WorldWideScience

Sample records for radon transport processes

  1. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  2. Study of underground radon transport

    International Nuclear Information System (INIS)

    Csige, I.; Hakl, J.; Lenart, L.

    1990-01-01

    The soil gas radon content measurements with solid state nuclear track detectors (SSNTDs) are widely used in geoscience, for instance in uranium exploration and earthquake prediction. In these applications the radon frequently is used as a natural tracer of underground fluid transport processes. Obviously, to get the soil radon measuring method more and more effective the study of these transport processes in deeper part of the Earth is fundamental. The Track Detector Group in the Institute of Nuclear Research of the Hungarian Academy of Sciences in Debrecen has been performing environmental radon activity concentration measurements since 1977 with alpha sensitive SSNTDs. These types of measurements were initiated and widely used by the late head of the group Dr. G. Somogyi, who devoted his life to better understanding of the nature. The measurements in caves, springs and drilled wells proved to be effective to study these underground radon transport processes. We are glad to present some results of our investigations. 7 refs, 7 figs

  3. Using radon-222 to distinguish between vertical transport processes at Jungfraujoch

    Science.gov (United States)

    Griffiths, Alan; Chambers, Scott; Conen, Franz; Weingartner, Ernest; Zimmermann, Lukas; Williams, Alastair; Steinbacher, Martin

    2015-04-01

    Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon--222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model.

  4. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  5. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  6. Radon gas as a tracer for volcanic processes

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    Radon emissions from volcanic systems have been under investigation for several decades. Soil gas and groundwater radon activities have been used to map faults and to characterize geothermal systems, and measurements of atmospheric radon and radon daughter concentrations have been used to estimate the volume of magma chambers feeding active eruptions. Several studies have also shown that temporal variations in radon concentration have been associated with the onset of volcanic eruptions or changes in the rates or character of an eruption. Some of these studies have been able to clearly define the cause of the radon anomalies but others have proposed models of radon emission and transport that are not well supported by the known physical and chemical processes that occur in a volcanic system. In order to better characterize the processes that control radon activities in volcanic systems, it is recommended that future radon monitoring programs attempt to maintain continuous recording of radon activities; individual radon measurements should be made over the shortest time intervals possible that are consistent with acceptable counting statistics and geophysical, meteorological, and hydrological parameters should be measured in order to better define the physical processes that affect radon activities in volcanic systems. (author). 63 refs

  7. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  8. Radon generation and transport. A journey though matter

    Energy Technology Data Exchange (ETDEWEB)

    Cozmuta, I. [Beckman Institute 139-74 Caltech, Pasadena, CA 91125 (United States)

    2001-12-07

    The transport of radon in concrete takes place through the complicated network of interconnected pores that is, at any time, the result of the process of hydration of cement and of moisture distribution and transport. Initially the microstructure of concrete depends on the mix proportions and curing conditions, its time-evolution being conditioned by its surrounding environment. Radon transport will be consequently a function of time, as it is influenced by the changing microstructure (total porosity and its distribution) and by the amount and distribution of the moisture contained in the pore system. A selection of information from the large amount of literature available on concrete is presented in chapter 2. A model that describes the process of hydration, of microstructure development and of moisture transport is presented in chapter 3. The physics of radon diffusion in homogeneous porous materials is outlined in chapter 4. The coupling of the numerical implementation of the hydration and radon transport (chapter 6) offers the possibility to achieve calculated values for porosity and moisture content thus, reducing the number of material parameters in the radon-transport equation that have to be determined experimentally. Chapter 7 covers the experimental methods and techniques. Chapter 5 presents a survey of the information available in literature on radon release from concrete and on radon barriers. This chapter also summarises results of several experimental studies investigating the radon reduction efficiency and also the permeability of various covers. On basis of this information, a selection was made for the covering materials to be assessed in this thesis. Radon-release rates of uncovered and completely covered concrete samples were measured. From these measurements the reduction efficiencies of various sealants (epoxy glue, double-sided aluminised polyethylene foil, soluble glass) were calculated (chapter 12). Also, as a result of the collaboration

  9. Radon generation and transport. A journey though matter

    International Nuclear Information System (INIS)

    Cozmuta, I.

    2001-01-01

    The transport of radon in concrete takes place through the complicated network of interconnected pores that is, at any time, the result of the process of hydration of cement and of moisture distribution and transport. Initially the microstructure of concrete depends on the mix proportions and curing conditions, its time-evolution being conditioned by its surrounding environment. Radon transport will be consequently a function of time, as it is influenced by the changing microstructure (total porosity and its distribution) and by the amount and distribution of the moisture contained in the pore system. A selection of information from the large amount of literature available on concrete is presented in chapter 2. A model that describes the process of hydration, of microstructure development and of moisture transport is presented in chapter 3. The physics of radon diffusion in homogeneous porous materials is outlined in chapter 4. The coupling of the numerical implementation of the hydration and radon transport (chapter 6) offers the possibility to achieve calculated values for porosity and moisture content thus, reducing the number of material parameters in the radon-transport equation that have to be determined experimentally. Chapter 7 covers the experimental methods and techniques. Chapter 5 presents a survey of the information available in literature on radon release from concrete and on radon barriers. This chapter also summarises results of several experimental studies investigating the radon reduction efficiency and also the permeability of various covers. On basis of this information, a selection was made for the covering materials to be assessed in this thesis. Radon-release rates of uncovered and completely covered concrete samples were measured. From these measurements the reduction efficiencies of various sealants (epoxy glue, double-sided aluminised polyethylene foil, soluble glass) were calculated (chapter 12). Also, as a result of the collaboration

  10. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  11. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  12. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  13. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  14. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  15. RADON 222 AND TROPOSPHERIC VERTICAL TRANSPORT.

    OpenAIRE

    Liu, SC; McAfee, JR; Cicerone, RJ

    1984-01-01

    Radon 222 is an inert gas whose loss is due only to radioactive decay with a half life of 3. 83 days (5. 51-day 'exponential' lifetime). It is a very useful tracer of continental air because only ground level continental sources are significant. Previously published measured **2**2**2Rn profiles are analyzed here by averaging for the summer, winter, and spring-fall seasons. The analysis shows that in summer, about 55% of the **2**2**2Rn is transported above the planetary boundary layer, consi...

  16. Sources and transport of indoor radon

    International Nuclear Information System (INIS)

    Aldenkamp, F.J.; Stoop, P.

    1994-01-01

    An approach in the investigation was to use a multi-compartment model of a home describing the processes that determine how radon concentrations in dwellings are established. Because the model describes Rn-222 concentrations in terms of airflows and sources, the experimental research was focused on the measurement of these three quantities. Development, calibration and assessment of the instrumentation played a major role. The experiments involved measurements of Rn-222 exhalation of buildings materials and the soil underneath the house, Rn-222 concentrations in air and airflows between various parts of the house and between the inside and outside of the house. (DG)

  17. Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils

    International Nuclear Information System (INIS)

    Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.

    1990-10-01

    To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs

  18. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  19. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  20. Radon at the Mauna Loa Observatory: transport from distant continents

    International Nuclear Information System (INIS)

    Whittlestone, S.; Robinson, E.; Ryan, S.

    1992-01-01

    Continuous measurements of radon have been made at an altitude of 3400m at the Mauna Loa Observatory, Hawaii. Concentrations ranged from about 20 to more than 700mBq m -3 . These were similar to values at remote Macquarie I., some 2000 km south of Australia in the Southern Ocean. At Mauna Loa, the radon concentrations could usually be separated into free tropospheric and island influenced categories on the basis of local meteorological observations. On one occasion a long range transport event from Asia brought relatively high radon concentrations to Mauna Loa and persisted for several days. The Asian origin of this event was supported by wind trajectories. This measurement program demonstrates the value of radon data in evaluating air transport models and the influence of transport from distant continents on baseline atmospheric measurements. (author)

  1. Transport studies of radon in limestone underlying houses

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    In hilly limestone terrains of the southern Appalachians, subterranean networks of solution cavities and fissures present circulatory systems facilitating convective and advective transport of radon-bearing gas. Evidence suggests that the primary driving forces for transport are aerostatic pressure differentials created by the difference between the underground and the outside air temperatures. Examples are presented of houses experiencing elevated indoor radon levels as a consequence of communicating with such subsurface transportation systems. The location of a house near the upper or lower end of a subterranean-circulatory system seems to produce amplification of indoor radon levels in winter or summer, respectively. The transport mechanism for radon-bearing air in karst and its impact on indoor radon need better understanding, both in regard to evaluating the geographical prevalence of the phenomenon and the induced spatial and temporal effects that are possible. This paper reports field studies made at houses in karst regions at Oak Ridge, Tennessee, and Huntsville, Alabama. A primary radon-transport mechanism is advocated of ascending or descending subsurface columns of air whose flows are largely driven by aerostatic pressure gradients created by the inground-outdoor air temperature differentials. 5 refs., 5 figs., 1 tab

  2. Radon-222: tracer of geological systems dynamics. Methodology and signal processing, interpretation of radon-222 behaviour in active geological media

    International Nuclear Information System (INIS)

    Richon, Patrick

    2011-01-01

    Gases, especially radon, have often been cited as indicators of large-scale geodynamic processes, or as precursors of earthquakes and volcanic eruptions. Measurable in the air, water and rocks, natural radon concentrations are generally extremely low, because 1 Bq m -3 corresponds to a mixing ratio of 1,77 * 10 -20 in air at normal temperature and pressure (NPT). Expressed in a usual unit in chemistry of air pollution, an usual activity concentration of 37 Bq m -3 is only a billion th of ppb by volume (ppbv) in the atmosphere. Yet such, concentrations of radon are very easy to measure, because the decay α is an energetic phenomenon: It makes it theoretically possible to detect a single atom of radon, which is an inaccessible performance by chemical analysis. This feature, combined with a half-life of 3.82 days, makes radon so interesting for tracing natural phenomena. But the major drawback is that radon becomes very sensitive to subsurface meteorological and hydrogeological processes especially if the measurement methodology is not perfectly controlled. These aspects are not addressed in the past and in recent literatures and are rarely taken into account when analyzing and interpreting radon signal. We review these issues by addressing problems related to instrumentation, to measurement methods, and to data processing. We show how to extract signatures of geodynamical processes dissimulated in radon data for very different sites with strong dynamic like volcanic sites (La Soufriere of Guadeloupe, FWI, Merapi, Indonesia), tectonic sites (Syabru-Bensi in Nepal and the Kunlun fault in Tibet) and underground laboratories (Roselend and Argentiere). For this, we had to develop signals processing tools that allow us to extract the effect of barometric and gravimetric tide waves from the radon signal. This is a very sensitive for a detailed survey of the transport processes of radon that are closely linked to geodynamic processes involved in different sites. The

  3. Radon 222 and tropospheric vertical transport

    International Nuclear Information System (INIS)

    Liu, S.C.; McAfee, J.R.; Cicerone, R.J.

    1984-01-01

    Radon 222 is an inert gas whose loss is due only to radioactive decay with a half life of 3.83 days (5.51-day ''exponential'' lifetime). It is a very useful tracer of continental air because only ground level continental sources are significant. Thus it is similar in several ways to many air pollutants (e.g., NO/sub x/) (NO+NO 2 ), SO 2 , and certain hydrocarbons. Previously published measured 222 Rn profiles are analyzed here by averaging for the summer, winter, and spring-fall seasons. The analysis shows that in summer, about 55% of the 222 Rn is transported above the planetary boundary layer, considerably more than during the other seasons. Similarly, in summer, about 20% rises to over 5.5 km (500 mbar). The average profiles have been used to derive vertical eddy diffusion coefficients with maximum values of 5-7 x 10 5 cm 2 s -1 in the midtroposphere and 8 x 10 3 to 5 x 10 4 cm 2 s -1 near the surface

  4. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  5. Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch

    International Nuclear Information System (INIS)

    Griffiths, A.D.; Chambers, S.D.; Williams, A.G.; Conen, F.; Zimmermann, L.

    2014-01-01

    Atmospheric composition measurements at Jungfraujoch are affected intermittently by boundary-layer air which is brought to the station by processes including thermally driven (anabatic) mountain winds. Using observations of radon-222, and a new objective analysis method, we quantify the land-surface influence at Jungfraujoch hour by hour and detect the presence of anabatic winds on a daily basis. During 2010-2011, anabatic winds occurred on 40% of days, but only from April to September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in air-mass properties, even when comparing days with a similar mean radon concentration. Excluding days with anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone. This implies that a radon threshold reliably excludes local influences from both anabatic and non-anabatic vertical-transport processes.

  6. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  7. Radon: Chemical and physical processes associated with its distribution

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering

  8. Multivariate signal processing in measurements of radon and radon daughters in air

    International Nuclear Information System (INIS)

    Urbanski, P.; Machaj, B.

    2000-01-01

    Extensive measurements of radon and radon daughters concentration gauge in a radon chamber were carried out. Count rate 'spectra' against time at the output of radiation detectors were measured and registered. The count rate spectra were then processed employing Principal Component Regression (PCR). A root mean square error of the count rate was estimated. It was found that PCR processing removes a great part of count rate random fluctuations originating from the radiation statistics that results in a decrease of count rate random error. The root mean square error of count rate in a radon daughter monitor is about 3 times lower, which is equivalent to the error of the gauge with a 9 times higher air flow rate if no PCR processing is used. In case of the radon concentration gauge the increase of sensitivity is even higher and amounts to 5 times. (author)

  9. Radon generation and transport : a journey through matter

    NARCIS (Netherlands)

    Cozmuta, Ioana

    2001-01-01

    Het doel van dit proefschrift is de fundamentele kennis over produktie en transport van radon in beton te vergroten. Deze kennis kan dan ten grondslag liggen aan nieuw te ontwikkelen methoden om de radonafgifte van beton te reduceren door veranderingen in bijvoorbeeld de produktietechniek van beton

  10. Modelling uncertainties in the diffusion-advection equation for radon transport in soil using interval arithmetic.

    Science.gov (United States)

    Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K

    2018-02-01

    Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  12. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  13. Transport of radon through cracks in a concrete slab

    Energy Technology Data Exchange (ETDEWEB)

    Landman, K A; Cohen, D S

    1983-03-01

    A model involving the use of line sources is developed to describe the transport of radon through the cracks or gaps which appear in concrete slabs used in building foundations. The strength of these sources is determined from the results of the diffusion model proposed by Landman in a previous work. Once the strength of the source is known, additional transport mechanisms can be treated in a simple manner. Pressure differences across the slab and in the underlying soil are discussed. The rate of exhalation through a portion of the cracked slab is determined and compared to the rate of exhalation from the same surface area of bare soil. In typical cases, their ratios vary from 0.25 to 0.50. Therefore, these transport mechanisms account for a larger portion of the levels of radon found in many houses than do previous models.

  14. Measurement and Simulation of Radon Transport in East Asia and Their Implication on Source Distribution

    International Nuclear Information System (INIS)

    Hirao, S.; Yamazawa, H.; Moriizumi, J.; Iida, T.

    2012-01-01

    Outlines of the continuous monitoring of atmospheric radon concentration at several locations in East Asia, the development and validation of a long-range atmospheric transport model, and a trial of estimating and reducing uncertainty in radon exhalation flux density maps were presented. Atmospheric radon concentration data observed at a small solitary island in the Pacific Ocean were successfully used to improve the vertical diffusion scheme in the model although the uncertainty in the radon flux density data was the limitation. It was also pointed out that a kind of source-receptor analysis using the radon concentration observed at these islands would reduce uncertainty in the radon flux density maps. (author)

  15. Airflow and radon transport modeling in four large buildings

    International Nuclear Information System (INIS)

    Fan, J.B.; Persily, A.K.

    1995-01-01

    Computer simulations of multizone airflow and contaminant transport were performed in four large buildings using the program CONTAM88. This paper describes the physical characteristics of the buildings and their idealizations as multizone building airflow systems. These buildings include a twelve-story multifamily residential building, a five-story mechanically ventilated office building with an atrium, a seven-story mechanically ventilated office building with an underground parking garage, and a one-story school building. The air change rates and interzonal airflows of these buildings are predicted for a range of wind speeds, indoor-outdoor temperature differences, and percentages of outdoor air intake in the supply air Simulations of radon transport were also performed in the buildings to investigate the effects of indoor-outdoor temperature difference and wind speed on indoor radon concentrations

  16. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  17. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    International Nuclear Information System (INIS)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J.; Kretzschmar, H.J.

    1997-01-01

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies

  18. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J. [Research Lab. for Mining Chemistry, Miskolc-Egyetemvaros (Hungary); Kretzschmar, H.J. [DBI Gas- und Umwelttechnik GmbH, Feiberg (Germany)

    1997-12-31

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies.

  19. Development and evaluation of global radon transport model

    International Nuclear Information System (INIS)

    Kojima, H.; Nagano, K.

    2003-01-01

    The radioactive noble gas Radon-222 ( 222 Rn) is chemically inert and is removed only by radioactive decay (T1/2=3.8 d). Its primary source is uniformly distributed over the continents and the ocean represents a secondary source of atmospheric 222 Rn. The strong contrast in source strength between continents and the ocean makes 222 Rn an ideal marker of continental air masses. Because of its simple properties, the temporal and spatial distribution of 222 Rn in the troposphere is straightforward to simulate by means of atmospheric transport models. The simulation provides an intuitive visualization of the complex transport characteristics and more definite proof of phenomenon. In this paper, we present the results of an exploratory study, in which we investigated the performance of a three-dimensional transport model of the global troposphere in simulating the long range transport of 222 Rn. The transport equation has been solved by a numerical procedure based on some boundary conditions. The model structure which we have originally developed, has a horizontal resolution of 2.5deg in latitude and 2.5deg in longitude, and 10 layers in the vertical dimension. The basic computational time step used in the model runs was set to 5 min. The simulations described in this article were performed by means of a transport model driven by global objective analytical data of a time resolution of 6 h, supplied by the Japan Meteorological Agency. We focus on the west of North Pacific Ocean, were the influence of air pollution from an Asian Continent and the Japan Islands was received. For simulation experiments, radon data from some shipboard measurements on the North Pacific Ocean have been used in the present study. Figure shows time series of model prediction with different latitude distributions of radon exhalation rate and measured radon data. We find that our model consistently produce the observation. We will discuss the characteristics of the temporal and special

  20. Diffusive transport of radon in a homogeneous column of dry sand

    NARCIS (Netherlands)

    van der Spoel, W.H.; van der Graaf, E.R.; de Meijer, R.J.

    To validate a model for radon transport in soil, measurements of diffusive radon transport under well-defined and controlled conditions have been made in a homogeneous column of dry sand with an air-filled volume on top. This volume simulates a crawl space. The measurements concern time-dependent

  1. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  2. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  3. Radon emanation over an orebody: search for long-distance transport of radon

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Hart, H.R. Jr.; Mogro-Campero, A.

    1980-01-01

    Discovery of subsurface uranium ore could be facilitated by recognition of measurable concentrations of the radioactive gas 222 Rn near the surface of the earth. Integrated measurements made over several weeks' time show promise of giving greater reproducibility than short-term measurements, which are more subject to meteorological variability. Improved methods of integrated randon measurements-free of 220 Rn, thermal-track fading, and mositure-condensation effects-allow readings that generally are highly stable over time. Sixteen kilometers north of Thoreau, New Mexico, reading taken at 60-cm depth over a 13-month interval for 55 positions give different-but nearly constant-monthly readings at each position; the typical standard deviation was 22 percent. Superimposed on that stable pattern have been three periods during which spatially grouped radon readings increased by a factor of two or more over their normal values. The simplest tenable description of the increases is sporadic puffs of upflowing gas, originating from unknown depths. The measurements are consistent with an upward velocity of flow of about 10 -3 cm/s (centimeters per second). If this velocity is maintained to depth, it is still insufficient to transport detectable amounts of radon from the orebody at 90-m depth, but it would be sufficient to reveal ore at 50 m or less. Downhole measurements of permeability yield values generally too low for signals to be delivered from the orebody by any of the mechanisms already modeled

  4. Radon

    International Nuclear Information System (INIS)

    Holmen, R.W.

    1987-01-01

    The discovery that radon enters into residential and commercial structures and produces adverse health consequences to occupants thereof has raised issues for the real estate profession in connection with transactions involving affected structures. The legal responsibilities of real estate professionals in relation to such structures have not yet been clearly defined. Moreover, consistent and reliable testing methods and results, clear identification of circumstances where testing is necessary, and consensus as to health risks suggested by various radon levels have yet to be achieved. When these legal and technical questions are clarified, real estate buyer and sellers as well as agents and brokers will be greatly benefited

  5. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  6. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  7. Occupational radon expositions during cleaning processes of water reservoirs

    International Nuclear Information System (INIS)

    Hingmann, H.; Ehret, V.; Hegenbart, L.; Krieg, K.

    2002-01-01

    According to the new German ''Strahlenschutzverordnung'' (Radiation Protection Directive) the annual dose due to the exposition to radon has to be estimated for employees of water works. This includes employees of service companies. While the job of employees of water works usually covers a broad spectrum of different activities, employees of service companies may spend a considerable amount of time of their total working hours cleaning water reservoirs. This investigation is concerned with this type of employees. The radon exposition of one or more cleaning processes were determined by passive dosimeters. The mean radon concentration was calculated for the duration of the cleaning process. In some cases, members of the project team accompanied cleaning processes and performed stationary radon measurements on site. Sometimes, parallel to the passive dosimeters, electronic dosimeters were used to measure personal exposure. The results - and results from additional laboratory reference measurements - are compared. All results until January 2002 are considered. The project still goes on and will end in summer of 2002. Experiences made during this investigation are described in the end of this report. (orig.)

  8. Radon analyser

    International Nuclear Information System (INIS)

    1981-01-01

    The process claimed includes the steps of transferring radon gas produced by a sample to a charcoal trap, cooled to a temperature whereby the radon is absorbed by the charcoal, heating the charcoal trap to a sufficient temperature to release the radon, and transferring the radon to a counting device where the gas particles are counted

  9. Second workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    1979-01-01

    A second meeting of Atomic Energy Control Board staff, federal and provincial government representatives, and consultants was held to discuss progress in reducing the concentrations of radon and its daughter products in houses in communities like Bancroft, Elliot Lake, Port Hope, and Uranium City. Participants discussed successful and unsuccessful remedial techniques, possible sources of radon, and methods of measuring radon and radon daughters in buildings

  10. Radon Reduction Experience at a Former Uranium Processing Facility

    International Nuclear Information System (INIS)

    Eger, K. J.; Rutherford, L.; Rickett, K.; Fellman, R.; Hungate, S.

    2004-01-01

    Approximately 6,200 cubic meters of waste containing about 2.0E8 MBq of radium-226 are stored in two large silos at the Fernald Site in southwest Ohio. The material is scheduled for retrieval, packaging, off site shipment and disposal by burial. Air in the silos above the stored material contained radon-222 at a concentration of 7.4 E5 Bq/L. Short-lived daughters formed by decay in these headspaces generated dose rates at contact with the top of the silos up to 1.05 mSv/hr and there complicate the process of retrieval. A Radon Control System (RCS) employing carbon adsorption beds has been designed under contract with the Fluor Fernald to remove most of the radon in the headspaces and maintain lower concentrations during periods when work on or above the domes is needed. Removing the radon also removes the short-lived daughters and reduces the dose rate near the domes to 20 to 30 μSv/hr. Failing to remove the radon would be costly, in the exposure of personnel needed to work extended periods at these moderate dose rates, or in dollars for the application of remote retrieval techniques. In addition, the RCS minimizes the potential for environmental releases. This paper describes the RCS, its mode of operation, and early experiences. The results of the test described herein and the experience gained from operation of the RCS during its first phase of continuous operation, will be used to determine the best air flow, and air flow distribution, the most desirable number and sequence number and sequence of adsorption beds to be used and the optimum application of air recycle within the RCS

  11. Workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    1978-01-01

    This meeting of Atomic Energy Control Board staff, representatives of other government departments, and consultants was called to exchange information on steps taken to lower radiation levels in houses in communities such as Elliot Lake, Uranium City, and Port Hope. Discussions covered the sources of radon and radon daughters in these houses, radon measurement techniques, and remedial methods that worked or were not successful

  12. Radon transport modelling: User's guide to RnMod3d

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2000-01-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It canalso be used for flux calculations of radon...... decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning ofradon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may...... be anisotropic. This guide includes benchmark tests based on simpleproblems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality....

  13. Radon transport into a detached one-story house with a basement

    International Nuclear Information System (INIS)

    D'Ottavio, T.W.; Dietz, R.N.; Nazaroff, W.W.; California Institute of Technology

    1986-01-01

    The interpretation of the data presented in a paper published in 1985 on radon transport into a detached one-story house with a basement is extended by developing an improved model that can be used to predict radon concentration in this house. In particular, emphasis was placed on a more complete set of replotted sump activity data. In the author's reply, this development is welcomed but two concerns regarding the conclusions one might infer from the analysis are discussed. (UK)

  14. Radon transport modelling: User's guide to RnMod3d

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  15. Radon transport modelling: User's guide to RnMod3d

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  16. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  17. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  18. Radon and its measurement

    International Nuclear Information System (INIS)

    Penzo, Silvia

    2006-03-01

    The work reviews the topics concerning the problem of the indoor radon and its measurement. The initial stage deals with the general features of radon, from the historical remarks about its discovery to the formation mechanisms in the soil, then passing to describe the transport processes that lead the radon to enter into the buildings. The mean radon concentration distribution among the Italian regions is reported and compared with the situation in the other countries of the world. A particular importance is given to present the national law concerning the radioprotection from the natural sources of ionizing radiations; a paragraph is completely devoted to this argument and to discuss the differences between the Italian approach and the regulations applied in the Test of Europe for both workplaces and dwellings. Chapter 3 describes the different detectors and methods to measure the radon and its short mean live decay products concentrations, together with the operative procedures and guides provided by the Italian law and by the international bodies. As an example of typical radon passive measurement device. the new ENEA detector developed at the Institute of Radioprotection is presented and discussed. Appendix 1 is entirely devoted to discuss the main remedial actions for decreasing the radon indoor concentration both for old and new buildings; appendix 2 reports the main quantities related to radon and radioprotection [it

  19. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  20. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France)

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Zakaria; Guillevic, Jerome [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-DGE/SEDRAN/BRN, 31 avenue de la Division Leclerc, B.P. 17, 92262, Fontenay-aux-Roses, Cedex (France)

    2014-07-01

    Uncertainties on the mathematical modelling of radon transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon flux to the atmosphere at the landfill cover, which must be less than the threshold value 0.74 Bq.m{sup -2}.s{sup -1}recommended by the federal standard (EPA 40 CFR 192). These uncertainties are usually attributed to the numerical errors from the numerical schemes dealing with soil layering and to inadequate representations of the modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we compare one-dimensional simulation results from two numerical models of two-phase (water-air) porous media flow and radon transport to the data of radon activity exhalation flux and depth-volumetric concentration measured during a field campaign from June to November of 1999 in a two-layered soil of 1.3 m thickness (i.e., cover material/UMT: 0.5/0.8 m) of an experimental pond located at the Lavaugrasse UMT-landfill site (France). The first numerical modelling approach is a coupled finite volume compositional (i.e., water, radon, air) transport model (TOUGH2/EOS7Rn code, Saadi et al., 2013), while the second one is a decoupled finite difference one-component (i.e., radon) transport model (TRACI code, Ferry et al., 2001). Transient simulations during six month of hourly rainfall and atmospheric pressure variations showed that calculations from the one-component transport model usually overestimate both measured radon exhalation flux and depth-concentration. However, considering the effective unsaturated pore air-component diffusivity to be different from that of the radon-component in the compositional transport model allowed to significantly enhancing the modelling of these radon experimental data. The time-averaged radon flux calculated by EOS7Rn (3.42 Bq

  1. Radon as a geophysical tracer on Mars: study of its transport, first evidence and development of an instrument for its measurement

    International Nuclear Information System (INIS)

    Meslin, Pierre-Yves

    2008-01-01

    Radon-222, an inert and radioactive gas stemming from the uranium decay series, and its progeny are often used as tracers to study transfers in soils and in the atmosphere. They have also been studied on the surface of the Moon in connection with lunar outgassing. On Mars, where radon has never been studied nor measured so far, we show that their measurement could provide new insight and constraints on the chemical nature of the hydrogen measured in the Martian soil, in surface-atmosphere exchange processes, in atmospheric transport and, finally, in the dust cycle. Our approach is based on a coupled soil-atmosphere transport model implemented into the Global Circulation Model LMDZ. It includes the source term, the diffusion and adsorption of radon within the soil, and its atmospheric transport. The model input parameters are derived either experimentally (emanation factor and adsorption coefficient extrapolated to low temperatures) or by realistic models of porous media (diffusion coefficient at low pressure and as a function of the water saturation level). The model yields predictive maps of the radon exhalation rate as well as 3D fields of concentration in the soil and atmosphere, which will allow direct comparison with bismuth-214 measurements made by the GRS onboard the Mars Odyssey orbiter. We present preliminary results on this subject. An analysis of alpha spectra acquired by the APXS of the rover Opportunity is also presented, which shows evidence of a polonium-210 deposit on atmospheric dust, providing the first indirect proof of the presence of radon in the Martian atmosphere. We propose a simplified dust cycle model that enables us to infer an estimate of the global average radon exhalation rate on Mars. Lastly, we simulate the performance of an alpha spectrometer aimed at measuring radon and its progeny on the surface of the planet. (author)

  2. MEASUREMENTS ON, AND MODELING OF DIFFUSIVE AND ADVECTIVE RADON TRANSPORT IN SOIL

    NARCIS (Netherlands)

    VANDERGRAAF, ER; WITTEMAN, GAA; VANDERSPOEL, WH; ANDERSEN, CE; DEMEIJER, RJ

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted into

  3. Public radiation exposure due to radon transport from a uranium mine

    International Nuclear Information System (INIS)

    Akber, R.A.; Johnston, A.; Pfitzner, J.

    1992-01-01

    Radon and radon daughter concentrations at locations several kilometres away from a uranium mine are due both to the background sources and the mine-related sources. The contribution of these two types of sources should be distinguished because the authorised limits on public radiation dose apply only to the mine-related sources. Such a distinction can be achieved by measuring radon and radon daughter concentration in the wind sectors containing only the background sources and those in the wind sectors containing both the background and the mine-related sources. This approach has been used to make estimates of public radiation dose due to radon transport from the Ranger Uranium Mine in Australia. The residential town of Jabiru, the non-residential working town of Jabiru East, and the aboriginal camp sites in the vicinity of the mine were considered. The results indicate that, for the groups of population considered, the annual mine-related dose varies between 0.04 and 0.2 mSv. (author)

  4. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  5. Radon programme: presence and future

    International Nuclear Information System (INIS)

    Hulka, J.

    2009-01-01

    In this presentation an overview of radon programme experiences is presented. The paper summarises national radon policy, national programmes, legislation, the role of preventive measures and interventions with respect to existing and future exposure and knowledge of radon risk, problems of remediation strategies, practical protection in dwellings, radon measurements strategies, progress in radon measurement of an individual house (radon diagnosis), radon mapping process and sense of delineation of radon prone areas, natural radioactivity of building materials and radioactivity in public water and their role in the radon programme, public awareness on radon issue and publicity campaign. Some research activities are proposed aiming at effective solutions of radon issues in future

  6. Third workshop on radon and radon daughters in urban communities associated with uranium mining and processing. Pt. 1

    International Nuclear Information System (INIS)

    1980-01-01

    This third meeting of Atomic Energy Control Board staff, contractors, federal and provincial government representatives, and delegates from outside Canada was held to discuss progress in reducing concentrations of radon and radon daughters in houses. Speakers talked about successful and unsuccessful remedial measures, methods of measuring and monitoring thoron and radon in houses, and indoor radon concentrations in Canada, Britain and Sweden

  7. Influence of building materials process technology on radon exhalation

    International Nuclear Information System (INIS)

    Liu Fudong; Wang Chunhong; Liu Senlin; Ji Dong; Zhang Yonggui; Pan Ziqiang

    2009-01-01

    The building materials were produced through changing raw material ingredient, baking temperature, pressure difference between surface and interior of building material, grain diameter etc. Experiment indicates that change of raw material ingredient ratio can obviously influence the radon exhalation from building material, followed by baking temperature; and pressure difference does not have significant influence on radon exhalation. For the factory to produce shale-brick, the radon exhalation is relatively low under the condition that coal gangue accounts for 40%-50%, the grain diameter is less than 2 mm, the baking temperature is about 960 degree C or 1 020 degree C and the pressure difference is 85 kPa. (authors)

  8. ERRICCA radon model intercomparison exercise

    International Nuclear Information System (INIS)

    Andersen, C.E.; Albarracin, D.; Csige, I.; Graaf, E.R. van der; Jiranek, M.; Rehs, B.; Svoboda, Z.; Toro, L.

    1999-04-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to more fundamental studies of radon transport. To ascertain that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Research into Radon in Construction Concerted Action. The test comprises the following cases: 1) Steady-state diffusive radon profiles in dry and wet soils, 2) steady-state entry of soil gas and radon into a house, 3) time-dependent radon exhalation from a building-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive transport of radon, flux calculations, and partitioning of radon between air and water in soil pores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because of this, all groups scrutinized their computations (once more) and engaged in follow-up discussions with others. During this debugging process, problems were indeed identified (and eliminated). The accordingly revised results were in better agreement than those reported initially. Some discrepancies, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommended that additional exercises are carried out. (au)

  9. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  10. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    Cross, F.T.

    1988-01-01

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  11. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  12. Study of probes for geophysical process analysis. Radon-emanometry

    International Nuclear Information System (INIS)

    Tidjani, A.

    1984-09-01

    This study concerns mainly the measurement of radon-222 concentration in the ground, as an indicator of underground gas displacements. With nuclear track solid state detectors (SSNTD), it has been shown that the use of a radon source, buried at 180 cm depth, provides an increase of sensitivity. In order to automatize the in-field measurements, electronic detectors (scintillators, semi-conductors) have been developed. These detectors have been used for preliminary studies in the field for further applications to the prevision of earthquakes and volcanic eruption, and on a simulation set-up to analyse the possible influence of atmospheric parameters (pressure, temperature, ...) on underground gas displacement. Some tests have been done on the use of SSNTD for tracer analysis [fr

  13. Radon generation and transport in and around a gold mine tailings dam in South Africa

    International Nuclear Information System (INIS)

    Speelman, W.J.; Lindsay, R.; Newman, R.T.; Meijer, R.J. de

    2006-01-01

    Naturally Occurring Radioactive Material (N.O.R.M.) occurs in most soil and rock, and by mining and mineral processing, some of the radionuclides are significantly enhanced. An in-situ gamma-ray detector called M.E.D.U.S.A., has been used to produce a map of relative activity concentrations in a gold mine tailings dam on the Witwatersrand in South Africa. A CsI(Na) scintillation detector is used in this system. M.E.D.U.S.A. spectra obtained from the survey were analyzed using the Full-Spectrum Analysis (F.S.A.) procedure to compute the 40 K, 238 U and 232 Th activity concentrations. The activity concentrations are used with global positioning data (G.P.S.) to produce the concentration maps. A hyper-pure germanium gamma-ray detector (Hp Ge) was used to measure gamma-rays from the naturally occurring nuclides for soil samples taken at different points on the site to calibrate the M.E.D.U.S.A. system. Radon soil gas measurements were performed at certain points on the mine tailings with a continuous radon monitor; R.A.D.7, and emanation coefficients were measured with electret technology. These parameters have been combined with the activity concentrations to obtain an average radon exhalation rate of about 0.1 Bq.m -2 .s -1 (with an uncertainty of about 20%) from the tailings dam. The purpose of the study is to also review and develop a mathematical model for radon activity concentration predictions in gold mine dumps. (authors)

  14. Radon generation and transport in and around a gold mine tailings dam in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Speelman, W.J.; Lindsay, R. [Western Cape Univ., Dept. of Physics (South Africa); Newman, R.T. [IThemba LABS, Somerset West (South Africa); Meijer, R.J. de [Nuclear Geophysics Division (NGD), KVI, Rijksuniversiteit Groningen (Netherlands)

    2006-07-01

    Naturally Occurring Radioactive Material (N.O.R.M.) occurs in most soil and rock, and by mining and mineral processing, some of the radionuclides are significantly enhanced. An in-situ gamma-ray detector called M.E.D.U.S.A., has been used to produce a map of relative activity concentrations in a gold mine tailings dam on the Witwatersrand in South Africa. A CsI(Na) scintillation detector is used in this system. M.E.D.U.S.A. spectra obtained from the survey were analyzed using the Full-Spectrum Analysis (F.S.A.) procedure to compute the {sup 40}K, {sup 238}U and {sup 232}Th activity concentrations. The activity concentrations are used with global positioning data (G.P.S.) to produce the concentration maps. A hyper-pure germanium gamma-ray detector (Hp Ge) was used to measure gamma-rays from the naturally occurring nuclides for soil samples taken at different points on the site to calibrate the M.E.D.U.S.A. system. Radon soil gas measurements were performed at certain points on the mine tailings with a continuous radon monitor; R.A.D.7, and emanation coefficients were measured with electret technology. These parameters have been combined with the activity concentrations to obtain an average radon exhalation rate of about 0.1 Bq.m{sup -2}.s{sup -1} (with an uncertainty of about 20%) from the tailings dam. The purpose of the study is to also review and develop a mathematical model for radon activity concentration predictions in gold mine dumps. (authors)

  15. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  16. The effect of an engineered closure cap on radon gas transport from a shallow land burial site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US Department of Energy (DOE) Order 5820.2A requires performance assessment of all new and existing low level radioactive waste disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Mathematical models, which in themselves point out data needs and therefore drive site characterization, provide a logical means of performing the required flux estimations. The effects of an engineered closure cap on radon gas transport in a very dry alluvial soil in the southwestern desert are considered in detail in this paper. Our model (Lindstrom, et al. 1992 a ampersand b and Cawlfield et al. 1992 a ampersand b) was constructed in a site specific fashion because the existing mathematical models of noble gas transport from the spatial point of origin in the low level waste repository through the surrounding soil and closure cap with subsequent release to the atmosphere are few in numbers (Nazaroff, 1992)

  17. Near field transport processes

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1991-01-01

    In repositories for nuclear waste there are many processes which will be instrumental in corroding the canisters and releasing the nuclides. Based on experiences from studies on the performance of repositories and on an actual design the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix as well as in the mobile water is an important transport process but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include gas generation by iron corrosion and alpha-radiolysis. (au) (19 refs., 2 figs.)

  18. Radon in the Environment: Friend or Foe?

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2009-01-01

    Radon 222 is a naturally occurring radioactive gas that is part of the Uranium decay series. Its Presence in the environment is associated mainly with trace amounts of uranium and its immediate parent, radium 226 , in rocks, soil and groundwater. About one-half of the effective doses from natural sources is estimated to be delivered by inhalation of the short lived radon progeny. Owing to this fact, radon is the most popular subject of studies on environmental radioactivity. The presence of high level of radon in indoor environment constitutes a major health hazard for man. The radon progeny is well established as causative agents of lung cancer and other types of caners. Radon unique properties as a naturally radioactive gas have led to its use as a geophysical tracer for locating buried faults and geological structures, in exploring for uranium, and for predicting earthquakes. Radon has been used as a tracer in the study of atmospheric transport process. There have been several other applications of radon in meteorology, water research and medicine. This paper summarizes the health effects and the potential benefits of radon and its progeny.

  19. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  20. A new method for studying the transport of radon and thoron in various building materials using CR-39 and LR-115 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Ktata, A.; Bakhchi, A.

    2000-01-01

    Radon ( 222 Rn) and thoron ( 220 Rn) α-activities per unit volume were measured inside and outside different building materials by using two types of solid state nuclear track detectors (SSNTD) (CR-39 and LR-115 type II). In addition, the radon and thoron emanation coefficients of the studied materials were evaluated. Based on these data, the transport of radon and thoron across parallelepipedic blocks of the building materials could be investigated and radon and thoron global α-activities per unit volume outside different building material blocks were determined. Moreover, the diffusion length and the effective diffusion coefficient of radon in the building materials were evaluated and the total alpha activity due to radon in the atmospheres of different rooms consisting of different building materials was studied

  1. Radon reduction in waterworks

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.; Wilken, R.D.; Funk, H.; Stueber, J.; Wanitschek, J.; Akkermann-Kubillus, A.; Stauder, S.

    2000-01-01

    The removal of radon from water using water aeration is one of the most effective methods for reducing radon in waterworks. Therefore, this report describes investigations on packed tower columns and shallow aeration devices and a method for mathematical modelling of gas exchange processes for dimensioning packed tower columns for radon removal. Moreover, possibilities for removing radon using active carbon filtration under waterworks typical conditions and for reducing indoor radon levels in waterworks are discussed. Finally, conclusions on the necessity of radon removal in German waterworks are drawn. (orig.) [de

  2. Radon and radon daughters in public, private and commercial buildings in communities associated with uranium mining and processing in Canada

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1982-01-01

    The elevated indoor radon levels in certain communities in Canada have been studied. An overview of the investigational and remedial action programs are presented in this paper. It is suggested that radon daughter concentrations can be controlled by: (a) removing source; (b) placing a barrier between the source and the living space; (c) diverting the radon before it enters a building: (d) increasing the ventilation rate. All methods have been proven but no one technique is the most cost effective because of widely varying conditions found in older housing

  3. Preliminary Study for 3D Radon Distribution Modelling in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChoongWie; Kim, HeeReyoung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Radon exists in the form of noble gas, which comes from decay of {sup 238}U, becoming stable {sup 206}Pb going through 4 alpha and 4 beta decays. If this process occurred in human body after inhalation, lung could be damaged by interaction with these radiations causing lung cancer. Most radon in indoor air comes from soil (85 - 97%) through crack of the wall but it also came from wall (2 - 5%) itself in home. Due to its hazardous and unpredictable characteristic, radon became one of the concerning nuclides in indoor air. Hence, the number of survey and research about radon has been increased. Although accurate radon measurement is important to evaluate health risk, it is hard to actually achieve because radon is affected by many conditions, where its concentration can vary easily. Moreover, radon concentration can vary according to the height because of density of radon in the spatial aspect. 3D distribution modelling in the room of radon with aerodynamic features and sources variations was carried out to find average and maximum radon concentration. 3D radon distribution in the room would be find through this computational analysis and it is thought to be possible to correct measured radon concentration with spatial variation to fit the height of nose where inhalation occur. The methodological concept for 3D modelling was set up to solve transport equation for radon behavior by using computational fluid dynamics (CFD) software such as FLUENT.

  4. Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia

    International Nuclear Information System (INIS)

    Stieglitz, Thomas C.; Cook, Peter G.; Burnett, William C.

    2010-01-01

    The radon isotope 222 Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  5. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  6. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media

    International Nuclear Information System (INIS)

    Holford, D.J.

    1994-01-01

    This document is a user's manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water

  7. Radon and radiation biology of the lung

    International Nuclear Information System (INIS)

    Crameri, R.; Burkart, W.

    1989-01-01

    The main papers presented at the meeting dealt with the behaviour of radon and the indoor environment, radiation biology of the lung, lung dosis and the possible cancer risk caused by radon in homes, contamination of the room air. A series of special papers treated the radon problem in detail: sources and transport mechanisms of radon, geological aspects of the radon radiation burden in Switzerland, radon in homes, search for radon sources, and the Swiss radon-programme RAPROS. 67 figs., 13 tabs., 75 refs

  8. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  9. Use of Radon for Evaluation of Atmospheric Transport Models: Sensitivity to Emissions

    Science.gov (United States)

    Gupta, Mohan L.; Douglass, Anne R.; Kawa, S. Randolph; Pawson, Steven

    2004-01-01

    This paper presents comparative analyses of atmospheric radon (Rn) distributions simulated using different emission scenarios and the observations. Results indicate that the model generally reproduces observed distributions of Rn but there are some biases in the model related to differences in large-scale and convective transport. Simulations presented here use an off-line three-dimensional chemical transport model driven by assimilated winds and two scenarios of Rn fluxes (atom/cm s) from ice-free land surfaces: (A) globally uniform flux of 1.0, and (B) uniform flux of 1.0 between 60 deg. S and 30 deg. N followed by a sharp linear decrease to 0.2 at 70 deg. N. We considered an additional scenario (C) where Rn emissions for case A were uniformly reduced by 28%. Results show that case A overpredicts observed Rn distributions in both hemispheres. Simulated northern hemispheric (NH) Rn distributions from cases B and C compare better with the observations, but are not discernible from each other. In the southern hemisphere, surface Rn distributions from case C compare better with the observations. We performed a synoptic scale source-receptor analysis for surface Rn to locate regions with ratios B/A and B/C less than 0.5. Considering an uncertainty in regional Rn emissions of a factor of two, our analysis indicates that additional measurements of surface Rn particularly during April-October and north of 50 deg. N over the Pacific as well as Atlantic regions would make it possible to determine if the proposed latitude gradient in Rn emissions is superior to a uniform flux scenario.

  10. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  11. A study of radon 222 transfer indoors

    International Nuclear Information System (INIS)

    Maximilien, R.; Robe, M.C.; Archimbaud, M.

    1985-01-01

    Indoor exposure can vary considerably depending upon the natural environment (geology, climate), man-made arrangements (building materials, insulation and ventilation systems...) or way of living. In order to specify the sources and assess their respective contribution in a given dwelling, a good knowledge of radon transfer and dispersion processes is required as well as a heavy experimental device (continuous radon and ventilation monitoring...). The study must be limited to some cases selected by a systematic measurement program either because they are representative of dwelling conditions, or preferably on account of their high radon level, the origin of which will be investigated. As a consequence, countermeasures can be developed. A pilot study has been carried out on radon transport in two houses of the Rhone river valley. The two houses -selected among 131 other ones for their high radon levels- are built with the same architectural approach and located very close to each other, yet the factors accounting for domestic exposure are quite different. Indoor parameters are at the origin of various radon concentrations in the case of low natural ventilation; conversely, outdoor parameters only seem to act in the case of high ventilation. For a larger part, however, radon seems to emanate from under the foundations of both houses [fr

  12. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  13. Measuring radon source magnitude in residential buildings

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Nero, A.V.

    1981-08-01

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1 -1 h -1 . Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon

  14. Effect of radon transport in groundwater upon gamma-ray borehole logs

    International Nuclear Information System (INIS)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/Λh, where Λ is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion

  15. Radon in coal power plant areas

    International Nuclear Information System (INIS)

    Mauna, Traian; Mauna, Andriesica

    2006-01-01

    Radon, the radioactive colourless and inodorous noble gas, represents more than 55% of the natural average radioactivity. It is permanently released from the soil and majority of building materials, it builds up in the mine galleries, in dwelling houses and in other closed rooms. Radon gained increasingly in importance, particularly after 1990 when was doubtless identified as the second cause of lung cancer if a given concentration threshold is surpassed. This threshold is established differentially by each country as a function of the particular site and generally ranges between 150 Bq.m -3 and 600 Bq.m -3 . The telluric radon consists of two isotopes, 222 Rn, a daughter of radium descending from uranium, which induces 90% of the effects, and 220 Rn from thorium series which have too short a lifetime to count in the risk assessments of radon inhalation. The interest of the authorities and population for diminishing the radon effects was illustrated by specific studies which in USA were managed by the National Counsel of Research, the BEIR VI committee of which has issued a report concerning the lung cancer produced by radon and its descendants. Coal mining, the transport, processing, burning, slag and ash disposal are activities entailing radon release. The miners' dwellings are placed in areas with the high radon potential. The local building materials have a high content of radioactive elements from the uranium or thorium series so that radon can build up in the closed rooms of these buildings. Hence the social responsible authorities in the coal power industry zones should consider this aspect long time ignored in the Balkans macro zone so far. The radon issue must be differentially approached in different areas hence a zonal mapping of the radon emission should be first done. It is worth to underline that the gaseous radioactive emission from operational nuclear power plants amounts up to a few percents of the radon natural emissions what entails a

  16. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  17. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  18. Diurnal variations of indoor radon progeny for Bangalore metropolitan, India

    International Nuclear Information System (INIS)

    Nagesh, V.; Sathish, L.A.; Nagaraja, K.; Sundareshan, S.

    2010-01-01

    Radon progenies are identified as major causes of the lung cancer if the activity is above its normal. It has not been clear whether radon poses a similar risk of causing lung cancer in humans exposed at generally lower levels found in homes, but a number of indoor radon survey have been carried out in recent years around the world. In view of this an attempt has been made for the measurement of diurnal variation of indoor radon levels for the environment of Bangalore metropolitan, India. The Radon progeny concentrations in terms of working level were measured using Kusnetz's method. The patterns of daily and annual changes in indoor Radon concentration have been observed in a general way for many years. However, understanding of the physical basis for these changes had to await the development of continuous monitors and a more complete knowledge of transport processes in the atmosphere. Over a continent, heating of the ground surface by the Sun during the day and cooling by radiation during the night causes a marked diurnal change in temperature near the surface. As a result cool air near the ground will accumulate radon isotopes from surface flux during the night; while during the day the warm air will be transported upward carrying radon with it. Many buildings show diurnal radon variations. Concentrations are relatively higher during night than daytime. This is influenced by the outdoor-indoor temperature contrast. This effect can be enhanced in buildings with strong diurnal use patterns. Buildings that have high average radon concentrations, but are only occupied for part of the day, may need to be measured during occupied periods to determine if there is significant diurnal radon variation. The results are discussed in detail. (author)

  19. Radon in Antarctica

    International Nuclear Information System (INIS)

    Ilic, R.; Rusov, V.D.; Pavlovych, V.N.; Vaschenko, V.M.; Hanzic, L.; Bondarchuk, Y.A.

    2005-01-01

    The paper reviews results of radon measurements obtained in Antarctic research stations in the last 40 years by both active and passive radon monitors. A brief description of the radon laboratory set-up in the Ukrainian Academician Vernadsky station on the Antarctic Peninsula (W 64 o 16 ' , S 65 o 15 ' ), where radon is measured by two types of etched track Rn dosimeter and 4 types of continuous radon monitoring devices is presented. Some selected results of research work are described related to: (i) analysis of radon storms, defined as an abrupt increase of 222 Rn during the occurrence of a cyclone, and its applicability for the study of the transport of air masses of continental origin to Antarctica; (ii) a study of the correlation of changes of radon concentration and geomagnetic field induced by tectonic activity and its application to predicting tectonomagnetic anomalies, and (iii) verification of a newly developed theoretical model based on noise analysis of the measured radon signal for earthquake prediction. Suggestions for future utilization of radon for basic research in Antarctica (and not only in Antarctica) conclude the contribution. conclude the contribution

  20. Studies on the diffusional and electrical transport of the daughter aerosols of radon and thoron in moving gases

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sahni, D.C.

    1994-01-01

    This report presents a detailed theoretical study of the transport characteristics of the daughter products of radon and thoron gases in channel flow devices. Specific aspects examined include: (i) development of the Green's function of the convective-diffusion operator and its boundary layer forms with and without axial diffusion, (ii) transport probabilities of recoil atoms (RaB) emitted into stagnant and moving gases, due to alpha decays of the parent atoms (RaA) deposited on surfaces, (iii) a comprehensive theory of double filter systems and (iv) microscopic theory of particle transport in moving fluids based on the Fokker-Planck equation. Both uniform and parabolic velocity profiles are considered. Various applications of the solutions in interpreting the measured data are presented. Chief among them is the application of the advanced theory of double-filter systems employed in Trombay studies for the measurements of thoron in the exhaled breath of thorium workers. (author). 130 refs., 4 figs

  1. Transport and deposition of nano-particles. Application to the free action of short-lived radon daughters; Transport et depot des aerosols nanometriques. Application a la fraction libre des descendants a vie courte du radon

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J

    1997-10-10

    Short-lived radon daughters ({sup 218}Po, {sup 214}Pb, {sup 214}Bi, and {sup 214}Po) are important contributors to the natural average annual individual dose. The models describing the evolution of these aerosol in a house depend critically on a parameter, the {sup 218}Po deposition velocity, which, although aerosol deposition has been extensively studied, is poorly known. A numerical and experimental study is thus carried out for a simple case: deposition in a cylindrical tube under laminar flow condition. The numerical results help understanding the difference between the transport and deposition of these radionuclides and those of non radioactive aerosols. Comparison of these well environment does not give satisfactory correlation, requiring the study of phenomena that may affect deposition. The first of these is the possible variation in the e {sup 218}Po diffusion coefficient. Furthermore, experiments coupled with numerical calculations show that this variation could be due to {sup 218}Po neutralization. The second phenomenon concerns the effect of the surface type, which is also shown experimentally. By modelling the neutralization and using results with a piratically smooth surface, good numerical/experimental correlations are obtained. Understanding this simple case than makes possible studying a more complex case: deposition in controlled turbulent flow. Two theories are thus experimentally validated. In addition, a {sup 218}Po deposition velocity representative of our experimental conditions is determined. Finally, we report a feasibility study of radon daughters transport and deposition in a ventilated chamber taking into account all the involved phenomena. (author)

  2. Environmental radon

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Schmalz, R.F.; Miller, E.W.

    1990-01-01

    This book covers many aspects of environmental radon, including: historical perspectives; occurrence and properties; detection, measurement, and mitigation, radon and health; and political, economic, and legislative impacts

  3. A simulation of the transport and fate of radon-222 derived from thorium-230 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessments on all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Data needs pointed out by mathematical models drive site characterization. They provide a logical means of performing the required flux estimations. Thorium-230 waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992b), was used to simulate the transport and fate of radon-222 from its source of origin, nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release into the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport. CASCADR8 uses both reversible and irreversible sorption kinetic rules as well as the usual classical Bateman (1910) M-chain decay rules for its kinetic processes. Worst case radon-222 gas-phase concentrations, as well as surface fluxes, were estimated over 40 days. The maximum flux was then used in an exposure assessment model to estimate the total annual dose equivalent received by a person residing in a standard 2500-square-foot house with 10-foot walls. Results are described

  4. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  5. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NARCIS (Netherlands)

    Manohar, S.N.; Meijer, H.A.J.; Herber, M.A.

    2013-01-01

    Naturally occurring radioactive noble gas, radon (Rn-222) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution

  6. Transport and deposition of nano-particles. Application to the free action of short-lived radon daughters

    International Nuclear Information System (INIS)

    Malet, J.

    1997-01-01

    Short-lived radon daughters ( 218 Po, 214 Pb, 214 Bi, and 214 Po) are important contributors to the natural average annual individual dose. The models describing the evolution of these aerosol in a house depend critically on a parameter, the 218 Po deposition velocity, which, although aerosol deposition has been extensively studied, is poorly known. A numerical and experimental study is thus carried out for a simple case: deposition in a cylindrical tube under laminar flow condition. The numerical results help understanding the difference between the transport and deposition of these radionuclides and those of non radioactive aerosols. Comparison of these well environment does not give satisfactory correlation, requiring the study of phenomena that may affect deposition. The first of these is the possible variation in the e 218 Po diffusion coefficient. Furthermore, experiments coupled with numerical calculations show that this variation could be due to 218 Po neutralization. The second phenomenon concerns the effect of the surface type, which is also shown experimentally. By modelling the neutralization and using results with a piratically smooth surface, good numerical/experimental correlations are obtained. Understanding this simple case than makes possible studying a more complex case: deposition in controlled turbulent flow. Two theories are thus experimentally validated. In addition, a 218 Po deposition velocity representative of our experimental conditions is determined. Finally, we report a feasibility study of radon daughters transport and deposition in a ventilated chamber taking into account all the involved phenomena. (author)

  7. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal

    International Nuclear Information System (INIS)

    Richon, Patrick; Perrier, Frederic; Koirala, Bharat Prasad; Girault, Frederic; Bhattarai, Mukunda; Sapkota, Soma Nath

    2011-01-01

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m -2 d -1 . Radon concentration was monitored with autonomous Barasol TM probes between January 2008 and November 2009 in two small natural cavities with high CO 2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m -3 , but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO 2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m -3 , remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S 1 and semi-diurnal S 2 periodic components. At the advection-dominated points, radon concentration did not exhibit S 1 or S 2 components. At the reference points, however, the S 2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S 1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle. - Graphical

  8. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  9. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  10. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  11. A model of the precaution adoption process: evidence from home radon testing

    International Nuclear Information System (INIS)

    Weinstein, N.D.; Sandman, P.M.

    1992-01-01

    The authors present the precaution adoption process model--a stage theory consisting of seven distinct states between ignorance and completed preventive action. The stages are 'unaware of the issue,' 'aware of the issue but not personally engaged,' 'engaged and deciding what to do,' 'planning to act but not yet having acted,' 'having decided not to act,' 'acting,' and 'maintenance.' The theory asserts that these stages represent qualitatively different patterns of behavior, beliefs, and experience and that the factors that produce transitions between stages vary depending on the specific transition being considered. Data from seven studies of home radon testing are examined to test some of the claims made by this model. Stage theories of protective behavior are contrasted with theories that see precaution adoption in terms of movement along a single continuum of action likelihood.32 references

  12. Experimental study on the aging process of the LR 115 cellulose nitrate radon detector

    International Nuclear Information System (INIS)

    Siems, M.; Freyer, K.; Treutler, H.-C.; Joensson, G.; Enge, W.

    2001-01-01

    An experimental determination of the aging process of cellulose nitrate detector material was based on the examination of special properties of the LR 115 solid state nuclear track detectors (SSNTDs) of various ages up to 18 years. The examined relevant parameters are the bulk etching rate v b and the track etching rate v t . These parameters are responsible for the appearance, the size and the registration efficiency of tracks of α-particles from radon gas in the detector. To find a correlation between these material parameters and the detector sensitivity an experimental calibration of indoor room and outdoor soil detector devices based on LR 115 took place at the Umweltforschungszentrum Leipzig-Halle (Germany). To avoid routine calibration work in external radon exposure facilities a correction of the age dependent calibration factors with the material parameters measured in one's own laboratory was targeted. In this study a general age dependence, however, was not found. The following statements for practical applications can be made. (i) the bulk etching rate v b for detectors of the same batch has a depth dependence and this dependence is constant over 2 years (LR 115 September 1994). (ii) detectors of different batches older than 5 years and stored at room temperature show an odd v b behaviour when v b is used for describing track shapes. (iii) the calibration factor of detectors of different batches that were stored at about +4 deg. C is constant over 5 years (LR 115 September 1994 and February 1999, Table 2). The conclusion is that LR 115 detectors not older than 5 years and stored in a refrigerator at about +4 deg. C should be preferred for radon measurements. Furthermore these detectors should be recalibrated every year and the microscope work of this calibrations should be performed by the same person who performs the measurements. In addition, a phenomenon related to fundamental track formation mechanisms was found, that the time straggling of the

  13. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  14. Air pressure distribution and radon entry processes in east Tennessee schools

    International Nuclear Information System (INIS)

    Sinclair, L.D.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    Many building characteristics have been found to influence radon entry, including building size and configuration, substructure, location of utility supply lines, and design and operation of the heating, ventilation, and air conditioning (HVAC) system. One of the most significant factors is room depressurization resulting from the HVAC system exhausting more than it supplies. This paper represents a preliminary assessment of HVAC characteristics and how they may relate to radon entry. During the summer of 1989, a limited survey was made of air pressure and radon levels in four schools in eastern Tennessee. Short-term samples of radon and pressure were made in all rooms in contact with the soil using alpha scintillation cells and an electronic microanometer, respectively. The pressure difference and radon concentration changes induced by operation of the building ventilation system varied among sites within individual schools

  15. Radon: Gas transport in soils and its relation to radon availability: Hot spot identification and flow characteristics near structures. Progress report and request for third year incremental funding

    International Nuclear Information System (INIS)

    Reimer, G.M.

    1995-01-01

    There are 3 major objectives being addressed in this research. The first is to participate, by providing ground truth quality assurance, in the DOE/LBL/EPA cooperative study to determine a methodology to predict the areas where indoor radon concentrations have the highest probability of exceeding 20 pCi/L (750 Bq/m 3 ). The second is to examine 2 common types of homes (basement and non-basement) for radon entry by monitoring specific parameters under normal living conditions. The third task is to participate with other researchers in their studies using the techniques and experience developed by this principal investigator during previously funded times. Those researchers seek assistance in measuring soil permeability, determining the effect of meteorological parameters on radon entry, determining the diffusion characteristics of standard basement wall materials, developing a GIS (Geographic Information System) data base for predicting regional radon potential, and examining the contribution of regional solution-developed permeability in limestone to the radon potential of an area

  16. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  17. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  18. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  19. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    George, A.C.; Lowder, W.; Fisenne, I.; Knutson, E.O.; Hinchliffe, L.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  20. Response of Radon in a seismic calibration explosion, Israel

    International Nuclear Information System (INIS)

    Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N.

    2009-01-01

    Radon measurements were performed at shallow levels during an in-land 20-ton seismic calibration explosion experiment, simulating a 2.6-M L earthquake, to investigate the influence of the explosive blast and the transitory seismic wave fields on the Radon transport in the country rock, adjacent to the focus of the explosion. The experiment was conducted in a basalt quarry in the northern margin of the Beit Shean valley (Israel). Five gamma-ray sensors were placed, at a depth of about 2 m, along a line located 17-150 m from the edge of the explosion zone. Measurements commenced 4 days before and continued for 9 days after the explosion with 15 min integrations. A 10-s sampling was used in the interval of several hours before and after the explosion itself. Diurnal variations of Radon, reflecting the typical variation pattern of Radon in the shallow environment, were registered before and after the explosion. No significant change in the overall Radon concentration was observed as a consequence of the main explosion as well as three smaller experimental shots (0.5-2 tons) in the 2 h prior to the calibration blast. The seismological data indicate that the transient excess pressure at the farthest Radon sensor was above 5 bar m -1 during 0.2-0.4 s, and evidently much higher at the nearest sensors, but none of the sensors responded by recording any exceptional change in the Radon concentration. Moreover the hypothesis that additional Radon may emanate from solid grains as a result of the excess local pressure exerted by the blast is also not observed. In contrast to a real earthquake event an explosion experiment has neither eventual preceding nor following geodynamic activity. Therefore the absence of significant Radon anomalies during or after the blast does not contradict assumptions, observations or conclusions as the occurrence of Radon anomalies prior or after an earthquake event due to associated long-term geodynamic processes.

  1. Pulse processing in optical fibers using the temporal Radon-Wigner transform

    Energy Technology Data Exchange (ETDEWEB)

    Bulus-Rossini, L A; Costanzo-Caso, P A; Duchowicz, R [Centro de Investigaciones Opticas, CONICET La Plata - CIC, Camino Parque Centenario y 506, C.C. 3 (1897) La Plata (Argentina); Sicre, E E, E-mail: lbulus@ing.unlp.edu.ar [Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Lima 717, C1073AAO Buenos Aires (Argentina)

    2011-01-01

    It is presented the use of the temporal Radon-Wigner transform (RWT), which is the squared modulus of the fractional Fourier transform (FRT) for a varying fractional order p, as a processing tool for pulses with FWHM of ps-tens of ps. For analysis purposes, the complete numerical generation of the RWT with 0 < p < 1 is proposed to select a particular pulse shape related to a determined value of p. To this end, the amplitude and phase of the signal to be processed are obtained using a pulse characterization technique. To synthesize the processed pulse, the selected FRT irradiance is optically produced employing a photonic device that combines phase modulation and dispersive transmission. The practical implementation of this device involves a scaling factor that depends on the modulation and dispersive parameters. It is explored the variation of this factor in order to obtain an enhancement of the particular characteristic sought in the pulse to be synthesized. To illustrate the implementation of the proposed method, numerical simulations of its application to compress signals commonly found in fiber optic transmission systems, are performed. The examples presented consider chirped Gaussian pulses and pulses distorted by group velocity dispersion and self-phase modulation.

  2. Citizen Action Can Help the Code Adoption Process for Radon-Resistant New Construction: Decatur, Alabama

    Science.gov (United States)

    Adopting a code requiring radon-resistant new construction (RRNC) in Decatur, Alabama, took months of effort by four people. Their actions demonstrate the influence that passionate residents can have on reversing a city council’s direction.

  3. Inferring coastal processes from regional-scale mapping of {sup 222}Radon and salinity: examples from the Great Barrier Reef, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, Thomas C., E-mail: thomas.stieglitz@jcu.edu.a [AIMS-JCU, Townsville (Australia); Australian Institute of Marine Science, PMB NO 3, Townsville QLD 4810 (Australia); School of Engineering and Physical Sciences, James Cook University, Townsville QLD 4811 (Australia); Cook, Peter G., E-mail: peter.g.cook@csiro.a [CSIRO Land and Water, Private Bag 2, Glen Osmond SA 5064 (Australia); Burnett, William C., E-mail: wburnett@mailer.fsu.ed [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States)

    2010-07-15

    The radon isotope {sup 222}Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  4. Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran

    International Nuclear Information System (INIS)

    Negarestani, A.; Namvaran, M.; Hashemi, S.M.; Shahpasandzadeh, M.; Fatemi, S.J.; Alavi, S.A.; Mokhtari, M.

    2014-01-01

    Earthquakes usually occur after some preliminary anomalies in the physical and chemical characteristics of environment and earth interior. Construction of the models which can explain these anomalies, prompt scientists to monitor geophysical and geochemical characteristics in the seismic areas for earthquake prediction. A review of studies has been done so far, denoted that radon gas shows more sensitivity than other geo-gas as a precursor. Based on previous researches, radon is a short-term precursor of earthquake from time point of view. There are equal experimental equations about the relation between earthquake magnitude and its effective distance on radon concentration variations. In this work, an algorithm based on Dobrovolsky equation (D=10 0.43M ) with defining the Expectation and Investigation circles for great Tehran has been used. Radon concentration was measured with RAD7 detector in the more than 40 springs. Concentration of radon in spring, spring discharge, water temperature and the closeness of spring location to active faults, have been considered as the significant factors to select the best spring for a radon continuous monitoring site implementation. According to these factors, thirteen springs have been selected as follow: Bayjan, Mahallat-Hotel, Avaj, Aala, Larijan, Delir, Lavij, Ramsar, Semnan, Lavieh, Legahi, Kooteh-Koomeh and Sarein. (author)

  5. Review of selected state-of-the-art applications of diagnostic measurements for radon-mitigation planning. Report for April 1986-June 1987

    International Nuclear Information System (INIS)

    Hubbard, L.M.; Harrje, D.T.; Gadsby, K.J.; Sanchez, D.C.; Turk, B.H.

    1987-09-01

    Since late-1984, EPA's AEERL has supported a program to develop and demonstrate radon-mitigation techniques for single-family detached dwellings. As part of the program, projects have been started, directed at developing and demonstrating the use of diagnostic measurements in all phases of the radon-mitigation process. Diagnostic measurements are used to assess: (1) the radon sources strengths, variability, and locations; and, (2) radon transport to the house and its entry and distribution in the house as influenced by environmental, house characteristics, and occupancy factors. The diagnostic measurements reported include: (1) soil-gas grab sampling; (2) communication (air flow or pressure-field extension) tests; (3) whole house infiltration; (4) differential pressure, (5) gamma radiation; and, (6) radon flux. The paper concludes that the above selected diagnostic measurements were especially useful in characterizing houses with indoor radon problems attributable to soil-gas-borne radon that may be amenable to mitigation through the use of subslab ventilation

  6. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    -state diffusive radon profiles in dry and wet soils, (2) steady-state entry of soil gas and radon into a house, (3) time-dependent radon exhalation from abuilding-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  7. Radon transport model into a porous ground layer of finite capacity

    Science.gov (United States)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  8. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  9. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  10. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  11. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  12. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  13. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  14. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    International Nuclear Information System (INIS)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee; Chambers, Scott D.; Williams, Alastair G.; Lee, Chulkyu

    2016-01-01

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM_1_0 were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM_1_0 mass concentrations were 2326 ± 1198 mBq/m"3 and 37.1 ± 19.5 μg/m"3, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO_4"2"-, NO_3"-, NH_4"+) were relatively high: 2577 mBq/m"3 and 14.4 μg/m"3, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m"3 and 11.4 μg/m"3, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m"3 and 10.5 μg/m"3, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  15. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee [Jeju National University, Jeju (Korea, Republic of); Chambers, Scott D.; Williams, Alastair G. [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia); Lee, Chulkyu [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2016-06-15

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM{sub 10} were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM{sub 10} mass concentrations were 2326 ± 1198 mBq/m{sup 3} and 37.1 ± 19.5 μg/m{sup 3}, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +}) were relatively high: 2577 mBq/m{sup 3} and 14.4 μg/m{sup 3}, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m{sup 3} and 11.4 μg/m{sup 3}, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m{sup 3} and 10.5 μg/m{sup 3}, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  16. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  17. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  18. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  19. Daily fluctuations in radon concentration in a Cordoba factory complex

    International Nuclear Information System (INIS)

    Germanier, A.; Perez, R.; Rubio, M.

    1998-01-01

    Full text: This work shows the fluctuations of indoor radon concentration in some rooms placed inside a Cordoba Factory Complex. The measurements were performed by Victoreen Radon Monitor. The system was shaped to sample single radon concentration values after one hour integration. It utilizes a passive diffusion chamber and a silicon diffused junction detector. A portion of decay products will plate-out onto the detector and emit alpha particles into the depletion region of a diffused junction detector. The alpha energy is deposited in the detector in the form of ionization which generates a charge pulse. Only alpha pulses of an energy level similar Po-218 and Po-214 are detected. The study of the meteorological parameters shows that the daily fluctuations of the radon concentration respond to the transport and dispersion processes of radon gas through the air. Air temperature, wind's direction and speed are found to be fundamentals parameters in the observed time behavior. The meteorological data were obtained by a portable station (Davis Weathe Monitor II). The radon concentration present a maximum value (1850 Bq/m 3 ) at the night and a minimum value (150 Bq/m 3 ) at the day. (author) [es

  20. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de

  1. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  2. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  3. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing

    International Nuclear Information System (INIS)

    Perrier, Frederic; Richon, Patrick

    2010-01-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m -3 in summer to about 800-1400 Bq m -3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10 -6 s -1 . Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m -3 hPa -1 . This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.

  5. Radon -- an environmental hazard

    International Nuclear Information System (INIS)

    Faheem, M.; Rahman, R.; Rahman, S.; Matiullah

    2005-01-01

    Humans have always been exposed throughout its period of experience to naturally occurring sources of ionizing radiation or natural background radiation, It is an established fact that even these low background doses are harmful to man and cause increased cancer risk. About half of our radiation comes from radon, a radioactive gas coming from normal materials in the ground. Several building materials such as granite, bricks, sand, cement etc., contain uranium in various amounts. The radioactive gas /sup 222/Rn produced in these materials due to decay of 226Ra is transported to indoor air through diffusion and convective flow. It seeps out of soil and rocks, well water, building materials and other sources at a varied rate. Amongst the naturally occurring radioisotopes, radon is the most harmful one that can be a cause of lung cancer. Radon isotopes are born by the decay of radium and radium production in turns comes from uranium or thorium decay. For humans the greatest importance among Radon isotopes is attributed to /sup 222/Rn because it is the longest lived of the three naturally produced isotopes. Drinking water also poses a threat. Radon gas is dissolved in water and is released into the air via water faucets, showerheads, etc. the lack of understanding has so far lead to speculative estimates of pollutant related health hazards. (author)

  6. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  7. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  8. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Nero, A.V.; Nazaroff, W.W.

    1983-09-01

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  9. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  10. Processing of radon time series in underground environments: Implications for volcanic surveillance in the island of Tenerife, Canary Islands, Spain

    International Nuclear Information System (INIS)

    Vinas, Ronaldo; Eff-Darwich, Antonio; Soler, Vicente; Martin-Luis, Maria C.; Quesada, Maria L.; Nuez, Julio de la

    2007-01-01

    The analysis of temporal and spatial variations in the flux of soil gases across the soil-air interface is a useful tool to study geo-dynamical processes associated with volcanic and/or seismic activity. However, many of these variations are induced by external variables, such as temperature, barometric pressure, rainfall and other meteorological variables. In an attempt to filter out non-endogenous variations in the emissions of gases, the optimal choice of the monitoring sites with numerical filtering techniques based on multi-variate and frequency domain analysis of the time series for gaseous emissions were combined, in the case of radon ( 222 Rn). Monitoring sites are located in underground galleries in the volcanic island of Tenerife, Canary Islands, Spain. Since the effect of wind, rainfall and temperature variations are very small inside galleries, a first natural filtering process of external parameters in the emissions of gases was achieved. This new approach has been successfully tested and as a result, the background level for radon emissions at various locations has been defined, by which correlations between gaseous emissions and the volcanic and/or seismic activity could be carried out

  11. Radon in homes: The Alaskan experience

    International Nuclear Information System (INIS)

    Seifert, R.D.

    1990-01-01

    For the past four years, since radon was first found to be a concern in Alaska in 1986, the interest and awareness of radon as a special housing and health concern has continued to grow. This paper will discuss the features of a house in Alaska which would characterize it as at risk for radon, and also those efforts at mitigation which have been most effective in reducing radon under Alaskan conditions. Clearly radon must be able to enter a home in order to be a problem. Riefenstuhl and Kline (personal communication, 1988) have analyzed the conditions for radon transport from soils to home interiors very lucidly through the following scheme: four factors must exist in a house locale for it to be a radon at risk house. Two of the factors are geological in nature: (1) there must be adequate uranium and therefore ample radon to provide a source for transport; (2) there must be enough permeability in the soil to allow rapid soil gas movement to carry radon from its origin to the interior of the home within two half-lives of time (six days) or so. The other two factors are determined by the structure of the house itself and the way in which it is operated: (3) the house must have soil contact and imperfections, holes, cracks, intentional perforations which allow movement of soil gas with radon through the envelope of the basement or crawlspace; (4) there must be a lower pressure inside the house than in the soil so that soil gas flows into the house. All four of these characteristics are required to have radon be a problem. The absence of any single characteristic will eliminate radon (in general). This presents a series of options for mitigation of radon then, since elimination of any of the four characteristics will mitigate radon

  12. Radon problems

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1985-01-01

    This chapter examines the health hazards resulting from the release of naturally occurring radioactive gas derived from the decay of uranium. It is estimated that random inhalation is now causing about 10,000 fatal lung cancers per year in the US. Radon is constantly being generated in rocks and soils (in which uranium is naturally present) and in materials produced from them (e.g., brick, stone, cement, plaster). It is emphasized that radon levels in buildings are typically 5 times higher than outdoors because radon diffusing up from the ground below or out of bricks, stone, cement, or plaster is trapped inside for a relatively long time

  13. Radon in the workplace

    International Nuclear Information System (INIS)

    Scivyer, C.R.; Gregory, T.J.

    1995-01-01

    This Guide has been prepared for the Health and Safety Executive (HSE) by the Building Research Establishment (BRE). Following the guidance is not compulsory and you are free to take other action. However if you do follow the guidance you will normally be doing enough to comply with the law. Health and Safety Inspectors seek to secure compliance with the law and may refer to this guidance as illustrating good practice. In the past, concern about exposure of employees to radon has largely centred on the mining environment. In recent times, with increased knowledge and mapping of radon levels in homes, attention has increasingly turned to radon exposure in buildings used for work purposes. Now there is a considerable fund of information to show that employees in some buildings can receive very significant radiation doses from radon. Surveys show that levels of radon tend to be higher in buildings with small rooms, such as offices rather than larger factory and warehouse constructions. The particular problem is that the nature of the work process gives no clue as to the radon hazard that may exist, and the employer may be unaware of its presence and how to deal with it. This Guide is aimed principally at employers and those who control buildings used for work purposes, or their representatives. It offers guidance on practical measures for reducing radon levels in workplaces. The guidance should also be of interest and assistance to those, such as surveyors and builders, concerned with specifying and carrying out the necessary remedial measures. Advice is provided for the majority of building types and construction situations likely to be encountered in larger non-domestic buildings. For buildings where construction is similar to that found in dwellings the guidance published by BRE on remedial measures for dwellings should be used. BRE prepared this Guide with assistance from the National Radiological Protection Board (NRPB) and Cornwall County Council under contract

  14. Control of radon in Finnish workplaces

    International Nuclear Information System (INIS)

    Markkanen, M.

    2002-01-01

    Natural radiation in Finland is regulated in the Finnish Radiation Act from 1992. Occupational exposure to natural radiation is regulated by an amendment of the Radiation Decree in 1998. The most important issues in Finland are radon in workplaces, radioactivity in drinking water and in building materials, and mining and industrial processes. Radon levels in mines have been measured regularly since 1972. Finland has an action level for radon in workplaces of 400 Bq/m 3 . Radon prone areas have been identified primarily from measurements of radon in dwellings. Radon measurements are compulsory in workplaces in radon prone areas unless it can be shown by other means that radon levels are low. A programme focusing on radon in workplaces was initiated in 1992. To date, radon measurements have been carried out in 10,000 workplaces and remedial actions have been taken in 200 of these. The average reduction in radon concentration in remediated buildings is about 1,500 Bq/m 3 . Identification of NORM industries is based on the radionuclide content of the materials used (>1.4 Bq/g U and >0.4 Bq/g Th). The occupational exposure should not exceed 1 mSv/y (excluding radon)

  15. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  16. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  17. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  18. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  19. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  20. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    This patent describes a portable radon daughter dosimeter unit used to measure radon gas alpha daughters in ambient air. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as in uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout displays the result in terms of working level-hours

  1. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    A portable radon daughter dosimeter unit used to measure Radon gas alpha daughters in ambient air is described. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout diplays the result in terms of working level-hours

  2. Water radon anomaly fields

    Energy Technology Data Exchange (ETDEWEB)

    Yin, H.

    1980-01-01

    A striking aspect of water radon levels in relation to earthquakes is that before the Tangshan quake there was a remarkable synchronicity of behavior of many wells within 200 km of Tangshan. However, for many wells anomalous values persisted after the earthquake, particularly outside the immediate region of the quake. It is clear that radon may be produced by various processes; some candidates are pressure, shear, vibration, temperature and pressure, mixing of water-bearing strata, breakdown of mineral crystal structure, and the like, although it is not clear which of these are primary. It seems that a possible explanation of the persistence of the anomaly in the case of Tangshan may be that the earthquake released strain in the vicinity of Tangshan but increased it further along the geological structures involved, thus producing a continued radon buildup.

  3. Instrumentation for a radon research house

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Revzan, K.L.; Robb, A.W.

    1981-07-01

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations

  4. Low-Cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Francisco, Paul W. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Merrin, Zachary [Partnership for Advanced Residential Retrofit, Champaign, IL (United States)

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  5. A process-based {sup 222}radon flux map for Europe and its comparison to long-term observations

    Energy Technology Data Exchange (ETDEWEB)

    Karstens, U. [Max-Planck-Instistut fuer Biogeochemie, Jena (Germany); Schwingshackl, C.; Schmithuesen, D.; Levin, I. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    2015-07-01

    Detailed {sup 222}radon ({sup 222}Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution {sup 222}Rn flux map for Europe, based on a parameterization of {sup 222}Rn production and transport in the soil. The {sup 222}Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based {sup 222}Rn soil profile measurements. Monthly {sup 222}Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of {sup 222}Rn exhalation rates in different areas of Europe. The two realizations of the {sup 222}Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean {sup 222}Rn flux from soils in Europe is estimated to be 10 mBq m{sup -2} s{sup -1} (ERA-Interim/Land soil moisture) or 15 mBq m{sup -2} s{sup -1} (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m{sup -2} s{sup -1} and from ca. 11 to ca. 20 mBq m{sup -2} s{sup -1}, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of {sup 222}Rn exhalation rates. Comparison with

  6. A process-based 222radon flux map for Europe and its comparison to long-term observations

    Science.gov (United States)

    Karstens, U.; Schwingshackl, C.; Schmithüsen, D.; Levin, I.

    2015-11-01

    Detailed 222radon (222Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn soil profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq m-2 s-1 (ERA-Interim/Land soil moisture) or 15 mBq m-2 s-1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m-2 s-1 and from ca. 11 to ca. 20 mBq m-2 s-1, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on average better

  7. A process-based 222radon flux map for Europe and its comparison to long-term observations

    International Nuclear Information System (INIS)

    Karstens, U.; Schwingshackl, C.; Schmithuesen, D.; Levin, I.

    2015-01-01

    Detailed 222 radon ( 222 Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222 Rn flux map for Europe, based on a parameterization of 222 Rn production and transport in the soil. The 222 Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222 Rn soil profile measurements. Monthly 222 Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of 222 Rn exhalation rates in different areas of Europe. The two realizations of the 222 Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222 Rn flux from soils in Europe is estimated to be 10 mBq m -2 s -1 (ERA-Interim/Land soil moisture) or 15 mBq m -2 s -1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m -2 s -1 and from ca. 11 to ca. 20 mBq m -2 s -1 , respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222 Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on

  8. An active radon sampling device for high humidity places

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain); Alegria, N.; Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain)

    2010-01-15

    An active radon measurement device has been developed to be used in workplaces with a relative humidity of 100% for spot measurements of radon concentration. A mathematical model based on the convective-diffusive transport equation is used in the design of this system, which has been used to measure the radon concentration in the Pozalagua cave (Biscay, at Northern of Spain). From the obtained radon values the public and workers doses have been obtained.

  9. Contribution of waterborne radon to home air quality

    International Nuclear Information System (INIS)

    Deb, A.K.

    1994-01-01

    Radon-222 is a member of the uranium decay chain and is formed from the decay of radium-226. Radon and its decay products emit alpha particles during the decay process. If radon is inhaled, alpha particles emitted from inhaled radon and its daughters increase the risk of lung cancer. Radon is soluble in water; thus when radon comes in contact with groundwater it dissolves. The radon concentration in groundwater may range from 100 pCi/L to 1,000,000 pCi/L. When water with a high radon level is used in the home, radon is released from the water to the air and thus can increase indoor air radon concentration. Considering the estimated health risk from radon in public water supply systems, EPA has proposed a maximum contaminant level (MCL) of 300 pCi/L for radon in public drinking water supplies. To address the health risks of radon in water and the proposed regulations, the American Water Works Association Research Foundation (AWWARF) initiated a study to determine the contribution of waterborne radon to radon levels in indoor household air

  10. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Haywood, F.F.; Perdue, P.T.; Christian, D.J.; Leggett, R.W.; Dickson, H.W.; Myrick, T.E.

    1980-03-01

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site

  11. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  12. Scopingreport radon

    International Nuclear Information System (INIS)

    Blaauboer, R.O.; Vaas, L.H.; Hesse, J.M.; Slooff, W.

    1989-09-01

    This report contains general information on radon concerning the existing standards, sources and emissions, the exposure levels and effect levels. lt serves as a basis for the discussion during the exploratory melting to be held in November/December 1989, aimed at determining the contents of the Integrated Criteria Document Radon. Attention is focussd on Rn-222 (radon) and Rn-220 (thoron), presently of public interest because of radon gas pollution in private homes. In the Netherlands air quality standards nor product standards for the exhalation rate of building materials have been recommended. The major source of radon in the Netherlands is the soil gas (> 97%), minor sources are phosphate residues and building materials (> 2% in total). Hence, the major concern is the transfer through the inhalation of air, the lung being the most critical organ at risk to develop cancer. Compared to risks for humans, the risks of radon and its daughters for aquatic and terrestric organisms, as well as for agricultural crops and livestock, are assumed to be limited. In the Netherlands the average dose for man due to radon and thoron progeny is appr. 1.2 mSv per year, the estimated dose range being 0.1-3.5 mSv per year. This dose contributes for about 50% to rhe total exposure due to all sources of ionizing radiation. Of this dose respectively 80% is caused by radon and about 90% is received indoor. The estimated dose for the general population corresponds to a risk for inducing fatal cancers of about 15 x 10-6 per year, ranging from 1.2 x 10-6 to 44 x 10-6 which exceeds the risk limit of 1 x 10-6 per year -as defined in the standardization policy in the Netherlands for a single source of ionizing radiation-with a factor 15 (1- 44). Reduction of exposure is only possible in the indoor environment. Several techniques have been described to reduce the indoor dose, resulting from exhalation of the soil and building materials. )aut- hor). 37 refs.; 3 figs.; 8 tabs

  13. Determination of enrichment processes and radon concentration in underground mines of fluorite and coal in Santa Catarina state: criteria for radiation risk assessment

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendants in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m 3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m 3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the foot wall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m 3 . The inefficiency of the ventilation

  14. Determination of enrichment processes and the concentrations of radon in underground mines of fluorite and coal in Santa Catarina state: criteria for evaluation of radiological risks

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendent in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the footwall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m3. The inefficiency of the ventilation system

  15. Radon problem in uranium industry

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1991-01-01

    Radon emission is invariably associated with the mining and processing of uranium ores. Radon (sup(222)Rn) enters mine atmosphere through diffusion from exposed ore body, fractures and fissures in the rocks and is also brought in by ground water. Being the progenitor of a series of short lived radioisotopes it contributes over 70% of the radiation dose to mine workers and thus accounts for nearly 30% of the total radiation doses received by workers in the whole nuclear industry. This paper summarises the data on radon emanation from the ore body, backfilled sands and mine water. Radon and its progeny concentrations in different haulage levels and stopes of the Jaduguda uranium mine are presented to emphasise the need for a well planned ventilation system to control radiation exposure of miners. Results of radon monitoring from a few exploratory uranium mines are included to indicate the need for a good ventilation system from inception of the mining operations. Relative contribution of mine exhaust and tailings surfaces to the environmental radon are also given. Some instruments developed locally for monitoring of radon and its progeny in mines and in the environment are briefly described to indicate the progress made in this field. (author). 17 refs., 2 figs., 6 tabs

  16. Prospect of radon as a tracer in studying of landslide forecast

    International Nuclear Information System (INIS)

    Zhang Huifeng; Ding Dexin

    2004-01-01

    Radon, as a chemical element of radioactivity, is widely used in the fields of earth-quake monitoring, prospecting mine and exploring resource. This paper discussed the theory of radon's separating out from the soil and the theory and means of surveying radon. It also relates the radon anomaly in the measuring process of soil radon, caused by the interferring of the environmental factors in measurement results. It further clarifies the wilde application of radon as a tracer in landslide forecast. (authors)

  17. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    Science.gov (United States)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    pressure measurements between an obturated borehole and the tunnel is conducted to monitor the possible modifications of the transport properties of the EDZ due to hydraulical and/or mechanical sollicitations of the nearby Roselend reservoir lake. As radon level is controlled by emanation and transport path through the medium. The observed bursts of radon should be due to changes of the radon transport properties (Trique et al. 1999) of the EDZ. A correlation between the differential pressure variations and radon bursts is clearly observed. Radon bursts seem to be related to overpressure events that take place in the instrumented borehole. Which external sollicitations, hydraulical or mechanical, or both, induce such a behaviour? References Bossart, P., Meier, P. M., Moeri, A., Trick, T., and J.-C. Mayor (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory, Engineering Geology, 66, 19-38. Dezayes, C., and T. Villemin (2002). Etat de la fracturation dans la galerie CEA de Roselend et analyse de la déformation cassante dans le massif du Méraillet, technical report, Lab. de Geodyn. de Chaisnes Alp., Univ. de Savoie, Savoie, France. Jakubick, A. T., and T. Franz (1993). Vacuum testing of the permeability of the excavation damaged zone, Rock Mech. Rock Engng., 26(2), 165-182. Patriarche, D., Pili, E., Adler, P. M., and J.-F. Thovert (2007). Stereological analysis of fractures in the Roselend tunnel and permeability determination, Water Resour. Res., 43, W09421. Richon, P., Perrier, F., Sabroux, J.-C., Trique, M., Ferry, C., Voisin, V., and E. Pili (2004). Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel, J. Environ. Radioact., 78, 179-198. Richon, P., Perrier, F., Pili, E., and J.-C. Sabroux (2009). Detectability and significance of the 12hr barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide

  18. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment

    International Nuclear Information System (INIS)

    Jobbagy, V.; Somlai, J.; Kovacs, J.; Szeiler, G.; Kovacs, T.

    2009-01-01

    Natural radioactivity content, radon emanation and some other physical characteristics of red mud were investigated, so that to identify the possibilities of the safe utilization of such material as a building material additive. Based on the radionuclide concentration, red mud is not permitted to be used directly as a building material, however, mixing of a maximum 20% red mud and 80% clay meets the requirements. The main aim of this work was to determine the dependence of the emanation factor of red mud firing temperature and some other parameters. The relevant experimental procedure was carried out in two different ways: without any additional material, and by adding a known amount of sawdust (5-35 wt%) then firing the sample at a given temperature (100-1000 deg. C). The average emanation factor of the untreated dry red mud was estimated to 20%, which decreased to about 5% at a certain heat treatment. Even lower values were found using semi-reductive atmosphere. It has been concluded that all emanation measurements results correlate well to the firing temperature, the specific surface and the pore volume.

  19. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  20. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  1. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  2. Radon exposure in abandoned metalliferous mines of South America

    International Nuclear Information System (INIS)

    Silva, A.A.R. da; Umisedo, N.; Yoshimura, E.M.; Anjos, R.M.; Valladares, D.L.; Velasco, H.; Rizzotto, M.

    2011-01-01

    Since the days of the Spanish and Portuguese conquerors, South America has been closely associated with the metalliferous ore mining. Gold, silver, tin, lead, tungsten, nickel, copper, and palladium ores have been explored over the last centuries. In addition, there has also been the development and promotion of other economic activities related to mining, as the underground mine tourism. A few works have been published on radon levels in the South American mining. In this study, we investigated the radon transport process and its health hazard in two exhausted and abandoned mines in San Luis Province, Argentina. These mines were chosen because they have different physical configurations in their cavities, features which can affect the air flow patterns and radon concentrations. La Carolina gold mine (32 deg 48' 0'' S, 66 deg 60' 0'' W) is currently a blind end system, corresponding to a horizontal excavation into the side of a mountain, with only a main adit. Los Condores wolfram mine (32 deg 33' 25'' S, 65 deg 15' 20'' W) is also a horizontal excavation into the side of a mountain, but has a vertical output (a shaft) at the end of the main gallery. Three different experimental methodologies were used. Radon concentration measurements were performed by CR-39 nuclear track detectors. The distribution of natural radionuclide activities ( 40 K, 232 Th and 238 U) was determined from rock samples collected along their main adits, using in laboratory gamma-ray spectrometry. The external gamma dose rate was evaluated using thermoluminescent dosimeters and a portable survey meter. The values for the 222 Rn concentration ranged from 0.43 ± 0.04 to 1.48 ± 0.12 kBq/m 3 in the Los Condores wolfram mine and from 1.8 ± 0.1 to 6.0±0.5 kBq/m 3 in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq/m 3 recommended by the ICRP. The patterns of the radon transport process revealed that the La Carolina

  3. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei; Fomel, Sergey; Demanet, Laurent; Ying, Lexing

    2013-01-01

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm

  4. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  5. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  6. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  7. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  8. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  9. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  10. Methodology developed to make the Quebec indoor radon potential map

    International Nuclear Information System (INIS)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-01-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m 3 in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for each

  11. A simulation of the transport and fate of radon-220 derived from thorium-232 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-07-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessment of all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Mathematical models, which point out data needs and therefore drive site characterization, provide a logical means of performing the required flux estimations. Thorium-232 Waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992), was used to simulate the transport and fate of radon-220 from its source of origin nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release to the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport

  12. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  13. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    to be 60 Bq/m{sup 3}. Using the detriment factor given by ICRP, annually about 90 Estonians are expected to develop lung cancer due to exposure to radon in their homes. Most of them, about 75, are smokers, which are affected by the synergetic effect of the two carcinogens, smoking and radon. In Estonia the source of indoor radon is radon-containing soil air that is transported into the buildings from the ground. Building materials with enhanced radium concentrations are not known in Estonia. In this survey, the highest indoor radon concentrations have been found in the northern part of Estonia where uranium rich Dictyonema shale and uranium containing phosphorous Glauconite sandstone exist in the bedrock and as fragments in the soils. Radon concentrations higher than 400 Bq/m{sup 3} have also been measured in buildings situated in areas with karst formations. Areas with Dictyonema shale, Glauconite sandstone and karst are areas with a special risk for radon.

  14. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo; Aakerblom, Gustav

    2003-10-01

    the detriment factor given by ICRP, annually about 90 Estonians are expected to develop lung cancer due to exposure to radon in their homes. Most of them, about 75, are smokers, which are affected by the synergetic effect of the two carcinogens, smoking and radon. In Estonia the source of indoor radon is radon-containing soil air that is transported into the buildings from the ground. Building materials with enhanced radium concentrations are not known in Estonia. In this survey, the highest indoor radon concentrations have been found in the northern part of Estonia where uranium rich Dictyonema shale and uranium containing phosphorous Glauconite sandstone exist in the bedrock and as fragments in the soils. Radon concentrations higher than 400 Bq/m 3 have also been measured in buildings situated in areas with karst formations. Areas with Dictyonema shale, Glauconite sandstone and karst are areas with a special risk for radon

  15. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  16. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements

    International Nuclear Information System (INIS)

    Burnett, William C.; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222 Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222 Rn pore water activity. We have also used short-lived radium isotopes ( 223 Ra and 224 Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by . During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223 Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon--an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site

  17. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants

    NARCIS (Netherlands)

    Nielson, KK; Rogers, VC; Holt, RB; Pugh, TD; Grondzik, WA; deMeijer, RJ

    1997-01-01

    Radon movement through 12 test slabs with different cracks, pipe penetrations, cold joints, masonry blocks, sealants, and tensile stresses characterized the importance of these anomalous structural domains, Diffusive and advective radon transport were measured with steady-state air pressure

  18. Locating and limiting radon in dwellings

    International Nuclear Information System (INIS)

    Hildingson, O.; Gustafsson, J.; Nilsson, I.

    1984-01-01

    More than 3,300 Swedish dwellings have an indoor radon daughter concentration above 400 Bq.m -3 (or 0.108 WL). It is considered to be unsafe to live in any of these dwellings and the radon daughter concentration has to be reduced. Before deciding what measures to take, it is important to determine the radon sources. Possible sources are exhalation from building materials and/or radon transport from the ground into the building through cracks and joints in the slab. Different methods of locating the sources have been developed. To locate cracks and joints in slabs the ventilation rate and the air pressure difference relative to the ground are changed while monitoring radon/radon daughter concentration. The effect of five different measures to reduce the indoor radon daughter concentration have also been evaluated: increased ventilation rate by mechanical ventilation, ventilation of the small spaces between the floor and the slab, sealing the surface of radon exhaling walls, sealing joints and cracks in the slab, and ventilation of the drainage under the slab. (author)

  19. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  20. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  1. A personal radon dosemeter

    International Nuclear Information System (INIS)

    Oberstedt, S.; Vanmarcke, H.

    1994-03-01

    In the last decade the radon issue has become one of the major problems of radiation protection. Animal studies as well as epidemiological studies showed an increased lung cancer risk. A new personal radon-dosemeter on the basis of a CR-39 (poly-allyl diglycol carbonate) track-etch detector has been developed. The read-out of the detectors is based on the image- processing technique. The actual efficiency of the new dosemeter, obtained with a semi-automatic personal-computer based image-analysis system, is 1.43 +/- 0.15 tracks/cm 2 /(kBq/m 3 h), which is about three times that of the widely used Karlsruhe-type detector based on polycarbonate detectors

  2. Mapping of groundwater radon potential

    International Nuclear Information System (INIS)

    Aekerblom, G.; Lindgren, J.

    1997-01-01

    The domestic use of water with elevated radon concentration may represent a public health hazard, partly due to the release of radon to the indoor air. While only a limited number of countries have implemented regulations with respect to radon in water, many more are considering doing so. The compulsory limits proposed by Swedish authorities are 100 Bq/1 for public water, while water from private wells is not to exceed 1000 Bq/1. Furthermore, it is recommended that water with a radon content above 500 Bq/1 should not be given to children under five years of age. In Sweden, the estimated number of wells with radon levels above 1000 Bq/1 exceeds 10,000, with a considerable amount in excess of 10,000 Bq/1. The highest radon concentration in a well supplying drinking water encountered so far is 57,000 Bq/1. Radon levels exceeding 500 Bq/1 are almost exclusively found in wells drilled into bedrock and in springs with intramontaneous water. Elevated ground water radon levels require that the water has passed through bedrock with elevated concentration of uranium, or through fractures with coatings of minerals containing enhanced concentrations of radium-226. Intramontaneous water from areas with uranium-bearing rock types (e.g. uranium-rich granites, pegmatites and vulcanites) often manifests elevated radon levels. Routines for the establishment of risk maps focusing on water are currently under development. The backbone of the process is the access to high spatial resolution radiometric information together with bedrock and soil information on a detailed scale (1:50,000). This information is available from the Geological Survey of Sweden, which is routinely carrying out airborne measurements at an altitude of 30 m and a line spacing of 200 m. While some 60% of Sweden is covered up to now, 75 % is expected to be covered within the next ten years. Other available databases utilized in the risk mapping process include radon measurements in wells, geochemical data from

  3. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  4. Indoor radon pollution: Control and mitigation. June 1978-December 1989 (Citations from the NTIS data base). Report for June 1978-December 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning the control and mitigation of radon pollution in homes and commercial buildings. Citations cover radon transport studies in buildings and soils, remedial action proposals on contaminated buildings, soil venting, building ventilation, sealants, filtration systems, water degassing, reduction of radon sources in building materials, and evaluation of existing radon mitigation programs including their cost effectiveness. Analysis and detection of radon and radon toxicity are covered in separate published bibliographies. (Contains 129 citations fully indexed and including a title list.)

  5. Development and testing of the detector for monitoring radon double-filter method

    International Nuclear Information System (INIS)

    Sevcik, P.

    2008-01-01

    Applications of physics in the study of radon transport processes in the atmosphere and of testing of atmospheric transport models require sensitive detection devices with low maintenance requirements. The most precise devices involved in the worldwide monitoring program of the atmosphere (GAW) determine volume activity of radon from a variety of daughter products of 222 Rn, resulting in a working volume of the detector (double-filter method). The purpose of this work was to explore theoretically and experimentally the possibilities and limits of a particular simple implementation of this procedure. Tested apparatus consists of a 200 dm 3 chamber (metal drum), where are developed transformation products of radon and semiconductor detector with surface barrier, which registers α particles from the conversion of daughter products 222 Rn collected on a filter at the outlet of the chamber. Testing of the apparatus takes place in the atmosphere with higher concentrations of radon. The measured variations of volume activities 222 Rn have the same character as the variations of radon concentration in the air in laboratory. Minimum detectable activity at 95% significance level is 16.0 Bq.m -3 at a pumping speed of the air 20 dm 3 .min - 1 and 13.0 Bq.m -3 at a pumping rate 24 dm 3 .min -1 . These values are still too high for using the apparatus for measuring in external atmosphere. The main limit of the apparatus is a capture of transformation products arising on the inner walls of the chamber (plate-out effect). The effectiveness of collecting 218 Po from the chamber on the filter in our measurements was only 2.8%. But we managed to increase it to about 20% by adding aerosol delivery systems into production chamber of transformation products of radon. It turns out that based on this principle can be made sensitive and continuously working monitor of radon. (author)

  6. Absolute measurement of environmental radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1987-01-01

    A transportable meter for environmental radon measurement with a 40 liter decay chamber is designed on the principle of Thomas two-filter radon content absolute measurement. The sensitivity is 0.37 Bq·m -3 with 95% confidence level. This paper describes the experimental method of measuremment and it's intrinsic uncertainty. The typical intrinsic uncertainty (for n x 3.7 Bq·m -3 radon concentration) is <10%. The parameter of exit filter effeciency is introduced into the formula, and the verification is done for the case when the diameter of the exit filter is much less than the inlet one

  7. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  8. The design of visible system of two-dimensional numerical simulation of radon-222 migration

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Zhang Ye; Zhang Junkui; Tang Bin

    2008-01-01

    On the grounds of the radon transport equation in the even overburden layer, the value simulation equation using the two-dimensional finite difference method had been inferred, and the visible system of value simulation was proposed by programming with VB and Matlab. The mixed programming and the method of using repetitive process to solve difference equation were narrated in detail. Through this paper, a practical tool was offered to the researcher studying on the radon migration in the even overburden layer, and a more convenient developing way was explored for the researchers developing the relative system. (authors)

  9. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  10. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  11. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  12. Radon therapy in the Soviet Union

    International Nuclear Information System (INIS)

    Sansoni, B.; Andrejew, S.V.

    1991-08-01

    In the Soviet Union approximately one million courses of radon treatment each lasting three weeks are prescribed every year. The curative application of radon used for cardiovascular diseases, including aftercare in cases of cardiac infarction, disorders of the locomotor system and joints and muscles, the male and female sexual system, diseases of the nervous system, endocrinology and metabolic diseases. Contraindication practice is similar to that in Central Europe. Radon is given to skin stimulation by wet and above all dry baths. The radiation exposure of patients from these three-week radon treatments is relatively low. The radon effect is interpreted as 'radiation flash' stimulating the nervous system. The skin plays a particular role in this process, acting as the stimulus acceptor. (orig./MG) [de

  13. A complete low cost radon detection system

    International Nuclear Information System (INIS)

    Bayrak, A.; Barlas, E.; Emirhan, E.; Kutlu, Ç.; Ozben, C.S.

    2013-01-01

    Monitoring the 222 Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. - Author-Highlights: • Low cost radon detection. • Integrated GSM modem for early warning of radon anomalies. • Radon detection in environment

  14. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  15. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  16. Radon sump

    International Nuclear Information System (INIS)

    Wakeham, C.J.R.

    1992-01-01

    A radon sump which can be installed easily by unskilled labour and which is cheap to produce comprises a unit in the form of a box-like housing having one or more walls, a floor and a roof, and is preferably made from a synthetic plastics material, optionally reinforced with glass fibre or other reinforcing material, the housing having a plurality of inlets in its wall or walls and at least one outlet leading to a pipe spigot which is made in one piece with the housing. Alternatively, the housing is made in concrete, in 3 pieces (floor, wall, roof) with a knock-out portion which can be removed for insertion of an outlet pipe. (Author)

  17. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  18. Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing.

    Science.gov (United States)

    Hilal, M A; El Afifi, E M; Nayl, A A

    2015-07-01

    The aim of this study is oriented to investigate the influence of some physicochemical factors such as radium distribution, grain size, moisture content and chemical constituents on releases of radon-222 from the accumulated phosphogypsum (PG) waste. The emanation fraction, activity concentration in the pore and the surface exhalation rate of radon-222 in the bulk PG waste are 34.5 ± 0.3%, 238.6 ± 7.8 kBq m(-3) and 213 ± 6.9 mBq m(-2) s(-1), respectively. These values were varied and enhanced slightly in the fine grain sizes (F1 factor of 1.05 folds compared to the bulk residue. It was also found that release of radon from residue PG waste was controlled positively by radium (Ra-226), calcium (CaSO4) and strontium (SrO). About 67% of radon release attributed to the grain size below 0.5 mm, while 33% due to the large grain size above 0.5 mm. The emanation fraction of Rn-222 is increased with moisture content and the maximum emanation is ∼43% of moisture of 3-8%. It reduced slowly with the continuous increase in moisture till 20%. Due to PG waste in situ can be enhancing the background to the surround workers and/or public. Therefore, the environmental negative impacts due to release of Rn-222 can be minimized by legislation to restrict its civil uses, or increasing its moisture to ∼10%, or by the particle size separation of the fine fraction containing the high levels of Ra-226 followed by a suitable chemical treatment or disposal; whereas the low release amount can be diluted and used in cement industry, roads or dam construction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radon in Austria

    International Nuclear Information System (INIS)

    Friedmann, H.

    2000-01-01

    Several projects in Austria deal with the problem of enhanced radon exposure to the public. The Austrian Radon Project is the largest project within this task, with the aim of investigating the radon concentrations in Austrian homes. Another project concerns mitigation methods. According to the EU directive EURATOM 96/29 it is also necessary to check working places for possibly enhanced radon concentrations. These projects are and will be funded by the government. The federal government of Upper Austria sponsored a project to test the indoor air quality in kindergartens including radon measurements. Within an EU research project, the radon concentrations in Austrian springs and groundwater were systematically listed and analyzed. Additional investigations will focus on methods to improve the radon potential maps from the Austrian Radon Project by including geological and other information. (author)

  20. Radon: A health problem

    International Nuclear Information System (INIS)

    Pucci, J.; Gaston, S.

    1990-01-01

    Nurses can and should function as effective teachers about the potential hazards to health of radon contamination in the home as well as become activists in the development of health care policy on radon

  1. Radon survey techniques

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The report reviews radon measurement surveys in soils and in water. Special applications, and advantages and limitations of the radon measurement techniques are considered. The working group also gives some directions for further research in this field

  2. Transport of Radon Gas into a Tunnel at Yucca Mountain-Estimating Large-Scale Fractured Tuff Hydraulic Properties and Implications for the Operation of the Ventilation System

    International Nuclear Information System (INIS)

    Unger, A.; Finsterle, S.; Bodvarsson, G.

    2003-01-01

    Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of l x 10 -11 m 2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level

  3. Radon in buildings

    International Nuclear Information System (INIS)

    Connell, J.J.

    1991-01-01

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  4. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  5. Radon in workplaces

    International Nuclear Information System (INIS)

    Gooding, Tracy

    1995-01-01

    The naturally occurring radioactive gas radon has been found at excessive levels in many workplaces other than mines throughout the country. Prolonged exposure to radon and its decay products increases the risk of developing lung cancer, and controls to protect employees from excessive exposure are included in the Ionising Radiations Regulations 1985. The control of occupational exposure to radon is discussed here. (author)

  6. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  7. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  8. Radon measurements in Rio de Janeiro

    International Nuclear Information System (INIS)

    Magalhaes, M.H.; Amaral, E.C.S.; Sachett, I.

    2002-01-01

    Few data are available on the dynamic of radon in the air for tropical climate conditions. The strong influence of the climatological characteristics on the transport of gases and particulates in air makes not adequate the use of data obtained at regions with different climate. Outdoor and indoor measurements of radon equilibrium equivalent concentrations (EEC) have been done for one-year period in Rio de Janeiro. Continuous measurements were performed using a radon monitor with an alpha spectrometry detector. Pluviometric index, temperature and humidity were registered. The paper presents the long term behaviour of outdoor radon equilibrium equivalent concentration results, their correlation with temperature and the influence of the pluviometric index. Maximum values were obtained during winter and minimum in summer, strongly influenced by the rain. A strong inverse correlation with temperature was found. (author)

  9. Radon migration in the ground: a supplementary review

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1980-01-01

    Water is the most important agent in enabling radon isotopes to escape from solid material: Water absorbs kinetic energy of the recoil atom of radon; it is an active agent in altering and hydrating mineral surfaces, thus enhancing their emanating power; and it decreases the adsorption of radon on mineral surfaces. Once in rock and soil pores, radon atoms migrate by diffusion and by transport in varying proportions. In diffusion and transport calculations, it is desirable to use the radon concentration in the interstitial fluid as the concentration parameter and to include porosity explicity. The transport component is important in dry, permeable soils in the upper layers but is much reduced below depths of several tens of meters. Research in disequilibriums in radionuclides of the uranium and thorium series suggests that much assumed migration of 222 Rn is, in fact, a more general migration of uranium and radium isotopes

  10. Radon movement simulation in overburden by the 'Scattered Packet Method'

    International Nuclear Information System (INIS)

    Marah, H.; Sabir, A.; Hlou, L.; Tayebi, M.

    1998-01-01

    The analysis of Radon ( 222 Rn) movement in overburden needs the resolution of the General Equation of Transport in porous medium, involving diffusion and convection. Generally this equation was derived and solved analytically. The 'Scattered Packed Method' is a recent mathematical method of resolution, initially developed for the electrons movements in the semiconductors studies. In this paper, we have adapted this method to simulate radon emanation in porous medium. The keys parameters are the radon concentration at the source, the diffusion coefficient, and the geometry. To show the efficiency of this method, several cases of increasing complexity are considered. This model allows to follow the migration, in the time and space, of radon produced as a function of the characteristics of the studied site. Forty soil radon measurements were taken from a North Moroccan fault. Forward modeling of the radon anomalies produces satisfactory fits of the observed data and allows the overburden thickness determination. (author)

  11. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  12. Field demonstrations of radon adsorption units

    International Nuclear Information System (INIS)

    Abrams, R.F.

    1989-01-01

    Four radon gas removal units have been installed in homes in the Northeast U.S. These units utilize dynamic adsorption of the radon gas onto activated charcoal to remove the radon from room air. Two beds of charcoal are used so that one bed removes radon while the second bed is regenerated using outdoor air in a unique process. The beds reverse at the end of a predetermined cycle time, providing continuous removal of radon from the room air. The process and units have undergone extensive development work in the laboratory as well as in homes and a summary of this work is discussed. This work showed that the system performs very effectively over a range of operating conditions similar to those found in a home. The field test data that is presented shows that scale up from the laboratory work was without problem and the units are functioning as expected. This unit provides homeowners and mitigation contractors with another option to solve the radon gas problem in homes, particularly in homes that it is difficult to prevent radon from entering

  13. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  14. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  15. Radon: Detection and treatment

    International Nuclear Information System (INIS)

    Loken, S.; Loken, T.

    1989-01-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals

  16. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  17. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  18. Review of high-sensitivity Radon studies

    Science.gov (United States)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  19. Incorporating security into the transportation planning process.

    Science.gov (United States)

    2009-03-01

    The transportation system is an important network established to ensure the mobility of people and goods between destinations. In addition, it also serves a vital role in responding to disasters, and therefore deserves special attention when those di...

  20. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  1. The radon transform. Theory and implementation

    International Nuclear Information System (INIS)

    Toft, P.

    1996-01-01

    The subject of this Ph.D. thesis is the mathematical Radon transform, which is well suited for curve detection in digital images, and for reconstruction of tomography images. The thesis is divided into two main parts. Part I describes the Radon- and the Hough-transform and especially their discrete approximations with respect to curve parameter detection in digital images. The sampling relationships of the Radon transform is reviewed from a digital signal processing point of view. The discrete Radon transform is investigated for detection of curves, and aspects regarding the performance of the Radon transform assuming various types of noise is covered. Furthermore, a new fast scheme for estimating curve parameters is presented. Part II of the thesis describes the inverse Radon transform in 2D and 3D with focus on reconstruction of tomography images. Some of the direct reconstruction schemes are analyzed, including their discrete implementation. Furthermore, several iterative reconstruction schemes based on linear algebra are reviewed and applied for reconstruction of Positron Emission Tomography (PET) images. A new and very fast implementation of 2D iterative reconstruction methods is devised. In a more practical oriented chapter, the noise in PET images is modelled from a very large number of measurements. Several packagers for Radon- and Hough-transform based curve detection and direct/iterative 2D and 3D reconstruction have been developed and provided for free. (au) 140 refs

  2. The effect of natural ventilation on radon and radon progeny levels in houses

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1992-01-01

    In contradiction to the widely held assumption that ventilation is ineffective as a means of reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5-10 using only natural ventilation. Measurements of the outdoor-basement pressure differential and the radon entry rate show that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes. The first mechanism is the obvious one: dilution. Radon concentrations are lowered by the addition of uncontaminated outdoor air. The second mechanism is less evident: an open basement window reduces basement depressurisation. This decreases the rate at which radon-laden soil gas is drawn into the house. It was also found that the radon entry rate is a linear function of basement depressurisation up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubles the building air exchange rate and reduces the radon entry rate by up to a factor of 5. (author)

  3. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  4. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  5. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Labs and Research Centers Radon Contact Us Share Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  6. Swiss radon programme 'RAPROS'

    International Nuclear Information System (INIS)

    Zeller, W.

    1992-03-01

    The results of the five-year radon research program RAPROS presented in this report, allow for scientifically valid statements on the origin of elevated levels of indoor radon in Switzerland. These results form a basis for recommendations and for actions to be taken. Indoor radon concentrations have been measured in more than 4000 living-rooms and 2000 basements; a sampling density of about 0.2% of the Swiss housing stock. According to these measurements radon leads to an estimated average annual effective dose of 2 milli-Sievert, although in some regions the annual dose may be much higher. Extrapolation of the existing data shows that in about 10'000 Swiss houses radon may exceed 1000 Bq/m 3 . For these houses remedial actions are recommended. There seems to be no radon problem in the large cities in the Swiss Plateau. High indoor radon concentrations in Switzerland are due to the soil beneath the buildings. Data from the study indicated that the most important soil characteristic influencing indoor radon concentrations was its gas permeability. Because natural ventilation in a heated house creates a slight underpressure in the lower levels with respect to surrounding soils, radon is driven from the soil into the building. Weatherization of the houses to reduce energy consumption had in most cases no effect on the indoor radon concentrations. Radon from tap water or from building materials does not contribute significantly to indoor radon levels in Switzerland. The high levels in the Jura Mountains are thought to be associated with karstic limestone bedrock. Several houses within Switzerland have now been modified to reduce radon levels. The most successful mitigation technique combined forced-air ventilation with tightening of the basement to decrease or prevent air infiltration from the soil. (author) figs., tabs., refs

  7. Air pollution. Actions to promote radon testing

    International Nuclear Information System (INIS)

    Guerrero, Peter F.; Adams, Charles M.; McGee, William F.; Goldsmith, Larry A.; Feldesman, Alice G.; Grissinger, Charles R.; Updegraff, William D.; Langdon, Robin S.; Bartholomew, Philip L.

    1992-12-01

    To promote radon testing, EPA initiated public information and awareness programs and provided grants to states to develop programs aimed at encouraging homeowners to test for radon. Nationwide telephone surveys, according to EPA, indicate that these efforts have raised the public awareness of radon to as high as 78 percent but that about only 9 percent of those surveyed have tested their homes for radon. Concerned about improving risk reduction through its radon program, EPA convened a review panel. The panel not only recommended in May 1992 that the current voluntary approach be continued but also called for program changes to encourage more testing. These changes include targeting public information and other resources to areas where radon levels are predicted to be high and promoting testing and mitigation at the time of real estate transactions. To support state radon efforts, the Congress authorized a grant program for yearly grants of $10 million for 3 years. Funds for this program were recently extended for a fourth year through fiscal year 1993. Information to measure states' success in promoting testing by homeowners was generally not available because (1) much of the grant funding has been used to identify the extent of the radon problem; (2) federally funded public information projects were often directed to large audiences, making it difficult to measure testing rates; and (3) EPA's evaluation process for the grant program did not contain a component to measure increases in testing. We did, however, identify some state projects that have increased radon testing by targeting program efforts to homes in areas with potentially high levels of radon. The results of the state projects would seem to support the EPA review panel's recommendations on promoting radon testing through targeting program resources. In two states we surveyed, the voluntary use of disclosure statements as part of a real estate sales contract was a frequent occurrence, and in one state

  8. Health hazards due to radon and its daughters

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, I.E.; Tufail, M.

    1993-01-01

    The health hazards liked to radon and its daughters have become a matter of great public concern. When inhaled, a fraction of radon is dissolved into the lung fluid, from where it is transported to other parts of the body. The radiation damage is caused to the lungs due to alpha decay of radon during its transit time within the respiratory tract. Radon daughters are found to be even more dangerous than radon itself. These daughters attach themselves to dust particles present in the air. Some of the aerosols so produced enter the lungs and enter the blood stream. It has now been confirmed that radon and its daughters contribute about 70% of the internal dose received by an individual from natural radiation sources. The danger of indoor radon and its daughters is even higher for energy-saving houses and those having poor ventilation systems. This paper briefly describes the health hazards due to radon and its daughters. Different methods employed for the measurement of concentrations of radon and their daughters are described. The experience gained from the nation-wide surveys carried out in different countries is also given. (author). 18 refs, 3 figs, 1 tab

  9. Control of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.

    1986-01-01

    Exposure to radon daughter concentration in indoor atmosphere can result in a significant risk to the general public. There are two generally used methods for the control of radon and progeny concentration in the indoor atmosphere, namely restriction of radon entry and reduction of indoor radon and its progeny concentration by ventilation or by air cleaning. Predominant radon entry process in most of the dwellings appears to be by pressure driven flow of soil gas through cracks or other openings in the basement slab or subfloors. Sealing these openings or ventilation of the subslab or subfloor space are the methods for reducing the radon entry rates. Indoor radon concentration can also be reduced by increasing the ventilation and by using charcoal filters for the removal of radon gas in indoor air by absorption. Concentration of radon progeny, which are responsible for most of the health risks associatd with radon exposure can also be controlled by the use of electrostatic or mechanical filters. This study describes briefly the above control strategies used for reducing the inhalation doses to persons in dwellings. (author). 9 refs., 2 tables

  10. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  11. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  12. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  13. Radon and cancer

    International Nuclear Information System (INIS)

    2011-01-01

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  14. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.; Saum, D.W.

    1990-01-01

    This article reports on radon mitigation in school buildings. Subslab depressurization (SSD) has been the most successful and widely used radon reduction method in houses. Thus far, it has also substantially reduced radon levels in a number of schools. Schools often have interior footings or thickened slabs that may create barriers for subslab air flow if a SSD system is the mitigation option. Review of foundation plans and subslab air flow testing will help to determine the presence and effect of such barriers. HVAC systems in schools vary considerable and tend to have a greater influence on pressure differentials (and consequently radon levels) than do heating and air-conditioning systems encountered in the radon mitigation of houses. As part of any radon mitigation method, ASHRAE Standard 62-1989 should be consulted to determine if the installed HVAC system is designed and operated to achieve minimum ventilation standards for indoor air quality

  15. Leukaemia risks and radon

    International Nuclear Information System (INIS)

    Wolff, S.P.

    1991-01-01

    A correlation has been established between domestic radon exposure and mutation in peripheral T lymphocytes. Some caution must be exercised, however, in interpreting this result as evidence that levels of domestically encountered radon are sufficient to cause leukaemogenic chromosomal alterations. Radon may simply be acting as a surrogate for some other mutagenic factor. Correlations with Local Authority statistics collected in the United Kingdom 1981 Census appear to show that lower domestic radon levels reflect relatively greater socioeconomic deprivation whereas higher levels reflect greater prosperity. The relative risk of lymphoproliferative disease correlates with the same factors that determine domestic radon levels at the county level. Putative relationships between domestic radon exposure and cancer thus need to be controlled for socioeconomic status and associated factors, at least at the county level. (The correlations may not apply to smaller areas.) Similarly, the causative factors underlying the relationships between higher regional socioeconomic status and leukaemia require closer examination. (author)

  16. Effect of natural ventilation on radon and radon progeny levels in houses. Rept. for Apr 90-Sep 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1991-01-01

    The paper discusses the effect of natural ventilation on radon and radon progeny levels in houses. Contradicting the widely held assumption that ventilation is ineffective in reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5 to 10 using only natural ventilation. Measurement of the outdoor-basement pressure differential and the radon entry rate shows that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes: (1) the obvious one, dilution, which lowers radon concentrations by adding uncontaminated outdoor air; and (2) although less evident, introducing a pressure break in the system through an open basement window which, in turn, reduces the outdoor-basement pressure differential and the rate at which radon-laden soil gas is drawn into the house. The radon entry rate was found to be a linear function of basement depressurization up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubled the building air exchange rate and reduced the radon entry rate by up to a factor of 5

  17. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  18. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  19. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  20. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  1. Qualitative and quantative analysis of some physical processes encountered in measurements of low level radon activity by means of proportional counter

    International Nuclear Information System (INIS)

    Bluszcz, A.; Moscicki, W.

    1980-01-01

    Physical model for absorption of radon and its decay products on the electrodes of the proportional counter filled with Rn-CO 2 mixture is presented. The results of calculations based on developed model are compared with observed changes of counting rate of radon and its decay products. (author)

  2. Radon in dwellings

    International Nuclear Information System (INIS)

    Erikson, B.E.; Boman, C.A.; Nyblom, L.; Swedjemark, G.A.

    1980-06-01

    The report presents the function of the ventilation by natural draught in three-storey houses. In some cases also the measurement of gamma radiation, radon and radon daughters was made. The investigation took place in Uppsala. The houses were built of light weight concrete made of alum-shale. The measurements showed that the contents of radon daughters were far below the provisional limits. (G.B.)

  3. Radon in buildings

    International Nuclear Information System (INIS)

    Ryan, N.M.; Finn, M.

    1995-01-01

    This guide is intended to inform designers, contractors, householders and other building owners about radon in buildings and to provide guidance where it has been decided to take action to reduce radon levels. It gives some pointers to good practice insofar as it relates to non complex buildings of normal design and construction. Reference is made to the usual ways of reducing l;levels of radon and guidance is given on sources of further information. I

  4. Radon emanometric technique for 226Ra estimation

    International Nuclear Information System (INIS)

    Mandakini Maharana; Sengupta, D.; Eappen, K.P.

    2010-01-01

    Studies on natural background radiation show that the major contribution of radiation dose received by population is through inhalation pathway vis-a-vis contribution from radon ( 222 Rn) gas. The immediate parent of radon being radium ( 226 Ra), it is imperative that radium content is measured in the various matrices that are present in the environment. Among the various methods available for the measurement of radium, gamma spectrometry and radiochemical method are the two extensively used measurement methods. In comparison with these two methods, the radon emanometric technique, described here, is a simple and convenient method. The paper gives details of sample processing, radon bubbler, Lucas cell and the methodology used in the emanometric method. Comparison of emanometric method with gamma spectrometry has also undertaken and the results for a few soil samples are given. The results show a fairly good agreement among the two methods. (author)

  5. From insulation contracting to radon mitigation

    International Nuclear Information System (INIS)

    West, D.R.

    1990-01-01

    As the definition of house doctor has evolved over the past ten years and the field of energy services has grown more sophisticated, many contractors have expanded the services they offer their clients. This paper presents the story of one insulation contractor who has found a niche in radon testing and mitigation. The EPA now has a national program for the radon mitigator called the Radon Contractor Proficiency Program. The requirements include attending the Radon Technology for Mitigators course, passing an exam, and taking continuing education. In the Midwest, the most popular mitigation technique is the subslab depressurization system. To draw suction from under the slab, the system can take advantage of an existing sump crock or can penetrate the slab. Interior drain tiles collect water to empty into the crock, providing an excellent pathway to draw from. This mitigation process is explained

  6. Instrumentation for radon measurement and diagnosis

    International Nuclear Information System (INIS)

    Whyte, N.; Ellacott, K.; Brabant, L.

    1990-01-01

    Knowledge of existing protocols and guidelines, coupled with equipment acumen can make for a successful endeavor in the radon field. But where do you collect a users perspective on radon equipment? Obtaining a first hand understanding of how radon detection equipment may be applied can be a lengthy and expensive process. In this paper first principals of progeny collection, and counting, are covered. Use of Thomson and Nielsen equipment to screen, and diagnose radon will e presented. Equipment performance in a wide variety of field applications and in calibration chambers will be brought to light. The distinctive nature and versatility of the equipment will e outlined with applications information, system performance, and unique configurations

  7. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed

  8. Radon exposure in abandoned metalliferous mines of South America

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A.R. da; Umisedo, N.; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. de Dosimetria; Anjos, R.M. [Universidade Federal Fluminense (LARA/UFF), Niteroi, RJ (Brazil). Inst. de Fisica. Lab. de Radioecologia; Valladares, D.L.; Velasco, H.; Rizzotto, M. [Universidad Nacional de San Luis (UNSL) (Argentina). Inst. de Matematica Aplicada San Luis

    2011-07-01

    Since the days of the Spanish and Portuguese conquerors, South America has been closely associated with the metalliferous ore mining. Gold, silver, tin, lead, tungsten, nickel, copper, and palladium ores have been explored over the last centuries. In addition, there has also been the development and promotion of other economic activities related to mining, as the underground mine tourism. A few works have been published on radon levels in the South American mining. In this study, we investigated the radon transport process and its health hazard in two exhausted and abandoned mines in San Luis Province, Argentina. These mines were chosen because they have different physical configurations in their cavities, features which can affect the air flow patterns and radon concentrations. La Carolina gold mine (32 deg 48' 0'' S, 66 deg 60' 0'' W) is currently a blind end system, corresponding to a horizontal excavation into the side of a mountain, with only a main adit. Los Condores wolfram mine (32 deg 33' 25'' S, 65 deg 15' 20'' W) is also a horizontal excavation into the side of a mountain, but has a vertical output (a shaft) at the end of the main gallery. Three different experimental methodologies were used. Radon concentration measurements were performed by CR-39 nuclear track detectors. The distribution of natural radionuclide activities ({sup 40}K, {sup 232}Th and {sup 238}U) was determined from rock samples collected along their main adits, using in laboratory gamma-ray spectrometry. The external gamma dose rate was evaluated using thermoluminescent dosimeters and a portable survey meter. The values for the {sup 222}Rn concentration ranged from 0.43 {+-} 0.04 to 1.48 {+-} 0.12 kBq/m{sup 3} in the Los Condores wolfram mine and from 1.8 {+-} 0.1 to 6.0{+-}0.5 kBq/m{sup 3} in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq/m{sup 3

  9. Strategies for Processing Semen from Subfertile Stallions for Cooled Transport.

    Science.gov (United States)

    Varner, Dickson D

    2016-12-01

    Subfertility can be a confusing term because some semen of good quality can have reduced fertility following cooled transport if the semen is processed in an improper manner. General procedures aimed at processing stallion semen for cooled transport are well described. An array of factors could exist in reduced fertility of cool-transported semen. This article focuses on centrifugation techniques that can be used to maximize sperm quality of stallions whose semen is intended for cooled transport. Clinical cases are also provided for practical application of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  11. Radon in large buildings

    International Nuclear Information System (INIS)

    Wilson, D.L.; Dudney, C.S.; Gammage, R.B.

    1993-01-01

    Over the past several years, considerable research has been devoted by the U.S. Environmental Protection Agency (USEPA) and others to develop radon sampling protocols for single family residences and schools. However, very little research has been performed on measuring radon in the work place. To evaluate possible sampling protocols, 833 buildings throughout the United States were selected for extensive radon testing. The buildings tested (warehouses, production plants and office buildings) were representative of commercial buildings across the country both in design, size and use. Based on the results, preliminary radon sampling protocols for the work place have been developed. (orig.). (5 refs., 3 figs.)

  12. The Pennsylvania radon story

    International Nuclear Information System (INIS)

    Gerusky, T.M.

    1987-01-01

    In December 1984, the Pennsylvania Bureau of Radiation Protection found itself confronted with the discovery of a home in eastern Pennsylvania having the highest level of radon daughters ever reported. The Bureau responded with a massive radon monitoring, educational, and remediation effort. As of November, 1986, over 18,000 homes had been screen for radon daughters, of which approximately 59% were found to have levels in excess of the 0.020 Working Level guideline. Pennsylvania's response to the indoor radon problem is detailed in this article

  13. Radon atlas of Finland

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.; Pennanen, M.; Reisbacka, H.; Castren, O.

    1997-11-01

    The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m 3 and to build new houses so that radon concentrations do not exceed 200 Bq/m 3 . The maps and tables in this report are useful tools for those who plan and decide what kind of radon mitigation measures are needed in municipalities. STUK (The Radiation and Nuclear Safety Authority) has an indoor radon database of 52 000 dwellings, for which the indoor radon concentration and construction details are known. The building site soil type of about 38 000 dwellings is known. This atlas is a summary of all indoor radon measurements made by STUK in lowrise dwellings and in first-floor flats. The results are shown as arithmetic means of 5- or 10-km squares on maps of the provinces. Three radon maps have been made for each province. On one map the data consist of all measurements the position coordinates of which are known. On the two other maps the building sites of houses are classified into permeable and low-permeable soil types. The tables show statistics for all indoor radon measurements by municipality and building site soil type. (orig.)

  14. Radon dose and aerosols

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Faj, Z.; Vukovic, B.

    2000-01-01

    The equilibrium factor value (F) was measured in the NRPB radon chamber and the corresponding track density ratio (r = D/D 0 ) of bare (D) and diffusion (D 0 ) LR-115 nuclear track detectors was determined, as well as the regression equation F(r). Experiments with LR-115 nuclear track detectors and aerosol sources (burning candle and cigarette) were carried out in the Osijek University radon chamber and afterwards an empirical relationship between the equilibrium factor and aerosol concentration was derived. For the purpose of radon dose equivalent assessment, procedures for determining the unattached fraction of radon progeny were introduced using two nuclear track detectors. (author)

  15. Radon Measurements in Vojvodina

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Todorovic, N.; Veskovic, M.

    2013-01-01

    Recent analyses of epidemiological studies of lung cancer risk from residential exposures demonstrate a statistically significant increase per unit of exposure below average annual concentrations of about 200 Bq/m 3 . Indoor radon measurements performed in Novi Sad in about 400 houses and flats are presented and discussed in this paper. By measuring gamma-activity of radon daughters, radon activity concentration was determined to be 50 Bq/m 3 . In Vojvodina region indoor radon levels were measured by alpha track detectors CR-39 on about 3000 locations during the winter seasons in the period of three years (2003-2005). The main aim of the present study was to explore the critical group of population for radon exposure and to estimate maximal annual doses. Existing radon maps which identify regions with elevated radon levels will improve data collection and analysis for the future radon campaigns. Collaboration on the JRC program of European indoor radon map and implementation of grid system are also discussed.(author)

  16. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Mainous, A.G. III; Hagen, M.D.

    1993-01-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  17. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  18. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  19. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  20. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  1. A study on the environmental behavior of global air pollutants based on the continuous measurements of atmospheric radon concentrations

    International Nuclear Information System (INIS)

    Iida, Takao; Yamazawa, Hiromi

    2003-01-01

    Radon is a useful natural radioactive tracer of air transportation of atmospheric pollution, since radon is a noble gas and chemically inert. The atmospheric radon concentration is usually measured by a high-sensitivity electrostatic collection method or a two-filter method. The variations of radon concentrations observed over a solitary island and in the upper atmosphere are suitable for comparing with those of air pollutants. Some numerical simulation models were used to study the radon global transport in the atmosphere. In East Asia, atmospheric radon and air pollutants are transported with the air stream from the continent of China to the Northwestern Pacific Ocean. It is necessary to clarify the transport mechanism from both radon observations at various locations and numerical simulation. (author)

  2. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  3. Study on the measurement method of diffusion coefficient for radon in the soil. 2

    International Nuclear Information System (INIS)

    Iida, Takao

    2000-03-01

    To investigate radon behavior in the soil at Ningyo Pass, the radon concentrations in the soil and the radon exhalation rate from soil surface were measured by four continuous soil radon monitoring systems, soil gas sampling method, and accumulation method. The radon concentrations in the soil measured with continuous soil radon monitoring systems varied form 5000 Bq·m -3 to 15000 Bq·m -3 at 10 cm to 40 cm depth. On the other hand, the radon concentrations measured by soil gas sampling method was 15000 Bq·m -3 at 15 cm depth. The accumulation method gives the vales of 0. 36∼0.68 Bq·m -2 ·s -1 for radon exhalation rate from soil surface. To simulate the radon transport in soil, the following parameters of the soil are important: radon diffusion coefficients, dry density, wet density, soil particle density, true density, water content and radium concentration. The measured radon diffusion coefficients in the soil were (1.61±0.09)x10 -6 m 2 s -1 , (8.68±0.23)x10 -7 m 2 s -1 ∼ (1.53±0.12)x10 -6 m 2 s -1 and (2.99±0.32)x10 -6 m 2 s -1 ∼ (4.39±0.43)x10 -6 m 2 s -1 for sandy soils of the campus of Nagoya University, Tsuruga peninsula, and Ningyo Pass, respectively. By using these parameters, the radon transport phenomena in the soil of two layers were calculated by analytical and numerical methods. The radon profile calculated by numerical method agrees fairly well with measured values. By covering of 2 m soil, the radon exhalation rate decreases to 1/4 by analytical method, and 3/5 by numerical method. The covering of normal soil is not so effective for reducing the radon exhalation rate. (author)

  4. A Radon Micro Study of Salthill, Galway

    International Nuclear Information System (INIS)

    Boyle-Tobin Ann

    2006-01-01

    This project presents a study of radon gas, when it enters from the ground into the built environment. In order to further inform the present body of knowledge on this potentially dangerous gas, a radon micro study is carried out in the area of Salthill, Galway. A total of 51 households are measured for radon. The results indicate a high variation in the levels recorded, with over a third of the houses measuring above the national safe standard of 200 becquerels per cubic meter, with a small percentage of houses exhibiting very high levels. The results are spatially analysed against the local geology, as radon is a by-product of the breakdown of uranium in rocks. Householders' knowledge and awareness of radon is explored to inform the reasons why more people are not testing their homes for radon, and not installing remedial measures when high levels are detected. The findings indicate significant gaps in householders' knowledge of radon. A certain complacency is noted, which may indicate that people still do not recognise a need to know about this invisible threat. As ways to encourage further testing and remediation levels are equally explored, the government is viewed to play a central role in these processes through partial state funding. Further evidence supports continued and more effective and widespread advertising of radon issues, through all types of media, with emphasis at local level. Incidents of lung cancer and lung disease of long term residents are recorded in an attempt to find out if there is a correlation between them. The results indicate no correlation; however, not all households could participate in this part of the survey as it was limited to long-term residents only

  5. Removal of radon daughters from indoor air

    International Nuclear Information System (INIS)

    Jonassen, N.

    1985-01-01

    The internal radiological exposure of the general population is largely due to the airborne daughter products of radon and thoron, which are found in two states, attached to aerosols or unattached, of which the latter species according to several dose models have the highest radiological dose efficiency of the two. The radon daughters may be removed from indoor air by a series of processes like ventilation, filtration, plateout, and electrostatic deposition. Ventilation (with radon-free air) is, on the one hand, a very effective measure, but usually involves introduction of colder air, in variance with energy-saving efforts. Internal filtration will not affect the radon concentration but may reduce the level of daughter activities, roughly inversely proportional to the filtration rate. At the same time, however, filtration may also change the aerosol distribution and concentration of the air and, consequently, the partitioning of the radon daughters between the attached and unattached state. This, in turn, influences the rate of deposition of radon daughters both by diffusional plateout and as an effect of an electric field. Experiments are reported demonstrating reductions in the airborne potential alpha energy by factors of 4 to 5 by use of filtration rates of 3-4 times per hour. In case of low aerosol concentrations, however, the corresponding reduction in radiological dose to critical parts of the respiratory tract may be much smaller, due to the shift toward higher fractions of the radon daughters being in the unattached state caused by the filtration. The possibility of using electrostatic deposition of radon daughters is also discussed

  6. Unusually amplified summer or winter indoor levels of radon

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.

    1993-01-01

    The ratios of winter/summer indoor radon levels for houses in different regions of the southern Appalachians are characterized by individual log-normal distributions with geometric means both above and below unity. In some counties and cities, subpopulations of houses have unusually exaggerated winter/summer ratios of indoor radon, as well as high indoor radon levels, during periods of either warm or cool weather. It is proposed that in many instances, houses are communicating with larger than normal underground reservoirs of radon-bearing air in hilly karst terrains; differences between the outdoor and underground air temperatures are believed to provide density gradients producing aerostatic pressure differences for seasonally directed underground transport and subsequently elevated indoor radon. These seasonal movements of air are analogous to the well-known underground chimney effects, which produce interzonal flows of air inside caves

  7. Aerosol properties of indoor radon decay products

    International Nuclear Information System (INIS)

    Martell, E.A.

    1984-01-01

    Lung cancer risks attributable to indoor radon are highly dependent on the properties of radon progeny aerosols which, in turn, are dependent on the nature and concentration of small particles in indoor air. In clean filtered air, radon progeny are attached to small hygroscopic particles of high mobility which are rapidly deposited on surfaces. By contrast, radon progeny attached to cigarette smoke are on large particles of low mobility which persist in air. Radon progeny ingaled by smokers are largely associated with smoke particles from 0.5 to 4.0 μm diameter. Such particles are selectively deposited at bronchial bifurcations and are highly resistant to dissolution. The attached radon progeny undergo a substantial degree of radioactive decay at deposition sites before clearance which gives rise to large alpha radiation doses in small volumes of bronchial epithelium. These processes provide new insights on mechanisms of bronchial cancer induction and on relative risks of lung cancer in smokers, passive smokers, and other non-smokers. (Author)

  8. The impact of transport processes standardization on supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Maciej Stajniak

    2016-03-01

    Full Text Available Background: During continuous market competition, focusing on the customer service level, lead times and supply flexibility is very important to analyze the efficiency of logistics processes. Analysis of supply chain efficiency is one of the fundamental elements of controlling analysis. Transport processes are a key process that provides physical material flow through the supply chain. Therefore, in this article Authors focus attention on the transport processes efficiency. Methods: The research carried out in the second half of 2014 year, in 210 enterprises of the Wielkopolska Region. Observations and business practice studies conducted by the authors, demonstrate a significant impact of standardization processes on supply chain efficiency. Based on the research results, have been developed standard processes that have been assessed as being necessary to standardize in business practice. Results: Based on these research results and observations, authors have developed standards for transport processes by BPMN notation. BPMN allows authors to conduct multivariate simulation of these processes in further stages of research. Conclusions: Developed standards are the initial stage of research conducted by Authors in the assessment of transport processes efficiency. Further research direction is to analyze the use efficiency of transport processes standards in business practice and their impact on the effectiveness of the entire supply chain.

  9. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  10. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  11. MODEL RADIOACTIVE RADON DECAY

    Directory of Open Access Journals (Sweden)

    R.I. Parovik

    2012-06-01

    Full Text Available In a model of radioactive decay of radon in the sample (222Rn. The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.

  12. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  13. Radon: Not so Noble

    Indian Academy of Sciences (India)

    Radon in the Environment and Associated Health Problems ... is presently working on emission of ... Radon isotope 222 has a half-life of 3.8 days, long enough to ..... 222Rn concentration of one WL for 170 working hours in one month.

  14. Background concentrations of radon and radon daughters in Canadian homes

    International Nuclear Information System (INIS)

    McGregor, R.G.; Vasudev, P.; Letourneau, E.G.; McCullough, R.S.; Prantl, F.A.; Taniguchi, H.

    1980-01-01

    Measurements of radon and radon daughters were carried out in 14 Canadian cities on a total of 9999 homes selected in a statistically random manner. The geometric means of the different cities varied from 0.14 to 0.88 pCi/l. for radon and 0.0009 to 0.0036 Working Levels for radon daughters. The radon originates from natural radioactivity in the soil surrounding the homes. (author)

  15. Analysis of queuing mine-cars affecting shaft station radon concentrations in Quzhou uranium mine, eastern China

    Directory of Open Access Journals (Sweden)

    Changshou Hong

    2018-04-01

    Full Text Available Shaft stations of underground uranium mines in China are not only utilized as waiting space for loaded mine-cars queuing to be hoisted but also as the principal channel for fresh air taken to working places. Therefore, assessment of how mine-car queuing processes affect shaft station radon concentration was carried out. Queuing network of mine-cars has been analyzed in an underground uranium mine, located in Quzhou, Zhejiang province of Eastern China. On the basis of mathematical analysis of the queue network, a MATLAB-based quasi-random number generating program utilizing Monte-Carlo methods was worked out. Extensive simulations were then implemented via MATALB operating on a DELL PC. Thereafter, theoretical calculations and field measurements of shaft station radon concentrations for several working conditions were performed. The queuing performance measures of interest, like average queuing length and waiting time, were found to be significantly affected by the utilization rate (positively correlated. However, even with respect to the “worst case”, the shaft station radon concentration was always lower than 200 Bq/m3. The model predictions were compared with the measuring results, and a satisfactory agreement was noted. Under current working conditions, queuing-induced variations of shaft station radon concentration of the study mine are not remarkable. Keywords: Hoist and Transport Systems, Mine-cars, Queuing Simulation, Radon Concentration, Underground Uranium Mine

  16. Statewide and Metropolitan Transportation Planning Processes : a TPCB Peer Exchange

    Science.gov (United States)

    2016-04-20

    This report highlights key recommendations and noteworthy practices identified at Statewide and Metropolitan Transportation Planning Processes Peer Exchange held on September 9-10, 2015 in Shepherdstown, West Virginia. This event was sponsored ...

  17. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  18. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  19. Risks from radon

    International Nuclear Information System (INIS)

    Doll, Richard

    1992-01-01

    The best estimate of risk to which everyone is exposed from natural radon in buildings is now obtained by extrapolation from observations on men exposed to radon in mines. The relationship between dose and effect derived by the US National Research Council implies that about 6% of the current life-time risk of developing the disease in the UK is attributable to radon, but for residents of some houses it will be much greater. This estimate is dependent on many assumptions, some of which are certainly wrong, and reliable estimates can be obtained only by direct observations on people living in different houses. It is possible that radon may also cause some risk of other cancers, notably leukaemia, but such risks, if real, are certainly small. Studies in progress should provide reliable estimates of all radon induced risks within a few years. (author)

  20. Radon in Syrian houses

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Alsawaf, A.

    1996-01-01

    A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991-1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be 45 Bq m -3 with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling. (author)

  1. Lessons from radon

    International Nuclear Information System (INIS)

    Nichols, M.

    1993-01-01

    At EPA there is a public outreach program that the Office of Air and Radiation (OAR) has developed for radon. To meet the difficult challenge radon presented, OAR's Radon Division developed working relationships with national nonprofit groups who share a mission. These groups have well-established communication networks with their memberships for advancing their goals. Such diverse groups as the American Lung Association, the Advertising Council, the National Association of Counties (NACo), the Consumer Federation of America, the National Association of Homebuilders, and the National Safety Council have joined with EPA to reduce radon health risks. Through this alliance, EPA has been able to take advantage of communication channels that it could never replicate on tis own. Every group working with EPA disseminates the radon message through its own established channels to reach its constituency. These partners wield authority in their fields and are ideal for addressing the concerns of their audiences

  2. Chemical properties of radon

    International Nuclear Information System (INIS)

    Stein, L.

    1986-01-01

    Radon is frequently regarded as a totally inert element. It is, however, a ''metalloid'' - an element which lies on the diagonal of the Periodic Table between the true metals and nonmetals and which exhibits some of the characteristics of both. It reacts with fluorine, halogen fluorides, dioxygenyl salts, fluoro-nitrogen salts, and halogen fluoride-metal fluoride complexes to form ionic compounds. Several of the solid reagents can be used to collect radon from air but must be protected from moisture, since they hydrolyze readily. Recently, solutions of nonvolatile, cationic radon have been produced in nonaqueous solvents. Ion-exchange studies have shown that the radon can be quantitatively collected on columns packed with either Nafion resins or complex salts. In its ionic state, radon is able to displace H + , Na + , K + , Cs + , Ca 2+ , and Ba 2+ ions from a number of solid materials. 27 refs., 6 figs

  3. Standardization of radon measurements

    International Nuclear Information System (INIS)

    Matuszek, J.M.; Hutchinson, J.A.; Lance, B.H.; Virgil, M.G.; Mahoney, R.J.

    1988-01-01

    Radon escaping from soil into homes appears to present the single greatest source of radiation exposure that most people will ever face. Measurement protocols for the relatively inert gas inextricably link the method of collection with the counting of the specimen. The most commonly used methods depend on the measurement of dislocation sites on plastic α-track detectors or on the adsorption of radon onto activated charcoal for subsequent counting of the γ-rays produced by decay of the radon progeny. The uncertainties inherent to the radon-measurement methods used commercially in the United States are far greater than those for measurements of other environmental radionuclides. The results of this preliminary study raise doubts as to whether existing proficiency-testing programs can provide assurance that radon-measurement methods are representative of actual conditions in any dwelling. 17 refs., 1 figs., 4 tabs

  4. Radon in workplaces

    International Nuclear Information System (INIS)

    Markkanen, M.; Annanmaeki, M.; Oksanen, E.

    2000-01-01

    The EU Member States have to implement the new Basic Safety Standards Directive (BSS) by May 2000. The Title VII of the Directive applies in particular to radon in workplaces. The Member States are required to identify workplaces which may be of concern, to set up appropriate means for monitoring radon exposures in the identified workplaces and, as necessary, to apply all or part of the system of radiological protection for practices or interventions. The BSS provisions on natural radiation are based on the ICRP 1990 recommendations. These recommendations were considered in the Finnish radiation legislation already in 1992, which resulted in establishing controls on radon in all types of workplaces. In this paper issues are discussed on the practical implementation of the BSS concerning occupational exposures to radon basing on the Finnish experiences in monitoring radon in workplaces during the past seven years. (orig.) [de

  5. Evaluation of the open vial method in the radon measurement

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.

    2014-10-01

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  6. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  7. Radon daughters and work at display devices

    International Nuclear Information System (INIS)

    Falk, R.; Nyblom, L.

    1986-01-01

    It has been shown that ions and electrically charged particles in the air can be transported in the electrostatic field between a face and a display device to either the face or the screen. Radon daughters can occur as ions, or sitting on charged particles. This prestudy shows that radon daughters were manifold concentrated on the face of a doll placed in front of a display device, or in a electrostatic field of the kind typical for displaying devices. The radiation dose, in the skin from the radon daughters in an ordinary office environment plus the addition caused by work at a display device, is not strong enough to cause skin damages alone. (BoK)

  8. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...... membrane, and soil gas enters the cylinder through a changeable interface in the bottom. The depressurisation of the cylinder is controlled by a mass-flow controller, thereby limiting the influence of natural driving forces. Pressures, temperatures and radon concentrations are measured continuously...... in the cylinder and in selected locations in the soil. In this paper, the test structure is described, and initial results concerning the transport of soil gas and radon under steady-state conditions are reported. It is found that the soil in the vicinity of the structure is partially depleted with respect...

  9. Health effects of radon

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Exposure of people to radon has taken on increased interest during the last decade because of the understanding that buildings can serve to trap radon and its daughters, and thereby build up undesirable concentrations of these radioactive elements. Numerous studies of underground miners (often uranium miners) have shown an increased risk of lung cancer in comparison with nonexposed populations. Laboratory animals exposed to radon daughters also develop lung cancer. The abundant epidemiological and experimental data have established the carcinogenicity of radon progeny. Those observations are of considerable importance, because uranium, from which radon and its progeny arise, is ubiquitous in the earth's crust, including coal mines. Risk estimates of the health effects of long-term exposures at relatively low levels require continued development, especially to address the potential health effects of radon and radon daughters in homes and occupational settings where the exposure levels are less than levels in underground uranium and other metal mines that have been the subject of epidemiological studies. Two approaches can be used to characterize the lung-cancer risks associated with radon-daughter exposure: mathematical representations of the respiratory tract that model radiation doses to target cells and epidemiological investigation of exposed populations, mainly underground uranium miners. The mathematically-based dosimetric approach provides an estimate of lung cancer risk related to radon-daughter exposure based specifically on modeling of the dose to target cells. The various dosimetric models all require assumptions, some of which are not subject to direct verification, as to breathing rates; the deposition of radon daughters in the respiratory tract; and the type, nature, and location of the target cells for cancer induction. The most recent large committee effort drawn together to evaluate this issue was sponsored by the National Research Council

  10. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  11. Radon in Africa: South African Lessons Learnt

    International Nuclear Information System (INIS)

    Simanga, A.T.

    2010-01-01

    Processing (MIMP) facilities Workers are exposed in mining to:- Radon and its progeny External Exposure (gamma) Radioactive dust Water ingestion (inadvertently) Radon: Technical Considerations Monitoring is performed to detect, quantify and compare with goals. It must be fit for purpose and monitoring plan must be developed, implemented and evaluated. Monitoring Plan A radon monitoring plan is site specific, but the basic steps are common. Basic Steps in the Plan Purpose of monitoring Monitoring strategy Survey Data Handling Quality control Concluding Remarks In radiological protection- NORM industries in particular Mining and Mineral Processing Facilities- Rn is a major contributor to exposure In Africa as more regulatory infrastructure gets set up- Radon will become a prominent issue- because mining is major. Challenge is how do we ensure that the decisions we make are: - Based on credible data to enable incredible impact - Based on credible legislative framework - Made by technically competent people

  12. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  13. Sorption of radon-222 to natural sediments

    International Nuclear Information System (INIS)

    Wong, C.S.; Chin, Y.P.; Gschwend, P.M.

    1992-01-01

    The sorption of radon to sediments was investigated, since this may affect the use of porewater radon profiles for estimating bed irrigation rates. Batch experiments showed that radon has an organic-carbon-normalized sediment-water partition coefficient (K oc , L kg oc -1 ) of 21.1 ± 2.9 for a Boston Harbor sediment, 25.3 ± 2.1 for a Charles River sediment, and 22.4 ± 2.6 for a Buzzards Bay sediment. These values are in close agreement with predictions using radon's octanol-water partition coefficient (K ow ), which was measured to be 32.4 ± 1.5. Temperature and ionic strength effects on K oc were estimated to be small. Given rapid sorption kinetics, the authors suggest that slurry stripping techniques used by many investigators to measure 222 Rn in sediment samples collect both sorbed and dissolved radon. Sorption effects were included in a transport model to obtain revised estimates of irrigation rates from existing literature profiles. Irrigation rates had to be increased over previously reported values in proportion to the sediment organic matter content

  14. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  15. Radon integral measurement system

    International Nuclear Information System (INIS)

    Garcia H, J.M.

    1994-01-01

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  16. Solar eruptions - soil radon - earthquakes

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time a new natural phenomenon was established: a contrasting increase in the soil radon level under the influence of solar flares. Such an increase is one of geochemical indicators of earthquakes. Most researchers consider this a phenomenon of exclusively terrestrial processes. Investigations regarding the link of earthquakes to solar activity carried out during the last decade in different countries are based on the analysis of statistical data ΣΕ (t) and W (t). As established, the overall seismicity of the Earth and its separate regions depends of an 11-year long cycle of solar activity. Data provided in the paper based on experimental studies serve the first step on the way of experimental data on revealing cause-and-reason solar-terrestrials bonds in a series s olar eruption-lithosphere radon-earthquakes . They need further collection of experimental data. For the first time, through radon constituent of terrestrial radiation objectification has been made of elementary lattice of the Hartmann's network contoured out by bio location method. As found out, radon concentration variations in Hartmann's network nodes determine the dynamics of solar-terrestrial relationships. Of the three types of rapidly running processes conditioned by solar-terrestrial bonds earthquakes are attributed to rapidly running destructive processes that occur in the most intense way at the juncture of tectonic massifs, along transformed and deep failures. The basic factors provoking the earthquakes are both magnetic-structural effects and a long-term (over 5 months) bombing of the surface of lithosphere by highly energetic particles of corpuscular solar flows, this being approved by photometry. As a result of solar flares that occurred from 29 October to 4 November 2003, a sharply contrasting increase in soil radon was established which is an earthquake indicator on the territory of Yerevan City. A month and a half later, earthquakes occurred in San-Francisco, Iran, Turkey

  17. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  18. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  19. Radon concentration inversions in the troposphere

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1987-07-01

    Vertical concentrations of radon in the lower troposphere were obtained in Southern Brazil up to 7Km high and have shown unexpected inverted profiles. The presence of low pressure center systems southwest to the flight path suggested that inversions might have been originated by a vertical transport mechanism based on the large scale circulation of developing synoptic systems. A simple friction-driven circulation model was contructed and the transport equation was solved. (author) [pt

  20. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  1. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    International Nuclear Information System (INIS)

    Nelson, I.C.

    1993-01-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy's (DOE) Radon Research Program and are administratively controlled within the ''Radon Hazards in Homes'' project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ''Mechanisms of Radon Injury'' and ''In vivo/In vitro Radon-Induced Cellular Damage'' projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ''Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,'' ''Laser Measurements of Pb-210,'' ''Radon Transport Modeling in Soils,'' ''Oncogenes in Radiation Carcinogenesis,'' ''Mutation of DNA Targets,'' ''Dosimetry of Radon Progeny,'' and ''Aerosol Technology Development'' also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE's Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research

  2. Monitoring radon reduction in Clinton, New Jersey houses

    International Nuclear Information System (INIS)

    Osborne, M.C.; Brennan, T.; Michaels, D.

    1987-01-01

    In 1986, a preliminary survey of houses in Clinton, New Jersey, conducted by the New Jersey Department of Environmental Protection (DEP), identified more than 50 houses with indoor radon concentrations greater than 100 pCi/l in the subdivision of Clinton Knolls. Many of these houses had radon concentrations of 600 pCi/l or higher. At the request of the New Jersey DEP, EPA's Air and Energy Engineering Research Laboratory, AEERL, initiated a project to develop and demonstrate cost-effective radon reduction techniques in 10 representative Clinton Knolls houses. Radon reduction was to be completed before the beginning of the 1986-1987 heating season to keep the exposure of residents to a minimum. Additional data were collected to add to the general body of information on radon transport and its control in houses; however, the data collected in this study were secondary to the pressing need of demonstrating effective radon reduction techniques. The authors describe these techniques and discuss the data on radon transport and control in this project

  3. 220Radon (Thoron) and progeny exposures in the front-end of nuclear fuel cycle activities with special reference to radioactive minerals, thorium and rare earths processing

    International Nuclear Information System (INIS)

    Pillai, P.M.B.

    2008-01-01

    Radon is a major Source of radiation exposure both at home and work places due to its universal presence. The International Commission on Radiological Protection has always treated the radioactive noble gas radon ( 222 Rn) and its isotope thoron ( 220 Rn) as a separate subject. ICRP Publication 65 (ICRP, 1993) summarizes the current knowledge of health effects of inhaled radon and its decay products and gives recommendations/guidelines for the control of exposures due to high radon levels encountered in dwellings and work places. A major departure from earlier publications on the subject is the entirely epidemiological considerations for developing the recommendations. In work place monitoring the progeny concentrations are of primary concern than the gases themselves. However radon/thoron gas measurements may also be used provided reliable information on the equilibrium factors are available. Though many developments have taken place and many options are available for individual monitoring for radon (mainly progeny) exposures of occupational workers, a viable personal dosimeter for individual monitoring for thoron daughters is yet to materialize. The doses are mostly estimated by making use of work place monitoring data in combination with occupancy factors

  4. Radon house doctor

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Brennan, T.; Wadach, J.B.; O'Neil, R.

    1986-01-01

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  5. Radon in public buildings

    International Nuclear Information System (INIS)

    Schulz, H.; Flesch, K.; Hermann, E.; Loebner, W.; Leissring, B.

    2009-01-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  6. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  7. Riddle of radon

    International Nuclear Information System (INIS)

    O'Riordan, M.

    1996-01-01

    Why is the most significant source of human exposure to ionising radiation - and one that is so easy to reduce - not accorded the attention it deserves from those engaged in radiological protection nor the action it requires from those affected by it at work or at home? There are, after all, clear indications that high levels of radon exist and firm strands of evidence that radon causes cancer. Some national and international authorities have even developed regulations and recommendations to limit exposures. But radon still lies in the penumbra of protection because proponents of intervention lack conviction and opponents are full of passionate intensity. Little wonder that citizens are confused! (Author)

  8. Radon affected areas: Scotland

    International Nuclear Information System (INIS)

    Miles, J.C.H.; Green, B.M.R.; Lomas, P.R.

    1993-01-01

    Board advice on radon in homes issued in 1990 specifies that areas of the UK where 1% or more of homes exceed the Action Level of 200 becquerels per cubic metre of air should be regarded as Affected Areas. Results of radon measurements in homes in the districts of Kincardine and Deeside and Gordon in Grampian Region and Caithness and Sutherland in Highland Region are mapped and used to delineate Affected Areas in these areas where required. The Scottish Office is advised to consider the desirability of developing guidance on precautions against radon in future homes. (author)

  9. Measuring your radon risk

    International Nuclear Information System (INIS)

    Mackmurdo, R.

    1994-01-01

    In its annual report for 1992/93, the NRPB has warned that tens of thousands of UK employees may be exposed to high levels of radon at work. In addition to those who work underground, employees at risk of radon-induced lung cancer are typically those who spend long periods indoors. This article reviews the implications for all employers especially those in low or unknown levels of radon who resist taking measurements in the belief that by not measuring, they are not liable. (UK)

  10. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  11. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  12. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  13. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  14. The survey of dwellings with increased radon levels in Slovakia

    International Nuclear Information System (INIS)

    Vicanova, M.

    1998-01-01

    This national survey of indoor radon measurements in a sample of dwellings in Slovakia was organised by the Institute of Preventive and Clinical Medicine in Bratislava. The aim was to find districts and type of dwellings with the highest indoor radon concentrations and to estimate the radiation load of the Slovak population owing the indoor radon exposure. Passive solid state nuclear track detectors were used to measure indoor radon concentrations. The detectors were polyallyldiglycolcarbonate CR-39 which were placed in about 6,000 selected houses (minimum two detectors for every residence). After six months exposed detectors and questionnaires were returned to for analysis. Electrochemical etching combined with a chemical pre-etching process was used for evaluating detectors. Present results are from 3,657 residents (0.2% of total dwellings in Slovakia). It was found that the arithmetic mean of equilibrium equivalent concentration (EEC) was 86 ± 119 Bq m -3 , the geometric mean was about 41 ± 2.22 Bq m -3 and 11% of dwellings (N = 409) have a greater EEC of radon than the action level (200 Bq m -3 ). The national survey results suggest that Slovakia may be among the countries with high radon risk in Central Europe. The population-weighted arithmetic mean is 48 Bq m -3 , the maximum value found was 1500 Bq m -3 and the average annual effective dose from indoor radon exposure is 2.1 mSv. The district with the highest indoor radon concentrations correlate with known presence of uranium in the soil, therefore the soil is probably the main source of radon in Slovak dwellings. This survey of dwellings with increased radon levels supported this conclusion, because the highest radon levels were found in older family houses without cellars. (author)

  15. Anomalous Radon Levels in Thermal Water as an Indicator of Seismic Activity

    International Nuclear Information System (INIS)

    Zmazek, B.; Gregoric, A.; Vaupotic, J.; Kobal, I.

    2008-01-01

    Radon can be transported effectively from deep layers of the Earth to the surface by carrier gases and by water. This transport is affected by phenomena accompanying seismic events. If radon is therefore monitored shortly before or during an earthquake, at a thermal water spring, an anomaly, i. e. a sudden increase or decrease in radon level, may be observed. Thermal springs and ground waters in Slovenia have therefore been systematically surveyed for radon. The work presented here is a continuation of our previous radon monitoring related to seismic activity carried out on weekly analyses during 1981-82 in thermal waters of the Ljubljana basin. In this paper, we focus on radon anomalies in thermal springs at Hotavlje and Bled in the period from October 2005 to September 2007

  16. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  17. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  18. Biological basis of inhalation exposure of radon and its daughters

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1989-01-01

    Since inhalation exposure by radon and its daughters is very specific type of internal exposure, it is necessary to understand its characteristic nature. The specificity originates from the nuclear feature of radon daughters and the biological micro-environment in the respiratory tract. Inhaled radon and its daughters exist in the respiratory tract as ions attached to air dusts and deposit on the mucus surface of the respiratory tract by various mechanisms such as impaction, sedimentation and diffusion. Deposition of radon daughters is predominant around the site of the fourth generation according to Weibel's model. Deposited particles with radon daughters are cleared by muco-ciliary transportation. Its speed is estimated to be about 1.0 cm/min, at the upper region. Alpha decay will happen during transportation in the respiratory tract. Radon has no tissue affinity metabolically. Therefore, the irradiation is limited to the epithelial cells of respiratory tract. The cell components within 30-70 micron in depth are irradiated with alpha particle. Biological effectiveness of alpha radiation is very high compared with beta or gamma radiation. The target cell for carcinogenesis by radon exposure is considered to be the basal cell of epithelium. Lung cancer induced by radon inhalation is recognized to be squamous cell carcinoma, small cell carcinoma, or oat-cell carcinoma and adenocarcinoma. The modification factors which influence the effect of radon exposure are co-inhalation of ore dust and smoking habit. According to epidemiological studies on lung cancer which occurred in uranium miners, it is suggested that the smoking habit strongly promotes lung cancer induction. (author)

  19. Passive radon daughter dosimeters

    International Nuclear Information System (INIS)

    McElroy, R.G.C.; Johnson, J.R.

    1986-03-01

    On the basis of an extensive review of the recent literature concerning passive radon daughter dosimeters, we have reached the following conclusions: 1) Passive dosimeters for measuring radon are available and reliable. 2) There does not presently exist an acceptable passive dosimeter for radon daughters. There is little if any hope for the development of such a device in the foreseeable future. 3) We are pessimistic about the potential of 'semi-passive dosimeters' but are less firm about stating categorically that these devices cannot be developed into a useful radon daughter dosimeter. This report documents and justifies these conclusions. It does not address the question of the worker's acceptance of these devices because at the present time, no device is sufficiently advanced for this question to be meaningful. 118 refs

  20. The matter of radon

    International Nuclear Information System (INIS)

    O'Riordan, M.C.; O'Riordan, C.N.

    1992-01-01

    By comparison with the radiation doses from radon, the doses to individual members of the public and to the general community from nuclear activities are quite trivial. Doses from radon in some British homes exceed the statutory dose limit for nuclear workers;the collective dose from radon is two thousand times the value for nuclear discharges. And yet, too little attention - legal or otherwise - is paid to this radioactive pollutant. An attempt is made in this paper to compensate for the neglect. The origins, properties and harmful effects of radon are described. Measurements in homes and places of work are summarised. Voluntary and regulatory controls on exposure are elucidated. Questions of public administration, confidentiality of information and sale of property are discussed. Prospects for progress are assessed. (author)

  1. Radon - natural health threat

    International Nuclear Information System (INIS)

    Wrixon, Anthony

    1985-01-01

    Natural sources of radiation attract little attention, yet a survey has found radon gas in buildings at levels which put the occupants at some risk. The author wants safety standards set without undue delay. (author)

  2. Radon i danske lejeboliger

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Skytte Clausen, Louise

    I denne undersøgelse kortlægges radonindholdet i indeluften og det undersøges, hvordan indholdet af radon i indeluften er fordelt og spredes i en ejendom, og om det er muligt at pege på en bygningsdel eller en bygningskomponent som en spredningsvej for radon i boliger. Boligerne er lejeboliger og...... ligger i etageejendomme, kæde- og rækkehuse tilhørende bygningstyper opført fra 1850 og frem. De udvalgte ejendomme ligger i områder af landet, hvor der ved tidligere undersøgelser har vist sig at være en stor andel af huse med et højt indhold af radon i indeluften. Koncentrationen af radon er målt over...

  3. ROE Radon Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The polygon dataset represents predicted indoor radon screening levels in counties across the United States. These data were provided by EPA’s Office of Radiation...

  4. Radon in workplaces

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Porstendoerfer, J.; Schwedt, J.; Streil, T.

    2000-01-01

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations ( 218 Po, 214 Pb, 214 Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-f p -Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction f p and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have

  5. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  6. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    Stocker, H.

    1979-12-01

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  7. Radon in housing

    International Nuclear Information System (INIS)

    1984-04-01

    The enclosed material deals with the substantial efforts made until now to control the levels of radon in Sweden dwellings. It is meant as a source material for the several publications which have emerged from the National Institute of Radiation Protection in Stockholm during 1983 and 1984. The first document is a translation of chapter 16, the deliberations of the Swedish Radon Commission, appointed by the government in 1979. Comments on the report of the commission were solicited before 1 October, 1983. (author)

  8. Monitoring of radon isotopes and affiliated disintegration products (ADP) in soil air and water

    International Nuclear Information System (INIS)

    Anshakov, O. M.; Bogacheva, E. S.; Bouchawach, Fauzi Hadji; Chudakov, V. A.

    2009-01-01

    The subject of research is a physic and mathematical model of the process of radon determining in soil air and water by the way of its sampling for absorbent, preparation of a sample to measurement taking, ADP radiometry: Pb- 214, Bi-214 in a sample, calculation of radon activity concentration in an initial medium. The target of research is experimental determining of assignment parameters of devices, used for radon sampling and measurement of its ADP activity in relation to the methods being developed with estimation of their expected metrological performance, analysis of radon and ADP content for ecological research in relation to objectives of radon and ADP monitoring in environmental objects. (author)

  9. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  10. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  11. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  12. Radon in Croatian spas

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Planinic, J.

    2004-01-01

    There are ten thermal spas in Croatia and all of them provide health services for patients and visitors. Radon measurements were performed since there is a lack of data concerning natural radioactivity originated from radon and its short-lived progenies in such environments. The thermal water at two different sites (the indoor swimming pool with geothermal water and the spring) in each spa was sampled and radon concentrations were measured by AlphaGUARD radon measuring system. The obtained values were in the range of 0.7 to 19 Bq.dm -3 and 2 to 94 Bq.dm -3 for indoor swimming pools and springs, respectively. Integrated measurements of radon concentration in air were performed by two solid state nuclear track detectors LR-115 II (open and diffusion one) thus enabling estimation of equilibrium factor between radon and its daughters. The annual effective doses received by spa workers were found to be about 1 mSv/y (below the lower limit value of 3 mSv/y recommended by ICRP 65). The doses of patients and visitors were one or two order of magnitude lower than that of the personnel. (author)

  13. Radon and radon daughter monitoring (including thoron daughter monitoring)

    International Nuclear Information System (INIS)

    Leach, V.A.; Grealy, G.; Gan, W.

    1982-01-01

    Radon/radon daughter and thoron daughter measurement techniques are outlined. The necessary precautions and critical assessments of each method are also presented with a view to providing a better understanding of the various measurement methods

  14. Investigation of the Radon exhalation potential in the PACA region. Phase II: case of high potential exhalation areas in Medium Champsaur (05) and South Esterel (83). Final report

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled the results of the first phase of the study and the objectives of the second phase, the authors present the methodology: uranium and thorium analysis on rock, radon-222 activity measurement in soil gases, and gamma radiation measurement. They discuss the influence of rock uranium content on radon exhalation (natural contextual and physical phenomena governing radon transport, radon properties, uranium geochemistry). They report the results obtained in the two considered areas (meteorological conditions, radon 222 content in soils, uranium and thorium contents in geological formations, influence of geological formation type and distribution on radon activity)

  15. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  16. Understanding the origin of radon indoors: Building a predictive capability

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-12-01

    Indoor radon concentrations one to two orders of magnitude higher than the US average of ∼60 Bq m -3 (∼1.5 pCi L -1 ) are not uncommon, and concentrations greater than 4000 Bq m -3 have been observed in houses in areas with no known artificially-enhanced radon sources. In general, source categories for indoor radon are well known: soil, domestic water, building materials, outdoor air, and natural gas. Soil is thought to be a major source of indoor radon, either through molecular diffusion (usually a minor component) or convective flow of soil gas. While soil gas flow into residences has been demonstrated, no detailed understanding of the important factors affecting the source strength of radon from soil has yet emerged. Preliminary work in this area has identified a number of likely issues, including the concentration of radium in the soil, the emanating fraction, soil type, soil moisture content, and other factors that would influence soil permeability and soil gas transport. Because a significant number of dwellings are expected to have indoor radon concentrations above guideline levels, a predictive capability is needed that would help identify geographical areas having the potential for high indoor concentrations. This paper reviews the preliminary work that has been done to identify important soil and building characteristics that influence the migration of radon and outlines the areas of further research necessary for development of a predictive method. 32 refs., 4 figs

  17. Parameters that characterize the radon hazard of soils

    International Nuclear Information System (INIS)

    Blue, T.E.; Mervis, J.A.; Jarzemba, M.S.; Carey, W.E.

    1990-01-01

    It has been observed that the radon concentration in homes does not depend solely on the steady-state 222 Rn concentration in the soil. An explanation for the lack of correlation between radon concentrations in the soil and in adjacent homes includes factors such as the construction of the homes, their heating systems, and the habits of their occupants. Another explanation, which is proposed in this paper, is that the steady-state concentration of radon in the pore gas does not fully characterize the soil as a radon hazard. Other soil properties, such as its diffusion length for radon and its porosity, may be important. In this paper, the authors have identified the soil properties important in radon transport into the basement of a home by mathematically modeling ventilated basement air enclosed in basement walls and surrounded by soil and by solving the model equations to determine an expression for the basement air radon concentration as a function of the properties of the soil and basement wall

  18. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  19. Radon in uranium mining industry and application of SSNTD in monitoring and dose evaluation

    International Nuclear Information System (INIS)

    Khan, A.H.

    2006-01-01

    Radon is present everywhere and accounts for a globally major share of natural radiation exposure of the population. Though it is present in most of the underground workings it is a source of concern in uranium mining and ore processing industry as well as in many other operations carried out in confined spaces below the ground, like railway tunnels and non-uranium underground mines. Many monitoring techniques are available for evaluation of radon and its short-lived progeny concentrations. Scintillation cell techniques, also called Lucas cell, is one of the earliest developed methods of radon monitoring still widely used in mines where appreciable concentrations of radon above about 40-50 Bq.m -3 are expected. For low concentration of radon as observed in the atmosphere, dwellings and other workplaces, the radon absorption in charcoal followed by gamma counting, two filter method and electrostatic techniques are available. Solid state nuclear track detectors (SSNTD) are now widely used for a variety of situations for monitoring of low level of radon over an extended period of time. It is now extensively used in radon monitoring in dwellings and also in radon dosimetry in mines. Radon daughters being the more important contributors to the internal radiation exposure are also being monitored using conventional techniques as well as SSNTD. Various monitoring techniques for radon and its progeny and the concentrations observed at different stages of uranium mining, ore processing and tailings management are discussed in this presentation. (author)

  20. Radon detection system, design, test and performance

    International Nuclear Information System (INIS)

    Balcazar, M.; Chavez, A.; Pina-Villalpando, G.; Navarrete, M.

    1999-01-01

    A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter

  1. Generation and mobility of radon in soil

    International Nuclear Information System (INIS)

    1992-01-01

    Objectives of this research include: (1) To determine the processes that cause large seasonal and short-term changes in the radon (Rn) content of soil gases, and to develop methods of predicting and modeling these variations; (2) to evaluate the relation of Rn emanation coefficients to form of radium (Ra) and other U-series decay products, particularly the role of Ra in organic matter and Fe-oxides; (3) to evaluate the conditions in which convection of gas in soil and bedrock may affect soil gas radon availability in houses; and, (4) to collaborate with other DOE researchers on evaluation of Rn flux into houses, using our well characterized soil sites

  2. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  3. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  4. Radon risk in residential buildings

    International Nuclear Information System (INIS)

    Niewiadomski, T.

    1996-01-01

    The author discusses the risk related to the inhalation of radon decay products. This products are the cause of almost the half of the doses absorbed by the people. The concentration of radon in buildings is much higher than in the open areas and its country average in Poland is 50 Bq/m 3 . It is difficult to predict the concentration of radon in the building without measurement. Author concludes that there are technical means to decrease radon concentration in buildings

  5. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  6. Exposure to Radon in Dwellings in the Area of Zagreb

    International Nuclear Information System (INIS)

    Lokobauer, N.; Franic, Z.; Petroci, Lj.; Sokolovic, E.; Lokner, V.

    1998-01-01

    Until the 1970s radon and its progeny were regarded as radiation health hazards encountered only in the mining and processing of uranium ore. This notion has dramatically changed as a result of increasing efforts made by many countries to measure radon in dwellings. Since it has been assessed that radon constitutes on average about 53% of the human exposure to natural radiation (UNSCEAR 1993), attention to the problem of exposure to radon and associated health risk has been growing in both developed and developing countries. This paper deals with the investigations of indoor radon activity concentrations at selected dwellings in the area of Zagreb. The fact that concentration of indoor radon depends strongly on radium sources in the soil pointed to the possibility that increased radon levels could be measured in the ground floor dwellings. The measurements of indoor radon performed by Honeywell professional radon monitor in the 30 ground floor dwellings, and at same location in 10 dwellings on higher floors. In order to obtain average daily values, radon activity concentrations were measured throughout 24 hours at each dwelling, over the seasons spring-summer and autumn-winter. In the season spring-summer radon activity concentrations in the ground floor dwellings ranged from 22±5 to 133±12 Bqm -3 (mean value 56±31 Bqm -3 ) and in the season autumn-winter ranged from 22±5 to 311±18 Bqm -3 (mean value 94±64 Bqm -3 ). In the dwellings on higher floors radon activity concentrations in the season spring-summer ranged from 11±3 to 78±9 Bqm -3 (mean value 32±21 Bqm -3 ), and in the season autumn-winter ranged from 30±5 to 137±12 Bqm -3 (mean value 60±32 Bqm -3 ). Average annual radon activity concentration for the 30 investigated ground floor dwellings were 75±45 Bqm -3 , and 46±26 Bqm -3 for the 10 dwellings on higher floors. Investigations performed in the dwellings in the area of Zagreb revealed significant differences in radon levels between the ground

  7. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  8. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  9. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    The objectives of R and D on radon in the indoor environment at SCK-CEN is to (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions; to assess the radon concentrations in buildings retrospectively with volume traps. Progress and main achievements in 1997 are reported on

  10. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    A precise retrospective assessment of long-term radon exposures in dwellings is essential for estimating lung-cancer risks. The objectives of this research are (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions, (2) to assess the radon concentrations in buildings retrospectively with volume traps

  11. Emission of radon from soil

    International Nuclear Information System (INIS)

    Ahlberg, P.; Lindmark, A.; Rosen, B.

    1980-03-01

    The report deals with the measurement of radon daughters in the soil Radon migrates readily through the limestone which is superpositioned the alum shale. The level of gamma radiation is normal. Measurements have been made by the track etch technique and with Kodak film. The contents of radon daughters are shown to be due to the measuring depth. (G.B.)

  12. Low-cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Univ. of Illinois, Urbana-Champaign, IL (United States); Francisco, Paul W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Merrin, Zachary [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-09-01

    The U.S. Department of Energy's Building America research team Partnership for Advanced Residential Retrofits conducted a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation and living space floor assembly. Fifteen homes in the Champaign, Illinois, area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity measurements. Blower door and zone pressure diagnostics were conducted at each house. The treatments consisted of using air-sealing foams at the underside of the floor that separated the living space from the foundation and providing duct sealing on the ductwork that is situated in the foundation area. The hypothesis was that air sealing the floor system that separated the foundation from the living space should better isolate the living space from the foundation; this isolation should lead to less radon entering the living space from the foundation. If the hypothesis had been proven, retrofit energy-efficiency programs may have chosen to adopt these isolation methods for enhanced radon protection to the living space.

  13. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  14. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  15. Radon soil increases before volcano-tectonic earthquakes in Colombia

    International Nuclear Information System (INIS)

    Garzon, G.; Serna, D.; Diago, J.; Moran, C.

    2003-01-01

    Continuous studies of radon concentration changes in soils for the purpose of earthquake monitoring have been carried out in three colombian districts and in the edifices of Galeras and nevado del Ruiz volcanoes since 1995. In zones of active faulting have been measured radon soil emissions between 1000 and 2500 pCi/L. In an intersection of two active geological faults have been measured levels of 25 000 pCi/L. In the present work appears a compilation of examples of the registered anomalous radon emissions in several stations before earthquakes of tectonic character. Examples of registered radon increases before: (1) events of magnitudes between 2 and 4; (2) the occurrence of seismic swarms; and (3) the Quindio (Colombia) earthquake (M w = 6, 2) of January 1999, are described. A model of transport mechanism for the studied isotopes is presented. (orig.)

  16. A continuous monitor for the measurement of environmental radon

    International Nuclear Information System (INIS)

    Chittaporn, P.; Eisenbud, M.; Harley, N.H.

    1981-01-01

    Although inhaled short-lived 222 Rn daughters deliver the pertinent α dose for assessing human health effects, radon daughters do not of themselves exist in any atmosphere for more than 2-3 hr. Their long-lived parent (3.82 day) 222 Rn supports the daughter activity and it is the transport of 222 Rn which ultimately determines dose. Without an understanding of the long and short-term temporal patterns of indoor and outdoor 222 Rn it is impossible to understand the factors which are important in establishing any human health hazard from the daughters. This work describes a new continuous environmental radon monitor which measures radon alone without interference from radon daughters. The detector is a cylinder (13 cm diameter x 14 cm high), is lined with alpha scintillation phospor on a Mylar substrate and is portable and easily constructed from inexpensive and commercially available materials. (author)

  17. Radon concentrations profiles over the brazilian Amazon basin during wet season

    International Nuclear Information System (INIS)

    Pereira, E.B.; Dias, P.L.S.; Nordemann, D.J.R.

    1991-01-01

    Atmospheric radon measurements were performed airborne in the Brazilian Amazon Basin during the wet season ABLE-2B experiment. The vertical profiles of radon showed a small decrease of concentration with increasing altitude at a rate varying from 6.5 to 11 x 10 - 2 Bq m - 3 km - 1. The calculation of the flux balance of radon in the troposphere above the Amazon Basin indicated a residual flux at the upper boundary of the measurement domain (6 km) of 0.14 atom cm - 2 s - 1. This residue may be associated with the turbulent transport of radon due to cloud activity. (author)

  18. Radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Green, B.M.R.; Lomas, P.R.

    1992-01-01

    The results of a large-scale survey of radon concentrations in Norwegian dwellings are reported. Measurements of radon have been made in a total of 7500 dwellings. The dwellings were randomly selected and the number in each municipality is proportional to its population. The measurements were performed using etched track detectors from the National Radiological Protection Board in the UK. One detector was placed in the main bedroom in each dwelling for 6 months. The annual average of radon concentration in Norwegian bedrooms is calculated to be 51 Bq.m -3 . The frequency distribution is approximately log-normal with a geometric mean of 26 Bq.m -3 and about 4% of the bedrooms have concentrations above 200 Bq.m -3 . The radon concentrations are found to be about 40% higher for bedrooms in single-family houses than in blocks of flats and other multifamily houses. In a large proportion of single-family houses the living room and the kitchen are located on the ground floor and the bedrooms on the first floor. An additional factor is that the winters of 1987-1988 and 1988-1989 were much warmer than normal. Taking these factors into account, the average radon concentration in Norwegian dwellings is estimated to be between 55 and 65 Bq.m -3 . (author)

  19. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  20. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  1. Radon as a source of radiation hazards in the workplace

    International Nuclear Information System (INIS)

    Rosli Mahat

    1995-01-01

    The paper discussed on radon in malaysian workplace. There are two type of workplaces: amang processing plants and research buildings. Review of some data reported in several research facilities was presented

  2. Environmental radon with RAD7 detector

    International Nuclear Information System (INIS)

    Lopez M, A.; Balcazar, M.; Fernandez G, I. M.; Capote F, E.

    2016-09-01

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m -3 , is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m -3 , counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m -3 , and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m -3 ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  3. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  4. The householders' guide to radon

    International Nuclear Information System (INIS)

    1988-06-01

    This guide is a follow-up to the leaflet Radon in Houses which was issued previously by the Department of the Environment. It is intended for people who live in areas with high levels of radon. It is written particularly for householders whose homes have already been tested and found to have an appreciable level of radon. It explains what radon is, how it gets into houses and what the effects on health may be. It also outlines some of the ways of reducing the level of radon and gives guidance both on how to get the work done and likely costs. (author)

  5. Radon surveys and their implications

    International Nuclear Information System (INIS)

    Miles, J.C.H.; Cliff, K.D.; Dixon, D.W.; Green, B.M.R.; Strong, J.C.

    1989-01-01

    In the UK, as in other countries, radon daughter inhalation is the most significant cause of human exposure to ionising radiation either at home or at work whether one considers the mean or the maximum dose. Substantial studies of radon are under way in the UK, and the importance of radon is recognised in several spheres. NRPB investigations of the radon levels in buildings and mines are reported, the distributions of doses presented and risk factors calculated. The bases of radon limitation for workers and members of the public are given and the means of compliance discussed. (author)

  6. Radon measurements in underground and ground constructions in Tashkent city

    International Nuclear Information System (INIS)

    Akimov, V.A.; Yafasov, A.Y.; Vasidov, A.; En, Z.; Tillaev, T.; Tsipin, V.Z.

    2002-01-01

    More than half of the dose of the natural radioactivity received by population is related to radon and its progeny. Investigations of scientists all over the world have shown that excessive radon and its progeny exposure dose is associated with a risk of lung cancer. Short-lived radon daughters (Po-218 and Po-214) are considered to be of the most dangers. At a relaxation process resulting from an earthquake, the radon gas can release from the accumulators and get indoors, that enhances greatly the radon level there. According to seismologists data, as a result of the strong Tashkent earthquake in 1966, extensive breaks and faults have been formed along the city and its neighborhoods. The aim of our work was evaluation of radon concentration level and its variation in Tashkent subway stations and related underground offices and also in apartments of multi story buildings and detached houses. The measurements were conducted by two different techniques-with ionization chamber radiometer 'Alpha GUARD' and with solid state nuclear track detectors. The Alpha GUARD radiometer operates either in the mode of passive sampling, or by pumping air through the ionization camera being of 0.6 l in volume. The radiometer is capable of measuring a volumetric activity of radon-222 in air (Bq/m3), and it is equipped with the devices that measure some environmental parameters such as temperature, relative humidity and air pressure. The range of V A of 222 Rn in air the device is able to measure is 10 to 2x10 6 Bq/m 3 , sensitivity is 1 pulse/min for 20 Bq/m 3 , and its self-background is less than 1 Bq/m 3 . The radon measurements in Tashkent subway stations and underground offices have shown that daily mean radon values were in the range of 14-65 Bq/m 3 , except for the Pushkin Station, where the daily mean V A was 137 Bq/m3. Such a high radon level is connected with availability near the station of one of the numerous faults and fractures of the terrestrial crust responsible for the

  7. Radon in soil gas

    International Nuclear Information System (INIS)

    Rector, H.E.

    1990-01-01

    This paper presents the results of a technology review conducted to identify and organize the range of options for measuring radon in soil gas as a means to evaluate radon exposure potential in buildings. The main focus of the review includes identifying the following: Measurement of objectives - the specific parameter(s) that each technology is designed to measure( e.g., soil gas concentration, flux density, etc.); Equipment needs -commercial availability of systems and/or components, specifications for fabricated components; Procedural information - documented elements of field and laboratory methodology and quality assurance; Underlying assumptions - conceptual and mathematical models utilized to convert analytical outcomes to estimators of radon. Basic technologies and field data were examined from a generic perspective (e.g., the common denominators of passive detectors, hollow sampling probes, flux monitors)( as well as specific configurations developed by individual investigators (e.g., sample volume, depth) to develop the basis for separating analytical uncertainties form sampling uncertainties

  8. Radon: a bibliography

    International Nuclear Information System (INIS)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given

  9. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  10. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  11. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  12. Dry radon gas generator

    International Nuclear Information System (INIS)

    Vandrish, G.

    1979-10-01

    A radon gas standard with a source strength of 120037 pCi capable of delivering 121 pCi of radon gas successively to a large number of cells has been developed. The absolute source strength has been calibrated against two radium solution standards and is accurate to 4 percent. A large number of cells (approxiiately 50) may be calibrated conveniently on a daily basis with appropriate corrections for sequential changes in the amount of gas delivered, and a correction for the growth of radon in the standard on successive days. Daily calibration of ten cells or less does not require these corrections. The standard is suitable for field use and the source emanation rate is stable over extreme temperatue and pressure ranges and over six months

  13. Radon: an environmental pollutant

    International Nuclear Information System (INIS)

    Mills, W.A.

    1979-01-01

    Radiological concerns with the disposal and use of mining and milling residues have heightened to the point that federal agencies are asking or being asked to formulate new regulactions for controlling radon daughters from a variety of sources - radioactivity previously considered to be part of our natural environment. Based on information derived from epidemiologic studies of underground miners, particularly uranium miners, the health impact on the general public is being projected. Depending on the assumptions made, these projections vary widely. Because of these variations in health risks, decisions on control measures have even wider implications on economic and social considerations. Thus the question: is radon an environmental pollutant. While not fully answering the question, recognizing the uncertainties in assessing and controlling radon daughters can put the question in better perspective

  14. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    Science.gov (United States)

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  15. Project radon final report

    International Nuclear Information System (INIS)

    Ekholm, S.; Rossby, U.

    1990-01-01

    The main radiation problem in Sweden is due to radon in dwellings. At the Swedish State Power Board, R, D and D about radon has been going on since 1980. The work has concentrated on the important questions: How to find building with enhanced radon levels?; How to accurately decide on measures that will give adequate cleaning-up results, using appropriate measurement procedures; What cleaning-up effect is possible to achieve with an electro-filter?; and What cleaning-up effects are possible to achieve with different types of ventilation systems? The R, D and D-work, has been pursued in cooperation with universities of technology in Denmark and Finland, equipment manufacturers, consultants and authorities concerned. It was decided in December 1986 to give an offer to some SSPB-employees to investigate the radon situation of their dwellings, in order to test methods of measurement and cleaning-up under realistic conditions and to develop the methods to commercial maturity. The investigation was named 'Project Radon' and was carried out in three years with costs amounting to 1 M dollars. During the project less comprehensive radon measurements, named 'trace-measurements' were undertaken in about 1300 dwellings and more elaborate measurements, leading to suggestions of actions to be taken, in about 400 dwellings. Out of the suggestions, about 50 are carried out including control measurement after actions taken. The control measurement have shown that the ability to suggest appropriate actions is very successful - in just one case was a minor additional action necessary. The high reliability is achieved by always doing elaborate measurements before suggested mitigation method is decided on. (authors)

  16. Radon programmes and health marketing

    International Nuclear Information System (INIS)

    Fojtikova, I.; Rovenska, K.

    2011-01-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. (authors)

  17. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  18. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  19. Development of a portable instantaneous soil radon measurement instrument

    International Nuclear Information System (INIS)

    Wang Yushuang; Ge Liangquan; Jiang Haijing; Lin Yanchang

    2007-01-01

    A dual-channel instantaneous soil radon measurement instrument based on the method of electrostatic collection is designed. It has the features of small size, low cost, and high sensitivity, etc. A single chip microcomputer is adopted as the data processing and control unit. The concentration of radon can be reported in field. The result is also corrected by the pressure sensing system. A double channel discriminator is used so that the detector can eliminate the interference from the progenies of radon except RaA. LCD and MCU based encoding keyboard are used to give users a friendly interface. Operating and function setting is easy. (authors)

  20. Radon and environmental radioactivity in the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-01-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  1. Radon gas. A review with emphasis on site investigations and measurements of soil gas and indoor house levels

    International Nuclear Information System (INIS)

    Mitchell, Seamus.

    1992-09-01

    A review of radon gas, with particular reference to its source and transport through soils and into buildings is examined. The principal parameters affecting the movement of radon has been discussed. The levels of radon gas in soils and in dwelling houses has been examined. Radon levels in the soil gas were highest in mineral soils with pear soils giving low readings but there was no significant differences between the results. Houses situated over granite and limestone bedrock gave similar results for indoor radon concentrations, with no significant differences being recorded. Results were expected to be much higher in houses over granite areas, in view of the higher uranium series activity in granites. It is concluded that high radon gas levels in soils under and in he vicinity of houses is the probable explanation for the indoor radon levels found. The influence of the underlying bedrock is not the most important parameter as was surmised before the study. (author)

  2. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa

    International Nuclear Information System (INIS)

    Sainz, Carlos; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-01-01

    Radon ( 222 Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ( 226 Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m 3 respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. - Highlights: • Radon in water is the major source of indoor air radon concentration in thermal facilities. • Radon in water has been used to characterize the origin of water used for treatments in a spa. • Preliminary dose assessment from radon exposure has been performed.

  3. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Carlos, E-mail: sainzc@unican.es; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-02-01

    Radon ({sup 222}Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ({sup 226}Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m{sup 3} respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. - Highlights: • Radon in water is the major source of indoor air radon concentration in thermal facilities. • Radon in water has been used to characterize the origin of water used for treatments in a spa. • Preliminary dose assessment from radon exposure has been performed.

  4. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  5. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Saum, D.; Craig, A.B.; Leovic, K.

    1990-01-01

    Since 1987, more than 40 schools in Maryland, Virginia, Tennessee and North Carolina were visited by the U.S. Environmental Protection Agency (EPA). School characteristics that potentially influence radon entry and impact mitigation system design and performance were identified. Mitigation systems that had proven successful in house mitigation were then installed in several of these schools. Many of the systems were installed by school personnel with some assistance from EPA and an experienced radon diagnostician. This article presents the diagnostic measurements made in the schools and it discusses in detail the specific mitigation systems that were installed in four Maryland schools by the EPA

  6. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  7. Radon measurements in Greece

    International Nuclear Information System (INIS)

    Georgiou, E.; Ntalles, K.; Molfetas, M.; Athanassiadis, A.; Proukakis, C.

    1988-01-01

    Studies of radon concentration in greek spas, in a cave, in constituents of the greek cement, in building materials in Greece and in greek mines have been published. Some preliminary studies of radon concentration in greek dwellings have been published. In order to get an idea of the problem in Greece we decided to carry out a national survey. Two different sites were selected: Athens, where domicile about 40% of the greek population and Domatia, a small village in northern Greece 600Km from Athens, located in an area known to have soil with increased uranium concentrations

  8. Nonlinear closure relations theory for transport processes in nonequilibrium systems

    International Nuclear Information System (INIS)

    Sonnino, Giorgio

    2009-01-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  9. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  10. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  11. Typhoon and elevated radon level in a municipal water supply

    International Nuclear Information System (INIS)

    Mao, Cheng-Hsin; Weng, Pao-Shan

    2000-01-01

    The Municipal Water Supply at Hsinchu City is a water treatment plant using poly- aluminum chloride (PAC) for coagulation and then followed by precipitation and filtration. Its capacity is 70,000 m 3 /day. The raw water is drawn from the nearby river. Since the subject of interest is the radon level during typhoon season, the sampling period was from March to December 1999. Commercially available electret was used for water samples taken from the five ponds in the plant. This technique relies on the measurement of radon in air above a water sample enclosed in a sealed vessel. The concentration of airbone radon released from water was determined by means of the electret ion chamber. During the first sampling period there came two typhoons. One is called Magie during June 10-17, and the other called Sam during August 20-26. The first typhoon led to the radon level measured from the water samples as high as 705 Bq/m 3 , while the second caused even higher radon level as high as 772 Bq/m 3 . Similar results were obtained for the second sampling period after August till December 1999. For those measured without typhoon influence, the average radon was lower from the coagulation pond yet without coagulation process during March through August 1999. However, water samples taken from the pond after precipitation did not show similar results in radon level. (author)

  12. Radon in houses due to radon in potable water

    International Nuclear Information System (INIS)

    Hess, C.T.; Korsah, J.K.; Einloth, C.J.

    1987-01-01

    Radon concentration in the air of 10 houses has been measured as a function of water use and meterological parameters such as barometric pressure, wind velocity and direction, indoor and outdoor temperature, and rainfall. Results of calibrations and data collected in winter, spring, fall, and summer are given for selected houses. Average values of radon concentration in air are from 0.80 to 77 rhoCi/1. Water use average ranges from 70 to 240 gal/day. Average potential alpha energy concentrations in these houses range from 0.02 to 1.6 working levels. The radon level due to water use ranges from 0 to 36% of the house radon from soil and water combined. The radon level change due to use of a filter on the water supply shows a 60% reduction in radon in the house. Conclusions are that water radon can be a major fraction of the radon in houses. The ratio of airborne radon concentration due to water use to the radon concentration in water is 4.5 x 10/sup -5/ - 13 x 10/sup -5/

  13. Contribution of radon and radon daughters to respiratory cancer

    International Nuclear Information System (INIS)

    Harley, N.; Samet, J.M.; Cross, F.T.; Hess, T.; Muller, J.; Thomas, D.

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime

  14. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  15. Water winning in aquifers in the catchment area of the Elbe river. Task report no. 5: Radon applied for characterisation of geohydraulic processes; Wassergewinnung in Talgrundwasserleitern im Einzugsgebiet der Elbe. Teilbericht zum Thema Nr. 5: Radon zur Charakterisierung geohydraulischer Prozesse

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, J.; Nestler, W. [Hochschule fuer Technik und Wirtschaft, Dresden (Germany). Lab. fuer Geotechnik und Wasserwesen; Freyer, K.; Treutler, H.C. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Sektion Analytik

    1998-06-09

    The work performed has two objectives. The first is to test a new method for determination of optimal volumes of pumped groundwater samples at official sampling and measuring sites, in order to significantly enhance the level of representativity of groundwater samples. The second is to establish information about the required framework conditions which enable natural radon activity concentrations in river bank filtrates to be used for determination of residence times or infiltration velocities, respectively, of infiltration from surface waters to aquifers. Aspects of required equipment and instrumentation for both objectives are explained in the report. (orig./CB) [Deutsch] Mit dieser Arbeit werden zwei Ziele verfolgt. Mit dem neuen Verfahren zur Bestimmung optimaler Abpumpvolumen von Grundwassermessstellen soll die Repraesentativitaet von Grundwasserproben bei der Probennahme deutlich verbessert werden. Das zweite Ziel besteht in der Untersuchung der Voraussetzungen, unter denen die natuerliche Radonaktivitaetskonzentration des Uferfiltrats zur Bestimmung von Aufenthaltszeiten bzw. Infiltrationsgeschwindigkeiten von infiltriertem Oberflaechenwasser in Talgrundwasserleitern genutzt werden kann. Fuer beide Zielstellungen werden Moeglichkeiten fuer eine geraetetechnische Umsetzung aufgezeigt. (orig.)

  16. Procedure manual for the estimation of average indoor radon-daughter concentrations using the radon grab-sampling method

    International Nuclear Information System (INIS)

    George, J.L.

    1986-04-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center to provide standardization, calibration, comparability, verification of data, quality assurance, and cost-effectiveness for the measurement requirements of DOE remedial action programs. One of the remedial-action measurement needs is the estimation of average indoor radon-daughter concentration. One method for accomplishing such estimations in support of DOE remedial action programs is the radon grab-sampling method. This manual describes procedures for radon grab sampling, with the application specifically directed to the estimation of average indoor radon-daughter concentration (RDC) in highly ventilated structures. This particular application of the measurement method is for cases where RDC estimates derived from long-term integrated measurements under occupied conditions are below the standard and where the structure being evaluated is considered to be highly ventilated. The radon grab-sampling method requires that sampling be conducted under standard maximized conditions. Briefly, the procedure for radon grab sampling involves the following steps: selection of sampling and counting equipment; sample acquisition and processing, including data reduction; calibration of equipment, including provisions to correct for pressure effects when sampling at various elevations; and incorporation of quality-control and assurance measures. This manual describes each of the above steps in detail and presents an example of a step-by-step radon grab-sampling procedure using a scintillation cell

  17. Radon campaigns. Status report 2008

    International Nuclear Information System (INIS)

    Arvela, H.; Valmari, T.; Reisbacka, H.; Niemelae, H.; Oinas, T.; Maekelaeinen, I.; Laitinen-Sorvari, R.

    2008-12-01

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m 3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m 3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m 3 was exceeded during the two first campaign seasons. Among the households that replied

  18. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  19. Publications about Radon

    Science.gov (United States)

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  20. Radon investigation in Czechoslovakia

    International Nuclear Information System (INIS)

    Burian, I.

    1992-01-01

    After a short description of the history of radon measurements in mines, the results of bare track detector application in dwellings are commented on. Many related methods and problems are discussed. Most experiences are similar to the published ones, but details are specific for Central Europe (absence of air-conditioning, etc.). (author)

  1. Radon in dwellings

    International Nuclear Information System (INIS)

    1987-01-01

    This report gives a review of the present situation in Sweden concerning the knowledge and research on radon in dwellings.The responsibilities and need for actions in this field are examined. Costs and possibilities for financial help to install radonreducing equipment are also treated. (L.E.)

  2. Development of in-situ radon sensor using plastic scintillator

    International Nuclear Information System (INIS)

    Shitashima, Kiminori

    2009-01-01

    Underwater in-situ radon measurement is important scientific priority for oceanography, especially for survey and monitoring of submarine groundwater discharge (SDG). The high sensitivity and lightweight underwater in-situ radon sensor using NaI(Tl) doped plastic scintillator was developed for application to SDG research. Because NaI(Tl) doped plastic scintillator contacts seawater directly, the plastic scintillator can expect high sensitivity in comparison with NaI(Tl) crystal sealed in a container. In order to improve condensation efficiency of scintillation, the plastic scintillator was processed in funnel form and coated by light-resistant paint. This sensor consists of plastic scintillator, photomultiplier tube, preamplifier unit, high-voltage power supply, data logger and lithium-ion battery, and all parts are stored in a pressure housing (200φx300L). The newly developed underwater in-situ radon sensor was tested at hydrothermal area (underwater hot springs) that the hydrothermal fluid containing high concentration of radon is discharged into seawater. The sensor was operated by a diver, and sensitivity tests and mapping survey for estimation of radon diffusion were carried out. The signals of the radon sensor ranged from 20 to 65 mV, and these signals corresponded with radon concentration of 2 to 12 becquerels per liter. The sensor was able to detect radon to 20 m above the hydrothermal point (seafloor). Since the sensor is small and light-weight, measurement, monitoring and mapping can perform automatically by installing the sensor to an AUV (autonomous underwater vehicle). Furthermore, underwater in-situ radon sensor is expected an application to earthquake prediction and volcanic activity monitoring as well as oceanography and hydrology. (author)

  3. Concentration variation of radon in the room

    International Nuclear Information System (INIS)

    Komaruzaman Mohd Noor; Haziman Hassan; Rosli Mahat; Yusof Md Amin

    1995-01-01

    The study was carried out to determine the variation of radon concentration in the room. Radon detector used was solid nuclear tracks detector (SSNTD) LR-115. From this result, suitable points to make radon measurement was determined

  4. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. If the subject moved to an environment with a lower radon concentration from an environment with a higher level of radon, the result would be an exhalation of radon, and the initial exhalation rate of radon should depend of the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. The author reports a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. 8 figures.

  5. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. Movement of the subject to an environment with a lower radon concentration from an environment with a higher level of radon would result in an exhalation of radon, and the initial exhalation rate of radon should depend on the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. We report a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. (author).

  6. Radon in the Houses of Virovitica and Podravina County

    International Nuclear Information System (INIS)

    Varga Pajtler, M.; Miklavcic, I.; Poje, M.; Radolic, V.; Vukovic, B.; Ivkovic, I.; Jurisic, D.

    2011-01-01

    222Ra is the gaseous radioactive product of the decay of radium isotope 226Ra which is present in soil. Radon atoms that are released from the ground are transported by diffusion and then released in the atmosphere. Radon entries into buildings by advection that is driven by the pressure difference between the building and the ground around the foundation. The aim of this study was to measure radon concentrations in the houses of Virovitica and Podravina county. The measurements were performed by means of two passive track detectors LR-115 (Kodak-Pathe, France), one of which (the open detector) detected total number of alpha-particles of radon and its short-lived progeny, while the other (diffusion detector) registerd tracks only of alpha particles emitted by radon. After being exposed to radiation, the LR-115 detectors were etched in 10 % NaOH aqueous solution at 60 degrees of C for 120 minutes and the detector tracks were counted. Radon concentrations in air were determined according to equation (1), where D 0 was the number of tracks per one day of exposure of the open detector and k is the sensitivity coefficient od the person that counted the tracks. For the track densities D and D 0 of the open and diffusion detectors, respectively, the equilibrium factor was calculated according to equation (2), with the parameters a = 0,50, and b = -0,53. Obtained value for the equilibrium factor was 0,85. Measurements gave radon concentrations in the range of 5.7 - 187.7 Bq m -3 . Average annual effective radon dose for population of Virovitica and Podravina county is 1,5 mSv. (author)

  7. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  8. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    Science.gov (United States)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  9. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  10. Radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Green, B.M.R; Lomas, P.R.; Mangnus, K.; Stranden, E.

    1991-01-01

    Measurements of radon in indoor air have been made in a total of about 7500 randomly selected dwellings in Norway from all parts of the country. The number of selected dwellings in each municipality is about proportional to its population, except for the two largest municipalities, Oslo and Bergen, where somewhat smaller samples were taken due to the higher population density. The measurements were performed by nuclear track detectors from the National Radiological Protection Boards in United Kingdom, and the integration time for the measurements was 6 months. The detectors were spread evenly over all seasons of the year to eliminate influence from seasonal variation in the radon level. One single measurement was performed in each dwelling: in the main bedroom. The results shows that the distribution of radon concentrations in Norwegian bedrooms is log-normal. The aritmetic mean of the measurements, including all categories of dwellings, is calculated to be 51 Bq/m 3 and the corresponding geometric mean to be 26 Bq/m 3 . In a large proportion of single-family houses the living room and the kitchen are located on the ground floor while the bedrooms are located one floor higher. The results of the study shows that the radon level is somewhat higher at the ground floor than on the first floor, and higher in the basement than on the first floor. Taking this into account, and assuming that measurements in bedrooms on the first floor is a representative average for living room and kitchen, the average radon concentration for Norwegian dwellings is estimated to be between 55-65 Bq/m 3 . In this estimate, possible influences of the fact that the winters 87/88 and 88/89 were much warmer than normal and may therefor have lowered the results, has been taken into account. 15 refs., 9 figs., 15 tabs

  11. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  12. Radon counting statistics - a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Scott, A.G.

    1996-01-01

    Radioactive decay is a Poisson process, and so the Coefficient of Variation (COV) of open-quotes nclose quotes counts of a single nuclide is usually estimated as 1/√n. This is only true if the count duration is much shorter than the half-life of the nuclide. At longer count durations, the COV is smaller than the Poisson estimate. Most radon measurement methods count the alpha decays of 222 Rn, plus the progeny 218 Po and 214 Po, and estimate the 222 Rn activity from the sum of the counts. At long count durations, the chain decay of these nuclides means that every 222 Rn decay must be followed by two other alpha decays. The total number of decays is open-quotes 3Nclose quotes, where N is the number of radon decays, and the true COV of the radon concentration estimate is 1/√(N), √3 larger than the Poisson total count estimate of 1/√3N. Most count periods are comparable to the half lives of the progeny, so the relationship between COV and count time is complex. A Monte-Carlo estimate of the ratio of true COV to Poisson estimate was carried out for a range of count periods from 1 min to 16 h and three common radon measurement methods: liquid scintillation, scintillation cell, and electrostatic precipitation of progeny. The Poisson approximation underestimates COV by less than 20% for count durations of less than 60 min

  13. Radon discrimination for work place air samples

    International Nuclear Information System (INIS)

    Bratvold, T.

    1994-01-01

    Gross alpha/beta measurement systems are designed solely to identify an incident particle as either an alpha or a beta and register a count accordingly. The tool of choice for radon identification, via decay daughters, is an instrument capable of identifying the energy of incident alpha particles and storing that information separately from detected alpha emissions of different energy. In simpler terms, the desired instrument is an alpha spectroscopy system. K Basins Radiological Control (KBRC) procured an EG ampersand G ORTEC OCTETE PC alpha spectroscopy system to facilitate radon identification on work place air samples. The alpha spectrometer allows for the identification of any alpha emitting isotope based on characteristic alpha emission energies. With this new capability, KBRC will explicitly know whether or not there exists a true airborne concern. Based on historical air quality data, this new information venue will reduce the use of respirators substantially. Situations where an area remains ''on mask'' due solely to the presence of radon daughters on the grab air filter will finally be eliminated. This document serves to introduce a new method for radon daughter detection at the 183KE Health Physics Analytical Laboratory (HPAL). A new work place air sampling analysis program will be described throughout this paper. There is no new technology being introduced, nor any unproven analytical process. The program defined over the expanse of this document simply explains how K Basins Radiological Control will employ their alpha spectrometer

  14. Radon mapping - Santa Barbara and Ventura counties

    International Nuclear Information System (INIS)

    Churchill, R.

    1997-01-01

    Since 1990, the Department of Conservation''s Division of Mines and Geology (DMG) has provided geologic information and conducted several research projects on geology and radon for the California Department of Health Services (DHS) Radon Program. This article provides a brief overview of radon''s occurrence and impact on human health, and summarizes a recent DMG project for DHS that used geologic, geochemical, and indoor radon measurement data to produce detailed radon potential zone maps for Santa Barbara and Ventura counties

  15. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  16. Simulation of business processes of processing and distribution of orders in transportation

    Directory of Open Access Journals (Sweden)

    Ольга Ігорівна Проніна

    2017-06-01

    Full Text Available Analyzing modern passenger transportation in Ukraine, we can conclude that with the increasing number of urban population the necessity to develop passenger traffic, as well as to improve the quality of transport services is increasing too. The paper examines the three existing models of private passenger transportation (taxi: a model with the use of dispatching service, without dispatching service model and a mixed model. An algorithm of getting an order, processing it, and its implementation according to the given model has been considered. Several arrangements schemes that characterize the operation of the system have been shown in the work as well. The interrelation of the client making an order and the driver who receives the order and executes it has been represented, the server being a connecting link between the customer and the driver and regulating the system as a whole. Business process of private passenger transportation without dispatching service was simulated. Basing on the simulation results it was proposed to supplement the model of private transportation by the making advice system, as well as improving the car selection algorithm. Advice system provides the optimum choice of the car, taking into account a lot of factors. And it will also make it possible to use more efficiently the specific additional services provided by the drivers. Due to the optimization of the order handling process it becomes possible to increase the capacity of the drivers thus increasing their profits. Passenger transportation without the use of dispatching service has some weak points and they were identified. Application of the system will improve transport structure in modern conditions, and improve the transportation basing on modern operating system

  17. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  18. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  19. Compact detector for radon and radon daughter products

    International Nuclear Information System (INIS)

    Alter, H.W.; Oswald, R.A.

    1986-01-01

    This invention provides an improved compact track registration detector for radon gas. The detector comprises a housing having an open mouth, a bottom, and side walls; track registration means, supported inside the housing, which forms damage tracks along paths traversed by alpha particles; a microporous filter positioned across the mouth of the housing to prevent entry of radon daughters and particulate matter; and a cap that may be placed on the mouth of the housing to retain the filter. The housing has internal wall surfaces dimensioned to optimize the registration of alpha particles from radon and radon daughters present in the housing

  20. Human perception of radon risk and radon mitigation: Some remarks

    International Nuclear Information System (INIS)

    Neznal, M.; Neznal, M.

    2008-01-01

    The Radon program in the Czech Republic has a relatively long and rich history. Procedures, which enable to evaluate the risk of radon penetration from the ground, to protect new buildings, to find existing buildings with elevated indoor radon levels and to realise remedial measures in such buildings, have been developed, published and tested. In some cases, the whole system may fail due to psychological or sociological reasons. Three types of problems (conflicts) will be presented: human behaviour affecting measurement results, conflict between individual and 'all-society' points of view, interpretation of radon risk itself. (authors)

  1. Radon anomalies: When are they possible to be detected?

    Science.gov (United States)

    Passarelli, Luigi; Woith, Heiko; Seyis, Cemil; Nikkhoo, Mehdi; Donner, Reik

    2017-04-01

    Records of the Radon noble gas in different environments like soil, air, groundwater, rock, caves, and tunnels, typically display cyclic variations including diurnal (S1), semidiurnal (S2) and seasonal components. But there are also cases where theses cycles are absent. Interestingly, radon emission can also be affected by transient processes, which inhibit or enhance the radon carrying process at the surface. This results in transient changes in the radon emission rate, which are superimposed on the low and high frequency cycles. The complexity in the spectral contents of the radon time-series makes any statistical analysis aiming at understanding the physical driving processes a challenging task. In the past decades there have been several attempts to relate changes in radon emission rate with physical triggering processes such as earthquake occurrence. One of the problems in this type of investigation is to objectively detect anomalies in the radon time-series. In the present work, we propose a simple and objective statistical method for detecting changes in the radon emission rate time-series. The method uses non-parametric statistical tests (e.g., Kolmogorov-Smirnov) to compare empirical distributions of radon emission rate by sequentially applying various time window to the time-series. The statistical test indicates whether two empirical distributions of data originate from the same distribution at a desired significance level. We test the algorithm on synthetic data in order to explore the sensitivity of the statistical test to the sample size. We successively apply the test to six radon emission rate recordings from stations located around the Marmara Sea obtained within the MARsite project (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). We conclude that the test performs relatively well on identify transient changes in the radon emission

  2. Evaluation of the open vial method in the radon measurement; Evaluacion del metodo del vial abierto en la medicion de radon

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  3. Development of a predictive methodology for identifying high radon exhalation potential areas

    International Nuclear Information System (INIS)

    Ielsch, G.

    2001-01-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  4. Legal issues in radon affairs

    International Nuclear Information System (INIS)

    Massuelle, M.H.

    1999-01-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of experts and the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise

  5. Radon exposure and lung cancer

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Suveljak, B.

    2003-01-01

    Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear and controversial. Our epidemiological investigation of indoor radon influence on lung cancer incidence was carried out for 201 patients from the Osijek town. Ecological method was applied by using the town map with square fields of 1 km 2 and the town was divided into 24 fields. Multiple regression study for the lung cancer rate on field, average indoor radon exposure and smoking showed a positive linear double regression for the mentioned variables. Case-control study showed that patients, diseased of lung cancer, dwelt in homes with significantly higher radon concentrations, by comparison to the average indoor radon level of control sample. (author)

  6. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  7. Application of soil radon survey to searching for sandstone-type uranium deposit at western margin of Ordos basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Yin Jinshuang; Cui Yonghui

    2006-01-01

    On the basis of condition tests of soil radon survey at certain uranium deposit in Ordos basin, regional soil radon survey was carried but in a study area of western margin of Ordos basin. By processing of soil radon survey data, five anomalous areas with certain metallogenic potential have been delineated. Then, discovered anomalies have been interpreted and evaluated for providing important reference for further drilling work. Research results indicate that by soil radon survey, anomalies may be distinguished in a basin, and soil radon survey could be an important geochemical prospecting method for rapid evaluation of sandstone-type uranium deposit in basin areas. (authors)

  8. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  9. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe and...

  10. Radon activities in natural gases

    International Nuclear Information System (INIS)

    Sajo, B.L.; Palfalvi, J.

    1995-01-01

    Radon activities have been measured in gas samples used for residential heading, in Venezuela and in Hungary. Gas bottles were selected randomly in different regions, and radon activities were monitored with ionization clambers and solid stoke track detections. Radon concentrations in household natural gas are presented for regions in Venezuela and in Budapest, Hungary. The latter was found to be in the range of 88-135 Bq/m 3 . (R.P.)

  11. Radon exposures in the UK

    International Nuclear Information System (INIS)

    O'Riordan, M.C.

    1992-01-01

    Public and occupational health protection against radon is provided in the UK. Protection is advised where geological conditions cause high concentrations in domestic and commercial buildings. These circumstances are described and the resulting exposures reviewed. An account is given of the limitation scheme for radon in the home and the regulatory scheme for radon at work, the manner in which they are implemented, and the degree to which they are successful. (author)

  12. Measuring radon in the workplace

    International Nuclear Information System (INIS)

    Boyd, M.

    1990-01-01

    The Environmental Protection Agency (EPA) has issued guidance for testing for radon in homes and interim guidance for testing in schools. Information on testing for radon in the workplace is the next initiative and this paper describes the current status of this effort. The results of measurements made in several buildings in the Washington, DC area are discussed. In this paper a discussion of preliminary guidance on radon survey design that has been offered to Federal agencies is presented

  13. Integrating climate change into the transportation planning process : final report

    Science.gov (United States)

    2008-07-01

    The objective of this study is to advance the practice and application of transportation planning among state, regional, and local transportation planning agencies to successfully meet growing concerns about the relationship between transportation an...

  14. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  15. Transport Infrastructure in the Process of Cataloguing Brownfields

    Science.gov (United States)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  16. The April 1994 and October 1994 radon intercomparisons at EML

    International Nuclear Information System (INIS)

    Fisenne, I.M.; George, A.C.; Perry, P.M.; Keller, H.W.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities and foreign institutions participated in these exercises. The majority of the participant's results were within ±10% of the EML value at radon concentrations of 570 and 945 Bq m -3

  17. Accumulation of radon in the underground detector cups

    International Nuclear Information System (INIS)

    Qiu Yuanhuo.

    1985-01-01

    Theoretical calculations based on the radon migration mechanism (i. e. diffusion, convection and atmospheric pumping etc) show that the balance of radon concentration in underground detector cups buried and in surrounding soil gas requires about 0.7-10 hours. However, the equilibrium of radon with its daughter products in the cups needs about 4 hours. Therefore, it is considered that 4.5-12 hours are needed for these two processes. It takes 3-4 days for Tn to reach radioactive equilibrium with its short-lived daughter products. When thorium concentration is higher than background exposure time of the detector cups should be over 3-4 days. Using buried detector cups, field experiments give correlative results compared with those of theoretical calculations. The study is oriented both for optimizing the burial time of the detector cup and interpretation of radon anomalies detected

  18. Outdoor radon monitoring plan for the UMTRA Project sites

    International Nuclear Information System (INIS)

    1986-02-01

    This document describes the monitoring schedules and methods used to measure ambient radon concentrations around Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Radon monitoring at both processing sites and disposal sites is performed primarily for two reasons. The first, and foremost, of these is to provide a means to keep the off-site radon concentrations during the construction activities As Low As Reasonably Achievable (ALARA). The second purpose is to provide a basis for comparison with the EPA standards developed for the UMTRA Project. Radon monitoring data are also used to demonstrate compliance with ambient concentration standards and for public information due to concern about potential radiation releases during construction. 1 fig., 1 tab

  19. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  20. Radon levels in Croatian spas

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Stanic, D.; Planinic, J.

    2005-01-01

    Average radon concentrations in the air and geothermal water of spa pools in Croatia were 40.3 Bq/m 3 and 4.5 kBq/m 3 , respectively. Substantial difference between radon concentrations in pool and spring water is explained by the mixing normal and geothermal water in the pool and with radon decay. The estimated annual effective dose received by the personnel in the spa of Stubicke toplice, Croatia was 0.7 mSv. At the same location, the calculated transfer factor of radon for the air and thermal water in the pool was 4.9x10 -3 .(author)

  1. Radon studies in Indian dwellings

    International Nuclear Information System (INIS)

    Khan, A.J.

    2000-01-01

    The indoor radon ( 222 Rn) concentration has been measured by Solid State Nuclear Track Detectors (SSNTDs) in large number of Indian dwellings. Radon concentrations were measured in different parts of the country. In the first study, radon concentrations were measured in 143 dwellings of Udaipur, Bikaner and Banswara towns of Rajasthan province. The distributions of the time-averaged indoor radon concentration in these three towns of the Rajasthan fit an approximately log normal distribution. The geometric mean (GM) values of radon concentrations in these three places were found to be 74 Bq m -3 , 46 Bq m -3 and 66 Bq m -3 with a geometric standard deviation (GSD) of 2.2, 2.2 and 2.5 respectively. In another study, radon concentrations were measured in about 150 dwellings of hilly regions of the country. The measurements were carried out in Kohima (Nagaland), Baijnath and Palampur (Himachal Pradesh). The distribution of radon concentration in Kohima dwellings was found to be approximately log normal, however, the radon distribution in Baijnath and Palampur dwellings seems to be bimodal. The GM values of the radon concentrations for 65 dwellings in Kohima and 43 dwellings in Baijnath and Palampur were 88 Bq m -3 and 134 Bq m -3 with GSD of 1.7 and 2.5 respectively. The results are discussed in detail. (author)

  2. [Mutagenicity of radon and radon daughters

    International Nuclear Information System (INIS)

    1990-01-01

    The current objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence will be studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions will be investigated by comparing the response of L5178Y strains which differ in their ability to rejoin X radiation-induced DNA double-strand breaks. This report discusses progress incurred from 4/1/1988--10/1/1990. 5 refs., 9 figs., 6 tabs

  3. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  4. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  5. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  6. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  7. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all......). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were...

  8. Analysis of suspended solids transport processes in primary settling tanks.

    Science.gov (United States)

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  9. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  10. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  11. Mapping geogenic radon potential by regression kriging

    International Nuclear Information System (INIS)

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-01-01

    Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression

  12. Radon measurements: the sources of uncertainties

    International Nuclear Information System (INIS)

    Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav

    2008-01-01

    Full text: Radon measurements are quite complicated process and the correct estimation of uncertainties is very important. The sources of uncertainties for grab sampling, short term measurements (charcoal canisters), long term measurements (track detectors) and retrospective measurements (surface traps) are analyzed. The main sources of uncertainties for grab sampling measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. These sources are also common both for short term measurements (charcoal canisters) and long term measurements (track detectors). Usually during the calibration the high radon concentrations are used (1-5 kBq/m 3 ) and the Poisson random error rarely exceed some percents. Nevertheless the dispersion of measured values even during the calibration usually exceeds the Poisson dispersion expected on the basis of counting statistic. The origins of such non-Poisson random errors during calibration are different for different kinds of instrumental measurements. At present not all sources of non-Poisson random errors are trustworthy identified. The initial calibration accuracy of working devices rarely exceeds the value 20%. The real radon concentrations usually are in the range from some tens to some hundreds Becquerel per cubic meter and for low radon levels Poisson random error can reach up to 20%. The random non-Poisson errors and residual systematic biases are depends on the kind of measurement technique and the environmental conditions during radon measurements. For charcoal canisters there are additional sources of the measurement errors due to influence of air humidity and the variations of radon concentration during the canister exposure. The accuracy of long term measurements by track detectors will depend on the quality of chemical etching after exposure and the influence of season radon variations. The main sources of

  13. Use of GIS technologies to facilitate the transportation project programming process.

    Science.gov (United States)

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  14. A review of lung-to-blood absorption rates for radon progeny

    International Nuclear Information System (INIS)

    Marsh, J. W.; Bailey, M. R.

    2013-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f b , for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f r = 0.1, s r = 100 d -1 , s s = 1.7 d -1 , f b = 0.5 and s b = 1.7 d -1 . Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed. (authors)

  15. Radon measurements indoors

    International Nuclear Information System (INIS)

    Joensson, G.

    1983-02-01

    Measurements of Radon concentrations have been made using photographic film detectors in the communities of Uppsala, Soedertaelje and Tyresoe. The result from 6700 filmexposures in both one-family and apartment houses are reported. The fraction of dwellings with radon daughter concentrations exceeding 200 Bq/m 3 is between 3 and 14 percent for one-family houses and 0 to 5 percent for apartment buildings. 8 to 68 percent of the one-family houses and 57 to 83 percent of the apartment buildings had concentrations lower than 70 Bq/m 3 . The seasonal variations were recorded in one-family houses in Uppsala. In houses with low concentrations, the winter values were higher than the summer values. For houses with high concentrations the reversed variation was recorded. (Author)

  16. EPA's radon study results

    International Nuclear Information System (INIS)

    Dowd, R.M.

    1988-01-01

    Last winter, in cooperation with agencies in 10 states and two metropolitan area counties, EPA measured the indoor air radon concentrations of 14,000 houses, some chosen statistically at random and some by request of the homeowner. Passive measurement methodologies were used, such as exposing a charcoal canister to the air for a few days and allowing the air to migrate in to the charcoal naturally. To reduce dilution of radon by the outside air, the protocol required that the house be shut up; therefore, the study was conducted during winter. The measuring device was placed in the lowest livable area (usually the basement) of each house to maximize potential concentration. It should be noted that these procedures are generally considered to be screening tests because they result in a worst-case measurement rather than a best value. The results of these findings are presented

  17. Indoor radon II

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Because of the growing interest in and public concern about indoor radon, APCA, in April 1987, sponsored the Second International Specialty Conference on Indoor Radon. This book is the proceedings of this conference and includes discussions on: A current assessment of the nature of the problem; Issues related to health effects and risk assessment; The development of public and private sector initiatives; Research into methods of control and prevention; International perspectives; and Measurement methods and programs. The material is intended for the technically oriented and for those responsible for developing programs and initiatives to address this important public health issue. Contributors include federal, state, and provincial program officials and members of the academic and private sectors

  18. Diurnal measurement of equilibrium equivalent radon/thoron concentration using time integrated flow mode grab sampler

    International Nuclear Information System (INIS)

    Pant, P.; Kandari, T.; Ramola, R.C.; Semwal, C.P.; Prasad, M.

    2018-01-01

    The basic processes which influenced the concentration of radon and thoron decay products are- attachment, recoil and deposition and by the room specific parameters of radon exhalation and ventilation. The freshly formed decay products have a high diffusivities (especially in air) and ability to stick to surfaces. According to UNSCEAR 1977, radon daughters may be combined as the so called equilibrium equivalent concentration which is related to the potential alpha energy distribution concentration. In the present study an effort has been made to see the diurnal variation of radon and thoron progeny concentration using time integrated flow mode sampler

  19. Determination of Lung-to-Blood Absorption Rates for Lead and Bismuth which are Appropriate for Radon Progeny

    International Nuclear Information System (INIS)

    Marsh, J.W.; Birchall, A.

    1999-01-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) treats clearance as a competitive process between absorption into blood and particle transport to the gastrointestinal tract and lymphatics. The ICRP recommends default absorption rates for lead and bismuth in ICRP Publication 71 but states that the values are not appropriate for short-lived radon progeny. This paper describes an evaluation of published data from volunteer experiments to estimate the absorption half-times of lead and bismuth that are appropriate for short-lived radon progeny. The absorption half-time for lead was determined to be 10±2 h, based on 212 Pb lung and blood retention data from several studies. The absorption half-time for bismuth was estimated to be about 13 h, based on 212 Bi urinary excretion data from one experiment and the ICRP biokinetic model for bismuth as a decay product of lead. (author)

  20. Indoor air radon

    International Nuclear Information System (INIS)

    Cothern, C.R.

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references

  1. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  2. Daily fluctuations in radon concentration in a Cordoba factory complex; Fluctuaciones diurnas de la concentracion de {sup 222}Rn en el complejo fabril Cordoba

    Energy Technology Data Exchange (ETDEWEB)

    Germanier, A; Perez, R; Rubio, M [CEPROCOR, Cordoba (Argentina)

    1998-07-01

    Full text: This work shows the fluctuations of indoor radon concentration in some rooms placed inside a Cordoba Factory Complex. The measurements were performed by Victoreen Radon Monitor. The system was shaped to sample single radon concentration values after one hour integration. It utilizes a passive diffusion chamber and a silicon diffused junction detector. A portion of decay products will plate-out onto the detector and emit alpha particles into the depletion region of a diffused junction detector. The alpha energy is deposited in the detector in the form of ionization which generates a charge pulse. Only alpha pulses of an energy level similar Po-218 and Po-214 are detected. The study of the meteorological parameters shows that the daily fluctuations of the radon concentration respond to the transport and dispersion processes of radon gas through the air. Air temperature, wind's direction and speed are found to be fundamentals parameters in the observed time behavior. The meteorological data were obtained by a portable station (Davis Weathe Monitor II). The radon concentration present a maximum value (1850 Bq/m{sup 3}) at the night and a minimum value (150 Bq/m{sup 3}) at the day. (author)S. [Spanish] Texto completo: En este trabajo se estudian las fluctuaciones de la concentracion de radon 222 en aire 'indoor' en distintas habitaciones ubicadas dentro y fuera del predio del Complejo Fabril Cordoba (C.F.C.). Las determinaciones se realizaron con un detector pasivo Radon Monitor 05-418, marca Victoreen. El mismo consta de una camara de difusion electrostatica y de un detector de estado solido (Si) de juntura difundida. Este instrumento se configuro para obtener integraciones para cada una de las horas del dia. El principio de funcionamiento del detector se basa en el conteo de los decaimientos {alpha} del polonio 218 y polonio 214 atrapados dentro de la camara de difusion electrostatica. El build-up ocurrido dentro de esta camara es tenido en cuenta para

  3. Novel determination of radon-222 velocity in deep subsurface rocks, and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Benhorin, Yochy; Malik, Uri; Chemo, Chaim

    2016-04-01

    An enhanced radon monitoring system was designed in order to study shallow versus deep subsurface processes affecting the appearance of radon anomalies. The method is based on the assumption that the climatic influence is limited since its energy decreases with the decrease in thickness of the geological cover whereby its effect is reduced to a negligible value at depth. Hence, lowering gamma and alpha detectors into deep boreholes and monitoring their temporal variations relative to a reference couple at shallow depths of 10-40 m eliminates the ambient thermal and pressure-induced contribution from the total radon time series. It allows highlighting the residual portion of the radon signals that might be associated with the geodynamic processes. The primary technological key is the higher sensitivity of the gamma detectors - in comparison to the solid-state alpha detectors, which are also suitable for threading into narrow boreholes in parallel to the narrow gamma detector (Zafrir et al., 2013*). The unique achievements of the novel system that was installed at the Sde Eliezer site close to the Hula Valley western border fault (HWBF) in northern Israel are: a) Determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m per hour on average; b) Distinguishing between the diurnal periodical effect of the ambient temperature and the semi-diurnal effect of the ambient pressure on the radon temporal spectrum; c) Identification of a radon random pre-seismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone. * Zafrir, H., Barbosa, S.M. and Malik, U., 2013. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media, Radiat. Meas., 49, 39-56. doi:10.1016/j.radmeas.2012.11.019.

  4. Radon - The management of the risk related to radon

    International Nuclear Information System (INIS)

    2010-01-01

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  5. Indoor radon epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, E; Tomasek, L; Mueller, T [National Radiation Protection Institute, Prague (Czech Republic); Placek, V [Inst. for Expertises and Emergencies, Pribram-Kamenna (Czech Republic); Matzner, J; Heribanova, A [State Office for Nuclear Safety, Prague (Czech Republic)

    1996-12-31

    The study is a long-term prospective cohort study of lung cancer and possibility other causes of death. The study population includes inhabitants of the area, who had resided there for at three years and at least one of these between 1.1.1960 and 21.12.1989. A total of 11865 inhabitants satisfied these criteria. The cumulative exposure of each respondent is being assessed on the basis of measurements in dwellings, time spent there and estimation of previous exposure levels by a model accounting for constructional changes in buildings. One year lasting measurements of radon daughter products by integral dosimeters (Kodak film LR 115) were performed in practically all dwellings of the specified area. Radon measurements in houses in term of equilibrium concentration are compared with the results of a pilot study in Petrovice in 1990-91 which gave the stimulus for the epidemiological study. The distribution of death causes and ratio of observed (O) to expected (E) cases among collected death cases in the cohort, generally, somewhat lower ratios than one reflect the non-industrial character of the region, with the exception of lung cancer in man. The differences in the O/E ratios for lung cancer among the separate communities indicate that even in the situation of generally lower mortality, the dependence of lung cancer mortality on radon.

  6. The significance of radon in radioactive pollution of environment. Pt. 2. Radon effect on living organism

    International Nuclear Information System (INIS)

    Kossakowski, S.; Dziura, A.; Kossakowski, A.

    1998-01-01

    Authors review the history of radon monitoring. Epidemiological studies of lung cancer and its correlation to radon concentration in mines and buildings are described. The influence of radon on animals living in the buildings built from waste materials is described. Authors review plans concerning creation of radon monitoring system in Poland. The necessity of monitoring influence of radon on animals is described

  7. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  8. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  9. Radon-222 as an indicator of continental air masses and air mass boundaries over ocean areas

    International Nuclear Information System (INIS)

    Larson, R.E.; Bressan, D.J.

    1980-01-01

    Radon ( 222 Rn) has proven to be an excellent indicator of the continental nature of over-ocean air and air mass boundaries. Radon is almost exclusively of continental origin, and low-level real-time monitoring is possible with our improved radon measurement techniques. The transition from continental to maritime air in offshore and onshore winds is rather obvious and can easily be established near large islands or continents as an order-of-magnitude change in radon concentration from a few tens of picocuries per cubic meter or more to a few picocuries per cubic meter or less. Sharply changing radon concentrations are usually associated with frontal areas. Our data have offered insights into air movements, and hence transport of continental materials and pollutants over oceanic areas

  10. 1981 radon barrier field test at Grand Junction uranium mill tailings pile

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.; Baker, E.G.; Freeman, H.D.

    1983-04-01

    Technologies to reduce radon released from uranium mill tailings are being investigated by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology development program. These technologies include: (1) earthen cover systems, (2) multilayer cover systems, and (3) asphalt emulsion radon barrier systems. During the summer of 1981, a field test was initiated at the Grand Junction, Colorado, uranium tailings pile to evaluate and compare the effectiveness of each radon barrier system. Test plots cover about 1.2 ha (3 acres). The field test has demonstrated the effectiveness of all three cover systems in reducing radon release to near background levels ( 2 s - 1 ). In conjunction with the field tests, column tests (1.8 m diameter) were initiated with cover systems similar to those in the larger field test plots. The column tests allow a direct comparison of the two test procedures and also provide detailed information on radon transport

  11. Development of Radon-222 as Natural Tracer for Monitoring the Remediation of NAPL in the Subsurface

    International Nuclear Information System (INIS)

    Davis, Brian M.; Semprini, Lewis; Istok, Jonathan

    2003-01-01

    Naturally occurring 222-radon in ground water can potentially be used as an in situ partitioning tracer to characterize dense nonaqueous phase liquid (DNAPL) saturations. The static method involves comparing radon concentrations in water samples from DNAPL-contaminated and non-contaminated portions of an aquifer. During a push-pull test, a known volume of test solution (radon-free water containing a conservation tracer) is first injected (''pushed'') into a well; flow is then reversed and the test solution/groundwater mixture is extracted (''pulled'') from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations.The utility of this methodology was evaluated in laboratory and field settings

  12. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  13. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  14. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  15. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  16. Provincial practice: adopting the new reference levels for Radon

    International Nuclear Information System (INIS)

    Kennedy, Christine; Johnson, Darryl

    2008-01-01

    Full text: In June 2007 new reference levels for radon gas were announced from Health Canada. These new levels brought new attention to the issue of radon gas exposure in the Province of Newfoundland and Labrador. Research in radon gas exposure has a long history in the fluorspar mines of the Burin Peninsula, indeed, occupational data from the 1950 's and 60 's had been included in Darby et al. large scale occupational meta analyses. Radon was also implicated in a royal commission of occupational mining hazards in Newfoundland in 1968. Although, the occupational exposures of miners have been well documented, very little is known about population exposures in indoor spaces. Geological maps are currently being composed for national areas, but data for this province is not yet published. Information about mining tailings used in construction materials or as fill is very poor (unlike the data known for uranium mining tailings in Ontario and Manitoba). The challenges of estimating radon exposures for the province are myriad and these are explored here in this narrative study of how new information has to be generated, and then incorporated into new environmental public health policies for a population. The process by which new scientific information informs public health policy is described in this study of radon in Newfoundland and Labrador. Anticipated regulations for new buildings are discussed. (author)

  17. RADON reconstruction in longitudinal phase space

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Wei, J.

    1997-01-01

    Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC)

  18. Radon Mapping of the Osijek Town

    International Nuclear Information System (INIS)

    Radolic, V.; Faj, Z.; Smit, G.; Culo, D.; Planinic, J.

    1998-01-01

    After ten years investigation of radon seasonal variations at three very different locations, as well as radon concentration measurements in kindergartens and schools, systematical indoor radon measurements were undertaken in dwellings of Osijek. Indoor radon was measured by means of the LR-115 nuclear track detector at 48 town locations that gave the arithmetic mean of 71.6 Bq m -3 , standard deviation of 44.0 Bq m -3 and geometric mean of 60.1 Bq m -3 , for the radon concentration range from 23 to 186 Bq m -3 . The empirical frequency distribution of radon concentrations, with the class width of 20 Bq m -3 , was in accordance with the theoretical log-normal distribution which was shown with χ 2 - test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. Thus supposition was confirmed by radon measurement in the soil gas using radon emanators with the LR-115 film that showed the positive correlation between radon concentrations in the soil and indoors. Radon measurements in Osijeks primary schools pointed out a school that had the highest radon concentration (300 Bq m -3 ) considering all the former indoor radon measurements. The radon distribution in the school building was investigated afterwards radon mitigation procedures were undertaken. (author)

  19. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  20. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor