WorldWideScience

Sample records for radon progeny concentration

  1. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  2. Concentration ratio of radon progeny in air

    International Nuclear Information System (INIS)

    Kobayashi, Tsuneo

    2000-01-01

    Investigations have been made on the concentration ratio of radon progeny in air. Data have been acquired intermittently since 1988 using alpha spectroscopic method around the author's office that is located in the northeastern part of Japan. Clarifying the behavior of radon progeny is an issue of wide importance to radiation protection, predicting earthquakes, etc. Let Rabc=ECRn(RaA)/{ECRn(RaB) + ECRn(RaC)}; the concentration ratio, Rabc, is relevant to the stability of the air. Statistical and time series analyses indicated several interesting results. To examine the log-normal distribution, Lilliefors test was made for logarithm of outdoor data every one year. Rabc passed the test 6 times for 9 years, while Radon progeny passed 8 times. Outdoor data indicated that the value of Rabc was lower in the morning, in other world, the air was more stable in the morning than in the afternoon. To see the seasonal variation, one-way layout analysis was made for four groups of data, i.e., spring (March to May), summer (June to August), autumn (September to November), and winter (December to February). Rabc indicated significantly higher level in spring and winter, in other word, air was stable in summer and autumn. Time series analysis was made for various variables; power spectra were estimated with autoregressive model that is equivalent to maximum entropy method. Power spectrum for Rabc was most similar to that of wind speed. One-year period, that is always remarkable for radon progeny, was not significant for Rabc. Three- to nine-day periods were often seen for Rabc, radon progeny, wind speed, and atmospheric pressure. These several-day periods are probably attributed to the passage of air masses. Twenty-day to thirty-day peak may be attributed to meteorological phenomena corresponding to the rotation period of the sun. Temperature indicated no significant periodicity except overwhelming one-year period. Wind speed is well known to affect the radon progeny concentration

  3. Control of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.

    1986-01-01

    Exposure to radon daughter concentration in indoor atmosphere can result in a significant risk to the general public. There are two generally used methods for the control of radon and progeny concentration in the indoor atmosphere, namely restriction of radon entry and reduction of indoor radon and its progeny concentration by ventilation or by air cleaning. Predominant radon entry process in most of the dwellings appears to be by pressure driven flow of soil gas through cracks or other openings in the basement slab or subfloors. Sealing these openings or ventilation of the subslab or subfloor space are the methods for reducing the radon entry rates. Indoor radon concentration can also be reduced by increasing the ventilation and by using charcoal filters for the removal of radon gas in indoor air by absorption. Concentration of radon progeny, which are responsible for most of the health risks associatd with radon exposure can also be controlled by the use of electrostatic or mechanical filters. This study describes briefly the above control strategies used for reducing the inhalation doses to persons in dwellings. (author). 9 refs., 2 tables

  4. Measurements of thoron and radon progeny concentrations in Beijing, China

    International Nuclear Information System (INIS)

    Zhang Lei; Liu Cuihong; Guo Qiuju

    2008-01-01

    It has been reported that thoron levels in China are above the world average and may therefore make a significant contribution to the natural background radiation dose. We therefore conducted a pilot study of concentrations of both thoron and radon progeny during the spring of 2006 in the Beijing area, China. A new type of portable 24 h integrating monitor with a CR-39 detector was used during the survey. Seventy dwellings and eight outdoor sites were measured during the survey. For country houses built of red bricks and slurry, the average equilibrium equivalent concentrations (EEC) of thoron and radon were 1.02 ± 0.48 and 16.41 ± 9.02 Bq m -3 , respectively, whereas for city dwellings built of cement blocks and floor slabs, the results were 0.48 ± 0.47 and 11.50 ± 6.99 Bq m -3 for thoron and radon, respectively. For outdoor air, concentrations of thoron and radon progeny were 0.29 ± 0.28 and 7.05 ± 2.68 Bq m -3 , respectively. Radiation exposures from thoron and radon progeny were also evaluated; the ratio of dose contribution from thoron progeny to that of radon progeny was evaluated to be 28% and 17% in country houses and city dwellings, respectively. (note)

  5. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement

    International Nuclear Information System (INIS)

    Acena, M. L.; Crespo, M. T.

    1989-01-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs

  6. Determination of radon and progeny concentrations in Brazilian underground mines

    International Nuclear Information System (INIS)

    Fraenkel, Mario O.; Gouvea, Vandir de Azevedo; Macacini, Jose F.; Cardozo, Katia; Carvalho Filho, Carlos A. de; Lima, Carlos E.

    2008-01-01

    The aim of this work is to present the activities related to the determination of radon and progeny concentrations in underground mines in Brazil. Radon is originated from decay of radium-226 and radium-228 present in rocks. Radon and its short-lived progeny can be retained in the workers pulmonary alveoli, and this way they bring about cancer risk to these mining professionals. The occurrence of high radon concentrations in underground coal and copper mines and the lack of systematic survey motivated CNEN, the regulatory agency, to develop the Radon Project, aiming to aid the formulation of a specific regulation with occupational dose limits consistent with international standards recommended by the International Atomic Energy Agency (IAEA). Dozens of underground mines are currently in operation in the national. It had to be noted that about 50% of these mines are located in Minas Gerais province, and for this reason it was chosen to start the Project. In each underground mine it is installed in selected points passive nuclear track etch radon detectors, type LEXAN and Cr-39, for periods from three to five months. It was also made local measurements with Dose Man Pro detectors from SARAD. The points are chosen according to geological features, radiometric activity and characteristics of prospect development. The determination of radon present in mines has been made in IEN (Nuclear Engineering Institute)/Rio de Janeiro-RJ, LAPOC (Pocos de Caldas Laboratory)/Pocos de Caldas-MG e ESPOA (Porto Alegre Office)/Porto Alegre-RS. Until now it was visited about 35 mines in a universe of about 50 mines, from which 20% showed concentration values higher than international limits (ICRP 65), between 500 and 1500 Bq.m -3 . (author)

  7. Environmental Concentration of Radon and Radon Progeny in a Nuclear Facility in a Decommissioning Stage

    International Nuclear Information System (INIS)

    Ramirez, M. P.; Correa, E.; Sancho, C.

    1999-01-01

    According to the new European Directive 96/29/EURATOM the radiological risk due to natural radionuclides must be consider and the pertinent periodic control must be realized. During the works performed at CIEMAT an estimation of the effective average doses due to Radon inhalation in work places of the installation have been performed. Radon and Radon progeny concentration has been measured in continuous joint whit the meteorological conditions as temperature, pressure and relative humidity. Two different equipment has been used: Alpha-guard whit ionization chamber detector and Eda-wlm-300 whit a semiconductor detector. A passive Radon detector, E-perm has been simultaneously used in the monitoring system. The results obtained during the measuring of Radon and Radon progeny concentrations indoors and estimation of doses have been analyzed and are presented in the paper. (Author) 11 refs

  8. Thoron and radon progeny concentration measurements using direct progeny sensors in HLNRAs of Kerala

    International Nuclear Information System (INIS)

    Mishra, R.; Prajith, R.; Gole, A.C.; Kanse, S.D.; Chougaonkar, M.P.; Sapra, B.K.; Mayya, Y.S.; Jayalekshmi, P.; Nair, Raghu Ram K.

    2010-01-01

    Passive Progeny Dosimeters (PPDs) were deployed in 500 houses in 3 villages namely Allapad, Chavara and Neendakara villages of Karunagapally Taluk of Kollam district of Kerala. Each PPD unit is a combination of a DTPS and a DRPS placed side-by-side for time integrated thoron and radon progeny concentration estimation respectively. The PPDs were suspended vertically in the rooms, such that the nearest distance from any wall or surface was at least 30 cm. These are, as of now, being exposed for a period of 3 months, after which they will be retrieved and analysed by chemical etching and track counting. Simultaneously, external gamma radiation measurements have also been made using a survey meter; these showed a variation from 13 to 118 μR/h in indoors and 21 to 213 μR/h in the outdoor environments. Spot measurements of thoron progeny concentrations were also made in 7 selected houses using the conventional grab filter-paper sampling technique at a flow-rate of 21 min -1 for 30 minutes, followed by alpha counting. The average thoron progeny concentration was found to be 2.0 ± 0.7 Bq m -3 . In the outdoor environment, filter-paper sampling was carried out for 2 hours at 21 min -1 and the thoron progeny concentration was measured as 2.96 Bq m -3 . To corroborate these measurements, a flow mode integrated sampler which uses the DTPS and DRPS elements was used

  9. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  10. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offerman, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.; Yater, J.

    1984-01-01

    Eleven portable air cleaing devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Futhermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. (Author)

  11. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Furthermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. 7 references, 2 figures

  12. The study of thoron and radon progeny concentrations in dwellings in Japan

    International Nuclear Information System (INIS)

    Guo, Q.; Shimo, M.; Ikebe, Y.

    1992-01-01

    Ths paper aims to make a comparison of different concentrations of thoron ( 220 Rn) progeny and radon ( 222 Rn) progeny in different kinds of dwellings. The potential alpha energy concentrations and the effective dose equivalent caused by thoron and radon progeny, respectively, have also been estimated. The measurements were carried out in 23 dwellings. The results indicate that thoron progeny concentrations indoors might be strongly affected by the type of building material used. Traditional Japanese buildings made with mud may have high thoron progeny concentrations of about 3.52 Bq.m -3 and a concentration ratio of thoron progeny to radon progeny of about 0.5, whereas in concrete dwellings thoron progeny concentrations are about 0.72 Bq.m -3 and the concentration ratio of thoron progeny to radon progeny is about 0.1. The annual effective dose equivalent of thoron progeny is 1.23 mSv in mud dwellings and 0.25 mSv in concrete dwellings. (author)

  13. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny

  14. Measurement of radon, thoron and their progeny concentrations in the dwellings of Pauri Garhwal, Uttarakhand, India

    International Nuclear Information System (INIS)

    Joshi, Veena; Bijalwan, Pramesh; Rawat, Jasbir; Yadav, Manjulata; Ramola, R.C.; Mishra, Rosaline

    2015-01-01

    It is well known that inhalation of radon, thoron and their progeny contribute more than 50% of natural background radiation dose to human being. The time integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector based single entry Pin-Hole dosimeter while for the measurement of progeny concentrations, LR-115 deposition based DTPS/DRPS technique was used. The experimental techniques and results obtained are discussed in detail. (author)

  15. Control methods of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.

    1990-01-01

    Exposure to radon-222 and its progeny in indoor atmosphere can result in significant inhalation risk to the population particularly to those living in houses with much higher levels of Rn. There are three methods generally used for the control of Rn and its progeny concentration in the indoor environment: (1) restricting the radon entry, (2) reduction of indoor radon concentration by ventilation or by aircleaning and (3) removal of airborne radon progeny by aerosol reduction. Prominent process of radon entry in most of the residence appears to be the pressure driven flow of soil gas through cracks or through other openings in the basements slab or subfloor. Sealing off these openings or ventilation of the slab or subfloor spaces are the methods of reducing the radon entry rate. Indoor radon progeny levels can also be reduced by decreasing the aerosol load in the dwellings. The results of a few experiments carried out to study the reduction in the working level concentration of radon, by decreasing the aerosol load are discussed in this paper. (author). 9 tabs., 8 figs., 37 refs

  16. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo

    International Nuclear Information System (INIS)

    Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y.

    2003-01-01

    A series of measurements were carried out to understand the characteristics of radon and its progeny in air-conditioned office buildings. Long-term measurements of radon were made with etched track detectors. Continuous measurements of radon and its progeny concentrations were also conducted in some buildings to study their temporal variations. The results show that radon and its progeny concentrations routinely varied along with working activities. They are generally low while people are working, due to air conditioning, whereas they rise steadily after the air conditioning stops. When considering action levels not only in homes but also workplaces, attention should be paid to annual doses from the viewpoint of radiation protection. The annual dose is generally estimated with a long-term measurement of radon concentration using a passive device such as an etched track detector. Since its reading corresponds to a long-term average concentration regardless of working hours, the annual dose will be overestimated. When comparing a real dose after considering the working hours, they differ by a factor of more than 2. (author)

  17. Study on calculation models and distribution rules of the radon concentration and its progenies concentration in blind roadway with forced-exhaust ventilation

    International Nuclear Information System (INIS)

    Ye Yongjun; Wang Liheng; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Wang Shuyun; Ding Dexin

    2014-01-01

    The forced-exhaust ventilation is an important way to control the concentration of radon and its progenies in long-distance blind driving roadway. It is of great significance for guiding the design of ventilation and radiation protection to study distribution characteristics of the concentration of radon and its progenies in the wind of roadway adopting the forced-exhaust ventilation. Therefore, according to the decay relationship of radon and its progenies, a simplified mathematical calculation model was built, which relates to the radon activity concentration and the potential alpha concentration of radon progenies. The paper also analyzed the sources of radon and its progenies in the limited space of the blind roadway. Then, based on the turbulence mass transfer theory of ventilation air flow, the paper established mathematical calculation models of distribution characteristics of the radon activity concentration and the potential alpha concentration of radon progenies in blind roadway with forced-exhaust ventilation, respectively. Finally, the paper applied the calculation models to a special blind roadway, and discussed the influence of the ventilation air inflow and the radon exhalation rate of rock wall on the distribution of radon concentration and the potential alpha concentration of radon progenies in the roadway. Meanwhile, some protective measurements were put forward to reduce the radiation dose of worker caused by radon and its progenies in the blind roadway. (authors)

  18. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  19. Development of a portable radon progeny monitor

    International Nuclear Information System (INIS)

    Iimoto, Takeshi; Kosako, Toshiso; Sugiura, Nobuyuki

    2000-01-01

    Important nuclides in the radon family contributing to the effective dose are the members of the radon short-life progeny, 218 Po and 214 Po and direct measurement of these progenies is suitable for dosimetry. Survey of the radon progeny concentrations in a number of dwellings and offices is very difficult because we have no convenient instrument for the measurement. At present, radon dosimetry is carried out based on the concentration of the parent radon itself. Therefore, for accurate estimation of public or personal effective dose, it is necessary to develop a facile and portable radon progeny monitor. In this study, a portable radon progeny monitor (PRPM) was designed and developed to automatically estimate the individual progeny concentration in the natural environment. The properties of PRPM were investigated. The dimensions of the entire instrument were 65 x 145 x 170 mm and the total weight was 780 g. The portability of PRPM was much superior to the conventional instrument. The PRPM can operate automatically to estimate individual progeny concentration. All component materials of the monitor were selected based on the data of specified performance, cost performance and availability bon the market. The concentration of individual radon progeny was estimated by the build-up decay. It was concluded that PRPM is much suitable for outdoor study and personal dose estimation, as well as indoor measurement. In the field survey, especially in mines and caverns, PRPM is found as a valuable and convenient instrument. (M.N.)

  20. Variation of indoor radon progeny concentration and its role in dose assessment

    International Nuclear Information System (INIS)

    Singh, Manmohan; Singh, Kulwant; Singh, Surinder; Papp, Z.

    2008-01-01

    Instantaneous measurements of equilibrium equivalent concentration of radon (EEC Rn ) were taken over a period of 1 year in 2004 in a typical house at Amritsar city, located in the northwest part of India. A method based on absolute beta counting subsequent to grab aerosol sampling was used. During that year, EEC Rn varied between 1.56 Bq m -3 and 22.77 Bq m -3 with average value of 8.76 Bq m -3 . EEC Rn decreased with the transition from winter to summer and vice versa, having a negative correlation with outdoor temperature. The use of mechanical ventilation, under normal living conditions during summer, caused an extra decrease in the concentrations. The variations with temperature and mechanical ventilation are discussed. Some major issues related to the uncertainties in dose calculations caused by the lack of knowledge of equilibrium factor and ignoring the effect of life style on the radon and its progeny concentrations are discussed

  1. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  2. The use of track registration detectors to reconstruct contemporary and historical airborne radon ( sup 2 sup 2 sup 2 Rn) and radon progeny concentrations for a radon-lung cancer epidemiologic study

    CERN Document Server

    Steck, D J

    1999-01-01

    Epidemiologic studies that investigate the relationship between radon and lung cancer require accurate estimates for the long-term average concentrations of radon progeny in dwellings. Year-to-year and home-to-home variations of radon in domestic environments pose serious difficulties for reconstructing an individual's long-term radon-related exposure. The use of contemporary radon gas concentrations as a surrogate for radon-related dose introduces additional uncertainty in dose assessment. Studies of glass exposed in radon chambers and in a home show that radon progeny deposited on, and implanted in, glass hold promise for reconstructing past radon concentrations in a variety of atmospheres. We developed an inexpensive track registration detector for the Iowa Radon Lung Cancer Study (IRLCS) that simultaneously measures contemporary airborne radon concentrations, surface deposited alpha activity density, and implanted sup 2 sup 1 sup 0 Po activity density. The implanted activity is used to reconstruct the cum...

  3. Levels of radon gas concentration and progeny in homes of Potosi City, Bolivia to 4000 m

    International Nuclear Information System (INIS)

    Mamani M, R.; Claros J, J.; Vasquez A, R.

    2015-10-01

    Full text: In this work the presence of radon gas was determined, which is a radioactive contaminant that comes from underground, able to penetrate the houses. The danger is that when mixed air and when inhaled can cause serious damage to the lungs, for the short life time that has radon and progeny for decay, damaging the pulmonary alveoli and reducing breathing capacity of the habitants, then causing polycythemia in some cases. The study was carried out in homes in the city of Potosi, Bolivia located at 4000 m. The quantification of radon gas and progeny was performed with the equipment Alpha-Zaeller-2 (Az-2), quantification was realized in 6 zones of the city of Potosi, chosen randomly. In each zone were carried out measurements in 40 homes (2 rooms more permanent), both day and night, for a period of 3 days in two different seasons and with concentrations of average humidity of 20, 50 and 80%. The values obtained for each period vary depending on the season and 30 to 50% of the allowable values given by the EPA and Who for housing. (Author)

  4. Effect of ventilation on concentrations of indoor radon- and thoron-progeny: Experimental verification of a simple model

    International Nuclear Information System (INIS)

    Sheets, R.W.; Thompson, C.C.

    1993-01-01

    Different models relating the dependence of radon ( 222 Rn)- and thoron ( 220 Rn)-progeny activities on room ventilation rates are presented in the literature. Some of these models predict that, as the rate of ventilation increases, activities of thoron progeny decrease more rapidly than those of radon progeny. Other models predict the opposite trend. In this study alpha activities of the radon progeny, 218 Po, 214 Pb, and 214 Bi, together with the thoron progeny 212 Pb, were measured over periods of several days in two rooms of a closed, heated house. Effective ventilation rates were calculated from measured 214 Pb/ 214 Bi ratios. A simple model in which progeny concentrations decrease by radioactive decay and by dilution with outside air has been used to calculate 212 Pb/ 214 Pb ratios as a function of ventilation rate. Calculated ratios are found to correlate significantly with experimentally-determined ratios (R 2 ∼ 0.5--0.8 at p < 0.005) confirming that, for this house, thoron progeny activities decrease faster than radon progeny activities with increasing rates of ventilation

  5. Radon Progeny in Egyptian Underground Phosphate Mines

    International Nuclear Information System (INIS)

    El-Hady, M.A.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to the workers in uranium mines, the staff of other underground mines, such as workers in underground phosphate mines, can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure of the workers at those sites. A filter method was used to measure individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po). The reported mean values of radon progeny concentrations exceed the action levels which are recommended by ICRP 65 (1993). Based on the measured individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po) in these mines, the annual effective dose for the workers has been calculated using the lung dose model of ICRP 66 (1994). According to the obtained results, some countermeasures were recommended in this study to minimise these exposure levels. (author)

  6. Bronchial dosimeter for radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, T.K.; Yu, K.N.; Nikezic, D.; Haque, A.K.M.M. [City University of Hong Kong, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2000-05-01

    Traditionally, assessments of the bronchial dose from radon progeny were carried out by measuring the unattached fraction (f{sub p}) of potential alpha energy concentration (PAEC), the total PAEC, activity median diameters (AMDs) and equilibrium factor, and then using dosimetric lung models. A breakthrough was proposed by Hopke et al. (1990) to use multiple metal wire screens to mimic the deposition properties of radon progeny in the nasal (N) and tracheobronchial (T-B) regions directly. In particular, they were successful in using four layers of 400-mesh wire screens with a face velocity of 12 cm s{sup -1} for the simulation of radon progeny deposition in the T-B region. Oberstedt and Vanmarcke (1995) carried out precise calibrations for the system, and named the system as the 'bronchial dosimeter'. Based on these, Yu and Guan (1998) proposed a portable bronchial dosimeter similar to a normal measurement system for radon progeny or PAEC and consisted of only a single sampler and employed only one 400-mesh wire screen and one filter. However, all these 'bronchial dosimeters' in fact only determined the fraction of potential alpha energy from radon progeny deposited in the T-B region, which required certain assumptions and calculations to further give the final bronchial dose. In the present work, a true 'bronchial dosimeter' was designed, which consisted of three 400-mesh wire screens and a filter. With a face velocity of 11 cm s{sup -1}, the deposition pattern on the wire screens was found to satisfactorily match the variation of the dose conversion factor (in the unit of mSv/WLM) with the size of radon progeny from 1 to 1000 nm. In this way, this bronchial dosimeter directly gave the bronchial dose from the alpha counts recorded on the wire-screens and the filter paper. With the development of this bronchial dosimeter, the present practice of 'dose estimation' from large-scale radon surveys can be replaced by large

  7. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  8. Concentration of Radon, thoron and their progeny levels in different types of floorings, walls, rooms and building materials

    International Nuclear Information System (INIS)

    Sathish, L. A.; Nagaraja, K.; Ramanna, H. C.; Nagesh, V.; Sundareshan, S.

    2009-01-01

    Radon, thoron and their progenies are the most important contributions to human exposure from natural sources. Radon exists in soil gas, building materials, Indoor atmosphere etc. Among all the natural sources of radiation dose to human beings, inhalation of radon contributes a lot. The work presented here emphasizes the long term measurements of radon, thoron and their progeny concentrations in about 100 dwellings using solid state nuclear track detectors. Materials and Methods: Measurements were made using dosimeters and the concentrations were estimated by knowing the track density of films through spark counter, and sensitivity factor for bare, filter and membrane films. Results: Presence of radon and thoron in houses is the effect of several aspects such as the activity concentrations of uranium, radium and thorium in the local soil, building materials, ventilation of houses and also entry of radon into houses through the cracks in floor/wall. Conclusion: The observations reveal that the concentrations of radon and/or thoron are relatively higher in granite than in concrete, cement and bricks. In continuation to this the concentration observed in bathrooms is more compared to kitchen bedroom and living rooms. This study discloses that the residential rooms of good ventilation will avoid the health hazards due to radon and its rich materials.

  9. Short- and long-term variability of radon progeny concentration in dwellings in the Czech Republic.

    Science.gov (United States)

    Slezáková, M; Navrátilová Rovenská, K; Tomásek, L; Holecek, J

    2013-03-01

    In this paper, repeated measurements of radon progeny concentration in dwellings in the Czech Republic are described. Two distinct data sets are available: one based on present measurements in 170 selected dwellings in the Central Bohemian Pluton with a primary measurement carried out in the 1990s and the other based on 1920 annual measurements in 960 single-family houses in the Czech Republic in 1992 and repeatedly in 1993. The analysis of variance model with random effects is applied to data to evaluate the variability of measurements. The calculated variability attributable to repeated measurements is compared with results from other countries. In epidemiological studies, ignoring the variability of measurements may lead to biased estimates of risk of lung cancer.

  10. An Alpha spectrometer for measuring radon daughter individual activity concentration; Spettrometro Alfa per la misura delle concentrazioni individuali in attivita' della progenie del radon

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Formignani, M. [ENEA, Div. Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche E. Clementel, Bologna (Italy); Mariotti, F. [Bologna Univ., Bologna (Italy). Dipt. di Fisica

    2001-07-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of {sup 218}Po, {sup 214}Pb and {sup 214}Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated. [Italian] Presso l'Istituto per la Radioprotezione, nell'ambito del programma di valutazione di dose da radon e' stato progettato e realizzato uno spettrometro alfa per il monitoraggio continuo in aria (CAM) della progenie del radon e del toron. Le caratteristiche costruttive dello strumento permettono, tramite l'utilizzo di batterie a diffusione a reti, di determinare l'attivita' individuale della progenie per diverse dimensioni granulometriche in particolare per la frazione attaccata e non al particolato amosferico con un taglio granulometrico di qualche nanometro. E' stato inoltre applicato un metodo spettrometrico a tre conteggi per il calcolo delle concentrazioni individuali della progenie del radon, {sup 218}Po, {sup 214}Pb and {sup 214}Bi, effettuando un conteggio alfa di {sup 218}Po e due conteggi alfa di {sup 214}Po. Tale informazione consentira' una valutazione della dose di radon utilizzando il modello dosimetrico in alternativa a quello epidemiologico.

  11. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement; Medida de los descendientes del radon en aire por Espectrometria Alfa

    Energy Technology Data Exchange (ETDEWEB)

    Acena, M L; Crespo, M T

    1989-07-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs.

  12. Dosimetry of inhaled radon and thoron progeny

    International Nuclear Information System (INIS)

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP's new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential α energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP's recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ''Normalization'' of the calculated effective dose is therefore needed, at least for α dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk

  13. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  14. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  15. Radon progeny mitigation using unipolar ion generators

    International Nuclear Information System (INIS)

    Sapra, B.K.; Arun Kumar; Khan, Arshad; Kothalkar, P.S.; Mayya, Y.S.

    2006-01-01

    Unipolar ion generators are often used for reduction of particulate levels in indoor environments. This paper explores the feasibility of their use in reducing radon progeny concentrations in a confined environment. Experiments have been carried out in a 10 m 3 test vessel in which ionizers are suspended in airspace and 226 Ra planchettes are placed as sources of radon. The radon, progeny and aerosol concentrations were estimated prior to and post-ioniser operation in the vessel using standard instruments and techniques. Results showed that the progeny concentrations decreased by a factor of about 10 with a mean life of about 35 min after ioniser was switched on. A mathematical model involving progeny, particle, ion space charge and electric field interaction processes been developed for estimating the various fractions of the progeny concentrations in the presence of the ionizer. The results of the model compared well with the experimental results. This study has a possible application for reducing progeny concentrations in U mines at local scales and specific working areas. (author)

  16. Study of indoor radon, thoron and their progeny concentration levels in the surrounding areas of Mangaldoi, Assam

    International Nuclear Information System (INIS)

    Deka, P.C.; Sarkar, S.; Goswami, T.D.; Sarma, B.K.

    2006-01-01

    Natural sources contribute a significant percentage of radiation towards the total radiation exposure that humans receive. The majority of this natural radiation is harmless to humans in the ambient environment. However, radon, a major component of the natural radiation that humans are exposed to (greater than sixty percent), can pose a threat to the public health when radon gas accumulates in poorly ventilated residential and occupational settings. Measurements of concentration of radon, thoron and their decay products in various indoor environment covering four seasons of a year were carried out using the passive time-integrated method by employing LR-15 type II detectors in plastic twin-chamber dosimeter cups. The estimated indoor radon levels for well ventilated houses varied from a minimum value of 25.2 Bq.m -3 to a maximum of 80J Bq.m -3 with an annual geometric mean of 46.9 Bq.m -3 and that for poorly ventilated houses varied from a minimum value of 46.8 Bq.m -3 to a maximum of 146.8 Bq.m -3 with the annual geometric mean of 82 .2 Bq.m -3 . The thoron levels in well ventilated houses were also varied from a minimum value of 4.9 Bq.m -3 to a maximum of 21.5 Bq.m -3 with an annual geometric mean of 10.5 Bq.m -3 and that for poorly ventilated houses varied from a minimum of 6.3 Bq.m -3 to a maximum value of 29.2 Bq.m -3 with the annual geometric mean of 14.1 Bq.m -3 . Thus it is seen that both radon and thoron levels are higher in poorly ventilated houses than in well-ventilated houses. The ranges of radon and thoron progeny levels for well ventilated houses were 0.10 mWL to 0.58 mWL with an annual geometric mean of 0.21 mWL and 0.01 mWL to 0.06 mWL with an annual geometric mean of 0.03 mWL respectively. Similar variation was also observed in poorly ventilated houses. In poorly ventilated houses, the radon and thoron progeny levels varied between 0.16 mWL and 1.61 mWL with an annual geometric mean of 0.41 mWL and 0.02 to 029 mWL with the annual geometric mean

  17. Distribution characteristics of radon and its progeny in blind roadway with forced ventilation

    International Nuclear Information System (INIS)

    Ye Yongjun; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Liu Dong; Ding Dexin

    2012-01-01

    The blind roadway is not only the important workplaces, but also is important site of radon and its progeny generating and gathering, it is an important guiding significance for ventilation protection design to study distribution characteristics of radon and its progeny in blind roadway. Therefore, at first, the paper expounded the mathematical relationship between radon activity concentration with alpha potential concentration of radon progeny. Then, analyzed the sources of radon and its progeny, and established mathematical calculation model of Distribution characteristics of radon and its progeny in blind roadway with forced ventilation, respectively. Finally, using mathematical calculation models to analyze the influence law of multiple factors. (authors)

  18. Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu and Kashmir, India

    International Nuclear Information System (INIS)

    Kaur, M.; Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab; Kumar, A.; Mehra, R.; Mishra, R.

    2018-01-01

    The present work deals with the assessment of annual inhalation dose due to exposure of indoor radon, thoron and their progeny concentrations in the villages situated in sub-mountainous region of Jammu and Kashmir, India. The distribution of the data and the homogeneity of medians among different seasons and dwellings were assessed with the Shapiro-Wilk test and the Mann-Whitney test. The estimated total annual inhalation dose in these villages varied from 0.5 to 1.9 mSv year -1 which is less than the prescribed limit by ICRP (2008). Thus, the investigated area is safe from irradiation of radon, thoron and their progeny. (author)

  19. Levels of radon gas concentration and progeny in homes of Potosi City, Bolivia to 4000 m; Niveles de concentracion de gas radon y progenie en viviendas de la Ciudad de Potosi, Bolivia a 4000 msnm

    Energy Technology Data Exchange (ETDEWEB)

    Mamani M, R. [Universidad Autonoma Tomas Frias, Carrera de Fisica, Av. del maestro s/n, Edif. Central Potosi, Villa Imperial de Potosi (Bolivia, Plurinational State of); Claros J, J. [Universidad Autonoma Tomas Frias, Facultad de Minas Potosi, Centro de Investigacion, Av. Serrudo y Arce s/n, Villa Imperial de Potosi (Bolivia, Plurinational State of); Vasquez A, R., E-mail: raulm2k13@hotmail.com [Instituto Boliviano de Biologia de Altura, Calle Hoyos 953, La Paz (Bolivia, Plurinational State of)

    2015-10-15

    Full text: In this work the presence of radon gas was determined, which is a radioactive contaminant that comes from underground, able to penetrate the houses. The danger is that when mixed air and when inhaled can cause serious damage to the lungs, for the short life time that has radon and progeny for decay, damaging the pulmonary alveoli and reducing breathing capacity of the habitants, then causing polycythemia in some cases. The study was carried out in homes in the city of Potosi, Bolivia located at 4000 m. The quantification of radon gas and progeny was performed with the equipment Alpha-Zaeller-2 (Az-2), quantification was realized in 6 zones of the city of Potosi, chosen randomly. In each zone were carried out measurements in 40 homes (2 rooms more permanent), both day and night, for a period of 3 days in two different seasons and with concentrations of average humidity of 20, 50 and 80%. The values obtained for each period vary depending on the season and 30 to 50% of the allowable values given by the EPA and Who for housing. (Author)

  20. Measurement of indoor radon-thoron and their progeny levels in dwellings and radon concentrations in ground water of Hassan city, Karnataka, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.

    2014-01-01

    The indoor radon and thoron concentrations in dwellings of Hassan city have been measured by using LR-115 type-Il Solid State Nuclear Tracks Detectors (SSNTDs). Measurements were carried in summer season from March to May-2013. The radon and thoron activity concentration in the corresponding dwellings has been found to vary from 7.4 to 45.7 Bqm -3 and 5.4 to 34.9 Bqm -3 with a median of 23.59±11 Bqm -3 and 14.47±8 Bqm -3 respectively. The overall average radon concentrations are found to be less than the lower reference level of 200 Bq m -3 of the International Commission on Radiological Protection. The annual effective dose received due to radon and its progeny by the inhabitants in the dwellings under study has also been calculated which found to vary from 0.320 ±0.4 to 1.86 ±1.1 mSv y -1 with an average value of 0.957±0.8 mSv -1 . The obtained results are much lower than the upper reference level of 10 mSv y -1 (ICRP 2007). Radon in bore well water at different locations of Hassan city was determined using the emanometry technique and exposure dose from ingestion of drinking water was estimated. The radon concentration in ground water was found to vary from 19.49 to 60.74 Bq l -1 with an average value of 47.16±14Bq l -1 . From this study it is evident that, the recorded ground water radon concentration values are higher than MCL of 11 Bq l -1 proposed by USEPA. The total dose due to inhalation and ingestion of 222 Rn in ground water ranges from 0.053 mSv y -1 to 0.165mSv y -1 with an average value of 0.127±0.038mSv y -1 . (author)

  1. Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with multi-step etching

    International Nuclear Information System (INIS)

    Nikezic, D.; Yu, K.N.

    2010-01-01

    We developed the theoretical basis for long-term determination of airborne concentrations of unattached and attached radon progeny. The work was separated into two parts. First, we showed that (stacked and multiply etched) LR 115 detectors could be used to determine airborne concentrations of the short-lived radon progeny, 218 Po and 214 Bi. The equilibrium factor F between radon and its progeny could then be determined through the use of the reduced equilibrium factor F red . The airborne concentrations of 214 Pb could then be determined. Second, we developed a method based on the airborne concentrations of 218 Po, 214 Pb and 214 Bi to determine the parameters of the Jacobi room model, viz., the ventilation rate λ v , aerosol attachment rate λ a , deposition rate of unattached progeny λ d u and the deposition rate of attached progeny λ d u . With these parameters, the unattached fraction f p of the potential alpha energy concentration could also be determined. Knowledge of f p , together with F, would enable more accurate determination of the effective dose in the human lung.

  2. Health effects of inhaled radon progeny

    International Nuclear Information System (INIS)

    Monchaux, G.

    1997-01-01

    The relationship between an increased risk of lung cancer and exposure to radon progeny has been studied in eleven cohorts of underground workers, both in uranium and non uranium mines as well as in experimental animals. Risk estimates derived from miners studies are used to assess the risk of lung cancer in relation to exposure to indoor radon progeny. Human and animal experimental data are reviewed in the perspective of risk assessment for low exposure to radon progeny, in the conditions of the contemporary working environment as well as the indoor domestic environment. (authors)

  3. Radon and thoron progeny measurements using a portable radon sniffer

    International Nuclear Information System (INIS)

    Efendi, Z.; Jennings, P.

    1993-01-01

    A flexible version of the two-count method has been developed for use in rapid, inexpensive measurements of radon and thoron progeny working levels in residential and industrial premises in the Perth Metropolitan Area. The Method is adapted for use with a simple radon sniffer based on a low speed pump and an alpha counter. The flexibility of the method derives from the software, where some freedom is permitted in the selection of sampling times and post sampling analysis of the filters. This method has been tested on a variety of radioactive materials and it gives consistent, reliable results over a wide range of working levels. The results of a survey of Rn(222) and Rn(220) progeny levels in dwellings within the Perth Metropolitan Area are reported. This study shows that the mean concentration of indoor Rn(222) progeny was 4.7 mWL (17.4 Bq m -3 EEC) up to 23.3 mWL (86.4 Bq m -3 EEC). The mean thoron progeny concentration was 8.2 mWL (2.25 Bq m -3 EEC) with a range from 1 mWL (0.27 Bq m -3 EEC) to 64.5 mWL (17.74 Bq m -3 EEC). Using conversion factors of 0.061 mSv Bq -1 m -3 for Rn(222) progeny and 0.29 mSv Bq -1 m -3 for Rn(220) progeny respectively (UNSCEAR, 1982), it is estimated the average annual effective dose equivalent is 1.1 mSv for Rn(2220 and 0.6 mSv for Rn(220) respectively. 22 refs., 4 tabs., 1 fig

  4. Measurement of radon and thoron progenies in Coimbatore

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mahendraprasad, M.; Meenakshisundaram, V.; Santhanam, R.; Raghunath, V.M.

    2001-01-01

    The radon and thoron daughter concentrations have been measured in different dwellings of Coimbatore city by grab sampling method and two count. It has been found that the radon daughter concentration varies from 0.5 to 10.5 mWL with mean value of 2.9 mWL and that of thoron progeny is from 0.7 to 16.3 mWL with mean value of 3.8 mWL. The average annual effective dose equivalent due to radon daughters is found to be 1.3 mSv and that of thoron progeny is 3.8 mSv. (author)

  5. Utilisation of an Air-conditioning System to Control the Levels of Radon and Radon Progeny in a Workplace Environment

    International Nuclear Information System (INIS)

    Marley, F.

    2000-01-01

    From long-term real-time radon and radon progeny measurements taken in a relatively large retail store, cyclical patterns were evident, which were found to relate to the overriding influence of the timed air-conditioning system. Concentration of radon, radon progeny and the variability of F factor were found to depend significantly on the intermittent operation of this ventilation-air-conditioning system. After pressure equalisation remedial measures proved ineffective, the air-movement system was utilised to reduce the levels of radon and radon progeny to well within established norms applicable during working hours. It is demonstrated that the average levels for radon and radon progeny are reduced in absolute terms. This amounted to less than 12% of the general level, during designated work periods. Where air movement systems are already installed, as well as other circumstances, their regulation provides an economical solution to meeting legal and other standards for radon in the workplace. (author)

  6. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  7. Intercomparison of active and passive instruments for radon and radon progeny in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng-Wu; Knutson, E.O.

    1995-02-01

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- and beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within ±10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement

  8. Studies of Radon and Radon Progeny in Air Conditioned Rooms in Hospitals

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    1998-01-01

    A series of continuous real-time radon and radon progeny measurements together with passive etched track detector measurements were performed in hospital premises during 1996. In one small room, detailed measurements over several weeks showed that both the radon concentration and the Equilibrium Factor depended on the intermittent operation of a filtered positive pressure displacement air-conditioning system, which was designed to conform to operating theatre standards. The average radon level measured while the air-conditioning was off was almost four times higher than that recorded whilst it was on. The progeny level was over five times higher than that whilst it was on. Thus, the Equilibrium Factor (F), was significantly lower when the air-conditioning was on. Measurements in similar rooms in two hospitals, confirmed that the reduction in radon level was a general finding. Thus staff working in such environments receive significantly lower radiation dose from radon than staff working in nearby normally ventilated rooms. (author)

  9. Diurnal variations of indoor radon progeny for Bangalore metropolitan, India

    International Nuclear Information System (INIS)

    Nagesh, V.; Sathish, L.A.; Nagaraja, K.; Sundareshan, S.

    2010-01-01

    Radon progenies are identified as major causes of the lung cancer if the activity is above its normal. It has not been clear whether radon poses a similar risk of causing lung cancer in humans exposed at generally lower levels found in homes, but a number of indoor radon survey have been carried out in recent years around the world. In view of this an attempt has been made for the measurement of diurnal variation of indoor radon levels for the environment of Bangalore metropolitan, India. The Radon progeny concentrations in terms of working level were measured using Kusnetz's method. The patterns of daily and annual changes in indoor Radon concentration have been observed in a general way for many years. However, understanding of the physical basis for these changes had to await the development of continuous monitors and a more complete knowledge of transport processes in the atmosphere. Over a continent, heating of the ground surface by the Sun during the day and cooling by radiation during the night causes a marked diurnal change in temperature near the surface. As a result cool air near the ground will accumulate radon isotopes from surface flux during the night; while during the day the warm air will be transported upward carrying radon with it. Many buildings show diurnal radon variations. Concentrations are relatively higher during night than daytime. This is influenced by the outdoor-indoor temperature contrast. This effect can be enhanced in buildings with strong diurnal use patterns. Buildings that have high average radon concentrations, but are only occupied for part of the day, may need to be measured during occupied periods to determine if there is significant diurnal radon variation. The results are discussed in detail. (author)

  10. Field investigation of surface-deposited radon progeny as a possible predictor of the airborne radon progeny dose rate.

    Science.gov (United States)

    Sun, Kainan; Steck, Daniel J; Field, R William

    2009-08-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p fireplace, or usage of a ceiling fan significantly, or marginally significantly, reduced the Pdose to 0.65 (90% CI 0.42-0.996), 0.54 (90% CI 0.28-1.02), and 0.66 (90% CI 0.45-0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39-0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55-0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64-0.83) in the mean Pdose was noted, after adjusting for the radon and radon progeny effects and other environmental factors, for every 10 additional cigarettes smoked in the room. A significant increase of 1.71 in the mean Pdose was found for large room size relative to small room size (90% CI 1.08-2.79) after adjusting for the radon and radon progeny effects as well as other environmental factors. Fireplace usage was found to significantly increase the mean Pdose to 1.71 (90% CI 1.20-2.45) after adjusting for other factors.

  11. Proceedings of radon and radon progeny measurements in Australia symposium

    International Nuclear Information System (INIS)

    Akber, R.A.; Harris, F.

    1994-01-01

    This publication contain papers presented at a symposium on radon and radon progeny measurements in Australia, held in Canberra on 18 February 1994. The emphasis was on results of measurements in different exposure situations, however information on methodology and techniques was also included. The scope of the symposium expanded through participation by scientists from China, French Polynesia and New Zealand. A list of participants and their organizations is included at the end of the proceedings. refs., tabs., figs

  12. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Fazal-ur-Rehman [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Ali, S. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Khan, H.A. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group

    1997-03-21

    In the field of radon dosimetry, it is customary to measure radon ({sup 222}Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon`s progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.).

  13. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is -3

  14. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    International Nuclear Information System (INIS)

    Jamil, K.; Fazal-ur-Rehman; Ali, S.; Khan, H.A.

    1997-01-01

    In the field of radon dosimetry, it is customary to measure radon ( 222 Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon's progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.)

  15. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  16. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. [Institut fuer Strahlenschutz, GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg Oberschleissheim (Germany)

    1996-02-09

    The ratio of {sup 210}Pb air concentration to the short-lived radon ({sup 222}Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5{+-}2.2) x 10{sup -5} (arithmetic mean{+-}S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of {sup 210}Pb air concentration is characterized by high values from October through February. Consequently, high ratios of {sup 210}Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, {sup 210}Pb and {sup 214}Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of {sup 210}Po to {sup 210}Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to {sup 210}Pb and {sup 210}Po, were 1:7.5x10{sup -5} and 1:0.6 x 10{sup -5}, respectively.

  17. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1996-01-01

    The ratio of 210 Pb air concentration to the short-lived radon ( 222 Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5±2.2) x 10 -5 (arithmetic mean±S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of 210 Pb air concentration is characterized by high values from October through February. Consequently, high ratios of 210 Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, 210 Pb and 214 Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of 210 Po to 210 Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to 210 Pb and 210 Po, were 1:7.5x10 -5 and 1:0.6 x 10 -5 , respectively

  18. Indoor thoron and radon progeny measurements

    International Nuclear Information System (INIS)

    Tu, K.W.; George, A.C.; Lowder, W.M.; Gogolak, C.V.

    1992-01-01

    Measurements of indoor thoron ( 220 Rn) and radon ( 222 Rn) progeny activities were conducted in 40 homes and six public buildings in five states. A commercial alpha spectrometer system and four portable alpha integrating sampling monitors using diffused junction silicon detectors were used for sampling and recording of radionuclide data in particular the potential alpha energy concentrations (PAEC). The data were analysed for the ratios of PAEC- 220 Rn to PAEC- 222 Rn, and the correlations between the two quantities, and their estimated annual effective dose equivalent (AEDE). The results show that the PAEC ratios were 0.09, 0.6, 0.55, and 0.47, respectively, for all homes with the PAEC- 222 Rn > 400, between 100 and 400, -3 , and the total of all homes tested; the AEDE ratios were 0.03, 0.21, 0.19 and 0.16, respectively. No strong correlations were found between PAEC- 220 Rn and PAEC- 222 Rn, and between basement and ground floor data for PAEC- 220 Rn, but the PAEC- 222 Rn data showed a strong correlation between the basement and the ground floor values. Simultaneous measurements of PAEC- 220 Rn and PAEC- 222 Rn on the ground floor and in the basement of each of the 23 single-family houses tested suggests that 220 Rn entry from building materials may be as significant as from the underlying soil. (author)

  19. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  20. Development of calibration facility for radon and its progenies at NIM (China)

    International Nuclear Information System (INIS)

    Liang, J.C.; Liu, H.R.; Zhang, M.; Zheng, P.H.; Guo, Q.J.; Yang, Z.J.; Li, Z.S.; Zhang, L.

    2015-01-01

    Accurate measurement of radon and its progenies is the basis to control the radon dose and reduce the risk of lung cancer caused. The precise calibration of measuring instrument is an important part of the quality control of measurements of the concentration of radon and radon progenies. To establish Chinese national standards and realise reliable calibrations of measuring instrument for radon and its progenies, a radon chamber with regulation capability of environmental parameters, aerosol and radon concentrations was designed and constructed at National Institute of Metrology (NIM). The chamber has a total volume of ∼20 m 3 including an exposure volume of 12.44 m 3 . The radon concentration can be controlled from 12 Bq m -3 to the maximum of 232 kBq m -3 . The regulation range of temperature, relative humidity and aerosol are 0.66-44.39 deg. C, 16.4-95 %RH and 10 2 -10 6 cm -3 , respectively. The main advantages of the NIM radon chamber with respect to maintaining a stable concentration and equilibrium factor of radon progenies in a wide range through automatic regulation and control of radon and aerosol are described. (authors)

  1. Study on radon and thoron progeny levels in Gudalore in South India

    International Nuclear Information System (INIS)

    Selvasekarapandian, S.; Sivakumar, R.; Mugunthamanikandan, N.; Meenakshisundaram, V.; Santhanam, R.

    2000-01-01

    One of the important route of radiation exposure to man is through inhalation of air containing radioisotopes. A major contribution to inhalation dose comes from radon, thoron and its progenies. The indoor radon and thoron progeny levels are determined by two count method. In this method the radon and thoron progenies are collected on a glass fiber filter paper using volume air sampler (Staplex) and counted for alpha activity in ZnS (Ag) alpha counting system. It is observed that thoron working level is higher than the radon working level in all houses except few houses with stone walls and mosaic floor. Behavior of indoor radon and thoron working levels for different seasons at different houses are determined and discussed in detail. Radon and thoron working levels are measured high in winter, autumn, and low in summer and rainy seasons. Among all seasons highest value is measured in winter and low in summer and rainy seasons. Radon progeny working level varies from 1.659 to 6.675 mWL, whereas thoron progeny working level varies from 1.670 to 12.671 mWL. The geometric mean values of radon and thoron progeny concentration in the present study are 2.836 and 4.133 mWL. The high thoron progeny level observed in this is attributed to the high thorium content observed in soils of this area. (author)

  2. Study of radon progeny distribution and radiation dose rate in the atmosphere

    International Nuclear Information System (INIS)

    Fujinami, Naoto

    2009-01-01

    The absorbed dose rate in air of airborne gamma-ray and the concentration of radon progeny in surface air have been observed continuously in Maizuru, Japan. When data observed on fine days were plotted, with dose rate as ordinate and contraction as abscissa, these points traced with a lapse of time illustrated an anticlockwise looping for each day. This result suggests that the variation of absorbed dose rate lags behind that of concentration of radon progeny; this is due to the delay time incurred as the concentration level gradually varies from ground surface to upper air. Radon progeny concentrations in precipitation and in surface air have been observed there in order to study the relationship between the two concentrations and the influence of precipitation patterns on the concentration in precipitation. Results obtained from analysis of the observed data suggest that radon progeny in precipitation originate mainly from scavenging within the cloud (rainout) and not from that below the cloud (washout). (author)

  3. Portable devices for monitoring radon and its progeny in air

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Yao Wanyuan; Su Jingling; Liu Jinhua

    1990-01-01

    We have developed two kinds of portable monitoring devices to measure the concentration and potential energy concentration of radon and its progeny in air. The thermoluminescence material CaSO4 (Tm) is used as the detection element. One of the devices is called passive radon monitor. The lowest detectable limit for radon in air is about 1.5 Bq/m 3 , as a sampling time being one week. Good reliability and ease to operate are its main advantages. The second kind of device is called a working level monitor which consists of a miniature remembrane pump and an integrating sampling probe. The lowest detectable limit is about 0.00043 WL (9x10 -9 J/m 3 ) for a sampling time of 6 hours. It weighs only 0.35 kg, but maintenance is necessary sometimes. (author). 6 refs, 2 figs, 4 tabs

  4. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    Science.gov (United States)

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and radon progeny effects and other environmental factors, for every 10 increasing cigarettes smoked in the room. A significant increase of 1.71 in the mean Pdose was found for large room size relative to small room size (90% CI 1.08–2.79) after adjusting for the radon and radon progeny effects as well as other environmental factors. Fireplace usage was found to significantly increase the mean Pdose to 1.71 (90% CI 1.20–2.45) after adjusting for other factors. PMID:19590273

  5. Measurements of radon progeny activity on typical indoor surfaces

    International Nuclear Information System (INIS)

    Knutson, E.O.; Gogolak, C.V.; Klemic, G.

    1992-01-01

    A number of studies aimed at defining how well radon progeny on surfaces can be measured, information that is needed in order to test physical/mathematical models governing indoor radon progeny behaviour, are described. One experiment compared the decomposition on to different surfaces. Only relatively small differences were found among metal, filter paper, broadcloth, corduroy fabric, vinyl wallpaper, glass, and latex paint, but polyethylene film collected two to four times as much as the others, due most likely to electrostatic charge on the plastic surface. Another experiment compared the gamma and gross alpha count methods of measuring surface activity for metal, filter paper, broadcloth and corduroy surfaces. No difference for the surfaces tested was found from which it is concluded that, even for rougher surfaces, progeny atoms deposit mainly on the outer layers. A final experiment compared in situ and surrogate-surface methods for measuring surface deposition. For most tests, the two methods agreed within 30%, and the average ratio was not significantly different from unity. 210 Po is a complication in the in situ method. An unexpected location effect was found in the experiments conducted in houses with high radon concentrations: the deposition on the ceiling was higher than on the surfaces. (author)

  6. External gamma exposure to radon progeny in indoor air

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1985-01-01

    The external γ-exposure from radon progeny uniformly distributed in indoor air was estimated by a computer program that was developed. This program can calculate the fluence rate, exposure rate and average energy for any given point in a room of any given size. As numerical example, the exposure rate normalized to unit airborne activity is presented, together with the fluence-weighted and exposure-weighted average photon energies, for a room of representative geometry containing radon progeny in equilibrium. To cover other conditions encountered in practice, quantitative evaluations are additionally presented of the effect on the exposure brought by changes in certain parameters, such as equilibrium factor, wall thickness, room size and receptor position. The study has quantitatively substantiated the prevailing postulate that the effective dose equivalent due to external exposure resulting from normal indoor concentrations of airborne radon progeny in the room of representative geometry should only amount to 0.04 % of that from the internal exposure from the same sources, and that it should be of similarly negligible order compared with internal exposure also in the case of other room geometries. (author)

  7. Design of a recirculating radon progeny aerosol generation and animal exposure system

    International Nuclear Information System (INIS)

    Newton, G.J.; Cuddihy, R.G.; Yeh, H.C.; Barr, E.B.; Boecker, B.B.

    1988-01-01

    Inhalation studies are being conducted at ITRI using laboratory animals exposed to radon-222 progeny attached to vector aerosols that are typical of indoor environments. The purpose of these studies is to identify the cells at risk from inhaled radon progeny and their locations within the respiratory tract. These studies require exposures up to 1000 working level months (WLM) within a few hours. Thus, large amounts of radium-226 are needed to produce the gaseous radon-222. A once-through-exposure-system was considered to be impractical because of statutory discharge limitations and the large amounts of radium that would be required. Therefore, a recirculating exposure system was designed and constructed that removes the aerosol after passing through the exposure chambers and recirculates purified air and radon. The purified radon is mixed with freshly evolving radon from a radon generator and passed Into a reaction-aging chamber where attachment of radon progeny to the vector aerosol occurs. The design includes: (1) 50-200 mg radium-226 in a radon generator, (2) 40 L/min total flow rate, (3) CO 2 removal, (4) reconstitution of oxygen tension and water vapor content to atmospheric levels, and (5) a trap for radon gas. A radon progeny exposure concentration in the range of 4,000 to 50,000 WL is being produced. (author)

  8. The determination of airborne concentrations of radon and thoron progeny by repetitive alpha counting of filter samples

    International Nuclear Information System (INIS)

    French, Clayton S. Jr.; Skrable, Kenneth W.; Chabot, George E.

    1978-01-01

    Analytical equations have been used to determine the airborne concentrations of the particulate daughters of radon and thoron from five net alpha counts obtained at preset time intervals post sampling. The same expressions were used to propagate the associated standard deviations. These propagated errors were minimized by the selection of optimum sampling and counting intervals. An extensive error analysis examined sources of interference and their influence on the calculated concentrations. This system offers sufficient precision for research applications, yet is simple and inexpensive enough for application in field studies. The radon and thoron daughters measured with this technique are 218 Po, 214 Pb, 214 Bi, 212 Pb, and 212 Bi. Because of the decay kinetics involved, the calculated concentrations of 218 Po and 212 Bi involve the greatest uncertainty. The proper choice of sampling and counting intervals optimizes the system for any one of the above radionuclides or for all five collectively. A sampling time of 15 minutes is best for the simultaneous estimation of all five concentrations. Millipore filter samples were obtained from a large, unventilated sub-basement of the University of Lowell research reactor facility and were counted later in direct contact with the window of a gas flow proportional detector having alpha particle counting efficiencies near 0.4 ca -1 and an alpha background of about 1 c min -1 . A typical 15 minute sample obtained at a flow rate of 2 x 10 4 cm 3 min -1 yielded estimates of the airborne concentrations and relative standard deviations: 218 Po, 4.75 x 10 -9 μCi cm -3 ± 18.9%; 214 Pb, 5.15 x 10 -9 μCi cm -3 ± 2.5%; 214 Bi, 4.86 x 10 -9 μCi cm -3 ± 2.4%; 212 Pb, 1.41 x 10 -10 μCi cm -3 ± 2.0%; and 212 Bi, 2.15 x 10 -10 μCi cm -3 ± 27.0%. (author)

  9. Plate-out rates of radon progeny and particles in a spherical chamber

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Chen, B.T.

    1990-01-01

    In indoor and mining environments, deposition or ''plate-out'' of radon progeny onto walls occurs simultaneously with attachment of the radon progeny to airborne particles. Attachment and plate-out processes affect the atmosphere in which radon exposures takes place by reducing concentrations and shifting activity size distributions. Both processes have important consequences in determining the deposition pattern and initial dose of inhaled radon progeny. Theoretical deposition models show that turbulence and natural convection in a room are the major factors that influence plate-out rates. Here we describe plate-out measurements for radon progeny and aerosol particles in a spherical chamber under controlled laboratory conditions. The temperature and velocity profiles in still and turbulent air were monitored. A 161-liter spherical aluminum chamber was used to study the mixing. During mixing, air velocity was detected when rotational speeds were higher than 500 rpm. Monodisperse silver aerosols and polystyrene latex particles in the size range of 5 nm to 2 μm were used in the deposition study. Radon-220 progeny were generated by passing Rn-220 gas into the chamber and letting the gas decay into 212 Pb. The deposition rates of the particles and radon progeny ( 212 Pb) in the chamber were determined by monitoring the concentration decay of the aerosol as a function of time

  10. Portable monitors for measuring radon and its progenies air by intergrated sampling method

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Su Jingling; Yao Wanyuan; Liu Jinhua

    1989-01-01

    Two kinds of portable monitors have been developed, which can be used to measure the concentration of radon or potential energy concentration of radon or potential energy concentration of radon progenies in air. The thermoluminescent material CaSO 4 (Tm) is used as a detecting element for both of them. The lowest detectable limit of the passive radon monitor is about 1.5 Bq/m 3 for radon in air, as the exposure time being one week. Its main advantages are high reliability and convenient manipulation. The working level monitor for radon progenies in air consists of a mini membrane pump and an integrating probe. The lowest detectable limit is about 6.2 x 10 -9 J/m 3 , as the sampling time being 6 hours. It weights only about 0.35 kg

  11. Cellular lung dosimetry for inhaled thoron progeny: comparison with radon progeny

    International Nuclear Information System (INIS)

    Abd El-Hady, M.; Hofmann, W.; Balashazy, I.

    1998-01-01

    Recently an analytical method was developed to compute radiation doses deposited by 222 Rn progeny alpha particles in 1 μm spheres located at different depths in bronchial epithelium. The same method was now applied to alpha particles emitted from 220 Rn progeny deposited in bronchial airway surfaces. Results of the computations are presented in graphs. The mean cellular doses imparted by 220 Rn progeny to basal and secretory cell nuclei were compared with those produced by 222 Rn progeny; due to differences in alpha energies, radon progeny doses were found to be generally higher than those for thoron progeny. (A.K.)

  12. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  13. Radon Progeny In Underground Phosphate Mines and Their Activity Distributions In Human Lung

    International Nuclear Information System (INIS)

    Abd El-Hady, M.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to workers in uranium mines, the staff of other underground mines, such as worker in underground phosphate mines, Can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure to the workers in those sites. Active techniques are employed to fulfill the objective of measuring individual radon progeny concentrations (C RaA , C RaB and C RaC ). The mean reported values of radon progeny concentrations exceed the action levels recommended by ICRP 65 (1993). Based on the physical properties of attached radon progeny aerosol and physiological parameters for heavy work activity which recommended by ICRP 66 (1994). the deposition fraction for each airway generation was calculated. From the measured individual radon progeny concentrations in these mines and the calculated values of deposition fractions, the surface activity distribution per generation were calculated in human respiratory system (BB and regions). The maximum values of these activities were found in the upper bronchial airway generations. According to the obtained results, some of the corrective actions were recommended in this study

  14. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m -3 222 Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants' reported values to the EML values, for all four radon device categories, was 0.99 ± 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within ±1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 ± 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm -3 ). The equilibrium factor at that particle concentration level was 0.10--0.22

  15. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  16. Lung dosimetry for inhaled radon progeny

    International Nuclear Information System (INIS)

    Hofmann, W.

    1986-01-01

    Lung cancer risk assessment for inhaled radon progeny requires a detailed knowledge of the dose distribution pattern throughout the human respiratory tract. Current lung dosimetry models take into acocunt aerosol deposition in a formalized airway structrue, modification of the initial deposition pattern by clearance mechanisms, and the energy deposited by alpha particles in sensitive cells of the bronchial epithelium. The resulting dose distribution pattern depends on the characteristics of the inhaled aerosol and the breathing pattern. Special emphasis has been laid on the age dependency of the anatomical structure of the human lung and the resulting doses, as well as on the rediological significance of enhanced aerosol deposition at bronchial bifuraction. The biological variability inherent in all morphometric, physiological and histological parameters involved in lung dosimetry suggests the application of stochastic modelling techniques. Examples for the use of Monte Carlo methods presented here are the random walk of inhaled particles through a random airway geometry, and the influence of the intra-subject variability of radiation doses on radiation protection standards. At the cellular level the concept of absorbed dose loses its significance and has to be replaced by microdosimetric concepts, such as internal microdosimtry or track structure theory. An image-analysis model allows us to construct specific energy distributions in sensitive lung cells. Application of a track structure model of alpha particle interaction with bronchial epithelial cells permits the calculation of probabilities for inactivation, transformation, and tumor induction. The latter has been used to analyse lung cancer risk at low doses in Chinese high background areas

  17. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    Science.gov (United States)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  18. Temporal and vertical variations radon and its progeny related to atmospheric electrical conductivity

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2015-01-01

    Atmospheric radon, its progeny, electrical conductivity and meteorological parameters such as wind, temperature, humidity, pressure and rainfall were continuously monitored during 2012 to 2014 at one location in Mysuru city. The annual mean atmospheric radon concentration at the study location was found to be 16.4 Bqm -3 . The diurnal cycle of radon and its progeny show a peak in the early morning hours followed by a drastic decrease after sunrise and rising to a second peak in the afternoon. It was found that the stability of the atmosphere and ambient temperature played a major role in the diurnal variations. Higher concentrations of radon and its progeny were observed in winter and lower values in summer. This may due to the variations in origin of air mass and meteorological parameters. Wind direction analyses reveal that in sectors with air which has spent a longer period over the granitic region and low wind speeds will lead to higher concentrations of radon. Atmospheric electrical conductivity near the ground is mainly due to the ionization from radon and its progeny. The diurnal variations of conductivity and ionization rate due to radon and its individual progeny were of similar trend. In addition its significant dependence on meteorological parameters is confirmed. The vertical variations of atmospheric electrical conductivity were studied at different heights up to 250 m from the ground level. Higher values were observed close to the ground surface, there was a rapid reduction up to about 10 m and beyond that the conductivity gradually decreases. The diurnal conductivity cycle is studied at 10 m and 100 m showed the expected similar trend at both the heights but early morning maxima were considerably different, this confirms the accumulation of radon gas close to the ground surface during night time leading to increase of conductivity values. (author)

  19. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability

  20. Radon and thoron progeny levels in air samples at Udagamandalam region of Nilgiris in India

    International Nuclear Information System (INIS)

    Manikandan, N.M.; Selvasekarapandian, S.; Sivakumar, R.; Raghunath, V.M.; Sundaram, V.M.; Santhanam, S.

    2002-01-01

    Measurement of concentration of radon and thoron daughter products in various indoor environment covering four seasons of a year in Udagamandalam Taluk of Nilgiris biosphere has been carried out using a high volume air sampler to assess the inhalation dose to the population which delivers higher dose than the radon and thoron gas alone. The potential alpha-energy concentrations of the radon and thoron progeny ranged from 0.97 to 12.72 mWL and from 1.63 to 15.83 mWL with a geometric mean of 6.02 and 7.89 mWL, respectively, taking all seasons into account. These measurements have yielded a wealth of data on the variation among the indoor radon and thoron progeny in various places during different seasons. The radon and thoron progeny levels are higher in winter seasons and are less in summer season with autumn and spring data lie in between winter and summer. Using the dose conversion factor for indoor exposures given in UNSCEAR 93 report the internal equivalent dose to the inhalation of radon progeny is evaluated to be 1357 μSv x y -1 and the corresponding annual effective dose equivalent value has been found to be 2.13 mSv x y -1 . It can be observed that the mean value of radon is higher than the Indian average. Also it is found the radon and thoron progeny levels are higher in the case of houses built with rock and granite and in tiled type houses of nearly 100 years old. The levels are less in the case of houses built with brick and cement. The observed results for different types of houses and seasons are discussed in this paper. (author)

  1. Microdosimetry of radon progeny: Application to risk assessment

    International Nuclear Information System (INIS)

    Fisher, D.R.; Hui, T.E.; James, A.C.; Bond, V.P.

    1990-01-01

    We developed methods for calculating radiation doses to individual cells and cell nuclei of human bronchial epithelium from radon and progeny for specified levels of exposure, breathing rates, equilibrium factors, unattached fraction of progeny, and other factors that are important in radon dosimetry. If we also know which cells are likely precursors for cancer, and we also know their locations in the respiratory tract, we then may calculate the statistical probability that these cells are irradiated by alpha particles, the number of single alpha-particle hits, and the spectrum of doses delivered as a probability density in specific energy

  2. Effect of natural ventilation on radon and radon progeny levels in houses. Rept. for Apr 90-Sep 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1991-01-01

    The paper discusses the effect of natural ventilation on radon and radon progeny levels in houses. Contradicting the widely held assumption that ventilation is ineffective in reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5 to 10 using only natural ventilation. Measurement of the outdoor-basement pressure differential and the radon entry rate shows that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes: (1) the obvious one, dilution, which lowers radon concentrations by adding uncontaminated outdoor air; and (2) although less evident, introducing a pressure break in the system through an open basement window which, in turn, reduces the outdoor-basement pressure differential and the rate at which radon-laden soil gas is drawn into the house. The radon entry rate was found to be a linear function of basement depressurization up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubled the building air exchange rate and reduced the radon entry rate by up to a factor of 5

  3. Indoor radon and its progeny levels in new type houses in rural area of Hubei

    International Nuclear Information System (INIS)

    He Quan; Xiong Zhaoxing; He Zuan; Zheng Youqing

    1993-01-01

    Using Cluster Sampling method, indoor radon of 54 rooms and radon progeny potential alpha-energy concentrations of 200 rooms were measured in the new type brick-concrete 2-storey flats and old type brick-wood single-storey residences in the rural area. Instant and cumulative samplings and measurements were made. The average per capita residential area of the surveyed houses was 28.1 m 2 , clear height 3.6 m. The geometric means of indoor radon concentration were 18.22 Bq.m -3 and 15.93 Bq.m -3 for storied and single-storey buildings, respectively; radon progeny potential alpha-energy concentrations were 2.62 mWL and 2.54 mWL, correspondingly. In storied buildings, the arithmetic mean of indoor cumulative radon concentration was 25.56 Bq.m -3 in summer, and 37.94 Bq.m -3 in winter. The annual effective dose equivalent of radon progeny inhaled indoors and outdoors was 0.80 mSv. (orig.). (6 refs., 1 fig., 5 tabs.)

  4. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  5. Unattached fraction of radon progeny in Polish coal mines

    International Nuclear Information System (INIS)

    Skubacz, K.; Michalik, B.

    2002-01-01

    The system of the monitoring of the radiation hazard in Polish coal mines is based on the monitoring of the workplaces. This system works since 1989 in all coal mines. It gives a very good basis for further epidemiological investigation and assessment of the health detriment within the population of the mines as a result of the exposure for natural radiation. It is very important problem, due to the fact of the presence in the mines another factors, which probably have a synergetic effects on the respiratory tracts. As the routine instrument, a device called ALFA-31 sampling probe was developed in our laboratory. This device was accomplished to regular dust sampler and simultaneous measurements of dust content and potential alpha energy concentration of radon progeny are obligatory in all underground mines in Poland. But the microcyclone used a separator of the respirable fraction which causes the cut-off of unattached fraction of radon progeny, On the other hand measurements of the unattached fraction of short lived radon progeny play a very important role in the investigations of the adequate dose from this source of radiation hazard. During field experiments the use of the alpha spectroscopy system is necessary, while measurements are done not in the vacuum chambers but under normal pressure. It leads to situation, when particular peaks in alpha spectrum are very wide and interfere with other peaks of another alpha-emitting radionuclides. Such instrumentation was designed and completed, and a survey in several underground mines was performed. The analysis of the obtained results must be done very carefully; in other case it may cause a very big uncertainty of the result. In this paper a new approach to the analysis of the alpha spectra has been described. This approach can be used also in other applications of alpha spectroscopy, in which the analysis of energy of alpha peaks in spectrum is needed. The method of the analysis is based on a non-linear regression

  6. Dose-dependent in vivo cell-cycle changes following radon progeny exposure

    International Nuclear Information System (INIS)

    Johnson, N.F.; Carpenter, T.R.; Hickman, A.W.; Jaramillo, R.J.; Gurule, D.M.

    1994-01-01

    Exposures to low concentrations of alpha-emitting radon progeny are reported by the U.S. Environmental Protection Agency to be the second leading cause of lung cancer. Current risk estimates for lung cancer from the inhalation of radon progeny are based on data from underground uranium miners. To produce such risk estimates, calculations are based on several assumptions concerning exposure-response relationships rather than dose-response relationships. A better understanding of the mechanisms of interactions between alpha particles, the cells of the respiratory tract, and the progression toward cancer may validate the mathematical models used to derive risk estimates

  7. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  8. Diurnal Variations of Equilibrium Factor and Unattached fraction of Radon Progeny in Some Houses and Laboratories

    International Nuclear Information System (INIS)

    Lee, Seung Chan; Kang, Hee Dong; Kim, Chang Kyu; Lee, Dong Myung

    2001-01-01

    The variation characteristics of radon concentration, equilibrium equivalent concentration and equilibrium factor in some house and laboratory buildings have been studied. The variation of equilibrium factor and the unattached fraction of radon progeny with ventilation condition have been also estimated. The averages of radon concentration, equilibrium equivalent concentration and equilibrium factor were 30 Bq m -3 , 19.6 Bq m -3 and 0.65 in seven houses, while 55.0 Bq m -3 , 31.9 Bq m -3 and 0.58 in three laboratory buildings, respectively. The diurnal variation of radon concentration, equilibrium equivalent concentration and equilibrium factor in indoor showed a typical pattern that the radon concentration, equilibrium equivalent concentration and equilibrium factor increased at dawn and morning, while decreased at midday and evening. While the equilibrium factor rate deceased in the indoor environment which was well ventilated, the unattached fraction of radon progeny increased. The equilibrium factor was in proportion to air pressure and humidity of indoor, whereas in inverse proportion to temperature

  9. Assessment of dose due to exposure to indoor radon and thoron progeny

    Directory of Open Access Journals (Sweden)

    Prasad Ganesh

    2010-01-01

    Full Text Available The components of the effective dose through inhalation from radon and its progeny are important for human health since they contribute to more than 50% of the total radiation dose from natural sources. As a consequence, radon has been identified as the second leading cause of lung cancer after smoking. Radon and its short lived decay products (218Po, 214Pb, 214Bi, 214Po present in dwellings are a radiation hazard, particularly if such sources are concentrated in the enclosed areas like poorly ventilated houses and underground mines. The indoor radon, thoron, and progeny concentrations were measured in a small hilly town of Budhakedar and the surrounding area of Tehri Garhwal, India, by using LR-115 Type II plastic track detector in a twin cup radon dosimeter. The concentrations of radon progeny were measured as the highest in winter and the lowest in summer while the thoron progeny concentration was found maximum in rainy season and minimum in autumn. The annual exposure to the potential alpha energy of radon and thoron were found to vary from 0.04 WLM to 0.69 WLM with an average value of 0.29 WLM, and 0.03 WLM to 0.37 WLM with an aver- age value of 0.16 WLM, respectively. The annual effective dose due to the exposure to indoor radon and progeny in Budhakedar homes was found to vary from 0.16 mSv to 2.72 mSv with an average value of 1.14 mSv and the effective dose due to the exposure to thoron and progeny was found to vary from 0.18 mSv to 2.49 mSv with an average value of 1.05 mSv. The results of systematic study have been obtained by considering the room as a space in which the radon and thoron levels are directly related to the dynamic and static parameters.

  10. Microclimatic effects on outdoor radon and its progeny in a long-term study

    International Nuclear Information System (INIS)

    Schuetz, M.; Keller, G.; Kappel, R.J.A.

    1994-01-01

    The dose due to the long term radon exposure is estimated from the radon concentration and from an equilibrium factor that in the literature is reported with a wide uncertainty. Therefore the radon equilibrium factor outdoors and its dependence on climatic effects should be investigated in a long-term study. Both the outdoor concentrations of radon and of its progeny near Ellweiler/Hunsrueck were measured continuously during 12 months and the resulting equilibrium factors were determined. Simultaneously to the every 2 hour's radon data many meterological parameters as temperature and relative to humidity of the air, barometric pressure and duration and amount of rainfall were recorded. At a height of 6 meters above ground and in 10 minute intervals the local wind direction and velocity were registered. By that a set of more than 3000 single measurements of the equilibrium factor and of the corresponding weather conditions was collected

  11. Multi-parametric approach towards the assessment of radon and thoron progeny exposures

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rosaline, E-mail: rosaline@barc.gov.in, E-mail: rosaline.mishra@gmail.com; Sapra, B. K. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mayya, Y. S. [Indian Institute of Technology, Mumbai (India)

    2014-02-15

    Conventionally, the dosimetry is carried out using radon and thoron gas concentration measurements and doses have been assigned using assumed equilibrium factors for the progeny species, which is inadequate pertaining to the variations in equilibrium factors and possibly due to significant thoron. In fact, since the true exposures depend upon the intricate mechanisms of progeny deposition in the lung, therefore an integrated approach for the assessment of progeny is essential. In this context, the recently developed deposition based progeny concentration measurement techniques (DTPS: Direct Thoron progeny sensors and DRPS: Direct Radon progeny sensors) appear to be best suited for radiological risk assessments both among occupational workers and general study populations. DTPS and DRPS consist of aluminized mylar mounted LR115 type passive detectors, which essentially detects the alpha particles emitted from the deposited progeny atoms on the detector surface. It gives direct measure of progeny activity concentrations in air. DTPS has a lower limit of detection limit of 0.1 Bq/m{sup 3} whereas that for DRPS is 1 Bq/m{sup 3}, hence are perfectly suitable for indoor environments. These DTPS and DRPS can be capped with 200-mesh type wire-screen to measure the coarse fraction of the progeny concentration and the corresponding coarse fraction deposition velocities as well as the time integrated fine fraction. DTPS and DRPS can also be lodged in an integrated sampler wherein the wire-mesh and filter-paper are arranged in an array in flow-mode, to measure the fine and coarse fraction concentration separately and simultaneously. The details are further discussed in the paper.

  12. Risk of lung cancer in animals following low exposures to Radon-222 progeny

    International Nuclear Information System (INIS)

    Duport, P.; Monchaux, G.; Morlier, J.P.

    1997-01-01

    Owing to the facts that a) large uncertainties affect the epidemiology of radon progeny-induced lung cancer in humans (especially at low exposures), and b) the rat is a good model for studying the carcinogenicity of radon progeny in humans, the risk of lung cancer following low exposures to low concentrations of radon progeny can be estimated from data obtained in the laboratory on rats exposed under controlled conditions. From the limited set of laboratory data on the induction of lung cancer in laboratory rats it appears that, at low exposures, the risk of lung cancer decreases with decreasing concentration, and that exposures of the order of 25 WLM, at an exposure rate of 2 WL do not produce any excess lung cancers. Since 20 WLM is a lifetime exposure comparable to those expected in occupational or indoors conditions and 2 WL is an exposure rate about 20 times higher dm current occupational exposures rates and 100 times higher than indoor ones, these observations may be indicative of threshold conditions for the induction of lung cancer by radon progeny. (author)

  13. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances

    International Nuclear Information System (INIS)

    Pornnumpa, C.; Tokonami, S.; Sorimachi, A.; Kranrod, C.

    2015-01-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. (authors)

  14. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Measurement of unattached radon progeny based in electrostatic deposition method

    International Nuclear Information System (INIS)

    Canoba, A.C.; Lopez, F.O.

    1999-01-01

    A method for the measurement of unattached radon progeny based on its electrostatic deposition onto wire screens, using only one pump, has been implemented and calibrated. The importance of being able of making use of this method is related with the special radiological significance that has the unattached fraction of the short-lived radon progeny. Because of this, the assessment of exposure could be directly related to dose with far greater accuracy than before. The advantages of this method are its simplicity, even with the tools needed for the sample collection, as well as the measurement instruments used. Also, the suitability of this method is enhanced by the fact that it can effectively be used with a simple measuring procedure such as the Kusnetz method. (author)

  16. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    Science.gov (United States)

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A radon progeny sampler for the determination of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Laboratory, Victoria (Australia)

    1997-12-01

    The design and simulated performance is described of a two-stage sampler (HE-Sampler) for {sup 222}Rn progeny. This HE-Sampler has a collection efficiency optimised to match the particle size dependency of the radon progeny dose conversion factor (DCF), derived from the latest Respiratory Tract Model of the International Commission on Radiological Protection, as implemented in the computer code RADEP. The He-Sampler comprises a wire screen pre-separator, matched to the nasal deposition, and a wire screen collector, matched to the respiratory tract collection. This HE-Sampler allows for the estimation of the radiation dose from the inhalation of {sup 222}Rn progeny, derived from two concurrent alpha particle activity measurements, one on the HE-Sampler screen collector and one on a reference filter sample. As a first approximation, the DCF is proportional to the collected fraction. The HE-Sampler response was simulated for a range of radon progeny size distributions to determine the error in the estimated DCF values. The simulation results show that the HE-Sampler is relatively insensitive to variations in sampling rate and in the screen parameters, particularly for environmental exposure. (Author).

  18. Optimization of filtration for control of exposure to radon progeny

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Ryan, P.B.; Moeller, D.W.

    1989-01-01

    The theoretical optimization of filter characteristics that minimize an individual's dose from the inhalation of radon progeny is described. The computer simulation presented combines models for a well-mixed room, lung deposition, and lung dose equivalent. A modified form of the Jacobi-Porstendorfer room model and the Jacobi-Eisfeld lung dosimetry model are used for the simulation. The parameters of the filter that are optimized include the filter's solidity, thickness, and fiber diameter. Room ventilation, particle size distribution and concentration, and other factors are specified. The theoretical model is used to determine optimal filter characteristics for reducing the lung dose equivalent under specified room conditions. The resulting optimal design is a thin filter (0.1 - 0.7 mm) of low solidity (0.5 - 1.0%) and relatively large diameter fibers (30 - 100 μm). This model indicates that a significant reduction in the dose-equivalent rate can be achieved through the use of a properly designed recirculating filter system

  19. Rapid determination of radon daughter concentrations

    International Nuclear Information System (INIS)

    Bigu, J.

    1990-08-01

    A technical evaluation of four radon 222 progeny measuring instruments has been conducted. The evaluation has been carried out under laboratory controlled conditions and at several locations in an underground uranium mine. The laboratory evaluation consisted of a thorough study of the behaviour and performance of the instruments under a wide variety of environmental conditions such as radon 222 gas concentration, radon 222 progeny concentration, temperature, relative humidity, aerosol concentration, and gamma-field exposure. The four instruments tested were: the Pylon WL-1000C, the MDA IWLM-811, the MIMIL IIM, and the EDA WLM-30. The readings of the instruments were compared with a widely accepted radon 222 progeny concentration measuring method, namely, the Thomas-Tsivoglou method. Two variables affected two instruments significantly, namely, under high aerosol concentration conditions, one of the instruments (EDA WLM-30) ceased to operate because of filter loading. The other variable was gamma-field exposure which affected another instrument (MDA-811) adversely. The instruments were rated according to several criteria. The overall best performer was the MIMIL IIM, although other instruments also fared quite well under a variety of experimental conditions

  20. Estimation of radon progeny equilibrium factors and their uncertainty bounds using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Eappen, K.P.; Mayya, Y.S.; Patnaik, R.L.; Kushwaha, H.S.

    2006-01-01

    For the assessment of inhalation doses due to radon and its progeny to uranium mine workers, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) are best suited for this purpose. These generally contain two SSNTDs, one placed inside the cup to measure only the radon gas concentration and other outside the cup for recording tracks due to both radon gas and the progeny species. However, since one obtains only two numbers by this method whereas information on four quantities is required for an unambiguous estimation of dose, there is a need for developing an optimal methodology for extracting information on the equilibrium factors. Several techniques proposed earlier have essentially been based on deterministic approaches, which do not fully take into account all the possible uncertainties in the environmental parameters. Keeping this in view, a simple 'mean of bounds' methodology is proposed to extract equilibrium factors based on their absolute bounds and the associated uncertainties as obtained from general arguments of radon progeny disequilibrium. This may be considered as reasonable estimates of the equilibrium factors in the absence of a knowledge of fluctuation in the environmental variables. The results are compared with those from direct measurements both in the laboratory and in real field situations. In view of the good agreement found between these, it is proposed that the simple mean of bounds estimate may be useful for practical applications in inhalation dosimetry of mine workers

  1. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  2. Radon and progeny sourced dose assessment of spa employees in balneological sites

    International Nuclear Information System (INIS)

    Kemal Uzun, Sefa; Demiroez, Isik

    2016-01-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Saraykoey Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard R with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m -3 and 10 kBq m -3 . Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionnaire forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. (authors)

  3. Assessment of radiological effect of the indoor radon and its progeny

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.; Mishra, U.C.

    1988-01-01

    Of all the sources of environmental radiation, radon and its progeny are considered to be responsible for a significant dose to man, especially when they are in enclosed areas like underground mines, caves, cellars, poorly designed and badly ventilated houses. Linear extrapolation from the dose response value of the uranium miners exposed to higher levels of radon and its daughters also suggest that the majority of the lung cancer incidence could be due to radon. Higher indoor radon levels and shift in the disequilibrium of the progeny concentration in dwellings caused by the lower ventilation rate leads to severalfold increase of lung cancer incidence from radon. The large risk which is anticipated calls for further studies in this field and may also lead to the conclusion that the slight, but much feared, burden due to man-made radioactivity could be more than compensated by controlling critical segments of the environmental radioactivity. In this report the study of risk due to breathing of indoor radon is briefly reviewed. Dose equivalent to the exposed tissue of the respiratory tract of the people living in dwellings are evaluated. Like most of the risk assessment of low level radiation, the effort to quantify the effect of radon in terms of death rate dose due to lung cancer attributable to radon levels indoors, has to rely on the extrapolation from the effects of the higher exposure rate. In situations where soil or building materials contain elevated radium levels, living in energy efficient houses may be as dangerous as heavy smoking. (author). 8 tabs., 5 figs., 41 refs

  4. Estimation of radon concentration in dwellings in and around ...

    Indian Academy of Sciences (India)

    Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 ...

  5. Lung Deposition And Biological Effects Of Inhaled Radon Progenies

    International Nuclear Information System (INIS)

    Balashazy, I.; Farkas, A.; Szoke, I.; Moustafa, M.; Kudela, G.

    2010-01-01

    Inhaled radon progenies provide more than the half of natural radiation exposure. There is increasing evidence that the cellular distribution of radiation burden is an important factor regarding the biological response to ionisation radiation, thus, one of our tasks was the characterisation of the distribution of cellular exposure. Histological studies of former uranium miners presented strong correlation between primer deposition hot spots and neoplastic lesions. Most of these lesions were located along the carinal regions of the large bronchial airways. In the present work, computational fluid dynamics (CFD) approaches have been applied to simulate the deposition distribution of inhaled radon progenies along central human airways. The geometry and the cellular structure of epithelial lung tissue were numerically reconstructed based on anatomical and histological data. Single and multiple ha-hit and cellular dose distributions have been computed applying Monte Carlo modelling techniques at different breathing conditions. Figure 1. Deposition enhancement factor (EF) of inhaled radon progenies on a central airway bifurcation in airway generations 4-5 during light physical activity breathing condition. Size of scanning surface element is a 45μm side triangle. Left panel: EF max=1400,Dp=200 nm (attached). Right panel: EF max1290, Dp= 1 nm (unattached). Values of local per average deposition densities, that is, enhancement factors (Figure 1), hit probabilities and doses may be up to two-three orders of magnitude higher in the deposition hot spots than the average values. Dose calculations revealed that some cell clusters may receive high doses even at low exposure conditions. Applying the model to different radiation exposure conditions useful relations can be received regarding the linear-non threshold hypothesis

  6. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  7. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route “Liczyrzepa” Mine in Kowary Adit

    Directory of Open Access Journals (Sweden)

    Wołoszczuk Katarzyna

    2018-01-01

    Full Text Available Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC, particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route “Liczyrzepa” Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS. The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS.

  8. Mass spectrometric studies of the cluster formation of radon progeny

    International Nuclear Information System (INIS)

    Gong, S.L.

    1993-01-01

    A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs

  9. Mass spectrometric studies of the cluster formation of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S L [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1994-12-31

    A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs.

  10. Study on seasonal variation of indoor radon, thoron and their progeny levels in Hassan District of Karnataka, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangswamy, D.R.; Sannappa, J.

    2015-01-01

    Radon, thoron and their progeny concentrations have been measured in different types of buildings at different locations for different seasons in Hassan city using time-integrated passive radon dosimeters containing LR-115 Type II solid state nuclear track detector exposed for four seasons of 3 months each covering a period of one year from October 2012 to September 2013. The radon and thoron activity concentration in summer season in the corresponding dwellings has been found to vary from 7.4 to 45.7 Bq m -3 and 5.4 to 34.9 Bqm -3 with a median of 23.59±11 Bqm -3 and 1447±8 Bq -3 respectively. The radon progeny concentrations varies from 0.4 to 4.1 mWL with an average value of 1.83±1 mWL, while thoron progeny concentrations vary from 0.3 to 3.2 mWL with an average value of 1.12±0.7 mWL respectively. The annual effective dose received due to radon, thoron and its progeny by the inhabitants in the dwellings under study has also been calculated which is found to vary from 0.320±0.4 to 1.860 ±1.1 mSv y -1 with an average value of 0.9576 ± 0.8 mSv y -1 . In general, the level of radon-thoron was observed highest in winter and lowest in summer. A detail analysis of radon and thoron distribution in different houses with seasonal variation is presented in this paper. From this study it is observed that, bathrooms and kitchens have significantly higher radon concentrations as compared to other rooms in the dwellings. (author)

  11. Lung dosimetry for inhaled radon progeny in smokers

    International Nuclear Information System (INIS)

    Baias, P. F.; Hofmann, W.; Winkler-Heil, R.; Cosma, C.; Duliu, O. G.

    2010-01-01

    Cigarette smoking may change the morphological and physiological parameters of the lung. Thus the primary objective of the present study was to investigate to what extent these smoke-induced changes can modify deposition, clearance and resulting doses of inhaled radon progeny relative to healthy non-smokers (NSs). Doses to sensitive bronchial target cells were computed for four categories of smokers: (1) Light, short-term (LST) smokers, (2) light, long-term (LLT) smokers, (3) heavy, short-term (HST) smokers and (4) heavy, long-term (HLT) smokers. Because of only small changes of morphological and physiological parameters, doses for the LST smokers hardly differed from those for NSs. For LLT and HST smokers, even a protective effect could be observed, caused by a thicker mucus layer and increased mucus velocities. Only in the case of HLT smokers were doses higher by about a factor of 2 than those for NSs, caused primarily by impaired mucociliary clearance, higher breathing frequency, reduced lung volume and airway obstructions. These higher doses suggest that the contribution of inhaled radon progeny to the risk of lung cancer in smokers may be higher than currently assumed on the basis of NS doses. (authors)

  12. Need for an integrated approach towards the assessment of radon, thoron and their progeny exposures

    International Nuclear Information System (INIS)

    Mayya, Y.S.

    2008-01-01

    Recent publications dealing with epidemiological studies on North American and European populations have indicated statistically significant lung cancer risk coefficients attributable to residential radon exposures. These are essentially based on radon gas itself as the quantitative measure of exposures. However, considering that true exposures depend upon the intricate mechanisms of decay product deposition in the lung, it is necessary to go for the assessment of decay products including their size distributions and deposition velocities. This approach is essential for assessing the risks of thoron and its decay products which is of considerable importance in the public domain and in the thorium fuel cycle. The recent development of deposition based progeny concentration measurement techniques appear to be best suited for radiological risk assessments both among occupational workers and general study populations. These provide an easy to wear alternative for radon inhalation dosimetry similar to TLDs for external gamma radiations. It is urgently required to characterize their performance under a variety of residential indoor and workplace conditions. This may be achieved through an integrated multi-parametric study programme involving measurements of radon, thoron and their progeny concentrations along with fine and coarse fractions and indoor source terms. This will not only in delineate the true exposure profiles and indoor parameters (e.g. deposition velocities and air exchange rates) in the country, but also will help in establishing deposition dosimetry as a basic technique for inhalation exposure estimations for occupational workers and subjects living in high background radiation areas

  13. Deposition of radon progeny in nonhuman primate nasal airways

    International Nuclear Information System (INIS)

    Yeh, H.C.; Cheng, Y.S.; Morgan, K.T.

    1992-01-01

    Radon progeny are usually associated with ultrafine particles ranging in diameter from 0.001 to 0.005 μm for open-quotes unattachedclose quotes progeny and from 0.005 to 0.2 μm for those attached to indoor aerosols. To assess the health effects of inhaling indoor radon progeny, it is necessary to study the regional deposition of these inhaled ultrafine particles. Laboratory animals are often used in studies of the toxicity of inhaled particles and vapors. Information on the deposition of particles larger than 0.2 μm in the nasal passages of laboratory animals is available; however, there is little information on the deposition of particles smaller than 0.2 μm. In this report, we describe the use of nasal casts of a rhesus monkey to measure total deposition of ultrafine aerosols, including unattached 220 Rn progeny, in a unidirectional-flow inhalation exposure system. Deposition data were obtained for monodisperse silver aerosols with particle sizes ranging from 0.005 to 0.2 μm, at several inspiratory and expiratory flow rates that represented normal breathing as well as hypo- and hyperventiliation. In addition, we studied the deposition of unattached 22- Rn progeny, at particle sizes from 0.001 to 0.003 μm. The deposition efficiency decreased with increasing particle size, indicating that diffusion was the dominant deposition mechanism. The effect of flow rate was essentially negligible. Based on assumptions that turbulent flow and complete mixing of aerosols occur in the nasal airways, a general equation E = 1-exp (-a D b Q c ) for d p ≤ 0.2 μm, was derived, where E is the deposition efficiency, d p is the particle diameter, D is the diffusion coefficient, and Q is the flow rate. Constants a, b, and c are estimated from experimental data, for either inspiration or expiration. This mathematical expression will be useful for making modifications to both deposition and dosimetry models

  14. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  15. Radon concentration levels in Fatima Jinnah women university Pakistan

    International Nuclear Information System (INIS)

    Khan, S.A.; Ali, S.; Tufail, A.; Qureshi, A.A.

    2005-01-01

    Public exposure to radioactive gas radon and its progeny present in the air results in the largest contribution to total effective dose received by human beings. It is therefore of great concern to monitor radon concentration in energy conserved air tight buildings. Measurements of radon in the Fatima Jinnah Women University (FJWU) have been carried out for investigation and comparison of radon concentration in the new and old buildings of the campus at Rawalpindi, Pakistan. The study was done because according to the international guidelines concerning environmental problems, it is necessary to evaluate and know the radon levels, especially since most of the natural radiation dose to human beings comes from radon gas and its progeny. Solid State Nuclear Track Detectors (SSNTDs) being efficient, therefore, the measurements were carried out by passive, time integrated method, using CR-39 detector in polythene bags. The detectors were exposed for more than six month in various locations indoors and outdoors. The detectors were etched using NaOH, the tracks were counted manually, and the track density was converted to radon concentration. Radon concentration varied from 31 to 213 Bq.m -3 in old building and from 27 to 143 Bq.m -3 in new buildings, showing slight elevated values in the old buildings. Radon concentration values were found to be less than the values quoted by radiation protection agencies. Radiation dose due to radon varied in the university campus depending on occupancy factor. (author)

  16. Experimental determination of the absorption rate of unattached radon progeny from respiratory tract to blood

    International Nuclear Information System (INIS)

    Butterweck, G.; Schuler, Ch.; Vessl, G.; Mueller, R.; Marsh, J.W.; Thrift, S.; Birchall, A.

    2002-01-01

    An exposure methodology was developed for the determination of the absorption rate of unattached radon progeny deposited in the human respiratory tract to blood. Twenty-one volunteers were exposed in a radon chamber during well-controlled aerosol and radon progeny conditions, with predominantly unattached radon daughters. Special efforts were made to restrict the dose to the volunteers to an absolute maximum of 0.08 mSv. Measurements of radon gas and radon progeny in blood samples of these volunteers indicated absorption half times of 20 min to 60 min. Former determinations, mainly performed with much larger aerosol particles of diameters between 100 nm and 1000 nm, implied absorption half times around 10 h. This indicates that the absorption of radon decay products from ciliated airways into blood is dependent upon particle size and particle composition. (author)

  17. Radiation doses from radon and progeny in Irish houses

    International Nuclear Information System (INIS)

    McLaughlin, J.P.

    1985-08-01

    In the United Kingdom, the estimated average annual effective dose equivalent to members of the public from all sources is 2.4 mSv (240 mrem). 40% of this dose is contributed by exposure to radon, and it is not unreasonable to assume that the situation in Ireland is very similar. During 1982-84 a preliminary study of radon and penetrating radiation on 300 Irish houses showed seasonally averaged indoor radon concentrations in the range 3 Bq/m 3 of air to 700 bq/m 3 , with a median value of about 40 bq/m 3 . A national survey of indoor radon has now been undertaken; 3000 households, randomly selected from the electoral register are to be monitored and the result correlated with energy conservation practices. The final part of this document deals with the regulatory aspects of radon control and reviews the practices for reduction of indoor radon daughter doses presently in hand in Scandinavia. An appendix of radiation units and terms is also given

  18. Integrating measurements of indoor thoron and its progeny concentrations

    International Nuclear Information System (INIS)

    Zhuo, W.H.; Iida, T.; Hashiguchi, Y.

    2000-01-01

    In recent years, indoor surveys in Europe and Asia revealed that the dose contribution from thoron and its progeny can equal or even exceed that of radon and its progeny. For measuring thoron and its progeny, several methods had been reported. However, convenient, low-cost and time-integrating measuring methods which are suitable for large-scale surveys are still unavailable. To solve this problem, three integrating measuring methods with allyl diglycol carbonate plastic (CR-39) as detectors have recently been. The results indicated that they are suitable for estimating the indoor thoron and its progeny concentrations when the public exposure to thoron and its progeny is taken into account. Cup monitor - Former types of passive integrating 222 Rn and 220 Rn cup monitors had been reported. Recently, in order to improve the sensitivity of thoron detection, the air exchange rate between the inner and outer cup was enhanced, and the radius of the hemisphere was reduced to 37.5 mm. Furthermore, the procedure of detector exchange was made to be more convenient. Equilibrium-equivalent 222 Rn and 220 Rn concentrations monitor (EEC monitor) - The measuring system is composed of a monitor head and a diaphragm pump. The total weight of the system is less than 1.5 kg, which makes it portable. The construction of the monitor head and the measuring principle were also reported by the authors. Thoron progeny deposition rate monitor - The monitor is simply constituted a piece of CR-39 covered with thin sheets of absorbers. The thickness of the absorbers are adjusted to let only the α particles emitted from 212 Pb impinge on the detector. The concentrations of thoron progeny are estimated from the deposition rates, assuming that the deposition velocities of thoron progeny are constant in general dwellings. The improved cup monitor has higher sensitivity than former monitors, with a calibration factor of 1.59x10 -3 tracks·cm -2 (Bq·m -3 ·h) -1 for thoron. The accuracy of the ECC

  19. Underground measurements of aerosol in radon and thoron progeny activity distributions

    International Nuclear Information System (INIS)

    Khan, A.; Bandi, F.; Phillips, C.R.; Duport, P.

    1990-01-01

    Aerosol and activity distributions of 218 Polonium, 214 Lead, 214 Bismuth, and 212 Lead were determined in two different underground mining environments by means of an optimized time-delay counting scheme and diffusion batteries. In one environment, diesel equipment was operating; and in the other, electrically powered equipment. The two environments differed significantly in total aerosol concentration. In the diesel environment, in particular, aerosol concentrations were unsteady, and fluctuated with vehicular traffic and mining activities. As measured by radon progeny disequilibrium, the age of the air ranged from about 25 to 60 minutes. Thoron working levels were of the same order as radon working levels. In this paper, comparisons are made between the aerosol and activity size distributions in both the diesel and electric mine

  20. Exposure of workers to radon progeny in the Baradla cave at Aggtelek

    International Nuclear Information System (INIS)

    Dezsoe, Z.

    2004-01-01

    By measuring the radon concentration using active technique in all parts of the cave visited in a tour and furthermore by assessing also the time spent at these locations, it is possible to determine the radon level averaged over a tour. The time averaged radon concentration along the route of the cave investigated has been estimated to 970 Bq/m 3 in summer and 410 Bq/m 3 in winter. We concluded that in 62 % of the year cave climate shows warm season and only in 38 % cold season Rn-levels. On this basis the yearly mean radon concentration averaged over the tour comes to 750 Bq/m3. This figure, however, should not be used to estimate exposure because the number of visitors is substantially higher in summer than in winter, so that the tour guides work much more in summer (about 750 tours) than in winter (about 270 tours). Taking this into account, the yearly mean Rn concentration is to 820 Bq/m 3 . Since the dose is delivered by radon progeny and not radon itself, one has to also assess the equilibrium factor representative in the cave. The data available in the literature show that F is always larger than under normal ambient conditions. Published values are between 0.5 - 0.8. As part of this work, several radon progeny concentration measurements have also been made in the Baradla cave at different locations. The results confirm the occurrence of high F-values in caves. Furthermore, the equilibrium factor is increased by the presence of humans (visitors or cavers). In the Virgin Cave, F = 0.5 - 0.6, which increases steadily to about 0.8 due to the activity of man. In this work, F = 0.8 has been used for the dose assessment. Using the ICRP 65 dosimetry model, exposure was calculated to be 4.04 mJhm 3 , which corresponds to an effective dose of 5.8 mSv. (P.A.)

  1. Estimation of radiological dose from radon, thoron and their progeny levels in the dwellings of Shivamogga district, Karnataka, India

    International Nuclear Information System (INIS)

    Rangaswamvi, D.R.; Sannappa, J.; Srinivasa, E.

    2018-01-01

    Among all natural radiation exposure to man, inhalation of radon, thoron and their progenies are the major contributor (50 %) to the dose from ionizing radiation received by the general population. Based on the results of epidemiological studies in Europe and North America, the World Health Organization (WHO) has recommended reducing the indoor radon reference level from 200 to 100 Bq.m -3 . In view of this, focus has now been given for simultaneous measurement of radon, thoron and their progeny concentration in indoor air and also to estimate radiological dose in the dwellings of the Shivamogga district. The geology of the Shivamogga district comprises different types of rock formation such as granites, schists, magnetites and gneisses, Meta basalt, laterites, quartz and chlorite schist, Graywacke etc. Present study was concentrating more in granite bed rock regions along with their surrounding regions

  2. Measurment of radon, thoron and their progeny in indoor environment of Mohali, Punjab, Northern India, using pinhole dosimeters

    Directory of Open Access Journals (Sweden)

    Mehta Vimal

    2016-01-01

    Full Text Available The health hazards of radon and its decay products above certain levels are well known. However, for any preventive measures to be taken, we have to be aware of radon levels of that particular area. Measurement of radon and its decay products in indoor environments is an important aspect of assessing indoor air quality and health conditions associated with it. Keeping this in mind, measurements of radon, thoron and their progeny concentrations were carried out in Mohali, Northern India, using pinhole-based twin cup dosimeters. Radon exhalation rates of soil samples in the dwellings/areas were measured via an active technique of a continuous radon monitor. The indoor radon concentration in Mohali varied from 15.03 ± 0.61 Bq/m3 to 39.21 ± 1.46 Bq/m3 with an average of 26.95 Bq/m3 ,while thoron concentration in the same dwellings varied from 9.62 ± 0.54 Bq/m3 to 52.84 ± 2.77 Bq/m3 with an average of 31.09 Bq/m3. Radon progeny levels in dwellings under study varied from 1.63 to 4.24 mWL, with an average of 2.94 mWL, while thoron progeny levels varied from 0.26 to 1.43 mWL , with an average of 0.84 mWL. The annual dose received by the inhabitants of dwellings under study varied from 0.78 to 2.36 mSv, with an average of 1.61 mSv. The in situ gamma dose rate varied from 0.12 to 0.32 mSv/h.

  3. An intercomparison between gross α counting and gross β counting for grab-sampling determination of airborne radon progeny and thoron progeny

    International Nuclear Information System (INIS)

    Papp, Z.

    2006-01-01

    The instantaneous values of the airborne activity concentrations of radon progeny and thoron progeny have been determined 34 times in a closed and windowless room in a cellar using two independent grab-sampling methods in order to compare the performance of the methods. The activity concentration of radon ( 222 Rn) was also measured and it varied between 200 and 650 Bq m -3 . Two samples of radon and thoron progeny were collected simultaneously from roughly the same air volume by filtering. For the first method, the isotopes were collected on membrane filter and gross α counting was applied over several successive time intervals. This method was a slightly improved version of the methods that are applied generally for this reason for decades. For the second method, the isotopes were collected on glass-fibre filter and gross β counts were registered over several time intervals. This other method was developed a few years ago and the above series of measurements was the first opportunity to make an intercomparison between it and another similar method based on α counting. Individual radon progeny and thoron progeny activity concentrations (for the isotopes 218 Po, 214 Pb, 214 Bi and 212 Pb) were evaluated by both methods. The detailed investigation of the results showed that the systematic deviation of the methods is small but significant and isotope-dependent. The weighted averages of the β/α activity concentration ratios for 218 Po, 214 Pb, 214 Bi, EEDC 222 (Equilibrium-Equivalent Decay-product Concentration of radon progeny) and 212 Pb were 0.99±0.03, 0.90±0.02, 1.03±0.02, 0.96±0.02 and 0.80±0.03, respectively. The source of the systematic deviation is probably the inaccurate knowledge of the counting efficiencies mainly in the case of the α-counting method. A significant random-type difference between the results obtained with the two methods has also been revealed. For example, the β/α ratio for EEDC 222 varied between 0.81±0.01 and 1.22±0

  4. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  5. The effect of natural ventilation on radon and radon progeny levels in houses

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1992-01-01

    In contradiction to the widely held assumption that ventilation is ineffective as a means of reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5-10 using only natural ventilation. Measurements of the outdoor-basement pressure differential and the radon entry rate show that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes. The first mechanism is the obvious one: dilution. Radon concentrations are lowered by the addition of uncontaminated outdoor air. The second mechanism is less evident: an open basement window reduces basement depressurisation. This decreases the rate at which radon-laden soil gas is drawn into the house. It was also found that the radon entry rate is a linear function of basement depressurisation up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubles the building air exchange rate and reduces the radon entry rate by up to a factor of 5. (author)

  6. Role of radon and its progeny in the origin and evolution of life on earth

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.; Vohra, K.G.

    1980-01-01

    The role of natural ionising radiations from radon and its progeny in catalysing certain chemical reactions and aiding certain biological phenomena leading to the formation and evolution of life on earth is explained with illustrations. (M.G.B.)

  7. Measurement of the deposited activity of the short-lived radon progeny in the human respiratory tract

    International Nuclear Information System (INIS)

    Vezzu, G.; Butterweck-Dempewolf, G.; Schuler, C.

    1998-01-01

    Volunteers were exposed in the radon chamber at Paul Scherrer Institut to an atmosphere enriched with highly unattached radon progeny. The deposited radon progeny activity in the respiratory tract of the volunteers was determined using a low level in-vivo counter. The detector arrangement and its calibration for the measurement of deposited radon progeny activity is described and the results for a mouth and a nose breathing volunteer are presented. For the nose breathing volunteer 55% of the deposited radon progeny activity was located in the head and the remaining 45% in the chest whereas for the mouth breathing volunteer 25% was located in the head and the remaining 75% in the chest. A mean clearance half-life for the deposited radon progeny from the respiratory tract of (2±1) h was obtained from the analyses of the temporal behaviour of the deposited radon progeny activity in the head. (orig.)

  8. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes

    Science.gov (United States)

    Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P.

    2015-04-01

    During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a "second-hand smoke" has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L-1 to 12.6 ± 0.26 MeV L-1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L-1 to 18.6 ± 0.19 MeV L-1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long

  9. Validation of the abbreviated Radon Progeny Integrating Sampling Unit (RPISU) method for Mesa County, Colorado

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1987-06-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center at the DOE Grand Junction, Colorado, Projects Office to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. Indoor radon-daughter concentration measurements are made to determine whether a structure is in need of remedial action. The Technical Measurements Center conducted this study to validate an abbreviated Radon Progeny Integrated Sampling Unit (RPISU) method of making indoor radon-daughter measurements to determine whether a structure has a radon-daughter concentration (RDC) below the levels specified in various program standards. The Technical Measurements Center established a criterion against which RDC measurements made using the RPISU sampling method are evaluated to determine if sampling can be terminated or whether further measurements are required. This abbreviated RPISU criterion was tested against 317 actual sets of RPISU data from measurements made over an eight-year period in Mesa County, Colorado. The data from each location were tested against a standard that was assumed to be the same as the actual annual average RDC from that location. At only two locations was the criterion found to fail. Using the abbreviated RPISU method, only 0.6% of locations sampled can be expected to be falsely indicated as having annual average RDC levels below a given standard

  10. Radon concentration in The Netherlands

    International Nuclear Information System (INIS)

    Meijer, R.J. de; Put, L.W.; Veldhuizen, A.

    1986-02-01

    In 1000 dwellings, which can be assumed to be an reasonable representation of the average Dutch dwellings, time averaged radon concentrations, radon daughter concentrations and gamma-exposure tempi are determined during a year with passive dosemeters. They are also determined outdoor at circa 200 measure points. (Auth.)

  11. Field applications of a radon barrier to reduce indoor airborne progeny

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1978-01-01

    The use of uranium mill tailings in the foundations of dwellings has resulted in indoor radon progeny concentrations and gamma exposures in excess of levels presently allowed for the general public. An account is given of the applications of an epoxy coating on the indoor faces of the concrete foundations of three buildings in Grand Junction, Colorado. Epoxy barriers were shown to be effective for preventing radon influx into structures. Gamma exposure rates must be analyzed to ensure that buildup behind the barrier will not introduce an unacceptable gamma exposure level. The use of a sealant is especially economical in situations where structural integrity may be jeopardized by physical removal of uranium mill tailings. (author)

  12. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres

    International Nuclear Information System (INIS)

    Butterweck, G.; Porstendoerfer, J.; Reineking, A.; Kesten, J.

    1992-01-01

    Measurements of the activity size distribution of aerosol-attached radon progeny and the amount of unattached radon daughters have been performed in mine atmospheres and a tourist cave. During working hours a large number (10 5 -10 6 cm -3 ) of aerosol particles is generated in mines, mainly by diesel engines. The activity size distribution of these aerosol particles has smaller median diameters (AMAD about 200 nm) than the aged aerosol existing in the mine during non-working hours (AMAD about 350 nm). Strictly correlated to the aerosol concentration, the unattached fraction of the radon progeny, f p , in the tourist cave (3000 particles per cm 3 ) is higher (f p = 0.1) than in mines (f p 0.01) during working hours. This yields 1.4-2.5 times higher radiation dose conversion factors in the natural cave than in mines under working conditions. (author)

  13. Ion climate and radon concentration

    International Nuclear Information System (INIS)

    Busbarna, L.

    1981-01-01

    Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)

  14. A nationwide survey of radon concentration in Japan. Indoor, outdoor and workplace

    International Nuclear Information System (INIS)

    Sanada, Tetsuya; Oikawa, Shinji; Kanno, Nobuyuki; Abukawa, Johji; Higuchi, Hideo

    2004-01-01

    The nationwide indoor, outdoor and workplace radon concentrations were surveyed in Japan. These surveys were conducted to estimate the natural radiation dose due to radon and its progeny for the general public. The radon concentration was measured using passive type radon monitor. The number of radon monitors were installed at indoor, outdoor and workplace for 940 houses, 705 points and 705 sites, respectively. The radon concentration was measured for one year at each measurement site. Annual mean radon concentration was obtained from four quarters measurements of 47 prefectures in Japan. The nationwide indoor, outdoor and workplace annual mean radon concentration were 15.5 Bq m -3 , 6.1 Bq m -3 and 20.8 Bq m -3 , respectively. Their radon concentration shows approximately a logarithmic normal distribution. Workplace showed relatively high radon concentration compared with other environments, may be due to construction materials and low ventilation rate. The indoor radon concentration found to be seasonal variation and architectural dependences. Seasonal variation and regional distribution of outdoor radon concentration was also observed. From the results of these radon surveys, the annual effective dose to the general public due to radon and its progeny was estimated to be 0.49 mSv y -1 in Japan. (author)

  15. Study of a Greek area with enhanced indoor radon concentrations

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Koukouliou, V.; Kehagia, K.

    2003-01-01

    In this paper the focus is on Arnea Chalkidikis, an area in Greece with granitic geological background and indications of possible elevated radon concentration indoors. Data are reported of indoor radon measurements with etched track detectors and those used for dosimetric estimations. Moreover, data are reported on soil gas and soil radon concentrations in Arnea, as well as radon and uranium concentrations in water samples. From the measured radon concentrations in water samples the contribution to the overall dose has been calculated. For a period of 1 month, indoor radon and progeny activity has also been monitored in the dwelling that has the maximum indoor radon concentration in Greece. This dwelling is in Arnea and the dose delivered to the inhabitants has been calculated. Mean annual effective dose due to indoor radon was 4.5 mSv and about 11% of this was due to the use of water. Mean soil gas concentration and soil radon concentration were (90 ± 30) kBq m -3 (P -3 (P -1 (P<0.05). (author)

  16. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  17. Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): Results from measurements and modelling

    International Nuclear Information System (INIS)

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios; Petraki, Ermioni; Zisos, Athanasios; Louizi, Anna

    2010-01-01

    Radon and progeny ( 218 Po, 214 Pb, 214 Bi and 214 Po) in thermal spas are well known radioactive pollutants identified for additional radiation burden of patients due to the activity concentration peaks which appear during bath treatment or due to drinking of waters of high radon content. This burden affects additionally the working personnel of the spas. The present paper has focused on the thermal spas of Loutraki (Attica-Greece). The aim was the investigation of the health impact for patients and working personnel due to radon and progeny. Attention has been paid to radon and progeny transient concentration peaks (for bath treatment) and to radon of thermal waters (both for bath treatment and drinking therapy). Designed experiments have been carried out, which included radon and progeny activity concentration measurements in thermal waters and ambient air. Additionally, published models for description of radon and progeny transient concentration peaks were employed. The models were based on physicochemical processes involved and employed non linear first order derivative mass balance differential equations which were solved numerically with the aid of specially developed computer codes. The collected measurements were analysed incorporating these models. Results were checked via non linear statistical tests. Predictions and measurements were found in close agreement. Non linear parameters were estimated. The models were employed for dosimetric estimations of patients and working personnel. The effective doses of patients receiving bath treatment were found low but not negligible. The corresponding doses to patients receiving potable treatment were found high but below the proposed international limits. It was found that the working personnel are exposed to considerable effective doses, however well below the acceptable limits for workers. It was concluded that treatment and working in the Loutraki spas leads to intense variations of radon and progeny and

  18. Local deposition patterns of inhaled radon progeny in human bronchial airways

    International Nuclear Information System (INIS)

    Heistracher, T.; Hofmann, W.; Balashazy, I.

    1996-01-01

    The local distribution of radon decay products deposited within bronchial bifurcations, particularly the formation of hot spots, may be more relevant for the determination of cellular doses in bronchial tissue than the commonly computed deposition efficiency, which is conceptually equivalent to the assumption of a uniform nuclide distribution. It is well known that the initial states of lung cancer in humans preferably occur in upper airways close to the cardinal location. In this study we use a recently developed geometric approach of a physiologically realistic bifurcation to demonstrate the site sensitivity of radon progeny deposition for two particle sizes, which are representative of the unattached and attached fraction of radon progeny

  19. SARAD EQF 3020 - A new microsystem based monitoring system for the continuous measurement of radon and the attached and unattached fraction of the radon progeny

    International Nuclear Information System (INIS)

    Streil, T.; Holfeld, G.; Oeser, V.; Feddersen, C.; Schoenefeld, K.

    1996-01-01

    Due to the large differences in the dose factors for radon and radon daughters it's recommended to measure both, but monitors for the continuous and simultaneous measurement of radon and radon progeny concentrations are too expensive to be widely used if they are built from individual components. Integrating detector, readout electronics, memory and an A/D converter on a single chip offers far lower prices at least if this silicon microsystem can be produced in large quantities. It is known that dRAM cells of commercial available memories are sensitive to alpha particles, but even if one accepts unstable operating conditions (Ucc 2 . Further development with special PMOS-transistors in a floating n-well as sensor cells has resulted in an alpha particle spectrometric microsystem with an effective sensor array of 40 mm 2 . Alternative for higher resolution we developed PiN -structures with more than 100 mm 2 sensor area with integrated preamplification

  20. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1991--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  1. Inversion of the Jacobi-Porstendorfer room model for the radon progeny

    International Nuclear Information System (INIS)

    Thomas, J.; Jilek, K.; Brabec, M.

    2010-01-01

    The Jacobi-Porstendoerfer (J-P) room model describes the behaviour of radon progeny in the atmosphere of a room. It distinguishes between free and attached radon progeny in air. It has been successfully used without substantial changes for nearly 40 years. There have been several attempts to invert the model approximately to determine the parameters describing the physical processes. Here, an exact solution is aimed at as an algebraic inversion of the system of six linear equations for the five unknown physical parameters k, X, R, q f , q a of the room model. Two strong linear dependencies in this system, unfortunately do not allow to obtain a general solution (especially not for the ventilation coefficient k), but only a parameterized one or for reduced sets of unknown parameters. More, the impossibility to eliminate one of the two linear dependencies and the departures of the measured concentrations forces to solve a set of allowed combinations of equations of the algebraic system and to accept its mean values (therefore with variances) as a result of the algebraic inversion. These results are in agreement with results of the least squares method as well as of a sophisticated modern statistical approach. The algebraic approach provides, of course, a lot of analytical relations to study the mutual dependencies between the model parameters and the measurable quantities. (authors)

  2. Estimation of equilibrium factors of radon and its progeny using SSNTDs in the various dwellings of Hyderabad, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Yadagiri Reddy, P.; Rama Reddy, K.; Sreenath Reddy, M.

    2013-01-01

    In the estimation of effective dose in the indoor environment due to Radon and its progeny the equilibrium factor (F) plays a significant role. It is the radioactive equilibrium between radon and its short-lived decay products. Generally in the dose estimation is made taking the equilibrium factor 0.4 (UNSCEAR value) for the radon and its progeny. But in practice the concentration of radon and its progeny vary significantly with local environmental conditions and time, subsequently the equilibrium factor F also changes and hence affects the effective dose estimation of a particular dwelling. Therefore the UNSCEAR F value does not reflect the actual effective doses. Therefore, the present study is carried out to estimate the equilibrium factors in different types of dwellings in the urban Hyderabad using SSNTDs. It is found that, the equilibrium factors in the urban Hyderabad vary from 0.01 to 0.71 with an average 0.32 ± 0.23. The average F values of urban Hyderabad relatively lower than Indian average and global average. The reasons for the lower equilibrium factor values in the study area have been discussed in this paper. (author)

  3. Concentration variation of radon in the room

    International Nuclear Information System (INIS)

    Komaruzaman Mohd Noor; Haziman Hassan; Rosli Mahat; Yusof Md Amin

    1995-01-01

    The study was carried out to determine the variation of radon concentration in the room. Radon detector used was solid nuclear tracks detector (SSNTD) LR-115. From this result, suitable points to make radon measurement was determined

  4. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the [sup 218]Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of [center dot]OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO[sub 2] ethylene, and H[sub 2]S to lower vapor pressure compounds and determine the role of gas phase additives such as H[sub 2]O and NH[sub 3] in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of [sup 218]Po[sub x][sup +] in O[sub 2] at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited [sup 210]Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  5. Wire screens as a tool for survey measurements of the unattached radon progeny in mines

    International Nuclear Information System (INIS)

    Janica, R.

    1996-07-01

    The radon hazard in mines is assessed by measuring the radioactivity accumulated on filters through which air is forced to flow. The filter collects both forms of the short-lived radon progeny, attached and unattached, and, therefore, the assessment is based on the measurement of the total radon progeny. Because of the special radiological significance of the unattached fraction of the short-lived radon progeny, the estimation of the radiation hazard to miners would be improved if the unattached fraction could be measured. This report describes two methods of measurement for the simultaneous determination of the unattached and the total radon progeny. The proposed methods comply with the criterion of practicality (imposed by the working conditions in the mine environment), that is, they are implemented using standard survey equipment and simple procedures. Both methods use wire screens to collect, preferentially, the unattached fraction. According to the first method, air is sampled through a wire screen and a backup filter, and the radioactivity accumulated on both the filter and the wire screen are measured separately using standard counting protocols (e.g. the Kusnetz protocol). The wire screen's efficiency for collecting the unattached radon progeny is determined, in advance, under laboratory conditions. The method assumes the validity of the collection efficiencies when the screens are used under field conditions. To avoid the uncertainty of the lab-determined collection efficiency, a new measuring method was proposed based on the sampling of air through two screens in series and a backup filter. The measurement of the ratio of the activities deposited on both screens allows an estimation of the screen collection efficiency under field conditions. Once this is done, the 'unattached fraction' and total radon progeny are determined by counting only one of the screens and the backup filter as described in the previous method. (author). 73 refs., 8 tabs., 21 figs

  6. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Science.gov (United States)

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  7. Evaluation of several air cleaners for reducing indoor radon progeny

    International Nuclear Information System (INIS)

    Hopke, P.K.; Jensen, B.; Montassier, N.

    1994-01-01

    Over the past several years, studies have been made of the effectiveness of several kinds of air cleaners in removing radon decay products from indoor air using a recently developed automated, semi-continuous measurement system that can determine the activity-weighted size distributions in occupied homes. Measurements of activity-weighted size distributions and radon concentrations were made every 90 min in a home with a high air exchange rate. A week-long series of measurements was made for the home with no cleaner operating and a similar set of measurements were made for each of the air cleaners. Two different types of air cleaners were tested in this study; filtration units (two different designs from two different manufacturers) and two ion generator/fan systems (identical design NO-RAD systems, but from two different manufacturers). It was found that the filtration units resulted in a median reduction in exposure of 15% and 36% for the two units and corresponding dose reductions of 32% and 53%. The two NO-RAD systems produced 37% and 10% reductions in the median exposure, but the reductions in the median dose were 49% and 46%. (author)

  8. QA/QC For Radon Concentration Measurement With Charcoal Canister

    International Nuclear Information System (INIS)

    Pantelic, G.; Zivanovic, M.; Rajacic, M.; Krneta Nikolic, J.; Todorovic, D.

    2015-01-01

    The primary concern of any measuring of radon or radon progeny must be the quality of the results. A good quality assurance program, when properly designed and diligently followed, ensures that laboratory staff will be able to produce the type and quality of measurement results which is needed and expected. Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. Upon closing the detectors, the measurement was carried out after achieving the equilibrium between radon and its daughters (at least 3 hours) using NaI or HPGe detector. Radon concentrations as well as measurement uncertainties were calculated according to US EPA protocol 520/5-87-005. Detectors used for the measurements were calibrated by 226Ra standard of known activity in the same geometry. Standard and background canisters are used for QA and QC, as well as for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. Background canister is a regular radon measurement canister, which has never been exposed. The detector background and detector efficiency are measured to ascertain whether they are within the warning and acceptance limits. (author).

  9. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  10. Unattached fraction and the size distribution of the radon progeny in indoor air

    International Nuclear Information System (INIS)

    Yamasaki, K.; Shimo, M.

    1992-01-01

    The size-distribution of the aerosol-attached radon progeny and the unattached (cluster) fraction were measured by using a low pressure cascade impactor and a single wire screen in a building of the nuclear facility. The radon concentration at the condition of ventilation 'ON' was about 50 Bq m -3 , but it increased exponentially after ventilation 'OFF' and reached to the saturated concentration of about 600 Bq m -3 . At the condition of low aerosol concentration without additional aerosol, the activity median aerodynamic diameter, the geometric standard deviation and the unattached fraction were, respectively, 0.4 μm, 2.7-2.9 and 0.3-0.5. On the other hand, at the condition of high aerosol concentration with burning a mosquito coil, these were, 0.4 μm, 2.1 and 0.02-0.03. These yield 2.5 times higher radiation dose conversion factors at the low aerosol condition than the high aerosol condition. (author)

  11. Attached and Unattached Activity Size Distribution of Short-Lived Radon Progeny (214Pb) and Evaluation of Deposition Fraction

    International Nuclear Information System (INIS)

    Mohamed, A.; Ahmed, A.A.; Ali, A.E.; Yuness, M.

    2009-01-01

    Inhalation of 2 '2 2 Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. Dosimetric models are most often used in the assessment of human lung doses due to inhaled radioactivity because of the difficulty in making direct measurements. These models require information about the parameters of activity size distributions of radon progeny. The current study presents measured data on the attached and unattached activity size distributions of radon progeny in indoor air in El-Minia, Egypt. The attached fraction was collected using a low pressure Berner cascade impactor technique. A screen diffusion battery was used for collecting the unattached fraction. Most of the attached activities for 222 Rn progeny were associated with aerosol particles of the accumulation mode. The mean activity median aerodynamic diameter (AMAD) of this mode for 21 4 P b was determined to be 401 nm with relative mean geometric standard deviation of 2.96. The mean value of specific air activity concentration of 214 Pb associated with that mode was determined to be 4.74 %0.44 Bq m -3 . The relative mean geometric standard deviations of unattached 214 Pb was determined to be 1.21 with the mean activity thermodynamic diameter (AMTD) of 1.2 nm. The mean unattached activity concentration of 214 Pb was found to be 0.44%0.14 Bq m-3. Based on the obtained results of radon progeny size distributions (unattached and attached), the deposition fractions in each airway generation of the human lung were evaluated by using a lung deposition model

  12. Survey of radon concentrations in three Italian towns

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1992-01-01

    Radon-222 was measured in 187 dwellings in Parma, Reggio Emilia, and Orvieto. Samples were collected using activated carbon canisters, placed in basements and on the upper floors for at least 48 h in the period starting from January 1989 to July 1990. Gamma spectroscopy was used for the measurement of 222 Rn and its progeny. The data for the three towns show a lognormal distribution. Owing to the high radium concentration in building materials and underlying soil, high radon concentrations were observed in Orvieto's dwellings. Additional measurements carried out in 22 public schools of Parma and Reggio Emilia showed moderate radon concentrations, while significant radon levels were recorded in 37 castles and ancient buildings in Parma and Reggio Emilia provinces

  13. An Alpha spectrometer for measuring radon daughter individual activity concentration

    International Nuclear Information System (INIS)

    Berico, M.; Formignani, M.; Mariotti, F.

    2001-01-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of 218 Po, 214 Pb and 214 Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated [it

  14. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    International Nuclear Information System (INIS)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University's study of the chemical and physical behavior of the 218 Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of circ OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO 2 , ethylene, and H 2 S to lower vapor pressure compounds and determine the role of gas phase additives such as H 2 O and NH 3 in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of 218 PoO x + in O 2 at low radon concentrations

  15. DOSEmanPRO - active electronic online personal air sampler for detection of radon progeny long lived alpha nuclides

    International Nuclear Information System (INIS)

    Streil, T.; Oeser, V.

    2002-01-01

    Full text: Using the micro system - technology we developed a online personal air sampler not bigger than a mobile phone, to open a new dimension in personal dosimetry of inhaled radioactive aerosols. The DOSEman PRO containing an internal pump with a continuous air flow of 0.15 I/min sample the radon progeny or other nuclides on a millipore filter with excellent spectroscopic resolution. A 1.5 cm 2 light protected ion-implanted silicon detector analyses the alpha radiation at the filter. This small detector head contains also the pre amplification and pulse processing. The alpha radiation of the radon progeny and the long lived alpha nuclides is analyzed by a 60 channel spectrometer. The energy resolution of the online analyzed filter spectra is in the order of 150 keV. Mechanical and electronic design enables one to distinguish the long lived alpha nuclides from the radon and thoron progeny very easily. Using a special algorithm we correct the influence of the tailing of the radon progeny to the long lived alpha nuclides and take into consideration possible interference in determining the long lived alpha nuclides. Because of the air sampling volume of nearly 10 I/h, the system has a high efficiency. The detection limit by 2 hours sampling time is 0.05 Bq/m 3 alpha nuclide concentration. In a modified device for air sampling especially of long-lived alpha nuclides like uranium, radium or plutonium, the flow rate is increased to 0,3 1/min e.g. during a 10 h sampling period we can detect 0.005 Bq/m 3 in a low radon atmosphere. Assuming increased radon progeny concentration, the statistical error for the long lived alpha nuclides will be higher, but in most of the cases for use in nuclear facilities low radon concentrations are ambient conditions. This concept of an electronic personal air sampler with an alpha spectroscopy offers some outstanding advantages compared to passive dosimeters or off-line alpha air filters: The dose value and the nuclide concentration is

  16. Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and Tons valleys of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Ramola, R.C.; Prasad, Ganesh; Mishra, Rosaline

    2016-01-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 . The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. (authors)

  17. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    Science.gov (United States)

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Enhancement of exposure to radon progeny as a consequence of passive smoking

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Seiler, M.C.

    1989-01-01

    Among indoor air pollutants, radon and tobacco smoke take dominant positions. Because radon decay products have a relatively short residence time in air, the extent of the equilibrium between radon and its daughter products is linearly proportional to the carcinogenic risk, at least at low exposure levels. The relevant factor is the equilibrium factor F. This paper discusses the enhancement of radon exposure as a result of the presence of particulate matter originating from tobacco smoke. The presence of tobacco smoke provides a mechanism for radon progeny to be attached to inhalable particles and to remain in indoor air for a prolonged time. The results of our study indicate a significant increase in F as a consequence of passive smoking. These modeling efforts are consistent with the experimental data reported previously

  19. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions

    International Nuclear Information System (INIS)

    Tu, K.W.; Knutson, E.O.; George, A.C.

    1991-01-01

    By using direct and indirect methods, the authors conducted size distribution measurements of radon progeny particles in a variety of indoor environments in urban, suburban, and rural areas. The radon progeny particle size distribution owing to indoor activities has two definable source categories: (1) gas combustion from stoves and kerosene heaters - particles were found to be smaller than 0.1 μm in diameter, mostly in the range 0.02-0.08 μm; and (2) cigarette smoking and food frying - particles were found to be larger, in the size range 0.1-0.2 μm. The radon progeny particle size distribution, without significant indoor activities, such as cooking, was found to be larger in rural areas than in urban or suburban areas. The modal diameters of the size spectra in the rural areas were two to three times larger than those in urban or suburban areas, around 0.3-0.4 bs. 0.1-0.2 μm. Results obtained by applying the attachment theory to the measured number-weighted size spectra from an electrical aerosol size analyzer support this finding. These results, if confirmed by more extensive studies, will be useful for the assessment of the risk from the inhalation of radon progeny in various indoor environments

  20. Monitoring of radon concentration in dwellings

    International Nuclear Information System (INIS)

    Kurosawa, Ryuhei

    1991-01-01

    Radon problems in dwellings have recently received much attention. Radon concentration in dwellings, as well as in the general environment, varies with various factors such as meteorological conditions and soil components. Therefore, a long term monitoring of radon concentration is required to obtain an average concentration. This paper reviews a passive type radon monitor that is handy and allows a long term radon monitoring. It provides the structure and principle of the radon monitor, covering the type, filter function, sensitivity of diffusion collecting type (cup type), electrostatic collecting type, adsorption collecting type, and detector of radon monitor. Actual examples of the radon monitor are also given. Radon daughter nuclides will have become major foci of exposure countermeasures. In the future, the development of a passive type monitor for determining potential alpha energy concentration is required. (N.K.)

  1. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.; Guedes, S.; Takizawa, R. H. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-970 Campinas, SP (Brazil)

    2014-11-11

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  2. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  3. Radon and radon progeny in 70 houses in the Tennessee Valley area: study design and measurement methods

    International Nuclear Information System (INIS)

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.; Quillen, J.L.; Clark, C. Jr.; Doane, R.W.; Wallace, R.G.; Reed, R.P.

    1986-01-01

    Levels of radon and its short-lived airborne progeny are being measured in a year-long study of 70 houses in four states in the Tennessee Valley. Various methods were used to solicit volunteers with differing degrees of success. Criteria for selection of houses in the study included presence of a lower level with cement floor and one or more block walls in contact with the soil, absence of obvious indications of technologically enhanced sources of radium, and proximity to one of four cities, (Knoxville, Chattanooga, Birmingham, or Florence). By design, most houses in the study are in the same neighborhood as at least one other house in the study. Houses range in age from newly constructed to about 40 years old. Most of the houses have more than 2000 square feet of finished floor space. The lower level encompasses a garage in most cases. More complete information pertaining to house characteristics will be gathered in the course of the study. Measurements are being made to obtain information on both location- and season-dependent variation of radon and radon progeny. Simultaneous measurements are made quarterly on both upper and lower levels of each house. Grab samples of air are collected and analyzed for radon using a modified Lucas cell technique. Short-term (10-minute) samples of airborne particulate material are collected and analyzed for radon progeny. One-week integrated measurements of working levels are made once each quarter using modified thermoluminescent dosimeters. Both three- and twelve-month integrated measurements of radon using track-etch monitors are being made. 19 references, 1 figures

  4. Diurnal measurement of equilibrium equivalent radon/thoron concentration using time integrated flow mode grab sampler

    International Nuclear Information System (INIS)

    Pant, P.; Kandari, T.; Ramola, R.C.; Semwal, C.P.; Prasad, M.

    2018-01-01

    The basic processes which influenced the concentration of radon and thoron decay products are- attachment, recoil and deposition and by the room specific parameters of radon exhalation and ventilation. The freshly formed decay products have a high diffusivities (especially in air) and ability to stick to surfaces. According to UNSCEAR 1977, radon daughters may be combined as the so called equilibrium equivalent concentration which is related to the potential alpha energy distribution concentration. In the present study an effort has been made to see the diurnal variation of radon and thoron progeny concentration using time integrated flow mode sampler

  5. Radon, thoron and their progeny levels in some dwellings of Union Territory Chandigarh, India using SSNTDs

    International Nuclear Information System (INIS)

    Mehta, Vimal; Kumar, Amit; Chauhan, R.P.; Mudahar, G.S.

    2013-01-01

    Indoor air quality is an important issue for protection against adverse health effects caused by the inhalation of pollutants because most individuals spend 90% of their time indoors and that indoor air quality is deteriorated by a large variety of sources. Out of these sources radon is a major pollutant and is an important global problem of radiation hygiene. Radon and its progeny are the major contributors in the radiation dose received by general population of the world. Next to cigarette smoking, the inhalation of radon gas and the products of its radioactive disintegration are considered the most significant cause of lung cancer. Due to the potentially serious public health implications of exposure to high levels of radon, the environmental monitoring of radon, thoron and their progeny in some dwellings of Chandigarh, union territory of India has been carried out. The radon-thoron twin dosimeter cups were used for the study. The aim of the study is the possible health risk assessment in the dwellings under consideration. (author)

  6. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  7. Changes of indoor aerosol characteristics and their associated variation on the dose conversion factor due to radon progeny inhalation

    International Nuclear Information System (INIS)

    Tokonami, Shinji; Ishikawa, Tetsuo; Yonehara, Hidenori; Yamada, Yuji; Matsuzawa, Takao; Iimoto, Takeshi

    2003-01-01

    Since the dose conversion factor (hereafter called DCF) due to radon progeny inhalation is strongly dominated by aerosol characteristics in the environment, it is important to understand the air quality for accurate dose assessment. Thus temporal variations on aerosol concentration, its particle size and its related airborne radioactivities were continuously measured in an actual indoor environment with a relatively high radon concentration. The following human activities were added during the observation period: air-conditioning, removal of aerosol with an air cleaner and ventilation. DCFs based on these activities were evaluated with the latest International Commission of Radiological Protection (ICRP) respiratory tract model and were compared among them. Consequently, the present study has shown that operation of air cleaner enhanced the DCF critically because the unattached fraction increased significantly due to removal of aerosols. (author)

  8. Radon concentration in a house of Calvados

    International Nuclear Information System (INIS)

    Leleyter, L.; Riffault, B.; Mazenc, B.

    2010-01-01

    Recent studies indicate a link between the risk of lung cancer and residential radon exposure. However, in France, awareness of this problem was made relatively late. Accordingly this study examines the radon concentration in a private home in Calvados (Normandy region). Findings show that the presence of a fireplace in a house can accelerate radon convective transfer, and that simple adjustments to interior and exterior accommodation can significantly reduce radon concentrations in the home. (authors)

  9. Radon progeny dose conversion coefficients for Chinese males and females

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.N. E-mail: peter.yu@city.edu.hk; Cheung, T.T.K.; Haque, A.K.M.M.; Nikezic, D.; Lau, B.M.F.; Vucic, D

    2001-07-01

    The airway dimensions for Caucasian males have been scaled by multiplying by factors 0.95 and 0.88 to give those for Chinese males and females, respectively. Employing the most recent data on physical and biological parameters, the radiation doses to the basal and secretory cells due to {alpha} particles from {sup 218}Po and {sup 214}Po, homogeneously distributed in the mucous layer, have been calculated. The emission of {alpha} particles has been simulated by a Monte Carlo method. For both basal and secretory cells, the dose conversion coefficients (DCCs) for physical conditions of sleep, rest, light and heavy exercise, have been obtained for Chinese males and females for unattached progeny, and for attached progeny of diameters 0.02, 0.15, 0.25, 0.30 and 0.50 {mu}m. For basal cells, the coefficients lie in the range 0.69-6.82 mGy/(J s/m{sup 3}) or 8.7-86 mGy/WLM for unattached progeny and in the range 0.045-1.98 mGy/(J s/m{sup 3}) or 0.57-25 mGy/WLM for attached progeny. The corresponding ranges for Caucasian males are 1.27-8.81 mGy/(J s/m{sup 3}) or 16-111 mGy/WLM{sup -1} and 0.05-2.30 mGy/(J s/m{sup 3}) or 0.64-29 mGy/WLM. For secretory cells, the coefficients lie in the range 0.095-16.82 mGy/(J s/m{sup 3}) (1.2-212 mGy/WLM) for unattached progeny and in the range 0.095-6.67 mGy/(J s/m{sup 3}) (1.2-84 mGy/WLM) for attached progeny. The corresponding ranges for Caucasian males are 0.34-21.51 mGy/(J s/m{sup 3}) (4.3-271 mGy/WLM) and 0.1-7.78 mGy/(J s/m{sup 3}) (1.3-98 mGy/WLM). The overall DCCs calculated for a typical home environment are 0.59 and 0.52 mSv/(J s/m{sup 3}) (7.4 and 6.5 mSv/WLM) for Chinese males and females, respectively, which are 80 and 70% of the value, 0.73 mSv/(J s/m{sup 3}) (9.2 mSv/WLM), for Caucasian males.

  10. Measurement of concentration and size distribution of radon decay products in homes using air cleaners

    International Nuclear Information System (INIS)

    Montassier, N.; Hopke, P.K.; Shi, Y.; McCallum, B.

    1992-01-01

    By removing particles, air cleaners can also eliminate radon decay products. However, by removing the particles, the open-quotes unattachedclose quotes fraction of the radon progeny is increased leading to a higher dose per unit exposure. Thus, both the concentration and size distributions of the radon decay products are needed to evaluate air cleaners. Three types of room air cleaners, NO-RAD Radon Removal System, Electronic Air Cleaner and PUREFLOW Air Treatment System were tested in a single family home in Arnprior, Ontario (Canada). Semi-continuous measurements of radon gas concentration and radon decay product activity weighted size distribution were performed in the kitchen/dining room under real living conditions. The effects of air cleaners on both the concentration and size distribution of the radon decay products were measured, and their impact on the dose of radiation given to the lung tissue were examined

  11. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements

    International Nuclear Information System (INIS)

    Estrada, Julio Jose da Silva

    1994-01-01

    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of 210 Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measurements were performed in a whole body counter. With this technique, the exposed individuals become, in affect, their own samplers and dosimeters and the estimate of cumulative exposure is not affected by the variation of the atmospheric concentration of radon and its progeny in time and space. Forty individuals identified as living in homes with radon levels ranging from about 740 Bq/m 3 to 150.000 Bq/m 3 were measured. Also, additional 34 measurements were made on personnel from NYUMC/NIEM who live in a residential area surrounding the laboratory in which the levels of radon have been shown to be at below average values. To realize these measurements a methodology was developed to determine the subject's background, using a head phantom made with a cubic plastic container containing known amounts of potassium and calcium dissolved in four liters of water. The effective doses calculated from the in vivo measurements are compared to effective doses estimated, for the same

  12. The protective effect of propolis on damage to lung and blood in rats by inhaled radioactive radon and its progeny

    International Nuclear Information System (INIS)

    Ding Jiansong; Nie Jihua; Tong Jian

    2006-01-01

    Twenty-eight male wistar rats were randomly divided into seven groups, i.e. the radon groups (3), the propolis+radon groups (3) and the control (1). The propolis+radon groups were fed intragastrically with propolis 0.2 g/kg, before exposing them, together with the radon groups, to radon and its progeny with the cumulative dose up to 30, 67 and 111 working level month (WLM), respectively. The levels of SOD (superoxide dismutase) and MDA (Malonic dialdehyde) in blood and lung tissue were determined. The SOD level of in blood and lung tissues of the radon groups decreased significantly and the MDA level increased. The MDA level in lung tissue of the 30 WLM propolis+radon group was significantly higher than the 30 WLM radon group. The SOD level in lung tissue of the 67 WLM propolis+radon group was significantly higher, but the MDA level was significantly lower, than the 67 WLM radon group. Both the SOD and MDA levels in blood and lung tissue of the 111 WLM propolis+radon group were significantly higher than the 111 WLM radon group. In conclusion, the inhalation of radon and its progeny can lead to persistent disturbance of the redox state in rats. Propolis show some protective effects on the redox damage under the experimental conditions. (authors)

  13. Detection of 210Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Fazal-ur-Rehman

    2003-01-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m 3 test room, resulting in an initial radon concentration of 15 kBq m -3 . Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10 2 -10 5 particles cm -3 in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, 210 Po (T 1/2 =138 days). This isotope is separated from the short-lived progeny by 210 Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter 210 Po on the same filter papers measured in the year 2000 were studied. The results of the 210 Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and 210 Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker

  14. Detection of {sup 210}Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. E-mail: falah.abujarad@aramco.com; Fazal-ur-Rehman

    2003-07-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m{sup 3} test room, resulting in an initial radon concentration of 15 kBq m{sup -3}. Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10{sup 2}-10{sup 5} particles cm{sup -3} in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, {sup 210}Po (T{sub 1/2}=138 days). This isotope is separated from the short-lived progeny by {sup 210}Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter {sup 210}Po on the same filter papers measured in the year 2000 were studied. The results of the {sup 210}Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and {sup 210}Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker.

  15. Experimental verification of the attachment theory of radon progeny onto ambient aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tokonami, Shinji

    2000-01-01

    The attachment theory of radon progeny onto ambient aerosols was experimentally verified with a cascade impactor and a graded screen array at the EML environmental chamber. Monodisperse aerosols in the size range of 70 to 500 nm were generated with Carnauba wax by means of the evaporation-condensation method. The temperature and the relative humidity in the chamber were set at 20 C and 20%, respectively, throughout the entire experiment. When the aerosols were being injected into the chamber, both the number size distribution and the activity-weighted size distribution of attached radon progeny were stable. The activity-weighted size distribution was compared with the attachment rate distribution obtained by measuring the number size distribution with the SMPS and multiplying the size-dependent attachment coefficient. There was a relatively good agreement between the two distributions.

  16. Measurement of radon and thoron progeny size distributions and dose assessments at the mineral treatment industry in Thailand

    International Nuclear Information System (INIS)

    Chutima Kranrod; Supitcha Chanyotha; Nares Chankow

    2013-01-01

    A new portable type cascade impactor has been developed to determine the activity size distribution of radon and thoron progeny in a natural environment more efficiently. The modified impactor consists of 4 stages with a back up filter stage for the collection of aerosol samples. The aerosol cut points in the impactor are set for 10, 2.5, 1 and 0.5 μm at a flow rate of 4 L min -1 . Five CR-39 chips were used as alpha detectors for each stage. In order to separate α particles emitted from radon and thoron progeny, CR-39 detectors are covered with aluminum-vaporized Mylar films. The thickness of each film is adjusted to allow α particles emitted from radon and thoron progeny to reach the CR-39 detectors. The technique has been successfully tested in field studies, particularly inside a mineral treatment industry in Thailand to estimate doses in the working environment. The dose calculations by lung dose evaluation program showed that activity median aerodynamic diameters played a significant role in determining the particle size distributions of the attached radon and thoron progeny. The dose conversion factor determined from short term measurements due to exposure from the inhalation of thoron and its progeny was found to be 4 times higher than comparable values for radon and its progeny. The effective dose for workers exposed to radon is about 4-6 times higher than thoron. (author)

  17. Comparative survey of outdoor, residential and workplace radon concentrations

    International Nuclear Information System (INIS)

    Barros, Nirmalla; Field, R. William; Field, Dan W.; Steck, Daniel J.

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m -3 . Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. (authors)

  18. AGE-DEPENDENT INHALATION DOSE DUE TO EXPOSURE OF SHORT LIVED PROGENY OF RADON AND THORON FOR DIFFERENT AGE GROUPS IN JAMMU & KASHMIR, HIMALAYAS.

    Science.gov (United States)

    Sharma, Sumit; Kumar, Ajay; Mehra, Rohit

    2018-05-16

    Dosimetric approach is used in this study for the assessment of doses due to inhalation of short lived radon/thoron progeny to the inhabitants of Udhampur district of Jammu & Kashmir. This paper also presents the activity concentrations and unattached fraction of radon and thoron progeny. The observed annual concentration of attached and unattached 222Rn and 220Rn progeny has been found to vary from 8 to 32 and 0.09 to 14 Bq/m3, 0.75 to 3.16 and 0.01 to 1.13 Bq/m3, respectively. The inhalation doses from radon progeny to different body organs of different age groups have been calculated by using the age dependent biokinetic model. The attachment rate of 222Rn and indoor aerosol concentration of 222Rn and 220Rn have been estimated and their relation between them has also been studied. The dose conversion factor for mouth and nasal breathing to different exposure conditions has been obtained from Porstendorfer model.

  19. Measurement of the radon concentration in an underground public facility and dose assessment. Fukuoka Tenjin Shopping Center

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Tokonami, Shinji; Sanada, Tetsuya; Kanno, Nobuyuki; Yamada, Yuji

    2000-01-01

    Radon concentrations were measured with a passive radon detector from April 1998 through June 1999 in the Fukuoka Tenjin Underground Shopping Center to assess the dose affecting workers because of radon progeny inhalation. The radon concentration during the period was distributed from a range of 1.9 to 13.6 Bq/m 3 . The arithmetic average concentration was estimated to be 6.9±2.4 Bq/ 3 . The radon level was lower than that in dwellings in Japan and other countries. No spatial distribution of radon concentration was found in that area. From continuous measurement, the radon concentration was found to be high from midnight to noon and low in the afternoon. Little difference was noted between the daily average radon concentration and that during working hours. There was no seasonal variation. The equilibrium factor of 0.21±0.10 was obtained during working hours. The activity-weighted size distribution of radon progeny was evaluated by using the number distribution of ambient aerosols and the classical attachment theory. Consequently, the activity median diameter was 150 nm. The unattached fraction of radon progeny was estimated to be 0.025 with an empirical equation. The annual effective dose of workers at the Tenjin center was calculated with the dose conversion factor from the UNSCEAR 1993 report and estimated to be 0.024 mSv/y. (author)

  20. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  1. The design and realization of calibration apparatus for measuring the concentration of radon in three models

    Energy Technology Data Exchange (ETDEWEB)

    Huiping, Guo [The Second Artillery Engineering College, Xi' an (China)

    2007-06-15

    For satisfying calibration request of radon measure in the laboratory, the calibration apparatus for radon activity measure is designed and realized. The calibration apparatus can auto-control and auto-measure in three models. sequent mode, pulse mode and constant mode. The stability and reliability of the calibration apparatus was tested under the three models. The experimental result shows that the apparatus can provides an adjustable and steady radon activity concentration environment for the research of radon and its progeny and for the calibration of its measure. (authors)

  2. 220Radon (Thoron) and progeny exposures in the front-end of nuclear fuel cycle activities with special reference to radioactive minerals, thorium and rare earths processing

    International Nuclear Information System (INIS)

    Pillai, P.M.B.

    2008-01-01

    Radon is a major Source of radiation exposure both at home and work places due to its universal presence. The International Commission on Radiological Protection has always treated the radioactive noble gas radon ( 222 Rn) and its isotope thoron ( 220 Rn) as a separate subject. ICRP Publication 65 (ICRP, 1993) summarizes the current knowledge of health effects of inhaled radon and its decay products and gives recommendations/guidelines for the control of exposures due to high radon levels encountered in dwellings and work places. A major departure from earlier publications on the subject is the entirely epidemiological considerations for developing the recommendations. In work place monitoring the progeny concentrations are of primary concern than the gases themselves. However radon/thoron gas measurements may also be used provided reliable information on the equilibrium factors are available. Though many developments have taken place and many options are available for individual monitoring for radon (mainly progeny) exposures of occupational workers, a viable personal dosimeter for individual monitoring for thoron daughters is yet to materialize. The doses are mostly estimated by making use of work place monitoring data in combination with occupancy factors

  3. Indoor radon concentrations in Vushtrri, Kosovo

    International Nuclear Information System (INIS)

    Xhafa, B.; Jonuzaj, A.; ); Bekteshi, S.; Ahmetaj, S.; Kabashi, S.; )

    2009-01-01

    Indoor air radon concentration was measured by exposing trac ketch detectors in the two elementary schools, one high school, a kindergarten and the hospital in the city of Vushtrri. Measurements were performed with the radon monitor PRM-145, which uses alpha scintillation cells and serves to determine the current concentration of radon. The results we obtained are in the range between the average values of radon for the interior spaces, and values that pose a potential risk for lung cancer. Measuring the concentration of radon was done in total of 34 rooms and came up with values which are between 28Bqm -3 and 398Bqm -3 . In order to reduce the concentration of radon, we have built a ventilation pump, then we performed repeated measurements and finally came with results between 130-145Bqm -3 .

  4. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  5. A review of lung-to-blood absorption rates for radon progeny

    International Nuclear Information System (INIS)

    Marsh, J. W.; Bailey, M. R.

    2013-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f b , for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f r = 0.1, s r = 100 d -1 , s s = 1.7 d -1 , f b = 0.5 and s b = 1.7 d -1 . Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed. (authors)

  6. Occupational exposure to radon progeny: Importance, experience with control, regulatory approaches

    International Nuclear Information System (INIS)

    Kraus, W.; Schwedt, J.

    2002-01-01

    An overview of possible occupational exposures to enhanced natural radiation in Germany is given, based on an analysis of the German Radiological Protection Commission. So far, the most significant exposure source is radon at underground and above ground workplaces. As a result of relevant regulations, in East Germany since the 70's a systematic monitoring of exposures to radon progeny has been introduced step by step in the uranium industry, in conventional ore mining, in show caves and mines, in enterprises for securing mining areas against subsidence, in radon spas and in water works in radon affected areas. Individual exposures have been assessed. The monitoring results for the period 1975-1998 are presented. Successful protection measures leading to a significant reduction of the exposures are discussed. using workplace monitoring results and registered occupancy times. In West Germany no regulations in this area were in force. Nevertheless, voluntary measuring programmes at similar workplaces were carried out. In case of unacceptable exposures successful protection measures were implemented. At present a systematic approach to control occupational exposures to radon is laid down in the European Directive 96/29/Euratom which has to be taken over in the national legislation to come. The expected number of workplaces to be included in the radiation protection system in Germany, the recommendable way of including different workplace types taking into account appropriate reference levels, and possible approaches to a graded system of workplace and individual monitoring are discussed in detail. (author)

  7. Development of electret technology to measure indoor radon-daughter concentrations: Final report (Phase 1)

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.C.; Stieff, L.R.

    1989-05-01

    A new type of radon progeny monitor called an electret radon progeny integrating sampling unit (E-RPISU) was developed and demonstrated which uses an electret ion chamber to measure the progeny concentration. A conventional 1 LPM particulate air sampling system is used to collect the progeny on a 35 cm 2 filter which is mounted on the side of the electret ion chamber such that the collected progeny are exposed to the inside of the chamber. The alpha radiation emitted by the progeny collected on the filter ionizes the air in the 220 ml chamber. The ions of opposite polarity collect on the surface of the 127 μm thick electret and reduce its surface voltage. A specially built surface voltmeter is used to measure the electret voltage before and after sampling. The electret voltage drop which occurs during the sampling period is shown to be proportional to the time integrated progeny concentration. Two prototype systems were fabricated and tested in homes and in calibrated radon chambers. The resulting data are presented and analyzed. The calibration factor for the E-RPISU ranged from 1.5 to 2.0 V/mWL-day depending on the electret voltage. Two of the E-RPISUs were delivered to UNC Geotech for further testing. 32 refs., 11 figs., 5 tabs

  8. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  9. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  10. Measurement of the size distributions of radon progeny in indoor air

    International Nuclear Information System (INIS)

    Hopke, P.K.; Ramamurthi, M.; Li, C.S.

    1990-01-01

    A major problem in evaluating the health risk posed by airborne radon progeny in indoor atmospheres is the lack of available information on the activity-weighted size distributions that occur in the domestic environment. With an automated, semicontinuous, graded screen array system, we made a series of measurements of activity-weighted size distributions in several houses in the northeastern United States. Measurements were made in an unoccupied house, in which human aerosol-generating activities were simulated. The time evolution of the aerosol size distribution was measured in each situation. Results of these measurements are presented

  11. Submicron-sized aerosol and radon progeny measurements in an uranium mine

    International Nuclear Information System (INIS)

    Boulaud, D.; Chouard, J.C.

    1992-01-01

    Submicron-sized aerosol was studied in an uranium mine using an Electrical Aerosol Analyzer and a Differential Mobility Particle Sizer. In addition radon progeny particle size distributions were measured using a prototype instrument developed by us (SDI 2000). With cascade impactor the number weighted mean electrical mobility diameters and the geometric standard deviations ranged respectively from 0.05 to 0.1 μm and 1.8 to 2. The gross alpha activity weighted mean thermodynamic diameters ranged typically from 0.1 to 0.2 μm. 6 refs., 3 figs

  12. Evaluation of room air cleaners for the reduction of exposure and dose to indoor radon progeny

    International Nuclear Information System (INIS)

    Hopke, P.K.; Jensen, B.; Wasiolek, P.

    1994-01-01

    Since the proximate source of dose to the cells of the bronchial epithelium is the deposited radon progeny, the exposure and resulting dose could be reduced if the radon decay products were effectively removed from the indoor atmosphere. Thus, room air cleaners could be effective in reducing the risks associated with indoor radon. However, because of the short half-life of 218 Po, it grows back quickly and in the altered aerosol conditions that are produced by the presence of an air cleaner, the exposure/dose conditions as well as the magnitude of the dose can be substantially changed. To examine the nature of the exposure of individuals in normally occupied homes and to determine the effect of various types of room air cleaners on the exposure to and dose from the indoor radon progeny, a series of measurements have been made using an automated graded screen array system. Two extended experiments were performed in homes in Arnprior, Ontario and Parishville, NY, in which filtration systems, a positive ion electrostatic precipitator, and ioniser/fan systems have been tested for their ability to remove both airborne radioactivity and particles. In both experiments, measurements were made over one week periods with an air cleaner operating and the distributions of exposure are compared with measurements of the background conditions when no cleaner is functioning. The doses to both basal and secretory cells of the bronchial epithelium in the first eight generations of the bronchus were calculated using the model developed by James and their distributions are compared among the various exposure conditions. In most cases the presence of the air cleaner reduced the exposure to radon progeny. However, the reductions in dose were generally substantially smaller than the reductions in exposure. In the intercomparisons of the two filtration units and the two identical ioniser/fan systems, the units generally behaved in a similar manner. The results of this substantial set of

  13. Metrology of radon and thoron concentrations

    International Nuclear Information System (INIS)

    Durcik, M; Vicanova, M.

    1998-01-01

    The alpha spectrometry measurements of radon (radon-222) and thoron (radon-220) concentrations by ionisation chamber, used only in laboratory conditions are described in this paper. For the measurements of radon and thoron in dwellings and work areas was proposed diffusion double chamber detector with track detector. The described dosimeter is very useful for routine measurement and would be applied in measuring of radon and thoron concentrations in caves and dwellings. Big disadvantage of the dosimeter is small holes in cover and it could not be used in dusty areas. From previous measurements of the equilibrium equivalent thoron concentrations by semiconductor detector the measured values ranged from 0.1 to 5.6 Bq m -3 in the Slovak kindergartens were obtained

  14. Risk assessment of exposure to radon concentration in indoor atmosphere and drinking water of Shimoga city, Karnataka, India

    International Nuclear Information System (INIS)

    Rangaswamy, D.R.; Sannappa, J.; Srinivasa, E.

    2016-01-01

    The exposure of population to natural sources of radiation has become an important issue in terms of radiological protection. The major contribution of dose from natural radiation in normal background regions arises due to inhalation of alpha-emitting radon and thoron, and their progenies, which are ubiquitous in both indoor and outdoor environs. The aim of the present study is to measure indoor radon, thoron and their progeny levels in the dwellings of Shimoga city and radon concentration in drinking water and to estimate the annual effective dose. The indoor concentration of radon, thoron and their progeny was measured using Solid-State Nuclear Track Detectors (SSNTDs) based twin chamber dosimeter cups. The 222 Rn concentration in drinking water was estimated by the Emanometry technique

  15. Modeled atmospheric radon concentrations from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  16. Modeled atmospheric radon concentrations from uranium mines

    International Nuclear Information System (INIS)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs

  17. Indoor radon concentration forecasting in South Tyrol

    International Nuclear Information System (INIS)

    Verdi, L.; Weber, A.; Stoppa, G.

    2004-01-01

    In this paper a modern statistical technique of multivariate analysis is applied to an indoor radon concentration database. Several parameters are more or less significant in determining the radon concentration inside a building. The elaboration of the information available on South Tyrol makes it possible both to identify the statistically significant variables and to build up a statistical model that allows us to forecast the radon concentration in dwellings, when the values of the same variables involved are given. The results confirm the complexity of the phenomenon. (authors)

  18. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, May 1, 1993--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1993-01-01

    Progress is reported on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. The specific tasks addressed were to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations. Initial measurements were conducted of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants. A prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon are described. Methodology was developed to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  19. Internal microdosimetry of inhaled radon progeny in bronchial airways: advantages and limitations

    International Nuclear Information System (INIS)

    Hofmann, Werner; Fakir, Hatim; Pihet, Pascal

    2007-01-01

    The objective of the present study was to identify advantages and limitations of the application of microdosimetric concepts for inhaled radon progeny activities in the lungs. The methods employed for this analysis were a recently developed Monte- Carlo microdosimetry code for the calculation of energy deposition in bronchial target cells and the Probability Per Unit Track Length (PPUTL) model, which relates these microdosimetric parameters to cellular radiation effects. The major advantages of internal microdosimetry of radon progeny in bronchial airways are: (i) quantitative characterisation of non-uniform dose distributions and identification of target sites with enhanced carcinogenic potential, (ii) quantification of low doses of alpha particles by the number of cells hit and the dose received by those cells, (iii) illustration of the random variations of cellular doses by specific energy distributions and (iv) establishment of a direct link to cellular radiobiological effects. At present, a major limitation of microdosimetry is the extrapolation of the response of individual cells to the resulting tissue response, which is still not fully explored. (authors)

  20. The effect and the amendment of thermoregulation to the stability of radon concentration in radon chamber

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Wang Renbo; Qu Jinhui; Tang Bin; Zhu Zhifu; Man Zaigang

    2010-01-01

    When the temperature in the airtight radon chamber was adjusted, it would induce the frequent changes of the air pressure in chamber, then the radon concentration in the radon chamber would continuously reduce, which could seriously destroy the stability of the radon concentration in radon chamber. In this paper, on the study of the effect reasons to the stability of radon concentration in airtight radon chamber due to the thermoregulation, a new amendment scheme was put forward, and the solutions of the relevant parameters were discussed. The amendment scheme had been successfully applied to HD-6 radon chamber, and achieved good results. (authors)

  1. Determination of radon concentration in soil gas by gamma-ray spectrometry of olive oil

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish; Karunakara, N.

    2007-01-01

    Measurements of radon concentration in soil gas have been carried out using a bubbling system in which the soil gas is drawn through an active pumping to bubble a liquid absorber (olive oil) for the deposition of the soil gas in it. After the bubbling process, the absorber is then taken for gamma-ray measurements. Gamma-ray photopeaks from the 214 Pb and the 214 Bi radon progeny are considered for the detection of the 222 Rn gas to study the concentration levels for radon soil gas. Results for some field measurements were obtained and compared with results obtained using AlphaGuard radon gas monitor. The technique provides a possible approach for the measurements of radon soil gas with gamma-ray spectrometry

  2. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  3. Examination of the influence of water-heated central heating systems on the levels of radon and radon progeny in the workplace

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    2000-01-01

    A series of continuous real-time radon and progeny measurements, together with passive etched-track detector measurements returning average values, were undertaken in commercial premises in Northamptonshire. Detailed measurements over several months in two separate buildings show that the level of both radon and progeny are determined to a major extent by the influence of the operation and timing of the central heating systems in place. Both buildings studied are similar in construction to many single-storey domestic properties. The operative heating system reduced the radon and progeny levels relative to the non-operating mode by over 40% during the heating period of a normal working day. The variation in temperature during this time was generally less than 3 deg. C, indicative of a heat retentive building. Because the equilibrium (F) fraction is reduced during the heating period, the reductions in radon and progeny are not uniform. In the workplaces studied, the work-cycle was normally limited to 0900-1700 hours Monday to Friday, the period when the lowest values were recorded. Average daily values would therefore overstate by more than 50% the maximum potential dose during normal attendance hours. The corollary is that living under similar circumstances in domestic environments, the operation and timing of this type of heating regime may well result in higher exposure in the home than at work

  4. Radon in air concentrations arising from storage of articles containing radium or thorium

    International Nuclear Information System (INIS)

    Slater, M.; Gooding, M.

    2006-01-01

    A major component of public and occupational radiation exposure worldwide arises from the inhalation of radon and thoron gases, produced during the decay of naturally occurring uranium and thorium respectively. Whilst radon and thoron exposures are normally associated with the natural environment, there may also be a risk associated with sources, manufactured articles and waste produced through refining and concentration of naturally occurring radioactive material. Sources and articles manufactured from refined uranium do not normally give rise to the release of radon as the uranium progeny are largely removed during production and, if removed, will take thousands of years to reach full equilibrium with the uranium parent isotopes. Exposure to radon -222 ( 222 Rn) may, however, arise in areas where the uranium-238 ( 238 U) daughter radium-226 ( 226 Ra) is concentrated, for example in the form of sources, luminous articles or low-specific activity (LSA) scale. Exposure to radon- 220 ( 220 Rn), otherwise known as thoron, may occur in areas where thorium isotopes are concentrated, for example as manufactured laboratory thorium compounds. This paper explores the issues affecting radon and thoron release from manufactured articles containing uranium and thorium and their progeny. A methodology is provided for the calculation of 222 Rn and 220 Rn in air concentrations likely to arise as a result of the storage and use of articles containing radium-226 ( 226 Ra) or thorium-232 ( 232 Th). The methodology provided in the document allows derivation of the equilibrium equivalent radon concentration and the radon exposure rate in circumstances where the ventilation rate and volume of the facility can be reliably estimated and the quantities of 226 Ra or 232 Th held are known. A critical variable in the calculation is the release fraction (i.e. the proportion of radon generated that is release to atmosphere), and this paper considers methods for estimating this parameter

  5. Distribution of radon concentration in residences and others buildings of Belo Horizonte city, MG, Brazil

    International Nuclear Information System (INIS)

    Santos, Talita de Oliveira

    2010-01-01

    Human beings are exposed to ionizing radiation from many natural sources. Radon and its progeny have been recognized as the most important contributors to the natural radioactivity dose, accounting for about half of all human exposure to ionizing radiation. Radon is a α-radioactive noble gas derived from the natural series of uranium and thorium, which occurs in a wide concentration range in all geological materials, especially, in rocks, soils and waters. By diffusion and convection, radon migrates from the rocks and soils to atmosphere and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important radon source in dwellings is its emanation from the construction material. The radon progeny concentration in dwellings has been receiving considerable global attention due to its potential effect in causing lung cancer if it deposited in upper respiratory tract when inhaled. This work presents radon concentration distribution in dwellings in Metropolitan Region of Belo Horizonte - RMBH. The geological settings of the area are Archean rocks of Granitic Gneissic Complex and of metasediments sequences of the great Precambrian unit of the Iron Quadrangle of Minas Gerais, Brazil. Radon concentration measurements were carried out with continuous detector AlphaGUARD PQ200PRO (Genitron), in passive mode and with passive detectors E-PERM Electrets Ion Chamber-EIC. The radon progeny concentration was carried out with a solid state alpha spectroscope, the DOSEman PRO (Sarad). It was found an indoor radon concentration varying in a large range from 4 to 2664,0 Bq.m"-"3, with an average value of 108.0 Bq.m"-"3, median of 70 Bq.m"-"3, geometric mean equal to 76 Bq.m"-"3 and standard deviation of 170 Bq.m"-"3. About 15% of the results are over the United States Environmental Protection Agency (U.S. EPA) actions level, which is 148 Bq.m"-"3.The equilibrium factor between radon and its progeny were determined in dwellings, as 0.3 in average

  6. Comparison of five-minute radon-daughter measurements with long-term radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1983-01-01

    Five-minute air filter radon daughter measurements were made in 84 buildings in Edgemont, South Dakota, in which annual average radon daughter concentrations have been determined from six 100-hour Radon Progeny Integrating Sampling Unit (RPISU) measurements. Averaging radon concentrations were also determined in 50 of these buildings using Terradex Track Etch detectors. The standard deviation of the difference between the (natural) logarithms of the RPISU annual averages and the logarithms of the air filter measurements (SD-ln) was found to be 0.52. This SD-ln is considerably smaller than the SD-ln of 0.71 between the RPISU annual averages and the air filter measurements reported by ALARA at Grand Junction, Colorado; presumably because a considerable number of air filter measurements in Edgemont were disregarded because of short turnover times or high wind speeds. Using the SD-ln of 0.52 it can be calculated that there would only be a 5% probability in Edgemont that the RPISU annual average would be greater than 0.015 WL if the five-minute measurement were equal to 0.010 WL. This indicates that the procedure used in Edgemont of clearing buildings from remedial action if the five-minute measurement were less than 0.010 WL was reasonable. There was about a 28% probability that the RPISU annual average would be less than 0.015 WL if the five-minute measurement were 0.033 WL, indicating that the procedure of performing an engineering assessment if the average of two five-minute measurements was greater than 0.033 WL was also reasonable. Comparison indicates that the average of two RPISU measurements taken six months apart would provide a dependable estimate of the annual average

  7. Effects of aerosol polydispersity on theoretical calculations of unattached fractions of radon progeny

    International Nuclear Information System (INIS)

    Bandi, F.; Khan, A.; Phillips, C.R.

    1987-01-01

    Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol

  8. Investigation of radon, thoron, and their progeny near the earth's surface. Final report, 1 January 1994 - 31 December 1997

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, P.T.

    1998-01-01

    This is the final report for DOE Grant DE-FG03-94ER6178, covering a performance period of 1 January 1994 through 31 December 1997. The DOE award amount for this period was $547,495. The objective of the project as stated in its proposal was open-quotes to improve our understanding of the physical processes controlling the concentration of radon, thoron, and their progeny in the atmospheric environment.close quotes The original project was directed at developing underlying science that would help with evaluation of the health hazard from indoor radon in the United States and implementation of corrective measures that might be employed to reduce the health hazard. As priorities within the Office of Health and Environment (OHER) changed, and the radon research program was phased out, emphasis of the project was shifted somewhat to be also relevant to other interests of the OHER, namely global pollution and climate change and pollution resulting from energy production. This final report is brief, since by reference it can direct the reader to the comprehensive research publications that have been generated by the project. In section 2, we summarize the main accomplishments of the project and reference the primary publications. There were seven students who received support from the project and their names are listed in section 3. One of these students (Fred Yarger, Ph.D. candidate) continues to work on research initiated through this project. No post-docs received support from the project, although one of the co-principal investigators (Dr. Piotr Wasiolek) received the majority of his salary from the project. The project also provided part-time support for a laboratory manager (Dr. Maryla Wasiolek). Section 4 lists chronologically the reports and publications resulting from the project (references 1 through 12), and the Appendix provides abstracts of major publications and reports

  9. Assessing the deposition of radon progeny from a uranium glass necklace

    International Nuclear Information System (INIS)

    Hanse, M.F.; Moss, G.R.

    2015-01-01

    Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny 218 Po and 214 Po. Phys. Med. Biol. 1997;42:1899-1911.) suggests that the alphas from the short-lived radon daughters, 218 Po and 214 Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the 218 Po and 214 Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk. (authors)

  10. Studies on radon concentration at the work places of Mysuru, Bengaluru, Tumkuru and Kolar Districts of Karnataka State, South India

    International Nuclear Information System (INIS)

    Ningappa, C.; Reddy, K. Umesha; Rangaswamy, D.R.; Sannappa, J.

    2015-01-01

    Radon is a radioactive noble gas and is the decay product of naturally occurring uranium. It decays into radioactive metal ions polonium-218 and polonium-214 by alpha radiation, which are harmful to the human health. The concentrations of radon and its progeny inside a given working place depends on activity of radium both in the soil surrounding the workplace and in the building materials, atmospheric conditions, design of the workplace, porosity of the surrounding soil, building layout, and the ventilation habits of the inhabitants of the building. The estimation of dose due to radon and its progeny to the general public and workers at work places are very important. Thus, concentration of radon and its progeny and dose due to radon and its progeny to the public and workers were measured at sixty workplaces of Mysuru, Bengaluru, Tumkur and Kolar districts based on geology and willingness of the workplace owner using twin cup dosimeter based on Solid State Nuclear Track Detectors (SSNTDs) and results are discussed in the present study. The values measured indoor radon in the area of study ranged from a 11.6 to 284.8 Bq.m -3 . (author)

  11. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  12. Radon and radon progeny in 70 houses in the Tennessee Valley area: study design and measurement methods

    International Nuclear Information System (INIS)

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.; Quillen, J.L.; Clark, C. Jr.; Doane, R.W.; Wallace, R.G.; Reed, R.P.

    1986-01-01

    Levels of radon and its short-lived airborne progeny are being measured in a year-long study of 70 houses in four states in the Tennessee Valley. Various methods were used to solicit volunteers with differing degrees of success. Criteria for selection of houses in the study included presence of a lower level with cement floor and one or more block walls in contact with the soil, absence of obvious indications of technologically enhanced sources of radium, and proximity to one of four cities (Knoxville, Chattanooga, Birmingham, or Florence). By design, most houses in the study are in the same neighborhood as at least one other house in the study. Houses range in age from newly constructed to about 40 years old. Most of the houses have more than 2000 square feet of finished floor space. The lower level encompasses a garage in most cases. More complete information pertaining to house characteristics will be gathered in the course of the study. 19 refs., 1 fig

  13. Turbidimetry for measurement of radon concentration

    International Nuclear Information System (INIS)

    Wang Huanqiang

    1993-01-01

    This paper describes a turbidimetric technique counting the tracks registered on CR-39 foils exposed to radon. Instead of eyeview through microscope, by using the differential spectrophotometer, strong correlation between the radon cumulative concentration and track turbidence was observed(r=0.999). Under the etching condition of 7.07 mol·L -1 KOH water solution at 80 o C for 16 hr, linear regression showed that the ratio of track turbidence and cumulative concentration of radon exposure was 1.99 x 10 -1 turbidence (KBq m -1 h) -1 and the determination limit was 36 KBq m -3 h. The details of the experiments are represented in this paper. (Author)

  14. Developing an interactive computational system to simulate radon concentration inside ancient egyptian tombs

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Salama, E; El-Fikia, S A [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Abo-EImagd, M; Eissa, H M [National Institute for Standard, Radiation Measurements Department, P. O. Box 136Giza code no. 12211 RSSP (Egypt)

    2007-06-15

    RSSP (Radon Scale Software Package) is an interactive support system that simulates the radon concentration inside ancient Egyptian tombs and the consequences on the population in terms of internal and external exposure. RSSP consists of three interconnected modules: the first one simulates the radon concentration inside ancient Egyptian tombs using a developed mathematical model. This model introduces the possibility of controlling the rate of radon accumulation via additional artificial ventilation systems. The source of inputs is an editable database for the tombs includes the geometrical dimensions and some environmental parameters like temperature and outdoor radon concentration at the tombs locations. The second module simulates the absorbed dose due to internal exposure of radon and its progeny. The third module simulates the absorbed dose due to external exposure of Gamma rays emitted from the tomb wall rocks. RSSP introduces the facility of following the progress of radon concentration as well as Internal and external absorbed dose in a wide range of time (seconds, minutes, hours and days) via numerical data and the corresponding graphical interface.

  15. Developing an interactive computational system to simulate radon concentration inside ancient egyptian tombs

    International Nuclear Information System (INIS)

    Metwally, S. M.; Salama, E.; El-Fikia, S. A.; Abo-EImagd, M.; Eissa, H. M.

    2007-01-01

    RSSP (Radon Scale Software Package) is an interactive support system that simulates the radon concentration inside ancient Egyptian tombs and the consequences on the population in terms of internal and external exposure. RSSP consists of three interconnected modules: the first one simulates the radon concentration inside ancient Egyptian tombs using a developed mathematical model. This model introduces the possibility of controlling the rate of radon accumulation via additional artificial ventilation systems. The source of inputs is an editable database for the tombs includes the geometrical dimensions and some environmental parameters like temperature and outdoor radon concentration at the tombs locations. The second module simulates the absorbed dose due to internal exposure of radon and its progeny. The third module simulates the absorbed dose due to external exposure of Gamma rays emitted from the tomb wall rocks. RSSP introduces the facility of following the progress of radon concentration as well as Internal and external absorbed dose in a wide range of time (seconds, minutes, hours and days) via numerical data and the corresponding graphical interface

  16. Long-lived 222Rn progeny concentrations in ground level air of Milan

    International Nuclear Information System (INIS)

    Marcazzan, G.M.; Valli, G.; Vecchi, R.; Bocelli, R.

    2002-01-01

    Short-lived (2 18P o, 2 14P b, 2 14B i, 2 14P o) as well as long-lived (2 10P b, 2 10B i, 2 10P o) Radon's decay products in atmosphere are due to the 2 22R n exhalation from the continental Earth's crust, where it is generated in the 2 38U decay series. The measurement of the radionuclides concentration in the atmosphere - in addition to yielding valuable data for radioprotection purposes and for assessing the environmental impact of natural radioactivity - can provide information on atmospheric thermodynamic conditions as well as on atmospheric processes that involve aerosols such as transport, dispersion, removal rates and residence time. In particular, the concentration ratio of 2 10P b with other Radon's daughters can be used to obtain information on mean residence time of aerosols (Poet et al., 1972; Rangarajan, 1992; Gaggeler et al., 1995). Continuous measurements of hourly concentration of Radon and its short-lived progeny are routinely carried out in Milan by our group, and the temporal behaviour comes out a suitable tracer of atmospheric stability conditions and a local index of the evolution of the mixing layer height (Marcazzan et al., 1993; Marcazzan et al., 1997). The aim of this work was to measure the concentration and temporal behaviour of 2 10P b on a weekly and a monthly scale at ground level in the urban area of Milan and to get reliable measurements on the annual average concentration for the implementation of the existing data base (Preiss et al., 1996)

  17. Background concentrations of radon and radon daughters in Canadian homes

    International Nuclear Information System (INIS)

    McGregor, R.G.; Vasudev, P.; Letourneau, E.G.; McCullough, R.S.; Prantl, F.A.; Taniguchi, H.

    1980-01-01

    Measurements of radon and radon daughters were carried out in 14 Canadian cities on a total of 9999 homes selected in a statistically random manner. The geometric means of the different cities varied from 0.14 to 0.88 pCi/l. for radon and 0.0009 to 0.0036 Working Levels for radon daughters. The radon originates from natural radioactivity in the soil surrounding the homes. (author)

  18. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  19. Radon concentration distribution mapping in a small detached house

    International Nuclear Information System (INIS)

    Muellerova, Monika; Moravcsik, Attila; Holy, Karol; Hutka, Miroslav; Hola, Olga

    2013-01-01

    Radon activity concentration was investigated in an older, single storey detached house. The rooms of the house are in contact with the bedrock. The house is fitted with plastic windows and populated mostly during the summer. Integral (Raduet) and continuous (AlphaGUARD) methods were used to measure the radon activity concentration. Average radon and thoron activity concentrations in the house were 150 Bq/m 3 and 40 Bq/m 3 , respectively. The impact of the house occupancy on radon activity concentration was significant only during the summer months when a decrease of radon activity concentration was recorded due to an increased ventilation rate. In the autumn and winter months, the impact of the house occupancy on radon activity concentration was relatively small - up to 20 %. The increases in radon activity concentration after the room had been thoroughly ventilated were analysed in order to estimate the ventilation rate and the rate of radon supply into the house. (orig.)

  20. Determination of Lung-to-Blood Absorption Rates for Lead and Bismuth which are Appropriate for Radon Progeny

    International Nuclear Information System (INIS)

    Marsh, J.W.; Birchall, A.

    1999-01-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) treats clearance as a competitive process between absorption into blood and particle transport to the gastrointestinal tract and lymphatics. The ICRP recommends default absorption rates for lead and bismuth in ICRP Publication 71 but states that the values are not appropriate for short-lived radon progeny. This paper describes an evaluation of published data from volunteer experiments to estimate the absorption half-times of lead and bismuth that are appropriate for short-lived radon progeny. The absorption half-time for lead was determined to be 10±2 h, based on 212 Pb lung and blood retention data from several studies. The absorption half-time for bismuth was estimated to be about 13 h, based on 212 Bi urinary excretion data from one experiment and the ICRP biokinetic model for bismuth as a decay product of lead. (author)

  1. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  2. Seasonal variation of radon concentration in different rooms of dwellings

    International Nuclear Information System (INIS)

    Jayasheelan, A.; Manjunatha, S.; Chandrashekaraiah, G.; Shankar, P.; Umeshareddy, K.; Ningappa, C.

    2016-01-01

    Indoor air is a dominant exposure for humans, where more than half of the body's intake during a lifetime. The main natural sources of indoor radon are soil, building materials like sand, rocks, cement, marble, bricks, ceramics, natural gas and the underground-derived water supply. In the present research, dwellings with similar building style (similar floorings and dimensions) from Tumkur city were studied for indoor radon, thoron and their progeny measurements for various seasons

  3. A study of radon indoor concentration

    International Nuclear Information System (INIS)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G.

    2000-01-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m 3 obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  4. Measurements of indoor radon concentration in Libyan cities

    International Nuclear Information System (INIS)

    Elarabiy, S. F.; Khalifa, M.; Misrati, N.; Chahboune, N.; Ahmed, M.

    2012-12-01

    Studies confirm that the risk of exposure to indor radon is attributable to lung cancer worldwide. The relationship between radon exposure and cancer is a linear one which necessitates for need for measurements of indoor radon concentration. This paper presents the results of measurements of indoor radon in several libya cities using CR-39 plastic. The results showed that the average radon concentration in the cities of Tripoli, Al-harcha and Alrajaban were 48.8 Bg/m 3 , 51.4 Bg/m 3 and 55.5 Bg/m 3 respectively. The average indoor radon concentration in Libya is low comparing with other studies. (Author)

  5. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  6. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  7. Radon Progenies as a Source of Gross Alpha-beta Activities in Drinking Water in Vinaninkarena, Antsirabe-Madagascar

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Rabesiranana, N.; Rasolonirina, M.; Rakotomanga, H.

    2004-01-01

    The village of Vinaninkarena, Antsirabe, Madagascar is located in a high radioactivity area. With the aim of assessing the health impact of radioactivity pollution, a survey was conducted around an abandoned radium mining. Waters from 24 sampling points, including 5 wells and 13 springs were sampled. The water radioactivity was measured using a portable Triathler LSC, model 425-034 from Hidex Turku. Each sample is counted more than 3 times: less than 2h after sampling, 4h to few days and more than 3 weeks after when 226 Ra attains equilibrium with 222 Rn and its short-lived daughters. Combination of water non miscible, radon extractive LS cocktail and water miscible one is used to reveal contribution of radium, radon and its short lived progenies to the gross alpha-beta activities. Maximum activity values found are : 3.6±0.3 Bq.L -1 for 226 Ra, 554±9 Bq.L -1 for the excess of radon, and 408±8 Bq.L -1 for the excess of radon progenies. Based on these data, a daily consumption of 2 L of these waters by a standard person would produce an annual 226 Ra ingestion well above the annual intake limit for 226 Ra. Moreover, the increasing gross alpha-beta activity resulting from radon progenies raises the issue of health effects. The potential for rapid spring-to-mouth delivery, which is frequent in rural area, may expose the water consumer to the short-lived alpha particle emitters.

  8. Numerical modelling of local deposition patients, activity distributions and cellular hit probabilities of inhaled radon progenies in human airways

    International Nuclear Information System (INIS)

    Farkas, A.; Balashazy, I.; Szoeke, I.

    2003-01-01

    The general objective of our research is modelling the biophysical processes of the effects of inhaled radon progenies. This effort is related to the rejection or support of the linear no threshold (LNT) dose-effect hypothesis, which seems to be one of the most challenging tasks of current radiation protection. Our approximation and results may also serve as a useful tool for lung cancer models. In this study, deposition patterns, activity distributions and alpha-hit probabilities of inhaled radon progenies in the large airways of the human tracheobronchial tree are computed. The airflow fields and related particle deposition patterns strongly depend on the shape of airway geometry and breathing pattern. Computed deposition patterns of attached an unattached radon progenies are strongly inhomogeneous creating hot spots at the carinal regions and downstream of the inner sides of the daughter airways. The results suggest that in the vicinity of the carinal regions the multiple hit probabilities are quite high even at low average doses and increase exponentially in the low-dose range. Thus, even the so-called low doses may present high doses for large clusters of cells. The cell transformation probabilities are much higher in these regions and this phenomenon cannot be modeled with average burdens. (authors)

  9. Concentrations Of Radon In Kindergartens And Schools In Like - Sen And Karlovac Counties

    International Nuclear Information System (INIS)

    Radolic, V.; Stanic, D.; Miklavcic, I.; Poje, M.; Muzevic, M.; Krpan, I.; Vukovic, B.

    2015-01-01

    Measurements of radon concentrations in schools and kindergartens were performed by means of passive, strippable, nuclear track etched detectors LR - 115 type II (Kodak - Pathe, France). The detectors are paired in the way that one detector (open detector), placed on the circumferential side of the plastic detector vessel, registers total number of alpha particles from radon and its short-lived progenies. At the same time, the other detector (diffusion detector) is placed inside the vessel and it registers only alpha particles emitted by radon. The average radon concentrations in kindergartens and schools of Lika-Senj County are 318 and 317 Bq m -3 while for Karlovac County they are 228 and 304 Bq m -3 respectively. Moreover, there are three schools in Karlovac County with the average radon concentration higher than 1000 Bq m -3 , which represents the action level for intervention measures in Croatia. Even more, there are 2.5 percent of rooms in kindergartens and 4 percent of rooms in schools in Lika - Senj County with measured radon concentrations higher than 1000 Bq m -3 . In Karlovac County there are 2.4 percent of such rooms in kindergartens and 7 percent in schools. Maps of spatial distribution of indoor radon concentrations for homes as well as for kindergartens and schools were created by using the Inverse Distance Weighting interpolation method. This is one of the useful methods for identifying radon prone areas. The authors propose a repetition of measurements in those kindergartens, schools and homes with higher radon concentrations in coordination with the local government. (author).

  10. Effect of radon and its progeny on the expression and mutation of p53 in lung tissues of mice

    International Nuclear Information System (INIS)

    Piao Chunnan; Tian Mei; Liu Jianxiang; Ruan Jianlei; Su Xu

    2010-01-01

    Objective: To explore the effect of radon and its progeny on the expression and mutations of p53 in lung tissue of mouse model. Methods: Apoptosis was detected by terminal deoxynucleotidy transferase-mediated dUTP-biotin nick end labeling. The expression of p53 gene was analyzed by immunohistochemistry, Western blot and realtime-PCR. PCR-SSCP was used to detect the mutation of p53 in lung tissues. Results: Compared with those in the control group, the apoptotic index were increased significantly in 30 WLM and 60 WLM groups (t=18.11, -10.30, P<0.05). The p53 protein was increased significantly (t=-11.08, P<0.05; t=-7.00, P<0.05) in 30 WLM and 60 WLM groups. The mutation of p53 gene was not detected in lungs of radon-exposure mice. Conclusions: Lung and bronchus might be the targets of radon and its progeny, and p53 gene plays an important role in the progression of radon-induced lung injury. (authors)

  11. Radon concentration and working level in the Exploratory Studies Facility (ESF)

    International Nuclear Information System (INIS)

    Stiver, J.H.; Tung, Chao-Hsiung.

    1995-01-01

    Radon-222 ( 222 Rn) and 222 Rn progeny WL monitoring in the Exploratory Studies Facility (ESF) was initiated to support regulatory compliance. Measurements were taken over two periods, in Test Alcove No. 1 of the ESF, about 60 m from the tunnel entrance. For both periods, 222 Rn concentration was less than 10% of the Derived Air Concentration (DAC) set forth in DOE Order 5480.11. Thus, these assessments were sufficient to demonstrate regulatory compliance. Based on these findings, quarterly 222 Rn and 222 Rn progeny monitoring was initiated. Two systems each were employed for 222 Rn and 222 Rn progeny measurement. No significant differences were observed between the respective systems. An interesting finding was that at the time the measurements were taken, barometric pressure appeared to be the predominant factor controlling 222 Rn concentration in the ESF. This was true even during periods of ventilation shutdown

  12. Concentration en radon dans une maison du Calvados

    Science.gov (United States)

    Leleyter, Lydia; Riffault, Benoit; Mazenc, Bernard

    2010-03-01

    Recent studies indicate a link between the risk of lung cancer and residential radon exposure. However, in France, awareness of this problem was made relatively late. Accordingly this study examines the radon concentration in a private home in Calvados. Findings show that the presence of a fireplace in a house can accelerate radon convective transfer, and that simple adjustments to interior and exterior accommodation can significantly reduce radon concentrations in the home.

  13. Estimation of radon concentration in dwellings in and around ...

    Indian Academy of Sciences (India)

    of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. ... The perforated opening at the other end of the cup .... Cancer among uranium miners in United States; Health. Phys.

  14. Continuous measurements of outdoor radon concentrations

    International Nuclear Information System (INIS)

    Iida, T.; Ikebe, Y.; Suzuki, K.; Ueno, K.; Komura, K.; Kato, I.; Jin Yihe

    1993-01-01

    The authors studied and developed an electrostatic 222 Rn monitor and have measured continuously outdoor radon ( 222 Rn) concentrations at Nagoya University since 1985. Four 222 Rn monitors were newly constructed to measure outdoor 222 Rn concentrations at other locations. The 222 Rn concentrations at Nagoya and Kasugai show a clear diurnal variation in autumn, and a seasonal pattern of a spring-summer minimum and a autumn-winter maximum. The results at Toki are the same pattern as that at Nagoya except spring. The concentrations at Kanazawa show a slight seasonal variation. A clear diurnal variation is observed in summer. (4 figs.)

  15. Radon concentration measurements in therapeutic spring water

    International Nuclear Information System (INIS)

    Deak, N.; Horvath, A.; Sajo B, L.; Marx, G.

    1996-01-01

    It is believed that people undergoing a curative cycle in a given spa, may receive a dose in the range of 400 mSv/year which is many times the average annual dose so that their risk of lung cancer may increase by 3% or more. To determine the risk due to the natural radioactivity, of the most frequented spas in Budapest (H), we selected four and some others located on the country side being of particular interest. Results of the radon concentration in spring water are presented, with the evidence that some spas have a high radon concentration. We conclude that patients receiving treatment may be exposed to an additional dose in the range of 29-76 mSv/year that at the bronchia could be between 445-1182 mSv/year. (authors). 6 refs., 2 figs., 2 tabs

  16. Radon concentration inversions in the troposphere

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1987-07-01

    Vertical concentrations of radon in the lower troposphere were obtained in Southern Brazil up to 7Km high and have shown unexpected inverted profiles. The presence of low pressure center systems southwest to the flight path suggested that inversions might have been originated by a vertical transport mechanism based on the large scale circulation of developing synoptic systems. A simple friction-driven circulation model was contructed and the transport equation was solved. (author) [pt

  17. Seasonal variations of indoor radon concentrations

    International Nuclear Information System (INIS)

    Majborn, B.

    1990-01-01

    Seasonal variations of indoor radon concentrations have been studied in a cluster of 10 single-family houses. Eight of the houses are of a similar construction with slab-on-grade foundations. The remaining two houses have different substructures, one of them having a crawl space, and the other having partly a basement and partly a crawl space. A 'normal' seasonal variation of the radon concentration with a maximum in winter and a minimum in summer was observed in most of the houses. In these houses the variation showed a strong correlation with the indoor-outdoor temperature difference on a 2-month basis. However, deviating seasonal variations were observed in some of the houses, notably in the two houses having different substructures. This paper reports that a re-examination of the data obtained in a previous study indicates that winter/summer ratios of indoor radon concentrations in Danish houses depend on the house substructure. The mean winter/summer ratios were about 2.1 for houses with slab-on-grade foundations, 1.5 for houses having a basement, and 1.0 for houses with a crawl space (geometric mean values). However, a study with more houses in each substructure category will be needed to show whether or not the indicated differences are generally valid for Danish houses

  18. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    The objectives of R and D on radon in the indoor environment at SCK-CEN is to (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions; to assess the radon concentrations in buildings retrospectively with volume traps. Progress and main achievements in 1997 are reported on

  19. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    A precise retrospective assessment of long-term radon exposures in dwellings is essential for estimating lung-cancer risks. The objectives of this research are (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions, (2) to assess the radon concentrations in buildings retrospectively with volume traps

  20. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  1. Radon progeny monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility and a potential earthquake precursory signal

    Science.gov (United States)

    Barbosa, Susana; Mendes, Virgilio B.; Azevedo, Eduardo B.

    2016-04-01

    Radon has been considered a promising earthquake precursor, the main rationale being an expected increase in radon exhalation in soil and rocks due to stress associated with the preparatory stages of an earthquake. However, the precursory nature of radon is far from being convincingly demonstrated so far. A major hindrance is the many meteorological and geophysical factors diving radon temporal variability, including the geophysical parameters influencing its emanation (grain size, moisture content, temperature), as well as the meteorological factors (atmospheric pressure, moisture, temperature, winds) influencing its mobility. Despite the challenges, radon remains one of the strongest candidates as a potential earthquake precursor, and it is of crucial importance to investigate the many factors driving its variability and its potential association with seismic events. Continuous monitoring of radon progeny is performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The Azores archipelago is associated with a complex geodynamic setting on the Azores triple junction where the American, Eurasian and African litospheric plates meet, resulting in significant seismic and volcanic activity. A considerable advantage of the monitoring site is the availability of a comprehensive dataset of concurrent meteorological observations performed at the ENA facility and freely available from the ARM data archive, enabling a detailed analysis of the environmental factors influencing the temporal variability of radon's progeny. Gamma radiation is being measured continuously every 15 minutes since May 2015. The time series of gamma radiation counts is dominated by sharp peaks lasting a few hours and

  2. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  3. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2} ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}Po{sub x}{sup +} in O{sub 2} at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  4. 210Pb in bone in vivo - a biodosimeter for assessing uranium miner radon progeny exposure

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Snipes, M.B.; Hoover, M.D.; Leggett, R.W.; Laurer, G.R.; Lambert, W.E.; Coons, T.A.; Gilliland, F.D.

    2002-01-01

    A joint analysis of the results of 11 epidemiological studies of lung cancer among uranium miners has shown a significant level of variability in the relative risk per unit of exposure - in the range of a factor of 30 (Lubin et al., 1994). A significant fraction of the uncertainty associated with these risk coefficients may be due to differences in the methods and quality of data used in calculating cumulative exposures, in WLM, for the various miner populations. We hypothesize that in vivo measurement of 210 Pb, a long-lived radon decay product that is retained in bone, will provide an improved measure of Rn progeny exposures received by individual miners during their mining careers. To accomplish such in vivo measurements, the lovelace in vivo bioassay facility (LIVBF) was modified to obtain an optimized counting geometry for measuring 210 Pb in the skull. Six 12.7 cm diameter phoswich detectors were positioned about the head of a reclining subject (one in the posterior, and one in the anterior position, and four about the mid-sagittal plane), and photon emission from the skull was measured using anticoincidence multichannel analysis electronics. We analyzed the in vivo data from about 90 former uranium miners from the grants mining district, and compared the recorded WLM exposures for each uranium miner (data from the UNM epidemiological data base) with a WLM exposure calculated using a model developed specifically for this study. This model couples a Pb biokinetic model with the ICRP publication 66 respiratory tract dosimetry model. The analyses show that the independent measurements of exposure are statistically correlated, but with a large degree of variability occurring among individual values, and that a major source of uncertainty in mining exposure estimation is the uncertainty involved in accounting for non-mining sources of 210 Pb. (orig.)

  5. Measurement of radon activity concentration in buildings

    International Nuclear Information System (INIS)

    Godet, J.L.; Perrin, M.L.; Pineau, C.; Dechaux, E.

    2010-01-01

    Radon exposure, along with medical-related exposure, is the leading source of exposure to ionising radiation for the French population. Measurement campaigns are done in the action plan, drawn up by the French nuclear safety authority (ASN), in cooperation with the French directorate for housing, town planning and countryside (DHUP), the French radiation protection and nuclear safety institute (IRSN), the French health monitoring institute (InVS) and the French scientific and technical centre for construction (CSTB). The review of 2005-2008 measurement campaign shows that of the 7356 buildings screened, 84.8% had activity concentration levels below the 400 Bq/m 3 action level. For the other buildings (15.2%), action will be required to reduce human exposure to radon, possibly including building renovation/redevelopment work. In the 1999-2002 measurement campaign,12% of the 13,000 buildings screened had a radon activity concentration level higher than 400 Bq/m 3 . In addition, the ASN and the French general directorate of labour (DGT) are continuing to work on drawing up regulations for occupational risk management. The second national health and environment plan (PNSE 2) was published on 26 June 2009. It follows on from the actions initiated in PNSE 1, a document provided for under the Public Health Act dated 9 August 2004 and under the French 'Grenelle' environmental agreements. On the basis of guidelines laid out in PNSE 2, a radon action plan for 2009-2012 will be drawn up, enabling some of the actions to be continued, particularly in the fields of new building projects and dwellings. (author)

  6. Final survey reports on radon concentration in Japan

    International Nuclear Information System (INIS)

    1997-03-01

    In order to grasp the present state of indoor radon concentration all over Japan, this survey was conducted in five years from Heisei 4 FY to 8 FY. Measurements were conducted using a radon and thoron separation apparatus so as to enable to develop radon and thoron separately. This was only one survey all over Japan obtained the only radon concentration by removing thoron perfectly. However, it was planned to obtain the mean indoor radon concentration all over Japan by limiting 20 houses for measurement aim because of limitation on numbers of the apparatus. In this survey, no extremely high region of the radon concentration was found. However, it was comparatively higher in Chugoku, Kinki and Kyushu-Okinawa areas, but was comparatively low in Kanto area. These results showed the same tendency as those of γ-ray level from the ground, and the radon concentration also showed temperature difference of a tendency of higher west and lower east. In this survey, seasonal variation of the radon concentration was found. In the third quarter (from October to December) maximum radon concentration (mean value: 15 Bq/cu m) and in the second quarter, the minimum concentration (mean value: 9 Bq/cu m) were observed, respectively. On comparing the indoor radon concentration of each housing structure used in enquete survey, concrete block house showed higher radon concentration. On its arithmetic mean, the radon concentration was high in order of concrete, steel frame, and wood constructions, and lowest in prefabricated house. The radon concentration of the concrete construction showed about 1.8 times higher than that of the wood construction. (G.K.)

  7. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  8. An electrical circuit model for simulation of indoor radon concentration.

    Science.gov (United States)

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  9. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  10. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. Three criteria when used can prevent radon infiltration and lower...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...

  11. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways

    International Nuclear Information System (INIS)

    Fakir, H.; Hofmann, W.; Aubineau-Laniece, I.

    2006-01-01

    The effects of radiological and morphological source heterogeneities in straight and Y-shaped bronchial airways on hit frequencies and Micro-dosimetric quantities in epithelial cells have been investigated previously. The goal of the present study is to relate these physical quantities to transformation frequencies in sensitive target cells and to radon-induced lung cancer risk. Based on an effect-specific track length model, computed linear energy transfer (LET) spectra were converted to corresponding transformation frequencies for different activity distributions and source - target configurations. Average transformation probabilities were considerably enhanced for radon progeny accumulations and target cells at the carinal ridge, relative to uniform activity distributions and target cells located along the curved and straight airway portions at the same exposure level. Although uncorrelated transformation probabilities produce a linear dose - effect relationship, correlated transformations first increase depending on the LET, but then decrease significantly when exceeding a defined number of hits or cumulative exposure level. (authors)

  12. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  13. Measurements and statistical analyses of indoor radon concentrations in Tokyo and surrounding areas

    International Nuclear Information System (INIS)

    Sugiura, Shiroharu; Suzuki, Takashi; Inokoshi, Yukio

    1995-01-01

    Since the UNSCEAR report published in 1982, radiation exposure to the respiratory tract due to radon and its progeny has been regarded as the single largest contributor to the natural radiation exposure of the general public. In Japan, the measurement of radon gas concentrations in many types of buildings have been surveyed by national and private institutes. We also carried out the measurement of radon gas concentrations in different types of residential buildings in Tokyo and its adjoining prefectures from October 1988 to September 1991, to evaluate the potential radiation risk of the people living there. One or two simplified passive radon monitors were set up in each of the 34 residential buildings located in the above-mentioned area for an exposure period of 3 months each. Comparing the average concentrations in the buildings of different materials and structures, those in the concrete steel buildings were always higher than those in the wooden and the prefabricated mortared buildings. The radon concentrations were proved to become higher in autumn and winter, and lower in spring and summer. Radon concentrations in an underground room of a concrete steel building showed the highest value throughout our investigation, and statistically significant seasonal variation was detected by the X-11 method developed by the U.S. Bureau of Census. The values measured in a room at the first floor of the same concrete steel building also showed seasonal variation, but the phase of variation was different. Another multivariate analysis suggested that the building material and structure are the most important factors concerning the levels of radon concentration among other factors such as the age of the building and the use of ventilators. (author)

  14. Filtration approach to mitigate indoor Thoron progeny concentration

    International Nuclear Information System (INIS)

    Wang, J.; Meisenberg, O.; Karg, E.; Tschiersch, J.; Chen, Y.

    2010-01-01

    This study investigates filtration of air as potential mitigation method of thoron progeny exposure. The experiments were conducted in a model room (volume 7.1 m 3 ) which was equipped with a pump and an HEPA (high efficiency particulate air) filter. Filtration at a rate of 0.2, 0.4, 0.5 and 0.8 h -1 during 88 h proved an effective practice in reducing the total indoor thoron decay product concentration. The results indicate that 0.4-0.8 h -1 filtration rate had almost the same filtration efficiency in decreasing the total thoron EEC (equilibrium equivalent concentration) by 97% while 80% of total thoron EEC were reduced by 0.2 h -1 filtration rate; meanwhile, the unattached thoron EEC rose significantly by 190, 270, 290%, respectively under 0.4-0.8 h -1 filtration rate, whereas 0.2 h -1 filtration rate increased unattached thoron EEC by 40%. The aerosol number size distribution variation reveals that filtration operation removes smaller particles faster or earlier than the larger ones. The annual effective dose calculated was reduced by 91-92% at a filtration rate of 0.4-0.8 h -1 while 75% reduced at 0.2 h -1 filtration rate after 88 h filtration process. (authors)

  15. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  16. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    Iida, Takao; Ikebe, Yukimasa; Yamanishi, Hirokuni

    1989-01-01

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h -1 . The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA + ( 218 Po + ) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P 2 O 5 ) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm -2 (Bq m -3 h) -1 . The detection limit of mean radon level is 1.2 Bq m -3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m -3 . The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m -3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m -3 and from 15.5 to 121.1 Bq m -3 , respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  17. Concentrations of indoor radon and thoron in cave-dwellings with discussions on risk estimation of lung cancer

    International Nuclear Information System (INIS)

    Sun Quanfu; Hou Changsong; Zhang Shouzhi; Nie Xiaoqian; Shang Bing

    2005-01-01

    Objective: To explore a residential area with elevated indoor radon exposure for conducting epidemiological studies on indoor radon and lung cancer. Methods: Two hundred and two cave-dwellings (CD) including loess CD, brick CD, stone CD, and ordinary house in twenty villages were selected from Yan'an and Lvliang in the Chinese loess plateau. Indoor levels of thoron and its progeny as well as radon were measured with passive radon-thoron discriminative detectors and thoron progeny deposition rate devices. The exposure period covered from August 2001 through August 2002. Results: Loess CD was one of the most common type of dwelling caves in both areas. The indoor radon concentrations in loess CD ranged from 17 to 179 Bq/m 3 ; thoron varied sub-stantially depending upon the distance from the device to the wall, ranged from 10 to 760 Bq/m 3 . Geometric means of indoor radon, thoron and thoron's progeny (EEC Tn ) of loess caves in Yan'an area were estimated to be 71, 185 and 2.2 Bq/m 3 , respectively, and the corresponding figures were 73, 145 and 116 Bq/m 3 in Lvliang area. Possible contamination of thoron on radon measurement in a previous case-control study on lung caner was discussed. The study revealed that the indoor air pollution in Yan'an area was slight compared with that in Lvliang area. Migration was very low. Eighty-six percent of the investigated persons have had no migration in Yan'an area, and 90 percent of the cave-dwellings where the subjects once resided were available to our measurements. Two million people have been living in cave-dwellings over several generations. Conclusion: The investigated cave-dwelling area in Yan'an is suitable for conducting epidemiological study on residential thoron and radon exposure and lung cancer.(authors)

  18. Survey of indoor radon concentrations in Fukuoka and Kagoshima prefectures

    International Nuclear Information System (INIS)

    Kunugita, Naoki; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1990-01-01

    It is now well established that radon and its daughter products account for nearly half of the average population exposure to ionizing radiations and that radon is the greatest single source of natural radiation to the population. Radon and its daughters are alpha-emitters, which are more biologically damaging than beta- and gamma-radiations. A nationwide survey of radon concentration was conducted by the National Institute of Radiological Sciences in order to estimate the contribution of radon and its daughters to the population dose in Japan. Authors surveyed indoor radon concentrations in Fukuoka and Kagoshima prefectures as part of this project. A passive type radon dosimeter, in which a sheet of polycarbonate film as the alpha-ray detector was mounted, was used to measure indoor radon concentrations. The resulting distribution of the average annual indoor radon concentrations in both prefectures can be characterized by an arithmetic mean of 24.4 Bq/m 3 and a standard deviation of 13.1 Bq/m 3 , by a geometric mean of 22.2 Bq/m 3 , and by a median of 20.7 Bq/m 3 . The geometric means of the distributions for Fukuoka and Kagoshima were 25.4, and 18.4 Bq/m 3 , respectively. Radon concentrations were also generally high in winter and low in summer. Regarding the analysis of correlations between the concentrations and construction materials, radon concentrations were generally high in Japanese houses with earthen walls and in concrete structures. These results showed that seasons, the type of building materials, and regional differences were significant factors in the variation of indoor radon concentration. (author)

  19. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  20. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results

    International Nuclear Information System (INIS)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello; Pereira, Luiz Augusto Stuani

    2009-01-01

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  1. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M H; Lindstrom, J B; Dungey, C E; Kisieleski, W E

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m/sup 3/ on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m/sup 3/. Average working-level background is 3.6 x 10/sup -3/.

  2. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    International Nuclear Information System (INIS)

    Momeni, M.H.; Lindstrom, J.B.; Dungey, C.E.; Kisieleski, W.E.

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m 3 on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m 3 . Average working-level background is 3.6 x 10 -3

  3. Diurnal Variation of Radon Concentration in the Postojna Cave

    International Nuclear Information System (INIS)

    Gregoric, A.; Vaupotic, J.

    2011-01-01

    Postojna Cave, with 20 km of galleries, is the longest known cave system and also the largest of about 20 show caves in Slovenia and one of the most visited show caves in the world. It is well known that high concentrations of radon are common in karstic caves, although quantities of uranium (238U) in limestone are rather low. The reason for this is low natural ventilation of the underground cavities. Tectonic faults constitute an additional source of radon. Variations of radon concentration in cave air arise from a balance of the emission from cave surfaces and drip waters, decay in cave air, and exchange with the outside atmosphere. Because of its elevated radon concentrations, Postojna Cave has been under permanent radon survey since 1995. The influence of meteorological conditions on the radon levels and their temporal variations depends mostly on the shape of the cave, and the number and directions of cracks, corridors and fissures connecting the cave rooms with the outside atmosphere. The driving force for air movement in horizontal caves, and thus the inflow of fresh air and release of the cave air to the atmosphere, is the temperature difference between the cave air and outdoors, which causes seasonal pattern of radon concentration in the cave with high levels in summer and low in winter. However, on a daily scale different behaviour of radon can be observed at different locations in the cave. In this paper diurnal variation of radon concentration at two locations is presented and discussed. Postojna Cave is a horizontal cave with a stable yearly temperature around 10 degrees of @C. Continuous measurements of radon concentration were carried out from 2005 to 2010 at two locations along the guided tourist trail. Radon concentration was measured with Radim 5 WP monitors (SMM Company, Prague, Czech Republic) with sampling frequency once an hour. The evaluation of five-year radon monitoring at two sites in the Postojna Cave reveals significant diurnal and

  4. Radon concentrations in houses around the Plomin coal-fired power plant

    International Nuclear Information System (INIS)

    Lokobauer, N.; Franic, Z.; Sencar, J.; Bauman, A.; Sokolovic, E.

    1997-01-01

    Investigation of radon activity concentration in houses around the Plomin coal-fired power plant (Istrian Peninsula) started in the winter of 1990 upon the assumption that certain old houses in this region were built using mortar and plaster prepared from slag and ash. This paper presents the results of a preliminary investigation carried out in the winter of 1990 and spring of 1991, when the difference between radon levels in old and newly built houses was first noted, and the subsequent data obtained by radon measurements in 40 selected houses in the period from 1992 to 1994. The average annual radon activity concentrations in the old houses ranged from 55 Bqm -3 to 426 Bqm -3 (mean value 146 ± 91 Bqm -3 ) and in more recently built houses from 16 Bqm -3 to 67 Bqm -3 (mean value 36 ± 13 Bqm -3 ). The average annual effective doses from inhalation of radon progeny for the inhabitants living in the old and newly built houses were estimated to be 2.7 mSv and 0.7 mSv, respectively. (Author)

  5. Evaluation of the performance characteristics of radon and radon-daughter concentration measurement devices under controlled environmental conditions

    International Nuclear Information System (INIS)

    Pearson, M.D.

    1989-04-01

    The Technical Measurements Center (TMC) conducted a study to expose 10 radon and 7 radon-daughter concentration measurement devices in the DOE/GJPO Radon/Radon-Daughter Environmental Chamber for a series of 24 controlled-environment tests. The tests evaluated the devices' response to temperature, relative humidity, dew point, condensation-nuclei concentration, radon-daughter/radon equilibrium ratio, and non-uniform radon and radon-daughter concentration. Devices were evaluated for linear response as a function of concentration. In addition to response to environmental parameters, the evaluation included determining the utility of the devices in providing reasonable assurance of compliance with the radon and radon-daughter concentration standards for DOE remedial action programs. This reasonable assurance criterion is based on a coefficient of variation of 25 percent for devices deployed for year-long measurements and a coefficient of variation of 18 percent for devices deployed for intermittent sampling. 39 refs., 65 figs., 33 tabs

  6. Changes in the rat lung after exposure to radon and its progeny: Effects on incorporation of bromodeoxyuridine in epithelial cells and on the incidence of nuclear aberrations in Alveolar macrophages

    International Nuclear Information System (INIS)

    Taya, A.; Morgan, A.; Baker, S.T.; Humphreys, J.A.H.; Collier, C.G.; Bisson, M.

    1994-01-01

    The aim of this study was to investigate some responses of cells in the rat respiratory tract as a function of time after inhalation exposure to various levels of radon and its progeny. Rats were exposed to a constant concentration of radon and its progeny to give cumulative exposure levels of 120, 225, 440 and 990 working level months (WLM). An additional unexposed group of rats served as controls. The end points selected for investigation were (a) the incorporation of bromodeoxyuridine (BrdU) in epithelial cells of the conducting airways and of the alveolar region of the respiratory tract and (b) the incidence of alveolar macrophages with nuclear aberrations. After exposure, the incidence of epithelial cells incorporating BrdU-the labeling index-increased in all regions of the respiratory tract examined, but the increase occurred later in alveolar than in airway epithelial cells. The highest labeling index was found in bronchial epithelial cells, which probably received the highest radiation dose. After an initial induction period, the incidence of alveolar macrophages with nuclear aberrations also increased. The possibility of using the labeling index of alveolar and airway epithelial cells, and/or the incidence of nuclear aberrations in alveolar macrophages, to estimate the radiation dose to various regions of the respiratory tract after exposure of rats to radon and its progeny is discussed. 22 refs., 3 figs., 1 tab

  7. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M [National Inst. of Radiological Sciences, Chiba (Japan); Lagarde, F [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine; Falk, R; Swedjemark, G A [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m{sup 3}, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs.

  8. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    International Nuclear Information System (INIS)

    Doi, M.; Lagarde, F.

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m 3 , an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs

  9. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  10. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Heil, R.; Hofmann, W. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Hussain, M. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Higher Education Commission of Pakistan, Islamabad (Pakistan)

    2015-05-15

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM{sup -1}. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas. (orig.)

  11. An investigation of factors influencing indoor radon concentrations

    International Nuclear Information System (INIS)

    Majborn, B.; Soerensen, A.; Nielsen, S.P.; Boetter-Jensen, L.

    1988-05-01

    Variations in indoor radon concentrations and some influencing factors have been studied during a two-year period (1986-1987) in 16 almost identical single-family houses.The annual average radon concentration in the houses varied from about 50 to about 400 Bq/m 3 . Variations in soil characteristics and radon concentration in soil gas could not be directly related to the variations of the average indoor radon concentrations. Most of the houses showed a ''normal'' seasonal variation of the radon concentration with a maximum in the winter and minimum in the summer. A deviating seasonal variation was found in three of the houses. Hourly data obtained in one unoccupied house during a period of 2-1/2 months showed no or only weak correlations between the indoor radon concentration and meteorological factors. However, for most of the houses, the seasonal variation of the indoor radon concentration was well correlated with the average indoor-outdoor temperature difference on a 2-month basis. It was demonstrated that the radon concentration can be strongly reduced in the Risoe houses if a district-heating duct, which is connected to all the houses, is ventilated, so that a slightly lowered pressure is maintained in the duct. 5 taps., 24 ill. (author)

  12. Factors influencing indoor concentrations of radon and daughter products

    International Nuclear Information System (INIS)

    Wang Hengde

    1985-01-01

    The correlation between indoor concentrations of 222 Rn and its daughters and some influencing factors is discussed and expressions of concentrations are derived with relation to radon exhalation rate from indoor surfaces, air exchange rate and daughter deposition velocities on indoor surfaces. Experimental methods for determining radon exhalation rate, air exchange rate and daughter deposition velocities are also mentioned

  13. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  14. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  15. Radon concentration in dwellings of Lanzarote (Canary Islands)

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, C.; Armas, J.H. [La Laguna Univ., Tenerife (Spain). Faculty of Medicine; Poffijn, A. [Ghent Rijksuniversiteit (Belgium). Lab. voor Kernfysica

    1997-07-01

    A total of 126 radon passive dosemeters were distributed in 63 dwellings on the island of Lanzarote (Canary Islands) to measure the indoor radon concentration in the period April-June 1994. The mean overall indoor concentration was 50 Bq.m{sup -3} with a standard deviation of 17 Bq.m{sup -3}. Applying the conversion factor for the effective dose, recommended by ICRP 65, this results in a mean effective dose of 0.75 mSv.y{sup -1}. The mean radon concentration in single-family houses proves to be higher at the ground floor than in upper levels. The mean radon concentration obtained in bedrooms is higher than in living-rooms, independently of the floor they are located at. Statistically significant differences in the mean radon concentration have been found depending on the soil permeability (P = 0.001) and building materials used (P 0.0006). (author).

  16. Radon concentration in dwellings of Lanzarote (Canary Islands)

    International Nuclear Information System (INIS)

    Pinza, C.; Armas, J.H.; Poffijn, A.

    1997-01-01

    A total of 126 radon passive dosemeters were distributed in 63 dwellings on the island of Lanzarote (Canary Islands) to measure the indoor radon concentration in the period April-June 1994. The mean overall indoor concentration was 50 Bq.m -3 with a standard deviation of 17 Bq.m -3 . Applying the conversion factor for the effective dose, recommended by ICRP 65, this results in a mean effective dose of 0.75 mSv.y -1 . The mean radon concentration in single-family houses proves to be higher at the ground floor than in upper levels. The mean radon concentration obtained in bedrooms is higher than in living-rooms, independently of the floor they are located at. Statistically significant differences in the mean radon concentration have been found depending on the soil permeability (P = 0.001) and building materials used (P 0.0006). (author)

  17. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  18. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  19. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  20. Radon concentrations in well water in Sichuan Province, China

    International Nuclear Information System (INIS)

    Chen Yibin; Wu Qun; Zhang Bo; Chen Daifu

    1998-01-01

    There are 110 million people in Sichuan Province, China. Although most of the people in cities of Sichuan use river water, which contains low levels of radon, as potable water, people in countryside and in some communities of big cities still use well water as domestic consumption. This paper reports the radon concentrations in well water investigated in four cities, i.e. Chengdu, Chongqing, Leshan and Leijiang in Sichuan Province. Of the 80 wells investigated, the radon concentrations range from 3.5 to 181.6 KBqm -3 . Of the four cities, Chongqing has the highest well water radon concentration with the average 49.6 ± 54.1 KBqm -3 and the greatest variation. The investigation in four cities showed that the radon concentrations in well water are much higher than that in tap-water. In Chongqing where there are complex geological structures, mainly granite stratum, for example, the average radon concentration in well water is 112 times higher than that in the tap-water, and even much higher than that in river water in Yangtse River, Jialing River, Jinsha River and Mingjiang River. The population in four cities is about one sixth of the total population in Sichuan Province. Because of the common use of well water and the high radon concentrations in well water in Sichuan Province, the health effect of radon in well water to the public should be stressed. (author)

  1. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  2. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  3. Reduction of radon daughter concentrations in structures

    International Nuclear Information System (INIS)

    1982-12-01

    A structure was identified in Salt Lake City wherein uranium mill tailings had been used in the construction and where unusually high levels of radon daughter concentrations (RDC's) existed. The physical and radiological characteristics of the structure were assessed. Ventilation techniques were investigated to assess their effectiveness in reducing RDC's. A preferred set of equipment was identified, installed in the structure and operated to reduce RDC's. Parametric studies were conducted to determine if supplying fresh air or recirculating air through electrostatic precipitators is more effective in reducing RDC's. Fresh air was found to be more effective in reducing RDC's. RDC's have been reduced to levels at or near the target of 0.03 working level under optimal ventilation conditions. Natural gas consumption with the new equipment is about 39% higher than with the original equipment. Electrical energy usage and electrical demand are respectively 50 and 44% higher with the new equipment than with the original equipment. 16 refs., 14 figs., 8 tabs

  4. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  5. Optimization of the Timepix chip to measurement of radon, thoron and their progenies

    Czech Academy of Sciences Publication Activity Database

    Janik, M.; Ploc, Ondřej; Fiederle, M.; Proc, S.; Kavasi, N.

    2016-01-01

    Roč. 107, JAN (2016), s. 220-224 ISSN 0969-8043 Institutional support: RVO:61389005 Keywords : Radon * Thoron * Timepix * calibration Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.128, year: 2016

  6. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, J.D., E-mail: jda@bgs.ac.u [British Geological Survey, Kingsley Dunham Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG (United Kingdom); Miles, J.C.H. [Health Protection Agency (HPA), Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2010-10-15

    ANOVA is used to show that approximately 25% of the total variation of indoor radon concentrations in England and Wales can be explained by the mapped bedrock and superficial geology. The proportion of the total variation explained by geology is higher (up to 37%) in areas where there is strong contrast between the radon potential of sedimentary geological units and lower (14%) where the influence of confounding geological controls, such as uranium mineralisation, cut across mapped geological boundaries. When indoor radon measurements are grouped by geology and 1-km squares of the national grid, the cumulative percentage of the variation between and within mapped geological units is shown to be 34-40%. The proportion of the variation that can be attributed to mapped geological units increases with the level of detail of the digital geological data. This study confirms the importance of radon maps that show the variation of indoor radon concentrations both between and within mapped geological boundaries.

  7. Radon concentrations in some Egyptian dwellings using LR 115 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, Cairo (Egypt)

    2007-06-15

    Radon, a well-established risk factor for human lung cancer, is present at low concentrations in most homes. Consequently, many countries have established national guidelines for residential radon concentrations. This survey provides additional information about indoor radon concentrations in Egypt. Indoor radon survey of a total of 15 randomly selected houses in Qena city, Upper Egypt was carried out. LR 115 detectors were exposed for one year, covering all the seasons. The estimated indoor radon levels varied from 19 to 59 Bq m{sup 3} with an average of 40 Bq m{sup 3}. Using the bare and filtered LR 115 detectors, the average equilibrium factor F was assessed as 0.30 indoors. An average annual effective dose of 0.40 mSv has been estimated and was found to be lower than the ICRP-65.

  8. Radon concentration and natural radioactivity evaluation in the Vysehrad casemates

    International Nuclear Information System (INIS)

    Berka, Z.; Thinova, L.; Stepan, M.

    2004-01-01

    The Vysehrad casemates formed a part of Prague's defense system in the middle ages. The casemates consist of a large system of underground corridors (which are in direct contact with subsoils) that run around the whole Vysehrad hill. The corridors are covered by an artificially made-up ground. Although there are many vents and embrasures in the casemates, investigation of radon accumulation in the casemates is of interest. A comprehensive radon and natural radioactivity survey has been carried out on the Vysehrad hill as part of special scientific programme for secondary school students. No extreme radon concentration or extremely high natural radioactivity has been observed. The highest radon concentration were measured in the blind parts of corridors that are normally unused. The radon concentrations found can be described as health-safe

  9. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  10. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization...... in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...... from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision...

  11. Radon concentrations in some Egyptian dwellings using LR 115 detectors

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2007-01-01

    Radon, a well-established risk factor for human lung cancer, is present at low concentrations in most homes. Consequently, many countries have established national guidelines for residential radon concentrations. This survey provides additional information about indoor radon concentrations in Egypt. Indoor radon survey of a total of 15 randomly selected houses in Qena city, Upper Egypt was carried out. LR 115 detectors were exposed for one year, covering all the seasons. The estimated indoor radon levels varied from 19 to 59 Bq m 3 with an average of 40 Bq m 3 . Using the bare and filtered LR 115 detectors, the average equilibrium factor F was assessed as 0.30 indoors. An average annual effective dose of 0.40 mSv has been estimated and was found to be lower than the ICRP-65

  12. Investigation on residential radon concentration in Jingchuan county

    International Nuclear Information System (INIS)

    Zhang Wei; Wan Yihong; Chen Hongxiao; Shang Bin

    2009-01-01

    This paper reports an investigated result of residential radon concentration in Jingchuan County, Gansu Province, during May 2004 to November 2006. Alpha track detectors were used to measure radon level. Construction types of house and percentages of residents living in the county were also investigated through questionnaires. The result showed that the mean radon concentration in 62 investigated houses was 96.2 Bq·m -3 . The radon concentration in cave dwelling was the highest among all type of dwellings. The average level in cave dwelling is 110.2 Bq·m -3 , which was significantly higher than the national mean value published in literatures, and exceed the WHO recommended value of 100 Bq·m -3 . A considerable number of rural residents are living in cave dwellings in Jingchuan County. Attention should be paid to the radon problem and some proper protection measures taken. (authors)

  13. Radon concentrations in Norwegian kindergartens: survey planning and preliminary results

    International Nuclear Information System (INIS)

    Birovljev, A.; Strand, T.; Heiberg, A.

    1998-01-01

    An extensive radon survey in Norwegian kindergartens and schools was started in early 1997; so far 2481 kindergartens were examined. Preliminary results of the first phase of the survey are presented in tabular and graphic form including, among others, the dependence of average radon concentration on the construction year of the kindergartens and on the age of the buildings. (A.K.)

  14. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  15. Comparison of indoor radon and thoron concentrations in the urban and rural dwellings of Chhattisgarh state of India

    International Nuclear Information System (INIS)

    Khokhar, M.S.K.; Kher, R.S.; Rathore, V.B.; Pandey, S.; Ramachandran, T.V.

    2008-01-01

    In the frame of nationwide radon/thoron monitoring program, indoor radon/thoron and their progeny concentrations have been estimated for 210 dwellings situated in 8 towns (urban) and 9 villages (rural) of Chhattisgarh state of India. The measurement has been made on quarterly integrating cycle for one full year in each dwelling. Twin chamber dosimeter cup with LR-115 Type-II Solid State Nuclear Track Detector was used for the measurement of indoor radon/thoron concentration. The results show that the geometric mean of indoor thoron concentration in urban dwellings varies from 11.57 to 25.88Bqm -3 with an overall geometric mean value of 16.65Bqm -3 , while in rural dwellings it varies from 12.50 to 30.08Bqm -3 with an overall geometric mean value of 19.00Bqm -3 . The potential alpha energy concentration (PAEC) levels of thoron in the urban and rural dwellings are found to be 2.58 and 4.57 mWL, respectively. Similarly, the geometric mean of indoor radon concentrations in urban dwellings is found to vary from 20.20 to 30.13Bqm -3 with an overall geometric mean value of 25.28Bqm -3 , while in rural dwellings it varies from 15.50 to 36.05Bqm -3 with an overall geometric mean value of 27.32Bqm -3 . The PAEC levels of radon in the urban and rural dwellings are found to be 1.50 and 1.87 mWL, respectively. The dose contribution of thoron and progeny in total inhalation dose has been found to be more than 20% in all the surveyed places that show the necessity to pay attention to the presence of thoron and progeny from public health point of view

  16. Mortality and indoor radon daughter concentrations in 13 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Wigle, D.T.

    1980-01-01

    A study was carried out to determine if lung cancer and general mortality rates in 13 Canadian cities were significantly correlated with average indoor radon daughter concentrations. The radon daughter measurements were obtained from a study of 10,000 homes chosen in a statistically valid grab sample basis. Cancer deaths by year of death, sex, age, and cause were retrieved for each of the cities for the period 1957-1976. Age specific and age standardized mortality rates were calculated. The results showed no evidence of any substantial association between general or lung cancer mortality rates and indoor radon daughter concentrations. The limitations of this study and the feasibility of a common international program of epidemiology of radon daughter exposure are discussed. A proposal is made for the use of case control studies of lung cancer to assess the relative importance of smoking, occupational and domestic exposure to radon daughters

  17. Lithological and seasonal variations in radon concentrations in Cypriot groundwaters

    International Nuclear Information System (INIS)

    Tasoula Kiliari; Anastasia Tsiaili; Ioannis Pashalidis

    2010-01-01

    The paper presents and discusses radon activity concentrations in Cypriot groundwater systems as a function of the background lithology and seasonal/meteorological conditions using an airborne radon monitoring system (ARM) after separation of radon by out-gassing. Radiometric analysis of groundwater samples obtained from non-contaminated systems showed that radon concentration in groundwaters varies strongly (0.1-10 Bq L -1 ) depending mainly on the hosting geological matrix but also to lesser degree on atmospheric/meteorological conditions. The associated excess annual dose has been estimated to range between 10 -6 and 10 -4 mSv y -1 , which is an insignificant contribution to the radiation exposure of the Cypriot population caused by airborne radon (0.5 ± 0.4 mSv y -1 ). (author)

  18. Calculation of radon concentration in water by toluene extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masaaki [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-02-01

    Noguchi method and Horiuchi method have been used as the calculation method of radon concentration in water. Both methods have two problems in the original, that is, the concentration calculated is changed by the extraction temperature depend on the incorrect solubility data and the concentration calculated are smaller than the correct values, because the radon calculation equation does not true to the gas-liquid equilibrium theory. However, the two problems are solved by improving the radon equation. I presented the Noguchi-Saito equation and the constant B of Horiuchi-Saito equation. The calculating results by the improved method showed about 10% of error. (S.Y.)

  19. Radon concentrations in different types of dwellings in Israel

    International Nuclear Information System (INIS)

    Epstein, L.; Koch, J.; Riemer, T.; Haquin, G.; Orion, I.

    2014-01-01

    The average radon concentration in Israeli dwellings was assessed by combining the results of a 2006 radon survey in single family houses with the results of a 2011 radon survey in apartments of multi-storey buildings. Both surveys were based on long-term measurements using CR-39 detectors. The survey in multi-storey buildings was intended to assess the influence of recent practices in the local building industry on the radon concentrations. These practices include the use of building materials with higher concentrations of the natural radionuclides in the last 20 y than before, as well as the improvement in sealing techniques over that period. Another practice in place since the early 1990's is the building of a shielded area in every apartment that is known as an RSS (residential secure space). The RSS is a room built from massive concrete walls, floor and ceiling that can be hermetically sealed and is intended to protect its residents from a missile attack. The influence of the above-mentioned features on radon concentrations was estimated by dividing the participating apartments into two groups: apartments in buildings >20 y, built using building materials with low concentrations of the natural radionuclides, regular sealing and without an RSS and apartments in buildings newer than 10 y, built using building materials with higher concentrations of the natural radionuclides, improved sealing and including an RSS. It was found that the average radon concentration in apartments in new buildings was significantly higher than in old buildings and the average radon concentration in single-family houses was significantly higher than in apartments in multi-storey buildings. Doses due to indoor radon were estimated on the basis of the updated information included in the 2009 International Commission on Radiological Protection statement on radon. (authors)

  20. Measurement of unattached radon progeny based in electrostatic deposition method; Medicion de la fraccion no unida a aerosoles de la progenie de {sup 222}Rn mediante un metodo de deposicion electrostatica

    Energy Technology Data Exchange (ETDEWEB)

    Canoba, A C; Lopez, F O

    1999-07-01

    A method for the measurement of unattached radon progeny based on its electrostatic deposition onto wire screens, using only one pump, has been implemented and calibrated. The importance of being able of making use of this method is related with the special radiological significance that has the unattached fraction of the short-lived radon progeny. Because of this, the assessment of exposure could be directly related to dose with far greater accuracy than before. The advantages of this method are its simplicity, even with the tools needed for the sample collection, as well as the measurement instruments used. Also, the suitability of this method is enhanced by the fact that it can effectively be used with a simple measuring procedure such as the Kusnetz method. (author)

  1. A reconnaissance study of radon concentrations in Hamadan city, Iran

    Directory of Open Access Journals (Sweden)

    G. K. Gillmore

    2010-04-01

    Full Text Available This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 (i.e. below the lower limit of detection for the method to 364 Bq/m3 with a mean value of 108 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concentration – these data augment the very few published studies on indoor radon levels in Iran. The maximum radon concentration in Hamadan occurs during the winter period (January to March with lower concentrations during the autumn. The effective dose equivalent to the population in Hamadan is estimated from this study to be in the region of 2.7 mSv/y, which is above the guidelines for dose to a member of the public of 1 mSv/y suggested by the International Commission on Radiological Protection (ICRP in 1993. This study supports other work in a number of countries that indicates such permeable "surficial" deposits as being of intermediate to high radon potential. In western Iran, the presence of hammered clay floors, the widespread presence of excavated qanats, the textural properties of surficial deposits and human behaviour intended to cope with winds are likely to be important factors influencing radon concentrations in older buildings.

  2. Radon concentration measurements in the desert caves of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Mustafa, Hanan; Al-Jarallah, M.I.; Fazal-ur-Rehman; Abu-Jarad, F.

    2005-01-01

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm -3 . The average radon concentration in four of the caves was low in the range 74-114Bqm -3 . However, one cave showed an average radon concentration of 451Bqm -3 . Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides

  3. Radon concentration measurements in the desert caves of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mustafa, Hanan [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco P.O. Box 13027, Dhahran 31311 (Saudi Arabia)

    2005-11-15

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm{sup -3}. The average radon concentration in four of the caves was low in the range 74-114Bqm{sup -3}. However, one cave showed an average radon concentration of 451Bqm{sup -3}. Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides.

  4. Protocol Implementation for Radon Concentration Measurements in Houses in Croatia - Baranja Case

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Varga Pajtler, M.; Vukovic, B.

    2011-01-01

    The newly established protocol for radon measurements in homes was implemented on the radon survey in houses of Baranja region which was carried out from July 2009 until July 2010. The radon measurements were performed with passive track etched detectors. The method consists of cylindrical plastic vessel and two strippable LR-115 films type II (Kodak-Path, France). This method with two detector films enables the estimation of equilibrium factor as well.Croatian territory is divided in 10 x 10 km 2 cells which were part of a reference grid map which is used in a preparation of European radon concentration map. Detector locations were randomly chosen inside each grid and their number was determined by the number of inhabitants inside (one locations per 350 inhabitants). Radon detectors were exposed for a year in a living room or a bedroom away from strong ventilation and 30 cm from side walls (usually on closet at height of 2 m). After the exposure, detectors were collected and etched in 10 % NaOH aqueous solution at 50 degrees of C for 180 minutes. The tracks were automatically counted using spark counter AIST-2V. The obtained results were in the range from 6 to 355 Bq m -3 with arithmetic mean of 88 Bq m -3 and standard deviation of 69.0 Bq m -3 . The geometric mean was 67.2 Bq m -3 while the geometric standard deviation was 2.1 Bq m -3 . The statistical χ2 -test showed that the empirical frequency distribution for radon in houses of Baranja region belonged to the log-normal distribution. The percentage of houses with radon concentrations between 200 and 400 Bq m -3 was 6.7% and 1.0% of houses have radon concentration above 400 Bq m -3 . The annual effective dose from the indoor radon and its short-lived progenies for the inhabitants of Baranja region (for the average equilibrium factor of 0.53 and occupancy factor of 0.6) was 1.5 mSv. (author)

  5. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    Science.gov (United States)

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  6. Use of static and ac field techniques for measuring mobility and charge lifetimes of radon progeny with a simple device

    International Nuclear Information System (INIS)

    Sapra, B.K.; Mayya, Y.S.

    1998-01-01

    A simple device, based on a modification of the scintillation cell, has been developed for the measurement of radon daughter mobility and charge lifetimes by employing AC and static electric fields. It has a central electrode coated with ZnS and the scintillations are recorded by a PMT unit. The coating is made on the wire, instead of on the inner walls, to improve the relative response of the device with respect to the zero field situation. Radon is drawn into the cell by evacuation techniques. Theoretical formulae, relating the observed count rates to the system parameters and progeny mobilities and charge lifetimes, have been derived under zero field, static and AC field situations. Measurements indicate that the device has very low leak rate (T 1/2 ∼38 days) and the initial environment if maintained for long time. Results of experiments carried out with static and AC fields in most air yielded 218 Po mobilities (1.89 cm 2 /V/s) and charge lifetimes (0.08s) are comparable to those reported in the literature. This demonstrates the feasibility of this technique for future studies with different trace gases. A major advantage of this device as opposed to the conventional spectrometric methods is its simplicity. (author)

  7. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    Science.gov (United States)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological

  8. Measurements of radon concentrations at caves in Jeju

    Energy Technology Data Exchange (ETDEWEB)

    Go, S. H.; Kang, D. H.; Jung, B. J. [Cheju National University, Cheju (Korea, Republic of)

    2004-07-01

    Radon is a radioactive gas emitting {alpha} particles. It is chemically stable due to its inert characteristic. While its daughter products, {sup 218}Po, {sup 214}Bi, {sup 214}Pb and {sup 214}Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 {approx} 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m{sup 3}. With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m{sup 3} and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m{sup 3} suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor.

  9. Measurements of radon concentrations at caves in Jeju

    International Nuclear Information System (INIS)

    Go, S. H.; Kang, D. H.; Jung, B. J.

    2004-01-01

    Radon is a radioactive gas emitting α particles. It is chemically stable due to its inert characteristic. While its daughter products, 218 Po, 214 Bi, 214 Pb and 214 Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 ∼ 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m 3 . With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m 3 and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m 3 suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor

  10. QA Programme for Radon and its Short-Lived Progeny Measuring Instruments in NRPI Prague

    Czech Academy of Sciences Publication Activity Database

    Jílek, K.; Thomas, J.; Brabec, Marek

    2008-01-01

    Roč. 130, č. 1 (2008), s. 43-47 ISSN 0144-8420 Grant - others:GA SÚJB(CZ) JC_11/2006 Institutional research plan: CEZ:AV0Z10300504 Keywords : calibration * quality assurance * radon daughter products * uncertainty estimation Subject RIV: DI - Air Pollution ; Quality Impact factor: 0.951, year: 2008

  11. Study on radon and thoron levels in different types of granitic work industries around Tumkur city

    International Nuclear Information System (INIS)

    Nagabhushan, S.R.; Ujjinappa; Srilatha; Sannappa, J.

    2013-01-01

    Radon, Thoron and its progeny monitoring has become a global phenomenon due to its health hazards on human being. The concentration of radon, thoron and their progeny levels have been measured in different types of Granite and brick work industries around Tumkur city by using LR-115 type II Solid State Nuclear Track Detectors (SSNTDs) have been used for the measurement of these gases. The higher concentration of radon, thoron and their progeny were observed in the dwellings near brick industries compared to Granite cutting and polishing industries. The inhalation dose due to Radon, Thoron and their progeny to the workers and public living near these industries have been estimated. (author)

  12. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  13. Radon concentration in the springs of the alluvial fan

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi; Kobayashi, Masao

    2003-01-01

    Rokugo alluvial fan is one of the typical stratified alluvial fans which have grown in the east edge of Yokote basin in Akita Prefecture. Many of Rokugo's springs are gushing out from 45 m to 50 m above the sea level where city town have been developed. Mechanism of gushing out of spring is closely bound up with the landform of this area. There is nearly no radon existing in the surface water, but in groundwater, radon concentrations are stable in every stratums and infiltration of groundwater to surface water. We would like to obtain some hydrological information by measuring radon concentration in water samples of Rokugo alluvial fan. (author)

  14. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  15. Measurements of Radon Concentration in Yemen Using Spark Counter

    International Nuclear Information System (INIS)

    Arafa, W.; Abou-Leila, M.; Hafiz, M.E.; Al-Glal, N.

    2011-01-01

    Spark counter has been designed and realized and the optimum applied voltage was found to be 600 V. Excellent consistent agreements was observed between counted number of tracks by spark counter and reading by optical microscope. Radon concentration in some houses in Sana'a and Hodeidah cities in Yemen had been performed using LR-115 SSNTD and spark counter system. The average radon concentration in both cities was far lower the alert value. The results showed that radon concentration in the metropolitan area Sana'a was higher than that in Hodeidah city. Also, it was observed that old residential houses had higher levels of radon concentrations have compared to newly built houses in the metropolitan area Sana'a

  16. Indoor radon concentration levels in Amman, Zarka and Sault

    International Nuclear Information System (INIS)

    Khatibeh, A.J.A.H.; Ahmad, N.; Matiullah, A.

    1997-01-01

    Indoor radon concentration levels in three main cities of Jordan have been measured using CR-39 polymeric nuclear track detectors. CR-39 detectors were placed in polyethylene bags and cups. These bag and cup dosimeters were installed in randomly selected houses. The average value of indoor radon concentration level in the city of Amman was found to be 41.3 Bq m -3 with cup dosimeters and 42.6 Bq m -3 with bag dosimeters. For the district of Zarka, the average value of indoor radon concentration level measured with bag dosimeters was 33.9 Bq m -3 , whereas with cup dosimeters the level was 30.7 Bq m -3 . For Sault and its suburbs, the average value of indoor radon concentration level was found to be 51.2 Bq m -3 with bag dosimeters and 49.8 Bq m -3 with cup dosimeters. (author)

  17. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  18. Radiological impact of exposure to radon-thoron and their progeny present in the environment of fly ash dumping site in Faridabad (Haryana)

    International Nuclear Information System (INIS)

    Gupta, Nitin; Kant, Krishan; Garg, Maneesha

    2013-01-01

    Radon-Thoron and their Progeny monitoring was carried out in dwellings near fly ash dumping sites in Faridabad (Haryana), as it is very important from health and hygiene point of view of the occupants. For the measurements, the track etch technique was used. The dosimeter employed for the measurement consisted of twin chamber systems with LR-115 Type II SSNTDs placed on the two sides of the central partition inside the cup and a bare film placed outside it. The detectors were exposed in the mixed field of radon-thoron in the environment of dwellings. The detectors were placed in about 100 dwellings and the choice of the dwelling was random. The value of PAEC, radon concentration, annual exposure, annual effective dose in the dwellings near fly ash dumping sites in District Faridabad (Haryana) varied from 1.34 mWL to 14.05 mWL with an average value of (4.95 0.85) mWL, 12.41 Bqm -3 to 129.91 Bqm -3 with an average value of (45.77 7.87) Bqm -3 , 0.55 10 -1 WLM to 5.83 10 -1 WLM with an average value of (2.04 0.28) 10 -1 WLM and 0.21 mSv to 2.23 mSv with an average value of (0.79 0.13) mSv. The value of PAEC, thoron concentration, annual exposure, annual effective dose in the dwellings near fly ash dumping sites in District Faridabad (Haryana) varied from 1.34 mWL to 14.0 SmWL with an average value of (4.95 0.85) mWL, 1.16 Bq/m 3 to 65.08 Bq/m 3 with an average value of (32.77 7.87) Bqm -3 , 0.55 10 -1 WLM to 5.83 10 -1 WLM with an average value of (2.04 0.28) 10 -1 WLM and 0.21 mSv to 2.23 mSv with an average value of (0.79 0.13) mSv. The measurements indicate that the radon concentration was below the safety levels (action levels) as recommended by various regulatory bodies. The maximum value of 129.91 Bqm -3 was found in a cave inside a temple, where there was no ventilation. The different values of radon concentrations are due to different ventilation conditions and house structures. The radon concentration was found to decrease with the increase in distance of the

  19. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    Science.gov (United States)

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.

  20. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    Science.gov (United States)

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137; http://dx.doi.org/10.1289/ehp.1409014 PMID:25856050

  1. Measurement of radon activity concentrations in air of Tuzla city

    International Nuclear Information System (INIS)

    Adrovic, F.; Fazlic, R.; Tresnjo, Z.

    2004-01-01

    The survey was conducted over one year in the area of Tuzla city and its surrounding. At the measuring locations there were registered Daily and seasonal variations in outdoor radon concentration were observed, with average values lying within the region of 9 - 30 Bq/m 3 . The results of the measurements will be included in the concentration map of radon activity in Bosnia and Herzegovina, which is under preparation. (P.A.)

  2. A survey of indoor radon and particular concentration

    International Nuclear Information System (INIS)

    Ohta, Yukiko

    1993-01-01

    Lung disease risk from inhalation of radon can be enhanced by the presence of particular pollutants in indoor air. The indoor concentration of radon and particulates were measured in homes, a department store, and offices in a high building in Tokyo metropolis, as well as in homes in both northern and western Japan. Passive radon monitors were located in living rooms and offices for more than three months at 99 sites during the winter of 1988 and 1989. Indoor radon concentration ranged from 11.1 Bq/m 3 to 148 Bq/m 3 (n=99) and averaged value S.D. was 36.5±14.2 Bq/m 3 . However, the average concentration in air conditional buildings was 21.8±9.51 Bq/m 3 (n=17). Simultaneously at 65 of the radon sites, indoor particulates were collected using personal dust samplers by impaction methods. Deposited particulate concentrations on the sampler were measured and calculated in a unit of μm/m 3 . Concentrations were determined for particle sizes above and below 2.5 μm, for both smoking or non smoking sites. Consequently, concentration of particle size below 2.5 μm was high in smoking rooms. Finally, it was considered that smoking was a complex indoor pollutant as adherence of radon daughter to aerosols. (author)

  3. Development of a standard for indoor radon measurements in Australia

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Solomon, S.B.

    1994-01-01

    A standard covering methodologies for the measurement of indoor radon and radon progeny concentrations in air in Australian buildings is currently under preparation as part of a set of standards covering total indoor air quality. This paper outlines the suggested methodology for radon and discusses some of the problems associated with the development of the standard. The draft standard recommends measurement of the radon concentration in air using scintillation cells, charcoal cups and solid state nuclear track detectors, and measurement of radon progeny concentration in air using the Rolle method or the Nazaroff method. 14 refs., 1 tab

  4. Detection of radon products in atmosphere and its concentration

    International Nuclear Information System (INIS)

    Al-Naemi, H.M.

    1993-01-01

    The climate of the State of Qatar is very warm during the summer and also for considerable parts of the spring and autumn. Energy-tight houses and buildings with air conditioning working day and night for several months are very common. Consequently, the problem of accumulation of indoor radon may exist. No measurements of radon concentration in Qatar have been performed before. The aim of the present work is to implement a suitable technique to measure radon concentration in Qatari houses and buildings. As a first stage, it was found reasonable to start with a technique to evaluate the short-term average indoor radon concentration. The activated charcoal method was chosen to perform this evaluation

  5. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements; Um metodo para determinar um indicador para calcular dose efetiva devida a inalacao de Radonio e seus descendentes utilizando medicoes in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Julio Jose da Silva

    1994-07-01

    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of {sup 210} Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measurements were performed in a whole body counter. With this technique, the exposed individuals become, in affect, their own samplers and dosimeters and the estimate of cumulative exposure is not affected by the variation of the atmospheric concentration of radon and its progeny in time and space. Forty individuals identified as living in homes with radon levels ranging from about 740 Bq/m{sup 3} to 150.000 Bq/m{sup 3} were measured. Also, additional 34 measurements were made on personnel from NYUMC/NIEM who live in a residential area surrounding the laboratory in which the levels of radon have been shown to be at below average values. To realize these measurements a methodology was developed to determine the subject's background, using a head phantom made with a cubic plastic container containing known amounts of potassium and calcium dissolved in four liters of water. The effective doses calculated from the in vivo measurements are compared to effective doses estimated, for

  6. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements; Um metodo para determinar um indicador para calcular dose efetiva devida a inalacao de Radonio e seus descendentes utilizando medicoes in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Julio Jose da Silva

    1994-07-01

    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of {sup 210} Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measurements were performed in a whole body counter. With this technique, the exposed individuals become, in affect, their own samplers and dosimeters and the estimate of cumulative exposure is not affected by the variation of the atmospheric concentration of radon and its progeny in time and space. Forty individuals identified as living in homes with radon levels ranging from about 740 Bq/m{sup 3} to 150.000 Bq/m{sup 3} were measured. Also, additional 34 measurements were made on personnel from NYUMC/NIEM who live in a residential area surrounding the laboratory in which the levels of radon have been shown to be at below average values. To realize these measurements a methodology was developed to determine the subject's background, using a head phantom made with a cubic plastic container containing known amounts of potassium and calcium dissolved in four liters of water. The effective doses calculated from the in vivo measurements are compared to effective doses

  7. Inversion of the Jacobi-Porstendörfer Room Model for the Radon Progeny

    Czech Academy of Sciences Publication Activity Database

    Thomas, J.; Jílek, K.; Brabec, Marek

    2010-01-01

    Roč. 55, č. 4 (2010), s. 433-437 ISSN 0029-5922 Institutional research plan: CEZ:AV0Z10300504 Keywords : Jacobi room model * inversion and invariants of the model * unattached radon daughters * attachment rate * deposition rate Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.321, year: 2010 http://www.nukleonika.pl/www/back/full/vol55_2010/v55n4p433f.pdf

  8. The measurement of activity-weighted size distributions of radon progeny: methods and laboratory intercomparison studies

    International Nuclear Information System (INIS)

    Hopke, P.K.; Strydom, R.; Ramamurthi, M.; Knutson, E.O.; Tu, K.W.; Scofield, P.; Holub, R.F.; Cheng, Y.S.; Su, Y.F.; Winklmayr, W.

    1992-01-01

    Over the past 5 y, there have been significant improvements in measurement of activity-weighted size distributions of airborne radon decay products. The modification of screen diffusion batteries to incorporate multiple screens of differing mesh number, called graded screen arrays, have permitted improved size resolution below 10 nm such that the size distributions can now be determined down to molecular sized activities (0.5 nm). In order to ascertain the utility and reliability of such systems, several intercomparison tests have been performed in a 2.4 m3 radon chamber in which particles of varying size have been produced by introducing SO2 and H2O along with the radon to the chamber. In April 1988, intercomparison studies were performed between direct measurements of the activity-weighted size distributions as measured by graded screen arrays and an indirect measurement of the distribution obtained by measuring the number size distribution with a differential mobility analyzer and multiplying by the theoretical attachment rate. Good agreement was obtained in these measurements. A second set of intercomparison studies among a number of groups with graded screen array systems was made in April 1989 with the objective of resolving spectral structure below 10 nm. Again, generally good agreement among the various groups was obtained although some differences were noted. It is thus concluded that such systems can be constructed and can be useful in making routine measurements of activity-weighted size distributions with reasonable confidence in the results obtained

  9. Development of an integrated sampler based on direct 222Rn/220Rn progeny sensors in flow-mode for estimating unattached/attached progeny concentration

    International Nuclear Information System (INIS)

    Mishra, Rosaline; Sapra, B.K.; Mayya, Y.S.

    2009-01-01

    A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of 222 Rn/ 220 Rn progeny concentration. The essential element of this sampler is the direct 222 Rn/ 220 Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for 220 Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 ± 0.64 (track cm -2 h -1 ) (Bq m -3 ) -1 and 22.30 ± 0.18 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively; while that of DRPS-loaded sampler for 222 Rn progeny deposition, is 3.03 ± 0.14 (track cm -2 h -1 ) (Bq m -3 ) -1 and 2.08 ± 0.07 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.

  10. A reconnaissance study of radon concentrations in Hamadan city, Iran

    OpenAIRE

    Gillmore, G.; Jabarivasal, N.

    2010-01-01

    This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 (i.e. below the lower limit of detection for the method) to 364 Bq/m3 with a mean value of 108 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concent...

  11. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  12. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T

    1998-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  13. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  14. Daily fluctuations in radon concentration in a Cordoba factory complex

    International Nuclear Information System (INIS)

    Germanier, A.; Perez, R.; Rubio, M.

    1998-01-01

    Full text: This work shows the fluctuations of indoor radon concentration in some rooms placed inside a Cordoba Factory Complex. The measurements were performed by Victoreen Radon Monitor. The system was shaped to sample single radon concentration values after one hour integration. It utilizes a passive diffusion chamber and a silicon diffused junction detector. A portion of decay products will plate-out onto the detector and emit alpha particles into the depletion region of a diffused junction detector. The alpha energy is deposited in the detector in the form of ionization which generates a charge pulse. Only alpha pulses of an energy level similar Po-218 and Po-214 are detected. The study of the meteorological parameters shows that the daily fluctuations of the radon concentration respond to the transport and dispersion processes of radon gas through the air. Air temperature, wind's direction and speed are found to be fundamentals parameters in the observed time behavior. The meteorological data were obtained by a portable station (Davis Weathe Monitor II). The radon concentration present a maximum value (1850 Bq/m 3 ) at the night and a minimum value (150 Bq/m 3 ) at the day. (author) [es

  15. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  16. Anomalous radon concentration in a nuclear research facility

    International Nuclear Information System (INIS)

    Balcazar, M.; Pena, P.

    2014-08-01

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m -3 . The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m -3 , manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  17. Indoor radon concentrations in kindergartens from different regions of Yugoslavia

    International Nuclear Information System (INIS)

    Vaupotic, J.; Krizman, M.; Sutej, T.

    1992-01-01

    In the winter period of 1990-1991 instantaneous radon concentrations in air were measured in around 450 kindergartens from different regions from Yugoslavia. Alpha scintillation counting was used as a screening method, and the measurements were carried out in rooms where the children spent the majority of their time. All of the air grab samples were taken under the same conditions which excluded ventilation of the interior 12 h prior to sampling. In addition to indoor radon concentrations, gamma dose rate was measured using portable equipment. The indoor radon concentrations were generally low, in the range from 10 to 180 Bq.m -3 of air, with an overall average of about 100 Bq.m -3 . There were a few exceptions where indoor radon levels exceeded 150 Bq.m -3 ; mainly in old buildings containing higher contents of natural radionuclides in the building materials, and in the cellars or basements of the buildings. In all rooms with a level exceeding 150 Bq of 222 Rn per m 3 , solid-state nuclear track detectors were applied for long-term measurements. In order to investigate the equilibrium between radon and its short-lived daughters, mainly with respect to their contribution to the effective dose, alpha spectrometry is also being introduced in selected kindergartens with elevated radon concentrations. (author)

  18. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  19. Indoor radon concentrations and radon doses at three districts of Ankara, Turkey and raising public awareness on the issue

    International Nuclear Information System (INIS)

    Mehmet Kildir; Inci Goekmen; Ali Goekmen

    2016-01-01

    Indoor radon concentrations at METU, CIGDEM and DOSTLAR in Ankara were measured using electrets. The statistical analysis of the data indicated a lognormal distribution of radon concentrations, with no significant difference between CIGDEM and DOSTLAR with geometric means of GM = 87.5 and 54.5 Bq m -3 , respectively. Radon concentrations did not change seasonally at CIGDEM which contain modern buildings, but at the slum district DOSTLAR, with poor insulation of houses a seasonal variation was observed. Annual effective radon doses were estimated (0.4-8.4 mSv). Public awareness about indoor radon was raised. (author)

  20. Radon dose and aerosols

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Faj, Z.; Vukovic, B.

    2000-01-01

    The equilibrium factor value (F) was measured in the NRPB radon chamber and the corresponding track density ratio (r = D/D 0 ) of bare (D) and diffusion (D 0 ) LR-115 nuclear track detectors was determined, as well as the regression equation F(r). Experiments with LR-115 nuclear track detectors and aerosol sources (burning candle and cigarette) were carried out in the Osijek University radon chamber and afterwards an empirical relationship between the equilibrium factor and aerosol concentration was derived. For the purpose of radon dose equivalent assessment, procedures for determining the unattached fraction of radon progeny were introduced using two nuclear track detectors. (author)

  1. Calculating flux to predict future cave radon concentrations

    Czech Academy of Sciences Publication Activity Database

    Rowberry, Matthew David; Martí, Xavier; Frontera, C.; Van De Wiel, M.J.; Briestenský, Miloš

    2016-01-01

    Roč. 157, JUN (2016), 16-26 ISSN 0265-931X R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 ; RVO:68378271 Keywords : cave radon concentration * cave radon flux * cave ventilation * radioactive decay * fault slip * numerical modelling Subject RIV: DC - Siesmology, Volcanology, Earth Structure; BG - Nuclear, Atomic and Molecular Physics, Colliders (FZU-D) Impact factor: 2.310, year: 2016

  2. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    Science.gov (United States)

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  3. Atmospheric radon daughters concentration inside and outside of cloud

    International Nuclear Information System (INIS)

    Nishikawa, Tsuguo; Okabe, Shigeru; Aoki, Masayoshi; Imamura, Takakazu; Iwata, Yoshitomo; Tamura, Yukihide; Tsuboguchi, Masayasu

    1987-01-01

    The measurements of the atmospheric radon daughters concentration in and out of the cloud were carried out on the top of the mountain, and in the upper air of the sea by using the airplane. The difference of the concentrations between inside and outside of the stratus measured on the top of the mountain was not clear. The atmospheric radon daughters concentration at the top of the mountain decreased when the amount of precipitation at that point was large. Concerning the cumulus investigated by using the airplane, the concentration in the cloud was a little higher than the concentration out of the cloud. Results of the measurements show that the cloud seems to be constructed of the various air masses whose radon daughters concentrations are different from each other even though it appears to be uniform. (author)

  4. Evaluation of radon progeny from Mount St. Helens eruptions. Final report

    International Nuclear Information System (INIS)

    Lepel, E.A.; Olsen, K.B.; Thomas, V.W.; Eichner, F.N.

    1982-09-01

    A network of twelve monitoring sites around Mount St. Helens was established to evaluate possible short-lived radioactivity in the fallen ash. Seven sites were located near major population centers of Washington and Oregon, and five sites were located within 80 km of the volcano. Each site monitored the radioactivity present by the use of thermoluminescent dosimeters which recorded the total exposure to radioactivity over the exposure period. Eruptions occurring on July 22, August 7, and October 16 to 18, 1980 were monitored. No statistically significant quantities of measurable radon daughters were observed

  5. Radon concentration measurements for determination of radiation dose and assessment of cancer risk in the premises of some colleges in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Mahmood, A.; Tufail, M.; Iqbal, M.A.

    2010-01-01

    Radon concentration has been measured in campus and hostel buildings of some colleges in the city of Lahore. The technique of passive radon measurements was employed using CN-85 etched track detectors in the box type dosimeters. The observed radon concentration in different parts of monitored buildings was within the range 18-61 Bq m/sup -3/. The cause of radon in college buildings may be the construction materials, drinking water, natural gas, drainage, sewerage pipes, etc. Moving fans, open doors and windows in summer season diluted the radon concentration, while the air tight arrangement in the winter enhanced the radon concentration level. Alpha dose from radon to the students and supporting staff was estimated as 0.34 and 0.91 mSv y/sup -1/ in campus and hostel buildings respectively. The corresponding excess lifetime cancer risk attributed to the students and staff in the college campuses was found to be 0.20 %, while the staff and students residing in the hostels of the colleges received the excess lifetime risk of cancer 0.53 % due to radon progenies. (author)

  6. Radon progeny exposure and lung cancer risk: Analyses of a cohort of Newfoundland fluorspar miners

    International Nuclear Information System (INIS)

    Morrison, H.I.; Villeneuve, P.J.

    1995-07-01

    A cohort study of the mortality experience (1950-1990) of 1744 underground miners and 321 millers or surface workers has been conducted. Excess mortality among underground miners was noted for cancers of the lung, buccal cavity, pharynx and mouth, urinary tract and for silicosis and pneumoconioses. A highly statistically significant relationship was noted between radon daughter exposure and risk of dying of lung cancer; the small numbers of buccal cavity/pharynx cancers (n = 6) precluded meaningful analysis of exposure-response. No statistically significant excess was found for any cause of death among surface workers. The exposure-response data for lung cancer were fitted to various mathematical models. The model selected included terms for attained age, cumulative dose, dose rate and time since last exposure. Because risk varies according to each of these factors, a single summary risk estimate was felt to be misleading. The joint effects of radon and smoking could not be adequately assessed using this cohort. (author). 46 refs., 16 tabs., 1 fig

  7. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  8. Probing the application of Fourier Transform Infrared (FTIR) spectroscopy for assessment of deposited flux of Radon and Thoron progeny in high exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R., E-mail: rosaline@barc.gov.in; Sapra, B.K.; Rout, R.P.; Prajith, R.

    2016-12-01

    Direct measurement of Radon and Thoron progeny in the atmosphere and occupational environments such as Uranium mines, Uranium and Thorium handling facilities has gained importance because of its radiological significance in inhalation dose assessment. In this regard, Radon and Thoron Progeny sensors (DTPS and DRPS) are the only passive solid state nuclear track detector (SSNTD, LR115) based devices which are being extensively used for time integrated direct progeny measurements. An essential component of the analysis is the chemical etching of the detectors, followed by spark counting of tracks and then estimation of the inhalation dose using appropriate calibration factors. Alternatively, the tracks may be counted using image analysis techniques. However, under high exposure conditions, both these methods have inherent limitations and errors arising due to increased frequency of tracks. In the present work, we probe the use of Fourier Transform Infra Red (FTIR) spectroscopy to analyse the deposited fluence of the progeny particulates based on change in transmittance of the nitric group vibrational bands of the LR115. A linear relationship between the transmittance and the deposited fluence was observed, which can be used to estimate the deposited fluence rate and the inhalation dose. This alternative method of analysis will provide a faster and non-destructive technique for inhalation dose assessment, specially for routine large scale measurements. - Highlights: • An alternative method of inhalation dose assessment. • Linearity between the transmittance of nitric goup bands and the deposited fluence. • Faster and non-destructive technique for high exposure scenarios.

  9. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  10. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Zhukovsky, M.

    2015-01-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400 000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m"3. Average indoor radon concentration by region ranges from 12 to 207 Bq/m"3. The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m"3. - Highlights: • Reconstruction of indoor radon concentration distribution in Russia was carried out. • Data of official annual 4-DOZ reports were used. • All-Russian average indoor radon concentration is 48 Bq/m"3. • The 95-th percentile is 160 Bq/m"3.

  11. A nationwide radon concentration survey project in Japan. Outdoor and workplaces

    International Nuclear Information System (INIS)

    Oikawa, S.; Kanno, N.; Ohashi, N.; Abukawa, J.

    2003-01-01

    Nationwide survey for outdoor and workplace radon ( 222 Rn) concentration in Japan were carried out to evaluate the effective dose to the general public due to 222 Rn and its progeny. The 222 Rn concentration was measured by using passive-type radon/thoron discriminative monitor equipped with polycarbonate films. Concentration of 222 Rn was calculated from etch pit counts appeared on the polycarbonate film after chemical and electrochemical etching. For outdoor 222 Rn survey, the monitors were installed at about 700 points throughout Japan on every quarters of the fiscal year 1997 to 1999. The mean concentration of outdoor 222 Rn concentration was 6.1 Bq m -3 from the results of 696 measurement points. Seasonal variation of outdoor 222 Rn was found to be minimal in July to September, and maximal in October to December. For workplace 222 Rn survey, the monitors were installed at about 700 points in four categories (office, factory, school and hospital) on every quarters of the fiscal year 2000 to 2002. Nationwide mean 222 Rn concentration in workplaces was found to be 22.7 Bq m -3 for 2000 and 20.7 Bq m -3 for 2001, respectively. Seasonal variation of 222 Rn concentration measured at office, factory, school and hospital were also found to be minimal in July to September, and maximal in October to December. (author)

  12. Investigation of the areas of high radon concentration in Gyeongju

    International Nuclear Information System (INIS)

    Lee, Jung Min; Park, Chan Hee; Kim, Shin Jae; Moon, Joo Hyun

    2013-01-01

    The aim of this study was to survey the radon concentrations at 21 elementary schools in Gyeongju, Republic of Korea, to identify those schools with high radon concentrations. Considering their geological characteristics and the preliminary survey results, three schools were finally placed under close scrutiny. For these three schools, continuous measurements over 48 h were taken at the principal's and administration office. The radon concentrations at one school, Naenam, exceeded the action level (148 Bq/m 3 ) established by the U.S. EPA, while those at the other two schools were below that level. - Highlights: • Preliminary measurements of the indoor radon concentrations were performed at the auditoriums in 23 elementary schools in Gyeongju. • Considering the geological characteristics and preliminary survey results, three elementary schools were screened for closer scrutiny. • For the three schools, continuous measurements were made at their principal's and administration offices over 48-h period. • The scrutiny revealed one elementary school of high radon concentration much higher than the U.S. EPA action level

  13. Tracing and dealing with dwellings with high radon and radon daughter concentrations

    International Nuclear Information System (INIS)

    Ehdwall, Hans

    1980-01-01

    In the late 1970s it was found that a number of buildings in Sweden, primarily those made from alum shale-based concretes, had elevated radon and radon daughter levels. A special commission investigated the problem and established provisional limiting values for radon daughter exposures, gamma radiation from the ground, and the concentrations of radioactive materials in building materials. With regard to gamma radiation from the ground the commission proposed that no building be built in an area where outside gamma radiation exceeds 100 μR/h. For building materials a gamma index (mγ) and a radium index (mRa) are suggested: mγ = Csub(K)/10000 + Csub(Ra)/1000 + Csub(Th)/700; mRa = Csub(Ra)/200 (Csub(K), Csub(Ra) and Csub(Th) are the concentrations of potassium, radium and thorium respectively). The proposed limiting values are such that the gamma index and the radium index be less than 1. It is also suggested that action should be taken to reduce radon levels in buildings with radon daughter concentrations of 0.27 WL within two years and 0.10 WL within 5 years

  14. A combined method for evaluating radon and progeny in waters and its use at Guarani aquifer, Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.; Mello, C.B.

    2006-01-01

    A combined method for evaluating radon ( 222 Rn) and progeny ( 214 Pb and 214 Bi) in water was developed by using inexpensive alpha scintillation counting and gamma ray spectrometry through NaI(Tl) scintillation detectors. A groundwater sample collected at the Pocos de Caldas alkaline massif in Brazil was submitted to the technique in order to assure its applicability by comparing the volumetric activities by different methods. Similar volumetric activity was determined for 214 Pb and 214 Bi in the sample analyzed that is compatible with the expected condition of radioactive equilibrium between these nuclides. The combined method was successfully used to analyze groundwater samples from Guarani aquifer in Sao Paulo State, Brazil, and the results of the measurements indicated that 214 Pb and 214 Bi provide useful information concerning the evaluation of the drinking water quality in terms of radiological aspects. This is because they are directly identified in the water samples, without the need of requiring the assumption of the establishment of the transient equilibrium condition with its parent 222 Rn

  15. A combined method for evaluating radon and progeny in waters and its use at Guarani aquifer, Sao Paulo State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, D.M. [Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista (UNESP), IGCE-Instituto de Geociencias e Ciencias Exatas, Av. 24-A, No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)]. E-mail: dbonotto@rc.unesp.br; Mello, C.B. [Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista (UNESP), IGCE-Instituto de Geociencias e Ciencias Exatas, Av. 24-A, No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2006-07-01

    A combined method for evaluating radon ({sup 222}Rn) and progeny ({sup 214}Pb and {sup 214}Bi) in water was developed by using inexpensive alpha scintillation counting and gamma ray spectrometry through NaI(Tl) scintillation detectors. A groundwater sample collected at the Pocos de Caldas alkaline massif in Brazil was submitted to the technique in order to assure its applicability by comparing the volumetric activities by different methods. Similar volumetric activity was determined for {sup 214}Pb and {sup 214}Bi in the sample analyzed that is compatible with the expected condition of radioactive equilibrium between these nuclides. The combined method was successfully used to analyze groundwater samples from Guarani aquifer in Sao Paulo State, Brazil, and the results of the measurements indicated that {sup 214}Pb and {sup 214}Bi provide useful information concerning the evaluation of the drinking water quality in terms of radiological aspects. This is because they are directly identified in the water samples, without the need of requiring the assumption of the establishment of the transient equilibrium condition with its parent {sup 222}Rn.

  16. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    Science.gov (United States)

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Radon in soil concentration levels in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tamez, E.; Mena, M.

    1991-09-01

    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of 222 Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  18. Role of environmental variables on radon concentration in soil

    International Nuclear Information System (INIS)

    Climent, H.; Bakalowicz, M.; Monnin, M.

    1998-01-01

    In the frame of an European project, radon concentrations in soil and measurements of environmental variables such as the nature of the soil or climatic variables were monitored. The data have been analysed by time-series analysis methods, i.e. Correlation and Spectrum Analysis, to point out relations between radon concentrations and some environmental variables. This approach is a compromise between direct observation and modelling. The observation of the rough time series is unable to point out the relation between radon concentrations and an environmental variable because of the overlapping of the influences of several variables, and the time delay induced by the medium. The Cross Spectrum function between the time series of radon and of an environmental variable describes the nature of the relation and gives the response time in the case of a cause to effect relation. It requires the only hypothesis that the environmental variable is the input function and radon concentration the output function. This analysis is an important preliminary study for modelling. By that way the importance of soil nature has been pointed out. The internal variables of the medium (permeability, porosity) appear to restrain the influence of the environmental variables such as humidity, temperature or atmospheric pressure. (author)

  19. Seasonal variation of radon concentrations in UK homes

    International Nuclear Information System (INIS)

    Miles, J C H; Howarth, C B; Hunter, N

    2012-01-01

    The patterns of seasonal variation of radon concentrations were measured in 91 homes in five regions of the UK over a period of two years. The results showed that there was no significant difference between the regions in the pattern or magnitude of seasonal variation in radon concentrations. The arithmetic mean variation was found to be close to that found previously in the UK national survey. Differences in the pattern between the two years of the study were not significant. Two-thirds of homes in the study followed the expected pattern of high radon in the winter and low radon in the summer. Most of the rest showed little seasonal variation, and a few showed a reversed seasonal pattern. The study does not provide any clear evidence for the recorded house characteristics having an effect on the seasonal variation in radon concentrations in UK homes, though the statistical power for determining such effects is limited in this study. The magnitude of the seasonal variation varied widely between homes. Analysis of the individual results from the homes showed that because of the wide variation in the amount of seasonal variation, applying seasonal correction factors to the results of three-month measurements can yield only relatively small improvements in the accuracy of estimates of annual mean concentrations.

  20. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  1. Investigation of indoor radon concentration in block houses in Omderman

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H A. M. [Atomic Energy Council, Sudan Academy of Sciences (SAS), Khartoum (Sudan)

    2010-12-15

    Radon is one of the naturally occurring radioactive elements in the environment as a member of the natural uranium decay. Exposure to radon in the home and workplace is one of the main risks of ionizing radiation thought to cause tens of thousands of deaths from lung cancer each year. In order to reduce this burden it is important that national authorities have methods and tools bases on solid scientific evidence and sound public health policy. The public needs to be aware of radon risks and the means to reduce and prevent these. This study presents of the studies dealing with the investigation of exposure from ionizing radiation. The radon levels in some selected type of building styles (Bricks Albulk) were investigated in Omderman city (public housing). The radon level in most of the houses found to range between 87.63 and 206 Bq/m{sup 3} with average value of 127{+-}23 Bq/m{sup 3}. This is well lay within the allowable limit with average. The study indicates that building materials used does not add significant concentration of radon to indoor. It can be considered as safe type of building style from radiation protection point of view. (Author)

  2. Measurement of radon concentration in Taiz city dwellings-yemen

    International Nuclear Information System (INIS)

    Ali, Taher M.; Ahmed, Hayel A.; Ismail, Rokhsana M.

    2001-01-01

    Radon gas considered being a high part of natural radiation background. Emitting alpha particles; radon daughters may be deposited into the lungs and cause health hazards. For this reason, estimation of radon levels in dwellings was done in many countries. In our country, Radon group in the Department of physics, University of Aden has been studied radon level in Aden dwelling. The present study is about the radon level in Taiz City - Yemen. Passive diffusion dosimeters containing (SSNTD s ) Cr - 39 detectors were used in the present work. 125 dosimeters were distributed into dwellings of ten regions in Taiz City. Results obtained show that Rn 222 levels vary between 4 Bq/m 3 and 99 Bq/m 3 . The average concentration in Al-Hasseb district is 23 Bq/m 3 and in Algumhuri hospital district is 53 Bq/m 3 . In other regions it varies between the two values. Whereas the general average in the Taiz City is 34 Bq/m 3 . (author)

  3. Radon concentration in spring and groundwater of Shillong agglomeration

    International Nuclear Information System (INIS)

    Walia, D.; Wahlang, P.; Lyngdoh, A.C.; Saxena, A.; Sharma, Y.; Maibam, D.

    2010-01-01

    Water samples in the month of February 2010 to April 2010 are collected from 06 springs (sample code S1-S6) and 18 wells (sample code W1-W18) of the Shillong agglomeration in radon-tight 1L bottles, considering the geological structures, nearness to the steep slopes and accessibility of the water sources. The measurement of radon in water samples is carried out using ionization chamber Alphaguard along with an accessory (fabricated in the laboratory). Initially, background radon of the empty set-up is measured for 30 minutes before every water-sample measurement. The water samples are placed in a closed gas cycle in degassing vessel and then radon is expelled using the pump and magnetic stirrer. The security vessel is connected with the degassing vessel to minimize the inflow of water vapour to the Alphaguard. The measuring cycle is repeated 3 times in order to obtain a better precision. The arithmetic mean of the radon concentrations are used for calculating the annual effective dose for ingestion of water from each bore well and spring. The pH, electrical conductivity and temperature are measured so as to correlate the meteorological parameters with the radon emanation

  4. Investigation of indoor radon concentration in block houses in Omderman

    International Nuclear Information System (INIS)

    Ahmed, H. A. M.

    2010-12-01

    Radon is one of the naturally occurring radioactive elements in the environment as a member of the natural uranium decay. Exposure to radon in the home and workplace is one of the main risks of ionizing radiation thought to cause tens of thousands of deaths from lung cancer each year. In order to reduce this burden it is important that national authorities have methods and tools bases on solid scientific evidence and sound public health policy. The public needs to be aware of radon risks and the means to reduce and prevent these. This study presents of the studies dealing with the investigation of exposure from ionizing radiation. The radon levels in some selected type of building styles (Bricks Albulk) were investigated in Omderman city (public housing). The radon level in most of the houses found to range between 87.63 and 206 Bq/m 3 with average value of 127±23 Bq/m 3 . This is well lay within the allowable limit with average. The study indicates that building materials used does not add significant concentration of radon to indoor. It can be considered as safe type of building style from radiation protection point of view. (Author)

  5. Parametric modelling of temporal variations in radon concentrations in homes

    International Nuclear Information System (INIS)

    Revzan, K.L.; Turk, B.H.; Harrison, J.; Nero, A.V.; Sextro, R.G.

    1988-01-01

    The 222 Rn concentrations in the living area, the basement, and the undelying soil of a New Jersey home have been measured at half-hour intervals over the course of a year, as have indoor and outdoor temperatures, wind speed and direction, and indoor-outdoor and basement-subslab pressures; in addition, periods of furnace opration have been logged. We generalize and extend an existing radon entry model in order to demonstrate the dependence of the radon concentration on the environmental variales and the extent of furnace use. The model contains parameters which are dependent on geological and structural factors which have not been measured or otherwise determined; statistical methods are used to find the best values of the parameters. The non-linear regression of the model predictions (over time) on the measured living area radon concentrations yields an R/aup 2/ of 0.88. 9 refs., 2 figs

  6. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  7. Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from {sup 222}Rn and {sup 220}Rn

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parminder; Saini, Komal; Bajwa, Bikramjit Singh [Guru Nanak Dev University, Department of Physics, Amritsar, Punjab (India); Mishra, Rosaline; Sahoo, Bijay Kumar [Bhabha Atomic Research Centre, Radiological Physics and Advisory Division, Mumbai (India)

    2016-08-15

    In this study, measurements of indoor radon ({sup 222}Rn), thoron ({sup 220}Rn) and their equilibrium equivalent concentration (EEC) were carried out in 96 dwellings from 22 different villages situated in Hamirpur district, Himachal Pradesh, India, by using LR-115 type II-based pinhole twin cup dosimeters and deposition-based progeny sensors (DRPS/DTPS). The annual average indoor {sup 222}Rn and {sup 220}Rn concentrations observed in these dwellings were 63.82 and 89.59 Bq/m{sup 3}, respectively, while the average EEC (attached + unattached) for {sup 222}Rn and {sup 220}Rn was 29.28 and 2.74 Bq/m{sup 3}. For {sup 222}Rn (f{sub Rn}) and {sup 220}Rn (f{sub Tn}), the average values of unattached fraction were 0.11 and 0.09, respectively. The equilibrium factors for radon (F{sub Rn}) and thoron (F{sub Tn}) varied from 0.12 to 0.77 with an average of 0.50, and from 0.01 to 0.34 with an average of 0.05, respectively. The annual inhalation dose due to mouth and nasal breathing was calculated using dose conversion factors and unattached fractions. The indoor annual effective doses for {sup 222}Rn (AEDR) and {sup 220}Rn (AEDT) were found to be 1.92 and 0.83 mSv a{sup -1}, respectively. The values of {sup 222}Rn/{sup 220}Rn concentrations and annual effective doses obtained in the present study are within the safe limits as recommended by the International Commission on Radiological Protection for indoor dwelling exposure conditions. (orig.)

  8. Indoor air radon concentration in schools in Prizren, Kosovo

    International Nuclear Information System (INIS)

    Bahtijari, M.; Stegnar, P.; Shemsidini, Z.; Kobal, I.; Vaupotic, J.

    2006-01-01

    Indoor air radon ( 222 Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m -3 . (authors)

  9. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration

    International Nuclear Information System (INIS)

    Collignan, Bernard; Powaga, Emilie

    2014-01-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings. - Highlights: • Test of a daily procedure to characterize radon potential in dwellings. • Numerical assessment of the annual radon concentration. • Procedure applied on thirteen dwellings, characterization generally satisfactory. • Procedure useful to manage radon risk in dwellings, for real

  10. Soil gas radon concentration across faults near Caracas, Venezuela

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Flores, N.; Urbani, F.; Carreno, R.

    2001-01-01

    SSNTD were used across tectonic features of different degree of activity and lithology in four localities north of Caracas, Venezuela. The homemade dosimeters with LR115 film were buried 20-30 cm in the ground. This cheap and low- tech method proved very useful to understand the tectonic features involved, measuring higher Radon concentration above traces of active faults while in old and sealed faults the results only show the effect of the surrounding lithology. Radon concentration range is 4.3 - 27.2 kB/m 3 . (Author)

  11. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  12. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    A total of 35 measurements in Greece and 15 in Cyprus were performed. Radon concentrations in drinking water in Greece were from (1.1±0.5) to (410±50) Bq/L. The corresponding concentrations in underground potable waters in Cyprus ranged between (0.4±0.3) Bq/L and (15±4) Bq/L. High concentrations, viz. (120±20), (320±40) and (410±50) Bq/L, were observed in three samples collected from the city of Arnea Chalkidekis in northern Greece. One water sample from Lesvos Island (north-eastern part of Greece) exhibited a radon concentration of (140±20) Bq/L. Six samples of hot spring water from the city of Loutraki (Attica prefecture), characterized as 'medicinal drinking water', contained concentrations of radon between (220±10) and (340±20) Bq/L. Radon concentrations in potable and non-potable underground water in Greece and Cyprus ranged between (0.4±0.3) and (15±4) Bq/L, whereas in surface water the range was from (2.7±0.8) to (24±6) Bq/L. (P.A.)

  13. Influences on indoor radon concentrations in Riyadh, Saudi Arabia

    International Nuclear Information System (INIS)

    Alghamdi, Abdulrahman S.; Aleissa, Khalid A.

    2014-01-01

    The influences on indoor radon concentrations in Riyadh, Saudi Arabia survey was carried out for 786 dwellings. The measurements were obtained by using a passive integrating ionization system with an E-Perm ® Electret ion chamber. Radon levels ranged from 1 to 195 Bq m −3 , with a mean value of 24.68 Bq m −3 , the geometric mean and the geometric standard deviation are 21 and 2 respectively. 98.5% of the results were below the action level recommended by WHO of 100 Bq.m −3 . The results were found to vary substantially due to types of houses and rooms, ventilation, seasons and building materials. Radon concentrations were higher in houses with no ventilation systems, and central air conditioners, and were relatively lower in well ventilated houses with red bricks and water air conditioners. - Highlights: • Limited information about indoor radon in Riyadh. • Several factors influence Radon level were investigated in 786 dwellings in Riyadh over one year. • Some results are over the action level and are advised to improve their ventilation systems

  14. A study of radon indoor concentration; Un estudio de concentracion de radon intramuros

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G. [ININ, Gerencia de Ciencias Ambientales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m{sup 3} obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  15. Effect of ventilation type on radon concentration at places of work

    International Nuclear Information System (INIS)

    Oksanen, E.

    1994-01-01

    Indoor radon ( 222 Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements, but the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected. (author)

  16. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    The radon content of drinking water samples was determined with Alpha Guard Pro equipped with an appropriate unit (Aqua Kit). The samples were collected from water taps in dwellings located at various cities in Greece and Cyprus. In addition, surface water samples from rivers, lakes and seas as well as potable underground and hot spring water samples from Greece and Cyprus were also collected. For a precise determination of radon concentration in water samples, special procedures were followed both for sampling and transportation, as well as for measurement. Intercomparison experiments were designed and implemented before and during the study. Radon concentrations in drinking water samples in Greece ranged between 1.1 ± 0.5 Bq/L and 410±50 Bq/L. The corresponding concentrations in Cyprus ranged between 1.3 ± 0.8 Bq/L and 15±4 Bq/L. Three samples collected from the city of Arnea Chalkidikis (Northern Greece) exhibited high concentrations of 120±20 Bq/L, 320±40 Bq/L and 410±50 Bq/L. This city is identified as a high radon potential area. One water sample located in Lesvos Island (North-East part of Greece) exhibited radon concentration 140±20 Bq/L. Additional six samples displayed high concentrations in potable hot spring water samples. These samples which were collected from the city of Loutraki (Peloponnesus) ranged between 220-230 Bq/L. In addition, two samples characterized as 'medicinal drinking water' gave concentrations between 320 Bq/L and 340 Bq/L. For underground water samples the radon concentrations ranged between 1.2±0.7 Bq/L and 15±4 Bq/L, while for surface water samples the range was 2.7±0.8 Bq/L to 24±6 Bq/L. The observed concentrations of radon gas in potable water samples in Greece were found to be largely low. In Cyprus, they were all well below 15 Bq/L

  17. A passive method for the determination of the equilibrium factor between radon gas and its short period progeny

    International Nuclear Information System (INIS)

    Lopez, Fabio O.; Canoba, Analia C.

    2001-01-01

    Due to the radiological importance of 222 Rn gas and its progeny of short period it is extremely necessary to count with an adequate methodology for the determination of its concentration in the different atmospheres in which human activity is developed. In this work a method was developed to determine the concentration of 222 Rn gas and the equilibrium factor between the concentration of the gas and its descendants, by means of a single device that has two Makrofol passive tracks detector. This device is completely passive and integrating, conditions that make it very appropriate to be used in any atmospheres in which human activity is developed, for example in houses, schools, places of work, underground mines, etc. (author)

  18. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  19. A study of radon variation in dwelling during 1988

    International Nuclear Information System (INIS)

    Shaikh, A.N.; Ramachandran, T.V.; Muraleedharan, T.S.; Subbaramu, M.C.

    1989-01-01

    Natural radioactivity due to radon and its progeny levels indoors contributes significantly to the total radiation to man. The main source of radon and its progeny in a dwelling is the emanation of radon gas from soil. The temperature and ventilation vary in a dwelling during the year. These parameters influence the indoor radon levels. The seasonal variation of radon was studied in a dwelling as well as in the outside air. The filter paper method and alpha counting, and the solid state track detector technique and track counting were used to study the radon levels. The geometric mean of radon daughters concentrations were 0.5 mWL and 0.8 mWL measured by filter-paper method and SSNTD method respectively. The geometric mean of radon concentrations were 6.2 Bqm -3 and 10.0 Bqm -3 by filter-paper method and SSNTD method respectively. (author). 3 figs., 3 tabs., 13 refs

  20. High annual radon concentration in dwellings and natural radioactivity content in nearby soil in some rural areas of Kosovo and Metohija

    Directory of Open Access Journals (Sweden)

    Gulan Ljiljana R.

    2013-01-01

    Full Text Available Some previous studies on radon concentration in dwellings of some areas of Kosovo and Metohija have revealed a high average radon concentration, even though the detectors were exposed for three months only. In order to better design a larger study in this region, the annual measurements in 25 houses were carried out as a pilot study. For each house, CR-39-based passive devices were exposed in two rooms for the two consecutive six-month periods to account for seasonal variations of radon concentration. Furthermore, in order to correlate the indoor radon with radium in nearby soil and to improve the knowledge of the natural radioactivity in the region, soil samples near each house were collected and 226Ra, 232Th, 40K activity concentration were measured. The indoor radon concentration resulted quite high from the average (163 Bq/m3 and generally it did not differ considerably between the two rooms and the two six-month periods. The natural radionuclides in soil resulted to be distributed quite uniformly. Moreover, the correlation between the226Ra content in soil and radon concentration in dwellings resulted to be low (R2=0.26. The annual effective dose from radon and its short-lived progeny (5.5 mSv, in average was calculated by using the last ICRP dose conversion factors. In comparison, the contribution to the annual effective dose of outdoor gamma exposure from natural radionuclides in soil is nearly negligible (66 mSv. In conclusion, the observed high radon levels are only partially correlated with radium in soil; moreover, a good estimate of the annual average of radon concentration can be obtained from a six-month measurement with a proper choice of exposure period, which could be useful when designing large surveys.

  1. Radon concentrations in residential housing in hiroshima and nagasaki

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Radford, E.P.; Yonehara, Hidenori; Kato, Hiroo; Sakanoue, Masanobu.

    1993-05-01

    A survey of indoor radon ( 222 Rn) concentrations in Hiroshima and Nagasaki was carried out to assess the range of exposures expected among atomic-bomb survivors. Two hundred dwellings (100 from each city), chiefly of members of the Radiation Effects Research Foundation Life Span Study, were selected for this survey. We used two types of etched-track alpha-particle detectors: a Terradex detector (type SF) and an improved bare-track detector. Comparative measurements showed that although there was an adequate correlation between the values obtained using the two detectors, the geometric mean value for the bare-track detector was 45% lower than that for the Terradex detector. This difference was considered to be due to differences in the calibration methods and in the sensitivities of the detectors to thoron ( 220 Rn). The geometric mean values of the radon concentrations for 193 locations in Hiroshima and 192 locations in Nagasaki measured by Terradex SF detectors were 51.8 Bq/m 3 and 26.5 Bq/m 3 , respectively. The large difference is attributable to the different geological environments of the two cities. Factors correlating with the indoor radon concentrations were also studied. The geometric mean concentration was significantly higher in wooden houses with clay walls than in other types of house. This tendency was especially strong in Hiroshima. The difference between the estimated dose equivalents for exposure to radon decay products in dwellings in Hiroshima and Nagasaki during the last 30 years might amount to 0.8 Sv; however, no statistically significant difference was observed in lung-cancer mortality in the low-dose range in either city. Nevertheless, the indoor radon concentrations estimated in this survey could have a significant influence on the dose-response relationship for atomic-bomb exposure. (author)

  2. Application of nuclear track detectors for radon related measurments

    International Nuclear Information System (INIS)

    Abu-Jarad, F.A.

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author)

  3. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  4. Problems of the inclusion of workplaces with enhanced radon and radon daughter concentrations into occupational radiation protection control

    International Nuclear Information System (INIS)

    Przyborowski, S.

    1993-01-01

    New international recommendations (ICRP-60) on inclusion of workplaces with enhanced radon and radon daughter concentrations into occupational control are expected. Based on present regulations in Germany the problems of their implementation into radiation protection practice will be discussed. For underground workplaces and workplaces in radon spas and waterworks problems may be exist in particular points, whereas inclusion of workplaces in buildings seems to be problematicly in general. (orig./HP) [de

  5. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  6. Long-term variation of outdoor radon equilibrium equivalent concentration

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, Oberschleissheim (Germany); Winkler, R. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, Oberschleissheim (Germany)

    1994-10-01

    Long-term variation of outdoor radon equilibrium equivalent concentration was investigated from 1982 to 1992 at a semi-natural location 10 km north of Munich, southern Germany. For this period the continuous measurement yielded a long-term average of 8.6 Bq.m{sup -3} (arithmetic mean) and 6.9 Bq.m{sup -3} (geometric mean), from which an average annual effective dose of 0.14 mSv due to outdoor radon can be derived. A long-term trend of the radon concentration was not detectable over the whole period of observation. However, by time series analysis, a long-term cyclic pattern was identified with two maxima (1984-1986, 1989-1991) and two minima (1982-1983, 1987-1988). The seasonal pattern is characterized by an autumn maximum and an early summer minimum. On average, the seasonal maximum in October was found to be higher by a factor of 2 than the June minimum. The diurnal variation of the radon concentration shows a maximum in the early morning and a minimum in the afternoon. On average, this maximum is a factor of 2 higher than the minimum. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.5 in winter compared with 3.5 in the summer months. The radon concentration is correlated with a meteorological parameter (stagnation index) which takes into account horizontal and vertical exchange processes and the wash-out of aerosols in the lower atmosphere. (orig.)

  7. Long-term variation of outdoor radon equilibrium equivalent concentration

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1994-01-01

    Long-term variation of outdoor radon equilibrium equivalent concentration was investigated from 1982 to 1992 at a semi-natural location 10 km north of Munich, southern Germany. For this period the continuous measurement yielded a long-term average of 8.6 Bq.m -3 (arithmetic mean) and 6.9 Bq.m -3 (geometric mean), from which an average annual effective dose of 0.14 mSv due to outdoor radon can be derived. A long-term trend of the radon concentration was not detectable over the whole period of observation. However, by time series analysis, a long-term cyclic pattern was identified with two maxima (1984-1986, 1989-1991) and two minima (1982-1983, 1987-1988). The seasonal pattern is characterized by an autumn maximum and an early summer minimum. On average, the seasonal maximum in October was found to be higher by a factor of 2 than the June minimum. The diurnal variation of the radon concentration shows a maximum in the early morning and a minimum in the afternoon. On average, this maximum is a factor of 2 higher than the minimum. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.5 in winter compared with 3.5 in the summer months. The radon concentration is correlated with a meteorological parameter (stagnation index) which takes into account horizontal and vertical exchange processes and the wash-out of aerosols in the lower atmosphere. (orig.)

  8. The effect of RTP (Radon Thoron Progeny) and dust loading on the design of an alarm system for airborne plutonium particulates

    International Nuclear Information System (INIS)

    Pai, H.L.; Sun, L.C.

    2004-01-01

    If the alpha method is adopted, the main problem for determining airborne plutonium particulates is the overlapping of the alpha spectrum between Pu and RTF (radon thoron progeny). The order of magnitude estimation establishes that RTP is more than 20 times higher than Pu. Therefore a method of discriminating RTP is required. The primary methods of discrimination are the aerosol size and the alpha spectrum methods. If the alpha spectrum method is adopted, the formation of the low energy tail of RTP should be investigated. Preliminary study indicates that the low energy tail is related to the air gap and dust loading. (author)

  9. Analysis of errors in the measurement of unattached fractions of radon and thoron progeny in a Canadian uranium mine using wire screen methods

    International Nuclear Information System (INIS)

    Khan, A.; Phillips, C.R.

    1987-01-01

    The unattached fraction of radon/thoron progeny in uranium mines is generally small and therefore difficult to measure accurately. The simple wire screen method provides a direct estimate of the unattached fraction from the screen count, or an indirect estimate from the difference between the reference and back-up filter counts. Wire screen method results are often difficult to analyse, especially when the unattached activity is small. Experimental data obtained in Canadian uranium mines are presented here, together with a detailed error analysis. The method consisting of counting the wire screen and the back-up filter is found to be the most precise method for unattached fraction determination. (author)

  10. Studies on 222Rn concentration in ground water using smart radon monitor and assessment of the radiation dose to the population of Mysuru city

    International Nuclear Information System (INIS)

    Chandrashekara, M.S.; Pruthvi Rani, K.S.

    2017-01-01

    Radioactive elements originate from the earth's crust and make their way into air, water, food and eventually in to the living system. Even though 75% of the Earth's surface is covered by water, only about 0.3 % of the total water on the Earth is available for public use. The ground water contains trace amounts of radioactive elements and these radionuclides contribute significant amount of dose to living beings, through intake of water into the human body. Radon dissolved in water is released into air when it is used for cooking, drinking, bathing and washing purposes. Exposure of population to higher concentrations of radon and its progeny for a long time causes occurrence of lung cancer and pathological effects like respiratory functional changes. Radon is a main source of ionizing radiation of natural origin and the studies on radon concentrations in drinking water are of importance. A systematic study of 226 Ra and 222 Rn concentration in the drinking water samples was carried out in Mysuru city. The concentration of 226 Ra and 222 Rn was estimated in water samples using emanometry method employing scintillation cells and alpha counting system. The 222 Rn concentration in water was also measured using a Smart Radon Monitor (SRM) for comparison of the results. SRM is a technologically advanced real time, portable, radon monitor developed at BARC, Mumbai

  11. Terminology for describing radon concentrations and exposures

    International Nuclear Information System (INIS)

    Robkin, M.A.

    1987-01-01

    Starting with a collection of identical radioactive atoms, the time it takes for one-half of them to decay is called the half-life. The decay product, or daughter atoms, may also be radioactive, in which case it will decay into another radioactive daughter. This process will continue until finally a stable, i.e. non-radioactive, daughter is reached. Each radioactive daughter has its own characteristic half-life and radiations. The decay rate has traditionally been specified in curies (Ci). The original curie unit was based on the decay rate of one gram of radium-227, which is approximately 37 billion disintegrations per second (dps). The curie is now defined to be exactly this rate. It is often convenient, particularly in discussing radon, to introduce a smaller unit, the picocurei (p,Ci), where 1 pCi = 10/sup -12/ Ci. In international usage, a new unit, the Becquerel (Bq), has recently been adopted. This unit is part of the system International de Unites (S.I.) and is equal to one disintegration per second (dps) or about 27 pCi

  12. A prediction model for assessing residential radon concentration in Switzerland

    International Nuclear Information System (INIS)

    Hauri, Dimitri D.; Huss, Anke; Zimmermann, Frank; Kuehni, Claudia E.; Röösli, Martin

    2012-01-01

    Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th–90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40–111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69–215 Bq/m³) in the medium category, and 219 Bq/m³ (108–427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be

  13. Seasonal and diurnal variations in potential alpha energy concentrations at a location in tropical Australia

    International Nuclear Information System (INIS)

    Quintarelli, F.; Akber, R.

    1998-01-01

    Full text: Atmospheric concentrations of radon progeny activity were measured at two locations in tropical Australia during the time period 1992 - 1994. Meteorological parameters including atmospheric pressure, temperature and humidity were also recorded. The data were analysed for seasonal and diurnal variations, in order to establish correlations and associations amongst radon progeny concentrations and meteorological parameters. The paper describes the findings, including the attachment behaviour of radon progeny to ambient aerosol

  14. Study of the effects of atmospheric parameters on ground radon concentration by track technique

    International Nuclear Information System (INIS)

    Tidjani, Adams

    1988-01-01

    Radon emanation was continuously monitored for 24 months, accompanied by measurements of atmospheric parameters. Integrated measurments of radon concentrations have been performed with LR-115 cellulose nitrate track detectors. The monitoring was conducted at 16 sites distributed around the Dakar University area. Observed changes in radon concentration are interpreted as being caused by changes in meteorological conditions and ocean tides. (author)

  15. Optimisation of elevated radon concentration measurement by using electro-chemical etching of nuclear track detectors

    International Nuclear Information System (INIS)

    Celikovic, I.; Ujic, P.; Fujimoto, K.; Tommasino, L.; Demajo, A.; Zunic, Z.; Celikovic, I.)

    2007-01-01

    In the paper, two methods for adjusting of passive radon-thoron discriminative dosimeters (UFO detector) for enhanced radon concentration measurement are presented. Achieved upper limit of detection is 5.94 MBq m-3 d [sr

  16. Develop generic equations to determine radon daughters concentrations in air

    International Nuclear Information System (INIS)

    Shweikani, R.; Jerby, B.

    2011-06-01

    Measurements of radon daughter concentrations in air are very important to determine the human dose from background radiation. Therefore, many studies tried to find measurements methods depending on many specific parameters such as measurement time, air pumping period and sample volume. In this study a general equations to determine radon daughter's concentrations in air was found using direct samples. The Equations results were closed to the results obtained from other well known methods. Many measurements with different places and various conditions were performed; the results showed that the new equations are able to be used with an error less than 10%, The relative error can be reduced by increasing the pumping rate or measuring high concentration cases.(author)

  17. RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.

    Science.gov (United States)

    Stránský, V; Thinová, L

    2017-11-01

    In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Factors affecting yearly variations of indoor radon concentrations

    International Nuclear Information System (INIS)

    Steck, D.J.; Baynes, S.A.

    1996-01-01

    Since indoor radon exposures take place over many years while radon measurement periods are shorter, we are studying the yearly variation of indoor radon concentrations in approximately 100 houses located throughout Minnesota. Most houses were initially measured for one or more years in the late 1980's and for 5 consecutive years starting in 1990. Two houses have been monitored for 12 y. Each year, two alpha track detectors were placed on the two lowest livable levels. The year-to-year variations averaged about 35% (corrected for instrumental uncertainties) in both basements and first floors. The minimum observed variation was 5% and the maximum was 130%. Some homes have shown substantial variation associated with Structural modifications. While most homes show no obvious systematic trends, a few houses have shown temporal trends that may be associated with aging or climate. We are studying possible correlation between year-to-year radon variation, climatic variables (yearly-average and seasonal such as heating/cooling degree days, precipitation, soil moisture), and structural changes

  19. Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo

    International Nuclear Information System (INIS)

    Kazumasa Inoue; Masahiro Fukushi

    2013-01-01

    The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m -3 (2-68 Bq m -3 ). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m -3 , respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y -1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m -3 ), the annual average effective dose was estimated to be 0.37 mSv y -1 . This value was 31 % of the worldwide average annual effective dose. (author)

  20. The measurement of radon concentration of soil in a civil construction site

    International Nuclear Information System (INIS)

    Liu Hanbin; Fan Guang

    2004-01-01

    Radon is one of radioactive resources which do harm to human body. Therefore, its concentration in the soil should be measured before the civil construction works. Code for Indoor Environmental Pollution Control of Civil Building Engineering (GB50325-2001) is the main norm used for soil radon concentration measurement. By using FD-3017 RaA radon measuring equipment, the soil radon concentration in a civil building engineering site has been measured, the result shows that the concentration is lower than the regional average value, radon protective measures should not be installed in that site. (authors)

  1. A study of radon-222 concentrations in North Carolina groundwater

    International Nuclear Information System (INIS)

    Evans, J.P.

    1992-01-01

    The groundwater of 400 North Carolina homes was sampled to ascertain the distribution and extent of 222 Rn in North Carolina groundwater. Arithmetic mean (AM) and geometric mean (GM) concentrations of 1,816 pCi L -1 and 656 pCi L -1 were found for the state. These results indicate that two-thirds of 114 degree C. homes served by groundwater exceed the EPA proposed 300 pCi L -1 maximum contaminant level (MCL). Only 2% of NC homes exceeded 10,000 pCi L-1. The Eastern region had the lowest radon concentrations by far, with a GM of 2-)0 pCi L -1 . The Central region and Western region had GM's of 794 pCi L -1 and 1,032 pCi L -1 respectively. The groundwater data approached a log normal distribution. No consistent trends were noted in the relationship between indoor radon concentrations and groundwater radon concentrations. A correlation coefficient of 0.00921 revealed a very weak linear relationship

  2. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  3. Radon concentration in greehouses of Aomori Prefecture

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2001-01-01

    222 Rn causes a significant part of natural radiation dose to the general population. We previously surveyed 222 Rn concentrations in dwellings, and indoor and outdoor workplaces in Aomori Prefecture, and found geometric mean concentrations of 13, 22 and 4.4 Bq m -3 , respectively. The annual radiation dose rate of 4.3 mSv y -1 was estimated for people in the prefecture from these data. Since 222 Rn in the environment mainly originates from 226 Ra in the soil, that in cave is known to be higher than that in ordinary environments such as in buildings. Greenhouses are a possible place with high 222 Rn concentration, because of the soil exposed inside. However, the 222 Rn concentration in greenhouses has not yet been reported. We surveyed 222 Rn concentration in greenhouses of Aomori Prefecture. The 222 Rn concentration in 24 greenhouses at six locations in the prefecture were measured for approximately one year with passive Rn detectors using a polycarbonate film for counting α-rays, which could separate concentrations of 222 Rn from 220 Rn. Measurements of 222 Rn concentration and working level for one week carried out with active detectors to get equilibrium factors and the ratio of 222 Rn concentration in working time to non-working time in selected greenhouses. The geometric mean of 222 Rn concentrations in greenhouses was 13 Bq m -3 , and similar to that in dwellings. Significant seasonal variation was observed in 222 Rn concentrations. The geometric mean in June to September was 5.5 Bq m -3 , which was similar to that outside the greenhouses, while that in January to March was 19.5 Bq m -3 . These results showed that the 222 Rn concentration in greenhouses was comparable to that in dwellings. (author)

  4. Radon concentrations inside castles and other ancient buildings

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1992-01-01

    Sixty-two measurements of Rn-222 concentrations were made in 24 castles and 13 ancient buildings in 30 different places situated in the provinces of Parma and Reggio Emilia (Northern Italy). The method used was that of activated carbon canisters which were placed in selected settings for at least 48 h in the period staring from December 1990 to May 1991. It was possible to determine the amount of radon in each canister via its daughters gamma emitters counted by Nal(Tl) and Ge(I) detectors. The mean radon concentrations were 72 Bq m -3 (arithmetic mean) and 49 Bq m -3 (geometric mean), a good deal higher than the values obtained from measurements carried out in modern dwellings in the same area; 30 Bq m -3 (arithmetic mean) and 19 Bq m -3 (geometric mean). (author). 20 refs., 2 figs., 6 tabs

  5. Measurement of radon, radon daughters and thoron concentrations by multi-detector devices. No. E/12

    International Nuclear Information System (INIS)

    Somogyi, G.; Varga, Zs.

    1983-01-01

    There is a growing interest in collection of data concerning human exposures to naturally occurring alpha-emitting radionuclides (e.g. in mines, dwellings, building materials, industrial wastes, coal fuel cycle, water supply, soil, plants, etc.). Most of such studies are incomplete for the following reasons: in radon measurements the contribution of thoron is generally neglected, the determination of equilibrium factor is complicated or not possible at all, short- and long-term concentration fluctuations cause difficulties in obtaining representative mean values, the plate-out effect is generally not taken into account. A variety of simple methods were studied that could be used to overcome some of these difficulties by using cups equipped with two or more alpha-sensitive nuclear track detectors. A theoretical foundation of the quantitative measurements with such devices is presented. Experimental data are reported on radon, radon daughters and thoron concentrations measured by multi-detector devices in cave soil gas and in air of Hungarian dwellings. (author)

  6. E-perm radon monitors for determining waterborne concentrations of dissolved in radon 222Rn

    International Nuclear Information System (INIS)

    Jester, W.A.; Kotrappa, P.

    1989-01-01

    This paper describes a simple and relatively inexpensive method in which E-Perm radon monitors are used to determine the concentration of dissolved 222 Rn in drinking water. This procedure takes advantage of E-Perm's ability to accurately measure the integral radon exposure under conditions of high humidity. The method was evaluated against the liquid scintillation procedure recommended by the U.S. Environmental Protection Agency (EPA) and was found to give excellent agreement. An E-perm is an electret ion chamber that consists of a small chamber constructed from a conducting plastic and having an electret at its base and a filtered air inlet at the top. The technique described in this paper takes advantages of E-Perm's insensitivity to high humidity

  7. Radon concentrations in residential housing in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Yonehara, Hidenori; Aoyama, Takashi; Radford, E.P.; Kato, Hiroo; Sakanoue, Masanobu.

    1992-01-01

    A measurement of indoor radon ( 222 Rn) concentrations in Hiroshima and Nagasaki was carried out to examine an effect of the exposure on atomic bomb (A-bomb) survivors. Two hundred dwellings (100 from each city), chiefly of members of the Life Span Study population which is a fixed cohort studied by Radiation Effects Research Foundation (RERF), were selected for this survey. We used two types of alpha-track detector: a Terradex detector type SF and a bare-track detector improved by Yonehara et al. Comparative measurements showed that although there was an adequate correlation between the values obtained using the two detectors, the geometric mean value for the bare-track detector was 45% of that for the Terradex detector. This difference was considered to be due to differences in the calibration methods and sensitivities of the detectors to thoron ( 220 Rn). The arithmetic mean values of the radon concentrations for 193 locations in Hiroshima and 192 locations in Nagasaki measured by Terradex SF detector were 103 Bq m -3 and 40.6 Bq m -3 , respectively. The values at 100 locations in Hiroshima and at 93 locations in Nagasaki measured by the bare detector were 43.1. Bq m -3 and 13.6 Bq m -3 , respectively. The significant difference between the geometric mean values of the concentration in Hiroshima and Nagasaki measured by both methods was observed. The difference might be attributable to the different geological environments of the two cities. The difference between the estimated dose equivalents for exposure to radon daughters in dwellings in Hiroshima and Nagasaki over the last 30 years might amount to 0.4 or 0.8 Sv; however, no statistically significant difference was observed in lung cancer mortality in the low-dose range in either city. Nevertheless, the indoor-radon concentrations estimated in this survey could significantly influence the dose-response relationships for A-bomb exposure. (author)

  8. Radon concentrations in the water of Misasa area (Tottori Pref.)

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko; Inagaki, Masayo [Kinki Univ., Higashi-Osaka, Osaka (Japan); Mifune, Masaaki

    1997-02-01

    UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report (1988, 1993) indicated that the internal exposure dose of absorption of radon (Rn-222) and the short-lived decay product nucleus occupied about half of 2.4 m Sv of the global average of annual dose of natural radiation source. It is said to be the largest factor of radiation dose of natural radiation. Sample collection and the method, the elution properties by the concentration of Rn-222 in water and the comparison of characteristics among the different methods are explained. The detection limit of concentration of radon in water by OPTI-FLUOR direct method using the liquid scintillator spectrometer was 1.5 Bq/l for 20 mins counting. The maximum radon concentrations determined by this method showed 1700 Bq/l of the spring water in Misasa area, 400 Bq/l of the small water supply system and well and 18 Bq/l of Mitoku river. (S.Y.)

  9. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  10. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  11. Long-term measurement of radon concentration in the family house

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.

    2009-01-01

    The aim of this report was monitored the family house with radon concentration above radon limit for inhabited areas during one year. We were studied radon concentration changes in different rooms this house. Knowledge concerning of variations of radon activity concentration in family house were obtained. Daily variations show a maximum in the morning and a minimum in the afternoon. The seasonal variations show a minimum in spring months (March -April) and a maximum in early autumn (September). The radon concentration in the upstairs room was similar but ten-times lower than radon concentration in the downstairs room. In next period, the obtained results will be analysed in detail and different model describing the behaviour of radon in indoor air will be tested too. (authors)

  12. A survey on radon reduction efficiency of zeolite and bentonite in a chamber with artificially elevated radon concentration

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.

    2007-01-01

    Complete text of publication follows. Objective: Zeolite which is made of a special crystalline structure is a naturally occurring mineral group and can be used in radioactive waste management for site remediation /decontamination. There are a wide variety of naturally occurring and synthetic zeolites, each with a unique structure. The cations in zeolite are highly mobile and can be exchanged for other cationic species. On the other hand, bentonite forms from weathering of volcanic ash. This material may be used as an engineering barrier to enclose nuclear waste. In this study, radon reducing properties of zeolite and bentonite have been investigated. Methods: Using radioactive lantern mantle, a radon prone area with radon levels reaching the EPA's action level (200 Bq/m 3 ) was designed. Two sets of identical chambers (cylindrical chambers, diameter 10 cm, height 16 cm) were used in this study. No zeolite/bentonite was used in the 1 st set of the chambers. A thin layer of either zeolite or bentonite powder was applied to the base of the first set of chambers. An unburned radioactive lantern mantle (activity 800 Bq) was placed in all chambers (both sets) to artificially increase the radon level inside the chamber and simulate the condition of a radon prone area. Radon level monitoring was performed by using a PRASSI portable radon gas survey meter. Results: After placing the cap on its place, the radon levels inside the 1 st set of the chambers were 871.9, 770.3, 769.2 and 635.7 Bq/m 3 after 15, 30, 45 and 60 minutes respectively. Zeolite significantly decreased the radon concentration inside the chambers and radon levels were 367.9, 435.4, 399.0 and 435.4 Bq/m 3 after 15, 30, 45 and 60 minutes. The observed reduction in the radon level was statistically significant. As the radon concentrations in identical chambers with Bentonite were 550.7, 526.5, 536.2 and 479.8 Bq/m 3 after 15, 30, 45 and 60 minutes respectively, it is evident that zeolite is more efficient in

  13. The influence of the cigarette smoke pollution and ventilation rate on alpha-activities per unit volume due to radon and its progeny

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Flata, K.

    2003-01-01

    Alpha and beta activities per unit volume air due to radon, thoron and their decay products were evaluated in the air of various cafe rooms polluted by cigarette smoke. Both CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) were used. Equilibrium factors between radon and its progeny and thoron and its daughters have been evaluated in the air of the studied cafe rooms. The committed equivalent doses due to short-lived radon decay products were determined in different regions of the respiratory tract of non-smoker members of the public. The influence of cigarette smoke pollution, ventilation rate and exposure time on committed equivalent dose in the respiratory systems of non-smokers was investigated. Committed equivalent doses ranged from 1.15x10 -11 -2.7x10 -7 Sv.y -1 /h of exposure in the extrathoracic region and from 0.8x10 -12 -1.7x10 -8 Sv.y -1 /h of exposure in the thoracic region of the respiratory tract of non-smokers

  14. Diagnostics of and measures against radon concentrations in a dwelling

    International Nuclear Information System (INIS)

    Berger, H.

    1994-02-01

    Results are presented of measurements in a test-dwelling in the period april 1993 - november 1993. The purpose of the measurements was to investigate the possibilities of using a blower door (a fan in a wall of the dwelling) for specifying sources of radon in the dwelling, employing the diagnostic method developed at the KVI (Nuclear Physics Accelerator Institute in Groningen, Netherlands). Special attention is paid to the measurement of two input variables for the diagnostic method: transparency of the walls of the dwelling and the strength of static sources. Also measures aimed at reducing radon concentrations in the dwelling are discussed. The main conclusions are that (a) the pressure-variation method is a valid procedure to measure the transparency of walls and floors; (b) the blower door is a suitable technique for arriving at a correct diagnosis; and (c) over-pressurizing the crawl-space is the most effective measure in reducing the radon concentration of the crawl-space. More research on air flows in the soil is recommended. 21 figs., 28 tabs., 7 refs

  15. Determination of the Radon Concentration and Radioactivity Level in Karaca Cave

    International Nuclear Information System (INIS)

    Kara, A.

    2008-01-01

    In this study, the radon gas concentration in the Karaca cave which is open to tourism has been determined and the negative effects of radon gas on people were discussed. Karaca cave (Gumushane) is visited by many tourists every year. The measurements of radon gas concentration which affects the health of human beings negatively and even causes the lung cancer when it reaches high points have been done for the summer and winter season. LR-115 passive radon detector was used to determine radon concentrations in the cave both winter and summer season. The average radon concentration in the Karaca cave were determined as 823 Bq/m 3 and 1023 Bq/m 3 for the summer and winter season, respectively. Moreover, to find out the natural radioactivity in the cave, the gamma spectroscopic analysis of soil, stone and stalagmite samples were carried out and their relations with the radon gas in the cave atmosphere was analyzed

  16. A compact multiparameter acquisition system for radon concentration studies

    Science.gov (United States)

    Pugliese; Baiano; Boiano; D'Onofrio; Roca; Sabbarese; Vollaro

    2000-07-01

    A compact device suitable to acquire and display, at the same time, radon concentrations in a given atmosphere, and the environmental parameters characterising the atmosphere, is presented and described. It consists of two main blocks: (i) a detection section including a set of sensors for measuring pressure, humidity and temperature, and a set of silicon surface barrier detectors mounted in electrostatic cells collecting the ionised radon daughters; (ii) a single NIM module featuring an eight channel 12 bit ADC and the linear electronics to shape the signals from the silicon detectors. The system is controlled by a computer via a RS232 port. The software, implemented in Visual Basic, allows to display the energy distribution of the pulses coming from the alpha detectors and to initialise and control all phases of the acquisition. The results of preliminary tests show the high reliability of the system.

  17. A compact multiparameter acquisition system for radon concentration studies

    International Nuclear Information System (INIS)

    Pugliese, M.; Baiano, G.; Boiano, A.; D'Onofrio, A.; Roca, V.; Sabbarese, C.; Vollaro, P.

    2000-01-01

    A compact device suitable to acquire and display, at the same time, radon concentrations in a given atmosphere, and the environmental parameters characterising the atmosphere, is presented and described. It consists of two main blocks: (i) a detection section including a set of sensors for measuring pressure, humidity and temperature, and a set of silicon surface barrier detectors mounted in electrostatic cells collecting the ionised radon daughters; (ii) a single NIM module featuring an eight channel 12 bit ADC and the linear electronics to shape the signals from the silicon detectors. The system is controlled by a computer via a RS232 port. The software, implemented in Visual Basic, allows to display the energy distribution of the pulses coming from the alpha detectors and to initialise and control all phases of the acquisition. The results of preliminary tests show the high reliability of the system

  18. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  19. Natural radiation and radon concentration in buildings

    International Nuclear Information System (INIS)

    Ito, Kazuo; Asano, Kenji

    1985-01-01

    The purpose of this subject is to investigate the actual conditions of natural radiation levels in various types of buildings. This study is indispensable for the accurate evaluation of population dose of external and internal exposures from natural radiation. Concentrations of K-40, Ra-226 and Th-232 in building materials such as Portland cement, gypsum boards and its raw materials were measured with Ge gamma spectrometer. (author)

  20. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  1. Radon concentrations in drinking water in Wakasa area, Fukui Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tokuyama, Hideki; Igarashi, Shuichi [Fukui Prefectural Environmental Radiation Research and Monitoring Center, Tsuruga (Japan)

    1997-02-01

    Radon concentration in drinking water was surveyed to make basic data for the investigation of radiation dose due to natural radioisotopes in the general public. Here, the survey data in the Wakasa region were reported. Sampling was carried out at 126 points in this region (ca. 70x50 km{sup 2}). A total of 167 samples were taken from the tap of private wells, and small and large public water supplies. The radon concentration was determined by direct measuring method. The mean concentration of ground water from the wells was 28.5 Bq/l, significantly higher than those of the tap water from small and large water supplies, 5.0 and 11.2 Bq/l, respectively. Rn concentration of ground water was dependent on geological features and it was comparatively high in the granite region. Ground water containing a high concentration of Rn was mixed into the water of some large water supply in the cities, showing that its Rn concentration was higher compared to those for the small water supply. This survey was conducted only in the winter seasons from 1989 to 1993. Therefore, there are no data concerning seasonal changes in Rn concentration to drinking water. (M.N.)

  2. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  3. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  4. Radon remediation of a two-storey UK dwelling by active sub-slab depressurization: observations on hourly Radon concentration variations

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored at hourly intervals throughout a 5-week period during which sub-slab depressurization remediation measures, including an active sump system, were installed. Remediation of the property was accomplished successfully, with the mean radon levels upstairs and downstairs greatly reduced and the prominent diurnal variability in radon levels present prior to remediation almost completely removed. Following remediation, upstairs and downstairs radon concentrations were 32% and 16% of their pre-remediation values respectively. The mean downstairs radon concentration was lower than that upstairs, with pre-and post-remediation values of the upstairs/downstairs concentration ratio, R U/D , of 0.93 and 1.76 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 hour or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure-difference prior to remediation. This correlation disappears following remediation, confirming the effectiveness of the remediation procedure in mitigating radon ingress from the ground via the stack-effect. Overall, these observations provide further evidence that radon emanation from building materials makes a not insignificant contribution to radon concentration levels within the building. Furthermore, since this component remains essentially unaffected by sub-slab depressurization, its proportional contribution to the total radon levels in the home increases following remediation, leading to the conclusion that where

  5. Reduction of radon concentration in a basement workplace: study of the problem and characterization of the main parameters affecting the radon concentration

    International Nuclear Information System (INIS)

    Chiaberto, E.M.; Magnoni, M.; Righino, F.; Costa Laia, R.

    2002-01-01

    In this work is described the method used for the mitigation of high radon concentrations found in a basement workplace, the ARPA laboratory used for the metrology of EMF. In this lab was in fact measured a radon concentration up to 1900 Bq/m 3 , a value largely exceeding the Italian limit for workplaces (500 Bq/m 3 ). The basement workplace affected by radon is a room of around 500 m 3 with no windows and only one door, during work usually close, and therefore with a very low ventilation rate. In this workplace, usually two persons spent about 6 hour per day. Therefore their exposure to the radon and its decay products can attain a considerable value. For this people, accordingly to the accepted dosimetric models, an effective dose of several mSv per year could be estimated (ICRP Publication n. 65, 1993). It is thus important to reduce the radon concentration to acceptable levels, i.e. at least lower than 500 Bq/m 3 . This paper deals not only with the simple method used for the remedial action, but also to the investigation of the relevant parameters affecting the radon concentration. In particular, the monitoring of the radon concentration before and after the remedial action, allowed the calculation of the radon entry rates (Bq/s) and the ventilation rates (s-1) in the different experimental condition

  6. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  7. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  8. Airborne radon-222 measurement by active sampling with charcoal adsorption and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shizuma, Kiyoshi; Wen, Xiao-qiong; Fukami, Kenji; Iwatani, Kazuo; Hamanaka, Shun-ichi

    1998-01-01

    A simple method for measuring radon concentration in air is presented. Airborne radon is adsorbed in a charcoal bed by an active air sampling. In time, the adsorbed radon comes to attain radioactive equilibrium with its short-lived progeny 214 Pb. Utilizing this fact, radon concentration is derived from γ-ray measurement of 214 Pb. This method is estimated to be capable of detecting radon concentration in air down to 0.79 Bq·m -3 . The adsorption coefficient obtained with the method is compared with what is obtainable with passive sampling. Applications of this method to indoor and outdoor radon measurements are described. (author)

  9. Direct progeny detection techniques and random epidemiology

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Mishra, Rosaline; Sapra, B.K.

    2015-01-01

    Over the past 40 years, there has been considerable progress in the measurements methods and their application to the estimates of risks due to radon among general populations. The previous decade saw major development in this regard. It was the direct estimate of indoor radon risk from epidemiological studies in Europe and North America. These were important findings that demonstrated the presence of lung cancer risks at residential radon levels supplementing the generally used risks estimates at high exposures obtained from uranium miner's data. The residential radon epidemiological studies largely used radon concentration as a measure of exposure. The exposure to decay products, which are primarily the dose givers, are assumed to be proportional to the measured gas concentrations. Also, the presence of thoron was neglected in these studies. Although several corrections have appeared to these assessments, the question of variability of actual decay product exposures has largely remained unaddressed. In order to circumvent this limitation, passive techniques were developed to estimate the decay product concentrations directly using deposition monitors. These are based on detecting the alpha particles from decay products deposited on an absorber mounted LR-115 detectors. Known as Direct radon, and Thoron Progeny sensors (DRPS/DTPS), these have been further refined to separate fine fraction from the coarse fraction by wire-mesh capping techniques. Large number environmental calibration exercises and field data generation has been carried out on the progeny concentrations in Indian and some European environments. The development of progeny sensors offers a new tool for future epidemiology. Since in the Indian context, there exist no radon related epidemiological estimates of risk, it is time one conducts large scale studies to seek possible correlations between DRPS/DTPS data and lung cancer risks. While epidemiological studies in High background radiation areas

  10. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  11. Procedure manual for the estimation of average indoor radon-daughter concentrations using the radon grab-sampling method

    International Nuclear Information System (INIS)

    George, J.L.

    1986-04-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center to provide standardization, calibration, comparability, verification of data, quality assurance, and cost-effectiveness for the measurement requirements of DOE remedial action programs. One of the remedial-action measurement needs is the estimation of average indoor radon-daughter concentration. One method for accomplishing such estimations in support of DOE remedial action programs is the radon grab-sampling method. This manual describes procedures for radon grab sampling, with the application specifically directed to the estimation of average indoor radon-daughter concentration (RDC) in highly ventilated structures. This particular application of the measurement method is for cases where RDC estimates derived from long-term integrated measurements under occupied conditions are below the standard and where the structure being evaluated is considered to be highly ventilated. The radon grab-sampling method requires that sampling be conducted under standard maximized conditions. Briefly, the procedure for radon grab sampling involves the following steps: selection of sampling and counting equipment; sample acquisition and processing, including data reduction; calibration of equipment, including provisions to correct for pressure effects when sampling at various elevations; and incorporation of quality-control and assurance measures. This manual describes each of the above steps in detail and presents an example of a step-by-step radon grab-sampling procedure using a scintillation cell

  12. Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration

    International Nuclear Information System (INIS)

    Bossew, Peter; Lettner, Herbert

    2007-01-01

    In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude

  13. Health effects of radon

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Exposure of people to radon has taken on increased interest during the last decade because of the understanding that buildings can serve to trap radon and its daughters, and thereby build up undesirable concentrations of these radioactive elements. Numerous studies of underground miners (often uranium miners) have shown an increased risk of lung cancer in comparison with nonexposed populations. Laboratory animals exposed to radon daughters also develop lung cancer. The abundant epidemiological and experimental data have established the carcinogenicity of radon progeny. Those observations are of considerable importance, because uranium, from which radon and its progeny arise, is ubiquitous in the earth's crust, including coal mines. Risk estimates of the health effects of long-term exposures at relatively low levels require continued development, especially to address the potential health effects of radon and radon daughters in homes and occupational settings where the exposure levels are less than levels in underground uranium and other metal mines that have been the subject of epidemiological studies. Two approaches can be used to characterize the lung-cancer risks associated with radon-daughter exposure: mathematical representations of the respiratory tract that model radiation doses to target cells and epidemiological investigation of exposed populations, mainly underground uranium miners. The mathematically-based dosimetric approach provides an estimate of lung cancer risk related to radon-daughter exposure based specifically on modeling of the dose to target cells. The various dosimetric models all require assumptions, some of which are not subject to direct verification, as to breathing rates; the deposition of radon daughters in the respiratory tract; and the type, nature, and location of the target cells for cancer induction. The most recent large committee effort drawn together to evaluate this issue was sponsored by the National Research Council

  14. Radon in an underground cave system in Victoria

    International Nuclear Information System (INIS)

    Hedt, J.C.; Boal, T.J.

    1998-01-01

    Radon levels in a cave system in Victoria have been measured. The variation of radon and radon progeny levels with time, position throughout the cave and season have been determined. The radiation exposure of tour guides were estimated. The data is being used to develop a radiation management plan for the tour guides. Radon concentration within a cave system was proven to be dependent to a large extent upon the rate of air exchange with outside. Cave ventilation is the single most important factor in determining if there is diurnal variation in the radon concentration

  15. Assessing the risks from exposure to radon in dwellings

    International Nuclear Information System (INIS)

    Walsh, P.J.; Lowder, W.M.

    1983-07-01

    The factors used to assess the radiation dose and health risks from human exposure to radon in dwellings are critically reviewed in this summary. Sources of indoor radon and determinants of air concentrations and exposure levels are given as well as the uncertainties that exist in their formulation. Methods of assessing health effects from inhalation of radon and its progeny are discussed with emphasis on dosimetry of radon daughters and formulation of risk per dose values. Finally, methods of assessing risks for general population exposures to indoor radon concentrations are treated

  16. Studies on spatial distribution of indoor radon concentration at Mysore city, India

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2016-01-01

    Radon is a radioactive inert gas, with a half life of 3.82 days. Radium present in soil rocks and building material are the sources of atmospheric radon. Radon and its short-lived decay products ( 218 Po, 214 Pb, 214 Bi, and 214 Po) can be deposited in the lung tissues and give rise to higher radiation doses. Radon is now recognized as the second most important cause of lung cancer after smoking in the general population. In the present investigation a systematic study of the distribution of radon concentration has been carried out in a small room at different co-ordinates and time scales

  17. Aerosol properties of indoor radon decay products

    International Nuclear Information System (INIS)

    Martell, E.A.

    1984-01-01

    Lung cancer risks attributable to indoor radon are highly dependent on the properties of radon progeny aerosols which, in turn, are dependent on the nature and concentration of small particles in indoor air. In clean filtered air, radon progeny are attached to small hygroscopic particles of high mobility which are rapidly deposited on surfaces. By contrast, radon progeny attached to cigarette smoke are on large particles of low mobility which persist in air. Radon progeny ingaled by smokers are largely associated with smoke particles from 0.5 to 4.0 μm diameter. Such particles are selectively deposited at bronchial bifurcations and are highly resistant to dissolution. The attached radon progeny undergo a substantial degree of radioactive decay at deposition sites before clearance which gives rise to large alpha radiation doses in small volumes of bronchial epithelium. These processes provide new insights on mechanisms of bronchial cancer induction and on relative risks of lung cancer in smokers, passive smokers, and other non-smokers. (Author)

  18. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    Science.gov (United States)

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  19. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  20. Measurement of radon concentration in water using the portable radon survey meter.

    Science.gov (United States)

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be water was >20 Bq l(-1).

  1. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  2. Inhalation dose due to indoor radon and thoron concentrations in the surrounding villages of Hyderabad, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Sreenath Reddy, M.; Sreenivasa Reddy, B.; Yadagiri Reddy, P.; Gopal Reddy, Ch.; Rama Reddy, K.

    2006-01-01

    Inhalation of radon, thoron and their decay products is the major contribution to the total radioactive dose received by the human population from the natural radiation. The indoor inhalation doses due to radon, thoron and their progenies in the surrounding villages of Hyderabad, India are evaluated. The average inhalation dose due to radon and its progeny is found to be 0.26 ± 0.21 mSv y -1 and due to thoron and its progeny is 0.35 ± 0.38 mSv y -1 . The inhalation dose is also analyzed based on the types of floor, roof and walls of the dwellings and it is found that the dwellings with mud type construction materials have higher inhalation dose. Generally, the contribution of thoron and its progeny to the total dose is neglected but in the present study area the fractional dose of thoron and its progeny is found to be comparable to that of radon and its progeny. (author)

  3. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  4. Seasonal variation in concentration of radon and thoron at non-uranium mines in China

    International Nuclear Information System (INIS)

    Cui Hongxing; Wu Yunyun; Zhang Qingzhao; Shang Bing

    2009-01-01

    Objective: To study the seasonal variation in concentrations of radon and thoron in non-uranium mine. Methods: Eight kinds of mineral types from 9 non-uranium mines were selected, including copper, gold, aluminium, manganese, antimonium, tungsten, copper-nickel and coal mines in 6 provinces, such as Yunnan, Shandong, Xinjiang, Heilongjiang, Hunan and Guizhou. LD-P R-T discriminative detectors were used to measure radon and thoron concentrations in underground mines during four seasons in one year. Results: Radon concentrations in underground mines showed a significantly seasonal variation. Radon concentration ranged from 35.5 to 4841 Bq/m 3 in summer, and the average value in four mines exceeded 1000 Bq/m 3 of the control limit for workplace (GB 18871-2002) . In winter, radon concentration ranged from 5 to 1917 Bq/m 3 , only one of them exceeded the control limit. The ratio of radon from summer to winter ranged from 2 to 12. Ventilation was one of the main factors which influenced the seasonal variation of radon. While the thoron concentration in underground mines showed a tendency that it was higher in summer and lower in winter. It was difficult to attain representative values for thoron, due to the influence of location of detectors. The seasonal variation of thoron should be further studied. Conclusions: Seasonal variation for radon and thoron should be taken into account to estimate the effective dose to miners. The values of radon concentration during the short term should be corrected. (authors)

  5. On the possibility of detecting peaks of radon concentration in working areas

    International Nuclear Information System (INIS)

    Madelaine, G.; Zettwoog, P.

    1979-01-01

    Four methods for the continuous measurement of radon concentration, are described. The first two are based on the measurement of the ionization produced by the gas α disintegration. The third one carries out scintillation measurement of radon present in a chamber. The fourth is based on the disintegration chamber principle. Concerning the possibility of detecting radon concentration peaks, the use of ionization detectors, after a feasibility study seems to be suitable

  6. Radon concentration variations between and within buildings of a research institute

    International Nuclear Information System (INIS)

    Antignani, S.; Bochicchio, F.; Ampollini, M.; Venoso, G.; Bruni, B.; Innamorati, S.; Malaguti, L.; Stefano, A.

    2009-01-01

    Radon concentration in indoor air has been measured in many countries in a large number of buildings - mainly in houses but also in apartments and workplaces - mostly as a result of the application of radon policies and regulation requirements. However, few systematic analyses are available on radon concentration variations within buildings and between close buildings, especially as regards workplaces; such variations can have a significant impact on indoor radon exposure evaluation, and ultimately on the assessment of the dose from radon received by workers. Therefore, a project was started in 2006 aimed to study the spatial variation of radon concentration among and within about 40 buildings of the Istituto Superiore di Sanita (ISS), a research institute of public health located in Rome over a small area of less than 1 km 2 . Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six-month periods, in more than 700 rooms of the surveyed buildings. The paper describes the project in detail and preliminary results regarding 558 rooms in 29 buildings. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between buildings, between floors, and between rooms on the same floor. The CV between buildings resulted quite high (88%), a lower CV (42%) was found for variation between floors, whereas room-to-room CV on the same floor ranged from 25% at first floor level to 48% at basement level. Floor mean ratios, with ground floor as the reference level, were calculated for each building in order to study the correlation between radon concentration and floor levels. Although no clear trend was observed, the average basement/ground floor ratio of radon concentrations resulted about 2.0, whereas the average sixth floor/ground floor ratio of radon concentrations was 0.5. Some discussion on the potential impact of the results of this study on policies and radon regulations are also included in

  7. Radon in a Karstic Region School: Concentrations in Soil Gas and Indoors

    International Nuclear Information System (INIS)

    Vaupotic, J.; Kobal, I.; Barisic, D.; Lulic, S.

    1998-01-01

    The school presented in this paper exceeded instantaneous indoor radon concentration of 1000 Bqm -3 , obtained within the Slovene radon programme. Thus, additional measurements were performed and the radiation doses of teachers and pupils estimated. Radon concentrations between 1000 and 3000 Bqm -3 during teaching hours were found and the yearly effective doses from 0.75 to 1.1 mSv for the pupils and from 1.1 to 4.2 mSv for the teachers were calculated. In the soil gas radon and thoron concentration ranging from 70 to 150 kBqm -3 were obtained. The school was mitigated during summer 1998. (author)

  8. Lung cancer mortality and indoor radon concentrations in 18 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Mao, Y.; McGregor, R.G.; Semenciw, R.; Smith, M.H.; Wigle, D.T.

    1983-01-01

    Indoor radon and radon daughter concentrations were measured in a survey of 14,000 homes in 18 Canadian cities conducted in the summers of 1978 through 1980. Mortality and population data for the period 1966 through 1979 were retrieved for the geographic areas surveyed in each city. The results of analysis of the relation between lung cancer and radon daughter concentration, smoking habits and socioeconomic indicators for each city showed no detectable association between radon daughter concentrations and lung cancer mortality rates with or without adjustment for differences in smoking habits between cities

  9. Mitigation of the effective dose of radon decay products through the use of an air cleaner in a dwelling in Okinawa, Japan

    International Nuclear Information System (INIS)

    Kranrod, Chutima; Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Janik, Miroslaw; Shingaki, Reina; Furukawa, Masahide; Chanyotha, Supitcha; Chankow, Nares

    2009-01-01

    Field measurements were conducted to assess the effects of an air cleaner on radon mitigation in a dwelling with a high radon concentration in Okinawa, Japan. The measurements included indoor radon concentration, individual radon progeny concentration, equilibrium equivalent concentration of radon (EECRn), unattached fraction, and size distribution of aerosol-attached radon progeny. These measurements were conducted in a 74 m 3 room with/without the use of an air cleaner. The results showed that the mean radon concentration during the measurement was quite high (301 Bq m -3 ). The operation of air cleaner decreased the radon progeny activity concentration, EECRn and equilibrium factor by 33%, 57% and 71%, respectively, whereas the unattached fraction increased by 174%. In addition, the activity concentration of attached radon progeny in the accumulation mode (50-2000 nm) was obviously deceased by 42%, when the air cleaner was operated. According to dosimetric calculations, the operation of air cleaner reduced the effective dose due to radon progeny by about 50%.

  10. Radon in workplaces

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Porstendoerfer, J.; Schwedt, J.; Streil, T.

    2000-01-01

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations ( 218 Po, 214 Pb, 214 Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-f p -Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction f p and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have

  11. Measurements of the radon-222 and its daughters concentrations throughout Gaza strip, Palestine

    International Nuclear Information System (INIS)

    Rasas, M.F.; Yassin, S.S.; Shabat, M.M.

    2005-01-01

    High Radon levels are present in the granite and grandiositic rocks that. spread in sand dunes along coast of Gaza. Such materials are rich in uranium and T widely used in the construction of dwelling in the Gaza, and their contribution to high indoor Radon levels is most relevant.The present work aims to investigate approaches, measures and detection of indoor Radon level throughout Gaza Strip. Five hundred CR-39 dosimeters were distributed over six locations in the middle Yv-region of Gaza Strip. Results suggest that Radon concentrations range from l3.36 to 83.82 Bq/m 3 and a maximum value of 97.01 Bq/m 3 .The average Radon concentrations was 37.83 Bq/m 3 with standard deviation of 11.23.The results provide a framework for future studies that include a large, broader survey of Radon concentration in Palestine

  12. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  13. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  14. Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Jarallah, M. I.; Fazal ur, Rehman

    2006-01-01

    Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia was carried out using passive radon dosemeters. The objective of this radon survey was to obtain representative indoor radon data of Al-Jauf region. The study is a continuation of radon survey in main cities of Saudi Arabia which constitutes a baseline for Saudi Arabia in the Radon World Atlas. A total of 318 passive radon dosemeters were distributed randomly in the region and placed for a period of 1 y starting from April 2004 to April 2005. The results of indoor radon concentration measurement in 136 dwellings distributed in Al-Jauf region are presented. The remaining dosemeters were lost in the dwellings or mishandled. The results showed that the average, minimum, maximum radon concentrations and standard deviation were 35, 7, 168 and 30 Bq m -3 , respectively. Geometric mean and geometric standard deviation of the radon distribution were found to be 28 and 1.83, respectively. (authors)

  15. Study on radon concentrations in Antarctica's instrumentation and analysis

    International Nuclear Information System (INIS)

    Silva, H.E. da.

    1990-04-01

    Continuos measurements of the natural radioactive gas sup(222)Rn are made at the Brazilian Antarctic station Comandante Ferraz (62 sup(0)S, 58 sup(0)W) to study the continental influence of air masses over the Antarctic peninsula. The technique employed in the measurements is base on the process of electrostatic collection of the ionized Polonium isotopes (the Radon decay products). The efficiency of collection is of the order of 50% to 57% for an applied electric potential of 17 kV. The collection chamber has a hemispheric shape in order to optimize the collection yield. The observed radioactivity at the Ferraz station for the period March to November 1986 and 1987 exhibited different behaviors. The year 1986 showed an average radioactivity of (2.6 ± 1.8) x 10 sup(-2) Bq.m sup(-3), while in 1987 a 50% decrease in the concentration was observed with a value of (1.44 ± 0.8) x 10 sup(-2) Bq.m sup(-3). Associated variations of wind velocity and continental aerosol loads were also observed. Periodicities in the radon time series displayed more intense peaks at 25 to 30 day periods. No seasonal trend was observed. Transient increases of radon correlated with short deicing periods. The average flux of Rn were calculated from a sampling network consisting of 20 points spread over the exposed regoliths and outcrops of the King George island, with values of 250 atoms m sup(-2) s sup(-1) for the sup(220)Rn and 7500 atoms m sup(-2) s sup(-1) for the sup(222)Rn isotope. (author)

  16. Dosimetry of radon, thorium and their progenies in the environment of a chemistry lab and crude in Zulia State, Venezuela

    International Nuclear Information System (INIS)

    Pineda, L.; Viloria, T.; Palacios, D.; Sajo-Bohus, L.

    2013-01-01

    The main objective of this study was to estimate the dose rate of inhalation and the annual contribution of effective dose in the mixed field of radon and thoron in the environment of laboratory chemicals and oil from Zulia State, Venezuela, due to manipulation and storage of oil samples and water production

  17. Radon and thoron concentrations in offices and dwellings of the Gunma prefecture, Japan

    International Nuclear Information System (INIS)

    Sugino, M.; Tokonami, S.; Zhuo, W.

    2005-01-01

    A one year survey of indoor radon and thoron concentrations was carried out in offices and dwellings of the Gunma prefecture, Japan. A passive integrating radon and thoron discriminative monitor was used in the survey. The annual mean radon concentration was 22±14 Bq x m -3 , and ranged from 12 to 93 Bq x m -3 among the 56 surveyed rooms. Radon concentration in offices was generally higher than that in the dwellings, with the arithmetic averages of 29 and 17 Bq x m -3 , respectively. Radon concentrations were generally lower in the traditional Japanese wooden houses than those houses built with other building materials. Seasonal variation of indoor radon was also observed in this survey. Compared to summer and autumn, radon concentrations were generally higher in spring and winter. The mean value of thoron to radon ratio was estimated to be 1.3, higher values were observed in the dwellings than in the offices. The annual effective dose from the exposure to indoor radon was estimated to be 0.47 mSv after taking the occupancy factors of offices and dwellings into account. (author)

  18. An improved model for the reconstruction of past radon exposure.

    Science.gov (United States)

    Cauwels, P; Poffijn, A

    2000-05-01

    If the behavior of long-lived radon progeny was well understood, measurements of these could be used in epidemiological studies to estimate past radon exposure. Field measurements were done in a radon-prone area in the Ardennes (Belgium). The surface activity of several glass sheets was measured using detectors that were fixed on indoor glass surfaces. Simultaneously the indoor radon concentration was measured using diffusion chambers. By using Monte Carlo techniques, it could be proven that there is a discrepancy between this data set and the room model calculations, which are normally used to correlate surface activity and past radon exposure. To solve this, a modification of the model is proposed.

  19. Analysis of atmospheric concentrations of radon and thoron using beta counting technique

    International Nuclear Information System (INIS)

    Islam, G.S.; Basunia, S.M.

    1995-05-01

    This paper presents a detailed theory and experimental procedure for measurement and analysis of mixed radon and thoron in the environment. The technique has been successfully applied to the study of seasonal variations of radon and thoron in Rajshahi atmosphere during the years 1989-1991. The maximum radon concentration in outdoor air was observed in the winter from December to January while the indoor radon concentration was found to be maximum during the monsoon months of July and August. The implication of results is briefly discussed in the paper. (author). 4 refs, 6 figs, 2 tabs

  20. Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption

    International Nuclear Information System (INIS)

    Imme, G.; La Delfa, S.; Lo Nigro, S.; Morelli, D.; Patane, G.

    2006-01-01

    Soil radon investigation, using a continuous measurement device, has been performed on Mt. Etna in order to observe possible anomalies due to seismic and/or volcanic activity. In October 2002 an eruptive event occurred. Measurements, performed on the NE flank, have shown a possible correlation between eruptive activity of the volcano and soil radon concentration anomaly. The study of the seismic activity recorded in the same flank has, also, allowed to characterize the volcano dynamics and to correlate it with the variations of radon. The obtained results seem to indicate a possible dependence on volcanic activity of the radon concentration

  1. Gamma environmental dosimetry and radon concentration in Venezuela

    International Nuclear Information System (INIS)

    Sajo B, L.; Greaves E, D.

    1996-01-01

    The environmental radiation levels have been determined in Venezuela by means of different techniques including the passive dosimeters and the alpha and gamma dosimetry besides the gross alpha/beta counting. The most important conclusion is that the presence of artificial radionuclides (Cesium-137, Beryllium-7 and Cadmium-109) was observed in different environmental samples and in food considered contaminant. The values of gamma levels are between 28 and 40 mGy/day and the mean value of radon concentration in closed environment is 36 Bq/m 3 ; the higher values of a factor 10 have been measured in the Andes region. The 20% of analysed drinking water has a concentration of alpha radionuclides emitters less than 0.005 Bq/l and only the 8% is greater than 0.450 Bq/l. (authors). 6 refs., 1 fig

  2. Dependence of indoor radon concentration on the year of house construction

    International Nuclear Information System (INIS)

    Fujimoto, K.; Sanada, T.

    1999-01-01

    The dependence of indoor radon concentration on the year of house construction was studied using the results of two nationwide indoor radon surveys in Japan. The data of radon concentration in the surveys were classified into structure type as well as year of construction to obtain the current radon concentration for each structure type as a function of year of construction. The indoor radon concentration in wooden houses was found to be relatively constant with year of house construction until 1960, and then decreased, whereas the radon concentration in concrete houses increased sharply in houses constructed after 1970. The concentration in concrete houses built before 1975 was almost the same as that in contemporary wooden houses. However, the concentration in concrete houses built at present was about two times higher than that in wooden houses. The time trends found for wooden and concrete houses in the first nationwide indoor radon survey were confirmed by the second nationwide survey. In addition, these same time trends were mostly observed in the data classified into 7 districts in Japan. The increase of indoor radon concentration in concrete houses provides relatively high dose, and this increasing trend seems to continue, judging from the results of two nationwide surveys

  3. Variation of radon concentration in soil with different depth along the high background areas in Kerala

    International Nuclear Information System (INIS)

    Sonia, S.R.; Visnu Prasad, A.K.; Jojo, P.J.; Midhun, M.

    2016-01-01

    Radon is one of the naturally occurring radioactive gases in the environment produced from decay of radium isotopes, which are the decay product of 238 U, 232 Th and 235 U. Hence the concentration of uranium and thorium in the bed rock and soil materials determine the amount of radon produced in the soil. The radon produced in the soil migrates through the mechanism of diffusion and convection through pore spaces in the soil, fractures in the rock and along with weak zones such as shear faults, thrust etc. For some geological situations, radon migrates long distances from its place of origin and can be detected by alpha-particle recorders at the earth's surface. Concentration of radon in an area is governed by the radium content in the minerals, radon emanating power in the material, permeability of the soils and underlying rock, and moisture content in the soil

  4. Correlation of radon and thoron concentrations with natural radioactivity of soil in Zonguldak, Turkey

    Science.gov (United States)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül

    2017-02-01

    Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil. In this study, the correlations between soil radon and thoron concentration with their parent nuclide (226Ra and 232Th) concentrations in collected soil samples from the same locations were evaluated. The result of the measurement shows that the distribution of radon and thoron in soil showed the same tendency as 226Ra and 232Th distribution. It was found a weak correlation between the radon and the 226Ra concentration (R =0.57), and between the thoron and the 232Th concentration (R=0.64). No strong correlation was observed between soil-gas