plan their treatment. Three radiological accidents were reviewed to learn about the causes of those accidents and the recommendations that were put in place to prevent recurrence of such accidents. Various types of dose assessment methods were discussed.(au)

  18. Airborne systems for emergency radiological monitoring

    International Nuclear Information System (INIS)

    Jupiter, C.; Boyns, P.

    1976-01-01

    A variety of aerial radiological monitoring systems are available to respond to a radiological accident or incident affecting large areas. These are operated by EG and G, Inc. for ERDA's Division of Operational Safety. A survey system can be airborne within approximately two hours after notification. Both airborne and terrestrial radioactivity can be measured and mapped. Special analysis procedures allow discrimination between radioactivity from most man-made radioelements and naturally occurring radioelements. A position accuracy of +-54 feet can be maintained over a large area survey. Detection sensitivity for gamma sources employing NaI detector arrays on board an airplane flying at 500 feet altitude is better than 2 μR/hr for surface planar contaminants and approximately 10 mCi for a point gamma source

  19. The radiological assessment system for consequence analysis - RASCAL

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Ramsdell, J.V.; Athey, G.F.

    1996-01-01

    The Radiological Assessment System for Consequence Analysis, Version 2.1 (RASCAL 2.1) has been developed for use during a response to radiological emergencies. The model estimates doses for comparison with U.S. Environmental Protection Agency (EPA) Protective Action Guides (PAGs) and thresholds for acute health effects. RASCAL was designed to be used by U.S. Nuclear Regulatory Commission (NRC) personnel who report to the site of a nuclear accident to conduct an independent evaluation of dose and consequence projections and personnel who conduct training and drills on emergency responses. It allows consideration of the dominant aspects of the source term, transport, dose, and consequences. RASCAL consists of three computational tools: ST-DOSE, FM-DOSE, and DECAY. ST-DOSE computes source term, atmospheric transport, and dose to man from accidental airborne releases of radionuclides. The source-term calculations are appropriate for accidents at U.S. power reactors. FM-DOSE computes doses from environmental concentrations of radionuclides in the air and on the ground. DECAY computes radiological decay and daughter in-growth. RASCAL 2.1 is a DOS application that can be run under Windows 3.1 and 95. RASCAL has been the starting point for other accident consequence models, notably INTERRAS, an international version of RASCAL, and HASCAL, an expansion of RASCAL that will model radiological, biological, and chemical accidents

  20. Information extraction from multi-institutional radiology reports.

    Science.gov (United States)

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    The radiology report is the most important source of clinical imaging information. It documents critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records that information for future clinical and research use. Although efforts to structure some radiology report information through predefined templates are beginning to bear fruit, a large portion of radiology report information is entered in free text. The free text format is a major obstacle for rapid extraction and subsequent use of information by clinicians, researchers, and healthcare information systems. This difficulty is due to the ambiguity and subtlety of natural language, complexity of described images, and variations among different radiologists and healthcare organizations. As a result, radiology reports are used only once by the clinician who ordered the study and rarely are used again for research and data mining. In this work, machine learning techniques and a large multi-institutional radiology report repository are used to extract the semantics of the radiology report and overcome the barriers to the re-use of radiology report information in clinical research and other healthcare applications. We describe a machine learning system to annotate radiology reports and extract report contents according to an information model. This information model covers the majority of clinically significant contents in radiology reports and is applicable to a wide variety of radiology study types. Our automated approach uses discriminative sequence classifiers for named-entity recognition to extract and organize clinically significant terms and phrases consistent with the information model. We evaluated our information extraction system on 150 radiology reports from three major healthcare organizations and compared its results to a commonly used non-machine learning information extraction method. We

  1. Resolution no. 18/2012 Guide for the preparation and emergency response radiological

    International Nuclear Information System (INIS)

    2012-01-01

    This guide aims to establish requirements to ensure an adequate level of entities, for the preparation and response to radiological emergencies and to prepare the Radiation Emergency Plan (PER), asset out in the Basic Safety Standards radiological and authorizations Regulations in force. This guide applies to organizations providing employment practices associated with sources of ionizing radiation, hereinafter sources.

  2. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  3. Radiological Threat Reduction (RTR) program: implementing physical security to protect large radioactive sources worldwide

    International Nuclear Information System (INIS)

    Lowe, Daniel L.

    2004-01-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory and knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security

  4. [Regulating radiological protection and the role of health authorities].

    Science.gov (United States)

    Arias, César F

    2006-01-01

    This article summarizes the development of protection against ionizing radiation and explains current thinking in the field. It also looks at the decisive role that regulatory agencies for radiological protection must play and the important contributions that can be made by health authorities. The latter should take an active part in at least three aspects: the formal education of health personnel regarding radiological protection; the medical care of individuals who are accidentally overexposed, and the radiological protection of patients undergoing radiological procedures. To this end, health professionals must possess sufficient knowledge about radiological protection, promote the use of proper equipment, and apply the necessary quality assurance procedures. Through their effective intervention, national health authorities can greatly contribute to reducing unnecessary doses of radiation during medical procedures involving radiation sources and decrease the chances that radiological accidents will take place.

  5. Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Alok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yu, Hyungjoon; Kim, Hong Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS

  6. Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model

    International Nuclear Information System (INIS)

    Pandey, Alok; Yu, Hyungjoon; Kim, Hong Suk

    2014-01-01

    These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS

  7. Preventing radiological terrorism - opportunities and challenges

    International Nuclear Information System (INIS)

    Barlow, Maegon E.

    2016-01-01

    The Office of Radiological Security (ORS), within the U.S. Department of Energy's National Nuclear Security Administration, enhances global security by preventing high activity radioactive materials from use in acts of terrorism. This is a challenging task considering that high activity radiological materials are ubiquitous, constantly moving and mostly found in operational civil facilities. The implementation of the ORS mission is based on a three pillar strategy - protect, remove and reduce. ORS works both domestically and internationally with government authorities, law enforcement, and businesses to protect radioactive sources used for vital medical, research, and commercial purposes, remove and dispose of disused radioactive sources, and reduce the global reliance on radioactive sources through the promotion of viable non-isotopic alternative technologies. ORS has active engagement in all 50 States and in over 80 countries. This presentation will provide an overview of ORS protect, remove, and reduce strategy, as well as security challenges and opportunities

  8. Implementation of the new regulation on radiological safety in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1997-01-01

    Since its creation in 1975, the Peruvian Institute of Nuclear Energy (IPEN) has enacted three regulations of national importance on the norms of protection against ionizing radiation. The first regulation, which is called regulation of radiological protection (1980) approved by a resolution of IPEN, is the result of the work of a committee constituted by IPEN and the Ministry of Health. Its implementation caused some problems as result of which, in 1989, a new regulation on radiological protection was enacted through a supreme decree. Taking into account the new recommendation of the International Commission on Radiological Protection and the International Basic Safety Standard for Protection against Ionizing Radiation and for the Safety of Radiation Sources, approved in May 1997, the regulation of radiological safety also considers evolving aspects in the Project ARCAL XVII/IAEA. This regulation includes various topics such as exclusions, requirements of protection (medical exposure, occupational exposure, public exposure, chronic exposure), requirements of source safety, interventions and emergencies, control of sources and practices (exemptions, authorizations, inspections) etc. The implementation of this regulation at the national level falls to IPEN, the unique authority commissioned to control nuclear installations, radioactivity and x ray facilities in medicine, industry and research

  9. Radiological assessment. A textbook on environmental dose analysis

    Energy Technology Data Exchange (ETDEWEB)

    Till, J.E.; Meyer, H.R. (eds.)

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  10. Radiological assessment. A textbook on environmental dose analysis

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides

  11. Preliminary report about Goiania radiological accident, Brazil

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1988-05-01

    The events that originate the Goiania radiological accident involving the rupture of Cesium 137 source, the source characteristics, the medical aspects related to the triage of victims, the medical attendance, and the special measurements of decontamination in the Goiania General Hospital (HGG), are described. (M.C.K.) [pt

  12. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Jr, A W [U.S. Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  13. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    International Nuclear Information System (INIS)

    Klement, A.W. Jr.

    1969-01-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  14. Evidence-based radiology: why and how?

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Di Leo, Giovanni; Hunink, Myriam G.; Gilbert, Fiona J.; Krestin, Gabriel P.

    2010-01-01

    To provide an overview of evidence-based medicine (EBM) in relation to radiology and to define a policy for adoption of this principle in the European radiological community. Starting from Sackett's definition of EBM we illustrate the top-down and bottom-up approaches to EBM as well as EBM's limitations. Delayed diffusion and peculiar features of evidence-based radiology (EBR) are defined with emphasis on the need to shift from the demonstration of the increasing ability to see more and better, to the demonstration of a significant change in treatment planning or, at best, of a significant gain in patient outcome. The ''as low as reasonably achievable'' (ALARA) principle is thought as a dimension of EBR while EBR is proposed as part of the core curriculum of radiology residency. Moreover, we describe the process of health technology assessment in radiology with reference to the six-level scale of hierarchy of studies on diagnostic tests, the main sources of bias in studies on diagnostic performance, and levels of evidence and degrees of recommendations according to the Centre for Evidence-Based Medicine (Oxford, UK) as well as the approach proposed by the GRADE working group. Problems and opportunities offered by evidence-based guidelines in radiology are considered. Finally, we suggest nine points to be actioned by the ESR in order to promote EBR. Radiology will benefit greatly from the improvement in practice that will result from adopting this more rigorous approach to all aspects of our work. (orig.)

  15. lllicit Radiological and Nuclear Trafficking, Smuggling and Security Incidents in the Black Sea Region since the Fall of the Iron Curtain – an Open Source Inventory

    Directory of Open Access Journals (Sweden)

    Alex P. Schmid

    2012-05-01

    Full Text Available Nuclear and radiological smuggling and trafficking incidents, events, and threats from the wider Black Sea area, 1990 – 2011  An Open Source Compilation prepared by Alex P. Schmid & Charlotte Spencer-Smith

  16. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Morton, J. R.

    2000-01-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space

  17. Preventing radiological threat in the Republic of Azerbaijan

    International Nuclear Information System (INIS)

    Gabulov, I.A.

    2005-01-01

    Full text: Azerbaijan is a developing and transit country in the Caucasus, connecting East and West. In addition, Azerbaijan is neighboring countries with pronounced political instability, some of which have extensive nuclear infrastructure or try to develop nuclear infrastructure. Furthermore, in the recent past fundamentalist religious terrorism has taken roots in some of these countries. Therefore, in spite of the fact that the Republic of Azerbaijan has no nuclear facilities or nuclear materials in its own territory, it could be interesting for terrorist groups trying to develop a crude radiological dispersal device using radioactive sources that are widely used in everyday life especially in such areas as oil industry, medicine, agriculture and scientific researches. The issues of reduction and prevention of both radiological and nuclear terrorism threat are one of the main global challenges around the world. The Republic of Azerbaijan is a part of world community and so we are concerned that radioactive sources used for peaceful applications could be stolen by the terrorist groups and used in the development of radiological dispersal devices sometimes referred to as a 'dirty bomb'. It is obvious that using highly radioactive materials in radiological dispersal devices could be very disruptive to society, causing panic, environmental contamination, and large financial losses. One of the ways for reduction and prevention of radiological threat for the countries like Azerbaijan with underdeveloped nuclear security and radiation safety infrastructure is closely participation in the international cooperation programs. As an example of such cooperation, I would like to present the United States Department of Energy's International Radiological Threat Reduction (IRTR) Program. Good progress has made in the field of radiological security within the framework of this program that was started 2003. Actually, in comparison with any IAEA programs, the progress reached by

  18. Radiology today

    International Nuclear Information System (INIS)

    Donner, M.W.; Heuck, F.H.W.

    1981-01-01

    The book encompasses the proceedings of a postgraduate course held in Salzburg in June 1980. 230 radiologists from 17 countries discussed here the important and practical advances of diagnostic radiology, nuclear medicine and ultrasound as they contribute to gastrointestinal, urologic, skeletal, cardiovascular, pediatric, and neuroradiology. The book contains 55 single contributions of different authors to the following main themes: Cardiovascular, Radiology, pulmonary radiology, gastrointestinal radiology, urinary tract radiology, skeletal radiology, mammography, lymphography, ultrasound, ENT radiology, and neuroradiology. (orig./MG)

  19. Requirement of trained first responders and national level preparedness for prevention and response to radiological terrorism

    International Nuclear Information System (INIS)

    Sharma, R.; Pradeepkumar, K.S.

    2011-01-01

    The increase in the usage of radioactive sources in various fields and the present scenario of adopting various means of terrorism indicates a possible environment for malicious usage of radioactive sources. Many nations, India inclusive, have to strengthen further it's capability to deal with Nuclear/Radiological Emergencies. The probable radiological emergency scenario in public domain involves inadvertent melting of radioactive material, transport accident involving radioactive material/sources and presence of orphan sources as reported elsewhere. Explosion of Radiological Dispersal Device (RDDs) or Improvised Nuclear Devices (IND) leading to spread of radioactive contamination in public places have been identified by IAEA as probable radiological threats. The IAEA documents put lot of emphasis, at national level, on training and educational issues related with Radiological Emergencies. The agencies and institutions dealing with radioactive sources have few personnel trained in radiation protection. Experience so far indicates that public awareness is also not adequate in the field of radiological safety which may create difficulties during emergency response in public domain. The major challenges are associated with mitigation, monitoring methodology, contaminated and overexposed casualties, decontamination and media briefing. In this paper, we have identified the educational needs for response to radiological emergency in India with major thrust on training. The paper has also enumerated the available educational and training infrastructure, the human resources, as well as the important stake holders for development of sustainable education and training programme. (author)

  20. Radiation monitoring systems and methodologies for radiological impact assessment

    International Nuclear Information System (INIS)

    Chaudhury, Probal

    2016-01-01

    Radioactive sources of various strengths are used in large number of applications in industry, healthcare, agriculture and research. Though all the sources are transported and used under regulatory control, there is always a possibility of some of the sources getting into the hands of committed antisocial non state actors. In addition to this, there is a possible threat of radioactive material being illegally brought into a country. These gives rise to an increase in the global radiological threat and security experts world over are concerned about the possibility of malicious use of radiation in the public domain. Radiation detection systems are installed at various entry and exit ports of some of the countries to detect illicit trafficking of radioactive materials. IAEA has recommended that all States should have a national response plan for nuclear security events to provide for an appropriate and coordinated response. Considering the requirement of radiological emergency preparedness, various radiation monitoring systems and methodologies have been developed. A few aerial radiation monitoring systems developed at Bhabha Atomic Research Centre (BARC) for radiological impact assessment are described here

  1. Emergency radiology curriculum at Medical University - Plovdiv

    International Nuclear Information System (INIS)

    Velkova, K.; Hilendarov, A.; Cvetkova, S.; Stoeva, M.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Full text: Introduction: Recent advances in contemporary radiology turn it into one of the major sources for patient information with improved emergency techniques. Emergency Radiology (EP) focuses on acute diagnosing conditions in ER patients. Objectives: The main objective of this paper is to present the ER curriculum at Medical Imaging Department, Medical University - Plovdiv, aiming to deliver knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Material and methods: The curriculum covers various aspects of ER Radiology - diagnostic imaging methods, contrast enhanced examinations, imaging topography, traumatic and acute conditions, physical and technical aspects. It includes 6 lectures and 12 practical classes. Results and discussion: The educational course in Emergency Radiology is available for medical students in their 8-th and 9-th semester. Therapeutic methods under imaging control are also covered by the course. Conclusion: Being one of the most advanced areas of radiology, ER improves the quality of care and treatment of patients and of the emergency medicine as a whole

  2. Radiological Risk Assessment and Cask Materials Qualification for Disposed Sealed Radioactive Sources Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Olteanu, G.; Bujoreanu, D.

    2009-01-01

    The hazardous waste problem imposes to respect national and international agreed regulations regarding their transport, taking into account both for maintaining humans, goods and environment exposure under specified limits, during transport and specific additional operations, and also to reduce impact on the environment. The paper follows to estimate the radiological risk and cask materials qualification according to the design specifications for disposed sealed radioactive sources normal transport situation. The shielding analysis has been performed by using Oak Ridge National Laboratory's SCALE 5 programs package. For thermal analysis and cask materials qualification ANSYS computer code has been used. Results have been obtained under the framework of Advanced system for monitoring of hazardous waste transport on the Romanian territory Research Project which main objective consists in implementation of a complex dual system for on-line monitoring both for transport special vehicle and hazardous waste packages, with data automatic transmission to a national monitoring center

  3. Radiological protection system in the era of nuclear renaissance expectation for development of radiological protection system

    International Nuclear Information System (INIS)

    Toyomatsu, Hideki

    2008-01-01

    The current radiological protection system, which was established mainly by the ICRP and UNSCEAR, has contributed to the prevention of potential radiological health hazards, and has been a fundamental concept during the development of nuclear energy. Through a detailed discussion regarding the new ICRP recommendations, the world nuclear industry has reached a consensus that the current radiological protection system keeps its integrity in principle although it involves some remaining issues, such as the disposal of radioactive waste. In order to maximize the advantages of nuclear energy while keeping the integrity of radiological protection system, it is essential to address the characteristics of radiation, which is specific to nuclear energy, so that nuclear energy can coexist with other energy sources. The three basic principles of radiological protection (i.e., justification, optimization and dose limits), which were completed in the 1990 recommendations of ICRP, should be retained as the basic concepts for the future radiological protection system in order to maintain the continuity and consistency of the radiological protection system. The radiological protection system can be furthermore developed only by combining the above three principles with best practices extracted from utilities' field experience. The significant reduction of radiation exposures received by members of the public and radiation workers in the field has resulted from the efforts by the world utilities to achieve the optimization. In order to correctly apply the theory to the work practices, it is essential to see how the theory is practically used in the field. Such a process should be also emphasized in the revision work of the IAEA Basic Safety Standards (BSS), which is currently under progress. Integrating the theory in the work practices is the key to the true development of nuclear renaissance, which could lead to the establishment of the nuclear safety regime. (author)

  4. Pediatric radiology for medical-technical radiology assistants/radiologists

    International Nuclear Information System (INIS)

    Oppelt, Birgit

    2010-01-01

    The book on pediatric radiology includes the following chapter: differences between adults and children; psycho-social aspects concerning the patient child in radiology; relevant radiation doses in radiology; help for self-help: simple phantoms for image quality estimation in pediatric radiology; general information; immobilization of the patient; pediatric features for radiological settings; traumatology; contrast agents; biomedical radiography; computerized tomography; NMR imaging; diagnostic ultrasonography; handling of stress practical recommendations; medical displays.

  5. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  6. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  7. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige

    2015-01-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses’ annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units’ pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses. (practical matter)

  8. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology.

    Science.gov (United States)

    Mori, Hiroshige

    2015-06-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses' annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units' pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses.

  9. www.PedRad.info, the first bilingual case-oriented publication platform for pediatric radiology

    International Nuclear Information System (INIS)

    Hirsch, Wolfgang; Paetzel, Martina; Talanow, Roland

    2005-01-01

    On the Internet, there are few pediatric radiology databases. The most important and complete Web site is PediatricRadiology.com, which provides many radiological links but does not have its own database. We present an Internet project called PedRad.info (also known as Kinderradiologie-Online). The open-source, case-oriented publication platform publishes validated pediatric radiology findings on the Internet. A comparable on-line program, even for adult radiology, does not exist, so this tool is a pioneer in the area of Web-based information technology for medical and radiological communities. (orig.)

  10. Planning the medical response to radiological accidents

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive substances and other sources of ionizing radiation are used to assist in diagnosing and treating diseases, improving agricultural yields, producing electricity and expanding scientific knowledge. The application of sources of radiation is growing daily, and consequently the need to plan for radiological accidents is growing. While the risk of such accidents cannot be entirely eliminated, experience shows that most of the rare cases that have occurred could have been prevented, as they are often caused by human error. Recent radiological accidents such as those at Chernobyl (Ukraine 1986), Goiania (Brazil 1987), San Salvador (El Salvador 1989), Sor-Van (Israel 1990), Hanoi (Viet Nam 1992) and Tammiku (Estonia 1994) have demonstrated the importance of adequate preparation for dealing with such emergencies. Medical preparedness for radiological accidents must be considered an integral part of general emergency planning and preparedness and established within the national framework for radiation protection and safety. An IAEA Technical Committee meeting held in Istanbul in 1988 produced some initial guidance on the subject, which was subsequently developed, reviewed and updated by groups of consultants in 1989, 1992 and 1996. Special comments were provided by WHO, as co-sponsor of this publication, in 1997. This Safety Report outlines the roles and tasks of health authorities and hospital administrators in emergency preparedness for radiological accidents. Health authorities may use this document as the basis for their medical management in a radiological emergency, bearing in mind that adaptations will almost certainly be necessary to take into account the local conditions. This publication also provides information relevant to the integration of medical preparedness into emergency plans

  11. General Employee Radiological Training: Study guide

    International Nuclear Information System (INIS)

    1992-10-01

    Upon completion of this class, the participant will be able to discuss his/her responsibilities for maintaining exposures to radiation and radioactive material As Low As Reasonably Achievable. The participant will be able to select the correct response from a group of responses which verifies his/her ability to: Identify natural background and man-made sources of radiation; state the whole body radiation exposure limit for non-radiological workers; state the potential biological effects from chronic radiation exposure; identify the ALARA concept and practices; state methods used to control radiological material; and state employee responsibilities for the ALARA Program

  12. Radiological accidents balance in medicine

    International Nuclear Information System (INIS)

    Nenot, J.C.

    1995-01-01

    This work deals with the radiological accidents in medicine. In medicine, the radiation accidents on medical personnel and patients can be the result of over dosage and bad focusing of radiotherapy sealed sources. Sometimes, the accidents, if they are unknown during a time enough for the source to be spread and to expose a lot of persons (in the case of source dismantling for instance) can take considerable dimensions. Others accidents can come from bad handling of linear accelerators and from radionuclide kinetics in some therapies. Some examples of accidents are given. (O.L.). 11 refs

  13. Accountable care organizations and radiology: threat or opportunity?

    Science.gov (United States)

    Abramson, Richard G; Berger, Paul E; Brant-Zawadzki, Michael N

    2012-12-01

    Although the anticipated rise of accountable care organizations brings certain potential threats to radiologists, including direct threats to revenue and indirect systemic changes jeopardizing the bargaining leverage of radiology groups, accountable care organizations, and other integrated health care delivery models may provide radiology with an important opportunity to reassert its leadership and assume a more central role within health care systems. Capitalizing on this potential opportunity, however, will require radiology groups to abandon the traditional "film reader" mentality and engage actively in the design and implementation of nontraditional systems service lines aimed at adding differentiated value to larger health care organizations. Important interlinked and mutually reinforcing components of systems service lines, derived from radiology's core competencies, may include utilization management and decision support, IT leadership, quality and safety assurance, and operational enhancements to meet organizational goals. Such systems-oriented service products, tailored to the needs of individual integrated care entities and supported by objective performance metrics, may provide market differentiation to shield radiology from commoditization and could become an important source of new nonclinical revenue. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Lessons learned in radiology

    International Nuclear Information System (INIS)

    Goodenough, D.J.

    2001-01-01

    The paper reviews aspects of the history of radiology with the goal of identifying lessons learned, particularly in the area of radiological protection of the patient in diagnostic and interventional radiology, nuclear medicine and radiotherapy. It is pointed out that since the days of Roentgen there has been a need not only to control and quantify the amount of radiation reaching the patient but also to optimize the imaging process to offer the greatest diagnostic benefit within allowable levels of patient dose. To this end, in diagnostic radiology, one finds the development of better films, X rays tubes, grids, screens and processing techniques, while in fluoroscopy, one sees the increased luminance of calcium tungstate. In interventional radiology, one finds an improvement in catheterization techniques and contrast agents. In nuclear medicine, the development of tracer techniques into modern cameras and isotopes such as technetium can be followed. In radiotherapy, one sees the early superficial X rays and radium sources gradually replaced with radon seeds, supervoltage, 60 Co and today's linear accelerators. Along with the incredible advances in imaging and therapeutic technologies comes the growing realization of the potential danger of radiation and the need to protect the patient (as well as physicians, ancillary personnel and the general population) from unnecessary radiation. The important lesson learned is that we must walk a tightrope, balancing the benefits and risks of any technology utilizing radiation to produce the greatest benefits at the lowest acceptable risk. The alternative techniques using non-ionizing radiation will have to be considered as part of the general armamentarium for medical imaging whenever radiation consequences are unacceptable. (author)

  15. Radiological Worker Training: Radiological Worker 2 study guides

    International Nuclear Information System (INIS)

    1992-10-01

    Upon completion of this training course, the participant will have the knowledge to work safely in areas controlled for radiological purposes using proper radiological practices. Radiological Worker H Training, for the worker whose job assignment involves entry into Radiological Buffer Areas and all types of Radiation Contamination and Airborne Radioactivity Areas. This course is designed to prepare the worker to work safely in and around radiological areas and present methods to use to ensure individual radiation exposure is maintained As Low As Reasonably Achievable

  16. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  17. Radiological clerkships as a critical curriculum component in radiology education

    International Nuclear Information System (INIS)

    Kourdioukova, Elena V.; Verstraete, Koenraad L.; Valcke, Martin

    2011-01-01

    Objective: The aim of this research was to explore the perceived value of clinical clerkships in the radiology curriculum as well as the impact of radiology clerkship on students' beliefs about the profession of radiology as a whole and as a career. Methods: This study is a sequel to a previous survey in which student perceptions about radiology curriculum components were investigated. The present study focuses on a further analysis of a subsection in this study, based on 14 statements about radiology clerkship and two statements about radiology as a career. Results: Perceived usefulness of the aspects of radiology clerkship as 'radiology examination', 'skills development' and 'diagnosis focus' were awarded the highest scores. The predict value of the subscale 'radiology examination' on the level of performance was very high (adjusted R 2 = 0.19, p < .001). Conclusion: Students expressed highly favorable evaluation of clerkship as a learning environment to learn to order and to interpret imaging studies as well as an unique possibility to attend various radiological examinations and to access to specific radiology software systems, as well as to get a better view on radiology and to improve image interpretation skills. This positive attitude towards clerkship is closely tied to students' beliefs about the profession of radiology as a whole. These aspects of dedicated radiology clerkship are crucial for effective and high-quality education as well as for the choice of radiology as a career.

  18. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  19. Radiologic accidents in industrial gamma radiography - Brazilian cases

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da

    1997-01-01

    Three severe radiological accidents in industrial gamma radiography happened in Brazil during the period of 1985 to 1988. Five operators and nineteen public people were involved. These accidents caused some injuries in parts of the body, mainly hands and fingers. The main causes were faults in source monitoring, inadequate routine procedures and unknowing of radiation warning symbol by public people. The present paper shows the Brazilian cases of radiological accidents and makes some analysis of them. (author)

  20. Radiological-dose assessments of atolls in the northern Marshall Islands

    International Nuclear Information System (INIS)

    Robison, W.L.

    1983-04-01

    The Marshall Islands in the Equatorial Pacific, specifically Enewetak and Bikini Atolls, were the site of US nuclear testing from 1946 through 1958. In 1978, the Northern Marshall Islands Radiological Survey was conducted to evaluate the radiological conditions of two islands and ten atolls downwind of the proving grounds. The survey included aerial external gamma measurements and collection of soil, terrestrial, and marine samples for radionuclide analysis to determine the radiological dose from all exposure pathways. The methods and models used to estimate doses to a population in an environment where natural processes have acted on the source-term radionuclides for nearly 30 y, data bases developed for the models, and results of the radiological dose analyses are described

  1. Radiological physics in Sweden

    International Nuclear Information System (INIS)

    Walstam, Rune

    1980-01-01

    Development of radiological or radiation physics as a separate discipline in Sweden is outlined. Growth in number of hospital physicists is compared with that of some other countries for the period 1950-1975. The main duties of hospital physicists are described. Undergraduate and postgraduate courses in radiation physics in Sweden are discussed. A microtron and a multi-source cobalt-60 unit are described. (M.G.B.)

  2. How the radiological accident of Goiania was initially determined

    International Nuclear Information System (INIS)

    Ferreira, W.M.

    2000-01-01

    Mainly the initial actions adopted to minimise the consequences of radiological accident involving the public are very important for bringing the situation to the normality. In this work the author presents a short history about the radiological accident with a 137 Cs source occurred in the city of Goiania, Brazil in 1987 as well as the actions adopted by him during the first hours after the detection of the accident. (author)

  3. Radiological consequences of a bounding event sequence of Advanced Fusion Neutron Source (A-FNS)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Makoto M., E-mail: nakamura.makoto@qst.go.jp; Ochiai, Kentaro

    2017-05-15

    Advanced Fusion Neutron Source (A-FNS) is an accelerator-based neutron source utilizing Li(d,xn) nuclear stripping reactions to simulate D-T fusion neutrons for testing and qualifying structural and functional materials of fusion reactor components, which is to be constructed at the Rokkasho site of National Institutes for Quantum and Radiological Science and Technology, Japan, in the near future. The purpose of the study reported here is to demonstrate the ultimate safety margins of A-FNS in the worst case of release of radioactive materials outside the A-FNS confinement system. For this purpose, we analyzed a ‘bounding event’ postulated in A-FNS. The postulated event sequence consists of fire of the purification system of the liquid Li loop during the maintenance, of mobilization of the tritium and {sup 7}Be, which are the impurities of the loop, and of the entire loss of confinement of the radioactive materials. We have calculated the early doses to the public due to the release of the tritium and {sup 7}Be source terms to the environment. The UFOTRI/COSYMA simulations have been performed considering the site boundary of 500 m away from the facility. The obtained results indicate that the early dose is below the level that requires the emergent public evacuation. Such results demonstrate that the A-FNS complies with the defined safety objective against its radiation hazard. The simulation results suggest that the inherent, ultimate safety characteristic found by this study may assist a licensing process for installation of A-FNS.

  4. E-learning and education in radiology

    International Nuclear Information System (INIS)

    Pinto, Antonio; Brunese, Luca; Pinto, Fabio; Acampora, Ciro; Romano, Luigia

    2011-01-01

    Purpose: To evaluate current applications of e-learning in radiology. Material and methods: A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for publications discussing the applications of e-learning in radiology. The search strategy employed a single combination of the following terms: (1) e-learning, and (2) education and (3) radiology. This review was limited to human studies and to English-language literature. We reviewed all the titles and subsequent the abstract of 29 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 38 selected articles was reviewed. Results: Literature data shows that with the constant development of technology and global spread of computer networks, in particular of the Internet, the integration of multimedia and interactivity introduced into electronic publishing has allowed the creation of multimedia applications that provide valuable support for medical teaching and continuing medical education, specifically for radiology. Such technologies are valuable tools for collaboration, interactivity, simulation, and self-testing. However, not everything on the World Wide Web is useful, accurate, or beneficial: the quality and veracity of medical information on the World Wide Web is variable and much time can be wasted as many websites do not meet basic publication standards. Conclusion: E-learning will become an important source of education in radiology.

  5. E-learning and education in radiology.

    Science.gov (United States)

    Pinto, Antonio; Brunese, Luca; Pinto, Fabio; Acampora, Ciro; Romano, Luigia

    2011-06-01

    To evaluate current applications of e-learning in radiology. A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for publications discussing the applications of e-learning in radiology. The search strategy employed a single combination of the following terms: (1) e-learning, and (2) education and (3) radiology. This review was limited to human studies and to English-language literature. We reviewed all the titles and subsequent the abstract of 29 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 38 selected articles was reviewed. Literature data shows that with the constant development of technology and global spread of computer networks, in particular of the Internet, the integration of multimedia and interactivity introduced into electronic publishing has allowed the creation of multimedia applications that provide valuable support for medical teaching and continuing medical education, specifically for radiology. Such technologies are valuable tools for collaboration, interactivity, simulation, and self-testing. However, not everything on the World Wide Web is useful, accurate, or beneficial: the quality and veracity of medical information on the World Wide Web is variable and much time can be wasted as many websites do not meet basic publication standards. E-learning will become an important source of education in radiology. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. E-learning and education in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio, E-mail: antopin1968@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Brunese, Luca, E-mail: lucabrunese@libero.it [Department of Health Science, Faculty of Medicine and Surgery, University of Molise, I-86100 Campobasso (Italy); Pinto, Fabio, E-mail: fpinto1966@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Acampora, Ciro, E-mail: itrasente@libero.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy); Romano, Luigia, E-mail: luigia.romano@fastwebnet.it [Department of Diagnostic Imaging, A. Cardarelli Hospital, I-80131 Naples (Italy)

    2011-06-15

    Purpose: To evaluate current applications of e-learning in radiology. Material and methods: A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for publications discussing the applications of e-learning in radiology. The search strategy employed a single combination of the following terms: (1) e-learning, and (2) education and (3) radiology. This review was limited to human studies and to English-language literature. We reviewed all the titles and subsequent the abstract of 29 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 38 selected articles was reviewed. Results: Literature data shows that with the constant development of technology and global spread of computer networks, in particular of the Internet, the integration of multimedia and interactivity introduced into electronic publishing has allowed the creation of multimedia applications that provide valuable support for medical teaching and continuing medical education, specifically for radiology. Such technologies are valuable tools for collaboration, interactivity, simulation, and self-testing. However, not everything on the World Wide Web is useful, accurate, or beneficial: the quality and veracity of medical information on the World Wide Web is variable and much time can be wasted as many websites do not meet basic publication standards. Conclusion: E-learning will become an important source of education in radiology.

  7. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  8. Radiological Protection Plan an ethic responsibility

    International Nuclear Information System (INIS)

    Huhn, Andrea; Vargas, Mara Ambrosina de Oliveira

    2014-01-01

    The Radiological Protection Plan - PPR, quoted by the Regulatory Standard 32, requires to be maintained at the workplace and at the disposal of the worker's inspection the PPR, for it to be aware of their work environment and the damage that can be caused by misuse of ionizing radiation. Objective: to discuss the interface between PPR and ethical reflection. Method: this is a reflective study. Discussion and results: regulatory norm 32 points out that the worker who conducts activities in areas where there are sources of ionizing radiation should know the risks associated with their work. However, it is considered that the sectors of hospital radiology the multidisciplinary health team is exposed to ionizing radiation and has not always aware of the harm caused by it, so end up unprotected conduct their activities. Concomitantly, recent studies emphasize the radiological protection and concern for the dangers of radiation on humans, but rather refer to the legislation about the radiological protection. In this context an ethical reflection is necessary, seeking to combine work ethics liability to care in protecting themselves and the other with the institutional conditions for this protection becomes effective

  9. Radiological NESHAP ANNUAL REPORT CY 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2016, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES (Radiological NESHAP). A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  10. Poul Erik Andersen's radiological work on Osteochondrodysplasias and interventional radiology

    DEFF Research Database (Denmark)

    Andersen, Poul Erik

    2011-01-01

    Hospital. His significant experience and extensive scientific work has led to many posts in the Danish Society of Interventional Radiology, the European Society of Radiology and the Cardiovascular and Interventional Radiological Society of Europe, where he is a fellow and has passed the European Board...... of Interventional Radiology - The European qualification in Interventional Radiology....

  11. Sampling on radiological protection training in diagnostic radiology

    International Nuclear Information System (INIS)

    Gaona, E.

    2001-01-01

    Radiological security aspects were evaluated in radiology departments from Mexico City. The study was carried out in two stages, the first one evaluated 40 departments just before the implementation of the new Official Mexican Standards related to Radiological Security and Quality Control in Radiology; in the second stage 33 departments were evaluated 2 years after those standards were implanted, showing a favorable impact of the training programs for the type of answers obtained [es

  12. Natural Language Processing in Radiology: A Systematic Review.

    Science.gov (United States)

    Pons, Ewoud; Braun, Loes M M; Hunink, M G Myriam; Kors, Jan A

    2016-05-01

    Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. (©) RSNA, 2016 Online supplemental material is available for this article.

  13. Chronicle of pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, Gabriele; Richter, Ernst

    2012-01-01

    The chronicle of pediatric radiology covers the following issues: Development of pediatric radiology in Germany (BRD, DDR, pediatric radiological accommodations); development of pediatric radiology in the Netherlands (chronology and pediatric radiological accommodations); development of pediatric radiology in Austria (chronology and pediatric radiological accommodations); development of pediatric radiology in Switzerland (chronology and pediatric radiological accommodations).

  14. Imaging and radiology

    Science.gov (United States)

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  15. Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  16. Radiological Control Manual

    International Nuclear Information System (INIS)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records

  17. Radiological English

    Energy Technology Data Exchange (ETDEWEB)

    Ribes, R. [Hospital Reina Sofia, Cordoba (Spain). Servicio de Radiologia; Ros, P.R. [Harvard Medical School, Boston, MA (United States). Div. of Radiology

    2007-07-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  18. Radiological English

    International Nuclear Information System (INIS)

    Ribes, R.; Ros, P.R.

    2007-01-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  19. Handbook of radiologic procedures

    International Nuclear Information System (INIS)

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography

  20. Source terms; isolation and radiological consequences of carbon-14 waste in the Swedish SFR repository

    International Nuclear Information System (INIS)

    Hesboel, R.; Puigdomenech, I.; Evans, S.

    1990-01-01

    The source term, isolation capacity, and long-term radiological exposure of 14 C from the Swedish underground repository for low and intermediate level waste (SFR) is assessed. The prospective amount of 14 C in the repository is assumed to be 5 TBq. Spent ion exchange resins will be the dominant source of 14 C. The pore water in the concrete repository is expected to maintain a pH of >10.5 for a period of at least 10 6 y. The cement matrix of the repository will retain most of the 14 CO 3 2- initially present. Bacterial production of CO 2 and CH 4 from degradation of ion-exchange resins and bitumen may contribute to 14 C release to the biosphere. However, CH 4 contributes only to a small extent to the overall carbon loss from freshwater ecosystems. The individual doses to local and regional individuals peaked with 5x10 -3 and regional individuals peaked with 5x10 -3 and 8x10 -4 μSv y -1 respectively at about 2.4x10 4 years. A total leakage of 8.4 GBq of 14 C from the repository will cause a total collective dose commitment of 1.1 manSv or 130 manSv TBq -1 . (authors)

  1. EPA's Radioactive Source Program

    International Nuclear Information System (INIS)

    Kopsick, D.

    2004-01-01

    The US EPA is the lead Federal agency for emergency responses to unknown radiological materials, not licensed, owned or operated by a Federal agency or an Agreement state (Federal Radiological Emergency Response Plan, 1996). The purpose of EPA's clean materials programme is to keep unwanted and unregulated radioactive material out of the public domain. This is achieved by finding and securing lost sources, maintaining control of existing sources and preventing future losses. The focus is on both, domestic and international fronts. The domestic program concentrates on securing lost sources, preventing future losses, alternative technologies like tagging of radioactive sources in commerce, pilot radioactive source roundup, training programs, scrap metal and metal processing facilities, the demolition industry, product stewardship and alternatives to radioactive devices (fewer radioactive source devices means fewer orphan sources). The international program consists of securing lost sources, preventing future losses, radiation monitoring of scrap metal at ports and the international scrap metal monitoring protocol

  2. RSVP radiology

    International Nuclear Information System (INIS)

    Kirks, D.R.; Chaffee, D.J.

    1990-01-01

    This paper develops a relative scale of value for pediatric radiology (RSVPR). Neither the HCFA/ACA Relative Value Scale nor the Workload Measurement System developed by Health and Welfare Canada specifically addressed pediatric radiologic examinations. Technical and professional charges for examinations at Children's Hospital Medical Center were reviewed and compared with time and cost analysis. A scale was developed with chest radiography (PA and lateral views) assigned a value of 1. After review by pediatric radiologic technologists, radiologic administrators, pediatric radiologists, and chairs of departments of children's hospitals, this proposed scale was modified to reflect more accurately relative value components of pediatric radiologic and imaging examinations

  3. Radiological anatomy - evaluation of integrative education in radiology.

    Science.gov (United States)

    Dettmer, S; Schmiedl, A; Meyer, S; Giesemann, A; Pabst, R; Weidemann, J; Wacker, F K; Kirchhoff, T

    2013-09-01

    Evaluation and analysis of the integrative course "Radiological Anatomy" established since 2007 at the Medical School Hannover (MHH) in comparison with conventional education. Anatomy and radiology are usually taught separately with a considerable time lag. Interdisciplinary teaching of these associated subjects seems logical for several reasons. Therefore, the integrative course "Radiological Anatomy" was established in the second year of medical education, combining these two closely related subjects. This interdisciplinary course was retrospectively evaluated by consideration of a student questionnaire and staff observations. The advantages and disadvantages of integrative teaching in medical education are discussed. The course ratings were excellent (median 1; mean 1.3 on a scale of 1 to 6). This is significantly (p radiology increased during the course (88 %). According to the students' suggestions the course was enhanced by a visitation in the Department of Radiology and the additional topic central nervous system. Integrative teaching of anatomy and radiology was well received by the students. Both, anatomical and radiological comprehension and the motivation to learn were improved. However, it should be considered, that the amount of work and time required by the teaching staff is considerably increased compared to traditional teaching. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Analysis of the Radiology Reports from Radiology Clinics

    International Nuclear Information System (INIS)

    Kim, Eun Jin; Kwack, Kyu Sung; Cho, Jae Hyun; Jang, Eun Ho

    2009-01-01

    The purpose of this study was to investigate the form and content of the radiology reports from radiology clinics in Korea. One hundred and sixty six radiology reports from 49 radiology clinics were collected, and these reports were referred to the academic tertiary medical center from March 2008 to February 2009. These included reports for CT (n = 18), MRI (n = 146) and examinations not specified (n = 2). Each report was evaluated for the presence of required contents (demographics, technical information, findings, conclusion, the name, license number and signature of the radiologist and the referring facility). These requirements were based on the guideline of the American College of Radiology and the previous research. The name of the patient, the gender, the body part, the type of examination, the time of examination and the conclusion, the name of the radiologist and the name of facility were well recorded in over 90% of the radiology reports. However, the identification number of the patient, the referring facility, the referring physician, the use of contrast material, the clinical information, the time of dictation, the signature of the radiologist and the license number of the radiologist were poorly recorded (less than 50%). The optimal format of a radiology report should be established for reliable and valid communication with clinicians

  5. Radiological protection standards in the United Kingdom

    International Nuclear Information System (INIS)

    Pochin, E.; McLean, A.S.; Richings, L.D.G.

    1976-09-01

    In view of the interest now being expressed in the means by which radiological protection standards are derived and applied, this report briefly outlines the roles of the international organisations involved, summarises the UK arrangements, and indicates the principal sources of relevant biological information. (author)

  6. Enhancement of the radiological protection in the Nuclear Medicine Centres in Peru

    International Nuclear Information System (INIS)

    Lopez, Edith; Gonzales, Susana; Zapata, Luis

    2008-01-01

    Full text: The Laboratory of Internal Dosimetry (LDI) of the Nuclear Energy Peruvian Institute (IPEN) is the laboratory which offers the service of internal dosimetry to the IPEN personnel who works handling non sealed radioactive sources. The Laboratory has participated in several intercomparison exercises featuring in vivo measurements, in vitro methods and dose calculations with acceptable results, which are indicators that the laboratory results are reliable. The National Program of Radiological Protection for occupational exposed workers, who handles non sealed radioactive sources, allows involving the IPEN occupational exposed workers and the Nuclear Medicine Centres Personnel. In Peru, there are 5000 occupational exposed workers, 3500 of them are controlled through external dosimetry. There are approximately 230 occupational exposed workers to non sealed radioactive sources, 67 of them are registered in the National Regulatory Authority and 20 are controlled radiologically. The aim of this study is the enhancement of the radiological safety of the personnel who works in the Nuclear Medicine Centres and handles non sealed radioactive sources. As part of this work, activities addressed to improve the radiological safety of the occupational exposed workers were taken place such as: supply of technical documents about radiological safety, performance of surveys and polls and the organization of a workshop involving the participation of several health professionals working in this field. The situation of the control measures in the radiation protection of the patients and occupational exposed workers, based in updated regulatory documents, have been assessed and it allowed knowing and learning that the occupational exposed workers of the Nuclear Medicine Centres could perform their own monitoring program since they have potential capabilities like Iodine Uptake Systems and calibrated Gamma cameras. This study involves 15 public and private institutions. (author)

  7. International conference to explore ways to improve radiological protection of patients

    International Nuclear Information System (INIS)

    2001-01-01

    The first international conference specifically focused on the radiological protection of patients will be held in Torremolinos (Malaga), Spain, next week, from 26 to 30 March 2001. The conference, formally titled, 'International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy', is being organized by the IAEA, hosted by the Government of Spain and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization. Medical applications of ionizing radiation are accepted world-wide as essential tools for keeping or restoring human health. However, they also represent by far the largest man-made source of radiation exposure. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) estimates that diagnostic medical applications of radiation account for about 95% of the exposure to radiation from man-made sources of radiation and about 12% of total exposure, which includes the exposures received from natural sources. More than 900 participants from 80 countries are expected to attend the conference. They cover a broad spectrum of expertise, including radiologists, nuclear medicine specialists, radiation oncologists, medical physicists, technologists/radiographers, radiological protection officers, equipment manufacturers, experts who develop standards for radiological equipment, hospital administrators and public health officials and representatives of professional societies. In addition, a number of patients who have undergone radiation treatment will represent patients' interests and a patient will chair one of the round table debates. The conclusions of the Conference will be incorporated into the IAEA's programme of work in the field of radiation safety and will be reported to the IAEA General Conference at its next meeting in September 2001

  8. The global threat reduction initiative's radiological security cooperation with Russia - 59361

    International Nuclear Information System (INIS)

    Blanchard, Tiffany A.; Abramson, William J.; Russell, James W. Jr.; Roberts, Catherine K.

    2012-01-01

    The United States (U.S.) Department of Energy (DOE) / National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) supports both U.S. and international threat reduction goals by securing vulnerable nuclear and radiological material located at civilian sites throughout the world. GTRI's approach to reducing the threat posed by vulnerable, high-activity radioactive sources includes removing and disposing of orphan or disused radioactive sources; implementing physical security upgrades at civilian sites containing radioactive sources; and establishing a cooperative sustainability program at sites to ensure that upgrades are maintained. For many years GTRI has collaborated successfully with the Russian Federation and international partners to improve radiological security in Russia. This paper provides a synopsis of GTRI's accomplishments and cooperation with Russia in the following areas: 1.) recovering and disposing of orphan and disused radioactive sources, 2.) recovering and disposing of radioisotope thermoelectric generators (RTGs), and 3.) providing physical security upgrades at civilian sites that contain vulnerable radiological material. The success of GTRI's program to secure radiological material in the Russian Federation over the past decade is due largely to the hard work, technical expertise, and tenacity of the U.S. laboratory teams and the Russian partner organizations with whom GTRI has worked. GTRI plans to continue building on this history of cooperation in order to recover and secure additional, vulnerable radioactive sources in locations throughout Russia. GTRI also is committed to sustainability efforts so that facilities in Russia receiving physical protection equipment and training are prepared to eventually assume responsibility for those security upgrades. In the years to come, GTRI will combine financial support with capacity building to enhance Russia's domestic programs to address these challenges. Through

  9. Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology.

    Science.gov (United States)

    Zhang, Long Jiang; Wang, Yun Fei; Yang, Zhen Lu; Schoepf, U Joseph; Xu, Jiaqian; Lu, Guang Ming; Li, Enzhong

    2017-10-01

    To evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015. We reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time. Radiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER. Radiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern. • Radiology research in Mainland China saw a substantial increase. • Neuroradiology, vascular/interventional Radiology, and abdominal Radiology are the most productive fields. • MRI is the most used modality in Mainland China's Radiology research. • Guangdong, Shanghai, and Beijing are the most productive provinces.

  10. SISERI changes for a better radiological follow-up of workers

    International Nuclear Information System (INIS)

    2014-01-01

    SISERI is a national system that allows the management of the dosimetric data of all the workers exposed to ionising radiations. About 35.000 people are concerned by SISERI. Only occupational physicians and radiological protection dedicated staff have access to SISERI. The last upgrade of SISERI allows the integration of more information concerning each worker (training, job) and a more secure access to the system. The new upgrade will allow time savings for the employers, a better radiological follow-up for the employees all along their working life and a better and more structured source of radiological data that will be processed statistically more efficiently. (A.C.)

  11. The radiological accident in Yanango

    International Nuclear Information System (INIS)

    2000-01-01

    The use of nuclear technologies has fostered new, more effective and efficient medical procedures and has substantially improved diagnostic and therapeutic capabilities. However, in order that the benefits of the use of ionizing radiation outweigh the potential hazards posed by this medium, it is important that radiation protection and safety standards be established to govern every aspect of the application of ionizing radiation. Adherence to these standards needs to be maintained through effective regulatory control, safe operational procedures and a safety culture that is shared by all. Occasionally, established safety procedures are violated and serious radiological consequences ensue. The radiological accident described in this report, which took place in Lilo, Georgia, was a result of such an infraction. Sealed radiation sources had been abandoned by a previous owner at a site without following established regulatory safety procedures, for example by transferring the sources to the new owner or treating them as spent material and conditioning them as waste. As a consequence, 11 individuals at the site were exposed for a long period of time to high doses of radiation which resulted inter alia in severe radiation induced skin injuries. Although at the time of the accident Georgia was not an IAEA Member State and was not a signatory of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the IAEA still provided assistance to the Government of Georgia in assessing the radiological situation, while the World Health Organization (WHO) assisted in alleviating the medical consequences of the accident. The two organizations co-operated closely from the beginning, following the request for assistance by the Georgian Government. The IAEA conducted the radiological assessment and was responsible for preparing the report. The WHO and its collaborating centres within the Radiation Emergency Medical Preparedness and Assistance Network

  12. National inquiry system of radiological events: a viable proposal

    International Nuclear Information System (INIS)

    Xavier, Ana Maria; Cavalcante, Vera Lucia.

    1996-01-01

    The SINAER- National Inquiry System of Radiological Events is a supportive structure devised to deal with the request of help or complaints that involve sources of ionizing radiations in the national territory

  13. Radiology

    International Nuclear Information System (INIS)

    Edholm, P.R.

    1990-01-01

    This is a report describing diagnostic techniques used in radiology. It describes the equipment necessary for, and the operation of a radiological department. Also is described the standard methods used in radiodiagnosis. (K.A.E.)

  14. The Radiological Accident in Lia, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The use of radioactive material offers a wide range of benefits to medicine, research and industry throughout the world. Precautions are necessary, however, to limit the exposure of people to the radiation emitted. Where the amount of radioactive material is substantial, as in the case of radiotherapy or industrial radiography sources, great care is required to prevent accidents which could have severe consequences. Nevertheless, in spite of the precautions taken, serious accidents involving radiation sources continue to occur, albeit infrequently. The IAEA conducts follow-up reviews of such serious accidents to provide an account of their circumstances and consequences, from which organizations with responsibilities for radiation protection, safety of sources and emergency preparedness and response may learn. A serious radiological accident occurred in Georgia on 2 December 2001, when three inhabitants of the village of Lia found two metal objects in the forest while collecting firewood. These objects were {sup 90}Sr sources with an activity of 1295 TBq. The three inhabitants used the objects as heaters when spending the night in the forest. The major cause of the accident was the improper and unauthorized abandonment of radiation sources in Georgia and the absence of clear labels or radiation signs on the sources warning of the potential radiation hazard. Under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), the Georgian authorities requested assistance from the IAEA to advise on the dose assessment, source recovery and medical management of those involved in the accident. This publication describes the circumstances and events surrounding the accident, its management and the medical treatment of the people exposed. It also describes the dose reconstruction calculations and biodosimetry assessments conducted. A number of uncertainties remain relating to some details of the accident. However

  15. The Radiological Accident in Lia, Georgia

    International Nuclear Information System (INIS)

    2014-12-01

    The use of radioactive material offers a wide range of benefits to medicine, research and industry throughout the world. Precautions are necessary, however, to limit the exposure of people to the radiation emitted. Where the amount of radioactive material is substantial, as in the case of radiotherapy or industrial radiography sources, great care is required to prevent accidents which could have severe consequences. Nevertheless, in spite of the precautions taken, serious accidents involving radiation sources continue to occur, albeit infrequently. The IAEA conducts follow-up reviews of such serious accidents to provide an account of their circumstances and consequences, from which organizations with responsibilities for radiation protection, safety of sources and emergency preparedness and response may learn. A serious radiological accident occurred in Georgia on 2 December 2001, when three inhabitants of the village of Lia found two metal objects in the forest while collecting firewood. These objects were 90 Sr sources with an activity of 1295 TBq. The three inhabitants used the objects as heaters when spending the night in the forest. The major cause of the accident was the improper and unauthorized abandonment of radiation sources in Georgia and the absence of clear labels or radiation signs on the sources warning of the potential radiation hazard. Under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), the Georgian authorities requested assistance from the IAEA to advise on the dose assessment, source recovery and medical management of those involved in the accident. This publication describes the circumstances and events surrounding the accident, its management and the medical treatment of the people exposed. It also describes the dose reconstruction calculations and biodosimetry assessments conducted. A number of uncertainties remain relating to some details of the accident. However, sufficient

  16. The radiological accident in Istanbul

    International Nuclear Information System (INIS)

    2000-01-01

    The use of radioactive materials offers a wide range of benefits throughout the world in medicine, research and industry. Precautions are, however, necessary in order to limit the exposure of persons to the radiation that is emitted. Where the amount of radioactive material is substantial, as in the case of radiotherapy sources or industrial radiography sources, extreme care is necessary to prevent accidents which may have severe consequences. Nevertheless, in spite of the precautions taken, accidents with radiation sources continue to occur, albeit infrequently. As part of its subprogramme on the safety of radiation sources, the IAEA conducts follow-up reviews of such serious accidents to give an account of their circumstances and of the medical aspects, from which organizations with responsibilities for radiation protection and the safety of sources may learn. A serious radiological accident occurred in Istanbul, Turkey, in December 1998 and January 1999 when two packages used to transport 60 Co teletherapy sources were sold as scrap metal. The persons who purchased the two packages opened them and broke open the shielded containers, thereby unknowingly exposing themselves and several others to radiation from at least one unshielded 60 Co source. The persons who dismantled the containers suffered from acute radiation syndrome. The accident came to the attention of the relevant national authority when a doctor who had examined the victims reported that he suspected the possibility of radiation exposure. The national authorities identified other individuals who might have undergone acute radiation exposures, and a total of 18 persons (including seven children) were admitted to hospital. Of these, ten adults exhibited clinical signs and symptoms of acute radiation exposure. Under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the Turkish authorities requested assistance from the IAEA in terms of advice on the medical

  17. Informatics in radiology: web-based preliminary reporting system for radiology residents with PACS integration.

    Science.gov (United States)

    O'Connell, Timothy; Chang, Debra

    2012-01-01

    While on call, radiology residents review imaging studies and issue preliminary reports to referring clinicians. In the absence of an integrated reporting system at the training sites of the authors' institution, residents were typing and faxing preliminary reports. To partially automate the on-call resident workflow, a Web-based system for resident reporting was developed by using the free open-source xAMP Web application framework and an open-source DICOM (Digital Imaging and Communications in Medicine) software toolkit, with the goals of reducing errors and lowering barriers to education. This reporting system integrates with the picture archiving and communication system to display a worklist of studies. Patient data are automatically entered in the preliminary report to prevent identification errors and simplify the report creation process. When the final report for a resident's on-call study is available, the reporting system queries the report broker for the final report, and then displays the preliminary report side by side with the final report, thus simplifying the review process and encouraging review of all of the resident's reports. The xAMP Web application framework should be considered for development of radiology department informatics projects owing to its zero cost, minimal hardware requirements, ease of programming, and large support community.

  18. Hanford Radiological Protection Support Services Annual Report for 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

    2001-05-07

    During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

  19. Hanford Radiological Protection Support Services Annual Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    DE Bihl; JA MacLellan; ML Johnson; RK Piper; TP Lynch

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  20. Radiological Cs-137 accidents/incidents in Estonia

    International Nuclear Information System (INIS)

    Sinisso, Mark

    1997-01-01

    Two radiological accidents/incidents in Estonia are reported. The first -21 October 1994, three brothers entered the Tammiku repository and stole a radioactive Cs-137 source and received dangerous doses of radiation. The other incident (early 1995) involved an abandoned source - a discarded metal cylinder containing Cs-137. Chronologies and factual data are considered for both events. Concise descriptions of the incidents, a medical overview of the fate of injured people and lessons learned are presented

  1. Radiological Cs-137 accidents/incidents in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Sinisso, Mark [Ministry of Foreign Affairs, Tallin (Estonia)

    1997-12-31

    Two radiological accidents/incidents in Estonia are reported. The first -21 October 1994, three brothers entered the Tammiku repository and stole a radioactive Cs-137 source and received dangerous doses of radiation. The other incident (early 1995) involved an abandoned source - a discarded metal cylinder containing Cs-137. Chronologies and factual data are considered for both events. Concise descriptions of the incidents, a medical overview of the fate of injured people and lessons learned are presented

  2. Nuclear law and radiological accidents

    International Nuclear Information System (INIS)

    Frois, F.

    1998-01-01

    Nuclear activities in Brazil, and particularly the radiological accident of Goiania, are examined in the light of the environmental and nuclear laws of Brazil and the issue of responsibility. The absence of legislation covering radioactive wastes as well as the restrictions on Brazilian States to issue regulations covering nuclear activities are reviewed. The radiological accident and its consequences, including the protection and compensation of the victims, the responsibility of the shareholders of the Instituto Goiano de Radioterapia, operator of the radioactive source, the provisional storage and the final disposal at Abadia de Goias of the radioactive waste generated by the accident are reviewed. Finally, nuclear responsibility, the inapplicability of the Law 6453/77 which deals with nuclear damages, and the state liability regime are analysed in accordance with the principles of the Brazilian Federal Constitution. (author)

  3. Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wang, Yun Fei; Yang, Zhen Lu; Lu, Guang Ming; Schoepf, U.J.; Xu, Jiaqian; Li, Enzhong

    2017-01-01

    To evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015. We reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time. Radiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P < 0.001). Within Mainland China's Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER. Radiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern. (orig.)

  4. Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long Jiang; Wang, Yun Fei; Yang, Zhen Lu; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Xu, Jiaqian [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Li, Enzhong [National Natural Science Foundation of China, Department of Medical Science, Beijing (China)

    2017-10-15

    To evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015. We reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time. Radiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P < 0.001). Within Mainland China's Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER. Radiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern. (orig.)

  5. Radiological protection in interventional radiology

    International Nuclear Information System (INIS)

    Padovani, R.

    2001-01-01

    Interventional radiology (IR) reduces the need for many traditional interventions, particularly surgery, so reducing the discomfort and risk for patients compared with traditional systems. IR procedures are frequently performed by non-radiologist physicians, often without the proper radiological equipment and sufficient knowledge of radiation protection. Levels of doses to patients and staff in IR vary enormously. A poor correlation exists between patient and staff dose, and large variations of dose are reported for the same procedure. The occurrence of deterministic effects in patients is another peculiar aspect of IR owing to the potentially high skin doses of some procedures. The paper reviews the use of IR and the radiological protection of patients and staff, and examines the need for new standards for IR equipment and the training of personnel. (author)

  6. Evidence-based practice in radiology: Knowledge, attitude and perceived barriers to practice among residents in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Anuradha, Chandramohan, E-mail: anuradhachandramohan@gmail.com [Department of Radiology, Christian Medical College, Vellore, Tamil Nadu 632 004 (India); Jacob, K.S., E-mail: ksjacob@cmcvellore.ac.in [Department of Psychiatry, Christian Medical College, Vellore, Tamil Nadu 632 004 (India); Specialist Mental Health Service for Older People, Suite 106, 64–68 Derby Street, Kingswood, Penrith 2750 (Australia); Shyamkumar, N.K., E-mail: aparnashyam@gmail.com [Department of Radiology, Christian Medical College, Vellore, Tamil Nadu 632 004 (India); Sridhar, Gibikote, E-mail: gibikote@cmcvellore.ac.in [Department of Radiology, Christian Medical College, Vellore, Tamil Nadu 632 004 (India)

    2013-05-15

    Aim: We examinted the attitude, knowledge and perceived barriers to evidence-based practice of radiology (EBPR) among residents in radiology. Study design and setting: We used the McColl questionnaire (1) and the BARRIERS scale (2) to assess the issues among radiology trainees attending an annual refresher course. Ninety six residents from 32 medical colleges from Southern India attended the course. Results: Eighty (83.3%) residents, 55 male and 25 female of age range 24–34 years, consented and returned the questionnaire. The majority of the participants had a positive attitude towards EBPR. However, 45% were unaware of sources for evidence based literature although many had access to Medline (45%) and the internet (80%). The majority (70%) were aware of the common technical terms (e.g. odds ratio, absolute and relative risk) but other complex details (e.g. meta-analysis, clinical effectiveness, confidence interval, publication bias and number needed to treat) were poorly understood. Though majority of residents (59%) were currently following guidelines and protocols laid by colleagues within their departments, 70% of residents were interested in learning the skills of EBPR and were willing to appraise primary literature or systematic reviews by themselves. Insufficient time on the job to implement new ideas (70.1%); relevant literature is not being complied in one place (68.9%); not being able to understand statistical methods (68.5%) were considered to be the major barriers to EBPR. Training in critical appraisal significantly influence usage of bibliographic databases (p < 0.0001). Attitude of collegues (p = 0.006) influenced attitude of the trainees towards EBPR. Those with higher knowledge scores (p = 0.02) and a greater awareness of sources for seeking evidence based literature (p = 0.05) held stronger beliefs that EBPR significantly improved patient care. Conclusions: The large knowledge gap related to EBPR suggests the need to incorporate structured

  7. Evidence-based practice in radiology: Knowledge, attitude and perceived barriers to practice among residents in radiology

    International Nuclear Information System (INIS)

    Anuradha, Chandramohan; Jacob, K.S.; Shyamkumar, N.K.; Sridhar, Gibikote

    2013-01-01

    Aim: We examinted the attitude, knowledge and perceived barriers to evidence-based practice of radiology (EBPR) among residents in radiology. Study design and setting: We used the McColl questionnaire (1) and the BARRIERS scale (2) to assess the issues among radiology trainees attending an annual refresher course. Ninety six residents from 32 medical colleges from Southern India attended the course. Results: Eighty (83.3%) residents, 55 male and 25 female of age range 24–34 years, consented and returned the questionnaire. The majority of the participants had a positive attitude towards EBPR. However, 45% were unaware of sources for evidence based literature although many had access to Medline (45%) and the internet (80%). The majority (70%) were aware of the common technical terms (e.g. odds ratio, absolute and relative risk) but other complex details (e.g. meta-analysis, clinical effectiveness, confidence interval, publication bias and number needed to treat) were poorly understood. Though majority of residents (59%) were currently following guidelines and protocols laid by colleagues within their departments, 70% of residents were interested in learning the skills of EBPR and were willing to appraise primary literature or systematic reviews by themselves. Insufficient time on the job to implement new ideas (70.1%); relevant literature is not being complied in one place (68.9%); not being able to understand statistical methods (68.5%) were considered to be the major barriers to EBPR. Training in critical appraisal significantly influence usage of bibliographic databases (p < 0.0001). Attitude of collegues (p = 0.006) influenced attitude of the trainees towards EBPR. Those with higher knowledge scores (p = 0.02) and a greater awareness of sources for seeking evidence based literature (p = 0.05) held stronger beliefs that EBPR significantly improved patient care. Conclusions: The large knowledge gap related to EBPR suggests the need to incorporate structured

  8. RASCAL [Radiological Assessment System for Consequence AnaLysis]: A screening model for estimating doses from radiological accidents

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Athey, G.F.; Sakenas, C.A.; McKenna, T.J.

    1988-01-01

    The Radiological Assessment System for Consequence AnaLysis (RASCAL) is a new MS-DOS-based dose assessment model which has been written for the US Nuclear Regulatory Commission for use during response to radiological emergencies. RASCAL is designed to provide crude estimates of the effects of an accident while the accident is in progress and only limited information is available. It has been designed to be very simple to use and to run quickly. RASCAL is unique in that it estimates the source term based on fundamental plant conditions and does not rely solely on release rate estimation (e.g., Ci/sec of I-131). Therefore, it can estimate consequences of accidents involving unmonitored pathways or projected failures. RASCAL will replace the older model, IRDAM. 6 refs

  9. Californium source transfer

    International Nuclear Information System (INIS)

    Wallace, C.R.

    1995-01-01

    In early 1995, the receipt of four sealed californium-252 sources from Oak Ridge National Lab was successfully accomplished by a team comprised of Radiological Engineering, Radiological Operations and Health Physics Instrumentation personnel. A procedure was developed and walked-down by the participants during a Dry Run Evolution. Several special tools were developed during the pre-planning phases of the project which reduced individual and job dose to minimal levels. These included a mobile lifting device for attachment of a transfer ball valve assembly to the undercarriage of the Cannonball Carrier, a transfer tube elbow to ensure proper angle of the source transfer tube, and several tools used during emergency response for remote retrieval and handling of an unshielded source. Lessons were learned in the areas of contamination control, emergency preparedness, and benefits of thorough pre-planning, effectiveness of locally creating and designing special tools to reduce worker dose, and methods of successfully accomplishing source receipt evolutions during extreme or inclement weather

  10. Radiological aerial monitoring in a nuclear emergency

    International Nuclear Information System (INIS)

    Shin, Hyeongki; Kim, Juyoul; Jung, Gunhyo

    2008-01-01

    Since North Korea announced the underground nuclear test on last October 9th, 2006, many countries around the world have worried about the atmospheric dispersion and pollution of radioactive materials crossing the border by the clandestine nuclear test. After that time, verifying the existence of nuclear test by detecting radioactive materials such as xenon, I-131, and Cs-134 at the early stage of radiological emergency, locating the position of test site by backward trajectory analysis, and chasing the moving path of airborne radionuclide have been heavily issued. And collection of airborne radioactivity and gamma radiation monitoring technology using an aircraft have been recently examined by an authority concerned in South Korea. Although various techniques of radiological aerial monitoring have been developed and operated around the world, the relevant technical development or research is still required. In order to decide potential measuring location and time within the framework of radiological monitoring system, we use HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model developed by National Oceanic and Atmospheric Administration (NOAA) of U.S. Department of Commerce. The model is validated and assessed against North Korea's nuclear test. Calculation results of radionuclide trajectory show a good agreement with measured values. Backward trajectory analysis is useful to track the radiological source term, possible time and place of nuclear accidents and/or activities. Nationwide early warning system using aircraft and atmospheric dispersion model can help a nearly real-time forecasting and warning in preparation for radiological emergencies. (author)

  11. General Employee Radiological Training and Radiological Worker Training: Program management manual

    International Nuclear Information System (INIS)

    1992-10-01

    This manual defines and describes the DOE General Employee Radiological Training (GERT) and Radiological Worker I and II (RW I and II) Training programs. It includes material development requirements, standards and policies, and program administration. This manual applies to General Employee Radiological Training and Radiological Worker Training at all DOE contractor sites. The training materials of both GERT and RW I and II training reflect the requirements identified in the DOE Radiological Control Manual and DOE Order 5480.11. The training programs represent the minimum requirement for the standardized core materials. Each contractor shall implement the program in its entirety and may augment the standardized core materials to increase the general employee and radiological worker level of competency

  12. The health physics and radiological health handbook

    International Nuclear Information System (INIS)

    Shleien, B.

    1992-01-01

    This handbook was conceived in order to fill the need of health physics practitioners, technicians, and students for an easy to use, practical handbook containing health physics and radiological health data. While briefer and more specific data sources are sources are available on single subject areas, as are multi-volume compendia, there is no current up-to-date compilation of information useful on a daily basis by the health physicist. Separate abstracts have been prepared for 16 chapters in this book

  13. Characterisation of Aerosols from Simulated Radiological Dispersion Events

    NARCIS (Netherlands)

    Di Lemma, F.G.

    2015-01-01

    The research described in this thesis aims at improving the evaluation of the radiaoctive aerosol release from different Radiological Dispersion Events (RDE's), such as accidents and sabotage involving radioactive and nuclear materials. These studies help in a better assessment of the source term as

  14. The concept of error and malpractice in radiology.

    Science.gov (United States)

    Pinto, Antonio; Brunese, Luca; Pinto, Fabio; Reali, Riccardo; Daniele, Stefania; Romano, Luigia

    2012-08-01

    Since the early 1970s, physicians have been subjected to an increasing number of medical malpractice claims. Radiology is one of the specialties most liable to claims of medical negligence. The etiology of radiological error is multifactorial. Errors fall into recurrent patterns. Errors arise from poor technique, failures of perception, lack of knowledge, and misjudgments. Every radiologist should understand the sources of error in diagnostic radiology as well as the elements of negligence that form the basis of malpractice litigation. Errors are an inevitable part of human life, and every health professional has made mistakes. To improve patient safety and reduce the risk from harm, we must accept that some errors are inevitable during the delivery of health care. We must play a cultural change in medicine, wherein errors are actively sought, openly discussed, and aggressively addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Analysis of radiological consequences in a typical BWR with a mark-II containment

    International Nuclear Information System (INIS)

    Funayama, Kyoko; Kajimoto, Mitsuhiro

    2003-01-01

    INS/NUPEC in Japan has been carrying out the Level 3 PSA program. In the program, the MACCS2 code has been extensively applied to analyze radiological consequences for typical BWR and PWR plants in Japan. The present study deals with analysis of effects of the AMs, which were implemented by industries, on radiological consequence for a typical BWR with a Mark-II containment. In the present study, source terms and their frequencies of source terms were used based on results of Level 2 PSA taking into account AM countermeasures. Radiological consequences were presented with dose risks (Sv/ry), which were multiplied doses (Sv) by containment damage frequencies (/ry), and timing of radionuclides release to the environment. The results of the present study indicated that the dose risks became negligible in most cases taking AM countermeasures and evacuations. (author)

  16. History of aerial surveys in response to radiological incidents and accidents

    International Nuclear Information System (INIS)

    Jobst, J.E.

    1986-01-01

    EG and G Energy Measurements Inc., operates the Remote Sensing Laboratory for the US Department of Energy (DOE). The Laboratory plays a key role in the federal response to a radiological incident or accident. It assists the DOE in the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC). The Remote Sensing Laboratory has played a major role in more than 13 incidents, including lost sources, accidental dispersions, and nuclear reactor incidents

  17. Assessment Of Source Term And Radiological Consequences For Design Basis Accident And Beyond Design Basis Accident Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Tran Tri Vien

    2011-01-01

    The paper presents results of the assessment of source terms and radiological consequences for the Design Basis Accident (DBA) and Beyond Design Basis Accident (BDBA) of the Dalat Nuclear Research Reactor. The dropping of one fuel assembly during fuel handling operation leading to the failure of fuel cladding and the release of fission products into the environment was selected as a DBA for the analysis. For the BDBA, the introduction of a step positive reactivity due to the falling of a heavy block from the rotating bridge crane in the reactor hall onto a part of the platform where are disposed the control rod drives is postulated. The result of the radiological consequence analyses shows that doses to members of the public are below annual dose limit for both DBA and BDBA events. However, doses from exposure to operating staff and experimenters working inside the reactor hall are predicted to be very high in case of BDBA and therefore the protective actions should be taken when the accident occurs. (author)

  18. The control of radioactive sources in Brazil

    International Nuclear Information System (INIS)

    Oliveira, S.M.V.; Menezes, C.F.; Alves Filho, A.D.; Xavier, A.M.

    1998-01-01

    The radiological accident of Goiania in 1987 brought to light several deficiencies in the licensing of medical, industrial and research facilities, which handle radioisotopes, as well as in the control of radioactive sources in Brazil. The article describes some of the technical and administrative measures taken to ensure the adoption of appropriate radiological safety standards throughout the country and thereby reduce the incidence of radiological accidents. (author)

  19. Relative importance of the different radionuclides for radiological consequences

    International Nuclear Information System (INIS)

    Manesse, D.

    1984-12-01

    This paper tries, for several source-terms, to estimate the relative importance of the different families of radioactive products in the calculation of radiological consequences; the study takes place in the case of accidental situations of PWR reactors [fr

  20. L-62: Radiological emergencies revision to first responders

    International Nuclear Information System (INIS)

    2011-01-01

    This conference describes the different types of radiological emergencies, the different emergency situations as well as the experience obtained. The radioactive material places, the damages and injuries caused by radioactive sources, the overexposure and the contamination levels are the main aspects to be considered in each situation

  1. MEMO radiology

    International Nuclear Information System (INIS)

    Wagner-Manslau, C.

    1989-01-01

    This radiology volume is a concise handbook of imaging techniques, nuclear medicine, and radiation therapy, albeit that the main emphasis is on classic radiology. It offers, for instance, a survey of radiological findings for the most frequent pathological conditions, many overviews of differential diagnosis, a glossary of the technical bases of radiology and so forth. The contents are divided into the following chapters: Physical and biological bases; skeleton; thorax with the subdivisions lungs, heart, mediastinum, and pleura; gastrointestinal tract with the subsections esophagus, small and large intestine; liver; biliary tract; pancreas; retroperitoneal space; kidney; suprarenal glands; bladder; blood vessels, lymph nodes, spleen; mammary glands; female genitals; prostate and scrotum, epididymis and seminal vesicle. (orig./MG) With 23 figs [de

  2. Radiological accident and incident in Thailand: Lesson to be learned

    International Nuclear Information System (INIS)

    Ya-anant, N.; Tiyapun, K.; Saiyut, K.

    2011-01-01

    Radioactive materials in Thailand have been used in medicine, research and industry for more than 50 y. Several radiological accident and incidents happened in the past 10 y. A serious one was the radiological accident that occurred in Samut Prakan (Thailand) in 2000. The serious radiological accident occurred when the 60 Co head was partially dismantled, taken from that storage to sell as scrap metal. Three victims died and 10 people received high dose from the source. The lesson learned from the radiological accident in Samut Prakan was to improve in many subjects, such as efficiency in Ministerial Regulations and Atomic Energy Act, emergency response and etc. In addition to the serious accident, there are also some small incidents that occurred, such as detection of contaminated scrap metals from the re-cycling of scrap metals from steel factories. Therefore, the radiation protection infrastructure was established after the accident. Laws and regulations of radiation safety and the relevant regulatory procedures must be revised. (authors)

  3. Methodology for assessing the radiological impact on environment

    International Nuclear Information System (INIS)

    Zhang Yongxing

    1988-01-01

    During the 1940s, the early stages of nuclear programmes, the assessment of the radionuclides released to the environment was first initiated for the large nuclear facilities, with emphasis placed on environmental monitoring. The radiological assessment is a quantitative process of estimating the impact on human, resulting from the releases of the radionuclides to the environment. It is a multidisciplinary subject including identification of source terms, environmental transport and dispersion, health effect evaluation and so on. This paper briefly, but comprehensively, describes the methodology for the assessment of the environmental radiological consequence, and discusses the trend of various research fields related to the subject

  4. Radiological control of the junk exports in Cuba

    International Nuclear Information System (INIS)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Zerquera, J.T.; Ramos V, O.; Alonso A, D.; Fernandez, I.M.; Caveda R, C.A.; Madrazo M, S.; Barroso P, I.

    2006-01-01

    Even when in Cuba a strict control exists on the radiation sources that enter to the country to be used in the different applications, it can be given the case that sources or contaminated materials that never were under this control due fundamentally to that entered to the country before the same one existed, appear in the junk that is marketed. In our country it is effective the Combined Resolution CITMA-MINCEX dated on April, 2002 that settles down the necessity and obligation that has all that manipulates, imports, exports or process junk of carrying out it a radiological control. From April, 2002 making use of a minimum of resources, an own methodology, a properly qualified personnel and the support of a credited laboratory by the ISO 17025 standard, the radioactivity measurement service in junk belonging to the Center of Protection and Hygiene of the Radiations (CPHR), it has reduced the risks that sources or contaminated materials are found in the junk that is exported in the main exporter companies of this line in Cuba avoiding possible radiological emergency situations that affect the population and the environment. (Author)

  5. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa

    International Nuclear Information System (INIS)

    Manickum, T.; John, W.; Terry, S.; Hodgson, K.

    2014-01-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050–5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018–0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024–0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is “Blue” – ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive “hot spots”. The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. - Highlights: • Radiological and physicochemical quality of raw and drinking water sources. • Suitability of kinetic phosphorescence analysis for Uranium analysis of water. • Suitability of gas flow proportional counting for determining radioactivity of water. • The Effective

  6. Malicious acts involving radioactive sources: prevention and preparedness for response

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2008-01-01

    Full text: The increasing concern over the malevolent use of radioactive sources and radiological terrorism demands strengthening the preparedness for response to radiological emergencies. In spite of various security measures adopted internationally, availability of orphan sources cannot be completely ruled out. The trends in terrorism also indicates the possibility of various means which may be adopted by terrorists especially if they are aware of the challenges of radioactive contamination in public domain and the capability of 'denial of area' and the fear factor which can be injected during such radiological emergencies. It is to be well understood that whatever measures are taken by some countries in preventing the sources from getting stolen or smuggled in/out of their country are not adequate to eliminate radiological terrorism in a global level unless all nations collectively address and ensure the security of radioactive sources, hence preventing the generation of any orphan sources. While preparedness for response to various radiological emergency scenario have many common factors, the challenges involved in responding to radiological terrorism involves understanding the fear factor due to the presence of radioactive contamination after the blast and thermal effects on the victims and issues like handling of contaminated and seriously injured persons, restriction on the movement of responders and forensic teams in a contaminated field etc. Hence an understanding and anticipation of all possible means of radiological terrorism is very essential to prevent and to reduce the consequences. There are many deterrents, which are to be developed and maintained by all nations collectively which should include intelligence, wide usage of radiation monitors by customs, police and other security agencies, installation of state of the art high sensitive radiation monitors and systems etc to prevent and deter stealing and illicit trafficking of radioactive sources

  7. ESR paper on the proper use of mobile devices in radiology.

    Science.gov (United States)

    2018-04-01

    Mobile devices (smartphones, tablets, etc.) have become key methods of communication, data access and data sharing for the population in the past decade. The technological capabilities of these devices have expanded very rapidly; for example, their in-built cameras have largely replaced conventional cameras. Their processing power is often sufficient to handle the large data sets of radiology studies and to manipulate images and studies directly on hand-held devices. Thus, they can be used to transmit and view radiology studies, often in locations remote from the source of the imaging data. They are not recommended for primary interpretation of radiology studies, but they facilitate sharing of studies for second opinions, viewing of studies and reports by clinicians at the bedside, etc. Other potential applications include remote participation in educational activity (e.g. webinars) and consultation of online educational content, e-books, journals and reference sources. Social-networking applications can be used for exchanging professional information and teaching. Users of mobile device must be aware of the vulnerabilities and dangers of their use, in particular regarding the potential for inappropriate sharing of confidential patient information, and must take appropriate steps to protect confidential data. • Mobile devices have revolutionized communication in the past decade, and are now ubiquitous. • Mobile devices have sufficient processing power to manipulate and display large data sets of radiological images. • Mobile devices allow transmission & sharing of radiologic studies for purposes of second opinions, bedside review of images, teaching, etc. • Mobile devices are currently not recommended as tools for primary interpretation of radiologic studies. • The use of mobile devices for image and data transmission carries risks, especially regarding confidentiality, which must be considered.

  8. Laboratory of environmental radiological surveillance; Laboratorio de vigilancia radiologica ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, A; Marcial M, F; Giber F, J; Montiel R, E; Leon del V, E; Rivas C, I; Leon G, M V; Lagunas G, E; Aragon S, R; Juarez N, A; Alfaro L, M M

    1991-12-15

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  9. Control of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de; Menezes, Sergio Ferreira; Alves Filho, Aristeu Dacio; Xavier, Ana Maria

    1997-01-01

    The radiological accident occurred in Goiania, in 1987, brought to light several deficiencies in the conduction of the licensing processes of medical, industrial and research facilities that handle radioisotopes as well as int he control of radioactive sources in Brazil. The objective of this article is to describe some of the technical and administrative measures taken to ensure the adoption of appropriate radiological safety standards throughout the country, thus reducing the incidence of radiological accidents. (author)

  10. Second Professional Specialization in Radiological Protection in Peru

    International Nuclear Information System (INIS)

    Medina-Gironzini, E.

    2004-01-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  11. Second Professional Specialization in Radiological Protection in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Gironzini, E.

    2004-07-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  12. Depleted uranium residual radiological risk assessment for Kosovo sites

    International Nuclear Information System (INIS)

    Durante, Marco; Pugliese, Mariagabriella

    2003-01-01

    During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 μSv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity

  13. Radiology and fine art.

    Science.gov (United States)

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  14. A garage sale bargain: A leaking 2.2 GBq source, Phase III - The radiological cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Vitkus, T.; Beck, W.L. [ORISE, Oak Ridge, TN (United States); Freeman, B. [Tennessee Dept. of Environment and Conservation, Knoxville, TN (United States)

    1996-06-01

    As described in a previous paper, a private residence in Bristol, Tennessee, was extensively contaminated when the owner unknowingly handled a leaking {sup 226}Ra source of about 60 mCi. Contamination was found on both floors of the two-story house and in the yard. The most extensively contaminated area was a back porch where the owner initially opened the source containment box. Contamination was probably spread most by {open_quotes}tracking{close_quotes} by the owner, his wife, and several pet cats. One of the most contaminated objects found was a pillow, a favorite napping place for the cats, which read 25 mR h{sup -1} at contact. Several decon techniques were tried including stripable paints, washing with various agents, etc. However, decontamination was primarily accomplished by physical removal techniques, such as removing carpeting, scraping and sanding wooden surfaces, and by disposal of contaminated objects (much to the owners` dismay). The house and the yard were cleaned up to meet the recommended guidelines for unrestricted release with the expenditure of about 550 hours of effort. The groups assisting the Tennessee Division of Radiological Health included the Department of Energy, Tennessee Valley Authority`s Watts Bar Nuclear Plant, Oak Ridge Institute for Science and Education, Oak Ridge National Laboratory, and Scientific Ecology Group. All of the assistance was provided at no cost to the home owner or the State of Tennessee.

  15. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  16. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  17. Radiological accident in Panama - IAEA to send assistance team

    International Nuclear Information System (INIS)

    2001-01-01

    Full text: The International Atomic Energy Agency (IAEA) is sending a team of six international experts to assist the authorities of Panama to deal with the aftermath of a radiological accident that occurred at Panama's National Oncology Institute. The Government of Panama informed the IAEA on 22 May about the accident, reported that 28 patients have been affected, and requested IAEA's assistance under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, to which Panama is a party. The assistance to be provided by the expert mission will include: ensuring that the radiation source(s) involved in the accident is (are) in a safe and secure condition; evaluating the doses incurred by the affected patients, inter alia, by analysing the treatment records and physical measurements; undertaking a medical evaluation of the affected patients' prognosis and treatment, taking into account, inter alia, the autopsy findings for those who died; and identifying issues on which the IAEA could offer to provide and/or co-ordinate assistance to minimize the consequences of the accident. The team, which includes senior experts in radiology, radiotherapy, radiopathology, radiation dosimetry and radiation protection from France, USA and Japan, and the IAEA itself, will leave for Panama tomorrow, 26 May

  18. Radiology and the mobile device: Radiology in motion

    Directory of Open Access Journals (Sweden)

    Sridhar G Panughpath

    2012-01-01

    Full Text Available The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available.

  19. Radiology and the mobile device: Radiology in motion

    International Nuclear Information System (INIS)

    Panughpath, Sridhar G; Kalyanpur, Arjun

    2012-01-01

    The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available

  20. Bacteriological Monitoring of Radiology Room Apparatus in the Department of Radiological Technology and Contamination on Hands of Radiological Technologists

    International Nuclear Information System (INIS)

    Kim, Seon Chil

    2008-01-01

    Distribution of microorganisms were examined for the bucky tables in the radiology rooms of the department of radiological technology, the aprons, handles of various apparatus, handles of mobile radiological apparatus, and hands of the radiological technologists. As a result, relatively larger amounts of bacteria were found on the handles of the mobile radiological apparatus and the aprons. Among the isolated bacteria, Acinetobacter baumanni (7.3%), Klebsiella pneumoniae (6.7%), Staphylococcus aureus (3.9%), Serratia liquefaciens (1.7%), Enterobacter cloaceae (0.6%), Providenica rettgeri (0.6%) are known as the cause of nosocomial infection (hospital acquired infection). In addition, similar colonies were also found on the hands of the radiological technologists such as microorganisms of Klebsiella pneumoniae (8.4%), Staphylococcus aureus (6.6%), Yersinia enterocolotica (5.4%), Acinetobacter baumanni (4.2%), Enterobacter cloaceae (2.4%), Serratia liquefaciens (1.8%), Yersinia pseuotuberculosis (18%), Enterobacter sakazakii (1.2%), and Escherichia coli (0.6%). In particular, this result indicates clinical significance since Staphylococcus aureus and Escherichia coli show strong pathogenicity. Therefore, a continuous education is essential for the radiological technologists to prevent the nosocomial infection.

  1. Bacteriological Monitoring of Radiology Room Apparatus in the Department of Radiological Technology and Contamination on Hands of Radiological Technologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Chil [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of)

    2008-12-15

    Distribution of microorganisms were examined for the bucky tables in the radiology rooms of the department of radiological technology, the aprons, handles of various apparatus, handles of mobile radiological apparatus, and hands of the radiological technologists. As a result, relatively larger amounts of bacteria were found on the handles of the mobile radiological apparatus and the aprons. Among the isolated bacteria, Acinetobacter baumanni (7.3%), Klebsiella pneumoniae (6.7%), Staphylococcus aureus (3.9%), Serratia liquefaciens (1.7%), Enterobacter cloaceae (0.6%), Providenica rettgeri (0.6%) are known as the cause of nosocomial infection (hospital acquired infection). In addition, similar colonies were also found on the hands of the radiological technologists such as microorganisms of Klebsiella pneumoniae (8.4%), Staphylococcus aureus (6.6%), Yersinia enterocolotica (5.4%), Acinetobacter baumanni (4.2%), Enterobacter cloaceae (2.4%), Serratia liquefaciens (1.8%), Yersinia pseuotuberculosis (18%), Enterobacter sakazakii (1.2%), and Escherichia coli (0.6%). In particular, this result indicates clinical significance since Staphylococcus aureus and Escherichia coli show strong pathogenicity. Therefore, a continuous education is essential for the radiological technologists to prevent the nosocomial infection.

  2. Oil wells and gas wells: aspects of radiological safety

    International Nuclear Information System (INIS)

    Soares, S.M.V.O.

    1987-01-01

    The objective of the present work is to present and analyse the main radiological protection problems associated with non destructive inspections of oil wells, with the view of minimizing the dose to members of the public living in nearby urban zones. Problems related to the surveillance of such activities and the need for well formulated procedures are also discussed based on specific Brasilian regulations. Finally, some examples of radiological accidents that have occured in urban zones are described including the methodology employed for the rescue of Iridium-192 sources and for the estimate of radiation doses for workers and general public. (author) [pt

  3. Portrayal of radiology in a major medical television series: How does it influence the perception of radiology among patients and radiology professionals?

    International Nuclear Information System (INIS)

    Heye, T.; Merkle, E.M.; Boll, D.T.; Leyendecker, J.R.; Gupta, R.T.

    2016-01-01

    To assess how the portrayal of Radiology on medical TV shows is perceived by patients and radiology professionals. In this IRB-approved study with patient consent waived, surveys were conducted among adult patients scheduled for radiological examinations and radiology professionals. The questionnaire investigated medical TV watching habits including interest in medical TV shows, appearance of radiological examination/staff, radiology's role in diagnosis-making, and rating of the shows' accuracy in portraying radiology relative to reality. One hundred and twenty-six patients and 240 professionals (133 technologists, 107 radiologists) participated. 63.5 % patients and 63.2 % technologists rated interest in medical TV shows ≥5 (scale 1-10) versus 38.3 % of radiologists. All groups noted regular (every 2nd/3rd show) to >1/show appearance of radiological examinations in 58.5-88.2 % compared to 21.0-46.2 % for radiological staff appearance. Radiology played a role in diagnosis-making regularly to >1/show in 45.3-52.6 %. There is a positive correlation for interest in medical TV and the perception that radiology is accurately portrayed for patients (r = 0.49; P = 0.001) and technologists (r = 0.38; P = 0.001) but not for radiologists (r = 0.01). The majority of patients perceive the portrayed content as accurate. Radiologists should be aware of this cultivation effect to understand their patients' behaviour which may create false expectations towards radiological examinations and potential safety hazards. (orig.)

  4. Quality assurance programme in diagnostic radiology

    International Nuclear Information System (INIS)

    Yacovenco, A.A.

    1996-01-01

    One hundred years after the discovery of X-rays, they continue being nowadays part of physicians' daily activities, and the diagnosis through the use of X-ray equipment is one of the most important fields in clinical medicine, thus becoming the most important cause of human exposure to artificial sources. For this reason, in the last twenty years, most of the developed countries did the utmost to establish programs which could warrant the quality of the radiographic image. Aiming the protection of human being against the harmful effects of ionizing radiations, in December 1980, World Health Organization decided to form a group of professionals highly experienced in medical radiology, and initiate an inspection and quality control program. In September 1988, the Group of Studies of the Program Related to Radiological Protection of the Commission in the European Communities, prepared a working paper in which guidelines were set up regarding quality of images, dosage to patient, and associated radiographic factors, necessary to obtain acceptable radiologic performance. In Brazil, efforts driven in this direction, guided by some equipment testing, starting in 1990, began to be more known. When the Director and the Head of Radiology in the Military Police Hospital of the State of Rio de Janeiro (HPM) reamed about these efforts, they decided to contact the Institute for Radioprotection and Dosimetry (IRD) of Comissao Nacional de Energia Nuclear and submit the problem of low radiologic performance and increasing rates of rejection. Thus, with the coincidence of interests and needs, along with a proposal from the Commission of the European Communities (CEC), IRD decided to offer the author laboratory support to elaborate a Quality Assurance Program (QAP) to be implemented in HPM. (author)

  5. Recommended protocol for standardization in collecting and interpreting radiological environmental data

    International Nuclear Information System (INIS)

    Denham, D.H.; Kathren, R.L.

    1989-02-01

    Current reductions in ''allowable'' levels of radiation and radioactive materials in the environment and an increased public awareness of naturally occurring radioactive materials have reinforced the need for consistency in evaluating the radiological environment. A key concern is the identification and interpretation of environmental levels of radiation and radioactive materials resulting from nuclear facility operations. If these levels can be detected and their source(s) identified, then corrective actions can be taken to eliminate or greatly reduce the environmental impacts of the facility operations. In this paper we address the lack of definitive guidance necessary to determine incremental levels of significance (or insignificance), and we propose a series of protocols to achieve more consistent collection and interpretation of radiological environmental data. 8 refs

  6. Entrepreneurship in the academic radiology environment.

    Science.gov (United States)

    Itri, Jason N; Ballard, David H; Kantartzis, Stamatis; Sullivan, Joseph C; Weisman, Jeffery A; Durand, Daniel J; Ali, Sayed; Kansagra, Akash P

    2015-01-01

    Innovation and entrepreneurship in health care can help solve the current health care crisis by creating products and services that improve quality and convenience while reducing costs. To effectively drive innovation and entrepreneurship within the current health care delivery environment, academic institutions will need to provide education, promote networking across disciplines, align incentives, and adapt institutional cultures. This article provides a general review of entrepreneurship and commercialization from the perspective of academic radiology departments, drawing on information sources in several disciplines including radiology, medicine, law, and business. Our review will discuss the role of universities in supporting academic entrepreneurship, identify drivers of entrepreneurship, detail opportunities for academic radiologists, and outline key strategies that foster greater involvement of radiologists in entrepreneurial efforts and encourage leadership to embrace and support entrepreneurship. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  7. Current radiology. Volume 5

    International Nuclear Information System (INIS)

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular

  8. Laboratory of environmental radiological surveillance; Laboratorio de vigilancia radiologica ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M

    1991-12-15

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  9. Medical Ethics in Radiology

    International Nuclear Information System (INIS)

    Kim, Kyung Won; Park, Jae Hyung; Yoon, Soon Ho

    2010-01-01

    According to the recent developments in radiological techniques, the role of radiology in the clinical management of patients is ever increasing and in turn, so is the importance of radiology in patient management. Thus far, there have been few open discussions about medical ethics related to radiology in Korea. Hence, concern about medical ethics as an essential field of radiology should be part of an improved resident training program and patient management. The categories of medical ethics related with radiology are ethics in the radiological management of patient, the relationship of radiologists with other medical professionals or companies, the hazard level of radiation for patients and radiologists, quality assurance of image products and modalities, research ethics, and other ethics issues related to teleradiology and fusion imaging. In order to achieve the goal of respectful progress in radiology as well as minimizing any adverse reaction from other medical professions or society, we should establish a strong basis of medical ethics through the continuous concern and self education

  10. Analysis of papers in radiological journals in recent years: a comparison of journal of Korean radiologic society and radiology

    International Nuclear Information System (INIS)

    Kim, Jin Suh; Kim, Jae Kyun; Han, Dong Bok; Lim, Tae Hwan

    1997-01-01

    The purpose of this study was to determine current trends and the mode of future development in the field of medical radiology and to promote research among the nation's radiologists by analyzing the contents of the Journal of the Korean Radiologic Society(JKRS) and Radiology. The number of articles published in JKRS each year between 1990 and 1994 was counted. The research articles in JKRS(n=740) and in Radiology(n=1748) between 1992 and 1994 were categorized according to the objective, type, topic, materials, and radiologic techniques of their contents on the basis of predetermined criteria. Domestic Masters theses(n=126) and doctoral dissertations(n=75) accepted between 1990 and 1994, and domestic materials published in international journals (n=416) between 1986 and 1994 were also categorized using the same criteria. The greatest increase in the number of articles published in JKRS was seen during 1994. The majority of these aimed to retrospectively analyse the findings of diseases while the majority of articles published in Radiology dealt prospectively with the development and/or evaluation of diagnostic methods. More variety of topics and issues was seen in Radiology than in JKRS. The number of articles of domestic materials published in international journals increased from 1986 to 1994, while the number of articles of foreign materials published in Korea was relatively stationary : A significant number of theses and dissertations dealt, mostly prospectively, with studies of pathophysiologic and/or pharmacologic mechanisms using animal models. In order to understand both current trends and the direction and mode of future developments in the field of radiology, and to be able to actively deal with challenges at the forefront of radiologic development, it is essential to review research articles published in radiology-related journals

  11. Routine use of radiologic investigations WHO recommendations

    International Nuclear Information System (INIS)

    Racoveanu, N.T.

    1987-01-01

    The concern for unjustified radiological investigations started in the early fifties when medical irradiation was recognized to be the major source of population exposure to man-made ionizing radiations. This continues to be of major concern to many national and international bodies when analyzing the data on x-ray investigations and attempting to develop measures to limit their use. The Commission of European Communities (CEC) has also been motivated by the same approach - the decrease of the population dose commitment - in the studies made on radiological mass screening within the Member States of the European Community presented at a Technical Workshop held on 4-5 December 1985 in Luxembourg. Although such an approach seems to be appealing to a very large number of people sensitive to the potential hazards represented by ionizing radiations for exposed individuals and their offspring, a number of other factors, with more direct implications for the health authorities, have been recognized in the last 10-15 years as major reasons for limiting the use of radiologic procedures. As such factors are fully recognized and endorsed by WHO policy, and expressed in WHO Technical Reports Nos 689 and 723, this presentation will take into consideration these factors and not the problem of patient and population protection, which is directly implied when the radiologic investigations are limited only to those clinically justified

  12. Assessment of SRS radiological liquid and airborne contaminants and pathways

    International Nuclear Information System (INIS)

    Jannik, G.T.

    1997-04-01

    This report compiles and documents the radiological critical-contaminant/critical-pathway analysis performed for SRS. The analysis covers radiological releases to the atmosphere and to surface water, which are the principal media that carry contaminants off site. During routine operations at SRS, limited amounts of radionuclides are released to the environment through atmospheric and/or liquid pathways. These releases potentially result in exposure to offsite people. Though the groundwater beneath an estimated 5 to 10 percent of SRS has been contaminated by radionuclides, there is no evidence that groundwater contaminated with these constituents has migrated offsite (Arnett, 1996). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people

  13. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  14. A Probabilistic Assessment of the Chemical and Radiological Risks of Chronic Exposure to Uranium in Freshwater Ecosystems

    International Nuclear Information System (INIS)

    Mathews, T.; Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Adam, Ch.; Della-Vedova, C.

    2009-01-01

    Uranium (U) presents a unique challenge for ecological risk assessments (ERA) because it induces both chemical and radiological toxicity, and the relative importance of these two toxicities differs among the various U source terms (i.e., natural, enriched, depleted). We present a method for the conversion between chemical concentrations (μgL -1 ) and radiological dose rates (μGyh -1 ) for a defined set of reference organisms, and apply this conversion method to previously derived chemical and radiological benchmarks to determine the extent to which these benchmarks ensure radiological and chemical protection, respectively, for U in freshwater ecosystems. Results show that the percentage of species radiologically protected by the chemical benchmark decreases with increasing degrees of U enrichment and with increasing periods of radioactive decay. In contrast, the freshwater ecosystem is almost never chemically protected by the radiological benchmark, regardless of the source term or decay period considered, confirming that the risks to the environment from uranium's chemical toxicity generally outweigh those of its radiological toxicity. These results are relevant to developing water quality criteria that protect freshwater ecosystems from the various risks associated with the nuclear applications of U exploitation, and highlight the need for (1) further research on the speciation, bioavailability, and toxicity of U-series radionuclides under different environmental conditions, and (2) the adoption of both chemical and radiological benchmarks for coherent ERAS to be conducted in U-contaminated freshwater ecosystems. (authors)

  15. Sealed source peer review plan

    International Nuclear Information System (INIS)

    Feldman, Alexander; Leonard, Lee; Burns, Ron

    2009-01-01

    Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR (section) 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements

  16. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Micheal A.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Dwyer, Kathy; Yu-Moe, Winnie [CRICO Risk Management Foundation, Boston, MA (United States)

    2017-06-15

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality

  17. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    International Nuclear Information System (INIS)

    Breen, Micheal A.; Taylor, George A.; Dwyer, Kathy; Yu-Moe, Winnie

    2017-01-01

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality implicated in

  18. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims.

    Science.gov (United States)

    Breen, Micheál A; Dwyer, Kathy; Yu-Moe, Winnie; Taylor, George A

    2017-06-01

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality implicated in

  19. Questions to the radiological protection in the Universidad Nacional Autonoma de Mexico

    International Nuclear Information System (INIS)

    Salas M, B.

    2014-08-01

    In the Physics Department of the Sciences Faculty of the Universidad Nacional Autonoma de Mexico (UNAM) exist at least 3 sites where radioactive sources and generating equipment s of ionizing radiation are managed: The Modern Physics Laboratory, the Radiological Analysis of Environmental Samples Workshop and the Collisions Workshop; the first of them has two neutron sources, in addition to other emitted sources of gamma and beta radiation. The neutron sources are of Americium 241-Beryllium and other of Californium-252 which have been operated outside of the control of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) that is the regulator organ in Mexico in nuclear matter, because the Operation License No. 183/85, with file number 657 that protected them, lost their validity from August 13, 1987 (25 years behind), what motivated to that the CNSNS assured them. Later to the closing of the Radiological Analysis of Environmental Samples Workshop was believed that a Barium-133 source had been extracted in an illegal way; an investigation realized by the CNSNS determined that the radioactive source was always inside of the detection systems and radiation measurement, for what this source was never lost. In the Collisions Workshop operated an Experimental Accelerator of Particles that the CNSNS prohibited its operation for not having the corresponding license. These examples can be considered as bad practices of radiological protection that should be pointed out to eradicate their promotion and to avoid this way the exposure to the radiation of the occupational exposed personnel and people in general, being also avoided dose of unnecessary radiation. The Instituto Federal de Acceso a la Informacion Publica y Proteccion de Datos (IFAI) in Mexico was a key factor to obtain the information that allowed the realization of this work that was carried out in the Sciences Faculty of the UNAM. (Author)

  20. Establishing a health outcomes and economics center in radiology: strategies and resources required

    International Nuclear Information System (INIS)

    Medina, Santiago L.; Altman, Nolan R.

    2002-01-01

    To describe the resources and strategies required to establish a health outcomes and economics center in radiology.Methods. Human and nonhuman resources required to perform sound outcomes and economics studies in radiology are reviewed.Results. Human resources needed include skilled medical and nonmedical staff. Nonhuman resources required are: (1) communication and information network; (2) education tools and training programs; (3) budgetary strategies; and (4) sources of income. Effective utilization of these resources allows the performance of robust operational and clinical research projects in decision analysis, cost-effectiveness, diagnostic performance (sensitivity, specificity, and ROC curves), and clinical analytical and experimental studies.Conclusion. As new radiologic technology and techniques are introduced in medicine, society is increasingly demanding sound clinical studies that will determine the impact of radiologic studies on patient outcome. Health-care funding is scarce, and therefore third-party payers and hospitals are demanding more efficiency and productivity from radiologic service providers. To meet these challenges, radiology departments could establish health outcomes and economics centers to study the clinical effectiveness of imaging and its impact on patient outcome. (orig.)

  1. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    International Nuclear Information System (INIS)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip

    2015-01-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  2. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip [University of Florida, Gainesville, FL 32611 (United States)

    2015-07-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  3. Discussion on the method of environmental radiological impact assessment for the highway construction project

    International Nuclear Information System (INIS)

    Qiu Guohua

    2008-01-01

    Based on the characteristics and environmental radiological impact of the highway construction project, the basic procedure of environmental radiological impact assessment for the highway construction project is put forward, including analysis and determination of contamination sources, selection of evaluation factors, determination of assessment range and dose limit, environmental investigation, environmental impact prediction and assessment. The working method of each procedure is analyzed. (authors)

  4. Machine learning and radiology.

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  5. Radiology in Medical Education: A Pediatric Radiology Elective as a Template for Other Radiology Courses.

    Science.gov (United States)

    Hilmes, Melissa A; Hyatt, Eddie; Penrod, Cody H; Fleming, Amy E; Singh, Sudha P

    2016-03-01

    Traditionally, the pediatric radiology elective for medical students and pediatric residents constituted a morning teaching session focused mainly on radiography and fluoroscopy. A more structured elective was desired to broaden the exposure to more imaging modalities, create a more uniform educational experience, and include assessment tools. In 2012, an introductory e-mail and formal syllabus, including required reading assignments, were sent to participants before the start date. A rotating weekly schedule was expanded to include cross-sectional imaging (ultrasound, CT, MR) and nuclear medicine. The schedule could accommodate specific goals of the pediatric resident or medical student, as requested. Starting in 2013, an online pre-test and post-test were developed, as well as an online end-of-rotation survey specific to the pediatric radiology elective. Taking the Image Gently pledge was required. A scavenger hunt tool, cue cards, and electronic modules were added. Pre-test and post-test scores, averaged over 2 years, showed improvement in radiology knowledge, with scores increasing by 27% for medical students and 21% for pediatric residents. Surveys at the end of the elective were overwhelmingly positive, with constructive criticism and complimentary comments. We have successfully created an elective experience in radiology that dedicates time to education while preserving the workflow of radiologists. We have developed tools to provide a customized experience with many self-directed learning opportunities. Our tools and techniques are easily translatable to a general or adult radiology elective. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. Radiological Impacts Assessment during Normal Decommissioning Operation for EU-APR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Hyun; Lee, Keun Sung [KHNP CRI, Daejeon (Korea, Republic of); Lee, ChongHui [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    In this paper, radiological impacts on human beings during normal execution of the decommissioning operations from the current standard design of EU-APR which has been modified and improved from its original design of APR1400 to comply with EUR, are evaluated. Decommissioning is the final phase in the life cycle of a nuclear installation, covering all activities from shutdown and removal of fissile material to environmental restoration of the site. According to article 5.4 specified in chapter 2.20 of European Utility Requirements (EUR), all relevant radiological impacts on human being should be considered during the environmental assessment of decommissioning, including external exposure from direct radiation of plant and other radiation sources, and internal exposure due to inhalation and ingestion. In this paper, radiological impacts on human beings during normal circumstances of the decommissioning operation were evaluated from the current standard design of EU-APR based on the simple transport model and practical generic methodology for assessing the radiological impact provided by IAEA. The results of dose assessment fulfilled the dose limit for all scenarios.

  7. Radiological surveillance in the nuclear fuel fabrication in Mexico

    International Nuclear Information System (INIS)

    Garcia A, J.; Reynoso V, R.; Delgado A, G.

    1996-01-01

    The objective of this report is to present the obtained results related to the application of the radiological safety programme established at the Nuclear Fuel Fabrication Pilot Plant (NFFPF) in Mexico, such as: surveillance methods, radiological protection criteria and regulations, radiation control and records and the application of ALARA recommendation. During the starting period from April 1994 to April 1995, at the NFFPF were made two nuclear fuel bundles a Dummy and other to be burned up in a BWR the mainly process activities are: UO 2 powder receiving, powder pressing for the pellets formation, pellets grinding, cleaning and drying, loading into a rod, Quality Control testing, nuclear fuel bundles assembly. The NFFPF is divided into an unsealed source area (pellets manufacturing plant) and into a sealed source area (rods fabrication plant). The control followed have helped to detect failures and to improve the safety programme and operation. (authors). 1 ref., 3 figs

  8. Compilation of historical radiological data collected in the vicinity of the WIPP site

    International Nuclear Information System (INIS)

    Bradshaw, P.L.; Louderbough, E.T.

    1987-01-01

    The Radiological Baseline Program (RBP) at the Waste Isolation Pilot Plant (WIPP) has been implemented to characterize the radiological conditions at the site prior to receipt of radioactive wastes. Because southeastern New Mexico was the site of an underground nuclear test in 1961, various sampling programs have intermittently monitored background and elevated radiation levels in the vicinity of the WIPP. In addition, radiological characterization of the site region was performed during the 1970's in support of the WIPP Environmental Impact Statement. The historical data are drawn primarily from monitoring activities of the US Public Health Service (PHS), the Environmental Protection Agency (EPA), US Geological Survey (USGS) and Sandia National Laboratories, Albuquerque (SNLA). Information on air and water quality, meat, milk, biota and vegetation is included in the report. This survey is intended to provide a source of reference for historical data on radiological conditions in the vicinity of the WIPP site prior to the establishment of a systematic Radiological Baseline Program. 31 refs., 1 fig

  9. Physical protection of mobile radioactive sources commonly used in the well logging and industrial radiography industries

    International Nuclear Information System (INIS)

    Barlow, Maegon E.

    2016-01-01

    The mission of the U.S. Department of Energy/National Nuclear Security Administration's (NNSA) Office of Radiological Security (ORS) is to protect high-activity radiological materials around the globe. ORS works domestically within the United States and collaborates with over 80 countries to protect medical, industrial, research and other radiological sources from being used by malicious actors in a radiological dispersal device (RDD) or radiation exposure device (RED). One area of specific concern is mobile radioactive sources, such as those used in radiography to inspect welds or metal integrity, and those in the oil and gas industry to characterize exploration and production wells in pursuit of oil caches. These mobile radiological sources are of sufficient Curie quantities to be categorized as desirable sources for malicious actors. This presentation will provide an overview of a mobile source tracking system developed by ORS in conjunction with Pacific Northwest National Laboratory (PNNL), and will discuss how the system can contribute to source security, as well as next steps to pilot this technology

  10. Radiology education: a radiology curriculum for all medical students?

    Science.gov (United States)

    Zwaan, Laura; Kok, Ellen M; van der Gijp, Anouk

    2017-09-26

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some people argue that non-radiologists should not diagnose medical images at all, and that medical school should focus on teaching ordering skills instead of image interpretation skills. We agree that teaching ordering skills is crucial as most physicians will need to order medical images in their professional life. However, we argue that the availability of medical images is so ubiquitous that it is important that non-radiologists are also trained in the basics of medical image interpretation and, additionally in recognizing when radiological consultancy should be sought. In acute situations, basic image interpretations skills can be life-saving. We plead for a radiology curriculum for all medical students. This should include the interpretation of common abnormalities on chest and skeletal radiographs and a basic distinction of normal from abnormal images. Furthermore, substantial attention should be given to the correct ordering of radiological images. Finally, it is critical that students are trained in deciding when to consult a radiologist.

  11. Radiation protection and quality assurance in dental radiology: II. Panoramic radiology

    International Nuclear Information System (INIS)

    Jodar-Porlan, S.; Alcaraz, M.; Martinez-Beneyto, Y.; Saura-Iniesta, A.M.; Velasco-Hidalgo, E.

    2001-01-01

    This paper studies 278 official reports on quality assurance in dental radiology in the context of the first revision of these dental clinics, as a result of the entry into force of the regulations establishing the duties for these types of facilities. In the results section we present a quantitative analysis of the facilities equipped with an panoramic radiology apparatus, making a special reference to the brands they have available, as well as their physical features (kV, mA, filtration) and the deviations detected in their operation. Some of their features in the process of obtaining radiological images at those facilities (film control, development time, liquid renewal) are determined, and the average dose of ionising radiation used in order to obtain the same tooth radiological image is presented. This paper shows, in a quantitative way, the characteristic features of panoramic radiology in our medium. The study is intended to be continued during the next years, which would allow the assessment of the prospective improvement in dental radiological performances as a result of the newly established regulations. (author)

  12. Cognitive and system factors contributing to diagnostic errors in radiology.

    Science.gov (United States)

    Lee, Cindy S; Nagy, Paul G; Weaver, Sallie J; Newman-Toker, David E

    2013-09-01

    In this article, we describe some of the cognitive and system-based sources of detection and interpretation errors in diagnostic radiology and discuss potential approaches to help reduce misdiagnoses. Every radiologist worries about missing a diagnosis or giving a false-positive reading. The retrospective error rate among radiologic examinations is approximately 30%, with real-time errors in daily radiology practice averaging 3-5%. Nearly 75% of all medical malpractice claims against radiologists are related to diagnostic errors. As medical reimbursement trends downward, radiologists attempt to compensate by undertaking additional responsibilities to increase productivity. The increased workload, rising quality expectations, cognitive biases, and poor system factors all contribute to diagnostic errors in radiology. Diagnostic errors are underrecognized and underappreciated in radiology practice. This is due to the inability to obtain reliable national estimates of the impact, the difficulty in evaluating effectiveness of potential interventions, and the poor response to systemwide solutions. Most of our clinical work is executed through type 1 processes to minimize cost, anxiety, and delay; however, type 1 processes are also vulnerable to errors. Instead of trying to completely eliminate cognitive shortcuts that serve us well most of the time, becoming aware of common biases and using metacognitive strategies to mitigate the effects have the potential to create sustainable improvement in diagnostic errors.

  13. Identification and characterization of scenarios of natural source, representation of the same ones by means of radiological maps

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Alonso Abad, Dolores; Gil Castillo, Reynaldo; Castillo Gomez, Rafael; Ramos Viltre, Enma O.

    2008-01-01

    The National Network of Environmental Radiological Surveillance of the Cuba Republic (NNERS) between their main functions of controlling permanently, from the radiological point of view, the environment in the whole national territory, monitoring, among other indicators, the environmental gamma dose rate. This monitoring is carried out in 18 radiological posts distributed by the whole country that gives us an idea of the atmospheric gamma background of a certain region. The influence of the natural sources scenarios in the measurement of the gamma dose rate, results in the variability of the measurement inside oneself region and even in distances so short as 500 meters the variation can be between the 30 or 40 nGy/h, for that, when we estimate the exhibition dose to which the population is subjected, we would introduce a great error when we take like base the gamma dose rate of the region in study. The study of the environmental gamma background was carried out in Havana City, using a mobile gamma dose rate system, with a high sensibility and a very low time of answer. The used system is able to register in real time the position and the gamma dose rate. The monitoring carries out from an automobile, using an interval of measurement of 10 seconds. The obtained results are classified by measurements ranges, and they were associated to different codes of colors and were showed in a map for a better interpretation and visualization of the same ones. Computer tools were developed for do that. The average value of dose rate in Havana City (taking into account the contribution of the cosmic radiation) is 55,6 nGy/h, similar to the national historical average reported by the NNERS that is of 55,3 nGy/h. The municipality of higher dose rate was Cerro with 61,3 nGy/h, and that of lower value was San Miguel del Padron with 51,9 nGy/h. If we discard the contribution of the cosmic radiation, the dose rate in air in Havana City is below 50 % of the world average. (author)

  14. Radiology education: a radiology curriculum for all medical students?

    NARCIS (Netherlands)

    Zwaan, Laura; Kok, E.M.; van der Gijp, Anouk

    2017-01-01

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some

  15. Radiological optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1998-01-01

    Radiological optimization is one of the basic principles in each radiation-protection system and it is a basic requirement in the safety standards for radiation protection in the European Communities. The objectives of the research, performed in this field at the Belgian Nuclear Research Centre SCK-CEN, are: (1) to implement the ALARA principles in activities with radiological consequences; (2) to develop methodologies for optimization techniques in decision-aiding; (3) to optimize radiological assessment models by validation and intercomparison; (4) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (5) to develop methods and programmes to assist decision-makers during a nuclear emergency; (6) to support the policy of radioactive waste management authorities in the field of radiation protection; (7) to investigate existing software programmes in the domain of multi criteria analysis. The main achievements for 1997 are given

  16. Estimates of radiological risk from depleted uranium weapons in war scenarios.

    Science.gov (United States)

    Durante, Marco; Pugliese, Mariagabriella

    2002-01-01

    Several weapons used during the recent conflict in Yugoslavia contain depleted uranium, including missiles and armor-piercing incendiary rounds. Health concern is related to the use of these weapons, because of the heavy-metal toxicity and radioactivity of uranium. Although chemical toxicity is considered the more important source of health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict, and uranium munitions are a possible source of contamination in the environment. Actual measurements of radioactive contamination are needed to assess the risk. In this paper, a computer simulation is proposed to estimate radiological risk related to different exposure scenarios. Dose caused by inhalation of radioactive aerosols and ground contamination induced by Tomahawk missile impact are simulated using a Gaussian plume model (HOTSPOT code). Environmental contamination and committed dose to the population resident in contaminated areas are predicted by a food-web model (RESRAD code). Small values of committed effective dose equivalent appear to be associated with missile impacts (50-y CEDE radiological risk. These computer simulations suggest that little radiological risk is associated to the use of depleted uranium weapons.

  17. Radiology systems architecture.

    Science.gov (United States)

    Deibel, S R; Greenes, R A

    1996-05-01

    This article focuses on the software requirements for enterprise integration in radiology. The needs of a future radiology systems architecture are examined, both at a concrete functional level and at an abstract system-properties level. A component-based approach to software development is described and is validated in the context of each of the abstract system requirements for future radiology computing environments.

  18. Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain

    International Nuclear Information System (INIS)

    Walker, Randy M.; Kopsick, Deborah A; Warren, Tracy A; Abercrombie, Robert K.; Sheldon, Frederick T; Hill, David E.; Gross, Ian G; Smith, Cyrus M.

    2007-01-01

    One of the main components of the Environmental Protection Agency's (EPA) Clean Materials Program is to prevent the loss of radioactive materials through the use of tracking technologies. If a source is inadvertently lost or purposely abandoned or stolen, it is critical that the source be recovered before harm to the public or the environment occurs. Radio frequency identification (RFID) tagging on radioactive sources is a technology that can be operated in the active or passive mode, has a variety of frequencies available allowing for flexibility in use, is able to transmit detailed data and is discreet. The purpose of the joint DOE and EPA Radiological Source Tracking and Monitoring (RadSTraM) project is to evaluate the viability, effectiveness and scalability of RFID technology under a variety of transportation scenarios. The goal of the Phase II was to continue testing integrated RFID tag systems from various vendors for feasibility in tracking radioactive sealed sources which included the following performance objectives: 1. Validate the performance of RFID intelligent systems to monitor express air shipments of medical radioisotopes in the nationwide supply chain, 2. Quantify the reliability of these tracking systems with regards to probability of tag detection and operational reliability, 3. Determine if the implementation of these systems improves manpower effectiveness, and 4. Demonstrate that RFID tracking and monitoring of radioactive materials is ready for large scale deployment at the National level. For purposes of analysis, the test scenario employed in this study utilized the real world commerce supply chain process for radioactive medical isotopes to validate the performance of intelligent RFID tags. Three different RFID systems were assessed from a shipping and packaging perspective, included varied environmental conditions, varied commodities on board vehicles, temporary staging in shipping terminals using various commodities and normal

  19. Radiological controls integrated into design

    Energy Technology Data Exchange (ETDEWEB)

    Kindred, G.W. [Cleveland Electric Illuminating Co., Perry, OH (United States)

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  20. New era of the relationship between Chinese interventional radiology sub-society and journal of interventional radiology

    International Nuclear Information System (INIS)

    Li Linsun

    2009-01-01

    The past decades have witnessed interventional radiology in China to go from a very initial clinical practice to an important medical player in modern medicine. Recently, a friendly collaboration has been successfully established between the Chinese Interventional Radiology Sub-society and the Journal of Interventional Radiology. The Chinese Interventional Radiology Sub-society will take the full responsibility for the academic governance of the Journal of Interventional Radiology and the Journal of Interventional Radiology will formally become the sole interventional academic periodical of the Chinese Interventional Radiology Sub-society in China. This collaboration will surely make Chinese interventional radiology to initiate a new era,promote the further development of interventional radiology at home and enable the Journal of Interventional Radiology to step into the international medical circle. (authors)

  1. Apparatus for radiological examination of a subject through a solid angle

    International Nuclear Information System (INIS)

    Grady, J.K.; Rice, D.B.

    1975-01-01

    A framework supporting a radiation source, such as an x-ray tube, and a radiation receptor, such as an x-ray film plate holder, comprises four arms pivotally connected to form a regular parallelogram, a parallel pair of the arms extending outside the parallelogram to pivot points for the radiation source and receptor. The parallelogram is mounted on a rotor whose central axis is parallel to the parallel pair of arms. Two links between another one of the arms and the source and receptor respectively, and parallel to the central axis, hold the axis of the source and receptor aligned on a radiation axis which passes through an isocenter on the central axis as the parallelogram is angularly adjusted in planes parallel to the central axis. The angular adjustment of the parallelogram combined with turning of the parallelogram on the rotor permit the source to radiate through a subject at the isocenter, for example the human heart or brain, from throughout a solid angle while maintaining constant radiological distance between the source and subject and a constant axial alignment of the source and receptor. The radiological magnification may also be kept constant, or the receptor may be adjusted along its axis, in which case a counterweight reciprocating along the transverse arm and connected to the receptor by two cables counterbalances the receptor in all solid angle positions. (auth)

  2. Procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Doyle, T.; Hare, W.S.C.; Thomson, K.; Tess, B.

    1989-01-01

    This book outlines the various procedures necessary for the successful practice of diagnostic radiology. Topics covered are: general principles, imaging of the urinary and gastrointestinal tracts, vascular radiology, arthrography, and miscellaneous diagnostic radiologic procedures

  3. Socioeconomic trends in radiology

    International Nuclear Information System (INIS)

    Barneveld Binkhuysen, F.H.

    1998-01-01

    For radiology the socioeconomic environment is a topic of increasing importance. In addition to the well-known important scientific developments in radiology such as interventional MRI, several other major trends can be recognized: (1) changes in the delivery of health care, in which all kinds of managed care are developing and will influence the practice of radiology, and (2) the process of computerization and digitization. The socioeconomic environment of radiology will be transformed by the developments in managed care, teleradiology and the integration of information systems. If radiologists want to manage future radiology departments they must have an understanding of the changes in the fields of economics and politics that are taking place and that will increasingly influence radiology. Some important and recognizable aspects of these changes will be described here. (orig.)

  4. International scaling of nuclear and radiological events

    International Nuclear Information System (INIS)

    Wang Yuhui; Wang Haidan

    2014-01-01

    Scales are inherent forms of measurement used in daily life, just like Celsius or Fahrenheit scales for temperature and Richter for scale for earthquakes. Jointly developed by the IAEA and OECD/NEA in 1990, the purpose of International Nuclear and Radiological Event Scale (INES) is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. Since its inception, it has been adopted in 69 countries. Events are classified on the scale at seven levels: Levels 1-3 are called 'incidents' and Levels 4-7 'accidents'. The scale is designed so that the severity of an event is about ten times greater for each increase in level on the scale. Events without safety significance are called 'deviations' and are classified Below Scale/Level 0. INES classifies nuclear and radiological accidents and incidents by considering three areas of impact: People and the Environment; Radiological Barriers and Control; Defence-in-Depth. By now, two nuclear accidents were on the highest level of the scale: Chernobyl and Fukumashi. (authors)

  5. Herbert M. Parker: Publications and contributions to radiological and health physics

    International Nuclear Information System (INIS)

    Kathren, R.L.; Baalman, R.W.; Bair, W.J.

    1986-01-01

    For more than a half century, Herbert M. Parker was a leading force in radiological physics. As a scientist, he was codeveloper of a systematic dosimetry scheme for implant therapy and the innovative proposer of radiological units with unambiguous physical and biological bases. He made seminal contributions to the development of scientifically based radiation protection standards and, as an administrator and manager as well as scientist, helped the Hanford Laboratories to achieve preeminance in several areas, including radiation biology, radioactive waste disposal, and environmental radioactivity. This volume brings together, sometimes from obscure sources, his works

  6. Role of interventional radiology in the management of acute gastrointestinal bleeding

    Science.gov (United States)

    Ramaswamy, Raja S; Choi, Hyung Won; Mouser, Hans C; Narsinh, Kazim H; McCammack, Kevin C; Treesit, Tharintorn; Kinney, Thomas B

    2014-01-01

    Acute gastrointestinal bleeding (GIB) can lead to significant morbidity and mortality without appropriate treatment. There are numerous causes of acute GIB including but not limited to infection, vascular anomalies, inflammatory diseases, trauma, and malignancy. The diagnostic and therapeutic approach of GIB depends on its location, severity, and etiology. The role of interventional radiology becomes vital in patients whose GIB remains resistant to medical and endoscopic treatment. Radiology offers diagnostic imaging studies and endovascular therapeutic interventions that can be performed promptly and effectively with successful outcomes. Computed tomography angiography and nuclear scintigraphy can localize the source of bleeding and provide essential information for the interventional radiologist to guide therapeutic management with endovascular angiography and transcatheter embolization. This review article provides insight into the essential role of Interventional Radiology in the management of acute GIB. PMID:24778770

  7. Dental radiology

    International Nuclear Information System (INIS)

    Bhaskar, S.N.

    1982-01-01

    The book presents the radiological manifestations of the maxillodental region in a suitable manner for fast detection and correct diagnosing of diseases of the teeth, soft tissue, and jaws. Classification therefore is made according to the radiological manifestations of the diseases and not according to etiology. (orig./MG) [de

  8. The radiological testing of consumer products 1976-1978

    International Nuclear Information System (INIS)

    Wilkins, B.T.; Dixon, D.W.

    1979-02-01

    The National Radiological Protection Board's source testing laboratory has been operational since 1976. In the intervening period the types of consumer product which have received most attention have been ionisation chamber smoke detectors and liquid crystal digital watches containing gaseous tritium light sources; the results obtained on these two types of device are the main subject of this report. The report also traces the development of the practical appraisal of these devices by the Board and describes the part played by the test results in the evolution of national and international standards. (author)

  9. White Paper: Curriculum in Interventional Radiology.

    Science.gov (United States)

    Mahnken, Andreas H; Bücker, Arno; Hohl, Christian; Berlis, Ansgar

    2017-04-01

    Purpose  Scope and clinical importance of interventional radiology markedly evolved over the last decades. Consequently it was acknowledged as independent subspecialty by the "European Union of Medical Specialists" (UEMS). Based on radiological imaging techniques Interventional Radiology is an integral part of Radiology. Materials und Methods  In 2009 the German Society for Interventional Radiology and minimally-invasive therapy (DeGIR) developed a structured training in Interventional Radiology. In cooperation with the German Society of Neuroradiology (DGNR) this training was extended to also cover Interventional Neuroradiology in 2012. Tailored for this training in Interventional Radiology a structured curriculum was developed, covering the scope of this modular training. Results  The curriculum is based on the DeGIR/DGNR modular training concept in Interventional Radiology. There is also an European Curriculum and Syllabus for Interventional Radiology developed by the "Cardiovascular and Interventional Radiological Society of Europe" (CIRSE). The presented curriculum in Interventional Radiology is designed to provide a uniform base for the training in Interventional Radiology in Germany, based on the competencies obtained during residency. Conclusion  This curriculum can be used as a basis for training in Interventional Radiology by all training sites. Key Points: · Interventional Radiology is an integral part of clinical radiology. · The German Society for Interventional Radiology and minimally-invasive therapy (DeGIR) developed a curriculum in Interventional Radiology. · This curriculum is an integrative basis for the training in interventional. Citation Format · Mahnken AH, Bücker A, Hohl C et al. White Paper: Curriculum in Interventional Radiology. Fortschr Röntgenstr 2017; 189: 309 - 311. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Experience of the Argentine Radioprotection Society in training in radiological protection

    International Nuclear Information System (INIS)

    Bomben, A.M.

    2006-01-01

    From its creation in 1967, the Argentine Radioprotection Society (SAR) has as basic purpose promoting all the aspects related with the radiological protection and the nuclear safety. Due to the great increment in the use of radioactive sources in diverse areas, soon it was evident for the SAR the importance and necessity to promote the knowledge of the radioprotection approaches between the users of radioactive sources and ionizing radiations in all its application fields, be these industrial, academic or doctors. From the year 2000, the SAR comes organizing in regular and periodical form basic and specialized courses about radiological safety of radioactive sources for industrial use and profile of oil wells, among others. In this work, the characteristics of the different dictated courses are described whose programs have been developed keeping in mind the requirements of the competent authorities of Argentina. Also, statistical information on the dictated courses and its participants is presented. The number of dictated courses was incremented from 6 (year 2000) up to 16 (year 2005), being also increased significantly the number of participants for course. The dictated courses are theoretical-practical, with a duration average of 20 hs. The educational body is constituted by specialists in the different topics with recognized experience. Its given to the participants notes and support material, as well as copies of the material presented to develop the course. When concluding the courses, its deliver to the participants certifies of attendance and/or approval, as it corresponds. In their headquarters the SAR has didactic facilities and specific equipment for the dictation of the courses. Also accounts with the easiness of dictating those courses outside of their headquarters. This is particularly advantageous for companies or organizations that are seated in points far from the main cities and they should qualify in radiological safety to the personnel but, by

  11. Radiological protection

    International Nuclear Information System (INIS)

    Azorin N, J.; Azorin V, J. C.

    2010-01-01

    This work is directed to all those people related with the exercise of the radiological protection and has the purpose of providing them a base of knowledge in this discipline so that they can make decisions documented on technical and scientist factors for the protection of the personnel occupationally exposed, the people in general and the environment during the work with ionizing radiations. Before de lack of a text on this matter, this work seeks to cover the specific necessities of our country, providing a solid presentation of the radiological protection, included the bases of the radiations physics, the detection and radiation dosimetry, the radiobiology, the normative and operational procedures associates, the radioactive wastes, the emergencies and the transport of the radioactive material through the medical and industrial applications of the radiations, making emphasis in the relative particular aspects to the radiological protection in Mexico. The book have 16 chapters and with the purpose of supplementing the given information, are included at the end four appendixes: 1) the radioactive waste management in Mexico, 2-3) the Mexican official standards related with the radiological protection, 4) a terms glossary used in radiological protection. We hope this book will be of utility for those people that work in the investigation and the applications of the ionizing radiations. (Author)

  12. Radiology trainer. Musculoskeletal system

    International Nuclear Information System (INIS)

    Staebler, A.; Erlt-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  13. Radiological evaluation of a liver simulator in comparison to a human real liver

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Campos, Tarcisio P.R. de

    2009-01-01

    The present study evaluates the radiological features of a human real healthy liver reproducing its characteristics on a developed liver simulator. The radiological evaluation will be performed through radiological methods such as CT and X-ray images, density and weight measurements, as well as representation of the coloration and texture. According to literature, the liver is the highest weight organ and gland of the body, weighing approximately 1,5 kg. On the liver, the nutrients are absorbed from the digestive tract and are prosecuted and stored for future use by other organs. Also the liver is responsible for the neutralization and elimination of various toxic substances. Thus, it is an interface between the digestive system and the blood. Besides, this organ is the principal source of plasmatic proteins like the albumin, transport of graxos oily acids. Due to its proprieties, the liver holds a large amount of radionuclides on any uptake from external source. The liver simulator was designed to have the same density, weight and corresponding shape. The radiographic image was produced by conventional X-rays machine, in which the radiographic applied parameters were the same applied to abdomen. The result of the radiographic and CT images demonstrates radiological equivalence between the simulator and human real liver. Hounsfield number of the synthetic liver tissue was found on the range of human livers. Therefore, due to its similar shape, chemical composition, radiological response, the liver simulator can be used to investigate ionizing radiation procedures during radiation therapy intervention. (author)

  14. Radiology and social media: are private practice radiology groups more social than academic radiology departments?

    Science.gov (United States)

    Glover, McKinley; Choy, Garry; Boland, Giles W; Saini, Sanjay; Prabhakar, Anand M

    2015-05-01

    This study assesses the prevalence of use of the most commonly used social media sites among private radiology groups (PRGs) and academic radiology departments (ARDs). The 50 largest PRGs and the 50 ARDs with the highest level of funding from the National Institutes of Health were assessed for presence of a radiology-specific social media account on Facebook, Twitter, Instagram, Pinterest, YouTube, and LinkedIn. Measures of organizational activity and end-user activity were collected, including the number of posts and followers, as appropriate; between-group comparisons were performed. PRGs adopted Facebook 12 months earlier (P = .02) and Twitter 18 months earlier (P = .02) than did ARDs. A total of 76% of PRGs maintained ≥1 account on the social media sites included in the study, compared with 28% of ARDs (P Instagram, 2%. The prevalence of radiology-specific social media accounts for ARDs was: Facebook, 18%; LinkedIn, 0%; Twitter, 24%; YouTube, 6%; Pinterest, 0%; and Instagram, 0%. There was no significant difference between ARDs and PRGs in measures of end-user or organizational activity on Facebook or Twitter. Use of social media in health care is emerging as mainstream, with PRGs being early adopters of Facebook and Twitter in comparison with ARDs. Competitive environments and institutional policies may be strong factors that influence how social media is used by radiologists at the group and department levels. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  16. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  17. Radiological protection and routinary controls of an activimeter with a cesium and barium sources in an nuclear medicine center

    International Nuclear Information System (INIS)

    Morales L, M.E.

    2006-01-01

    In the present work the results when carrying out the routine controls in a Deluxe Isotope (Calibrator II) equipment, with some sources of Cesium 137 and Barium 133, in a Nuclear Medicine Center that operates from the year 1983 in a modern one construction inside the Institute of Neoplastic Illnesses (INEN) are shown. Taking in account the Radiological Protection measures to verify if the equipment responds to the personnel's demands in the measurements of activities of the diverse radionuclides that are used in different types of exams that are carried out in this Nuclear Medicine Center are the objectives of this work. This Center was equipped initially with donated equipment by the International Atomic Energy Agency (IAEA) with those that it develops assistance, educational works and of research, giving services to patients of the INEN and other public and private medical centers. (Author)

  18. Attention for pediatric interventional radiology

    International Nuclear Information System (INIS)

    Zhu Ming; Cheng Yongde

    2005-01-01

    Radiological interventions possess wide utilization in the diagnosis and treatment for pediatric patients. Pediatric interventional radiology is an important branch of interventional radiology and also an important branch of pediatric radiology. Pediatric interventional radiology has grown substantially over the last 30 years, radiologists closely cooperation with surgeons and other physicians providing a new horizon in the management of pediatric diseases in western countries. It includes pediatric cardiac interventional radiology, pediatric neuro-interventional radiology, pediatric vascular interventional radiology, pediatric nonvascular interventional radiology, pediatric tumor interventional radiology and others. In the United States, every children hospital which owns two hundred beds has to have special trained interventional radiologists in radiologic department installing with advanced digital subtraction angiographic equipment. Interventional therapeutic procedures and diagnostic angiography have been proceeding more and more for the congenital and acquired diseases of children. The promising results give use uprising and interventional therapy as an alternative or a replacement or supplement to surgical operation. Pediatric interventional radiology is rather underdeveloped in China with a few special pediatric interventional radiologist, lack of digital subtraction angiography equipment. Pediatric radiologists have no enough field for interventional procedures such as pediatric neuro-interventional radiology and pediatric vascular interventional radiology. In the contrary adult interventional radiologists do have better interventional jobs in China and Pediatric cardiologists also share the same trend. They perform angiocardiography for congenital heart diseases and treat congenital heart disease with interventional procedures including balloon dilation of valves and vessels, coil embolization of collaterals, patent ducts and other arterial fistulae

  19. CT- and MR-guided interventions in radiology. 2. ed.

    International Nuclear Information System (INIS)

    Mahnken, Andreas H.; Wilhelm, Kai E.; Ricke, Jens

    2013-01-01

    Revised and extended second edition that covers a broad range of non-vascular interventions guided by CT or MR imaging. Discusses in detail indications, materials, techniques, and results. Includes a comprehensive section on interventional oncology. Richly illustrated source of information and guidance for all radiologists who deal with non-vascular procedures. Interventional radiology is an indispensable and still expanding area of modern medicine that encompasses numerous diagnostic and therapeutic procedures. Cross-sectional imaging modalities such as computed tomography (CT) and magnetic resonance (MR) have emerged as important techniques for non-vascular interventions, including percutaneous biopsy, drainage, ablation, and neurolysis. Various organs, diseases, and lesions can be approached in this way, permitting the treatment and management of tumors, fluid collections, and pain, the embolization of endoleaks, the provision of access to hollow organs, etc. Accordingly, interventional radiology is now an integral component of the interdisciplinary management of numerous disorders. The revised and significantly extended second edition of this volume covers a broad range of non-vascular interventions guided by CT or MR imaging. Indications, materials, techniques, and results are all carefully discussed. A particularly comprehensive section is devoted to interventional oncology as the most rapidly growing branch of interventional radiology. In addition, detailed information is provided that will assist in establishing and developing an interventional service. This richly illustrated book will be a most valuable source of information and guidance for all radiologists who deal with non-vascular procedures.

  20. Occupational Exposure to Diagnostic Radiology in Workers without Training in Radiation Safety

    International Nuclear Information System (INIS)

    Gaona, Enrique; Enriquez, Jesus G. Franco

    2004-01-01

    The physicians, technicians, nurses, and others involved in radiation areas constitute the largest group of workers occupationally exposed to man-made sources of radiation. Personnel radiation exposure must be monitored for safety and regulatory considerations, this assessment may need to be made over a period of one month or several months. The purpose of this study was to carry out an exploratory survey of occupational exposures associated with diagnostic radiology. The personnel dosimeters used in this study were thermoluminescent dosimeters (TLDs). The reported number of monitored workers was 110 of different departments of radiology of the Mexican Republic without education in radiation safety, included general fluoscopic/radiographic imaging, computed tomography and mammography procedures. Physicians and X-ray technologist in diagnostic radiology receive an average annual effective dose of 2.9 mSv with range from 0.18 to 5.64 mSv. The average level of occupational exposures is generally similar to the global average level of natural radiation exposure. The annual global per capita effective dose due to natural radiation sources is 2.4 mSv (UNSCEAR 2000 Report). There is not significant difference between average occupational exposures and natural radiation exposure for p < 0.05

  1. The application of geographic information system to radiological and nuclear emergency monitoring

    International Nuclear Information System (INIS)

    Sadaniowski, I.V.; Rodriguez, M.; Rojas, C.A.; Jordan, O.D.

    2010-01-01

    The Geographic Information System (GIS) implementation for the preparation and response in case of to radiological and nuclear emergencies is being developed in the Emergency Control Center of the Argentina Nuclear Regulatory Authority, since many years ago. Additionals features have been incorporated such as integration with the results of radiological monitoring, improving and expanding its benefits both in the preparation stage and during the work of emergency response. This paper shows the specific application of GIS to radiological monitoring in case of emergency situations such as during the search of orphan sources and the characterization of geographic context around nuclear power plants and atomic centers. The GIS provides essential data cartographic for the monitoring with sophisticated detectors, to integrate with the information received with infrastructure, urban and rural population maps, physical features of the place, satellite images, etc. The monitoring results are analyzed and compared with relevant information for decision making during the response, like evacuation routes, affected population, security forces in the area, radiological characterization, application of protective actions, hospitals, schools, etc. These two integrated tools improve preparedness and response system in case of radiological or nuclear emergency. (authors) [es

  2. Management of a radiological emergency. Organization and operation; Gestion d'une urgence radiologique. Organisation et fonctionnement

    Energy Technology Data Exchange (ETDEWEB)

    Dubiau, Ph. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France)

    2007-07-15

    After a recall of potential radiological emergency situations and their associated risks, this article describes the organization in France of the crisis management and its operation at the national and international scale: 1 - Nuclear or radiological emergency situations and their associated risks: inventory of ionising radiation sources, accidental situations, hazards; 2 - crisis organization in situation of radiological or nuclear emergency: organization at the local scale, organization at the national scale; 3 - management of emergency situations: accident at a facility, action circle, radiological emergency situations outside nuclear facilities, international management of crisis, situations that do not require the implementation of an emergency plan. (J.S.)

  3. Role of first responder's training in the management of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Nagarajan, V.; Sankhla, Rajesh; Verma, R.K.

    2008-01-01

    Consequent to the terrorist attacks on WTC in USA and other similar terrorist attacks worldwide, there has been increasing public concern regarding the use of radioactive materials in a malevolent act. As the radioactive sources are widely used in the industries, terrorists may have access to these facilities and obtain the radioactive material suitable for making Radioactive Dispersal Device (RDD) often called as dirty bomb. Response to nuclear or radiological emergency may involve highly specialized agencies or technical experts. Hence well-coordinated arrangements must be integrated with those required for any other conventional emergencies. During radiological emergencies, emergency service personnel are expected to play a major role in the early response. Though these personnel are well equipped and trained in tackling the normal emergencies it is essential to train them to deal with the radiological emergencies due to inherent characteristics of radioactivity. For the effective management of radiological emergencies, these first responders are required to be trained in such a way that they understand the concept of radiation protection. This objective can be achieved by using a typical training module consisting of interactive class room lectures, practical sessions to use the instruments and handling of radioactive sources, demonstration of radiation protection practices, exhibition of all radiation survey instruments and protective equipment etc., display of various posters and RDD Emergency Exercise. (author)

  4. Data Bank of Nuclear and Radiological Regulatory Authority, Part 2 . Software Package of Statistical Data of Sealed Sources

    International Nuclear Information System (INIS)

    Lashin, R.M.A.; Mahmoud, N.S.; Lashin, M.M.A.

    2012-01-01

    Protection of human, property and the environment is the main concern considered as a principal goal to form the Egyptian Nuclear and Radiological Regulatory Authority. That requires a lot of work, efforts, knowledge and aids for right and quick decision making. Internationally, the International Atomic Energy Agency (IAEA) developed a protection system for control and accounts the radioactive materials for the safe use and transport. Moreover, the protection system can prevent the theft of these materials or their use in terrorism. Here in, all radioactive sources shall be subjected to instructions, serious regulations and laws. In order to exercise these functions, it is necessary to accurately establish the appropriate information system to the regulatory body. This system must depend on using a modern technology to perform the work in most accurate and fullest manner in a Data Bank [1, 2]. The present work is the second part performed for the data bank, which consists of two parts: first part is concern about the open sources which executed before [3]. Second part is deal with the sealed sources. Describing here consolidated guidance help materials licenses. It also provides reviewers of such requests with the information and materials necessary to determine that the products are acceptable for licensing purposes. It provides the applicants and reviewers with information concerning how to file a request, a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, administrative procedures to be followed, information on how to perform the evaluation and write a registration certificate, and the responsibilities of the registration certificate holder.

  5. Radiological evaluation of dysphagia

    Energy Technology Data Exchange (ETDEWEB)

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  6. Radiological evaluation of dysphagia

    International Nuclear Information System (INIS)

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-01-01

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint

  7. A project: 'Radiological protection in radiology', IAEA - Universidad Central de Venezuela

    International Nuclear Information System (INIS)

    Diaz, A.R.; Salazar, G.; Fermin, R.; Gonzalez, M.

    2001-01-01

    For several years a reference center of the UCV has been working on the project VEN/9/007 on dose reduction in diagnostic radiology sponsored by the IAEA. The dose and quality image was evaluated for different types of radiological study (conventional radiology, CT, mammography, interventional radiology) in different facilities at Caracas and others regions of the Venezuela. TL dosimeters were used to assess dose and reduction in dose. Based on the recommendations given by CEC documents on diagnostic quality criteria, a quality control program in radiological protection of patients and staff has been developed, for example: Pilot study by using TLD in personnel radiation monitoring. Comparative study between high and low kVp in chest. Evaluation and dose reduction in chest pediatric. Reduction of radiation dose in studies of billiards via Quality Image and reduction of the dose in studies of colon by enema. Radiation dose of staff in fluoroscopy procedures. Evaluation and dose reduction in dental radiography in public Institutions. A mammography accreditation program for Venezuela, applied to public hospitals. (author)

  8. Radiological Evaluation Standards in the Radiology Department of Shahid Beheshti Hospital (RAH) YASUJ Based on Radiology standards in 92

    OpenAIRE

    A َKalantari; SAM Khosravani

    2014-01-01

    Background & aim: Radiology personnel’s working in terms of performance and safety is one of the most important functions in order to increase the quality and quantity. This study aimed to evaluate the radiological standards in Shahid Beheshti Hospital of Yasuj, Iran, in 2013. Methods: The present cross-sectional study was based on a 118 randomly selected graphs and the ranking list, with full knowledge of the standards in radiology was performed two times. Data were analyzed using descri...

  9. A methodology for radiological accidents analysis in industrial gamma radiography

    International Nuclear Information System (INIS)

    Silva, F.C.A. da.

    1990-01-01

    A critical review of 34 published severe radiological accidents in industrial gamma radiography, that happened in 15 countries, from 1960 to 1988, was performed. The most frequent causes, consequences and dose estimation methods were analysed, aiming to stablish better procedures of radiation safety and accidents analysis. The objective of this work is to elaborate a radiological accidents analysis methodology in industrial gamma radiography. The suggested methodology will enable professionals to determine the true causes of the event and to estimate the dose with a good certainty. The technical analytical tree, recommended by International Atomic Energy Agency to perform radiation protection and nuclear safety programs, was adopted in the elaboration of the suggested methodology. The viability of the use of the Electron Gamma Shower 4 Computer Code System to calculate the absorbed dose in radiological accidents in industrial gamma radiography, mainly at sup(192)Ir radioactive source handling situations was also studied. (author)

  10. Generic procedures for monitoring in a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    1999-06-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately assess the need for protective actions. Protective action accident management must make use of the key relevant information available. Decision-making and accident assessment will be an iterative and dynamic process aimed at refining the initial evaluation as more detailed and complete information becomes available. Emergency monitoring is one of the main sources for obtaining needed information. This publication is in the scope of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Legal Series No. 14) under which the IAEA is authorized to assist a State Party or a Member State among other matters in developing appropriate radiation monitoring programmes, procedures and standards (Article 5). The scope of this manual is restricted to practical guidance for environmental and source monitoring during a nuclear or other radiological emergency. It does not address emergency response preparedness, nor does it cover the emergency management aspects of accident assessment. This manual is organised into sections relating to measurements in order of priority of a major reactor accident, namely: ambient gamma/beta dose rates from plume, ground deposition or source; radionuclide concentrations in air; deposition maps for 131 I and 137 Cs and other important radionuclides; radionuclide mix in deposition and radionuclide concentrations in food, drinking water and other samples. The introductory section provides an overview of the design of emergency monitoring and sampling programmes, monitoring teams and their qualifications and training, monitoring equipment and instrumentation, protective actions for emergency monitoring teams and quality assurance and quality control checks

  11. Consequence Assessment for Potential Scenarios of Radiological Terrorists Events

    International Nuclear Information System (INIS)

    Shin, Hyeongki; Kim, Juyoul

    2007-01-01

    Radiological dispersal device (RDD) means any method used to deliberately disperse radioactive material to create terror or harm. Dirty bomb is an example of RDD, which usually consists of radioactive material and unconventional explosive. Dirty bomb was a problem long before September 11, 2001. In 1987, the Iraqi government tested a one-ton radiological bomb. The Iraqi tests confirmed that a dirty bomb is not effective as weapons of mass destruction (WMD) and that its main value is as a psychological weapon. In 1995, Chechen rebels buried a dirty bomb in a park in Moscow threatening to detonate one in the future if their demands were not met. Another good example of potential dirty bomb effects was an incident in Goiania, Brazil on September 18, 1987, where an orphaned medical source containing 1,375 Ci of Cs-137 resulted the death of four people and extensive environmental contamination. The purposes of radiological terrorists events are not to destroy or damage the target but to disperse radioactivity in the environment. They inflict panic on a public and economic damage by disruption of business. They also have influence on enormous clean-up costs by spreading radioactive contamination including secondary impacts on water supply reservoirs. Generally, two major long-term concerns following a RDD are human health and economic impacts. In this study, we developed potential scenarios of radiological terrorists events and performed their radiological consequence assessments in terms of total effective dose equivalent (TEDE), projected cumulative external and internal dose, and ground deposition of radioactivity

  12. Consequence Assessment for Potential Scenarios of Radiological Terrorists Events

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeongki [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Juyoul [Seoul National University, Seoul (Korea, Republic of)

    2007-07-01

    Radiological dispersal device (RDD) means any method used to deliberately disperse radioactive material to create terror or harm. Dirty bomb is an example of RDD, which usually consists of radioactive material and unconventional explosive. Dirty bomb was a problem long before September 11, 2001. In 1987, the Iraqi government tested a one-ton radiological bomb. The Iraqi tests confirmed that a dirty bomb is not effective as weapons of mass destruction (WMD) and that its main value is as a psychological weapon. In 1995, Chechen rebels buried a dirty bomb in a park in Moscow threatening to detonate one in the future if their demands were not met. Another good example of potential dirty bomb effects was an incident in Goiania, Brazil on September 18, 1987, where an orphaned medical source containing 1,375 Ci of Cs-137 resulted the death of four people and extensive environmental contamination. The purposes of radiological terrorists events are not to destroy or damage the target but to disperse radioactivity in the environment. They inflict panic on a public and economic damage by disruption of business. They also have influence on enormous clean-up costs by spreading radioactive contamination including secondary impacts on water supply reservoirs. Generally, two major long-term concerns following a RDD are human health and economic impacts. In this study, we developed potential scenarios of radiological terrorists events and performed their radiological consequence assessments in terms of total effective dose equivalent (TEDE), projected cumulative external and internal dose, and ground deposition of radioactivity.

  13. Highly cited works in radiology: the top 100 cited articles in radiologic journals.

    Science.gov (United States)

    Pagni, Matthew; Khan, Nickalus R; Cohen, Harris L; Choudhri, Asim F

    2014-08-01

    The number of citations a publication receives can be used to show its impact on a field of study. It may indicate the educational interest in a given population or underline a perceived or real educational gap. This article identifies and characterizes the 100 top cited publications in radiologic journals as of May 2013. All clinical radiologic journals listed by Thomson Reuters Journal Citation Reports in 2011 were identified. A total of 46 journals were identified, and all articles published within these journals were analyzed for citation counts. The top 100 highly cited articles were recorded. The most frequently cited radiologic articles appeared in 9 of the 46 journals. These included 59 articles in Radiology, 17 in Journal of Nuclear Medicine, 9 in the American Journal of Roentgenology, 5 in the British Journal of Radiology, 4 in Investigative Radiology, 2 in American Journal of Neuroradiology, 2 in European Radiology, 2 in Radiologic Clinics of North America, 1 in the Seminars in Nuclear Medicine, and 1 in Pediatric Radiology. The citation values ranged from 422 to 7506 with a mean of 751. Publication dates ranged from 1967 to 2006 with the 5-year period between 1986 and 1990 accounting for the largest percentage of articles. The most frequently studied radiologic modality was magnetic resonance imaging (MRI; 28 articles), followed by vascular/interventional (19 articles) and nuclear medicine (13 articles). The central nervous system was the most frequently studied organ system (22 articles), followed by mixed organ systems (14 articles) and liver (12 articles). The top cited articles in radiologic journals span a wide range of imaging modalities, subspecialties, and organ systems. Topics that occurred frequently in the top 100 cited articles included contrast and radiopharmaceutical characterization, MRI of motion, percutaneous radiofrequency ablation in the liver and percutaneous vertebroplasty. We present a methodology that uses citation analysis to

  14. Dirty bombs: assesment of radiological impacts

    International Nuclear Information System (INIS)

    Trifunovic, D.; Koukouliou, V.

    2009-01-01

    In some countries, regulatory control of radioactive sources, used extensively in medicine and industry, remains weak. Global concerns about the security and safety of radioactive sources escalated following the September 11 2001 terrorist attacks in the United States. There are fears that some radioactive sources could be used by terrorists as radiological dispersal devices (RDD's), or so called 'dirty bombs'. The radioactive material dispersed, depending on the amount and intensity, could cause radiation sickness for a limited number of people nearby if, for example, they inhaled large amounts of radioactive dust. But the most severe tangible impacts would likely be the economic costs and social disruption associated with the evacuation and subsequent clean-up of contaminated property. It has been shown that usage of realistic data in a first response decision making as to avoid inappropriate public reaction accompanied by economic and social consequences is necessary.(author)

  15. Radiological emergency assessment of local decision support system

    International Nuclear Information System (INIS)

    Breznik, B.; Kusar, A.; Boznar, M.Z.; Mlakar, P.

    2003-01-01

    Local decision support system has been developed based on the needs of Krsko Nuclear Power Plant for quick dose projection and it is one of important features required for proposal of intervention before actual release may occur. Radiological emergency assessment in the case of nuclear accident is based on plant status analysis, radiation monitoring data and on prediction of release of radioactive sources to the environment. There are possibilities to use automatic features to predict release source term and manual options for selection of release parameters. Advanced environmental modelling is used for assessment of atmospheric dispersion of radioactive contamination in the environment. (author)

  16. Radiological Worker Training: Radiological Worker 2 lesson plans

    International Nuclear Information System (INIS)

    1992-10-01

    Upon completion of this g course, the participant will have the knowledge to work safely in areas controlled for a radiological purposes using proper radiological practices. The participant will be able toidentify the fundamentals of radiation, radioactive material and radioactive contamination includes identify the three basic particles of an atom, define ionization, define ionizing radiation, radioactive material and radioactive contamination, distinguish between ionizing radiation and non-ionizing radiation, define radioactivity and radioactive half-life

  17. Hanford radiological protection support services annual report for 1987

    International Nuclear Information System (INIS)

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1988-08-01

    This report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1987 by Pacific Northwest Laboratory in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standards or industry committees are also discussed. The programs covered provide services in the areas of: external dosimetry, internal dosimetry, in vivo measurements, instrument calibration and evaluation, calibration of radiation sources traceable to the National Bureau of Standards, and radiological records. 21 refs., 10 figs., 12 tabs

  18. Radiology and the internet, basic principles and technical requirements

    International Nuclear Information System (INIS)

    Boegl, K.

    2000-01-01

    As a new communication media the Internet has revolutionized the global exchange of information which is one of the major sources of progress in medicine. This article reviews the history of the Internet's evolution and describes some fundamental technical concepts. The importance of Internet services for everyday professional work is examined with special consideration of radiology. Special emphasis is laid on the current technical limitations that have delayed a broad practical implementation of tele-medical applications. As a highly innovative medical speciality, radiology has always been at the forefront of research and development in the field of clinical Internet applications. By taking a look at recent innovations, the impact of the Internet on the radiologist's working environment of the future is highlighted. (orig.) [de

  19. Nursering assistance to the radiological accident patients in Goias-Brazil

    International Nuclear Information System (INIS)

    Graciotti, M.E.

    1989-01-01

    A report of a personal experience, during two months of nursering care to the radiological accident victims, due to the disruption of a caesium-137 source, is presented. The biological radiation effects, the radiation hazards due to the doses received and the Kind of exposure, are studied. (M.A.C.) [pt

  20. Radiological interpretation: The 'step-child' in radiology

    International Nuclear Information System (INIS)

    Heilmann, H.P.

    1981-01-01

    Radiology has a highly developed technique, an extensive scientific literature and is excellent for acquiring information; one must contrast with this the difficulties in interpreting the information. In an attempt to find the reason for this, the process of radiological interpretation has been scrutinised. Critical consideration has been given to errors in the interpretation of the findings and to problems arising from the use of the available data. An attempt is made, with the help of diagrams, to determine a pathway for further development of information handling in X-ray diagnosis. (orig.) [de

  1. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    The escalating number of radiodiagnostic investigations has, as a consequence, an increase in medical irradiation of patients and of cost of radiological services. Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme in this direction which has issued four technical reports which give practical recommendations on how to rationalize the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations

  2. Radiological departments. Chapter 4.3.5

    International Nuclear Information System (INIS)

    1983-01-01

    The book deals with the problems of health, labor and fire protection in the public health service of the GDR as a whole. A special chapter treats these items concerning the conditions in radiological departments. In this connection the main legal regulations are presented. Introducing remarks on generation and properties of ionizing radiations and on biological radiation effects are outlined. Further, the responsibilities in radiation protection, maximum permissible radiation doses and the handling of X-ray devices, sealed and unsealed radiation sources are discussed

  3. Quantitative computed tomography (QCT) as a radiology reporting tool by using optical character recognition (OCR) and macro program.

    Science.gov (United States)

    Lee, Young Han; Song, Ho-Taek; Suh, Jin-Suck

    2012-12-01

    The objectives are (1) to introduce a new concept of making a quantitative computed tomography (QCT) reporting system by using optical character recognition (OCR) and macro program and (2) to illustrate the practical usages of the QCT reporting system in radiology reading environment. This reporting system was created as a development tool by using an open-source OCR software and an open-source macro program. The main module was designed for OCR to report QCT images in radiology reading process. The principal processes are as follows: (1) to save a QCT report as a graphic file, (2) to recognize the characters from an image as a text, (3) to extract the T scores from the text, (4) to perform error correction, (5) to reformat the values into QCT radiology reporting template, and (6) to paste the reports into the electronic medical record (EMR) or picture archiving and communicating system (PACS). The accuracy test of OCR was performed on randomly selected QCTs. QCT as a radiology reporting tool successfully acted as OCR of QCT. The diagnosis of normal, osteopenia, or osteoporosis is also determined. Error correction of OCR is done with AutoHotkey-coded module. The results of T scores of femoral neck and lumbar vertebrae had an accuracy of 100 and 95.4 %, respectively. A convenient QCT reporting system could be established by utilizing open-source OCR software and open-source macro program. This method can be easily adapted for other QCT applications and PACS/EMR.

  4. Management of 'orphan' sources

    International Nuclear Information System (INIS)

    Telleria, D.; Spano, F.; Rudelli, M.D.

    1998-01-01

    The experience has shown that most of the accidents with severe radiological consequences take place when radioactive sources were beyond the control system. In Argentina, the primary framework in radiological safety was established in the late fifties, with a non-prescriptive regulatory approach. For any application involving radioactive material, users must be authorised by the Authority, unless the application has demonstrated to be exempted. The licensees are responsible for ensuring protection against the risk associated with exposure to radiation, and for safety of radioactive sources. To obtain an authorisation, the applicant has to prove to the Authority knowledge and capability to carry on an application. Not only normal operation circumstances are considered, but every conceivable accidental situation. It has been shown the existence of radioactive sources not attributed to an authorised user or installation, and therefore outside of the primary control structure described above. These sources, from here on called 'orphans' recognise several origins. The regulatory authority should necessary foresee mechanisms to afford early detection and management of these sources, before an undesired consequence arises. Up to some extent, the deployment of multiple and varied organisations or procedures, could be understood as a 'defence in depth' concept, applied to the control. (author)

  5. Occupational exposure in interventional radiology

    International Nuclear Information System (INIS)

    Oh, H.J.; Lee, K.Y.; Cha, S.H.; Kang, Y.K.; Kim, H.J.; Oh, H.J.

    2003-01-01

    This study was conducted to survey of radiation safety control and to measure occupational radiation exposure dose of staff in interventional radiology in Korea. Interventioanl radiology requires the operator and assisting personnel to remain close to the patient, and thus close to primary beams of radiation. Therefore exposure doses of these personnel are significant from a radiological protection point of view. We surveyed the status of radiation safety on interventional radiology of 72 hospitals. The result were that 119 radiation equipments are using in interventional radiology and 744 staffs are composed of 307 radiologists, 116 residents of radiology, 5 general physicians, 171 radiologic technologists and 145 nurses. 81.4% and 20.2 % of operating physicians are using neck collar protector and goggle respectively. The average radiation dose was measured 0.46±0.15 mSv/10 hours fluoroscopy inside examination room in radiation protection facilities. Occupational radiation exposure data on the staff were assessed in interventional radiology procedures from 8 interventional radiology equipments of 6 university hospitals. The dose measurements were made by placing a thermoluminesent dosimeter(TLD) on various body surface of operation and assistant staff during actual interventional radiology. The measured points were the corner of the eyes, neck(on the thyroid) , wrists, chest(outside and inside of the protector), and back. Average radiation equivalent dose of the corner of left eye and left wrist of operating physicians were 1.19 mSv(0.11∼4.13 mSv)/100 minutes fluoroscopy and 4.32 mSv(0.16∼11.0 mSv)/100 minutes fluoroscopy respectively. Average exposure dose may vary depending on the type of procedure, personal skills and the quality of equipment. These results will be contributed to prepare the guide line in interventional radiology in Korea

  6. Radiological Protection in Medicine

    International Nuclear Information System (INIS)

    Valetin, J.

    2011-01-01

    This report was prepared to underpin the Commission's 2007 Recommendations with regard to the medical exposure of patients, including their comforters and carers, and volunteers in biomedical research. It addresses the proper application of the fundamental principles (justification, optimisation of protection, and application of dose limits) of the Commission's 2007 Recommendations to these individuals. With regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good. Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection. In diagnostic and interventional procedures, justification of procedures (for a defined purpose and for an individual patient), and management of the patient dose commensurate with the medical task, are the appropriate mechanisms to avoid unnecessary or unproductive radiation exposure. Equipment features that facilitate patient dose management, and diagnostic reference levels derived at the appropriate national, regional, or local level, are likely to be the most effective approaches. In radiation therapy, the avoidance of accidents is a predominant issue. With regard to comforters and carers, and volunteers in biomedical research, dose constraints are appropriate. Over the last decade, the Commission has published a number of documents that provided detailed advice related to radiological protection and safety in the medical applications of ionising radiation. Each of the publications addressed a specific topic defined by the type of radiation source and the medical discipline in which the source is applied, and was written with the intent of communicating directly with the relevant medical practitioners and supporting medical staff. This report

  7. Marks in Latin-American radiology

    International Nuclear Information System (INIS)

    Souza Almeida, S. de.

    1987-01-01

    An historical retrospective of Latin-American radiology is shortly presented. Several radiologic societies as well as personalities, scientists and doctors are reported emphasizing their contribuition to radiologic Latin-American culture. (M.A.C.) [pt

  8. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme which has issued four technical reports giving practical recommendations on how to rationalise the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations. (author)

  9. Emergency radiological monitoring and analysis: Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    1995-01-01

    The US Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. The FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC), which is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted State(s) and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division (M ampersand A) is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis, and quality assurance. To assure consistency, completeness, and the quality of the data produced, a methodology and procedures manual is being developed. This paper discusses the structure, assets, and operations of the FRMAC M ampersand A and the content and preparation of the manual

  10. Responding to nuclear terrorism. Chapter 3. Combating radiological terrorism - A multi-faceted challenge

    International Nuclear Information System (INIS)

    Wolf, A.; Yaar, I.

    2006-01-01

    In the twentieth century, radioactive sources have become extensively used in everyday life. These sources, in the hand of terror organizations, can become a threat to the security of civilized nations, causing severe disruption to normal life. On of the main challenges of the civilized world is to keep ahead of the terrorist organizations and take appropriate preventive measures in order to prevent and reduce to minimum the impact of their actions. In order to succeed, a joint and comprehensive effort has to be undertaken to address the scientific, technological, organizational, sociological, psychological and educational aspects of the radiological terrorism threat. In this paper, some of the main activities required for preventing radiological terror events, and the way in which a modular response plan can be prepared are discussed

  11. Radiological survey of the former Kellex Research Facility, Jersey City, New Jersey

    International Nuclear Information System (INIS)

    Berven, B.A.; Dickson, H.W.; Goldsmith, W.A.; Johnson, W.M.; Cottrell, W.D.; Doane, R.W.; Haywood, F.F.; Ryan, M.T.; Shinpaugh, W.H.

    1982-02-01

    A radiological survey has been conducted at the site of the former Kellex Corporation Research Facility in Jersey City, New Jersey. Kellex played a major role in the Manhattan Project, particularly in the area of engineering research in gaseous diffusion for uranium enrichment. As a result of those operations and subsequent work with radioactive materials, this site was selected for a radiological survey by the Department of Energy (DOE) [then Energy Research and Development Administration (ERDA)] in its program aimed at reviewing and documenting the radiological status of properties associated with early source material contracts. The survaty included measurement of external gamma radiation, beta-gamma surface dose rates, alpha and beta surface contamination, concentrations of selected radionuclides in surface and subsurface soil and water on the site, and background radiation in the northern part of New Jersey. The results of the radiological survey indicate radionuclide concentrations in the soil and water on the former Kellex property are within background levels, with the exception of nine isolated and well-defined areas on the site of the former Kellex Laboratory

  12. Operational, professional, and business characteristics of radiology groups in the United States.

    Science.gov (United States)

    Sunshine, J H; Bansal, S

    1992-05-01

    To learn the main operational, professional, and business characteristics of U.S. radiology group practices, researchers at the American College of Radiology surveyed these groups. Major findings included the following: Approximately 30% of groups provide only diagnostic radiologic services, a similar percentage provides only radiation therapy for oncologic patients, and the remainder provides both types of services. Forty-one percent of groups practice only in hospitals, 11% practice only in an office, and 48% practice in both settings. Diagnostic-only practices average 10,000-12,000 procedures per full-time equivalent radiologist per year. Groups typically require new members to be part of the group for almost 3 years before they become full partners. Formal call schedules are nearly universal among radiology groups. Groups are becoming increasingly involved with health maintenance organizations and other "alternative delivery systems," but fee-for-service remains by far the dominant source of groups' revenue. Most studied characteristics of groups are changing relatively slowly, and trends are generally toward increasing formalization of arrangements.

  13. Orphan Sources. Extending Radiological Protection outside the Regulatory Framework

    Energy Technology Data Exchange (ETDEWEB)

    Eugenio Gil [Deputy Director for Emergency, Spanish Nuclear Safety Council (Spain)

    2006-07-01

    Radioactive sources that are not under appropriate regulatory control-Orphan sources- can result in a number of undesirable consequences including human health impacts, socio-psychological impacts, political and economic impacts, as well as environmental impacts. Many countries are now in the process of introducing the necessary measures to regain an appropriate level of control over them. For a variety of historical and economic reasons, there could already be sources in any specific country that are not within the usual regulatory system. Some of these may be known about, others may not. Therefore a national strategy is needed to ascertain the likelihood and magnitude of the issue of radioactive source control problem within a country and the priorities necessary to address the problems identified. A well-developed plan for improving control over all relevant radioactive sources tailored to the national situation will ensure optimum use of resources such as time, money and personnel. It will allow these limited resources to be allocated appropriately to ensure that control is first regained over those sources presenting the highest risks. This lecture shows a way to develop an appropriate national strategy for regaining control over orphan sources. The methodology described in this lecture is basically based in the IAEA Recommendations. (author)

  14. Orphan Sources. Extending Radiological Protection outside the Regulatory Framework

    International Nuclear Information System (INIS)

    Eugenio Gil

    2006-01-01

    Radioactive sources that are not under appropriate regulatory control-Orphan sources- can result in a number of undesirable consequences including human health impacts, socio-psychological impacts, political and economic impacts, as well as environmental impacts. Many countries are now in the process of introducing the necessary measures to regain an appropriate level of control over them. For a variety of historical and economic reasons, there could already be sources in any specific country that are not within the usual regulatory system. Some of these may be known about, others may not. Therefore a national strategy is needed to ascertain the likelihood and magnitude of the issue of radioactive source control problem within a country and the priorities necessary to address the problems identified. A well-developed plan for improving control over all relevant radioactive sources tailored to the national situation will ensure optimum use of resources such as time, money and personnel. It will allow these limited resources to be allocated appropriately to ensure that control is first regained over those sources presenting the highest risks. This lecture shows a way to develop an appropriate national strategy for regaining control over orphan sources. The methodology described in this lecture is basically based in the IAEA Recommendations. (author)

  15. UY 102 standard use of sealed sources in radiation source implants: approve for the Industry Energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requires for radiological safety applied to use of the solid radio actives sources with therapeutic purposes in application radiation source implants in surface area and intra cavities

  16. Global Radiological Source Sorting, Tracking, and Monitoring Project: Phase I Final Report

    International Nuclear Information System (INIS)

    Walker, Randy M.; Hill, David E.; Gorman, Bryan L.

    2010-01-01

    As a proof of concept tested in an operational context, the Global Radiological Source Sorting, Tracking, and Monitoring (GRadSSTraM) Project successfully demonstrated that radio frequency identification (RFID) and Web 2.0* technologies can be deployed to track controlled shipments between the United States and the European Union. Between November 2009 and May 2010, a total of 19 shipments were successfully shipped from Oak Ridge National Laboratory (ORNL) by the U.S. Postal Service (USPS) and tracked to their delivery at England's National Physical Laboratory (NPL) by the United Kingdom Royal Mail. However, the project can only be viewed as a qualified success as notable shortcomings were observed. Although the origin and terminus of all RFID-enabled shipments were recorded and no shipments were lost, not all the waypoints between ORNL and NPL were incorporated into the pilot. Given limited resources, the project team was able to install RFID listeners/actuators at three waypoints between the two endpoints. Although it is likely that all shipments followed the same route between ORNL and NPL, it cannot be determined beyond question that all 19 shipments were routed on identical itineraries past the same three waypoints. The pilot also raises the distinct possibility that unattended RFID tracking alone, without positive confirmation that a tagged item has been properly recorded by an RFID reader, does not meet a rigorous standard for shipping controlled items. Indeed, the proof of concept test strongly suggests that a multifaceted approach to tracking may be called for, including tracking methods that are capable of reading and accepting multiple inputs for individual items (e.g., carrier-provided tracking numbers, Universal Product Codes (UPCs), and RFID tags). For controlled items, another apparent requirement is a confirmation feature, human or otherwise, which can certify that an item's RFID tag, UPC, or tracking number has been recorded.

  17. Ergonomics in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, N. [Department of Radiology, University Hospital of Wales, Cardiff (United Kingdom)], E-mail: nimitgoyal@doctors.org.uk; Jain, N.; Rachapalli, V. [Department of Radiology, University Hospital of Wales, Cardiff (United Kingdom)

    2009-02-15

    The use of computers is increasing in every field of medicine, especially radiology. Filmless radiology departments, speech recognition software, electronic request forms and teleradiology are some of the recent developments that have substantially increased the amount of time a radiologist spends in front of a computer monitor. Computers are also needed for searching literature on the internet, communicating via e-mails, and preparing for lectures and presentations. It is well known that regular computer users can suffer musculoskeletal injuries due to repetitive stress. The role of ergonomics in radiology is to ensure that working conditions are optimized in order to avoid injury and fatigue. Adequate workplace ergonomics can go a long way in increasing productivity, efficiency, and job satisfaction. We review the current literature pertaining to the role of ergonomics in modern-day radiology especially with the development of picture archiving and communication systems (PACS) workstations.

  18. Ergonomics in radiology

    International Nuclear Information System (INIS)

    Goyal, N.; Jain, N.; Rachapalli, V.

    2009-01-01

    The use of computers is increasing in every field of medicine, especially radiology. Filmless radiology departments, speech recognition software, electronic request forms and teleradiology are some of the recent developments that have substantially increased the amount of time a radiologist spends in front of a computer monitor. Computers are also needed for searching literature on the internet, communicating via e-mails, and preparing for lectures and presentations. It is well known that regular computer users can suffer musculoskeletal injuries due to repetitive stress. The role of ergonomics in radiology is to ensure that working conditions are optimized in order to avoid injury and fatigue. Adequate workplace ergonomics can go a long way in increasing productivity, efficiency, and job satisfaction. We review the current literature pertaining to the role of ergonomics in modern-day radiology especially with the development of picture archiving and communication systems (PACS) workstations

  19. How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide.

    Science.gov (United States)

    Stites, Mark; Pianykh, Oleg S

    2016-04-01

    Despite the long history of digital radiology, one of its most critical aspects--information security--still remains extremely underdeveloped and poorly standardized. To study the current state of radiology security, we explored the worldwide security of medical image archives. Using the DICOM data-transmitting standard, we implemented a highly parallel application to scan the entire World Wide Web of networked computers and devices, locating open and unprotected radiology servers. We used only legal and radiology-compliant tools. Our security-probing application initiated a standard DICOM handshake to remote computer or device addresses, and then assessed their security posture on the basis of handshake replies. The scan discovered a total of 2774 unprotected radiology or DICOM servers worldwide. Of those, 719 were fully open to patient data communications. Geolocation was used to analyze and rank our findings according to country utilization. As a result, we built maps and world ranking of clinical security, suggesting that even the most radiology-advanced countries have hospitals with serious security gaps. Despite more than two decades of active development and implementation, our radiology data still remains insecure. The results provided should be applied to raise awareness and begin an earnest dialogue toward elimination of the problem. The application we designed and the novel scanning approach we developed can be used to identify security breaches and to eliminate them before they are compromised.

  20. Current state of a dosimetric evaluation programme in diagnostic radiology installations in Spain

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Calzado, A.; Delgado, V.; Moran, P.; Sanchez, B.; Murias, F.

    1988-01-01

    The Medical Physics Group at the School of Medicine of the Complutense University of Madrid, started a programme on the study of radiation doses in relation to Diagnostic Radiology in the area of Madrid in 1986, in cooperation with the Department of Health and Consumer Affairs, and several Madrid area hospitals as well as some Outpatient Centers. In Spain, the National Health Service (NHS) (through the National Institute of Health, INSALUD), potentially cares for the health of approximately 94% of the population. This figure reaches 99% at the Community of Madrid. Radiological examinations are performed mainly in Hospitals and Outpatient Centers (the latter making up a first link in the patient's radiological diagnosis). Private Diagnostic Radiology is used by the remaining 6% of the population (not taking into account the population attended in military hospitals), and by patients who in spite of having access to NHS Diagnostic Radiology Services, prefer to choose the private sector for different reasons. Besides the data we obtained during the first year of study from four large Madrid-area hospitals (and a few outpatient centers); we have used data furnished by the Department of Health and Consumer Affairs, the INSALUD and other sources

  1. Categorization of In-use Radioactive Sealed Sources in Egypt

    International Nuclear Information System (INIS)

    Hasan, M.A.; Mohamed, Y.T.; El Haleim, K.A.

    2006-01-01

    Radioactive sealed sources have widespread applications in industry, medicine, research and education. While most sources are of relatively low activity, there are many of medium or very high activity. The mismanagement of high activity sources is responsible for most of the radiological accidents that result in loss of life or disabling injuries. Because of the variety of applications and activities of radioactive sources, a categorization system is necessary so that the controls that are applied to the sources are adequate with its radiological risk. The aim of this work is to use the international Atomic Energy Agency (IAEA) categorization system to provide a simple, logical system for grading radioactive sealed sources in Egypt. The categorizations of radioactive sealed sources are based on their potential to cause harm to human health. This study revealed that total of 1916 sources have been used in Egypt in the different applications with a total activity of 89400 Ci according to available data in October 2005. (authors)

  2. The radiological accident in Cochabamba

    International Nuclear Information System (INIS)

    2004-07-01

    In April 2002 an accident involving an industrial radiography source containing 192 Ir occurred in Cochabamba, Bolivia, some 400 km from the capital, La Paz. A faulty radiography source container had been sent back to the headquarters of the company concerned in La Paz together with other equipment as cargo on a passenger bus. This gave rise to a potential for serious exposure for the bus passengers as well as for the company employees who were using and transporting the source. The Government of Bolivia requested the assistance of the IAEA under the terms of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. The IAEA in response assembled and sent to Bolivia a team composed of senior radiation safety experts and radiation pathology experts from Brazil, the United Kingdom and the IAEA to investigate the accident. The IAEA is grateful to the Government of Bolivia for the opportunity to report on this accident in order to disseminate the valuable lessons learned and help prevent similar accidents in the future

  3. The provision of radiological protection services

    International Nuclear Information System (INIS)

    1965-01-01

    This publication is a code of practice for the provision or radiological protection services for establishments in which, or in part of which, work is primarily with radiation sources. It was prepared with the help of an international panel of experts and representatives of international organizations which have an interest in this field and was promulgated by the Director General of the Agency under the authority of the Board of Governors of the Agency as a code of practice in the framework of the Agency's Safety Standards. The Board of Governors also authorized the Director General to recommend to Member States that the code of practice be taken into account in the formulation of national regulations or recommendations. The Appendix to the code contains a number of examples of the organization of radiological protection services that have been provided by the members of the panel of experts. These examples do not form a part of the code of practice, but are intended to illustrate the methods of organization which have been adopted in different countries.

  4. Radiological effects of Yatagan coal-fired power plant

    International Nuclear Information System (INIS)

    Barlas, F.; Buke, T.

    2004-01-01

    Radiation dose calculations and also limit radiation dose calculations have been carried out by the code CAP88-PC around the Yatagan coal-fired power plant environment by using the result of previous studies about maximum measured gross alpha activity in the flying ash samples as radioactive sources. A modified Gaussian plume equation is used to estimate the average dispersion of radionuclides released from up to six emitting sources. The sources maybe either elevated stacks or uniform area sources. Assessments are done for a circular grid of distances and directions for a radius up to 80 kilometers, 16 wind sectors and 20 mesh distances around the facility in calculations. The limit doses obtained from the calculations and their radiological effects have been interpreted. Finally the effects of various radionuclides have been carried out and their results have been compared with each other. (author)

  5. A new approach to authorization in the field of radiological protection

    International Nuclear Information System (INIS)

    2003-01-01

    Approaches to radiological protection have been evolving, particularly over the past several years. This has been driven by the emergence of modern concepts of and approaches to risk governance, and by calls from within the radiological protection community for the simplification and clarification of the existing system of protection, as based on the Recommendations of the International Commission on Radiological Protection (ICRP). The NEA Committee on Radiation Protection and Public Health (CRPPH) has been very active in developing its own suggestions as to how the system of radiological protection should evolve to better meet the needs of policy makers, regulators and practitioners. One of those suggestions is that a generic concept of 'regulatory authorization' of certain levels and types of exposure to radiation should replace the current and somewhat complicated concepts of exclusion, exemption and clearance. It has also been suggested that by characterising emerging sources and exposures in a screening process leading into the authorization process, regulatory authorities could develop a better feeling for the type and scale of stakeholder involvement that would be necessary to reach a widely accepted approach to radiological protection. In order to verify that these suggestions would make the system of radiological protection more understandable, easy to apply, and acceptable, independent consultants have 'road tested' the CRPPH concepts of authorization and characterisation. Their findings, which show that applying these concepts would represent significant improvement, are reproduced herein. Specific approaches for the application of the new CRPPH ideas are also illustrated in this report. (author)

  6. Radiological incidents in industrial gamma radiography in the Philippines, 1979-1993

    International Nuclear Information System (INIS)

    Borras, A.M.

    1994-01-01

    Among the many practices of radiation sources, the practice of industrial gamma radiography in the country has the most number of reported radiological incidents. During the past fourteen (14) years, from 1979-1993, twenty (20) incidents that have occurred were reported to the Institute. This paper presents the nature and extent of the 20 reported incidents as well as the results of the analysis of why these incidents happened. The results of the analysis showed that the causes of these incidents are mainly human error and equipment failure. Hence, the factors that can minimize or prevent the chance of occurrence and/or recurrence of incidents and in minimizing the hazard in case of radiological incidents are: a) proper training and re-training of personnel; b) proper and regular inspection and maintenance of equipment; c) adequate radiation survey; and d) proper storage and inventory of the radiography sealed sources. (author). 3 refs.; 5 figs.; 1 tab

  7. Information about radiation dose and risks in connection with radiological examinations: what patients would like to know

    International Nuclear Information System (INIS)

    Ukkola, Leila; Oikarinen, Heljae; Haapea, Marianne; Tervonen, Osmo; Henner, Anja; Honkanen, Hilkka

    2016-01-01

    To find out patients' wishes for the content and sources of the information concerning radiological procedures. A questionnaire providing quantitative and qualitative data was prepared. It comprised general information, dose and risks of radiation, and source of information. Two tables demonstrating different options to indicate the dose or risks were also provided. Patients could give one or many votes. Altogether, 147 patients (18-85 years) were interviewed after different radiological examinations using these devices. 95 % (139/147) of the patients wished for dose and risk information. Symbols (78/182 votes) and verbal scale (56/182) were preferred to reveal the dose, while verbal (83/164) and numerical scale (55/164) on the risk of fatal cancer were preferred to indicate the risks. Wishes concerning the course, options and purpose of the examination were also expressed. Prescriber (3.9 on a scale 1-5), information letter (3.8) and radiographer (3.3) were the preferred sources. Patients aged 66-85 years were reluctant to choose electronic channels. Apart from general information, patients wish for dose and risk information in connection with radiological examinations. The majority preferred symbols to indicate dose and verbal scales to indicate risks, and the preferred source of information was the prescriber or information letter. (orig.)

  8. Emergency radiological monitoring and analysis United States Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    1994-01-01

    The United States Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. Following a major radiological incident the FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted states and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis and quality assurance. This program includes: (1) Aerial Radiological Monitoring - Fixed Wing and Helicopter, (2) Field Monitoring and Sampling, (3) Radioanalysis - Mobile and Fixed Laboratories, (4) Radiation Detection Instrumentation - Calibration and Maintenance, (5) Environmental Dosimetry, and (6) An integrated program of Quality Assurance. To assure consistency, completeness and the quality of the data produced, a methodology and procedures handbook is being developed. This paper discusses the structure, assets and operations of FRMAC monitoring and analysis and the content and preparation of this handbook

  9. Monitoring techniques for the impact assessment during nuclear and radiological emergencies: current status and the challenges

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.

    2003-01-01

    Preparedness and response capability for Nuclear and Radiological emergencies, existing world over, are mainly based on the requirement of responding to radiation emergency caused by nuclear or radiological accidents. Cosmos satellite accident, plutonium contamination at Polaris, nuclear accidents like Kystium, Windscale, TMI and Chernobyl, radiological accidents at Goiania etc have demonstrated the requirement of improved radiation monitoring techniques. For quick decision making, state of the art monitoring methodology which can support quantitative and qualitative impact assessment is essential. Evaluation of radiological mapping of the area suspected to be contaminated needs ground based as well as aerial based monitoring systems to predict the level of radioactive contamination on ground. This will help in delineating the area and deciding the required countermeasures, based on the quantity and type of radionuclides responsible for it. The response can be successful with the effective use of i) Early Warning System ii) Mobile Monitoring System and iii) Aerial Gamma Spectrometric System. Selection of the monitoring methodology and survey parameters and assessment of situation using available resources etc. are to be optimized depending on the accident scenario. Recently, many countries and agencies like IAEA have expressed the requirement for responding to other types of nuclear/radiological emergencies i.e, man made radiation emergency situations aimed at harming public at large that can also lead to environmental contamination and significant exposure to public. Reports of lost / misplaced / stolen radioactive sources from many countries are alarming as safety and security of these radioactive sources are under challenge. The monitoring methodology has to take into account of the increase in such demands and more periodic monitoring in suspected locations is to be carried out. Detection of orphan sources possible amidst large heap of metallic scraps may pose

  10. Radiological hazards of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  11. Mobile technology in radiology resident education.

    Science.gov (United States)

    Korbage, Aiham C; Bedi, Harprit S

    2012-06-01

    The authors hypothesized that ownership of a mobile electronic device would result in more time spent learning radiology. Current trends in radiology residents' studying habits, their use of electronic and printed radiology learning resources, and how much of the funds allotted to them are being used toward printed vs electronic education tools were assessed in this study. A survey study was conducted among radiology residents across the United States from June 13 to July 5, 2011. Program directors listed in the Association of Program Directors in Radiology e-mail list server received an e-mail asking for residents to participate in an online survey. The questionnaire consisted of 12 questions and assessed the type of institution, the levels of training of the respondents, and book funds allocated to residents. It also assessed the residents' study habits, access to portable devices, and use of printed and electronic radiology resources. Radiology residents are adopters of new technologies, with 74% owning smart phones and 37% owning tablet devices. Respondents spend nearly an equal amount of time learning radiology from printed textbooks as they do from electronic resources. Eighty-one percent of respondents believe that they would spend more time learning radiology if provided with tablet devices. There is considerable use of online and electronic resources and mobile devices among the current generation of radiology residents. Benefits, such as more study time, may be obtained by radiology programs that incorporate tablet devices into the education of their residents. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. DOE Radiological Calibrations Intercomparison Program: Results of fiscal year 1987

    International Nuclear Information System (INIS)

    Cummings, F.M.; McDonald, J.C.

    1988-06-01

    This report presents the FY 1987 results of the radiological calibrations intercomparison program. The intercomparison operation is discussed, and the equipment is described, particularly the instrument set, the beta source set, and relevant calculations. Solutions to problems and improvements in the program are suggested, and conclusions are then introduced. 9 refs., 3 figs., 8 tabs

  13. Recovery of Ir-192 sources during emergency situations

    International Nuclear Information System (INIS)

    Quadros, C.L.; Conceicao, M.A. da

    1988-01-01

    During operations for the carrying out of services through the utilization of Ir-192 radio sources in radiographic tests of equipment, emergency situations may occur due to various causes and which bring radiologic accidents with doses exceeding the maximum alloewd. This work has the purpose to submit and analyze the major types of radiological accidents and its consequences for the installations and the procedures for the recuperation of sources during such situations. Another aspect to be mentioned shall be the interruption of services - such as production - and which is to be the lowest possible during the emergency. (author) [pt

  14. Radiological assessment and optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.; Sohier, A.

    1998-01-01

    The objectives of SCK-CEN's research in the field of radiological assessment and optimization are (1) to implement ALARA principles in activities with radiological consequences; (2) to develop methodologies for radiological optimization in decision-aiding; (3) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (4) to develop methods and programmes to assist decision-makers during a nuclear emergency; (5) to support the policy of radioactive waste management authorities in the field of radiation protection; (6) to investigate computer codes in the area of multi criteria analysis; (7) to organise courses on off-site emergency response to nuclear accidents. Main achievements in these areas for 1997 are summarised

  15. Radiology. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Reiser, Maximilian; Kuhn, Fritz-Peter; Debus, Juergen

    2011-01-01

    The text book on radiology covers the following issues: Part A: General radiology: Fundamental physics: radiation biology; radiation protection fundamentals: radiologic methods; radiotherapy; nuclear medicine. Part B: Special radiology: Thorax; heart; urogenital tract and retroperitoneum; vascular system and interventional radiology; esophagus, stomach, small and large intestines; liver, biliary system, pancreas and spleen; mammary glands; central nervous system; spinal cord and spinal canal; basis of the skull, facial bones and eye socket; neck; pediatric imaging diagnostics.

  16. A cross-site vascular radiology on-call service: the Manchester experience

    International Nuclear Information System (INIS)

    Ashleigh, R.J.; Butterfield, J.S.; Asquith, J.; Chalmers, N.; Murphy, G.

    2005-01-01

    AIM: A cross-site vascular radiology on-call service was established 5 years ago to cover two vascular centres in Manchester. We aimed to review the service. MATERIALS AND METHODS: A prospective audit of out-of hours referrals and procedures over a three month period (March-May 2003) was undertaken. RESULTS: There were 52 incidents in 49 patients (mean 4 calls per week). Nine involved telephone advice only, the remainder (82%) required a procedure. Angiography was performed on 88% of patients and therapeutic radiological intervention on 50%. 71% of calls occurred at a weekend. 50% of the calls were from vascular surgery and 50% from other sources. The consultant vascular radiologist was present for 93% of procedures. CONCLUSIONS: The workload suggests that a vascular radiology on call service is justified in Manchester. There have been no major problems with its implementation and operation. This is a consultant led service, with very few cases being devolved to a specialist registrar (SpR)

  17. Environmental Radiological Impact of Nuclear Power. Monitoring and Control Programs

    International Nuclear Information System (INIS)

    Ramos, L. M.

    2000-01-01

    Radioactive contamination of the environment and public exposure to ionizing radiation may result from releases from programmed or accidental operations in regulated activities, or they may be due to preexisting situations such as contamination caused by past accidents, radioactive rain caused by nuclear tests, or increased natural radioactivity resulting from human activities. In many cases, both the emission sources and the environment should be monitored to determine the risk to the population and verify to what extent the limits and conditions established by competent authorities are being observed. Monitoring can be divided into three categories: monitoring of the emission source, of the receiving medium and of members of the public; individual monitoring of the population is extremely rare and would only be considered when estimated doses substantially exceed the annual public dose limit. In practices likely to produce significant radioactive releases, as is the case of nuclear fuel cycle facilities, the limits and conditions for monitoring and controlling them and the requirements for environmental radiological monitoring are established in the licensing process. Programs implemented during normal operation of the facilities form the basis for monitoring in the event of accidents. in addition to environmental radiological monitoring associated with facilities, different countries have monitoring programs outside the facilities zones of influence, in order to ascertain the nationwide radiological fund and determine possible increases in this fund. In Spain, the facilities that generate radioactive waste have effluent storage, treatment and removal systems and radiological monitoring programs based on site and discharge characteristics. The environmental radiological monitoring system is composed of the network implemented by the owners in the nuclear fuel cycle facilities zones of influence, and by nationwide monitoring networks managed by the Consejo de

  18. Radiological Worker Training: Radiological Worker 1 lesson plans

    International Nuclear Information System (INIS)

    1992-10-01

    Upon completion of this training course, the participant will have the knowledge to work safely in areas controlled for radiological purposes using proper radiological practices. Upon completion of this unit the participant will be able to identify the fundamentals of radiation, radioactive material and radioactive contamination. The participant will be able to select the correct response from a group of responses which verifies his/her ability to: Define ionizing radiation, radioactive material and radioactive contamination and identify the units used to measure radiation and radioactivity

  19. Federal support of radiological research

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1981-01-01

    Pervading the plans and objective outlined herein for continued and enhanced federal support of research in radiology is a challenge of unparalleled magnitude, for the economic foundation on which this support is based has rarely been more precarious. The new administration in Washington may well be the most fiscally constrained in half a century, and its stated interest in reducing federal expenditures could have disastrous consequences for the scientific research effort in this country, including that in radiology and the radiological sciences. The circumvention of these consequences may well require the dedicated effort of the entire scientific community over the next few months and years, including that part representing radiology and the radiological sciences

  20. RCT: Module 2.08, Radiological Source Control, Course 8774

    Energy Technology Data Exchange (ETDEWEB)

    Hillmer, Kurt T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    radioactive source is material used for its emitted radiation. Sources are sealed or unsealed and are classified as accountable or exempt. Radioactive sources are used for response checks, functional checks, and the calibration of instruments and monitors to traceable standards. To ensure the safety and welfare of all personnel, it is important to maintain control of radioactive sources to minimize the potential for the spread of contamination, unnecessary exposure to personnel, loss or theft, and improper disposal. This course will prepare the student with the skills necessary for RCT qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and will provide in-the-field skills.

  1. 21 CFR 892.1980 - Radiologic table.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A radiologic...

  2. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Nenot, Jean-Claude; Brenot, Jean; Laurier, Dominique; Rannou, Alain; Thierry, Dominique

    2009-01-01

    These revised Recommendations for a System of Radiological Protection formally replace the Commission's previous, 1990, Recommendations; and update, consolidate, and develop the additional guidance on the control of exposure from radiation sources issued since 1990. Thus, the present Recommendations update the radiation and tissue weighting factors in the quantities equivalent and effective dose and update the radiation detriment, based on the latest available scientific information of the biology and physics of radiation exposure. They maintain the Commission's three fundamental principles of radiological protection, namely justification, optimisation, and the application of dose limits, clarifying how they apply to radiation sources delivering exposure and to individuals receiving exposure. The Recommendations evolve from the previous process-based protection approach using practices and interventions by moving to an approach based on the exposure situation. They recognise planned, emergency, and existing exposure situations, and apply the fundamental principles of justification and optimisation of protection to all of these situations. They maintain the Commission's current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They reinforce the principle of optimisation of protection, which should be applicable in a similar way to all exposure situations, subject to the following restrictions on individual doses and risks; dose and risk constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment

  3. Emergency response during the radiological control of scraps in Cuba

    International Nuclear Information System (INIS)

    Ramos Viltre, Enma O.; Cardenas Herrera, Juan; Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Fernandez Gomez, Isis M.; Caveda Ramos, Celia; Carrazana, Jorge; Barroso Perez, Idelisa

    2008-01-01

    In the last few years, in the international scene, incidents have been reported due to the presence of radioactive materials in the scrap. This reality has motivated the adoption of measures of radiological security, due to the implications that these incidents have for the public and the environment, as well as for the international trade. Among theses actions is the implementation of the radiological control of scrap, with the additional requirement that this control has to be implemented in the framework of a Quality Management Program.Taking into account the international experience, our institution designed and organized in 2002 a national service for the radiological monitoring of scrap, being the clients the main exporting and trading enterprises of this material in the country. During these years, several contaminated materials have been detected, causing incidents that activated the radiological emergency response system. In this sense, since some years ago, our country has been working in the implementation of a national and ministerial system for facing and mitigating the consequences of accidental radiological situations, conjugating efforts and wills from different national institutions with the leadership of the Center of Radiation Protection and Hygiene (CPHR) and the Center of Nuclear Security (CNSN) in correspondence with the social responsibility assigned to the them. These incidents propitiate to have not only a system of capacity and quick response oriented to limit the exposure of people, to control the sources, to mitigate the consequences of the accident and to reestablish the conditions of normality, but also a previous adequate planning that guarantees the speed and effectiveness of it. In these work the experiences reached by the specialists of the CPHR from Cuba during the occurrence of an incident in the execution of the service of radiological monitoring of scraps are exposed. (author)

  4. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    International Nuclear Information System (INIS)

    Harpring, L.; Frank Heckendorn, F.

    2007-01-01

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process

  5. Health surveillance of radiological work

    International Nuclear Information System (INIS)

    Pauw, H.; Vliet, J.V.D.; Zuidema, H.

    1988-01-01

    Shielding x-ray devices and issuing film badges to radiological workers in 1936 can be considered the start of radiological protection in the Philips enterprises in the Netherlands. Shielding and equipment were constantly improved based upon the dosimetry results of the filmbadges. The problem of radioactive waste led to the foundation of a central Philips committee for radiological protection in 1956, which in 1960 also issued an internal license system in order to regulate the proper precautions to be taken : workplace design and layout, technological provisions and working procedures. An evaluation of all radiological work in 1971 learnt that a stricter health surveillance program was needed to follow up the precautions issued by the license. On one hand a health surveillance program was established and on the other hand all types of radiological work were classified. In this way an obligatory and optimal health surveillance program was issued for each type of radiological work

  6. Report of radiological safety for a micro PET

    International Nuclear Information System (INIS)

    Gallegos M, R.; Ruiz T, C. G.; Martinez D, A.; Rodriguez V, M.

    2010-09-01

    Considering one of the guides emitted by the National Commission of Nuclear Security and Safeguards, was realized the report of radiological safety for a micro tomography by positrons emission that is part of Bimodal System of Images developed in their entirety for personnel of the Physics Institute of UNAM. With this system is sought to obtain tomography images of small animals using non destructive methods, such as computerized micro tomography and micro tomography by positrons emission. In this work each one of the report points is enumerated and only it is described, to big features on that consist, due to the great extension of each one of them. The report has two parts; the first is denominated -Of the installation and the Organization- and is given to know the interior and external characteristics of the installation, besides how and under which authority the activities will be executed inside the laboratory. The second part is called -of the Radiological Protection- and has for objective to describe the radiation sources that will be used, as well as the measures of radiological protection foreseen inside the laboratory. The most important part in the report consists on the description of the three radionuclides to use: 18 F, 11 C and 13 N, as well as the methods for the shielding calculation and for the estimate of the dose equivalent during the normal operation of the equipment. These methods were applied three times, because the calculation was made for each radionuclide. The results of these calculations show that: 1) it not is necessary to have a structural shielding, due to the activity sources very reduced, and 2) the dose limit per year (according to the ICRP-60) it will not be surpassed neither in the case of the occupationally exposed personnel, neither on the public in general. (Author

  7. Nuclear and radiological Security: Introduction.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-24

    Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of the various entities involved in nuclear security.

  8. Nuclear and radiological Security: Introduction

    International Nuclear Information System (INIS)

    Miller, James Christopher

    2016-01-01

    Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of the various entities involved in nuclear security.

  9. Natural radiation - a perspective to radiological risk factors of nuclear energy production

    DEFF Research Database (Denmark)

    Mustonen, R.; Christensen, T.; Stranden, E.

    1992-01-01

    Radiation doses from natural radiation and from man-made modifications on natural radiation, and different natural radiological environments in the Nordic countries are summarized and used as a perspective for the radiological consequences of nuclear energy production. The significance of different...... radiation sources can be judged against the total collective effective dose equivalent from natural radiation in the Nordic countries, 92 000 manSv per year. The collective dose from nuclear energy production during normal operation is estimated to 20 manSv per year and from non-nuclear energy production...... to 80 manSv per year. The increase in collective dose due to the conservation of heating energy in Nordic dwellings is estimated to 23 000 manSv per year, from 1973 to 1984. An indirect radiological danger index is defined in order to be able to compare the significance of estimated future releases...

  10. An overview of dental radiology: a primer on dental radiology

    International Nuclear Information System (INIS)

    Manny, E.F.; Carlson, K.C.; McClean, P.M.; Rachlin, J.A.; Segal, P.

    1980-01-01

    To provide medical and scientific background on certain selected technologies generally considered to be of particular significance, the National Center for Health Care Technology (NCHCT) has commissioned a series of overview papers. This is one of several projects entered into jointly by the Bureau of Radiological Health (BRH) and NCHCT relating to the use of radiation for health care. Dental radiation protection has been a long-time interest of BRH. Both past and on-going efforts to minimize population radiation exposure from electronic products have included specific action programs directed at minimizing unnecessary radiation exposure to the population from dental radiology. Current efforts in quality assurance and referral criteria are two aspects of NCHCT's own assessment of this technology which are described within the larger picture presented in this overview. The issues considered in this document go beyond the radiation exposure aspects of dental x-ray procedures. To be responsive to the informational needs of NCHCT, the assessment includes various other factors that influence the practice of dental radiology. It is hoped this analysis will serve as the basis for planning and conducting future programs to improve the practice of dental radiology

  11. Radiology's value chain.

    Science.gov (United States)

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  12. Gout. Radiological aspects

    International Nuclear Information System (INIS)

    Restrepo Suarez, Jose Felix; Pena Cortes, Mario; Rondon Herrera, Federico; Iglesias Gamarra, Antonio; Calvo Paramo, Enrique

    2000-01-01

    In this paper we reviewed the clinical and radiological aspects of gout, showing the most frequent radiological findings that can guide to the correct diagnosis of the disease. The cases that we presented here have been analyzed for many years in our rheumatology service, Universidad Nacional de Colombia, Hospital San Juan de Dios, Bogota

  13. Diagnostic and interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, Thomas J. [Klinikum der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Reith, Wolfgang [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie; Rummeny, Ernst J. (ed.) [Technische Univ. Muenchen Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Radiologie

    2016-08-01

    This exceptional book covers all aspects of diagnostic and interventional radiology within one volume, at a level appropriate for the specialist. From the basics through diagnosis to intervention: the reader will find a complete overview of all areas of radiology. The clear, uniform structure, with chapters organized according to organ system, facilitates the rapid retrieval of information. Features include: Presentation of the normal radiological anatomy Classification of the different imaging procedures according to their diagnostic relevance Imaging diagnosis with many reference images Precise description of the interventional options The inclusion of many instructive aids will be of particular value to novices in decision making: Important take home messages and summaries of key radiological findings smooth the path through the jungle of facts Numerous tables on differential diagnosis and typical findings in the most common diseases offer a rapid overview and orientation Diagnostic flow charts outline the sequence of diagnostic evaluation All standard procedures within the field of interventional radiology are presented in a clinically relevant and readily understandable way, with an abundance of illustrations. This is a textbook, atlas, and reference in one: with more than 2500 images for comparison with the reader's own findings. This comprehensive and totally up-to-date book provides a superb overview of everything that the radiology specialist of today needs to know.

  14. Medical radiology terminology

    International Nuclear Information System (INIS)

    1986-01-01

    Standardization achievements in the field of radiology induced the IEC to compile the terminology used in its safety and application standards and present it in publication 788 (1984 issue), entitled 'Medical radiology terminology'. The objective pursued is to foster the use of standard terminology in the radiology standards. The value of publication 788 lies in the fact that it presents definitions of terms used in the French and English versions of IEC standards in the field of radiology, and thus facilitates adequate translation of these terms into other languages. In the glossary in hand, German-language definitions have been adopted from the DIN standards in cases where the French or English versions of definitions are identical with the German wording or meaning. The numbers of DIN standards or sections are then given without brackets, ahead of the text of the definition. In cases where correspondance of the various texts is not so good, or reference should be made to a term in a DIN standard, the numbers are given in brackets. (orig./HP) [de

  15. The radiological technologist

    International Nuclear Information System (INIS)

    Bundy, A.L.

    1988-01-01

    Radiologists rely upon the talents of the technologists with whom they work. Indeed, a good technologist will only enhance the radiologist's performance. Radiological technologists no longer solely take radiographs, but are involved in many more detailed areas of imaging, such as computered tomography, magnetic resonance imaging, nuclear radiology, ultrasound, angiography, and special procedures. They are also required to make decisions that affect the radiological examination. Besides the degree in radiological technology (RT), advanced degrees in nuclear medicine technology (NMT) and diagnostic medical sonography (RDMS) are attainable. The liability of the technologist is not the same as the radiologist involved, but the liability is potentially real and governed by a subdivision of jurisprudence known as agency law. Since plaintiffs and attorneys are constantly searching for new frontiers of medical liability, it is wise for the radiologist and technologist to be aware of the legalities governing their working relationship and to behave accordingly. The legal principles that apply to this working relationship are discussed in this chapter, followed by a presentation of some relevant and interesting cases that have been litigated

  16. Occupational radiological protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Mota, H.C.

    1983-01-01

    The following topics are discussed: occupational expossure (the ALARA principle, dose-equivalent limit, ICRP justification); radiological protection planning (general aspects, barrier estimation) and determination of the occupational expossures (individual monitoring). (M.A.) [pt

  17. Radiological Control Manual. Revision 0, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  18. Integrative teaching in Radiology. A survey

    International Nuclear Information System (INIS)

    Dettmer, S.; Weidemann, J.; Wacker, F.; Fischer, V.

    2015-01-01

    To survey integrative teaching in radiology at German universities. A questionnaire about radiological education was sent electronically to all 37 chairpersons of university radiology departments in Germany. The questions included the course type, teaching methods, concept, perception, and advantages and disadvantages of integrative teaching. Statistical analysis was performed with nonparametric statistics and chi-square test. The survey was considered representative with a return rate of 68%. Integrative teaching is established at 4/5 of all departments. Integrative teaching is well accepted with an acceptance rate that is significantly higher in so-called 'Modellstudiengaengen' (model courses of study) (100%) compared to conventional courses of study (72%). The advantages of integrative teaching include linking of content (92%) and preparation for interdisciplinary work (76%). The disadvantages include high effort (75%) and time (67%) for organization. Furthermore, there is a risk that basic radiological facts and knowledge cannot be conveyed and that the visibility of radiology as an independent discipline is lost. Conventional radiological teaching has a similarly high acceptance (84%) compared to integrative courses (76%). Integrative teaching has a high acceptance among chairpersons in radiology in Germany despite the greater effort. A good interdisciplinary collaboration is essential for integrative teaching and at the same time this can be conveyed to the students. However, the visibility of radiology as a discipline and the possibility to cover basic radiological content must be ensured. Therefore, both conventional courses and integrative teaching seems reasonable, especially in cross-disciplinary subjects such as radiology.

  19. Nursering assistance to the radiological accident patients in Goiania-an experience report

    International Nuclear Information System (INIS)

    Graciotti, M.E.

    1989-06-01

    In september, 1987, a caesium-137 source was disrupted and caused a serious radiological acident. The victims were hospitalized in the General Hospital in city of Goiania, Goias state, Brazil. This is a report of a personal experience, during the two months of nursering care. (author) [pt

  20. Quality control in dental diagnostic radiology : anomalous in the use of radiological equipment

    International Nuclear Information System (INIS)

    Alcaraz, M.; Martinez-Beneyto, Y.; Jodar, S.; Velasco, E.; Garcia-Vera, M. C.

    2004-01-01

    7,176 official quality control reports on dental diagnostic radiology were studied, relating to dental clinics located in 37 Spanish provinces covering 16 different autonomous Regions. The reports were issued as a result of the entry into force of Royal Decree 2071/1995 on quality control in General Diagnostic Radiology facilities, this Royal Decree was replaced by R. D. 1976/1999. The reports were writen by the UTPR (Technical Unit of Radiological Protection) Agsigma S. A. L., a company approved by the Nuclear Safety Council, and they correspond with the official reports issued during 1996-2001. This meants that a 5-year period has been monitored in order to observe the impacts of the establlishment of this legislation on quality control in intraoral dental diagnostic radiology facilities. The results show that 72.79% of the reports checked in 2001 would comply with the European Union's official recommendation (70 kVp, 8 mA> 1.5 mm of Al and 20 cm collimator length). Significant alterations have detected in a third (30.59%) of the radiological equipment. (Author) 36 refs

  1. Continuing training in radiological protection as an effective means of avoiding radiological accidents

    International Nuclear Information System (INIS)

    Lima, C.M.A.; Pelegrineli, S.Q.; Martins, G.; Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    it is notorious that one of the main causes of radiological accidents is the lack of knowledge of radiological protection of workers. In order to meet the needs of professionals in acquiring a solid base in radiological protection and safety, was created in 2013, by the Casa Branca School / SP and technically supported by the company MAXIM Cursos, the 'Post-Graduation Course Lato Sensu de Radiological Protection in Medical, Industrial and Nuclear Applications', which offers a broad improvement in radiation protection. The course of 380 hours and duration of 18 months is divided into 13 modules, including theoretical classes, in person and online using the virtual classroom and practical training in radiation protection in general. In the end students should present a monograph, guided by a course teacher and reviewed by an Examining Bank. Five classes have been formed in these four years, totaling 92 students. In all, 51 monographs have been defended on topics of technical and scientific interest. For this, the Faculty consists of 25 professors, being 9 Doctors, 13 Masters and 3 Specialists in Radiological Protection

  2. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...

  3. Mission Analysis for Using Preventive Radiological/Nuclear Detection Equipment for Consequence Management

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, Brooke R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood-Zika, Annmarie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haynes, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klemic, Gladys A. [US Dept. of Homeland Security National Urban Security Technology Lab., Manhattan, NY (United States); Musolino, Stephen V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-01

    The overall objective of this project is to research, evaluate, and test first responder preventive radiological/nuclear detection (PRND) equipment to provide state and local agencies with scientific guidance on how to effectively use this equipment for response after a radiological/nuclear release or detonation. While the equipment being tested in this effort has been specifically designed by technology manufacturers and purchased by responders for preventive detection and source interdiction operations, the fleet of PRND equipment can help fill critical needs for radiological instrumentation should a consequence management (CM) response take place, as it is currently the most widely available and fielded radiological instrumentation by state and local agencies. This effort will provide scientific guidance on the most effective way to utilize this class of equipment for consequence management missions. Gaining a better understanding of how PRND equipment can operate and perform for these missions will allow for recommendations on the tactical approach responders can use for consequence management operations. PRND equipment has been placed into service by federal, state, and local agencies throughout the nation. If the equipment capability and limitations are taken into account, this large inventory can be leveraged to support the emergency response in the aftermath of a radiological or nuclear event. With several hundred makes and models of PRND equipment, often with significantly different detection capabilities that do not align with their nominal PRND equipment type, development of a streamlined categorization scheme with respect to consequence management missions was the first step to identifying safe and effective uses of PRND equipment for radiological/nuclear incident response.

  4. The radiological accident in Tbilisi

    International Nuclear Information System (INIS)

    Abramidze, S.; Katamadze, N.; Lomtadze, Z.; Crus Suarez, R.; Bilbao Alfonso, A.V.

    1998-01-01

    On 9 October 1997 a facsimile message was received by the IAEA from the Minister of Health of Georgia stating that servicemen of the Lilo Training Detachment of Frontier Troops had developed local radiation induced skin diseases on various parts of their bodies. Details were sent of the medical diagnoses of the nine victims together with information on the radiation sources and dose rates that had caused the exposures. The Georgian minister of Health requested the IAEA to assist in the examination and treatment of the patients. An investigation had revealed that several Cs-137, Co-60 radiation sources and some beta emitters had been found and that in some places high dose rates had been detected. The Government of Georgia requested the IAEA to send an emergency team to evaluate the radiological situation at the Lilo Training Center. The present paper is a summary of the finding and lessons to be learned from this situation. (author)

  5. Recent trend of diagnostic radiology

    International Nuclear Information System (INIS)

    Kim, S.Y.; Kim, H.K.

    1979-01-01

    Present status and recent trend of diagnostic radiology have been reviewed. The interrelationships and Characteristics of various fields of radiology such as computed tomography, X-ray radiology, and nuclear medicine were discussed. The mevit of computed tomography and the promising use of short lived, accelerator produced radionuclides, and radiotherapy in nuclear medicine were emphasized. (author)

  6. Hanford radiological protection support services annual report for 1988

    International Nuclear Information System (INIS)

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1989-06-01

    The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs

  7. Environmental radioactivity in Canada 1988. Radiological monitoring annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The radiological surveillance program of the Department of National Health and Welfare is conducted for the purpose of determining levels of environmental radioactivity in Canada and assessing the resulting population exposures. Following major changes to the CAMECO Port Hope operations to reduce uranium emissions, a study was initiated to measure uranium levels in air in the community. Studies continued on lung cancer and domestic exposure to radon, and current levels of cesium-137 in caribou, a major source of food in northern communities. The movement of tritium on the Ottawa and St. Lawrence rivers was studied following an accidental release into the Ottawa River. Monitoring continued of fallout contamination from Chernobyl in imported foods. All measurements recorded during 1988 were below the limits recommended by the International Commission on Radiological Protection. (14 refs., 14 figs., 15 tabs.).

  8. Role of radiology in occupational medicine

    International Nuclear Information System (INIS)

    Vehmas, T.

    2004-01-01

    This review discusses the contribution of radiology to occupational medicine as well as work-related problems in radiology dept.s. Research issues are emphasized. Radiology has been used especially when diagnosing occupational respiratory and locomotive system problems and solvent-induced encephalo- and hepatopathy. The aim of research in these areas is usually to characterize occupational diseases and to identify physico-chemical hazards in the work place by comparing between groups of workers and non-exposed controls. Radiological imaging allows an objective characterization of the disease, and it may clarify the pathogenesis of the process and provide a useful epidemiological tool. Advanced statistical methods are often needed to adjust analyses for confounding variables. As the diagnostic requirements are increasing, more sensitive and sophisticated radiological methods, such as high-resolution computed tomography, magnetic resonance imaging and magnetic resonance spectroscopy, may be required for the early recognition of occupational health risks. This necessitates good cooperation between occupational health units and well-equipped imaging dept.s. Considering occupational problems in radiology departments, the increasing use of digital radiology requires ergonomic measures to control and prevent locomotive problems caused by work with computers. Radiation protection measures are still worth concern, especially in interventional radiology

  9. Military radiology during the first world conflict

    International Nuclear Information System (INIS)

    Le Vot, J.

    2016-01-01

    Published at the occasion of the centenary of the First World War, this article proposes an historical overview of the emergence and development of military medical radiology during this conflict. The author first describes the situation of radiology in the different armies and countries on the eve of the war as this application of radiology is relatively recent (it is based on Roentgen's discovery in 1895). He indicates the first steps of emergence of radiology department in military hospitals, the interest of military physicians in radiology and the availability of mobile equipment which had been actually presented at the parade on the 14 July 1914. The author then highlights some important personalities who have been important actors of the development, application and use of radiology and of military radiology during the war. He proposes an overview of radiological equipment in 1914, of the variety of vehicles adapted to transport and use such equipment. He also comments how radiology professionals were trained

  10. Review of specific radiological accident considerations

    International Nuclear Information System (INIS)

    Elder, J.

    1984-01-01

    Specific points of guidance provided in the forthcoming document A Guide to Radiological Accident Considerations for Siting and Design of Nonreactor Nuclear Facilities are discussed. Of these, the following are considered of particular interest to analysts of hypothetical accidents: onsite dose limits; population dose, public health effects, and environmental contamination as accident consequences which should be addressed; risk analysis; natural phenomena as accident initiators; recommended dose models; multiple organ equivalent dose; and recommended methods and parameters for source terms and release amount calculations. Comments are being invited on this document, which is undergoing rewrite after the first stage of peer review

  11. CP-50 calibration facility radiological safety assessment document

    International Nuclear Information System (INIS)

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described

  12. Evidence-based radiology: a new approach to evaluate the clinical practice of radiology

    International Nuclear Information System (INIS)

    Puig, S.; Felder-Puig, R.

    2006-01-01

    Over the last several years, the concept and methodology of evidence-based medicine (EBM) have received significant attention in the scientific community. However, compared to therapeutic medical disciplines, EBM-based radiological publications are still underrepresented. This article summarizes the principles of EBM and discusses the possibilities of their application in radiology. The presented topics include the critical appraisal of studies on the basis on EBM principles, the explanation of EBM-relevant statistical outcome parameters (e.g., ''likelihood ratio'' for diagnostic and ''number needed to treat'' for interventional procedures), as well as the problems facing evidence-based radiology. Evidence-based evaluation of radiological procedures does not only address aspects of cost-effectiveness, but is also particularly helpful in identifying patient-specific usefulness. Therefore it should become an integral part of radiologist training. (orig.)

  13. Feasibility study for a realistic training dedicated to radiological protection improvement

    International Nuclear Information System (INIS)

    Courageot, E.; Kutschera, R.; Gaillard-Lecanu, E.; Jahan, S.; Riedel, A.; Therache, B.

    2013-01-01

    An evident purpose of the radiological protection training is to use suitable protective equipment and to behave correctly if unexpected working conditions happen. A major difficulty of this training consist in having the most realistic reading from the monitoring devices for a given exposure situation, but without using real radioactive sources. A new approach is developed at EDF R/D for radiological protection training. This approach combines different technologies, in an environment representative of the workplace but geographically separated from the nuclear power plant: a training area representative of a workplace, a Man Machine Interface used by the trainer to define the source configuration and the training scenario, a geo-localization system, fictive radiation monitoring devices and a particle transport code able to calculate in real time the dose map due to the virtual sources. In a first approach, our real-time particles transport code, called Moderato, used only an attenuation low in straight line. To improve the realism further, we would like to switch a code based on the Monte Carlo transport of particles like Geant 4 or MCNPX instead of Moderato. The aim of our study is the evaluation of the code in our application, in particular, the possibility to keep a real time response of our architecture. (authors)

  14. Review of SFR In-Vessel Radiological Source Term Studies

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum

    2008-10-01

    An effort has been made in this study to search for and review the literatures in public domain on the studies of the phenomena related to the release of radionuclides and aerosols to the reactor containment of the sodium fast reactor (SFR) plants (i.e., in-vessel source term), made in Japan and Europe including France, Germany and UK over the last few decades. Review work is focused on the experimental programs to investigate the phenomena related to determining the source terms, with a brief review on supporting analytical models and computer programs. In this report, the research programs conducted to investigate the CDA (core disruptive accident) bubble behavior in the sodium pool for determining 'primary' or 'instantaneous' source term are first introduced. The studies performed to determine 'delayed source term' are then described, including the various stages of phenomena and processes: fission product (FP) release from fuel , evaporation release from the surface of the pool, iodine mass transfer from fission gas bubble, FP deposition , and aerosol release from core-concrete interaction. The research programs to investigate the release and transport of FPs and aerosols in the reactor containment (i.e., in-containment source term) are not described in this report

  15. Integrative teaching in radiology - a survey.

    Science.gov (United States)

    Dettmer, S; Weidemann, J; Fischer, V; Wacker, F K

    2015-04-01

    To survey integrative teaching in radiology at German universities. A questionnaire about radiological education was sent electronically to all 37 chairpersons of university radiology departments in Germany. The questions included the course type, teaching methods, concept, perception, and advantages and disadvantages of integrative teaching. Statistical analysis was performed with nonparametric statistics and chi-square test. The survey was considered representative with a return rate of 68 %. Integrative teaching is established at 4/5 of all departments. Integrative teaching is well accepted with an acceptance rate that is significantly higher in so-called "Modellstudiengängen" [model courses of study] (100 %) compared to conventional courses of study (72 %). The advantages of integrative teaching include linking of content (92 %) and preparation for interdisciplinary work (76 %). The disadvantages include high effort (75 %) and time (67 %) for organization. Furthermore, there is a risk that basic radiological facts and knowledge cannot be conveyed and that the visibility of radiology as an independent discipline is lost. Conventional radiological teaching has a similarly high acceptance (84 %) compared to integrative courses (76 %). Integrative teaching has a high acceptance among chairpersons in radiology in Germany despite the greater effort. A good interdisciplinary collaboration is essential for integrative teaching and at the same time this can be conveyed to the students. However, the visibility of radiology as a discipline and the possibility to cover basic radiological content must be ensured. Therefore, both conventional courses and integrative teaching seems reasonable, especially in cross-disciplinary subjects such as radiology. Both integrative teaching and conventional radiological teaching are highly accepted. The advantages include the linking of multidisciplinary content and the preparation for interdisciplinary cooperation

  16. Radiological assessment of radioactive contamination on private clothing

    International Nuclear Information System (INIS)

    Schartmann, F.; Thierfeldt, S.

    2003-01-01

    In the very rare, cases where private clothing of persons working in a nuclear installation are inadvertently contaminated and this contamination is not detected when leaving the facility, there may be radiological consequences for this person as well as for members of his or her family. The VGB (Technische Vereinigung der Grosskraftwerksbetreiber) in Germany has investigated in detail the spread of contamination in nuclear power plants. Part of this evaluation programme was a radiological analysis which has been carried out by Brenk Systemplanung GmbH (Aachen/Germany). The radiological analysis started with the definition of the source term. It is highly unlikely that activities of more than 5 kBq 60 Co could leave a plant undetected on the body or the clothes. Nevertheless activities up to 50 kBq and different nuclide vectors were regarded. It has been found that 60 Co is the most important contaminant. The radiological analysis focusses on two types of contamination: particles and surface contamination. The pathways by which such a contamination can lead to an exposure by external irradiation or by ingestion depend on the type of contamination and are analysed in detail. For example, a particle could be retained in pockets or other parts of clothing and may lead to prolonged external irradiation until the piece of clothing is washed. The analysis is performed on the basis of conservative to realistic assumptions. In conclusion, the analysis has shown that especially particle contamination needs to be focussed on. However, by the advanced detection equipment in German plants doses which may pose a health hazard can safely be excluded. (authors)

  17. Radiological studies on Egyptian mummies

    International Nuclear Information System (INIS)

    Pahl, W.M.

    1982-01-01

    The goal of this work as part of a mummy study project is to obtain the maximum amount of information through radiological methods with the minimum destruction of the object. For this proven radiological methods were used as well as conventional radiological methods which had not yet been used with mummy research and modern radiological methods using an electronic basis relative to their importance for the study of medical archaeological materials. It is shown that the knowledge which is gained from the use of a combination of classical radiological methods and computed tomography cannot be enhanced by an autopsy of the study objects. Since because of this the objects can be kept in their original condition, a later checking of the results is guaranteed with the possibility of clearing up remaining open questions by means of further developed methods. (orig.) [de

  18. How to Read Your Radiology Report

    Science.gov (United States)

    ... Site Index A-Z How to Read Your Radiology Report Imaging studies such as magnetic resonance imaging ( ... radiology report. top of page Sections of the Radiology Report Type of exam The type of exam ...

  19. Radiology in the 21st century

    International Nuclear Information System (INIS)

    Carson, P.L.; Seltzer, S.E.; Gore, J.C.; Heiiman, R.S.; Abrams, H.L.; Davis, K.A.; Henkelman, M.R.

    1987-01-01

    On the leading edge in ''high-tech'' medicine, radiology is experiencing several revolutions simultaneously that promise an exciting future. New imaging methods and digital technologies not only offer novel ways to view tissues but also provide opportunities for quantitative evaluation of function and even permit determination of metabolic status. New approaches to technology assessment are being explored that alter the ways in which equipment and procedures are introduced into clinical medicine. With the plethora of radiology services available, the radiologist must serve as a consultant in the triage of patients in radiology and the dissemination of information from radiology. For similar reasons, training in diagnostic radiology may eventually accommodate to the concept of specialization along organ-system lines. Without question, radiology is destined for an exciting period as it moves into the 21st century

  20. Surgical considerations in the management of combined radiation blast injury casualties caused by a radiological dirty bomb.

    Science.gov (United States)

    Williams, Geraint; O'Malley, Michael

    2010-09-01

    The capacity for surgical teams to respond appropriately to the consequences caused by the detonation of a radiological dirty bomb will be determined by prior knowledge, familiarity and training for this type unique terrorist event. This paper will focus on the surgical aspects of this scenario with particular emphasis on the management of combined trauma-radiological injury. The paper also describes some of the more serious explosion-contamination incidents from nuclear industrial sources, summarises learning points and parallels taken from these scenarios in relation to subject of a radiological dirty bomb and describes the likely radioactive substances involved. 2010 Elsevier Ltd. All rights reserved.

  1. Human engineering of a radiological diagnostic system

    International Nuclear Information System (INIS)

    Andou, Eiji; Yuba, Fumimaro; Kotoh, Yukitoshi; Oohara, Kazuo; Uto, Fumiaki.

    1992-01-01

    Current practices for patient safety control in radiological diagnosis may involve problems. For solving of these problems, we have to bear in mind that the mental and physical capacity of patients tend to be limited during radiological testing. When radiography is performed using a general X-ray device at a source table distance (STD) of 100 cm, the patient's head can touch the X-ray tube housing during position adjustment on the stand (up and down adjustment) or the patient is made to take an unnatural posture during body positioning. With this in mind, we carried out a questionnaire survey about source image receptor distance (SID). This survey disclosed that more than 92% of the institutions have adapted 100 cm STD. We then conducted a three-dimensional analysis of a patient's posture and motion by video taping patients during positioning on a roentgenographic table. This analysis revealed that the adoption of the 120 cm STD resulted in less contact between the patient's head and X-ray tube housing, less of unnatural body position and less time required for positioning adjustment when compared to those at 100 cm STD. These results indicate that the current STD (100 cm) is not suitable for safe and smooth adjustment of the positioning of a patient's body of a roentgenographic table. We examined the optimun STD, taking into consideration the dimensions of patient's movement and posture during an X-ray examination. (author)

  2. Radiological modeling software for underground uranium mines

    International Nuclear Information System (INIS)

    Bjorndal, B.; Moridi, R.

    1999-01-01

    The Canadian Institute for Radiation Safety (CAIRS) has developed computer simulation software for modeling radiological parameters in underground uranium mines. The computer program, called 3d RAD, allows radiation protection professionals and mine ventilation engineers to quickly simulate radon and radon progeny activity concentrations and potential alpha energy concentrations in complex mine networks. The simulation component of 3d RAD, called RSOLVER, is an adaptation of an existing modeling program called VENTRAD, originally developed at Queen's University, Ontario. Based on user defined radiation source terms and network physical properties, radiological parameters in the network are calculated iteratively by solving Bateman's Equations in differential form. The 3d RAD user interface was designed in cooperation with the Canada Centre for Mineral and Energy Technology (CANMET) to improve program functionality and to make 3d RAD compatible with the CANMET ventilation simulation program, 3d CANVENT. The 3d RAD program was tested using physical data collected in Canadian uranium mines. 3d RAD predictions were found to agree well with theoretical calculations and simulation results obtained from other modeling programs such as VENTRAD. Agreement with measured radon and radon progeny levels was also observed. However, the level of agreement was found to depend heavily on the precision of source term data, and on the measurement protocol used to collect radon and radon progeny levels for comparison with the simulation results. The design and development of 3d RAD was carried out under contract with the Saskatchewan government

  3. Radioactive check sources for alpha and beta sensitive radiological instrumentation

    International Nuclear Information System (INIS)

    Barnett, J.M.; Kane, J.E. II.

    1994-06-01

    Since 1991, the Westinghouse Hanford Company has examined the construction and use of alpha and beta radioactive check sources for calibrating instruments and for performing response checks of instruments used for operational and environmental radiation detection. The purpose of using a radioactive check source is to characterize the response of a radiation monitoring instrument in the presence of radioactivity. To accurately calibrate the instrument and check its response, the check source used must emulate as closely as possible the actual physical and isotopic conditions being monitored. The isotope employed and the physical methods used to fabricate the check source (among other factors) determine instrument response. Although information from applicable national and international standards, journal articles, books, and government documents was considered, empirical data collected is most valuable when considering the type of source to use for a particular application. This paper presents source construction methods, use considerations, and standard recommendations. The results of a Hanford Site evaluation of several types of alpha and beta sources are also given

  4. Training for Radiation Protection in Interventional Radiology

    International Nuclear Information System (INIS)

    Bartal, G.; Sapoval, M.; Ben-Shlomo, A.

    1999-01-01

    Program in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT which are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography and direct Intraarterial CT Angiography, one may substitute a substantial number of diagnostic angiography checks. Basic training in interventional radiology hardly includes some of the fundamentals of radiation protection. Radiation Protection in Interventional Radiology must be implemented in daily practice and become an integral part of procedure planning strategy in each and every case. Interventional radiological most master all modern imaging modalities in order to choose the most effective, but least hazardous one. In addition, one must be able to use various imaging techniques (Fluoroscopy, CTA, MM and US) as a stand-alone method, as well as combine two techniques or more. Training programs for fellows: K-based simulation of procedures and radiation protection. Special attention should be taken in the training institutions and a basic training in radiation protection is advised before the trainee is involved in the practical work. Amendment of techniques for balloon and stent deployment with minimal use of fluoroscopy. Attention to the differences between radiation protection in cardiovascular and nonvascular radiology with special measures that must be taken for each one of them (i.e., peripheral angiography vs. stenting, Endo luminal Aortic Stent Graft, or nonvascular procedures such as biliary or endo urological stenting or biliary intervention). A special emphasis should be put on the training techniques of Interventional Radiologists, both beginners and experienced. Patient dose monitoring by maintaining records of fluoroscopic time is better with non-reset timer, but is optional. Lee of automated systems that

  5. Interventional Radiology in Paediatrics.

    Science.gov (United States)

    Chippington, Samantha J; Goodwin, Susie J

    2015-01-01

    As in adult practice, there is a growing role for paediatric interventional radiology expertise in the management of paediatric pathologies. This review is targeted for clinicians who may refer their patients to paediatric interventional radiology services, or who are responsible for patients who are undergoing paediatric interventional radiology procedures. The article includes a brief overview of the indications for intervention, techniques involved and the commonest complications. Although some of the procedures described are most commonly performed in a tertiary paediatric centre, many are performed in most Children's hospitals.

  6. Radiologic technology educators and andragogy.

    Science.gov (United States)

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting.

  7. Postoperative radiology

    International Nuclear Information System (INIS)

    Burhenne, H.J.

    1989-01-01

    This paper reports on the importance of postoperative radiology. Most surgical procedures on the alimentary tract are successful, but postoperative complications remain a common occurrence. The radiologist must be familiar with a large variety of possible surgical complications, because it is this specialty that is most commonly called on to render a definitive diagnosis. The decision for reoperation, for instance, is usually based on results from radiologic imaging techniques. These now include ultrasonography, CT scanning, needle biopsy, and interventional techniques in addition to contrast studies and nuclear medicine investigation

  8. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  9. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  10. Radiology

    International Nuclear Information System (INIS)

    Sykora, A.

    2006-01-01

    In this text-book basic knowledge about radiology, biomedical diagnostic methods (radiography, computer tomography), nuclear medicine and safety and radiation protection of personnel on the radiodiagnostic place of work are presented

  11. Establishment of source related dose constraints for members of the public. Interim report for comment

    International Nuclear Information System (INIS)

    1992-09-01

    The International Commission on Radiological Protection is proposing a new concept that it terms a ''dose constraint''. A dose constraint is an individual-related criterion applied to a single radiation source, and fixes an upper value for exposure of the critical group from that source. A dose restraint sets a ceiling on the levels of individual dose that can be considered in the optimization of radiological protection for a single source. 6 refs, 1 fig., 2 tabs

  12. Federal Radiological Monitoring and Assessment Center (FRMAC), US response to major radiological accidents

    International Nuclear Information System (INIS)

    Mueller, P.G.

    2000-01-01

    During the 1960's and 70's the expanded use of nuclear materials to generate electricity, to provide medical benefits, and for research purposes continued to grow in the United States. While substantial effort went into constructing plants and facilities and providing for a number of redundant backup systems for safety purposes, little effort went into the development of emergency response plans for possible major radiological accidents. Unfortunately, adequate plans and procedures had not been developed to co-ordinate either state or federal emergency response assets and personnel should a major radiological accident occur. This situation became quite evident following the Three Mile Island Nuclear Reactor accident in 1979. An accident of that magnitude had not been adequately prepared for and Pennsylvania's limited emergency radiological resources and capabilities were quickly exhausted. Several federal agencies with statutory responsibilities for emergency response, including the U.S. Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), Federal Emergency Management Agency (FEMA), Nuclear Regulatory Commission (NRC), and others provided extensive assistance and support during the accident. However, the assistance was not fully co-ordinated nor controlled. Following the Three Mile Island incident 13 federal agencies worked co-operatively to develop an agreement called the Federal Radiological Emergency Response Plan (FRERP). Signed in November 1985, this plan delineated the statutory responsibilities and authorities of each federal agency signatory to the FRERP. In the event of a major radiological accident, the FRERP would be activated to ensure that a co-ordinated federal emergency response would be available to respond to any major radiological accident scenario. The FRERP encompasses a wide variety of radiological accidents, not just those stemming from nuclear power plants. Activation of the FRERP could occur from major accidents involving

  13. Radiological Protection Science and Application

    International Nuclear Information System (INIS)

    Janssens, Augustin; ); Mossman, Ken; Morgan, Bill

    2016-01-01

    Since the discovery of radiation at the end of the 19. century, the health effects of exposure to radiation have been studied more than almost any other factor with potential effects on human health. The NEA has long been involved in discussions on the effects of radiation exposure, releasing two reports in 1994 and 2007 on radiological protection science. This report is the third in this state-of-the-art series, examining recent advances in the understanding of radiation risks and effects, particularly at low doses. It focuses on radiobiology and epidemiology, and also addresses the social science aspects of stakeholder involvement in radiological protection decision making. The report summarises the status of, and issues arising from, the application of the International System of Radiological Protection to different types of prevailing circumstances. Reports published by the NEA Committee on Radiation Protection and Public Health (CRPPH) in 1998 and 2007 provided an overview of the scientific knowledge available at that time, as well as the expected results from further research. They also discussed the policy implications that these results could have for the radiological protection system. The 2007 report highlighted challenges posed by developments in relation to medical exposure and by intentions to include the environment (i.e. non-human species), within the scope of the radiological protection system. It also addressed the need to be able to respond to a radiological terrorist attack. This report picks up on where the 1998 and 2007 reports left off, and addresses the state of the art in radiological prevention science and application today. It is divided into five chapters. Firstly, following broadly the structural topics from the 1998 and 2007 reports, the more purely scientific aspects of radiological protection are presented. These include cancer risk of low dose and dose rates, non-cancer effects and individual sensitivity. In view of the increasing

  14. Radiological assessments, environmental monitoring, and study design

    International Nuclear Information System (INIS)

    Hansen, W.R.; Elle, D.R.

    1980-01-01

    Studies of the behavior of transuranic elements in the environment form the basic data for applied programs in radiological assessment, environmental monitoring, derivation of radiation-protection standards, and environmental impact statements. This chapter introduces some of the major information requirements of these applications of transuranic research data. Characteristics of the source terms from nuclear activities usually are needed for an analysis of environmental pathways or deployment of monitoring systems. Major inhalation and ingestion pathways are considered in assessments of hazards from transuranics and are discussed from the viewpoint of research needed

  15. The long-term problems of contaminated land: Sources, impacts and countermeasures

    International Nuclear Information System (INIS)

    Baes, C.F. III.

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'')

  16. Remote inspection with multi-copters, radiological sensors and SLAM techniques

    Science.gov (United States)

    Carvalho, Henrique; Vale, Alberto; Marques, Rúben; Ventura, Rodrigo; Brouwer, Yoeri; Gonçalves, Bruno

    2018-01-01

    Activated material can be found in different scenarios, such as in nuclear reactor facilities or medical facilities (e.g. in positron emission tomography commonly known as PET scanning). In addition, there are unexpected scenarios resulting from possible accidents, or where dangerous material is hidden for terrorism attacks using nuclear weapons. Thus, a technological solution is important to cope with fast and reliable remote inspection. The multi-copter is a common type of Unmanned Aerial Vehicle (UAV) that provides the ability to perform a first radiological inspection in the described scenarios. The paper proposes a solution with a multi-copter equipped with on-board sensors to perform a 3D reconstruction and a radiological mapping of the scenario. A depth camera and a Geiger-Müler counter are the used sensors. The inspection is performed in two steps: i) a 3D reconstruction of the environment and ii) radiation activity inference to localise and quantify sources of radiation. Experimental results were achieved with real 3D data and simulated radiation activity. Experimental tests with real sources of radiation are planned in the next iteration of the work.

  17. Remote inspection with multi-copters, radiological sensors and SLAM techniques

    Directory of Open Access Journals (Sweden)

    Carvalho Henrique

    2018-01-01

    Full Text Available Activated material can be found in different scenarios, such as in nuclear reactor facilities or medical facilities (e.g. in positron emission tomography commonly known as PET scanning. In addition, there are unexpected scenarios resulting from possible accidents, or where dangerous material is hidden for terrorism attacks using nuclear weapons. Thus, a technological solution is important to cope with fast and reliable remote inspection. The multi-copter is a common type of Unmanned Aerial Vehicle (UAV that provides the ability to perform a first radiological inspection in the described scenarios. The paper proposes a solution with a multi-copter equipped with on-board sensors to perform a 3D reconstruction and a radiological mapping of the scenario. A depth camera and a Geiger-Müler counter are the used sensors. The inspection is performed in two steps: i a 3D reconstruction of the environment and ii radiation activity inference to localise and quantify sources of radiation. Experimental results were achieved with real 3D data and simulated radiation activity. Experimental tests with real sources of radiation are planned in the next iteration of the work.

  18. Radiological attacks and accidents. Medical consequences

    International Nuclear Information System (INIS)

    Sakuta, Hidenari

    2007-01-01

    Probability of the occurrence of radiological attacks appears to be elevated after the terrorist attacks against the United States on September 11 in 2001. There are a lot of scenarios of radiological attack: simple radiological device, radiological disperse device (RDD or dirty bomb), attacks against nuclear reactor, improvised nuclear device, and nuclear weapons. Of these, RDD attack is the most probable scenario, because it can be easily made and can generate enormous psychological and economic damages. Radiological incidents are occurring to and fro in the world, including several cases of theft to nuclear facilities and unsuccessful terrorist attacks against them. Recently, a former Russian spy has allegedly been killed using polonium-210. In addition, serious radiological accidents have occurred in Chernobyl, Goiania, and Tokai-mura. Planning, preparation, education, and training exercise appear to be essential factors to cope with radiological attacks and accidents effectively without feeling much anxiety. Triage and psychological first aid are prerequisite to manage and provide effective medial care for mass casualties without inducing panic. (author)

  19. Educational course in emergency radiology

    International Nuclear Information System (INIS)

    Velkova, K.; Stoeva, M.; Cvetkova, S.; Hilendarov, A.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Emergency radiology is the part of radiology primarily focused on acute diagnosing conditions in ER patients. This advanced area of radiology improves the quality of care and treatment of patients and of the emergency medicine as a whole. The educational course in Emergency (ER) Radiology is available for medical students in their 8th and 9th semester. The main objective of the ER course is to obtain knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Therapeutic methods under imaging control are also covered by the course. The curriculum of the course consists of 6 lectures and 12 practical classes. (authors)

  20. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  1. Radiological diagnostics of muscle diseases

    International Nuclear Information System (INIS)

    Weber, M.A.; Essig, M.; Kauczor, H.U.

    2007-01-01

    Muscular diseases are a heterogeneous group of diseases with difficult differential diagnosis. This article reviews morphological and functional radiological techniques for assessment of muscular diseases. Morphological techniques can describe edema-like changes, lipomatous and atrophic changes of muscular tissue. However, these imaging signs are often not disease-specific. As a result, clinicians assign radiology a secondary role in the management of muscular diseases. Meanwhile, functional radiological techniques allow the assessment of muscle fiber architecture, skeletal muscle perfusion, myocellular sodium-homoeostasis, lipid- and energy-phosphate metabolism, etc. By detecting and spatially localizing pathophysiological phenomena, these new techniques can increase the role of radiology in muscular diseases. (orig.)

  2. Training project on Radiological Protection in medicine. Use of new technologies

    International Nuclear Information System (INIS)

    Ruis-Cruces, R.; Perez-Martinez, M.; Pastor Vega, J. M.; Diez de los Rios Delgado, A.

    2003-01-01

    Radiological protection training addressed to physicians should start during the teaching graduate and postgraduate studies, and a third phase only for those physicians using X rays and radioactive sources in diagnosis and treatment of diseases. To show a training project addressed to the teaching graduate students based on the new technologies, such as web online and interactive CD-ROM. Development of a web-online including information in.pdf (adobe acrobat) format and additional tools (as data bases, videos, news and class meetings, FAQ, tutorials). Moreover, we propose to development an interactive CD-ROM which will be used as a practical tool to complete the obligatory subject on radiological protection in the University of Malaga (Spain). We show the preliminary phase of the project. The web-online is being developed with the Microsoft FrontPage software. The first version of the CR-ROM is being developed in html format. These tools based on new technologies will be a very important support for radiological protection training, which is recommended by International Organizations (EC Report R116 and IAE Action Plan 2002-2006). (Author) 4 refs

  3. Physics of Radiology

    CERN Document Server

    Johns, Harold Elford

    1983-01-01

    Authority, comprehensivity and a consummate manner of presentation have been hallmarks of The Physics of Radiology since it first saw publication some three decades past. This Fourth Edition adheres to that tradition but again updates the context. It thoroughly integrates ideas recently advanced and practices lately effected. Students and professionals alike will continue to view it, in essence, as the bible of radiological physics.

  4. Radiological aspects of Gaucher disease

    International Nuclear Information System (INIS)

    Katz, Robert; Booth, Tom; Hargunani, Rikin; Wylie, Peter; Holloway, Brian

    2011-01-01

    Advances in imaging and the development of commercially available enzyme therapy have significantly altered the traditional radiology of Gaucher disease. The cost of treatment and need for monitoring response to therapy have magnified the importance of imaging. There are no recent comprehensive reviews of the radiology of this relatively common lysosomal storage disease. This article describes the modern imaging, techniques and radiological manifestations of Gaucher disease. (orig.)

  5. Radiological aspects of Gaucher disease

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Robert; Booth, Tom; Hargunani, Rikin; Wylie, Peter; Holloway, Brian [Royal Free Hospital, Radiology Department, London (United Kingdom)

    2011-12-15

    Advances in imaging and the development of commercially available enzyme therapy have significantly altered the traditional radiology of Gaucher disease. The cost of treatment and need for monitoring response to therapy have magnified the importance of imaging. There are no recent comprehensive reviews of the radiology of this relatively common lysosomal storage disease. This article describes the modern imaging, techniques and radiological manifestations of Gaucher disease. (orig.)

  6. Radiological characterisation - Know your objective

    International Nuclear Information System (INIS)

    Lindow, Veronica; Moeller, Jennifer

    2012-01-01

    When developing a programme for mapping the radiological characteristics of a facility to be decommissioned it is important to take into account the objectives of the programme. Will the results be used to plan for radiological control and selection of appropriate decontamination and dismantling techniques? Will the radiological inventory be used for dimensioning of future waste repositories? These are two examples of the applications for such studies, which could require that a radiological characterisation programme be adapted to provide the data appropriate to the intended use. The level of detail and scope needed for a radiological characterisation will also vary depending on how the data will be used. An application to free-release a facility requires a comprehensive survey and well documented analysis in order to ensure that no radioactive contamination above prescribed levels is present. A bounding calculation to determine the maximum anticipated volumes and activity of radioactive waste requires a different approach. During the past few years, older decommissioning studies for the Swedish nuclear power plants have been updated (or are in the process of being updated). The decommissioning study's main purpose is to estimate the cost for decommissioning. The cost estimation is based on material and activity inventories, which in turn is based on previous and, in some cases, updated radiological characterisations of the facilities. The radiological inventory is an important part of the study as it affects the cost of decommissioning but also the uncertainties and accuracy of the cost estimation. The presentation will discuss the challenges in specifying a radiological characterisation programme with multiple objectives, together with insights on how data delivered can be applied to yield results suitable for the intended purpose, without introducing excessive conservatism. The intent of the presentation is to define issues that can be of use in various aspects

  7. History of the radiological protection in Mexico

    International Nuclear Information System (INIS)

    Ortiz M, J. R.

    2008-12-01

    The beginning in the use of the ionizing radiations goes back towards end of 19 century, when Wilhelm Roentgen discovers x-rays in 1985, finding that quickly founds also the new technology, which spreads to tabs of multiple applications anywhere in the world, some of very beneficial them of use like the radio diagnosis, but others of frivolous and commercial kind. As much in the beneficial uses as in the banal ones, the world also is begun to be aware that the ionizing radiations are a physical element that must be handled with precaution then also can induce injuries in the involved people, which is documented already in 1912. This characteristic is confirmed with the use of Radio-226 as source of ionizing radiation, in whose applications were observed some deleterious effects, which forces to take some measures of protection an intuitive and rather incipient way. The first attempt of limit was denominated erythema dose, that it was a concept of qualitative-subjective character when it is observed a reddening of the skin of the radiated zone. Just a short time later, with the invention of the detector Geiger and the possibility of measuring the radiation quantity received by the people, the limits are transformed into quantitative. lt is as well as it is born the radiological protection like scientific and technological discipline, and essential ally of the nuclear energy pacific applications , event in which the international organizations related to the subject play a very important role, in the middle of the 1920 decade. Since then radiological protection (RP) is in permanent evolution, keeping a balance between the people protection, the sources security and the benefits of the ionizing radiations applications. In Mexico, the nuclear energy taking height from the second half of 1950, when the National Commission of Nuclear Energy was created, it spent in his first years to functions that mainly were of investigation, but in which already appeared the RP like

  8. Streamlining interventional radiology admissions: The role of the interventional radiology clinic and physician's assistant

    International Nuclear Information System (INIS)

    White, R.I. Jr.; Rizer, D.M.; Shuman, K.; White, E.J.; Adams, P.; Doyle, K.; Kinnison, M.

    1987-01-01

    During a 5-year period (1982-1987), 376 patients were admitted to an interventional radiology service where they were managed by the senior physician and interventional radiology fellows. Sixty-eight percent of patients were admitted for angioplasty and 32% for elective embolotherapy/diagnostic angiography. A one-half-day, twice weekly interventional radiology clinic and employment of a physician's assistant who performed preadmission history and physicals and wrote orders accounted, in part, for a decrease in hospital stay length from 3.74 days (1982-1983) to 2.41 days (1986-1987). The authors conclude that use of the clinic and the physician's assistant streamlines patient flow and the admitting process and is partially responsible for a decreased length of stay for patients admitted to an interventional radiology service

  9. Status of safety technology for radiological consequence assessment of postulated accidents in liquid metal fast breeder reactors, Canoga Park, California, 29 July--31 July 1975

    International Nuclear Information System (INIS)

    1975-07-01

    State-of-the-art capabilities are examined for prediction and mitigation of radiological consequences of postulated LMFBR accidents. The following topics are treated: radioactive source terms, sodium reactions, aerosol behavior, radiological dose assessment, and engineered safeguards. (U.S.)

  10. Radiology. 3. rev. and enl. ed.; Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Maximilian [Klinikum der Universitaet Muenchen (Germany). Inst. fuer Klinische Radiologie; Kuhn, Fritz-Peter [Klinikum Kassel (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Debus, Juergen [Radiologische Universitaetsklinik, Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie

    2011-07-01

    The text book on radiology covers the following issues: Part A: General radiology: Fundamental physics: radiation biology; radiation protection fundamentals: radiologic methods; radiotherapy; nuclear medicine. Part B: Special radiology: Thorax; heart; urogenital tract and retroperitoneum; vascular system and interventional radiology; esophagus, stomach, small and large intestines; liver, biliary system, pancreas and spleen; mammary glands; central nervous system; spinal cord and spinal canal; basis of the skull, facial bones and eye socket; neck; pediatric imaging diagnostics.

  11. Evidence-based Practice of Radiology.

    Science.gov (United States)

    Lavelle, Lisa P; Dunne, Ruth M; Carroll, Anne G; Malone, Dermot E

    2015-10-01

    Current health care reform in the United States is producing a shift in radiology practice from the traditional volume-based role of performing and interpreting a large number of examinations to providing a more affordable and higher-quality service centered on patient outcomes, which is described as a value-based approach to the provision of health care services. In the 1990 s, evidence-based medicine was defined as the integration of current best evidence with clinical expertise and patient values. When these methods are applied outside internal medicine, the process is called evidence-based practice (EBP). EBP facilitates understanding, interpretation, and application of the best current evidence into radiology practice, which optimizes patient care. It has been incorporated into "Practice-based Learning and Improvement" and "Systems-based Practice," which are two of the six core resident competencies of the Accreditation Council for Graduate Medical Education and two of the 12 American Board of Radiology milestones for diagnostic radiology. Noninterpretive skills, such as systems-based practice, are also formally assessed in the "Quality and Safety" section of the American Board of Radiology Core and Certifying examinations. This article describes (a) the EBP framework, with particular focus on its relevance to the American Board of Radiology certification and maintenance of certification curricula; (b) how EBP can be integrated into a residency program; and (c) the current value and likely place of EBP in the radiology information technology infrastructure. Online supplemental material is available for this article. © RSNA, 2015.

  12. Cumulative radiation dose caused by radiologic studies in critically ill trauma patients.

    Science.gov (United States)

    Kim, Patrick K; Gracias, Vicente H; Maidment, Andrew D A; O'Shea, Michael; Reilly, Patrick M; Schwab, C William

    2004-09-01

    Critically ill trauma patients undergo many radiologic studies, but the cumulative radiation dose is unknown. The purpose of this study was to estimate the cumulative effective dose (CED) of radiation resulting from radiologic studies in critically ill trauma patients. The study group was composed of trauma patients at an urban Level I trauma center with surgical intensive care unit length of stay (LOS) greater than 30 days. The radiology records were reviewed. A typical effective dose per study for each type of plain film radiograph, computed tomographic scan, fluoroscopic study, and nuclear medicine study was used to calculate CED. Forty-six patients met criteria. The mean surgical intensive care unit and hospital LOS were 42.7 +/- 14.0 and 59.5 +/- 28.5 days, respectively. The mean Injury Severity Score was 32.2 +/- 15.0. The mean number of studies per patient was 70.1 +/- 29.0 plain film radiographs, 7.8 +/- 4.1 computed tomographic scans, 2.5 +/- 2.6 fluoroscopic studies, and 0.065 +/- 0.33 nuclear medicine study. The mean CED was 106 +/- 59 mSv per patient (range, 11-289 mSv; median, 104 mSv). Among age, mechanism, Injury Severity Score, and LOS, there was no statistically significant predictor of high CED. The mean CED in the study group was 30 times higher than the average yearly radiation dose from all sources for individuals in the United States. The theoretical additional morbidity attributable to radiologic studies was 0.78%. From a radiobiologic perspective, risk-to-benefit ratios of radiologic studies are favorable, given the importance of medical information obtained. Current practice patterns regarding use of radiologic studies appear to be acceptable.

  13. The radiological accidents in Tbilisi, Georgia

    International Nuclear Information System (INIS)

    Abramidze, S.; Katamadze, N.; Cruz Suares, R.; Bilbao Alfonso, A.

    1998-01-01

    On october 1997, a facsimile message was received by the IAEA from the Georgian Minister of Health stating that servicemen of the Lilo Training Detachment of Frontier Troops had developed local radiation-induced skin diseases on various parts of their body. Details were sent of the medical diagnoses of the mine victims , as well as information on the radiation sources and dose rates that had caused the exposures. The Georgian Minister of Health requested the IAEAs assistance in the examination and treatment of the patients. An Investigation had revealed that several Cs 137, Co-60 radiation sources and some beta emitters had been found, and that in some places high dose rates had been detected. The Government of Georgia requested the IAEA to send an emergency team to evaluate the radiological conditions at the Lilo Training Centre. The present paper summarizes the findings and lessons learned

  14. [Instruction in dental radiology

    NARCIS (Netherlands)

    Sanden, W.J.M. van der; Kreulen, C.M.; Berkhout, W.E.

    2016-01-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive

  15. Marketing a Radiology Practice.

    Science.gov (United States)

    Levin, David C; Rao, Vijay M; Flanders, Adam E; Sundaram, Baskaran; Colarossi, Margaret

    2016-10-01

    In addition to being a profession, the practice of radiology is a business, and marketing is an important part of that business. There are many facets to marketing a radiology practice. The authors present a number of ideas on how to go about doing this. Some marketing methods can be directed to both patients and referring physicians. Others should be directed just to patients, while still others should be directed just to referring physicians. Aside from marketing, many of them provide value to both target audiences. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Referral expectations of radiology

    International Nuclear Information System (INIS)

    Smith, W.L.; Altmaier, E.; Berberoglu, L.; Morris, K.

    1989-01-01

    The expectation of the referring physician are key to developing a successful practice in radiology. Structured interviews with 17 clinicians in both community care and academic practice documented that accuracy of the radiologic report was the single most important factor in clinician satisfaction. Data intercorrelation showed that accuracy of report correlated with frequency of referral (r = .49). Overall satisfaction of the referring physician with radiology correlated with accuracy (r = .69), patient satisfaction (r = .36), and efficiency in archiving (r = .42). These data may be weighted by departmental managers to allocate resources for improving referring physician satisfaction

  17. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  18. Radiology education: a glimpse into the future

    Energy Technology Data Exchange (ETDEWEB)

    Scarsbrook, A.F. [Department of Radiology, John Radcliffe Hospital, Headley Way, Headington, Oxford (United Kingdom)]. E-mail: andyscarsbrook1@aol.com; Graham, R.N.J. [Department of Radiology, John Radcliffe Hospital, Headley Way, Headington, Oxford (United Kingdom); Perriss, R.W. [Department of Radiology, John Radcliffe Hospital, Headley Way, Headington, Oxford (United Kingdom)

    2006-08-15

    The digital revolution in radiology continues to advance rapidly. There are a number of interesting developments within radiology informatics which may have a significant impact on education and training of radiologists in the near future. These include extended functionality of handheld computers, web-based skill and knowledge assessment, standardization of radiological procedural training using simulated or virtual patients, worldwide videoconferencing via high-quality health networks such as Internet2 and global collaboration of radiological educational resources via comprehensive, multi-national databases such as the medical imaging resource centre initiative of the Radiological Society of North America. This article will explore the role of e-learning in radiology, highlight a number of useful web-based applications in this area, and explain how the current and future technological advances might best be incorporated into radiological training.

  19. Radiology education: a glimpse into the future

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.

    2006-01-01

    The digital revolution in radiology continues to advance rapidly. There are a number of interesting developments within radiology informatics which may have a significant impact on education and training of radiologists in the near future. These include extended functionality of handheld computers, web-based skill and knowledge assessment, standardization of radiological procedural training using simulated or virtual patients, worldwide videoconferencing via high-quality health networks such as Internet2 and global collaboration of radiological educational resources via comprehensive, multi-national databases such as the medical imaging resource centre initiative of the Radiological Society of North America. This article will explore the role of e-learning in radiology, highlight a number of useful web-based applications in this area, and explain how the current and future technological advances might best be incorporated into radiological training

  20. The Future of Radiology

    Directory of Open Access Journals (Sweden)

    Alexander R. Margulis

    2011-07-01

    Full Text Available It has been my good fortune to live and practice radiology during a long period of momentous change – to see the transformation of the discipline from a supportive service into a mainstream, essential branch of clinical medicine. I remember wearing red goggles to adapt my vision before performing fluoroscopy; observing the horrible, now thankfully obsolete, practice of ventriculography, which was considered advanced neuroradiology; and performing other, now rarely prescribed procedures, such as double-contrast barium enemas and intravenous pyelography. Witnessing the beginnings of interventional radiology, I suggested its name in an editorial. I also had the good fortune to see the introduction of computed tomography (CT and a technology first known as nuclear magnetic resonance imaging. Together with fellow members of a committee of the American College of Radiology and editors of prestigious radiological journals, I took part in changing the name of the latter modality to MRI, freeing it from threatening implications. Looking back on these experiences, one lesson stands out above all: Innovation and transformation never cease. Looking forward, it is clear that radiology, along with the rest of medicine, is now undergoing further momentous changes that will affect the future of all those already practicing as well as those yet to start their careers.

  1. Radiological Work Planning and Procedures

    CERN Document Server

    Kurtz, J E

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In add...

  2. Development of radiological performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, B.S.; Jung, K.H.; Lee, S.H.; Jang, S.Y.

    2000-01-01

    The purpose of this work was to improve the regulatory approach to check the licensee's compliance with regulation regarding radiation protection in operating nuclear power plants (NPPs). The current domestic inspection program for NPPs requires inspectors to conduct compliance-inspection for the systems/equipment and the procedures of NPPs. In this work, we have developed a set of draft radiological performance indicators (PIs) to assess radiation safety in NPPs. The development of PIs was based on the concept that the licensees' implementation of the radiation protection program in NPPs should be able to achieve the goal of radiation protection which the International Commission on Radiological Protection (ICRP) has recommended as ICRP 60 (1991). We selected and/or developed the radiological performance indicators considering the radiation exposure network (source-environment-receptor) for NPPs. The PIs intend to be applied only to normal exposure due to normal operations including transient operational conditions, but not to potential exposure due to accidents. Also, we have chosen the receptor as workers who are occupationally exposed to radiation as well as the members of public who are exposed to radiation from radioactive effluents. The PIs intend to track the past performance rather than to expect the future performance. Finally, the individual PIs do not verify the root cause of the trend of performance; however, they provide the basis for deciding whether the procedures and work management have been properly implemented. Currently a set of 21 draft PIs has been developed for the exposure network in NPPs. For the receptor, the PIs are divided into worker individual dose, worker collective dose and public individual dose. For the environment, the PIs are related to the dose rates of controlled areas, radioactive material concentrations in controlled areas, radioactive contamination in controlled areas and at exit points, and radioactive effluent

  3. Radiological Protection Plan an ethic responsibility; Plano de protecao radiologica e responsabilidade etica

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Andrea, E-mail: andrea.huhn@ifsc.edu.br [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Vargas, Mara Ambrosina de Oliveira, E-mail: mara@ccs.ufs.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2014-07-01

    The Radiological Protection Plan - PPR, quoted by the Regulatory Standard 32, requires to be maintained at the workplace and at the disposal of the worker's inspection the PPR, for it to be aware of their work environment and the damage that can be caused by misuse of ionizing radiation. Objective: to discuss the interface between PPR and ethical reflection. Method: this is a reflective study. Discussion and results: regulatory norm 32 points out that the worker who conducts activities in areas where there are sources of ionizing radiation should know the risks associated with their work. However, it is considered that the sectors of hospital radiology the multidisciplinary health team is exposed to ionizing radiation and has not always aware of the harm caused by it, so end up unprotected conduct their activities. Concomitantly, recent studies emphasize the radiological protection and concern for the dangers of radiation on humans, but rather refer to the legislation about the radiological protection. In this context an ethical reflection is necessary, seeking to combine work ethics liability to care in protecting themselves and the other with the institutional conditions for this protection becomes effective.

  4. The relationship between the expectation of life of workers and the evolution of radiological protection's norms

    International Nuclear Information System (INIS)

    Santos, Marcio Pereira

    2008-01-01

    Full text: With the evolution of the norms of radiological protection in the world in last the 20 years, the life expectancy of Workers increased in direct ratio. The technological advance of the equipment that uses radiation sources and the deepening in the studies and knowledge on the ionizing radiations- e consequent deleterious effect- had contributed significantly for the reduction of the doses received for the Workers in its daily hours of working. Methods: A simple analysis of data, comparing itself the past and the gift, becomes evident that, in if treating to radiological protection, the humanity walks for a new age, which hardly will retrocede. If before the radiological protection was understood as a concern only in the practical doctors, with emphasis in the immediate effects, today already becomes gift in all the practical ones, especially in that they put into motion the planet and its wealth, in the industry. Major Values: Modernity took the man to the daily dependence of the not ionizing radiations, each time inserted of the people's day. As similar to, the radiological protection today if makes gift in diverse practical, to guarantee the cares to be taken and the fulfilment of pertinent norms. The present study it looks for to evidence that last the 20 years- marked for accidents with radioactive sources- they had been essential for a reflection of the norms of radiological protection. Thus, workers, as well as the technological sector, changed it the new reality, either demanding bigger training technician for the practical ones, attention special in security and radiological protection, or same establishing more rigid norms, through the regulating agencies. In the present work had a projection of values of life expectancy of the population, the past until the present. Analyzing Tables, as much for workers how much for the members of the public is noticed that the radiological protection offers to one better quality of life to all those involved

  5. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  6. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  7. Development of radiology in Mongolia

    International Nuclear Information System (INIS)

    Gonchigsuren, D.; Munkhbaatar, D.; Tuvshinjargal, D.; Onkhuudai, P.

    2007-01-01

    Full text: Radiology had been introduced in Mongolia by the establishment of the first X-Ray room at the First State Central Hospital in 1934. First radiologists in Mongolia were invited from the former Soviet Union; V. Sokolov, P. Omelchenko and others worked at the ''Burevestnik'' X-ray equipment of Russian production with high X-ray exposure and low capacity; they could perform only limited arts of Xray studies like fluoroscopy of thorax, stomach, esophagus and roentgenography of skull and extremities. The second X- ray equipment has been presented by the close friend of Lenin, the Director of People's Commissariat of Health Protection of the Soviet Union, Dr. N.A. Semashko; the present had been dedicated to the 10th Anniversary of Mongolian Health Care sector. During the military maneuvers at Khalkhin- Gol in 1939, several province hospitals and military hospitals had been supplied by the Xray equipment. During the period 1959-1960 all province hospitals, specialized hospitals had got X-ray unit. In 1955, Radii 226 had been used at first time in Mongolia for a treatment. In 1959, the State Radiological Clinic had been founded as a branch of X-ray cabinet of the First State Central Hospital. By the initiative of the absolvent of University of Leipzig, German Democratic Republic, Dr. P. Onkhuudai, Laboratory of Nuclear Medicine was established on 31 PstP March 1975 at the First State Central Hospital, which performed urography, thyroid and liver studies using Iod-131, Au-198, Hg-203 isotopes. In 1982, the gamma-camera and radio immunological equipment had been donated by the World Health Organization, and the Laboratory of Nuclear Medicine had been reorganized into Department of Nuclear Laboratory. Afterwards, in 1992 CT and SPECT diagnostics had been introduced at the First State Central Hospital, therefore new possibilities for high quality radiological diagnostic in Mongolia had been created. In 2007 the Siemens Magnetom 0.3 Tesla had been installed at the

  8. Hygiene in radiology

    International Nuclear Information System (INIS)

    Kapp-Schwoerer, A.; Daschner, F.

    1987-01-01

    A survey is given of the hygienic management in radiological departments with special regard to the handling of injections and infusions. It includes prevention of bacterial as well as viral infections. In radiological departments disinfection of X-ray tables is necessary only in exceptional cases. A special proposal for disinfection is added. A safe method of sterilisation of flexible catheders is included, which proved to prevent bacterial infection. (orig.) [de

  9. Bi-annual report 1994-1995. Research and operational activities of Central Laboratory for Radiological Protection

    International Nuclear Information System (INIS)

    1996-01-01

    BI-annual report of Central Laboratory for Radiological Protection, Warsaw, shows its activities in 1994-1995. The general information and organization of CLOR have been performed in the opening part of the report. The second part contains extended abstracts of scientific activities especially in: environmental radioactivity monitoring, supervision and control of the users of radioactive sources, dosimetry problems, calibration and standardization of dosimetric equipment, radiobiology and radiological hazard assessment. The report also includes the full list of publications of CLOR scientific staff issued in the period of 1994-1995

  10. Radiologic accidents in industrial gamma radiography - Brazilian cases; Acidentes radiologicos em gamagrafia industrial - casos brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Cesar Augusto da [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    Three severe radiological accidents in industrial gamma radiography happened in Brazil during the period of 1985 to 1988. Five operators and nineteen public people were involved. These accidents caused some injuries in parts of the body, mainly hands and fingers. The main causes were faults in source monitoring, inadequate routine procedures and unknowing of radiation warning symbol by public people. The present paper shows the Brazilian cases of radiological accidents and makes some analysis of them. (author) 1 ref., 1 tab.; e-mail: dasilva at ird.gov.br

  11. Bi-annual report 1994-1995. Research and operational activities of Central Laboratory for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    BI-annual report of Central Laboratory for Radiological Protection, Warsaw, shows its activities in 1994-1995. The general information and organization of CLOR have been performed in the opening part of the report. The second part contains extended abstracts of scientific activities especially in: environmental radioactivity monitoring, supervision and control of the users of radioactive sources, dosimetry problems, calibration and standardization of dosimetric equipment, radiobiology and radiological hazard assessment. The report also includes the full list of publications of CLOR scientific staff issued in the period of 1994-1995.

  12. Bi-annual report 1992-1993. Operational and research activities of Central Laboratory for Radiological Protection

    International Nuclear Information System (INIS)

    1994-06-01

    Bi-annual report of Central Laboratory for Radiological Protection, Warsaw shows its activities in 1992-1993. The general information and organization of CLOR have been shown in the first part of the report. The second part contains extended abstracts of scientific activity, especially in: environmental radioactivity monitoring, supervision and control of the users of radioactive sources, personal dosimetry, calibration and periodical control of dosimetric equipment, radiobiology and radiological hazard assessment. The report also includes the full list of publications of scientists of CLOR issued in the period of 1992-1993

  13. Bi-annual report 1992-1993. Operational and research activities of Central Laboratory for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Bi-annual report of Central Laboratory for Radiological Protection, Warsaw shows its activities in 1992-1993. The general information and organization of CLOR have been shown in the first part of the report. The second part contains extended abstracts of scientific activity, especially in: environmental radioactivity monitoring, supervision and control of the users of radioactive sources, personal dosimetry, calibration and periodical control of dosimetric equipment, radiobiology and radiological hazard assessment. The report also includes the full list of publications of scientists of CLOR issued in the period of 1992-1993.

  14. Emergency radiology

    International Nuclear Information System (INIS)

    Keats, T.E.

    1986-01-01

    This book is the German, translated version of the original published in 1984 in the U.S.A., entitled 'Emergency Radiology'. The publication for the most part is made up as an atlas of the radiological images presenting the findings required for assessment of the emergency cases and their first treatment. The test parts' function is to explain the images and give the necessary information. The material is arranged in seven sections dealing with the skull, the facial part of the skull, the spine, thorax, abdominal region, the pelvis and the hip, and the limbs. With 690 figs [de

  15. ICRP PUBLICATION 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology

    International Nuclear Information System (INIS)

    Khong, P-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R.

    2013-01-01

    Paediatric patients have a higher average risk of developing cancer compared with adults receiving the same dose. The longer life expectancy in children allows more time for any harmful effects of radiation to manifest, and developing organs and tissues are more sensitive to the effects of radiation. This publication aims to provide guiding principles of radiological protection for referring clinicians and clinical staff performing diagnostic imaging and interventional procedures for paediatric patients. It begins with a brief description of the basic concepts of radiological protection, followed by the general aspects of radiological protection, including principles of justification and optimisation. Guidelines and suggestions for radiological protection in specific modalities – radiography and fluoroscopy, interventional radiology, and computed tomography – are subsequently covered in depth. The report concludes with a summary and recommendations. The importance of rigorous justification of radiological procedures is emphasised for every procedure involving ionising radiation, and the use of imaging modalities that are non-ionising should always be considered. The basic aim of optimisation of radiological protection is to adjust imaging parameters and institute protective measures such that the required image is obtained with the lowest possible dose of radiation, and that net benefit is maximised to maintain sufficient quality for diagnostic interpretation. Special consideration should be given to the availability of dose reduction measures when purchasing new imaging equipment for paediatric use. One of the unique aspects of paediatric imaging is with regards to the wide range in patient size (and weight), therefore requiring special attention to optimisation and modification of equipment, technique, and imaging parameters. Examples of good radiographic and fluoroscopic technique include attention to patient positioning, field size and adequate collimation

  16. The long-term problems of contaminated land: Sources, impacts and countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  17. Radiology Architecture Project Primer.

    Science.gov (United States)

    Sze, Raymond W; Hogan, Laurie; Teshima, Satoshi; Davidson, Scott

    2017-12-19

    The rapid pace of technologic advancement and increasing expectations for patient- and family-friendly environments make it common for radiology leaders to be involved in imaging remodel and construction projects. Most radiologists and business directors lack formal training in architectural and construction processes but are expected to play significant and often leading roles in all phases of an imaging construction project. Avoidable mistakes can result in significant increased costs and scheduling delays; knowledgeable participation and communication can result in a final product that enhances staff workflow and morale and improves patient care and experience. This article presents practical guidelines for preparing for and leading a new imaging architectural and construction project. We share principles derived from the radiology and nonradiology literature and our own experience over the past decade completely remodeling a large pediatric radiology department and building a full-service outpatient imaging center. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Radiological accidents, scenarios, planning and answers

    International Nuclear Information System (INIS)

    Solis Delgado, Alexander.

    2008-01-01

    Radiological accidents, scenarios and the importance of a good planning to prevent and control these types of accidents are presented. The radiation can be only one of the risks in an accident, most of dominant radiological risks are not radiological (fire, toxic gases, etc.). The common causes of radiological accidents, potential risks such as external irradiation, internal contamination and the environment pollution are highlighted. In addition, why accidents happen and how they evolve is explained. It describes some incidents with the radiation occurred in Costa Rica from 1993 to 2007. The coordination of emergency management in Costa Rica in relation to a radiological accident, and some mechanisms of action that have practiced in other places are focuses. Among the final considerations are the need to finalize the national plan for radiological emergencies as a tool of empowerment for the teams of emergency care and the availability of information. Likewise the processes of communication, coordination and cooperation to avoid chaos, confusion and crisis are also highlighted [es

  19. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  20. 2π proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. 2 π proportional counting chamber for large-area-coated β sources ... A provision is made for change ofthe source and immediate measurement of source activity. These sources are used to calibrate the efficiency of contamination monitors at radiological ...

  1. Potential off-normal events and associated radiological source terms for the compact ignition tokamak: Fusion Safety Program

    International Nuclear Information System (INIS)

    Holland, D.F.; Lyon, R.E.

    1987-10-01

    The Compact Ignition Tokamak (CIT), the latest step in the United States program to develop the commercial application of fusion power, is designed as the first fusion device to achieve ignition conditions. It is to be constructed near Princeton, New Jersey on the site of the existing Tokamak Fusion Test Reactor (TFTR). To address the environmental impact and public safety concerns, a preliminary analysis was performed of potential off-normal radiological releases. Operational occurrences, natural phenomena, accidents with external origins, and accidents external to the PPPL site were considered as potential sources for off-normal events. Based on an initial screening, events were selected for preliminary analysis. Included in these events were tritium releases from the tritium delivery and recovery system, tritium releases from the torus, releases of activated nitrogen from the test cell or cryostat, seismic events, and shipping accidents. In each case, the design considerations related to the event were reviewed and the release scenarios discussed. Because of the complexity of some of the proposed safety systems, in some cases event trees were used to describe the accident scenarios. For each scenario, the probability was estimated as well as the release magnitude, isotope, chemical form, and release mode. 10 refs., 17 figs., 5 tabs

  2. Quality assurance in diagnostic radiology

    International Nuclear Information System (INIS)

    1982-01-01

    The present guide endeavours to provide an outline of the type of quality assurance programme to be recommended for (1) routine implementation by those performing radiodiagnostic procedures (medical radiology technicians, medical physicists, and radiologists), (2) for application by the responsible national authorities, and (3) for use by international bodies such as the International Society of Radiology (ISR), the International Commission on Radiological Protection (ICRP), and the International Commission on Radiation Units and Measurements (ICRU)

  3. Radiological diagnosis of stomach cancer

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, B

    1981-05-01

    The problems of routine radiology and the differential diagnosis of malignant and benign gastric ulcers are gone into. The value of endoscopy combined with radiology is stressed. The patient, the physician, and the X-ray equipment have to meet certain requirements in order to obtain good images and make a correct interpretation. The most important aspect of radiology today is radiation protection, which is possible only with efficient equipment and experienced medical examiners.

  4. Radiological assistance program: Region I. Part I

    International Nuclear Information System (INIS)

    Musolino, S.V.; Kuehner, A.V.; Hull, A.P.

    1985-01-01

    The purpose of the Radiological Assistance Program (RAP) is to make DOE resources available and provide emergency assistance to state and local agencies in order to control radiological hazards, protect the public health and safety, and minimize the loss of property. This plan is an integral part of a nationwide program of radiological assistance established by the US DOE, and is implemented on a regional basis. The Brookhaven Area Office (BHO) Radiological Assistance Program is applicable to DOE Region I, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia. The BHO RAP-1 has been developed to: (a) ensure the availability of an effective radiological assistance capability to ensure the protection of persons and property; (b) provide guidelines to RAP-1 Team personnel for the evaluation of radiological incidents and implementation of corrective actions; (c) maintain liaison with other DOE installations, Federal, State and local organizations which may become involved in radiological assistance operations in Region I; and (d) encourage development of a local capability to cope with radiological incidents

  5. Guidelines for radiological interventions

    International Nuclear Information System (INIS)

    Kauffmann, G.W.

    1998-01-01

    The German Radiological Society, in cooperation with other German professional bodies, set up draft Guidelines for Radiological Interventions and submitted them to the professional community for discussion. The Guidelines are meant to assess the potential of radiological interventions as treatment alternatives to surgery or aggressive therapy such as chemotherapy. In fact, technical practicability on its own is insufficient to warrant intervention. The Guidelines are systematically compiled notions and recommendations whose aim it is to provide support to physicians and patients in choosing suitable medical care provisions (prevention, diagnosis, therapy, aftertreatment) in specific circumstances. A complete Czech translation of the Guidelines is given. (P.A.)

  6. Radiological accident of cesium-137 in brazil activities of surveillance and decontamination

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki

    1989-01-01

    In 1987, a serious radiological accident occurred in Goiania, Brazil. Four inhabitants died and about 250 persons were internally or externally contaminated with 137 Cs released from a removed and then broken source vessel. In this report, outline of the accident and, activities on surveillance of contamination and works for decontamination are described. (author)

  7. Assessment of the radiological status of the French environment in 2010-2011

    International Nuclear Information System (INIS)

    Boissieux, Thomas; D'Amico, Donato; Debayle, Christophe; Goyen, Jean-Philippe; Leprieur, Fabrice; Manach, Erwan; Pierrard, Olivier; Tournieux, Damien; Chaptal-Gradoz, Nathalie; Bouisset, Patrick; Boulaud, Denis; Boust, Dominique; Bruno, Valerie; Delabbaye, Pascale; Gallerand, Marie-Odile; Ielsch, Geraldine; Masson, Olivier; Manificat, Guillaume; Peres, Jean-Marc; Renaud, Philippe; Roussel-Debet, Sylvie; Tardieu, Laure; Thebault, Herve; Guldner, Bruno; Wyckaert, Laure

    2012-01-01

    This report proposes a detailed assessment of the radiological status of the environment in France over the 2010-2011 period. It addresses the radiological monitoring of the environment, presents the national network of measurements of radioactivity in the environment and the main actors of environment monitoring in France, and discusses events and expertise (impact of the Fukushima accident and of some incidents which occurred in France). It presents and comments results of the monitoring of the metropolitan and overseas French territories (atmosphere, soils, sea and coasts, regional assessment), of the monitoring of sites related to nuclear fuel cycle (nuclear sites, old mining sites, industrial sites related to the front-end or back-end of the fuel cycle, waste storage sites), of research centres and nuclear marine bases, of installations using natural or artificial radioactivity sources. It discusses the assessment of the exposure of the French population to ionizing radiation. It indicates information sources dealing with radioactivity monitoring and data publication. A last part proposes a presentation of radioactivity

  8. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  9. Nevada National Security Site Radiological Control Manual

    International Nuclear Information System (INIS)

    2012-01-01

    low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  10. Work management to optimise occupational radiological protection

    International Nuclear Information System (INIS)

    Ahier, B.

    2009-01-01

    Although work management is no longer a new concept, continued efforts are still needed to ensure that good performance, outcomes and trends are maintained in the face of current and future challenges. The ISOE programme thus created an Expert Group on Work Management in 2007 to develop an updated report reflecting the current state of knowledge, technology and experience in the occupational radiological protection of workers at nuclear power plants. Published in 2009, the new ISOE report on Work Management to Optimise Occupational Radiological Protection in the Nuclear Power Industry provides up-to-date practical guidance on the application of work management principles. Work management measures aim at optimising occupational radiological protection in the context of the economic viability of the installation. Important factors in this respect are measures and techniques influencing i) dose and dose rate, including source- term reduction; ii) exposure, including amount of time spent in controlled areas for operations; and iii) efficiency in short- and long-term planning, worker involvement, coordination and training. Equally important due to their broad, cross-cutting nature are the motivational and organisational arrangements adopted. The responsibility for these aspects may reside in various parts of an installation's organisational structure, and thus, a multi-disciplinary approach must be recognised, accounted for and well-integrated in any work. Based on the operational experience within the ISOE programme, the following key areas of work management have been identified: - regulatory aspects; - ALARA management policy; - worker involvement and performance; - work planning and scheduling; - work preparation; - work implementation; - work assessment and feedback; - ensuring continuous improvement. The details of each of these areas are elaborated and illustrated in the report through examples and case studies arising from ISOE experience. They are intended to

  11. Nevada National Security Site Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers’ Council

    2012-03-26

    low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  12. Radiological Work Planning and Procedures

    International Nuclear Information System (INIS)

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD

  13. History of metaphoric signs in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Stephen R., E-mail: bakersr@umdnj.edu; Noorelahi, Yasser M., E-mail: dr.ynoorelahi@gmail.com; Ghosh, Shanchita, E-mail: Ghoshs1@umdnj.edu; Yang, Lily C., E-mail: yangclily@gmail.com; Kasper, David J., E-mail: dkasp86@gmail.com

    2013-09-15

    Purpose: To survey the nearly 100 year history of metaphoric sign naming in radiology describing the pace of their overall accumulation in the radiology canon, their specific rates of growth by modality and subspecialty and the characteristics of the referents to which the signs are attached. Materials and methods: A comprehensive list of metaphoric signs was compiled from a search of articles in several major English language radiology journals, from a roster compiled in a monograph on the subject published in 1984 and from a search of several databases to find signs published in the first half of the 20th century. Results: The growth of radiological metaphorical signs naming was slow for several decades after the first one was published in 1918. It then increased rapidly until the 1980s encompassing all modalities and subspecialties. Recently the practice has shown a marked and steady decline. Conclusion: Metaphoric sign naming was a frequently reported contribution to the radiological literature in the second half of the 20th century corresponding with Radiology's growth as a descriptive discipline. Its decline since then may be a consequence of Radiology's evolution into a more analytic, data-driven field of inquiry.

  14. History of metaphoric signs in radiology

    International Nuclear Information System (INIS)

    Baker, Stephen R.; Noorelahi, Yasser M.; Ghosh, Shanchita; Yang, Lily C.; Kasper, David J.

    2013-01-01

    Purpose: To survey the nearly 100 year history of metaphoric sign naming in radiology describing the pace of their overall accumulation in the radiology canon, their specific rates of growth by modality and subspecialty and the characteristics of the referents to which the signs are attached. Materials and methods: A comprehensive list of metaphoric signs was compiled from a search of articles in several major English language radiology journals, from a roster compiled in a monograph on the subject published in 1984 and from a search of several databases to find signs published in the first half of the 20th century. Results: The growth of radiological metaphorical signs naming was slow for several decades after the first one was published in 1918. It then increased rapidly until the 1980s encompassing all modalities and subspecialties. Recently the practice has shown a marked and steady decline. Conclusion: Metaphoric sign naming was a frequently reported contribution to the radiological literature in the second half of the 20th century corresponding with Radiology's growth as a descriptive discipline. Its decline since then may be a consequence of Radiology's evolution into a more analytic, data-driven field of inquiry

  15. Radionuclide radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.; Bradley, K.M.

    2006-01-01

    This is the fourth in a series of short reviews of internet-based radiological educational resources, and will focus on radionuclide radiology and nuclear medicine. What follows is a list of carefully selected websites to save time in searching them out. Most of the sites cater for trainee or non-specialist radiologists, but may also be of interest to specialists for use in teaching. This article may be particularly useful to radiologists interested in the rapidly expanding field of positron emission tomography computed tomography (PET-CT). Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (February 2006)

  16. Textbook of radiology

    International Nuclear Information System (INIS)

    Putman, C.E.; Ravin, C.E.

    1987-01-01

    This book is presented in two volumes, standard textbook of imaging, conclusive and totally up-to-date. This provides information organized by major topics covering the state-of-the-art for all imaging procedures. The volume 1 presents radiologic physics and technology by discussing roentgenography, ultrasound, CT, nuclear medicine, MRI, and positron emission tomography. The volume 2 studies pulmonary radiology, imaging of the skeletal and central nervous systems, uroradiology, abdominal and cardiac imaging, and imaging of the pelvis

  17. Results of a survey by the European Society of Radiology (ESR): undergraduate radiology education in Europe-influences of a modern teaching approach.

    Science.gov (United States)

    Oris, Elena; Verstraete, Koenraad; Valcke, Martin

    2012-04-01

    The purpose of the present study is to determine in what way a conventional versus a modern medical curriculum influences teaching delivery in formal radiology education. A web-based questionnaire was distributed by the ESR to radiology teaching staff from 93 European teaching institutions. Early exposure to radiology in pre-clinical years is typically reported in institutions with a modern curriculum. The average number of teaching hours related to radiology is similar in both curriculum types (60 h). Radiology in modern curricula is mainly taught by radiologists, radiology trainees (50%), radiographers (20%) or clinicians (17%). Mandatory clerkships are pertinent to modern curricula (55% vs. 41% conventional curriculum), which start in the first (13% vs. 4% conventional curriculum) or second year of the training (9% vs. 2% conventional curriculum). The common core in both curricula consists of radiology examinations, to work with radiology teaching files, to attend radiology conferences, and to participate in multidisciplinary meetings. The influence of a modern curriculum on the formal radiology teaching is visible in terms of earlier exposure to radiology, involvement of a wider range of staff grades and range of profession involved in teaching, and radiology clerkships with more active and integrated tasks. • This study looks at differences in the nature of formal radiology teaching.

  18. Radiological informed consent in cardiovascular imaging: towards the medico-legal perfect storm?

    Directory of Open Access Journals (Sweden)

    Loré Cosimo

    2007-10-01

    Full Text Available Abstract Use of radiation for medical examinations and tests is the largest manmade source of radiation exposure. No one can doubt the immense clinical and scientific benefits of imaging to the modern practice of medicine. Every radiological and nuclear medicine examination confers a definite (albeit low long-term risk of cancer, but patients undergoing such examinations often receive no or inaccurate information about radiological dose exposure and corresponding risk directly related to the radiological dose received. Too detailed information on radiological dose and risk may result in undue anxiety, but information "economical with the truth" may violate basic patients' rights well embedded in ethics (Oviedo convention 1997 and law (97/43 Euratom Directive 1997. Informed consent is a procedure needed to establish a respectful and ethical relation between doctors and patients. Nevertheless, in an "ideal" consent process, the principle of patient autonomy in current radiological practice might be reinforced by making it mandatory to obtain explicit and transparent informed consent form for radiological examination with high exposure (≥ 500 chest x-rays. The form may spell-out the type of examination, the exposure in effective dose (mSv, derived from reference values in guidelines or – better – from actual values from their department. The dose equivalent might be also expressed in number of chest radiographs and the risk of cancer as number of extra cases in the exposed population, derived from most recent and authorative guidelines (e.g., BEIR VII Committee, release 2006. Common sense, deontological code, patients'rights, medical imaging guidelines, Euratom law, all coherently and concordantly encourage and recommend a justified, optimized, responsible and informed use of testing with ionizing radiation. Although the idea of informed consent for radiation dose does not seem to be on the immediate radar screen at least in the US, the

  19. Radiological criteria for the disposal of solid radioactive wastes

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1986-01-01

    Radioactive waste disposal is only one cause of exposure to ionizing radiation. Criteria for control should fit into the world-wide system for protection against radiation hazards, developed by the International Commission on Radiological Protection over the past 50 years. The system is simple and logically inevitable for any non-threshold pollutant. It consists of limits to protect individuals against unacceptable risks and a requirement to reduce the overall impact of the source causing the radiation to a level that is 'as low as reasonably achievable'. Particular aspects examined in this paper include the long timescales of concern and the role of comparisons with natural levels of radiation. The output of radiological assessment is an input to broader decisions on waste management, accommodating environmental pressures within political judgements. It is necessary to pursue the scientific analysis of waste disposal so that the results can be used as a firm foundation to confront, openly and honestly, the concerns of the public and of the politicians. (author)

  20. Interventional radiology and undesirable effects

    International Nuclear Information System (INIS)

    Benderitter, M.

    2009-01-01

    As some procedures of interventional radiology are complex and long, doses received by patients can be high and cause undesired effects, notably on the skin or in underlying tissues (particularly in the brain as far as interventional neuroradiology is concerned and in lungs in the case of interventional cardiology). The author briefly discusses some deterministic effects in interventional radiology (influence of dose level, delay of appearance of effects, number of accidents). He briefly comments the diagnosis and treatment of severe radiological burns

  1. The American Board of Radiology Maintenance of Certification (MOC) Program in Radiologic Physics

    International Nuclear Information System (INIS)

    Thomas, Stephen R.; Hendee, William R.; Paliwal, Bhudatt R.

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document the professional development of each diplomate of The American Board of Radiology (ABR) through its focus on the essential elements of quality care in Diagnostic Radiology and its subspecialties, and in the specialties of Radiation Oncology and Radiologic Physics. The initial elements of the ABR-MOC have been developed in accord with guidelines of The American Board of Medical Specialties. All diplomates with a ten-year, time-limited primary certificate in Diagnostic Radiologic Physics, Therapeutic Radiologic Physics, or Medical Nuclear Physics who wish to maintain certification must successfully complete the requirements of the appropriate ABR-MOC program for their specialty. Holders of multiple certificates must meet ABR-MOC requirements specific to the certificates held. Diplomates with lifelong certificates are not required to participate in the MOC, but are strongly encouraged to do so. MOC is based on documentation of individual participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Within these components, MOC addresses six competencies: medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice

  2. Guidelines for a radiology department

    International Nuclear Information System (INIS)

    1981-05-01

    This manual presents guidelines for hospitals on a radiology quality assurance and dose measurement audit program and a system of planned actions that monitor and record the performance and effectiveness of the radiological service

  3. 324 Building Baseline Radiological Characterization

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  4. Program of environmental radiological monitoring

    International Nuclear Information System (INIS)

    2005-11-01

    This Regulation refers to the requirement of the Regulation CNEN-NN.3.01, 'Basic Act of Radiological Protection', as expressed in the section 5.14, related to the Program of Environmental Radiological Monitoring (PMRA)

  5. The radiological accident in Lilo

    International Nuclear Information System (INIS)

    2000-01-01

    The use of radioactive materials offers a wide range of benefits throughout the world in medicine, research and industry. Precautions are, however, necessary in order to limit the exposure of persons to the radiation that is emitted. Where the amount of radioactive material is substantial, such as with sources used in radiotherapy or industrial radiography, extreme care is necessary to prevent accidents that may result in severe consequences for the affected individuals. Nevertheless, in spite of the precautions taken, accidents with radiation sources continue to occur, albeit infrequently. As part of its activities dealing with the safety of radiation sources, the IAEA follows up severe accidents with a view to providing an account of their circumstances and the medical aspects from which those organizations with responsibilities for radiation protection and the safety of sources may learn. A serious radiological accident occurred in Peru in February 1999 when a welder picked up an 192 Ir industrial radiography source and put it in his pocket for several hours. This resulted in his receiving a high radiation dose that necessitated the amputation of one leg. His wife and children were also exposed, but to a much lesser extent. The Peruvian authorities requested assistance from the IAEA in obtaining advice on medical treatment. They also agreed to assist the IAEA with the subsequent review of the circumstances surrounding the accident. The IAEA is grateful to the Instituto Peruano de Energia Nuclear for its willingness to assist in the reparation of this report and, thereby, share its experience with other Member States

  6. PathBot: A Radiology-Pathology Correlation Dashboard.

    Science.gov (United States)

    Kelahan, Linda C; Kalaria, Amit D; Filice, Ross W

    2017-12-01

    Pathology is considered the "gold standard" of diagnostic medicine. The importance of radiology-pathology correlation is seen in interdepartmental patient conferences such as "tumor boards" and by the tradition of radiology resident immersion in a radiologic-pathology course at the American Institute of Radiologic Pathology. In practice, consistent pathology follow-up can be difficult due to time constraints and cumbersome electronic medical records. We present a radiology-pathology correlation dashboard that presents radiologists with pathology reports matched to their dictations, for both diagnostic imaging and image-guided procedures. In creating our dashboard, we utilized the RadLex ontology and National Center for Biomedical Ontology (NCBO) Annotator to identify anatomic concepts in pathology reports that could subsequently be mapped to relevant radiology reports, providing an automated method to match related radiology and pathology reports. Radiology-pathology matches are presented to the radiologist on a web-based dashboard. We found that our algorithm was highly specific in detecting matches. Our sensitivity was slightly lower than expected and could be attributed to missing anatomy concepts in the RadLex ontology, as well as limitations in our parent term hierarchical mapping and synonym recognition algorithms. By automating radiology-pathology correlation and presenting matches in a user-friendly dashboard format, we hope to encourage pathology follow-up in clinical radiology practice for purposes of self-education and to augment peer review. We also hope to provide a tool to facilitate the production of quality teaching files, lectures, and publications. Diagnostic images have a richer educational value when they are backed up by the gold standard of pathology.

  7. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  8. Radiology Teaching Files on the Internet

    International Nuclear Information System (INIS)

    Lim, Eun Chung; Kim, Eun Kyung

    1996-01-01

    There is increasing attention about radiology teaching files on the Internet in the field of diagnostic radiology. The purpose of this study was to aid in the creation of new radiology teaching file by analysing the present radiology teaching file sites on the Internet with many aspects and evaluating images on those sites, using Macintosh II ci compute r, 28.8kbps TelePort Fax/Modem, Netscape Navigator 2.0 software. The results were as follow : 1. Analysis of radiology teaching file sites (1) Country distribution was the highest in USA (57.5%). (2) Average number of cases was 186 cases and radiology teaching file sites with search engine were 9 sites (22.5%). (3) At the method of case arrangement, anatomic area type and diagnosis type were found at the 10 sites (25%) each, question and answer type was found at the 9 sites (22.5%). (4) Radiology teaching file sites with oro-maxillofacial disorder were 9 sites (22.5%). (5) At the image format, GIF format was found at the 14 sites (35%), and JPEG format found at the 14 sites (35%). (6) Created year was the highest in 1995 (43.7%). (7) Continuing case upload was found at the 35 sites (87.5%). 2. Evaluation of images on the radiology teaching files (1) Average file size of GIF format (71 Kbyte) was greater than that of JPEG format (24 Kbyte). (P<0.001) (2) Image quality of GIF format was better than that of JPEG format. (P<0.001)

  9. Radiological reference base line establishment around CENM site

    International Nuclear Information System (INIS)

    Elkhoukhi, T.; Dehbi, N.; Amechmachi, N.

    2008-01-01

    Full text: As for any installation presenting risks for its surrounding, CENM (Centre d'Etudes Nucleaires de Maamora) that accommodates TRIGA Mark II Research Reactor and related laboratories is subjected to a statutory requirement stipulating that the CNESTEN (Centre National De L'Energie Des Sciences Et Des Techniques Nucleaires) that is in charge the operating of CENM must define its own environmental monitoring program assuring that the nuclear installation is in appropriateness with its environment. In this frame , since 1996 the team of USE (Unite Surveillance de L'Environnement) is conducting periodic work consisting in in-situ measurement of ambient gamma rays and collect of environmental samples and their preparation for adequate analysis form required for each radioactive measurement system. This first step of the environmental monitoring program allows establishing the radiological base line on the CENM's site. This base line is necessary to inform on the present radiological state in order to detect any change of this state consequently to the operating of the reactor or the arrival of abnormal radioactive panache from any source.

  10. Reconstructive dosimetry and radiation doses evaluation of members of the public due to radiological accident in industrial radiography

    International Nuclear Information System (INIS)

    Lima, Camila Moreira Araujo de

    2016-01-01

    Radiological accidents have occurred mainly in the practices recognized as high risk radiological and classified by the IAEA as Categories 1 and 2, and highlighted the radiotherapy, industrial irradiators and industrial radiography. In Brazil, since there were five major cases in industrial radiography, which involved 7 radiation workers and 19 members of the public, causing localized radiation lesions on the hands and fingers. One of these accidents will be the focus of this work. In this accident, a "1"9"2Ir radioactive source was exposed for more than 8 hours in the workplace inside a company, exposing radiation workers, individuals of the public and people from the surrounding facilities, including children of a school. The radioactive source was also handled by a security worker causing severe radiation injuries in the hand and fingers. In this paper, the most relevant and used techniques of reconstructive dosimetry internationally are presented. To estimate the radiation doses received by exposed individuals in various scenarios of radiological accident in focus, the following computer codes were used: Visual Monte Carlo Dose Calculation (VMC), Virtual Environment for Radiological and Nuclear Accidents Simulation (AVSAR) and RADPRO Calculator. Through these codes some radiation doses were estimated, such as, 33.90 Gy in security worker's finger, 4.47 mSv in children in the school and 55 to 160 mSv for workers in the company during the whole day work. It is intended that this work will contribute to the improvement of dose reconstruction methodology for radiological accidents, having then more realist radiation doses. (author)

  11. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety. Radiological protection in Latin America and the Caribbean. Vol. 1,2

    International Nuclear Information System (INIS)

    1996-08-01

    Two volumes contain more than 183 complete papers presented during the Third Regional Meeting on Radiological Protection and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin american specialist talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  12. Public health preparedness and response to a radiological terrorist attack

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro

    2016-01-01

    Given the potential for intentional malevolent acts, the security of radioactive sources should be ensured. In the event of a terrorist attack using a radioactive source, we should care not only about health concerns of victims, especially including first responders who suffer from radiation injury, but also public health activities with affected people during the long recovery phase. Regarding the radiological public health viewpoint, preventive efforts are also important. In fact, regulatory reform is progressing in Japan according to the code of conduct issued by IAEA. One of the difficulties of countermeasures for the security of radioactive sources in Japan is to establish a disposal facility for disused sealed radioactive sources, since radioactive waste has been additionally a point of contention in society since the nuclear disaster. This paper presents an overview of countermeasures for terrorist attacks using a radioactive source, from the viewpoint of public health in Japan including the results of survey targeted hospitals equipped with blood irradiation machines. (author)

  13. Radiology Resident Supply and Demand: A Regional Perspective.

    Science.gov (United States)

    Pfeifer, Cory M

    2017-09-01

    Radiology was subject to crippling deficits in the number of jobs available to graduates of training programs from 2012 through 2015. As the specialty transitions to the assimilation of osteopathic training programs and the welcoming of direct competition from new integrated interventional radiology programs, the assessment of growth in radiology training positions over the 10 years preceding this pivotal time will serve to characterize the genesis of the crisis while inspiring stakeholders to avoid similar negative fluctuations in the future. The number of per capita radiology trainees in each region was derived from data published by the National Resident Matching Program, as were annual match statistics over the years 2012 through 2016. Data regarding new interventional radiology and diagnostic radiology enrollees were also obtained from the National Resident Matching Program. The seven states with the most per capita radiology residents were in the Mid-Atlantic and Northeastern United States in both 2006 and 2016, and three of these seven also showed the greatest per capita growth over the course of the 10 years studied. New radiology programs were accredited during the peak of the job shortage. Integrated interventional radiology training created 24 de novo radiology residents in the 2017 match. Fill rates are weakly positively correlated with program size. Unregulated radiology program growth persisted during the decade leading up to 2016. The region with the fewest jobs available since 2012 is also home to the greatest number of per capita radiology residents. Numerous published opinions during the crisis did not result in enforced policy change. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Selective application of revised source terms to operating nuclear power plants

    International Nuclear Information System (INIS)

    Moon, Joo Hyun; Song, Jae Hyuk; Lee, Young Wook; Ko, Hyun Seok; Kang, Chang Sun

    2001-01-01

    More than 30 years later since 1962 when TID-14844 was promulgated, there has been big change of the US NRC's regulatory position in using accident source terms for radiological assessment following a design basis accident (DBA). To replace the instantaneous source terms of TID-14844, the time-dependent source terms of NUREG-1465 was published in 1995. In the meantime, the radiological acceptance criteria for reactor site evaluation in 10 CFR Part 100 were also revised. In particular, the concept of total effective dose equivalent has been incorporated in accordance with the radiation protection standards set forth in revised 10 CFR Part 20. Subsequently, the publication of Regulatory Guide 1.183 and the revision of Standard Review Plan 15.0.1 followed in 2000, which provided the licensee of operating nuclear power reactor with the acceptable guidance of applying the revised source term. The guidance allowed the holder of an operating license issued prior to January 10, 1997 to voluntarily revise the accident source terms used in the radiological consequence analyses of DBA. Regarding to its type of application, there suggested full and selective applications, Whether it is full or selective, based upon the scope and nature of associated plant modifications being proposed, the actual application of the revised source terms to an operating plant is expected to give a large impact on its facility design basis. Considering scope and cost of the analyses required for licensing, selective application is seemed to be more appealing to an licensee of the operating plant rather than full application. In this paper, hence, the selective application methodology is reviewed and is actally applied to the assessment of offsite radiological consequence following a LOCA at Ulchin Unit 3 and 4, in order to identify and analyze the potential impacts due to application of revised source terms and to assess the considerations taken in each application prior to its actual

  15. Deepening the reform of interventional radiology education and speeding up the development of interventional radiology

    International Nuclear Information System (INIS)

    Lu Chuan; Liu Linxiang; Cheng Yongde

    2010-01-01

    For recent years, although interventional radiology in China has achieved rapid development, it is still facing some rigorous challenges, such as the lack of personnel in interventional field and the flowing-away of certain patients who are definitely suitable for interventional therapy. This paper aims to discuss the reform of interventional radiology education for the undergraduates, postgraduates and clinical practitioners in the medical colleges in order to seek effective solutions to these issues the interventional radiology has confronted with. (authors)

  16. Overview of radiological anatomy and topography

    International Nuclear Information System (INIS)

    Mohamed Ali Abdul Khader

    2004-01-01

    This chapter introduces the reader to the examination of the most common radiographs of the body that will be encountered by the x-ray operator. The discussion of the radiograph begins with a review of the anatomy and functions of the region. This is followed by a description of the normal anatomy that is imaged in the radiographs. The subjects discussed are follows - Skeleton; Axial Skeleton, Skull: functions, radiographic appearance. Vertebral Column, Thoracic Cage (Sternum and Ribs), The Chest Radiograph, Appendicular Skeleton, Shoulder Girdle and Upper Arm. Radiological Appearance of the Elbow, Radiological Appearance of the Wrist and Hand, Pelvic Girdle and Lower Limbs, Innominate (hip bones) Radiological Appearance of the Pelvis, Lower Extremities, Joints, Classification, Radiological Appearance of the Knee, Radiological Appearance of the Ankle and Foot, Systems and Cavities of the Body, Cranial Cavity, Thoracic Cavity, Abdominal Cavity, Pelvic Cavity

  17. National entrepreneurial radiology initiatives: what are they, and what can they do to and for you?

    Science.gov (United States)

    Muroff, Lawrence R

    2013-04-01

    National entrepreneurial radiology companies have evolved over the past 3 decades. In the 1990s, a few initiatives were established to implement business principles and reward shareholders with gains derived from management expertise, practice efficiencies, and economies of scale. The next decade saw the emergence of night call coverage and "specialty read" companies. As the market for these services became saturated, the established corporate entities scrambled to find new revenue streams. Hospital radiology contracts were the obvious source for this needed capital. The pursuit of these contracts led to aggressive, nontraditional competition. If radiologists are to respond appropriately, they must understand the reasons behind the strategies used by these national entrepreneurial radiology companies. The author explores the goals and actions of these entities and describes why hospitals may find these national companies to be an attractive alternative to their incumbent radiology practices. Both the benefits and the problems associated with entrepreneurial companies are covered, and concepts such as disintermediation are discussed. Finally, the author suggests appropriate actions for radiologists seeking to retain their hospital contracts. Nontraditional competition is now a way of life for many radiology practices. Relationships, subspecialization, service, and measurable quality indicators are the foundation for the maintenance of tenure at hospitals. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Planning new basic guideline to the radiological risk. Content, radiological criteria and implementation

    International Nuclear Information System (INIS)

    Calvin Cuartero, M.; Vega Riber, R. de la; Martin Calvarro, J. M.

    2011-01-01

    The most important aspects of the Basic Guideline focus on their area of planning, groups of potential radiological emergencies in the type of activity associated with the levels of response planning and responsible organizations, structure and functions for each level, radiological criteria, implementation and maintenance of the effectiveness of the level of response plans abroad.

  19. Training on Radiological Protection in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2004-01-01

    Since they were created in 1973 and 1988 respectively, the Superior Center of Nuclear Studies (CSEN) of the Peruvian Institute of Nuclear Energy (IPEN), together with the Peruvian Radioprotection Society (SPR) have carried out different training courses on radiological protection so that people can work safely with ionizing radiations in medicine, industry and investigation. Additionally, radiological protection is taught to pre graduate students of Medical Technology in four Universities. These courses are a must since national regulations demand that people working with ionizing radiations have an authorization, which is granted by the Technical Office of the National Authority - the technical organ of IPEN - after the candidate demonstrates that he or she knows the specific use of the technique using radiations, as well as all aspects related to safety and radiological protection. The analysis of the radiological protection programs is presented in this document. These programs were carried out by CSEN, during the last 30 years, and by the SRP, and they allowed the training of more than 2200 and 1500 people in the country, respectively. The content of both courses is aimed at specific work with radiations (diagnostic radiology, dental radiology, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges, gamma irradiator, etc..) and fulfill the regulatory requirements. The Universities have different programs on radiological protection for the students of Medical Technology. (Author)

  20. Neurological complications following liver transplant: a pictorial review of radiological and clinical findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyung; Shin, Ji Hoon; Kim, Sang Joon; Lee, Deok Hee; Lee, Ho Kyu; Choi, Choong Gon; Suh, Dae Chul [University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2005-07-15

    Neurological complications are a rare but important and significant source of information about morbidity and mortality in liver transplant patients. Based on the clinical and radiological findings of 21 patients, neurological complications were categorized into five main groups; focal hemorrhagic or occlusive complications (n=11); diffuse hypoxic-ischemic injury (n=3); hypertensive encephalopathy (n=1); central pontine or extra-pontine myelinolysis (n=4); and infection (n=2). Neurological manifestations varied according to the location of the lesion, although seizures were the most common manifestation. In this pictorial review, we illustrate the radiological findings, focusing on MR and CT images, of a spectrum of neurological complications following liver transplants, as well as their clinical correlations.

  1. Neurological complications following liver transplant: a pictorial review of radiological and clinical findings

    International Nuclear Information System (INIS)

    Lee, Young Kyung; Shin, Ji Hoon; Kim, Sang Joon; Lee, Deok Hee; Lee, Ho Kyu; Choi, Choong Gon; Suh, Dae Chul

    2005-01-01

    Neurological complications are a rare but important and significant source of information about morbidity and mortality in liver transplant patients. Based on the clinical and radiological findings of 21 patients, neurological complications were categorized into five main groups; focal hemorrhagic or occlusive complications (n=11); diffuse hypoxic-ischemic injury (n=3); hypertensive encephalopathy (n=1); central pontine or extra-pontine myelinolysis (n=4); and infection (n=2). Neurological manifestations varied according to the location of the lesion, although seizures were the most common manifestation. In this pictorial review, we illustrate the radiological findings, focusing on MR and CT images, of a spectrum of neurological complications following liver transplants, as well as their clinical correlations

  2. Improvement of the Radiological system of emergency classification in Cuba

    International Nuclear Information System (INIS)

    Jerez Vegueria, Pablo F.; Yamil Lopez Forteza; Diaz Guerra, Pedro I.

    2003-01-01

    In 1998 the National Center of Nuclear Security (CNSN), on the base of the experience in the one handling of emergencies and the preparation aspects, planning and answer, it perfects and it modernizes, with the approval of the national bigger State of the Civil Defense, the approaches of the Scale of Radiological Events approved from 1992. Given the operational experience of the System of Answer to Emergency of the Ministry Of Science Technology And Environment in the year 2001 the CNSN develops, it perfects and it puts in vigor a more complete System of Classification of Emergency of unique use for all the entities that use sources of radiations ionizations and that it also includes those answer forces that are imbricate in the Plan of Measures Against Catastrophe for cases of Radiological Accidents. The setting in vigor of this Unique System of Classification of Emergencies at national level has allowed to secure the coordination, planning and answer in an effective, quick and effective way. Presently work is exposed the philosophy on which this System of Classification was elaborated, the approaches used to classify the events as much in radioactive facilities as in the practice of the transport of radioactive materials and the activation of the forces of answers in cases of radiological emergencies

  3. Image acquisition for the pediatric radiology PACS module

    International Nuclear Information System (INIS)

    Ho, B.K.; Morioka, C.; Mankovich, N.J.; Stewart, B.; Huang, H.K.

    1987-01-01

    The prototype PACS module implemented at UCLA's pediatric radiology section has multi-modality access to image data from any of the three types of sources: digital modalities (i.e. CT, MR, and DSA), the Fuji Computed Radiography unit (FCR), and laser film digitizers. An interface unit was built to facilitate real-time data transfer from the FCR to the VAX11/750 which serves as the PACS host computer. The design of the interface unit, methods for linking to digital modalities, and characteristics of two film digitizers are described

  4. Nuclear and radiological safety 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-06-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety issued during the period 1980-1994. The following aspects are covered: Uranium mining and milling, Fuel fabrication and storage, Nuclear power plants, Research reactors, Radiation sources and accelerators, Transport of radioactive materials, Waste repositories, Radiation protection, Accident response, Radioactive waste management, Safety analysis, Quality management, Legal and governmental aspects

  5. Nuclear and radiological safety. 1986-1998. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1999-04-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1986 to 1998. Publications are sorted according to the following subjects: Uranium mining and milling; Fuel fabrication and storage; Nuclear power plants; Research reactors; Radiation sources and accelerators; Transport of radioactive material; Waste repositories; Radiation protection; Accident response; Radioactive waste management; Safety analysis; Quality management; Legal and governmental aspects

  6. Nuclear and radiological safety. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-08-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1990 to 2001. Publications are sorted according to the following subjects: Uranium mining and milling. Fuel fabrication and storage. Nuclear power plants. Research reactors. Radiation sources and accelerators. Transport of radioactive material. Waste repositories. Radiation protection. Accident response. Radioactive waste management. Safety analysis. Quality management. Legal and governmental aspects

  7. Nuclear and radiological safety. 1990-2001. International Atomic Energy Agency publications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1990 to 2001. Publications are sorted according to the following subjects: Uranium mining and milling. Fuel fabrication and storage. Nuclear power plants. Research reactors. Radiation sources and accelerators. Transport of radioactive material. Waste repositories. Radiation protection. Accident response. Radioactive waste management. Safety analysis. Quality management. Legal and governmental aspects.

  8. Non-nuclear radiological emergencies. Special plan for radiological risk of the Valencian Community

    International Nuclear Information System (INIS)

    Rodríguez Rodrigo, I.; Piles Alepuz, I.; Peiró Juan, J.; Calvet Rodríguez, D.

    2015-01-01

    After the publication of the Radiological Hazard Basic Directive, Generalitat (the regional government in Valencian Community) initiated the edition of the pertinent Special Plan, with the objective to assemble the response of all the Security and Emergency Agencies, including the Armed Forces, in a radiological emergency affecting the territory of the Valencian Community, under a single hierarchy command. Being approved and homologated the Radiological Hazard Special Plan, Generalitat has undertaken the implementation process planned to finish in June 2015. Following the same process as other Plans, implementation is organized in a first informative stage, followed of a formative and training stage, and finishing with an activation exercise of the Plan. At the end of the process, is expected that every Agency will know their functions, the structure and organization in which the intervention takes place, the resources needed, and adapt their protocols to the Plan requirements. From the beginning, it has been essential working together with the Nuclear Safety Council, as is established in the agreement signed in order to collaborate in Planning, Preparedness and Response in Radiological Emergencies. [es

  9. Radiological and environmental studies at uranium mills: a comparison of theoretical and experimental data

    International Nuclear Information System (INIS)

    Momeni, M.H.; Kisieleski, W.E.; Yuan, Y.; Roberts, C.J.

    1978-01-01

    Evaluation of radiological risk of uranium milling is based on identification and quantification of sources of release and consideration of dynamic coupling among the meteorological, physiographical, hydrological environments and the affected individuals. Dispersion pathways of radionuclides are through air, soil, and water, each demanding locally tailored procedures for estimation of the rate of release of radioactivity and the pattern of biological uptake and exposure. The Uranium Dispersion and Dosimetry Code (UDAD), a comprehensive method for estimating the concentrations of the released radionuclides, dose rates, doses, and radiological health effects, is described. Predicted concentrations and exposure rates are compared with experimental data obtained from field research at active mills and abandoned tailings

  10. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  11. Virtual radiology rounds: adding value in the digital era

    International Nuclear Information System (INIS)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P.

    2016-01-01

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  12. Virtual radiology rounds: adding value in the digital era

    Energy Technology Data Exchange (ETDEWEB)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P. [New York University School of Medicine, Department of Radiology, New York, NY (United States)

    2016-11-15

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  13. Radiological findings in NAO syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Al-Otaibi, Leftan; Hugosson, Claes O. [Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Al-Mayouf, Sulalman M.; Majeed, Mahmoud; Al-Eid, Wea' am; Bahabri, Sultan [Department of Paediatrics, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia)

    2002-07-01

    Background: Diseases exhibiting osteolysis in children are rare hereditary conditions. Several types have been recognised with different clinical manifestations. One type includes subcutaneous nodules, arthropathy and osteolysis and has been termed NAO syndrome. Previous radiological reports have described the affected bones, usually the carpal and tarsal regions, but a detailed analysis of the radiological findings of both the axial as well as the appendicular skeleton has not been reported. Objectives: To describe the radiological findings in a large group of children with an autosomal recessive disease characterized by nodules, familial arthropathy and osteolysis. Materials and methods: The study comprises 14 patients from 9 families and all patients had the triad of nodulosis, arthropathy and osteolysis (NAO). Results: The most common radiological manifestations were osteopenia, undertubulation of long bones, arthritic changes, sclerotic sutures of the calvaria, osteolysis and muscle contractures. Other common findings were squared vertebrae, broad medial clavicles and brachycephaly. Progress of disease was documented in more than half of the patients. Conclusions: Our study is the first report of the detailed radiological findings of NAO syndrome. In NAO syndrome, both the axial and appendicular skeleton are involved (orig.)

  14. Radiological findings in NAO syndrome

    International Nuclear Information System (INIS)

    Al-Otaibi, Leftan; Hugosson, Claes O.; Al-Mayouf, Sulalman M.; Majeed, Mahmoud; Al-Eid, Wea'am; Bahabri, Sultan

    2002-01-01

    Background: Diseases exhibiting osteolysis in children are rare hereditary conditions. Several types have been recognised with different clinical manifestations. One type includes subcutaneous nodules, arthropathy and osteolysis and has been termed NAO syndrome. Previous radiological reports have described the affected bones, usually the carpal and tarsal regions, but a detailed analysis of the radiological findings of both the axial as well as the appendicular skeleton has not been reported. Objectives: To describe the radiological findings in a large group of children with an autosomal recessive disease characterized by nodules, familial arthropathy and osteolysis. Materials and methods: The study comprises 14 patients from 9 families and all patients had the triad of nodulosis, arthropathy and osteolysis (NAO). Results: The most common radiological manifestations were osteopenia, undertubulation of long bones, arthritic changes, sclerotic sutures of the calvaria, osteolysis and muscle contractures. Other common findings were squared vertebrae, broad medial clavicles and brachycephaly. Progress of disease was documented in more than half of the patients. Conclusions: Our study is the first report of the detailed radiological findings of NAO syndrome. In NAO syndrome, both the axial and appendicular skeleton are involved (orig.)

  15. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  16. Orphan Sources and Fresh Fallout: Virtual Exercise in Mobile Measurement (ORPEX)

    DEFF Research Database (Denmark)

    Dowdall, M.; Smethurst, M.A.; Andersson, Kasper Grann

    In recent years carborne gamma spectrometry has expanded from its role as a geological survey platform to serving as a useful asset in the field of emergency response to radiological and nuclear situations. Its two main applications are searching for orphan sources and for surveying in the afterm......In recent years carborne gamma spectrometry has expanded from its role as a geological survey platform to serving as a useful asset in the field of emergency response to radiological and nuclear situations. Its two main applications are searching for orphan sources and for surveying...... spectral data were generated for imaginary point sources and inserted into genu-ine carborne measurements from in the Trondheim area of Norway. Participants were presented with a typical software tool and data in a range of typical formats and asked to report the source locations and isotopes within a time...

  17. The new ICRP recommendations on radiological protection in geological disposal of long-lived solid radioactive waste

    International Nuclear Information System (INIS)

    Lochard, Jacques; Schneider, Thierry

    2014-01-01

    Radioactive waste management has been the subject of several recommendations of the International Commission on Radiological Protection (ICRP) since 1985. The aim of the new Publication 122 (2013) is to describe how the 2007 general recommendations of the Commission (Publication 103) can be applied in the context of geological disposal. For this purpose, it is important to emphasise that the new approach developed by ICRP is based on three types of exposure situations: planned, emergency and existing: - Planned exposure situations correspond to situations where exposures result from the operation of deliberately introduced sources. Exposures can be planned and fully controlled. - Emergency exposure situations correspond to situations where exposures result from the loss of control of a source within a planned exposure, or from an unexpected situation (e.g. malevolent event). These situations require urgent actions to prevent or mitigate exposures. - Existing exposure situations correspond to situations where exposures result from sources that already exist when decisions are taken to control them. The characterisation of exposure is therefore a prerequisite for their control. The application of the three basic radiological protection principles - justification, optimisation of protection and limitation of individual doses - are therefore considered in this new framework with justification and optimisation applying to the three types of exposure situations and limitation only to planned exposure situations. The main points highlighted in Publication 122 for the application of the system of radiological protection to geological disposal of long-life solid radioactive waste are summarized

  18. DOE Radiological Control Manual Core Training Program

    International Nuclear Information System (INIS)

    Scott, H.L.; Maisler, J.

    1993-01-01

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program

  19. Current status and future direction of radiology in the Philippines

    International Nuclear Information System (INIS)

    Villacorta, E.V.

    1988-01-01

    The author reported that there is a favourable increase of X-ray machine and radiologists proportionate to the increase of population in the Philippines but these are concentrated in Metro Manila. There is a proliferation of ultrasound units because of the cheaper cost of machines and lower overhead of the non-invasive and radiation-free procedure. It is noted that only four radiologists are actively involved in nuclear medicine. Facilities of radiotherapy and the number of radiation oncologists have remained stagnant for the past eight years; many of the equipment are poorly maintained and cobalt-60 sources unreplenished. Another drawback is the public fear of radiation from ionizing radiation emitting modalities such as diagnostic X-ray, nuclear medicine and computed tomography. Likewise, the future of radiology in the Philippines lies in the state of the art radiological facilities not yet available in the country. (ELC). 8 refs.; 9 tabs

  20. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs