WorldWideScience

Sample records for radon health effects

  1. Health effects of radon

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Exposure of people to radon has taken on increased interest during the last decade because of the understanding that buildings can serve to trap radon and its daughters, and thereby build up undesirable concentrations of these radioactive elements. Numerous studies of underground miners (often uranium miners) have shown an increased risk of lung cancer in comparison with nonexposed populations. Laboratory animals exposed to radon daughters also develop lung cancer. The abundant epidemiological and experimental data have established the carcinogenicity of radon progeny. Those observations are of considerable importance, because uranium, from which radon and its progeny arise, is ubiquitous in the earth's crust, including coal mines. Risk estimates of the health effects of long-term exposures at relatively low levels require continued development, especially to address the potential health effects of radon and radon daughters in homes and occupational settings where the exposure levels are less than levels in underground uranium and other metal mines that have been the subject of epidemiological studies. Two approaches can be used to characterize the lung-cancer risks associated with radon-daughter exposure: mathematical representations of the respiratory tract that model radiation doses to target cells and epidemiological investigation of exposed populations, mainly underground uranium miners. The mathematically-based dosimetric approach provides an estimate of lung cancer risk related to radon-daughter exposure based specifically on modeling of the dose to target cells. The various dosimetric models all require assumptions, some of which are not subject to direct verification, as to breathing rates; the deposition of radon daughters in the respiratory tract; and the type, nature, and location of the target cells for cancer induction. The most recent large committee effort drawn together to evaluate this issue was sponsored by the National Research Council

  2. Radon: A health problem

    International Nuclear Information System (INIS)

    Pucci, J.; Gaston, S.

    1990-01-01

    Nurses can and should function as effective teachers about the potential hazards to health of radon contamination in the home as well as become activists in the development of health care policy on radon

  3. Study on indoor radon exposure and its effect on human health

    International Nuclear Information System (INIS)

    Lu Xinwei

    2005-01-01

    Radon and its daughters relate to people health. Radon widely exists in the nature. The paper discusses the source, exposure and activity level of indoor radon, systematically analyzes the hazards and dose-response of residential radon exposure, and at last indicates the concrete method of controlling residential radon concentration. By interdicting radon pollution source and ventilation might effectively reduce indoor radon concentration and improve environmental air quality. (authors)

  4. Health effects and radiation dose from exposure to radon indoors

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1998-01-01

    Radon exposure has been declared a health hazard by several organisations, for example the International Commission on Radiological Protection (ICRP) and the World Health Organisation (WHO). The basis for the risk estimate has been the results from epidemiological studies on miners exposed to radon, supported by the results of residential epidemiology. Only few of the many residential epidemiological studies carried out hitherto have a design applicable for a risk estimate. The largest is the Swedish national study but several large well designed studies are ongoing. An excess risk has also been found in animal research. The model describes smoking and radon exposure as between additive and multiplicative, found in both miners and residential studies. The relatively few non-smokers among the miners and also among the residents give a problem at estimating the radon risk for these groups. It would also be desirable to know more about the importance of the age and the time period at exposure. Lung dose calculations from radon exposure are not recommended by ICRP in their publication 66. For comparison with other radiation sources the ICRP recommends the concept 'dose conversion convention' obtained as the risk estimate divided by the detriment. Other effects of radon exposure than lung cancer have not been shown epidemiologically, but dose calculations indicate an excess risk of about 5% of the excess lung cancer risk. (author)

  5. Health effects of inhaled radon progeny

    International Nuclear Information System (INIS)

    Monchaux, G.

    1997-01-01

    The relationship between an increased risk of lung cancer and exposure to radon progeny has been studied in eleven cohorts of underground workers, both in uranium and non uranium mines as well as in experimental animals. Risk estimates derived from miners studies are used to assess the risk of lung cancer in relation to exposure to indoor radon progeny. Human and animal experimental data are reviewed in the perspective of risk assessment for low exposure to radon progeny, in the conditions of the contemporary working environment as well as the indoor domestic environment. (authors)

  6. Health effects of radon in air

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1988-01-01

    Widely accepted risk estimates for exposure to radon in homes are derived largely from studies of miners. These include large groups of US Czechoslovakian, and Canadian uranium miners, Newfoundland fluorspar miners, and Swedish iron, lead, and zinc miners, all of which give roughly consistent results, with the excess risk of lung cancer increasing linearly with the exposure to radon. The authors have studied correlations between average radon levels and lung cancer rates in counties of the US. One study based on 50,000 purchased measurements in the main living areas of houses in which there have been no previous measurements involves 310 counties. It gives a weak but statistically significant negative correlation between mean radon levels and lung cancer rates for both females and males, whereas the usual risk estimates predict a large positive correlation

  7. Health effects and risks of radon exposure

    International Nuclear Information System (INIS)

    Cross, F.T.

    1990-01-01

    In view of the current widespread concern about the risks associated with indoor radon exposures, this paper explores the evidence on risk from human epidemiology studies, particularly in reference to EPA's 4-pCi/L action level value and from animal studies. While the EPA 4-pCi/L level has no legal force and is not a standard per se, it is becoming a de facto standard as several states are considering the level in pending legislation. Although risk can also be related to radiation dose from radon exposure, this perspective on risk is not treated in this chapter

  8. Radon programmes and health marketing

    International Nuclear Information System (INIS)

    Fojtikova, I.; Rovenska, K.

    2011-01-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. (authors)

  9. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  10. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  11. Is the Health of Irish Workers adequately protected from the effects Radon Gas?

    International Nuclear Information System (INIS)

    Heery Mary

    2006-08-01

    Since the introduction of the workplace ban on smoking in March, 2004 radon is the most significant factor for lung cancer in the workplace in Ireland. Radon is a natural radioactive invisible gas which accounts for over 60% of the total radiation dose received in Ireland. It has been classified as a Group One carcinogen by the World Health Organisation and is the second most important risk factor for lung cancer worldwide, after tobacco smoking. Lung cancer is the most common type of cancer causing death in Ireland. The Radiological Protection Institute of Ireland estimate that there are approximately 200 deaths per year in Ireland linked to radon. The aim of this study was to determine if the health of Irish workers was being protected from the effects of radon gas. Indoor workplaces in Sligo and Ballina, two towns in High Radon Areas were surveyed, to assess awareness of, and compliance with the legislation governing radon in the workplace. The results show that of employers surveyed: at least 50% did not know that their workplace was located in a High Radon Areas, 43% were not aware of the legislation governing radon in the workplace, 48% had not identified radon as a hazard to health and safety, 64% had not included radon in the workplace Safety Statement and 58% had not carried out a measurement for radon. The results also show that: awareness and compliance was higher in Public Sector workplaces than in Private Sector workplaces, it was higher among larger employers with an international profile than among smaller local employers, employers knew where to go to for advice and guidance on carrying out radon surveys in the workplace, advice on radon was not readily available from State bodies like the Health and Safety Authority, Local Authorities and the Health Service Executive. In conclusion, more than half of all employers surveyed were failing to comply with legislation governing radon in the workplace, yet no employer in either town had ever been

  12. BEIR VI report. Public summary: the health effects of exposure to indoor radon

    International Nuclear Information System (INIS)

    1998-01-01

    For centuries it has been known that some underground miners suffered from higher rates of lung cancer than the general population. In recent decades, a growing body of evidence has casually linked their lung cancers to exposure to high levels of radon and also to cigarette smoking. The connection between radon and lung cancer in miners has raised concern that radon in homes might be causing lung cancer in the general population, although the radon levels in most homes are much lower than in most mines. The National Research Council study, which has been carried out by the sixth Committee on Biological Effects of Ionizing Radiations (BEIR VI), has used the most recent information available to estimate the risks posed by exposure to radon in homes. The most direct way to assess the risks posed by radon in homes is to measure radon exposures among people who have lung cancer and compare them with exposures among people who have not developed lung cancer. Several such studies have been completed, and several are under way. The studies have not produced a definitive answer, primarily because the risk is likely to be very small at the low exposure encountered from most homes and because it is difficult to estimate radon exposures that people have received over their lifetimes. In addition, it is clear that far more lung cancers are caused by smoking that are caused by radon. The risk of lung cancer caused by smoking is much higher than the risk of lung cancer caused by indoor radon. Most of the radon-related deaths among smokers would not have occurred if the victims had not smoked. Furthermore, there is evidence for a synergistic interaction between smoking and radon. In other words, the number of cancers induced in ever-smokers by radon is greater than one would expect from the additive effects of smoking along and radon alone. Nevertheless, the estimated 15400 or 21800 deaths attributed to radon in combination with cigarette-smoking and radon alone in never

  13. Indoor exposure to radon and its health effects

    International Nuclear Information System (INIS)

    Loskiewicz, J.

    1997-10-01

    Radon (Rn-222) is a noble radioactive gas which originates during U-238 series decay. As a noble gas it is not reacting with soils and building materials and therefore is showing large mobility due to its half-life of 3.82 days. It decays through alpha emission and is producing other radioactive isotopes (Po-218, Bi-214 etc.) which are solid. The migration of radon and its decay products can be in unattached form or attached to aerosols. The size of aerosol particles is important for adhesion coefficient value and for inhalation probability by human respiratory system. The unattached radon is penetrating more easily into lung space and there it may decay into radioactive and alpha emitting solid isotopes. The emitted alpha particle can damage sensitive cells. An alpha particle that penetrates that epithelial cells can deposit enough energy in a cell to kill or transform it. The transformed cell, alone or through interaction with some other agent, has the potential to develop eventually into a lung cancer. The data on risk of a lung cancer occurrence for high and medium concentrations of radon in the air will also be presented. (author)

  14. Cost effectiveness of radon mitigation in Canada

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Krewski, D.; Zielinski, J.M.; McGregor, R.G.

    1992-01-01

    This paper examines the cost effectiveness of comprehensive strategies for reducing exposure to radon gas in indoor air in Canadian homes. The analysis is conducted within the context of a general framework for risk management programme evaluation which includes well-known evaluation techniques such as cost effectiveness and cost-benefit analyses as special cases. Based on this analysis, it is clear that any comprehensive programme to reduce exposure to environmental radon will be extremely expensive, and may not be justifiable in terms of health impact, particularly when considered in relation to other public health programmes. Testing of homes at the point of sale and installing sub-slab suction equipment to reduce exposure to indoor radon where necessary appears to be a relatively cost-effective radon mitigation strategy. In general, radon mitigation was found to be most cost effective in cities with relatively high levels of radon. (author)

  15. Health effects of water-borne radon: review of a proposed study. Final report

    International Nuclear Information System (INIS)

    1986-01-01

    The Science Advisory Board's Radiation Advisory Committee was requested to review the scientific merit of a proposal to conduct an epidemiological study of radon in indoor air. The Board accepted the request and formed a Radioepidemiology Subcommittee which responded to two overriding scientific issues: Can further epidemiological study contribute to an understanding of the risks of lung cancer associated with household exposures. The Subcommittee concludes that scientific uncertainties in current epidemiological studies (chiefly studies of uranium miners) could be further reduced through direct investigations of the domestic population. Is the proposed study under review by the Office of Research and Development, entitled Health Effects of Waterborne Radon, appropriately designed to address the risk. For reasons cited in the attached report, the Subcommittee concludes that it is not appropriately designed

  16. Assessment of potential radiological population health effects from radon in liquefied petroleum gas

    Energy Technology Data Exchange (ETDEWEB)

    Gesell, Thomas F; Johnson, Jr, Raymond H; Bernhardt, David E

    1977-02-01

    Liquefied petroleum gas (LPG) contains varying amounts of radon-222 which becomes dispersed within homes when LPG is used in unvented appliances. Radon-222 decays to alpha-emitting daughter products which are associated with increased lung cancer when inhaled and deposited in the respiratory system. The average dose equivalents to the bronchial epithelium from the use of LPG in unvented kitchen ranges and space heaters are estimated to be about 0.9 and 4.0 mrem/year, respectively. When extrapolated to the United States population at risk, the estimated tracheobronchial dose equivalents are about 20,000 and 10,000 person-rems/year for these appliances, or a total of about 30,000 person-rems/year. These doses are very small compared to other natural and man-made sources of ionizing radiation. It is estimated that these low doses would result in less than one lung cancer a year for the total U.S. population. Consequently, the use of LPG containing radon-222 does not contribute significantly to the incidence of lung cancer in the United States. Furthermore, the cost for control of radon levels in LPG would be over $50 million for reduction of one health effect, therefore it is concluded that a requirement for such controls would not be cost effective on a national basis. This study did indicate that individual dose equivalents could possibly exceed 500 mrem/year. However, existing data are not sufficient to determine the significance of such potentially high individual doses. (author)

  17. Analysis of radon concentrations in drinking water in Erbil governorate (Iraqi Kurdistan) and its health effects

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Haji, Salih O.

    2008-01-01

    Full text: This paper presents the results of radon level in drinking water in Erbil governorate and its districts. The measurements were carried out on 42 samples (tap water) of 21 major areas, and alpha track detectors (type Cr-39) were used for the estimations. The average values for radon concentration of tap water were variable from the district to another, and it was found to be (4.693±2.213 Bq/L) with a maximum of 9.61 Bq/L in Hugran region and minimum of 2.01 Bq/L in Haji-Omaran city. In addition, the average annual effective doses, and equilibrium factor between radon and its daughter were measured in each area and it was found to be (11.546±8.566 μSv/Yr) and (0.204±0.06) respectively. On the other hand, this paper presents an evaluation of the inhalation and ingestion doses from exposure to radon and also the contribution of radon concentration in drinking water to indoor radon concentration was estimated. When the results were compared with the internationally recommended reference levels (U.S Environmental Protection Agency limit 11.1 Bq/l), there were no indications of existence of radon problems in the water sources in this survey. Therefore the drinking water in Erbil governorate is safe as far as radon concentration is concerned. (author)

  18. Radon - natural health threat

    International Nuclear Information System (INIS)

    Wrixon, Anthony

    1985-01-01

    Natural sources of radiation attract little attention, yet a survey has found radon gas in buildings at levels which put the occupants at some risk. The author wants safety standards set without undue delay. (author)

  19. Radon, a real threat to our health

    International Nuclear Information System (INIS)

    Mauna, T.; Mauna, A.; Ghita, R.

    2005-01-01

    Radon is invisible, odorless and tasteless a radioactive gas that comes from the radioactive decay of naturally occurring uranium and thorium in soil and rock, can concentrate in domestic homes, overground workplaces, and caves. Radon has been identified as the second leading cause of lung cancers in the U.S., about 20.000 per year, and is present in millions of homes. The Environmental Protection Agency (EPA) of USA designated January 2005 as National Radon Action Month (NRAM) and held the second week of October every year as National Radon Action Week (NRAW). The focus of NRAM and NRW is to promote awareness about, testing for and mitigation of indoor radon gas with various events and outreach campaigns. The EPA considering radon exposure as capital problem for the population health decided to have a special dedicated free phone number the similar for every county state of USA taking into account the increase easy call by interested people. Many universities and research centers, including NGO from different countries world wide, following the recommendation of 'United Nations Scientific Committee on the Effects of Atomic Radiation' (USNCEAR) and 'International Commission on Radiological Protection ' (ICRP) until 1977, developed their own radon researches in order to clarify the properties, area distribution and concentration, geological production and other needed aspects. This paper compare the radon risk versus radioactive waste gaseous Nuclear Power Plant release in normal or abnormal operation and underlines the needs for Romanian's radiation research laboratories to undertake radon protection programs similar to to those underway in other countries. (authors)

  20. World Health Organization's International Radon Project 2005-2008

    International Nuclear Information System (INIS)

    Carr, Zhanat; Shannoun, Ferid; Zielinski, Jan M.

    2008-01-01

    Recent epidemiological studies of people exposed to indoor radon have confirmed that radon in homes is a serious health hazard that can be easily mitigated. To address the issue at an international level, the World Health Organization (WHO) established the International Radon Project (IRP). The project was launched in January 2005 with its first meeting attended by 36 experts representing 17 countries. The project's scope and the key objectives were outlined at this meeting and later refined: 1-) To identify effective strategies for reducing the health impact of radon; 2-) To promote sound policy options, prevention and mitigation programs (including monitoring and evaluation of programs; 3-) To raise public, political and economical awareness about the consequences of exposure to radon (including financial institutions as target group); 4-) To estimate the global health impact of exposure to residential radon using available data on radon worldwide. WHO and its member states strive through the WHO-IRP to succeed in putting indoor radon on the environmental health agenda in countries with lower awareness of radon as a health problem and in strengthening local and national radon-related activities in countries with ongoing radon programs. Two subsequent working meetings were held: in March, 2006 in Geneva with 63 participants from 25 countries, along with representatives of the International Atomic Energy Agency (IAEA), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP), and European Commission (EC); and in March 2007 in Munich with 61 participants from 27 countries. Both meetings reviewed the IRP progress and focused on the two main outputs: 'The WHO Report on the Global Burden of Disease (GBD) due to Radon' and 'The WHO Radon Handbook'. The former applies the WHO methodology for GBD assessment and considers ways to graphically map residential radon concentrations

  1. Communicating radon risk effectively: Radon testing in Maryland. Final report

    International Nuclear Information System (INIS)

    Desvousges, W.H.; Smith, V.K.; Rink, H.H.

    1988-10-01

    Two sets of materials and corresponding delivery strategies for communicating radon risk were evaluated, compared with a 'no-special-treatment' strategy in a comparison community. One community received radio public-service announcements and utility bill inserts. The second received these plus posters, local government sponsorship of a radon awareness week, and local slide presentations. The most-intensive efforts (multiple channels, multiple hits) were more effective than the less intensive effort, which had little impact compared with no special treatment. From a marketing perspective, the effort was very successful, increasing the share of homeowners who tested for radon from 5% to 15%. This may not be viewed as sufficiently effective from a public-health perspective, however

  2. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  3. A review of the factors affecting the cost effectiveness and health benefits of domestic radon remediation programmes

    International Nuclear Information System (INIS)

    Denman, A.R.; Phillips, P.S.; Crockett, R.G.M.

    2008-01-01

    Radon levels in domestic properties can be sufficiently high to pose a health hazard, significantly increasing the risk of lung cancer. The distribution of high levels varies geographically. As a result, radon remediation programmes in the United Kingdom (UK) have been developed, firstly to find the houses with high levels, and then remediate these. Our group has extensively studied domestic remediation programmes in the U.K., principally in Northamptonshire, where 6.3% of existing houses exhibit radon levels greater than the UK Action Level of 200 Bq.m -3 , but also in other parts of the country. This analysis has addressed the influences of a number of different factors. Firstly, programmes in areas where more houses are over the Action level are necessarily more cost-effective. Secondly, cost-effectiveness is reduced if people do not take action to test, and then remediate, their houses, which is the case in practice. Therefore, radon awareness programmes in areas with a modest number of houses over the Action level can be more expensive, and therefore inappropriate, compared with other health interventions. Our studies have also demonstrated that the occupancy of the home, together with the ratio of radon levels upstairs and downstairs, has only a modest effect on the value of remediation. More significantly, remediation with an active pump eliminates diurnal variation, and night-time exposure is thus reduced while day-time exposure is not. The most significant impact on the value of remediation programmes, however, is whether the occupants smoke, as radon and smoking combine to produce a greater health risk. Unfortunately, surveys have shown that fewer smokers take action to test and remediate their homes, and many of those most at risk are consequently not reached by the current programmes. This paper presents a review of these issues, and considers the impact of the results on the design of future remediation programmes. (author)

  4. Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects

    International Nuclear Information System (INIS)

    Xinwei, L.

    2006-01-01

    This paper presents the results of radon concentration measurements in drinking water from the municipal water supply system and private wells located in Baoji (China)). The measurements were carried out on 69 samples. The mean values of tap water and well water were found to be 12 kBq m -3 with a maximum of 18 kBq m -3 and 41 kBq m -3 with a maximum of 127 kBq m -3 , respectively. The well water samples obtained from different depth-well (water-bearing levels), i.e. shallow well (well depth under 10 m) water, middle well (well depth 10-30 m) water and deep well water, have respective mean values of 24, 34 and 56 kBq m -3 . The contributions of the observed radon concentration in drinking water to indoor radon account for 2.8-13.2% of the mean value of Shaanxi indoor radon concentration and the effective dose to the dweller owing to inhalation of radon emanating from household water is 0.03-0.14 mSv y -1 . (authors)

  5. The health benefits and cost effectiveness of the radon mitigation programme in NHS properties in Northamptonshire

    International Nuclear Information System (INIS)

    Denman, A.R.; Parkinson, S.; Barker, S.P.; Phillips, P.

    1997-01-01

    A comprehensive radon remediation programme in Nahs properties in Northamptonshire, where 11 100 staff are employed working on 83 separate sites, has been in progress since 1992, and has resulted in many locations with raised radon levels being identified and re mediated. This paper considers the dose saving achieved and costs of the remediation to derive a value for the cost-effectiveness of the programme. A value of 84 000 per Man-Sievert of annual dose reduction was obtained, which is around half the figure calculated by the NRPB in its recent initiative to reduce patient doses from dental x-rays in the UK, based on cost-benefit analysis. Thus similar comprehensive radon remediation programmes in any workplace in Radon Affected Areas can be justified. The cost of this workplace programme is, however, a factor of about 4 times more expensive than the theoretical estimates for domestic radon mitigation programmes found in the literature, and the reasons for this difference are considered. (author)

  6. [The methods of assessment of health risk from exposure to radon and radon daughters].

    Science.gov (United States)

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  7. Radon: implications for the health professional

    International Nuclear Information System (INIS)

    Romano, C.A.

    1990-01-01

    Radon is a colorless, odorless gas formed by radioactive decay of radium and uranium, which are naturally present in the earth's crust. When concentrated indoors, this invisible gas becomes a potential health hazard. The Environmental Protection Agency estimates that up to 20,000 lung cancer deaths annually can be attributed to prolonged radon exposure. Radon is an important health issue that should be understood by all health care professionals. This paper discusses some of the important issues regarding radon, such as the incidences of lung cancer believed to be attributable to radon, the high-risk areas in the United States, federal safety guidelines, and public apathy. These issues and their impact on the health care required by professionals, especially nurse practitioners, are discussed

  8. Basic study on positive effects of radon inhalation on pet's health

    International Nuclear Information System (INIS)

    Kataoka, Takahiro; Sakoda, Akihiro; Kawabe, Atsushi; Hanamoto, Katsumi; Yamaoka, Kiyonori; Tokunaga, Rikizo

    2012-01-01

    Radon inhalation using our radon exposure device activated anti-oxidative function in some organs of mouse. To assess the possibility of its application to veterinary care, healthy dogs and cats with chronic renal failure were inhaled radon at a concentration of 5500 Bq/m 3 for 30 minutes every 2 days for 30 days. In result, radon inhalation within a relatively long time period significantly decreased the triglyceride level of dogs. On the other hand, some cats increased the volume of drinking water by radon inhalation and the creatinine level in blood of these cats was decreased to normal level. These findings suggest that radon inhalation may have curative properties against chronic renal failure. (author)

  9. A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects

    International Nuclear Information System (INIS)

    Tayyeb, Z.A.; Kinsara, A.R.; Farid, S.M.

    1998-01-01

    Several studies have shown that water-borne 222 Rn contributes to indoor air concentrations. A passive radon measurement method was employed to determine radon activity concentrations in the water of Jeddah city (Saudi Arabia). Tap water, flushing water and drinking water, including natural mineral water, artificial mineral water and distilled water, have been investigated for their radon concentrations. It is observed that the radon concentration in natural mineral water samples is the highest and that in flush water, it is the lowest. From these measurements, the corresponding annual effective dose for the stomach and the lung are determined. It is found that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanated from tap water and flushing water. Moreover, it is also seen that the annual effective dose resulting from inhalation of radon emanated from tap water and flushing water is negligible compared to the total annual effective dose for indoor radon in Jeddah. (author)

  10. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.

    1995-01-01

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m 3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m 3 , this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  11. The relationship between radon knowledge, concern and behavior, and health values, health locus of control and preventive health behaviors

    International Nuclear Information System (INIS)

    Kennedy, C.J.; Probart, C.K.; Dorman, S.M.

    1991-01-01

    Understanding similarities between health-related and radon-related knowledge, attitudes, and behaviors may suggest application of effective strategies of radon-related education in targeted populations. A mail survey was returned by 300 randomly selected homeowners in a community at risk for high home radon concentrations (50% response). While 64% were concerned, only 7% tested their homes. The expected association between radon knowledge, radon concern, and information-seeking was identified. In addition, those who tested their homes had greater knowledge and did more information seeking. Health values and radon concern were only weakly related. Environmental concern explained the greatest variance in radon concern (10%). Internal health locus of controls were more likely to have high radon concern. Of the preventive health behaviors, not smoking and seat belt use were the best predictors of variance in radon concern (5%). Segmenting the population is suggested for best educational outcome. Relating information to environmental issues may be helpful. Health-conscious people may need awareness of risks. Issues of self-control and radon testing and reduction may be helpful for some. Synergy between smoke and radon, compounded by smokers lack of concern suggests targeting smokers for education efforts

  12. The effect of laterite density on radon diffusion behavior.

    Science.gov (United States)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Fang, Qi; Lv, Junwen; Duan, Xianzhe; Liu, Zhenzhong; Guo, Yueyue

    2018-02-01

    Radon generated in porous media such as soils and rocks migrates into indoor and outdoor air mainly by diffusion, possessing significant hazards to human health. In order to reduce these hazards of radon, it is of great importance to study the diffusion behavior of radon. In this study, we systematically measured the radon diffusion coefficient of laterite with the density ranging from 0.917gcm -3 to 2.238gcm -3 , and studied the effect of laterite density on the radon diffusion. The results show that the radon diffusion coefficient of the laterite generally decreases with the increasing laterite density. In addition, three possible relationships between the radon diffusion coefficient and the laterite density are found out as follows: (1) the linear correlation with a slope of -4.48 × 10 -6 for laterite with density ranging from 0.917 to 1.095gcm -3 , (2) the exponential correlation for laterite with density from 1.095 to 1.63gcm -3 , (3) linear correlation with a slope of -3.1 × 10 -7 for laterite with density from 1.63 to 2.238gcm -3 . The complex relationship between the radon diffusion coefficient and density is caused by the change of porosity and tortuosity of the laterite. Therefore, we suggest that a suitable density should be adopted while using the laterite to effectively cover uranium tailings or economically produce building materials that can curb the radon exhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effect and the amendment of thermoregulation to the stability of radon concentration in radon chamber

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Wang Renbo; Qu Jinhui; Tang Bin; Zhu Zhifu; Man Zaigang

    2010-01-01

    When the temperature in the airtight radon chamber was adjusted, it would induce the frequent changes of the air pressure in chamber, then the radon concentration in the radon chamber would continuously reduce, which could seriously destroy the stability of the radon concentration in radon chamber. In this paper, on the study of the effect reasons to the stability of radon concentration in airtight radon chamber due to the thermoregulation, a new amendment scheme was put forward, and the solutions of the relevant parameters were discussed. The amendment scheme had been successfully applied to HD-6 radon chamber, and achieved good results. (authors)

  14. Continuous and passive environmental radon monitoring: Measuring methods and health effects. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning continuous and passive radon (Rn) monitoring, measurement methods and equipment, and health effects from Rn concentration in air, water, and soils. Citations discuss the design, development, and evaluation of monitoring and detection devices, including alpha spectroscopy and dosimetry, track detecting and scintillation, thermoluminescent, electret, and electrode collection. Sources of Rn concentration levels found in building materials, ventilation systems, soils, and ground water are examined. Lung cancer-associated risks from Rn radiation exposure are explored. Radon monitoring in mining operations is excluded. (Contains a minimum of 210 citations and includes a subject term index and title list.)

  15. Radon

    International Nuclear Information System (INIS)

    Holmen, R.W.

    1987-01-01

    The discovery that radon enters into residential and commercial structures and produces adverse health consequences to occupants thereof has raised issues for the real estate profession in connection with transactions involving affected structures. The legal responsibilities of real estate professionals in relation to such structures have not yet been clearly defined. Moreover, consistent and reliable testing methods and results, clear identification of circumstances where testing is necessary, and consensus as to health risks suggested by various radon levels have yet to be achieved. When these legal and technical questions are clarified, real estate buyer and sellers as well as agents and brokers will be greatly benefited

  16. Cost and effectiveness of radon barrier systems

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1982-12-01

    Earthen, asphalt, and multilayer radon barrier systems can all provide reduction in the amount of radon gas released from uranium mill tailings. Pacific Northwest Laboratory field tested all three types of covers at Grand Junction, Colorado during the summer of 1981. All nine individual radon barrier systems tested currently meet the EPA standard for radon flux of 20 pCi m - 2 s - 1 . The cost of the asphalt and 3m earthen covers were about the same at the field test. Multilayer covers were significantly more costly. Cost estimates for three high priority western sites indicate 3m of earthen cover is the least costly radon barrier when earthen material is available at or near the disposal site. If earthen material must be imported more than 8 to 10 km asphalt and possibly multilayer radon barriers can be cost effective

  17. An assessment of the health benefits of radon mitigation of buildings in radon affected areas

    International Nuclear Information System (INIS)

    Denman, A.R.

    1999-06-01

    Excessive concentrations of radon are known to cause lung cancers in miners, but it is only recently that evidence has accumulated that raised radon levels in the built environment may also be a risk. It is possible to reduce such levels, and so efforts have continued to locate affected areas both in the United Kingdom, and elsewhere. Northamptonshire was declared a Radon Affected Area in 1992. As Radiation Protection Adviser, 1 initiated routine radon surveys of all National Health Services (NHS) premises in Northamptonshire. It was clear from the literature that no major workplace study had been published. This started a programme of published research, which forms the basis of this Ph.D. submission. The research remains the only body of published results of actual remediation programmes. The research programme first estimated doses to occupants in affected rooms, and showed that individual doses were higher, and the number of staff affected greater, than staff exposure during the clinical use of X-Rays in the same hospitals. The costs of remediation of each affected room, together with measurements of radon levels afterwards, were recorded, permitting the first analysis of the costs and benefits of an actual remediation programme. Only predicted costs of proposed domestic remediation programmes had been published, and it was shown that remediation in the NHS workplace was more costly than these predictions, but still comparable with the National Radiological Protection Board (NRPB) initiative to reduce patient dose from dental X-Rays. The work was then extended to remediation programmes in schools and houses in Northamptonshire, permitting the first published comparison of such programmes. It proved most cost effective to remediate schools, and almost as cost-effective to remediate houses, but only if all house-holders could be encouraged to remediate their houses, once raised radon levels were found. To date only 10 % had done so. The research has made a major

  18. Health effects of exposure to indoor radon and its decay products

    International Nuclear Information System (INIS)

    Mustafa, A.A.; Vasisht, C.M.

    1987-01-01

    Estimates of possible incidence of lung cancer associated with present exposure to natural indoor radon are assessed for Kuwait. Several dosimetric models were used and their results are compared. Some models took into consideration individual differences in sex, life-style and age. The UNSCEAR model gives life-time risk values of 2-4.5 x 10 -4 per WLM for miners. Taking into account a factor of 0.6 between the mean breathing rate of workers in the model and non-miners, and the population of Kuwait as 1.7 million, the model gives 46-105 lung cancer cases per year induced by radon and its decay products. Since these models are developed for smokers they tend to overestimate the actual incidence rates. Assuming that 20% of the population in Kuwait are smokers, the incidence rates range will be reduced to 30-63 cases per year which is about 9-20% of the observed lung cancer incidence in 1982. The energy conservation programme is expected to increase average indoor radon concentrations, and consequently bring about higher lung cancer incidence. (author)

  19. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    Cross, F.T.

    1988-01-01

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  20. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    Science.gov (United States)

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  1. Effects of radon in indoor air studied

    International Nuclear Information System (INIS)

    Auvinen, A.

    1994-01-01

    Radon is an odorless, tasteless and colourless radioactive noble gas that enters indoor air from the ground. Radon causes lung cancer. A committee set up to evaluate the health risks of chemical substances has been drafting a report on radon, which will compile the major research findings on the lung cancer risk posed by radon. Animal tests have shown that even small doses of radon can cause lung cancer. Smokers seem to contract radon-induced lung cancer more readily than non-smokers. Because research findings have been conflicting, however, it is not known exactly how high the risk of lung cancer caused by indoor radon exposure really is. Several major research projects are under way to obtain increasingly accurate risk assessments. An on-going European joint project brings together several studies - some already finished, some still being worked on. In this way it will be possible to get more accurate risk assessments than from individual studies. In order to prevent lung cancer, it is important to continue the work of determining and reducing radon connects and to combat smoking. (orig.)

  2. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  3. Biological radiation effects of Radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E

    1996-12-31

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 {+-} 0.3 to 111 {+-} 7.4 KBq/m{sup 3} equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m{sup 3}, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author).

  4. Exposure to radon in dwellings: risk assessment and management. Health and Society Collection nr 8

    International Nuclear Information System (INIS)

    Bard, Denis; Jouan, Michel; Lochard, Jacques; Festy, Bernard; Piechowski, Jean; Sauvalle, Bertrand; Tymen, Georges; Masse, Roland; Monchaux, Georges; Tirmarche, Margot; Boice, John D.; Cohen, Bernard L.; Hubert, Philippe; Pirard, Philippe; Zmirou, Denis; Lefaure, Christian; Poffijn, Andre; Van Nuffelen, Dominique; Chayapathi, Laksmhi; Thevissen, Frank; Eggermont, Gilbert; Massuelle, Marie-Helene; Robe, Marie-Christine; Grassin, Delphine; Collignan, Bernard; Millet, Jean-Robert; Cochet, Christian; Mansotte, Francois; Dab, William; Gilbert, Claude; Richert, Philippe; Charreyron, Bruno; Kalifa, Gabriel; Chartier, Philippe; FReMAUX, ELIANE; Jean-Louis Decossas; Andru, M.; Bernard, Sylvain; Bonnefoy, Xavier

    2000-04-01

    The contributions of this colloquium propose reports issues related to radon and on practices of neighbouring countries in radon risk assessment and management, on the management of the environmental risk and of public information at the district level in France, on situations involving not only radon but also some other potentially toxic agents (problems of indoor air quality), and on problems other than health problems which could emerge while implementing prevention or mitigating measures related to radon. After a general presentation of radon (Georges Tymen), a first set of contributions addresses the identification of hazards: Carcinogenesis and ionizing radiations put in question again (Roland Masse); Data from animal experimentation on radon (Georges Monchaux); Epidemiology of the radon risk in France (Margot Timarche); Joint analysis of underground miners and risks of radon-induced lung cancer (John D. Boice); Studies of the geographic correlation of radon risk (Bernard L. Cohen). The second set of contributions addresses the building up of an exposure-risk relationship: Why and how to build up dose-effect relationship? Approaches by international institutions (Philippe Hubert); Extrapolation of the dose-response relationship for public health evaluation (John D. Boice). A contribution addressed Exposures and risk assessment in France (Philippe Pirard). A synthesis on stakes in then proposes (Denis Zmirou). The last set of contributions addressed the analysis of management options: Management of the radon-related radiological risk in dwellings (Christian Lefaure); Reflections on the perception and communication of the radon risk (Gilbert Eggermont); Exposure boundary values? Alternatives and practical information (Marie-Helene Massuelle); Practical ways of action in present housing and costs (Marie-Christine Robe, Jean-Robert Millet); Management of the radon problem within a global perspective of indoor air quality (Christian Cochet); Risk management and

  5. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    Science.gov (United States)

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  6. Radon awareness in Ireland: a assessment of the effectiveness of radon road shows

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: In late 2004 the Radiological Protection Institute of Ireland (R.P.I.I.) initiated a series of radon road shows in areas designated as High Radon Areas 1 in the R.P.I.I. s national radon survey of homes. The main objective of these road shows was to provide information to a local audience on the risks of exposure to radon. These road shows target both employers and householders. Each road show has the same general format. A presentation and/or meeting with a major employer representative group within the area. The purpose is to make employers aware of the risks associated with exposure to radon in the workplace and to highlight their obligations under current Irish health and safety legislation regarding radon in the workplace. An information stand on radon manned by R.P.I.I. staff members in a local shopping centre or other similar area. This provides those concerned about radon with accessible information on radon exposure risks, how to measure radon and the steps a home owner could take to reduce radon concentrations where necessary. Where possible R.P.I.I. staff members visit one or more schools in the general area. A short presentation on radon was given to students and students were given an opportunity to asks questions Maximizing media exposure to publicize our visits is vital to the success of these visits. Each visit is preceded by a Press Release whose main aim is to brief local and national media on the radon issue so as to achieve maximum publicity mainly through radio and television coverage. In general the media are very interested in the whole radon area and R.P.I.I. staff members have given 57 radio and 10 television interviews to date since the commencement of this initiative. The four road shows carried out to date have been successful in encouraging householders to carry out radon measurements. Since the start of the road shows to the present, the R.P.I.I. has seen a 44% increase in the number of householders requesting radon

  7. Health hazards due to radon and its daughters

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, I.E.; Tufail, M.

    1993-01-01

    The health hazards liked to radon and its daughters have become a matter of great public concern. When inhaled, a fraction of radon is dissolved into the lung fluid, from where it is transported to other parts of the body. The radiation damage is caused to the lungs due to alpha decay of radon during its transit time within the respiratory tract. Radon daughters are found to be even more dangerous than radon itself. These daughters attach themselves to dust particles present in the air. Some of the aerosols so produced enter the lungs and enter the blood stream. It has now been confirmed that radon and its daughters contribute about 70% of the internal dose received by an individual from natural radiation sources. The danger of indoor radon and its daughters is even higher for energy-saving houses and those having poor ventilation systems. This paper briefly describes the health hazards due to radon and its daughters. Different methods employed for the measurement of concentrations of radon and their daughters are described. The experience gained from the nation-wide surveys carried out in different countries is also given. (author). 18 refs, 3 figs, 1 tab

  8. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  9. Cost effectiveness of reducing radon exposure in Spanish dwellings

    International Nuclear Information System (INIS)

    Colgan, P.A.; Gutierrez, J.

    1996-01-01

    Published information on the distribution of radon levels in Spanish single family dwellings is used to evaluate the cost-effectiveness of three different intervention scenarios: remediation of existing dwellings, radon proofing of all future dwellings and the targetting of areas with higher than average indoor radon concentrations. Analysis is carried out on the basis of a Reference Level of 400 Bq m -3 for the existing housing stock and 200 Bq m -3 for new dwellings. Certain assumptions are made about the effectiveness and durability of the measures applied and annualised costs are used to calculate the costs per lung cancer death averted. The results reveal that targetting future housing is a more cost-effective option than remediation of existing dwellings with radon concentrations above the Reference Level -the costs per lung cancer death averted are typically $145000. In high-risk areas, these costs can be considerably less, depending on the percentage of dwellings expected to exceed the Reference Level and the average savings in exposure as a result of the intervention. The costs of intervention to reduce lung cancer deaths following exposure to radon compare favourably with those of other health programmes in other countries. (Author)

  10. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  11. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  12. Cost-effectiveness analysis of radon remediation in schools

    International Nuclear Information System (INIS)

    Kennedy, C.A.; Gray, A.M.

    2000-01-01

    Indoor radon is an important source of radiation dosage in the general population and has been recognised as a world-wide environmental and public health challenge. Governments in many Western and Eastern European and North American countries are undertaking active radon-risk reduction policies, including the remediation of existing residential and work place building stocks (1). These endeavours include a priority of remediating school buildings. Epidemiological and technical radon research has produced information which has enabled attention to be turned to specific effectiveness and optimisation questions regarding radon identification and remediation programmes in buildings, including schools. Decision making about policy implementation has been an integral part of these programmes and questions have been raised about the economic implications of the regulations and optimisation strategies for workplace action level policy (2,3). (the action level applied to schools is 400 Bq m -3 ). No previous study has estimated the cost-effectiveness of a radon remediation programme for schools using the methodological framework now considered appropriate in the economic evaluation of health interventions. It is imperative that this should be done, in order that the resources required to obtain health gain from radon remediation in schools can be systematically compared with equivalent data for other health interventions and radon remediation programmes. In this study a cost-effectiveness analysis of radon remediation in schools was undertaken, using the best available national data and information from Northamptonshire on the costs and effectiveness of radon identification and remediation in schools, and the costs and health impact of lung cancer cases. A model based on data from Northamptonshire is presented (where 6.3% of residential stock is over 200 Bq m -3 ). The resultant cost-effectiveness ratio was pound 7,550 per life year gained in pound 1997. Results from the

  13. The perceived health risks of indoor radon gas and overhead powerlines: a comparative multilevel approach.

    Science.gov (United States)

    Poortinga, Wouter; Cox, Patrick; Pidgeon, Nick F

    2008-02-01

    Radon and overhead powerlines are two radiation risk cases that have raised varying levels of concern among the general public and experts. Despite both involving radiation-a typically feared and unseen health hazard-individuals' perceptions of the two risk cases may invoke rather different factors. We examined individual and geographic-contextual factors influencing public perceptions of the health risks of indoor radon gas and overhead powerlines in a comparative research design, utilizing a postal questionnaire with 1,528 members of the general public (response rate 28%) and multilevel modeling techniques. This study found that beliefs about the two risk cases mainly differed according to the level of "exposure"-defined here in terms of spatial proximity. We argue that there are two alternative explanations for this pattern of findings: that risk perception itself varies directly with proximity, or that risk is more salient to concerned people in the exposed areas. We also found that while people living in high radon areas are more concerned about the risks of indoor radon gas, they find these risks more acceptable and have more trust in authorities. These results might reflect the positive effects of successive radon campaigns in high radon areas, which may have raised awareness and concern, and at the same time may have helped to increase trust by showing that the government takes the health risks of indoor radon gas seriously, suggesting that genuine risk communication initiatives may have positive impacts on trust in risk management institutions.

  14. Comparative study on radon effects and thermal effects on humans in radon hot spring therapy

    International Nuclear Information System (INIS)

    Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Tanizaki, Y.; Sugita, K.; Kohima, S.

    2003-01-01

    Full text: The radon therapy is used radon ( 222 Rn) gas, which mainly emits alpha-rays, and induces a small amount of active oxygen in the body. Because most of the diseases to which the radon therapy as well as the thermal therapy is applied are related to activated oxygen, in this study the effects of the radioactivity of radon and thermal effects were compared under the room or the hot spring condition with the similar chemical component, using as the parameters which are closely involved in the clinical for radon therapy. In the results, the radon and thermal therapy enhanced the antioxidation function, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produce in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response, and increased the level of CD4, which is the marker of helper T cell, and decreased the level of CD8, which is the common marker of killer T cell and supresser T cell, in the white cell differentiation antigen (CD4/CD8) assay. Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide (alpha ANP), beta endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-phosphate dehydrogenase (G-6-PDH), and decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that the radon therapy more contributes to the prevention of life style-related diseases related to peroxidation reactions and immune depression than thermal therapy. Moreover these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain) and diabetes mellitus brought about more radon therapy than thermal therapy

  15. Radon level and radon effective dose rate determination in Moroccan dwellings using SSNTDs

    International Nuclear Information System (INIS)

    Oufni, L.; Misdaq, M.A.; Amrane, M.

    2005-01-01

    Inhalation of radon ( 222 Rn) and its daughter product are a major source of natural radiation exposure. The measurement of radon activity in dwelling is assuming ever increasing importance. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Keeping this in view, the indoor radon activity level and radon effective dose rate were carried out in the dwellings of Beni-Mellal, Khouribgra and Ben Guerir cities, Morocco, using the solid state nuclear track detectors (SSNTD) technique. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the 222 Rn effective dose rate in the studied dwellings ranges from 1.01 to 7.90mSvy -1 . The radon activity in the corresponding dwellings was found to vary from 40 to 532Bqm -3 . The radon activity has not only been found to vary with seasonal changes, but also with the age, the construction mode of houses, the ventilation conditions and with specific sites and geological materials

  16. Radon: A health problem and a communication problem

    International Nuclear Information System (INIS)

    Johnson, R.H.

    1992-01-01

    The US Environmental Protection Agency (USEPA) is making great efforts to alert the American public to the potential health risks of radon in homes. The news media have widely publicized radon as a problem; state and local governments are responding to public alarms; and hundreds of radon open-quotes expertsclose quotes are now offering radon detection and mitigation services. Apparently, USEPA's communication program is working, and the public is becoming increasingly concerned with radon. But are they concerned with radon as a open-quotes healthclose quotes problem in the way USEPA intended? The answer is yes, partly. More and more, however, the concerns are about home resale values. Many homebuyers are now deciding whether to buy on the basis of a single radon screening measurement, comparing it with USEPA's action guide of 4 pCi L -1 . They often conclude that 3.9 is OK, but 4.1 is not. Here is where the communication problems begin. The public largely misunderstands the significance of USEPA's guidelines and the meaning of screening measurements. Seldom does anyone inquire about the quality of the measurements, or the results of USEPA performance testing? Who asks about the uncertainty of lifetime exposure assessments based on a 1-hour, 1-day, 3-day, or even 30-day measurement? Who asks about the uncertainty of USEPA's risk estimates? Fortunately, an increasing number of radiation protection professions are asking such questions. They find that USEPA's risk projections are based on many assumptions which warrant further evaluation, particularly with regard to the combined risks of radon and cigarette-smoking. This is the next communication problem. What are these radiation professions doing to understand the bases for radon health-risk projections? Who is willing to communicate a balanced perspective to the public? Who is willing to communicate the uncertainty and conservatism in radon measurements and risk estimates?

  17. Radon in buildings

    International Nuclear Information System (INIS)

    Connell, J.J.

    1991-01-01

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  18. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  19. Radon risk: the polonium effects

    International Nuclear Information System (INIS)

    Pradel, J.

    2003-01-01

    The atoms of radon present in the earth's crust give after disintegration atoms of polonium 210 and lead 210 having a strong toxicity by ingestion ( superior of a factor 2 to 10 comparatively to plutonium 239). We have to remember that polonium and lead 210 are present everywhere in very important quantities relatively to values quoted for ground pollution. This must reassure us for the risks run from the nuclear facilities for which important efforts are made in matter of radiation protection. (N.C.)

  20. Environmental radon

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Schmalz, R.F.; Miller, E.W.

    1990-01-01

    This book covers many aspects of environmental radon, including: historical perspectives; occurrence and properties; detection, measurement, and mitigation, radon and health; and political, economic, and legislative impacts

  1. Determination of radon concentration in drinking water resources of villages nearby Lalehzar fault and evaluation the annual effective dose

    International Nuclear Information System (INIS)

    Mohammad Malakootian; Zahra Darabi Fard; Mojtaba Rahimi

    2015-01-01

    The radon concentration has been measured in 44 drinking water resources, in villages nearby Lalehzar fault in winter 2014. Some samples showed a higher concentration of radon surpassing limit set by EPA. Further, a sample was taken from water distribution networks for these sources of water. Soluble radon concentration was measured by RAD7 device. Range radon concentration was 26.88 and 0.74 BqL -1 respectively. The maximum and minimum annual effective dose for adults was estimated at 52.7 and 2.29 µSvY -1 , respectively. Reducing radon from water before use is recommended to improve public health. (author)

  2. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  3. Ten practical lessons for an effective radon risk communication program

    International Nuclear Information System (INIS)

    Fisher, A.; Johnson, F.R.

    1990-01-01

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. Several recent studies have examined how well alternative ways of communicating about radon's risk have accomplished the goals of motivating appropriate testing and mitigation. Unfortunately, the results of these studies have not reached practitioners. This paper is for them. It summarizes the practical implications that are most crucial for planning and implementing an effective radon risk communication program--a program that will motivate people to test for radon and mitigate when radon levels are high, without unduly alarming those whose radon levels are low

  4. The effect of the nuclear track detectors' position on the radon concentration measurements

    International Nuclear Information System (INIS)

    Yilmaz, A.; Kuerkcueoglu, M. E.; Haner, B.

    2009-01-01

    It is important to determine the radon concentration values of the underground mines according to workers' health. For this purpose, to be able to measure radon concentrations by using passive nuclear etched track detectors, CR-39 detectors were placed into 66 points on the way of aeration galleries of Armutcuk, Amasra, Karadon, Kozlu and Uezuelmez bituminous coal mines which are known as the Carboniferous outcrops of the Western Black Sea Area in Turkey. In every measurement point, a pair of detectors, one of them is being perpendicular and the other one is parallel to air flow, were exposed to radon gases over 40 days for four seasons of the year 2008. The relationship between the readings of vertically and horizontally positioned detectors was investigated by evaluating the effect of the detectors' positions on the detected radon concentrations. It can be concluded that, the vertically positioned detectors, in general, recorded higher radon gases concentration values than that of the horizontally positioned ones.

  5. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  6. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Groves-Kirkby, C.J.; Woolridge, A.C.; Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M.; Tornberg, R.

    2006-01-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  7. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  8. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  9. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  10. Radon/radium detection increases uranium drilling effectiveness

    International Nuclear Information System (INIS)

    Morse, R.H.; Cook, L.M.

    1979-01-01

    The use of portable radon detectors has become routine in reconnaissance uranium surveys where water and sediment samples are analyzed in field labs for radon and radium, and in detailed work where drill hole locations are pinpointed by field determinations of radon in soil gas from shallow holes. During the drilling program itself, however, very few operators are taking advantage of radon and radium analyses to decide whether a barren drill hole was a near miss or whether the immediate area can be written off. The technique, which is outlined here, is effective both above and below the water table

  11. An assessment of individual health benefits from a domestic Radon remediation programme

    International Nuclear Information System (INIS)

    Denman, A.R.; Phillips, P.S.; McClatchey, J.

    2002-01-01

    Radon gas occurs naturally in the environment and has been shown to cause increased numbers of lung cancers in miners when present at high levels in underground workings. Reviews of the miners' studies suggest that levels found in some homes can give rise to increased lung cancer incidence, and this has been confirmed by recent case control studies in South West England, and Germany. The current scientific consensus, expressed in the BEIR 6. report is that the risk of lung cancer has a linear relation with increasing radon exposure, and that there is no threshold of risk. The distribution of such excessive levels is geographically varied, and many countries have established programmes to identify the homes at risk, and encourage homeowners to remediate to reduce levels. Northamptonshire, in the centre of England, has been declared a radon Affected Area by the National Radiological Protection Board (NRPB), and has an average of 6.3 % of homes above the UK domestic Action Level of 200 Bq m -3 . Several studies have suggested that theoretically such programmes can be justified on the basis of health benefits and cost effectiveness. Our group was the first to study actual radon remediation programmes - in Northamptonshire, studying first National Health Service properties, schools, and homes. These studies demonstrated that remediation programmes in Northamptonshire could be justified. The domestic radon remediation programme in Northamptonshire, once complete, could be favourably compared to other health initiatives such as the UK mammography screening programme for women aged 50 to 65

  12. Study of the effects of radon in three biological systems

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  13. Validity of various epidemiological approaches to assessing radon health risk

    International Nuclear Information System (INIS)

    Conrath, S.M.

    1990-01-01

    In this paper various epidemiologic study designs are defined and evaluated for their utility in assessing radon health risk. The strengths and limitations of these approaches are addressed. Common pitfalls and errors of epidemiologic method are delineated with examples of causes and remedies

  14. Analysis of the individual health benefits accruing from a domestic radon remediation programme

    International Nuclear Information System (INIS)

    Denman, A.R.; Phillips, P.S.; Tornberg, R.; Groves-Kirkby, C.J.

    2005-01-01

    Although radon can be present within buildings at sufficient levels to pose a health risk, levels can be reduced relatively easily. Recent studies on a group of radon-remediated homes, based on assessment of collective population-average risk coefficients, have estimated the benefits and cost effectiveness accruing from remediation and have confirmed that domestic remediation in UK radon Affected Areas would result in significantly reduced cancer risks to the population in those areas. Although the population-average approach used hitherto has applied occupancy and lung-cancer risk factors, these are potentially misleading in assessing discrete populations. The study reported here uses the recently developed European Community Radon Software (ECRS) to quantify individual risks in a sample of householders who remediated their homes following indications that radon levels exceeded the action level. The study proceeds from population-averaged to 'individual risk' evaluation, successfully comparing individual and collective risk assessments, and demonstrates that those who remediate are not representative of the general population. Health benefits accruing from remediation are three times lower than expected, largely because remediators are older, live in smaller households, and smoke less than the population average, leading to the conclusion that the current strategy employed in the UK is failing to target those most at risk

  15. Radon estimation in water resources of Mandi - Dharamshala region of Himachal Pradesh, India for health risk assessments

    Science.gov (United States)

    Kumar, Gulshan; Kumari, Punam; Kumar, Mukesh; Kumar, Arvind; Prasher, Sangeeta; Dhar, Sunil

    2017-07-01

    The present study deals with the radon estimation in 40 water samples collected from different natural resources and radium content in the soils of Mandi-Dharamshala Region. Radon concentration is determined by using RAD-7 detector and radium contents of the soil in vicinity of water resources is as well measured by using LR-115 type - II detector, which is further correlated with radon concentration in water samples. The potential health risks related with 222Rn have also been estimated. The results show that the radon concentrations within the range of 1.51 to 22.7Bq/l with an average value of 5.93 Bq/l for all type of water samples taken from study area. The radon concentration in water samples is found lower than 100Bq/l, the exposure limit of radon in water recommended by the World Health Organization. The calculated average effective dose of radon received by the people of study area is 0.022 mSv/y with maximum of 0.083 mSv/y and minimum 0.0056 mSv/y. The total effective dose in all sites of the studied area is found to be within the safe limit (0.1 mSv/year) recommended by World Health Organization. The average value of radium content in the soil of study area is 6.326 Bq/kg.

  16. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  17. Investigation of natural levels of radon-222 in groundwater in Maine for assessment of related health effects

    International Nuclear Information System (INIS)

    Hess, C.T.; Casparius, R.E.; Norton, S.A.; Brutsaert, W.F.

    1980-01-01

    We have used an inexpensive radon ( 222 Rn) measurement method using liquid scintillation counting to remeasure potable water from 10 sites near Raymond, Maine, to determine the accuracy and reproducibility of earlier measurements. Duplication or triplication of samples shows a high degree of reproducibility for the liquid scintillation method. A hypothesis emerged from analysis of the measured values of 222 Rn near Raymond, Maine, that high values (50,000 to 200,000 pCi/liter) are associated with granite. This was shown to be correct for several large areas of granite such as the Sebago, Lucern, Waldo, and Waldoboro granites. The presence of high 222 Rn concentrations in granite areas hundreds of kilometers from the Raymond area shows that the high 222 Rn levels in water are a statewide and perhaps a regional problem rather than a western Maine problem

  18. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    Science.gov (United States)

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  19. Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations

    Directory of Open Access Journals (Sweden)

    Katarzyna Walczak

    2013-04-01

    Full Text Available Background: Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Material and Methods: Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers, Iran (5, China (4 and India (5. Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. Results: We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings. In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. Conclusions: The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program. Med Pr 2013;64(2:193–198

  20. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  1. Discussion on the source of radon in uranium exploration method using radon-released thermal effect in minerals

    International Nuclear Information System (INIS)

    Su Shoutian.

    1985-01-01

    This paper considers the problem of the source of radon in uranium exploration method using radon-released thermal effect. In minerals by means of scintillation emanometry, we have carried out the measurement on radon content in minerals at various temperature in barren and ore-bearing granites of the granite-type uranium deposit No. 752, and inclusion decrepitation method has also been used to determine the temperature of decrepitation and its relative frequency. It was found from experiments that heated samples may release most of radon prior to inclusion decrepitation, radon released from thermal effect was, on the contrary, very little at temperature intervals of inclusion decrepitation on a large scale basis. When inclusions were ground after radon releasing, it would still release from inclusions after reheating. The radon content calculated from uranium content in inclusions is lower than the sensitivity of the determination method, so it is too difficult to be determined, indicating that the radon content released is not related to inclusions. Samples were determined by uranium chemical analysis and radium radiochemical analysis and it is obvious to note that the radon content released from thermal effect in minerals is positively correlated to the uranium and radium content. Various kinds of experiments suggest that radon is not derived from inclusions but from the whole mineral

  2. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Introduced with a brief discussion of the key role of ventilation in controlling mine atmospheres, the effects of the design of the ventilation system on the control of radon daughter concentrations are illustrated with specific reference to Alcan's Director Mine, St-Lawrence, Nfld. (This fluorspar mine was found to have high radon concentrations due to mine water bringing in dissolved radon.) After a discussion of the health physics history of the mine, the various phases of the ventilation system design and the general results are detailed. The author draws some conclusions having general application to the design of any mine with a radon or thoron daughter concentration. These include minimizing the 'age' of the air; the need for continuous ventilation in all areas; the value of remote control and monitoring; and the benefits of mine pressurization

  3. Effect of natural ventilation on radon and radon progeny levels in houses. Rept. for Apr 90-Sep 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1991-01-01

    The paper discusses the effect of natural ventilation on radon and radon progeny levels in houses. Contradicting the widely held assumption that ventilation is ineffective in reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5 to 10 using only natural ventilation. Measurement of the outdoor-basement pressure differential and the radon entry rate shows that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes: (1) the obvious one, dilution, which lowers radon concentrations by adding uncontaminated outdoor air; and (2) although less evident, introducing a pressure break in the system through an open basement window which, in turn, reduces the outdoor-basement pressure differential and the rate at which radon-laden soil gas is drawn into the house. The radon entry rate was found to be a linear function of basement depressurization up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubled the building air exchange rate and reduced the radon entry rate by up to a factor of 5

  4. House in Bessine-sur-Gartempe (87) built on uranium ore waste rocks and residues. Assessment of radon contents of the indoor air and induced health risks for dwellers

    International Nuclear Information System (INIS)

    2014-01-01

    After having recalled the origin of radon and how characterization measurements of exposure pathways are performed, this document reports an expertise investigation of the exposure to radon of dwellers of a house. It presents the main results of environmental radiological measurements: exposure to beta/gamma radiation and to radon, assessment of average radon concentrations in the house (measurement strategy, interpretation of average values). It reports the assessment of annual exposures to radon. It discusses the assessment of risks: status of knowledge of impacts of radon on health (radon and risk of lung cancer, other potential health effects of radon), risk assessment based on the efficient dose, method and results of assessment of the risk of lung cancer, impact of tobacco on this assessment, assessment of the risk of leukaemia

  5. Evaluation method of radon preventing effect in underground construction

    International Nuclear Information System (INIS)

    Luo Shaodong; Deng Yuequan; Dong Faqin; Qu Ruixue; Xie Zhonglei

    2014-01-01

    Background: It's difficult to evaluate the radon prevention effect because of the short operating time of measuring instrument under the circumstances of high humidity in underground construction. Purpose: A new rapid method to evaluate the radon prevention efficiency of underground construction was introduced. Methods: The radon concentrations before and after shielding operation were determined, and according to the regularity of radon decay, the shielding rate can be calculated. Results: The results showed that radon shielding rate in underground construction remains generally stable with variation of time, and the actual relatively standard deviation was 3.95%. So the rapid determination and evaluation of radon preventing effect under special conditions in underground construction can be realized by taking shielding rate in a short time for the final shielding rate. Compared with those by the local static method in ground lab, the results were similar. Conclusion: This paper provided a prompt, accurate and practicable way for the evaluation of radon prevention in underground construction, having a certain reference value. (authors)

  6. The significance of radon in radioactive pollution of environment. Pt. 2. Radon effect on living organism

    International Nuclear Information System (INIS)

    Kossakowski, S.; Dziura, A.; Kossakowski, A.

    1998-01-01

    Authors review the history of radon monitoring. Epidemiological studies of lung cancer and its correlation to radon concentration in mines and buildings are described. The influence of radon on animals living in the buildings built from waste materials is described. Authors review plans concerning creation of radon monitoring system in Poland. The necessity of monitoring influence of radon on animals is described

  7. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    Science.gov (United States)

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  8. Radon and cancer

    International Nuclear Information System (INIS)

    2011-01-01

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  9. The householders' guide to radon

    International Nuclear Information System (INIS)

    1988-06-01

    This guide is a follow-up to the leaflet Radon in Houses which was issued previously by the Department of the Environment. It is intended for people who live in areas with high levels of radon. It is written particularly for householders whose homes have already been tested and found to have an appreciable level of radon. It explains what radon is, how it gets into houses and what the effects on health may be. It also outlines some of the ways of reducing the level of radon and gives guidance both on how to get the work done and likely costs. (author)

  10. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E; Tavera D, L; Cruces M, M P; Arceo M, C; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  11. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  12. Study of the effects of radon in three biological systems; Estudio de los efectos del radon en tres sistemas biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Tavera, L. [Instituto Mexicano del Petroleo, Av. Eje Central Lazaro Cardenas No. 152, Edif. 23, Col. San Mateo Atepehuacan, 07730 Mexico D.F. (Mexico); Balcazar, M.; Lopez, A.; Brena, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rosa, M.E. De la [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico); Villalobos P, R. [Centro de Estudios de la Atmosfera, UNAM, 04510 Mexico D.F. (Mexico)

    2002-07-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  13. Effectiveness of radon control techniques in fifteen homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Sextro, R.G.

    1991-01-01

    Radon control systems were installed and evaluated in fourteen homes in the Spokane River Valley/Rathdrum Prairie and in one home in Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurization was always more effective in these houses than SSV by depressurization in reducing indoor radon levels to below guidelines. Basement overpressurization was successfully applied in five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace isolation in reducing radon entry from the crawlspace, but had to be used in conjunction with other mitigation techniques, from the crawlspace, but had to be used in conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations in two houses with air-to-air heat exchangers (AAHX) were reduced to levels inversely dependent on the new total ventilation rates and were lowered even further in one house where the air distribution system was modified. Sealing penetrations in the below-grade surfaces of substructures was relatively ineffective in controlling radon. Operation of the radon control systems (except for the AAHX's) made no measurable change in ventilation rates or indoor concentrations of other measured pollutants. Installation costs ranged from approximately $4/m 2 for sealing to $28/m 2 for the AAHXs. Annual operating costs for the active systems were estimated to be approximately $60 to $170

  14. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    Science.gov (United States)

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  15. Lowering the UK domestic radon Action Level to prevent more lung cancers-is it cost-effective?

    International Nuclear Information System (INIS)

    Denman, A R; Groves-Kirkby, C J; Coskeran, T; Phillips, P S; Crockett, R G M; Tornberg, R

    2008-01-01

    Case studies have shown that radon gas can accumulate within domestic properties at sufficiently high levels that it can cause lung cancer, and recent studies have suggested that this risk remains significant below the UK domestic Action Level of 200 Bq m -3 . Raised radon levels can be reduced by engineering measures, and it has been shown that domestic radon remediation programmes in UK Affected Areas can result in reduced risks to the population and can be cost-effective. We consider here the benefits and costs of the domestic radon remediation programme in Northamptonshire, UK, and consider the implications for that programme of reducing the UK Action Level below its present value. A radon remediation programme based on an Action Level above 200 Bq m -3 will cost less and will target those most at risk, but will be less cost-effective and will lead to higher residual dose and greater risk of cancer in the remaining population. Reducing the Action Level below 200 Bq m -3 will prevent more cancers, but at significantly higher cost. It will also be less cost-effective, because remediation of a significant number of houses with moderate radon levels will provide only a modest health benefit to occupants. Overall, a completed radon remediation programme of the type implemented in Northamptonshire is most cost-effective for an Action Level between 200 and 300 Bq m -3 . The implications for future health policy are discussed

  16. Control of radon and daughters in uranium mines and calculations on biologic effects

    International Nuclear Information System (INIS)

    Holaday, Duncan A.; Rushing, David E.; Coleman, Richard D.; Woolrich, Paul F.; Kusnetz, Howard L.; Bale, William F.

    2006-01-01

    A long range study under way by the Public Health Service since 1950 seeks to define the effects of uranium mining operations on the health of the miners and to derive data leading to the establishment of a healthful working environment. Although no evidence of health damage has been found among American miners, the European experience points to possible serious health effects. As a preventive measure, steps were therefore taken early in the industry's growth to safeguard the health of the miners. The current bulletin describes the results of the environmental study to date, together with the work of other investigators, with reference to methods of measuring atmospheric concentrations of radon and daughter products, the establishment of a safe working level for radon daughter products, and the development of effective control measures. It is believed that the material presented will be found useful by the industry and others, particularly in evaluating health hazards and in deriving economically feasible control methods

  17. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    Science.gov (United States)

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  18. Reducing the health risks from radon in the UK overground workplace

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    In response to the potential health risk from radon in workplaces in the United Kingdom (UK), the Ionising Radiations Regulations 1999 include the protection of workers from excessive radon levels. Under the Management of Health and Safety at Work Regulations 1999, employers are required to make risk assessments for potential hazards in the workplace. This is taken to apply to the risk from radon in premises in areas where over 1% of domestic housing properties have average annual radon levels over the Action Level. Whilst the UK Action Level in domestic housing has been set at 200 Bq·m -3 , the workplace limit is 400 Bq·m -3 . The Regulations require that this limit be compared to a 24-hour winter maximum, while in domestic properties the annual average radon level is compared to the Action Level. This paper discusses the application of the Regulations in the UK to ensure compliance and reduce risk from radon in the workplace, include use of short-term measurements, and the consideration of seasonal variation. Reduction of radon levels can be achieved by methods similar to those in domestic properties, but, in large buildings, several sump/pump systems may be required. Case studies have shown that the sump/pump system preferentially reduces radon levels at night, when workers are not usually present. Thus to achieve a significant health benefit the average radon level should be reduced below 325 Bq·m -3 . (author)

  19. Effect of radon on SAGE results

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Mirmov, I.N.

    2002-01-01

    A method for estimating the systematic uncertainty associated with radon in the SAGE experiment aimed at observing the solar-neutrino flux is described. For the gallium target used in this experiment, the systematic uncertainty in the measured neutrino-capture rate of 75 SNU is below 0.3 SNU

  20. The effect of desiccation on UMTRA Project radon barrier materials

    International Nuclear Information System (INIS)

    1990-11-01

    The proposed US Environmental Protection Agency (EPA) groundwater standards (40 CFR 192) require that Uranium Mill Tailings Remedial Action (UMTRA) Project remedial action designs meet low numerical limits for contaminants contained in water or vapors exiting the disposal cell embankments. To meet the standards, a cover of compacted, fine-grained soil is placed over UMTRA Project embankments. One of the functions of this cover is to limit infiltration into the disposal cell . The hydraulic conductivity of this infiltration barrier must be low in order to reduce the resultant seepage from the base of the cell to the extent necessary to comply with the proposed EPA groundwater standards. Another function of this cover is to limit the emission of radon gas. The air permeability of the cover must be low in order to reduce radon emissions to comply with EPA standards. Fine-grained soils exposed to evaporation will dry. Continued exposure will cause shrinking that, if allowed to continue, will eventually result in the development of cracks. The results of the cracking could be an increase in the hydraulic conductivity and an increase in the air permeability. This could then allow additional infiltration and increased radon emissions. Cracking of the radon barrier has been noted at one UMTRA Project location. The potential for cracking of the radon barrier during construction has been addressed by requiring moistening of previously compacted surfaces prior to placing additional lifts. The efficacy of these treatments has not been verified. The potential for cracking after construction of the cover is completed has also not been examined. The purpose of this study is to evaluate the potential for cracking of the radon barrier both during construction and after completion of the cover. The effect of shrinkage cracking on the performance of the radon barrier will also be examined

  1. A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

    Directory of Open Access Journals (Sweden)

    Elzain Abd-Elmoniem Ahmed

    2014-01-01

    Full Text Available Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ± 8 Bq/m3 in Medani to 41 ± 9 Bq/m3 in Wad Almahi, with an average of 49 ± 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the “normal” background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

  2. Not so Noble-Radon in the Environment and Associated Health ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 7. Radon: Not so Noble-Radon in the Environment and Associated Health Problems. Deepanjan Majumdar. General Article Volume 5 Issue 7 July 2000 pp 44-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. A risk-based approach to health criteria for radon indoors -report on a WHO initiative

    International Nuclear Information System (INIS)

    Steinhaeusler, F.

    1994-01-01

    The World Health Organization (WHO), Regional Office for Europe, organised a meeting of a working group on indoor air quality in Eilat, Israel, from 28 March to 4 April 1993. The aim was to develop a risk-based approach to health criteria for radon indoors. The Group reviewed the latest epidemiological data from occupational and non-occupational radon exposure, animal experiments and dosimetry. The Group issued 14 conclusions and 23 recommendations on radon related risk to health, on risk management and risk communication. In summary, radon was confirmed as a human carcinogen. Indoor radon exposures resulting in individual risks exceeding 10 -3 per year are to be considered as severe and risk reduction programmes implemented. Guidance on risk management and communication is offered to national authorities. (author)

  4. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    Science.gov (United States)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  5. Radon and its products radiation-induced non-cancerous effect

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Liao Duanfang

    2009-01-01

    The association between exposed to radon and cardiovascular mortality as well as radon therapy for the treatment of rheumatic diseases have become an increasing concern. Here, by analysis uranium miners' cohort epidemiological investigation, show the possibility between the cumulative exposure to radon and death from coronary heart disease. Besides, the existing randomized controlled trials suggest a positive effect of radon therapy on pain in rheumatic diseases. (authors)

  6. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    Science.gov (United States)

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  7. Effect of ventilation type on radon concentration at places of work

    International Nuclear Information System (INIS)

    Oksanen, E.

    1994-01-01

    Indoor radon ( 222 Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements, but the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected. (author)

  8. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  9. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  10. Radon campaigns. Status report 2008

    International Nuclear Information System (INIS)

    Arvela, H.; Valmari, T.; Reisbacka, H.; Niemelae, H.; Oinas, T.; Maekelaeinen, I.; Laitinen-Sorvari, R.

    2008-12-01

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m 3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m 3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m 3 was exceeded during the two first campaign seasons. Among the households that replied

  11. Radon programme: presence and future

    International Nuclear Information System (INIS)

    Hulka, J.

    2009-01-01

    In this presentation an overview of radon programme experiences is presented. The paper summarises national radon policy, national programmes, legislation, the role of preventive measures and interventions with respect to existing and future exposure and knowledge of radon risk, problems of remediation strategies, practical protection in dwellings, radon measurements strategies, progress in radon measurement of an individual house (radon diagnosis), radon mapping process and sense of delineation of radon prone areas, natural radioactivity of building materials and radioactivity in public water and their role in the radon programme, public awareness on radon issue and publicity campaign. Some research activities are proposed aiming at effective solutions of radon issues in future

  12. Radon effective dose from TENORM waste associated with petroleum industries

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Soliman, H. A.; Daif, M. M.

    2009-01-01

    Technically enhanced naturally occurring radioactive material (TENORM) associated with petroleum industries can be accumulated with elevated quantities and therefore can threat the workers through external and internal exposure. Measurements of radon-related parameters give information about the radioactivity levels in the TENORM waste using the well-established correlation. Also, it is useful to calculate the internal exposure due to radon inhalation in terms of effective radon dose. Among radon-related parameters, areal exhalation rate is the most suitable for characterising land and objects with only upper surface contamination in the case of petroleum waste. The TENORM in this study is collected from waste storage areas located near oil fields at south Sinai governorate (Egypt). The average values of exhalation rates as measured by Lucas cell based on delay count method are 273 ± 144 and 38 ± 8 Bq m -2 h -1 for scale and sludge, respectively. Whereas, two count method gives results with 18 and 20 % lower values for scale and sludge, respectively with good correlation coefficient of 0.999 and 0.852, respectively. Sealed cup fitted with CR-39 gives results compatible with Lucas cell with minor deviation in case of scale due to its thoron content. The results of CR-39 are qualified by taking into consideration the correction for back diffusion effect. The effective radon dose was calculated for different simulated radioactive waste storage areas with different contaminated areas and air ventilation rate. Minimising the contaminated areas and building up efficient ventilation systems can reduce the internal exposure even in the case of RWSA-containing TENORM with elevated radioactivity. (authors)

  13. Human Lung Cancer Risks from Radon – Part I - Influence from Bystander Effects - A Microdose Analysis

    Science.gov (United States)

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle “hits” are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid. PMID:21731539

  14. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  15. Design issues in studies of radon and lung cancer: Implications of the joint effect of smoking and radon

    International Nuclear Information System (INIS)

    Upfal, M.; Divine, G.; Siemiatycki, J.

    1995-01-01

    Many case-control studies have been undertaken to assess whether and to what extent residential radon exposure is a risk factor for lung cancer. Nearly all these studies have been conducted in populations including smokers and nonsmokers. In this paper, we show that, depending on the nature of the joint effect of radon and tobacco on lung cancer risk, it may be very difficult to detect a main effect due to radon in mixed smoking and nonsmoking populations. If the joint effect is closer to additive than multiplicative, the most cost-effective way to achieve adequate statistical power may be to conduct a study among never-smokers. Because the underlying joint effect is unknown, and because many studies have been carried out among mixed smoker and nonsmoker populations, it would be desirable to conduct some studies with adequate power among never-smokers only. 30 refs., 4 figs., 2 tabs

  16. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  17. Health hazards from radon daughters in dwellings in Sweden

    International Nuclear Information System (INIS)

    Axelson, O.; Edling, C.

    1980-01-01

    To clarify the possible etiological role for lung cancer from exposure to the low levels of radon and its daughters in dwellings, a case-control study was made, comparing cases of lung cancer with controls with respect to residency in different types of houses. This pilot study was restricted to include only people who lived in typically rural areas. The results support the hypothesis that radon and radon daughter exposure in dwellings is pertinent to the question of the etiology of lung cancer

  18. The effect of natural ventilation on radon and radon progeny levels in houses

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1992-01-01

    In contradiction to the widely held assumption that ventilation is ineffective as a means of reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5-10 using only natural ventilation. Measurements of the outdoor-basement pressure differential and the radon entry rate show that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes. The first mechanism is the obvious one: dilution. Radon concentrations are lowered by the addition of uncontaminated outdoor air. The second mechanism is less evident: an open basement window reduces basement depressurisation. This decreases the rate at which radon-laden soil gas is drawn into the house. It was also found that the radon entry rate is a linear function of basement depressurisation up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubles the building air exchange rate and reduces the radon entry rate by up to a factor of 5. (author)

  19. Assessment of health impacts of radon exposures in Florida

    International Nuclear Information System (INIS)

    Vonstille, W.T.; Sacarello, H.L.A.

    1990-01-01

    This paper reports on residential radon levels, from a statewide Florida survey, that were used in an analysis of over 150,000 medically treated episodes of malignancies and other serious illnesses and conditions in whites, blacks and Hispanics from all counties in the state. No evidence of an increased percentage of cancer was found in any sex or ethnic group from the areas with the highest radon exposure levels. Age adjustment of data did not affect the results. The highest radon exposures were associated with some of the lowest cancer rates and contradict the risk assessment hypothesis based on extrapolation from exposures in mining. Points for DOE and EPA errors in risk assessment methods are reviewed; predictions from risk assessment should be empirically tested as in the case of any other scientific hypothesis before being used as a basis for public policy. Thus, the authors find that cancer risks of residential radon have been vastly overstated

  20. Radon in the Underground Workplaces; Assessment of the Annual Effective Dose due to Inhaled Radon for the Seoul Subway Station Staffs

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myeong Han; Chang, Byung Uck; Kim, Yong Jae [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Hwa Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Heo, Dong Hey [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-12-15

    The effective dose of the Seoul subway staffs due to inhaled radon ({sup 222}Rn) in their workplace was investigated depended on radon concentration exposed at each workplace, and working hours and working types of the staffs. Annual average radon concentrations ranged from 16.5 to 93.0 Bq·m{sup -3}. The staffs commonly spend 2,304 hours in the underground spaces a year. With the radon concentrations and the working hours of the staffs, estimated annual effective doses ranged from 0.23 to 0.73 mSv·y{sup -1}.

  1. Radon in the Underground Workplaces; Assessment of the Annual Effective Dose due to Inhaled Radon for the Seoul Subway Station Staffs

    International Nuclear Information System (INIS)

    Song, Myeong Han; Chang, Byung Uck; Kim, Yong Jae; Lee, Hwa Yong; Heo, Dong Hey

    2010-01-01

    The effective dose of the Seoul subway staffs due to inhaled radon ( 222 Rn) in their workplace was investigated depended on radon concentration exposed at each workplace, and working hours and working types of the staffs. Annual average radon concentrations ranged from 16.5 to 93.0 Bq·m -3 . The staffs commonly spend 2,304 hours in the underground spaces a year. With the radon concentrations and the working hours of the staffs, estimated annual effective doses ranged from 0.23 to 0.73 mSv·y -1

  2. Effectiveness of air vapor barriers combined with ventilated crawlspaces in decreasing residential exposure to radon daughters to radon daughters: preliminary report

    International Nuclear Information System (INIS)

    Sterling, T.D.; Arundel, A.; McIntyre, D.; Sterling, E.; Sterling, T.D.

    1986-01-01

    Radon gas is present in many homes. Concentrations may be increased in airtight, energy-efficient structures. This is especially true in cold climates where energy conservation is an important factor leading to the widespread application of sealing and tightening techniques both in older renovated homes and new construction. To reduce radon concentrations, it may be effective to ventilate crawlspaces and prevent infiltration of radon gas into the house by means of an air/vapor barrier. The authors report first results of comparing radon levels in homes with and without ventilated crawlspaces and air/vapor barriers. Radon emissions were measured in a tightly sealed home with ventilated crawlspaces and an air/vapor barrier and in two homes without such vapor barriers and ventilated crawlspaces, but differing in ventilation. Preliminary results suggest that use of ventilated crawlspaces and bottomside vapor barriers may reduce indoor radon levels by approximately 60%. 15 references, 1 table

  3. Cost effectiveness analysis of indoor radon control measures

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The problem of radon 222 in buildings as a contributor to radiation exposure is described. Five different control methods and the dose reductions that would result from each are analysed. The annualized cost for each control measure was evaluated and the cost effectiveness of each control measure was calculated on the basis of dollars per person-sievert dose reduction. The use of unipolar ion generators for particle removal appears to be the most cost effective and the use of ceiling fans to increase air circulation the least cost effective. 3 figs., 1 tab

  4. Indoor radon monitoring in the Mandi district of Himachal Pradesh, India, for health hazard assessment

    International Nuclear Information System (INIS)

    Kumar, G.; Kumar, A.; Walia, V.; Kumar, M.; Tuccu, M.A.; Prasher, S.

    2016-01-01

    In the present study, indoor radon equilibrium equivalent concentration monitoring was carried out using Solid-State Nuclear Track Detectors in some residential areas of the Mandi district, Himachal Pradesh, India. The average value of the indoor radon equilibrium equivalent concentration in the study area was found to be 94 Bq m -3 , with an annual effective dose of 1.61 mSv. The average value of the indoor radon equilibrium equivalent concentration in the studied areas was found to be higher than the world average indoor radon value of 40 Bq m -3 but lower than the value of the action level 300 Bq m -3 , except for two locations. (authors)

  5. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Fazal-ur-Rehman [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Ali, S. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Khan, H.A. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group

    1997-03-21

    In the field of radon dosimetry, it is customary to measure radon ({sup 222}Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon`s progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.).

  6. Assessing the risks from exposure to radon in dwellings

    International Nuclear Information System (INIS)

    Walsh, P.J.; Lowder, W.M.

    1983-07-01

    The factors used to assess the radiation dose and health risks from human exposure to radon in dwellings are critically reviewed in this summary. Sources of indoor radon and determinants of air concentrations and exposure levels are given as well as the uncertainties that exist in their formulation. Methods of assessing health effects from inhalation of radon and its progeny are discussed with emphasis on dosimetry of radon daughters and formulation of risk per dose values. Finally, methods of assessing risks for general population exposures to indoor radon concentrations are treated

  7. Radon in homes: The Alaskan experience

    International Nuclear Information System (INIS)

    Seifert, R.D.

    1990-01-01

    For the past four years, since radon was first found to be a concern in Alaska in 1986, the interest and awareness of radon as a special housing and health concern has continued to grow. This paper will discuss the features of a house in Alaska which would characterize it as at risk for radon, and also those efforts at mitigation which have been most effective in reducing radon under Alaskan conditions. Clearly radon must be able to enter a home in order to be a problem. Riefenstuhl and Kline (personal communication, 1988) have analyzed the conditions for radon transport from soils to home interiors very lucidly through the following scheme: four factors must exist in a house locale for it to be a radon at risk house. Two of the factors are geological in nature: (1) there must be adequate uranium and therefore ample radon to provide a source for transport; (2) there must be enough permeability in the soil to allow rapid soil gas movement to carry radon from its origin to the interior of the home within two half-lives of time (six days) or so. The other two factors are determined by the structure of the house itself and the way in which it is operated: (3) the house must have soil contact and imperfections, holes, cracks, intentional perforations which allow movement of soil gas with radon through the envelope of the basement or crawlspace; (4) there must be a lower pressure inside the house than in the soil so that soil gas flows into the house. All four of these characteristics are required to have radon be a problem. The absence of any single characteristic will eliminate radon (in general). This presents a series of options for mitigation of radon then, since elimination of any of the four characteristics will mitigate radon

  8. Radon in Croatian spas

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Planinic, J.

    2004-01-01

    There are ten thermal spas in Croatia and all of them provide health services for patients and visitors. Radon measurements were performed since there is a lack of data concerning natural radioactivity originated from radon and its short-lived progenies in such environments. The thermal water at two different sites (the indoor swimming pool with geothermal water and the spring) in each spa was sampled and radon concentrations were measured by AlphaGUARD radon measuring system. The obtained values were in the range of 0.7 to 19 Bq.dm -3 and 2 to 94 Bq.dm -3 for indoor swimming pools and springs, respectively. Integrated measurements of radon concentration in air were performed by two solid state nuclear track detectors LR-115 II (open and diffusion one) thus enabling estimation of equilibrium factor between radon and its daughters. The annual effective doses received by spa workers were found to be about 1 mSv/y (below the lower limit value of 3 mSv/y recommended by ICRP 65). The doses of patients and visitors were one or two order of magnitude lower than that of the personnel. (author)

  9. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    NARCIS (Netherlands)

    Vienneau, Danielle; de Hoogh, Kees; Hauri, Dimitri D.; Vicedo-Cabrera, Ana M; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    BACKGROUND: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. OBJECTIVES: We investigated the effects of radon

  10. Beneficial Effects of Environmental Gases: Health Prospective

    International Nuclear Information System (INIS)

    Hussein, A.Z.; IBrahim, M.S.; Zakaria, Kh.M.

    2009-01-01

    Radioactive radon gas is widely considered to be a health hazard by environmental agencies in the United States and in Europe. Yet despite the warnings of these agencies, thousands of people annually expose themselves to radon for therapeutic purposes, in facilities ranging from rustic old mines, to upscale spas and clinics. The inert natural radioactive gas radon has been used since the beginning of the century in the treatment of rheumatic diseases. In many places in the world, radon is used for therapeutic purposes for various diseases. Radon inhalation is applied in a thermal gallery with atmospheric radon concentrations up to 100 kBq/m3, elevated temperature up to 41 EC , and humidity close to 100%, or in the form of radon baths where Rn is emanated from water with high natural Rn activity. Frequently, a combination of both treatment procedures is applied. Evidence from empirical experience and from clinical observational studies suggests that radon has analgesic, anti inflammatory and immune-stimulating effects. Ozone is one of nature's most powerful oxidants. It increases the effectiveness of the antioxidant enzyme system, which scavenge excess free radicals in the body. It is used in water purification and sewage treatment and is now being applied medically to treat many diseases from wounds and colitis to cancer, stroke and AIDS. According to the dosage and concentration range, medical ozone is a pharmaceutical agent that exerts specific properties and a well-defined range of efficacy. This paper describes the medical application of environmental gases: radon and ozone

  11. A new methodology for cost-effectiveness studies of domestic radon remediation programmes: Quality-adjusted life-years gained within Primary Care Trusts in Central England

    International Nuclear Information System (INIS)

    Coskeran, Thomas; Denman, Antony; Phillips, Paul; Gillmore, Gavin; Tornberg, Roger

    2006-01-01

    Radon is a naturally occurring radioactive gas, high levels of which are associated with geological formations such as those found in Northamptonshire and North Oxfordshire in the UK. The UK's National Radiological Protection Board have designated both districts as radon Affected Areas. Radiation levels due to radon, therefore, exceed 200 Bq m -3 , the UK's domestic Action Level, in over one percent of domestic properties. Because of radon's radioactivity, exposure to the gas can potentially cause lung cancer, and has been linked to some 2000 deaths a year in the UK. Consequently, when radiation levels exceed the Action Level, remediation against radon's effects is recommended to householders. This study examines the cost-effectiveness of remediation measures in Northamptonshire and North Oxfordshire by estimating cost per quality-adjusted life-year gained in four Primary Care Trusts, organisations that play a key public health policy role in the UK's National Health Service. The study is the first to apply this approach to estimating the cost-effectiveness of radon remediation programmes. Central estimates of cost per quality-adjusted life-year in the four Primary Care Trusts range from Pounds 6143 to Pounds 10 323. These values, when assessed against generally accepted criteria, suggest the remediation programmes in the trusts were cost-effective. Policy suggestions based on the estimates, and designed to improve cost-effectiveness further, are proposed for the four Primary Care Trusts and the UK's National Health Service

  12. Radon problems

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1985-01-01

    This chapter examines the health hazards resulting from the release of naturally occurring radioactive gas derived from the decay of uranium. It is estimated that random inhalation is now causing about 10,000 fatal lung cancers per year in the US. Radon is constantly being generated in rocks and soils (in which uranium is naturally present) and in materials produced from them (e.g., brick, stone, cement, plaster). It is emphasized that radon levels in buildings are typically 5 times higher than outdoors because radon diffusing up from the ground below or out of bricks, stone, cement, or plaster is trapped inside for a relatively long time

  13. Effective diffusion coefficient of radon in concrete, theory and method for field measurements

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1976-01-01

    A linear diffusion model serves as the basis for determination of an effective radon diffusion coefficient in concrete. The coefficient was needed to later allow quantitative prediction of radon accumulation within and behind concrete walls after application of an impervious radon barrier. A resolution of certain discrepancies noted in the literature in the use of an effective diffusion coefficient to model diffusion of a radioactive gas through a porous medium is suggested. An outline of factors expected to affect the concrete physical structure and the effective diffusion coefficient of radon through it is also presented. Finally, a field method for evaluating effective radon diffusion coefficients in concrete is proposed and results of measurements performed on a concrete foundation wall are compared with similar published values of gas diffusion coefficients in concrete. (author)

  14. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Mainous, A.G. III; Hagen, M.D.

    1993-01-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  15. Evaluation of strategies for promoting effective radon mitigation. Risk communication and economic research series. Final report

    International Nuclear Information System (INIS)

    Doyle, J.K.; McClelland, G.H.; Schulze, W.D.; Locke, P.A.; Elliott, S.R.

    1990-03-01

    The Environmental Protection Agency has estimated that as many as 20,000 lung cancer deaths per year in the United States can be attributed to exposure to radon gas. The report evaluates alternative strategies for motivating people to test for radon gas in their homes and to mitigate if necessary. Specifically, two separate radon information and awareness programs were evaluated, one targeted to the general population in the Washington, D.C. area and the other to home buyers in the Boulder, Colorado area. The results suggest that a home buyer program is likely to be far more effective in terms of effective remediation to reduce home radon levels than a program aimed at the general population. The report discusses the empirical findings and develops a recommendation for increasing the effectiveness of radon awareness and mitigation programs

  16. Monitoring trends in civil engineering and their effect on indoor radon.

    Science.gov (United States)

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The protective effect of propolis on damage to lung and blood in rats by inhaled radioactive radon and its progeny

    International Nuclear Information System (INIS)

    Ding Jiansong; Nie Jihua; Tong Jian

    2006-01-01

    Twenty-eight male wistar rats were randomly divided into seven groups, i.e. the radon groups (3), the propolis+radon groups (3) and the control (1). The propolis+radon groups were fed intragastrically with propolis 0.2 g/kg, before exposing them, together with the radon groups, to radon and its progeny with the cumulative dose up to 30, 67 and 111 working level month (WLM), respectively. The levels of SOD (superoxide dismutase) and MDA (Malonic dialdehyde) in blood and lung tissue were determined. The SOD level of in blood and lung tissues of the radon groups decreased significantly and the MDA level increased. The MDA level in lung tissue of the 30 WLM propolis+radon group was significantly higher than the 30 WLM radon group. The SOD level in lung tissue of the 67 WLM propolis+radon group was significantly higher, but the MDA level was significantly lower, than the 67 WLM radon group. Both the SOD and MDA levels in blood and lung tissue of the 111 WLM propolis+radon group were significantly higher than the 111 WLM radon group. In conclusion, the inhalation of radon and its progeny can lead to persistent disturbance of the redox state in rats. Propolis show some protective effects on the redox damage under the experimental conditions. (authors)

  18. The effect of radon 222 on the oral mucosa of rabbits

    International Nuclear Information System (INIS)

    Minta, A.; Minta, P.; Kochanski, W.

    1975-01-01

    In experiments on 52 rabbits the authors investigated the effects of radon 222 administered by inhalation on the oral mucosa. The experimental animals were divided into 3 groups: 1 - controls, 2 - receiving radon inhalations in concentration 1 nCi/1, 3- receiving similar inhalations in a concentration of 5 nCi/l of air. Sections involving the lower lip with the mucosa were obtained for investigations after 10, 20, 30 and 60 days of inhalation. In the group of animals receiving radon in lower concentration its stimulating effect manifested itself as stimulation of mesenchymal cells and vascular endothelium. In group 3 sebaceous glands, atrophy and excessive keratinization of epidermis. Taking into account the analogy of these processes the authors concluded that in balneotherapy of oral diseases radon water application with low content of radon 222 may be satisfactory and safe. (author)

  19. Radon in the Environment: Friend or Foe?

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2009-01-01

    Radon 222 is a naturally occurring radioactive gas that is part of the Uranium decay series. Its Presence in the environment is associated mainly with trace amounts of uranium and its immediate parent, radium 226 , in rocks, soil and groundwater. About one-half of the effective doses from natural sources is estimated to be delivered by inhalation of the short lived radon progeny. Owing to this fact, radon is the most popular subject of studies on environmental radioactivity. The presence of high level of radon in indoor environment constitutes a major health hazard for man. The radon progeny is well established as causative agents of lung cancer and other types of caners. Radon unique properties as a naturally radioactive gas have led to its use as a geophysical tracer for locating buried faults and geological structures, in exploring for uranium, and for predicting earthquakes. Radon has been used as a tracer in the study of atmospheric transport process. There have been several other applications of radon in meteorology, water research and medicine. This paper summarizes the health effects and the potential benefits of radon and its progeny.

  20. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  1. Estimating population health risk from low-level environmental radon

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1980-01-01

    Although incidence of respiratory cancer is directly related to inhalation of radon and radon daughters, the magnitude of the actual risk is uncertain for members of the general population exposed for long periods to low-level concentrations. Currently, any such estimate of the risk must rely on data obtained through previous studies of underground-miner populations. Several methods of risk analysis have resulted from these studies. Since the breathing atmospheres, smoking patterns, and physiology are different between miners and the general public, overestimates of lung cancer risk to the latter may have resulted. Strong evidence exists to support the theory of synergistic action between alpha radiation and other agents, and therefore a modified relative risk model was developed to predict lung cancer risks to the general public. The model considers latent period, observation period, age dependency, and inherent risks from smoking or geographical location. A test of the model showed excellent agreement with results of the study of Czechoslovakian uranium miners, for which the necessary time factors were available. The risk model was also used to predict lung cancer incidence among residents of homes on reclaimed Florida phosphate lands, and results of this analysis indicate that over the space of many years, the increased incidence of lung cancer due to elevated radon levels may be indisgtinguishable from those due to other causes

  2. Biological effects of daily inhalation of radon and its short-lived daughters in experimental animals

    International Nuclear Information System (INIS)

    Palmer, R.F.; Stuart, B.O.; Filipy, R.E.

    1973-01-01

    Syrian golden hamsters, C57BL mice, and specific-pathogen-free rats were exposed simultaneously in groups of 16 animals each for 90 hours per week to aerosols consisting of radon plus 3000--6000 Working Levels of radon-daughters with and without 18 mg/m 3 carnotite uranium ore dust. Condensation nuclei concentrations ranged from 2000--4000 per ml and from 90,000--120,000 per ml in the chamber without and with uranium ore dust, respectively. At 4 months of exposure only one of the rodents remained alive. Histopathology of radon-daughter exposed mice includes acute interstitial pneumonitis, severe pulmonary congestion, and supperative rhinitis; mice inhaling radon-daughters with ore showed these lesions plus macrophage proliferation, alveolar septal cell hyperplasia, and bronchial epithelial hyperplasia. Hamsters inhaling radon-daughters showed proliferating lesions characterized by alveolar septal thickening, bronchiolar epithelial hyperplasia, septal fibrosis, and occasionally adenomatoid metaplasia and squamous metaplasia. Hamsters inhaling radon-daughters with ore dust showed similar effects plus granulomatous response and intense septal fibrosis. Rats inhaling radon-daughters showed lesions similar to those of hamsters but more focalized with classic radiation pneumonitis; rats exposed to radon-daughters with ore showed similar lesions, with greater consolidation and pneumoconiosis. These findings will be discussed in relation to pulmonary pathology in uranium miners

  3. Radon diffusion through sandy construction materials: effect of temperature and grain size

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    Radon appears mainly by diffusion process from the point of origin, say, under ground soil and building materials used in construction of house following alpha decay of radium. The radon diffusion through different building construction materials can be compared by calculating radon diffusion coefficient for them. In the present work, we studied the effect of temperature and grain size on radon diffusion of coarse sand as construction material. The coarse sand was collected from Yamuna river bed, originated from Himalayas. For this study, a steel pipe of diameter 10 cm and length 30 cm., divided into four sectors of equal size, was filled in different sectors with different grain sized (800, 600 and 425 μm) sand as building construction material. A number LR-115 type-II particle track detectors were placed with inter-detector distance of 10 cm in the sectorial compartments. The bottom end of steel pipe assembly was fixed with a radon chamber containing radon source with upper end sealed with a cap. The whole arrangement was then placed into a sand-clay pipe wrapped around by a controlled heating filament, resulting into temperature variations from 25℃ to 60℃. After 100 days interval, the detectors were retrieved processed, and the α - tracks counted for the calculation of radon concentration. It is observed that the radon diffusion coefficient increases with the increase in temperature and decreases with decrease in grain size of the coarse sand. (author)

  4. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  5. Microclimatic effects on outdoor radon and its progeny in a long-term study

    International Nuclear Information System (INIS)

    Schuetz, M.; Keller, G.; Kappel, R.J.A.

    1994-01-01

    The dose due to the long term radon exposure is estimated from the radon concentration and from an equilibrium factor that in the literature is reported with a wide uncertainty. Therefore the radon equilibrium factor outdoors and its dependence on climatic effects should be investigated in a long-term study. Both the outdoor concentrations of radon and of its progeny near Ellweiler/Hunsrueck were measured continuously during 12 months and the resulting equilibrium factors were determined. Simultaneously to the every 2 hour's radon data many meterological parameters as temperature and relative to humidity of the air, barometric pressure and duration and amount of rainfall were recorded. At a height of 6 meters above ground and in 10 minute intervals the local wind direction and velocity were registered. By that a set of more than 3000 single measurements of the equilibrium factor and of the corresponding weather conditions was collected

  6. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    International Nuclear Information System (INIS)

    Jamil, K.; Fazal-ur-Rehman; Ali, S.; Khan, H.A.

    1997-01-01

    In the field of radon dosimetry, it is customary to measure radon ( 222 Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon's progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.)

  7. Radon: Detection and treatment

    International Nuclear Information System (INIS)

    Loken, S.; Loken, T.

    1989-01-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals

  8. Radon health hazards of some rocks of Iranian origin, frequently used as building stones

    International Nuclear Information System (INIS)

    Noori, H.; Ranjbar, A.H.

    2011-01-01

    Radon exhalation rate from various types of stones, used inside the living buildings, is a major factor for evaluation of the environmental radon level. To verify the significance and lethal impacts of this unknown and obscure source of radiation upon the people around the world, the exhaled radon gas concentrations from the rocks, granodiorite, granite, limestone and aragonite, and the effect of their block sizes on the exhalation rate, have been studied. The block samples, collected from their ores, were transferred to plastic containers in which the CR-39 detectors could properly be placed and air tightened, for concentration measurements. The results show the radon concentration of 7.4 ± 0.8, 6.6 ± 0.6, 0.08 ± 0.02 and 0.09 ± 0.02 kBq m -3 for granodiorite, granite, limestone and aragonite, respectively. The corresponding annual dose values in a closed environment are: 186 ± 20, 166 ± 15, 2.5 ± 1 and 2 ± 1 mSv y -1 . These absorbed dose values indicate that granodiorite and granite when used inside the buildings could increase the risk of various cancers while aragonite and limestone have much lower risks and are recommended for use inside the buildings. The former ones when used in the closure areas remedial action should be implemented. The results do not show obvious dependence between the rock size of the samples and their radon exhalation rate. (author)

  9. Behaviors of radon in indoor environment

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu; Shimo, Michikuni.

    1987-01-01

    The source of radon ( 222 Rn) in the atmosphere is radioactive nuclide, uranium ( 238 U), which exists fairly common throughout the earth's crust. Radium ( 226 Ra) descended from uranium produce radon ( 222 Rn) of noble gas by decay. After formation in the ground, radon diffuses into the atmosphere. Without exception radon decay products are heavy metals which soon become attached to natural aerosols. Therefore, radon and its daughters (decay products) appear also in indoor environment, and generally, their concentration levels become higher than that of outdoor air due to build-up effects in the closed indoor environments. With the progress of the study on the influence of radon and its daughers on human health, it has become clear that they act effectively as an exciting cause of lung cancer. So, the study on the risk evaluation of them in room air has become to be very important. Concequently, the behaviors of radon and its daughters in indoor environment, first of all, should be studied in detail for the accurate estimation of the risk caused by them. In this special edition, fundamental characteristics of radon and its daughters, some measuring methods, theoretical considerations and some observational evidences obtained from various circumstances of indoor environment are described inorder to grasp and understand the behaviors of radon and its daughters in the indoor environment. (author)

  10. Radon reduction in waterworks

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.; Wilken, R.D.; Funk, H.; Stueber, J.; Wanitschek, J.; Akkermann-Kubillus, A.; Stauder, S.

    2000-01-01

    The removal of radon from water using water aeration is one of the most effective methods for reducing radon in waterworks. Therefore, this report describes investigations on packed tower columns and shallow aeration devices and a method for mathematical modelling of gas exchange processes for dimensioning packed tower columns for radon removal. Moreover, possibilities for removing radon using active carbon filtration under waterworks typical conditions and for reducing indoor radon levels in waterworks are discussed. Finally, conclusions on the necessity of radon removal in German waterworks are drawn. (orig.) [de

  11. Radon: a bibliography

    International Nuclear Information System (INIS)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given

  12. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  13. The estimation of effective doses using measurement of several relevant physical parameters from radon exposures

    International Nuclear Information System (INIS)

    Ridzikova, A; Fronka, A.; Maly, B.; Moucka, L.

    2003-01-01

    In the present investigation, we will be study the dose relevant factors from continual monitoring in real homes into account getting more accurate estimation of 222 Rn the effective dose. The dose relevant parameters include the radon concentration, the equilibrium factor (f), the fraction (fp) of unattached radon decay products and real time occupancy people in home. The result of the measurement are the time courses of radon concentration that are based on estimation effective doses together with assessment of the real time occupancy people indoor. We found out by analysis that year effective dose is lower than effective dose estimated by ICRP recommendation from the integral measurement that included only average radon concentration. Our analysis of estimation effective doses using measurement of several physical parameters was made only in one case and for the better specification is important to measure in different real occupancy houses. (authors)

  14. Health Risk Assessment Induced by Inhalation Radon Content in the Indoor Air of Decorative Stone of Storehouses

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2017-11-01

    Conclusions: Mean radon concentration in indoor air and the mean effective dose received by staff is lower than the standards level. Decorative stone of warehouses is the resources accumulation of Radon gas that can be reduced by doing corrective actions. 

  15. A cost-effect analysis of an intervention against radon in homes

    Directory of Open Access Journals (Sweden)

    Hein Stigum

    2009-10-01

    Full Text Available Background  Key words  : Radon exposure, lung cancer, cost-effect analysis, attributable risk, models-mathematical: Radon is a radioactive gas that may leak into buildings from the ground. Radon exposure is a risk factor for lung cancer. An intervention against radon exposure in homes may consist of locating homes with high radon exposure (above 200 Bq m-3 and improving these, and of protecting future houses. The purpose of this paper is to calculate the costs and the effects of this intervention. Methods: We performed a cost-effect analysis from the perspective of the society, followed by an uncertainty and sensitivity analysis. The distribution of radon levels in Norwegian homes is lognormal with mean=74.5 Bq/m3, and 7.6% above 200 Bq/m3. Results: The preventable attributable fraction of radon on lung cancer was 3.8% (95% uncertainty interval: 0.6%, 8.3%. In cumulative present values the intervention would cost $238 (145, 310 million and save 892 (133, 1981 lives, each life saved costs $0.27 (0.09, 0.9 million. The cost-effect ratio was sensitive to the radon risk, the radon exposure distribution, and the latency period of lung cancer. Together these three parameters explained 90% of the variation in the cost-effect ratio. Conclusions: Reducing the radon concentration in present and future homes to below 200 Bq/m3 will cost $0.27 (0.09, 0.9 million per life saved. The uncertainty in the estimated cost per life is large, mainly due to uncertainty in the risk of lung cancer from radon. Based on estimates from road construction, the Norwegian society has been willing to pay $1 million to save a life. We therefore conclude that the intervention against radon in homes is justifiable. The willingness to pay is also larger that the upper uncertainty limit of the cost per life. Our conclusion is therefore robust against the uncertainties in the parameters.

  16. Radon Survey in Hospitals in Slovenia

    International Nuclear Information System (INIS)

    Vaupotic, J.

    2003-01-01

    In Slovenia, several radon studies at workplaces have been carried out in last years, supported by the Ministry of Education, Science and Sport, and the Ministry of Health. After radon surveys in kindergartens, schools and homes, within which about 2600 buildings were checked for radon and which provided the level of radon problem in the country, next investigations were focused on the workplaces with potentially higher radon risk. Hence, in the Postojna Cave permanent radon monitoring was introduced in 1995 and comprehensive radon studies were performed: in 5 bigger spas during 1996-1998, in major waterworks and wine cellars in 2001, and in major Slovene hospitals in 2002. This paper reports the results of radon study in 26 major Slovene hospitals, comprising radon concentrations in 201 rooms and dose estimates for 1025 persons working in these rooms. Radon survey in 201 rooms of 26 major hospitals in Slovenia revealed only 7 rooms in which monthly average radon concentration in the indoor air exceeded 400 Bqm -3 . Generally, concentrations in basement were on average for about 30% higher than in ground floor, although exceptionally high values have also been found in the ground floor. For 966 persons (94.2%) of the total of 1025 persons working in the rooms surveyed, the annual effective dose, estimated according to the Basic Safety Standards was below 1 mSv, while for 59 it exceeded 1 mSv. In 7 rooms with more than 400 Bqm -3 in which 16 persons receive between 2.1 and 7.3 mSv per year radon monitoring is continued. (author)

  17. Radon in dwellings the national radon survey Galway and Mayo

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1999-07-01

    This report presents the results of the final phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Galway and Mayo. The average radon concentrations for the houses measured in these counties were 112 Bq/m 3 and 100 Bq/m 3 , respectively. The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  18. Radon in dwellings the national radon survey Cork and Kerry

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.

    1998-07-01

    This report presents the results of the third phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Cork and Kerry. The average radon concentrations for the houses measured in these counties were 76 Bq/m 3 and 70 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  19. Combined effects of inhalation of Radon daughter products and tobacco smoke

    International Nuclear Information System (INIS)

    Chameaud, J.; Perraud, R.; Chretien, J.; Masse, R.; Lafuma, J.

    1980-01-01

    Over the last 10 years, more than 500 lung cancers have been induced in rats by inhalations of radon daughter products at various concentrations and cumulated doses. These cancers were compared with human cancers. Another study examines the cocarcinogenic effect of tobacco smoke. In the first experiment, 100 rats were exposed to a 4000-WLM (working level month) cumulated dose of radon daughter products. Fifty animals were then administered tobacco smoke by inhalation in a fume box during 5 months (i.e., for a total of 352 hr). In the group inhaling radon only, 17 cancers appeared; in the radon-tobacco group, 32 cancers were observed, many of them larger and more invasive than those seen in animals exposed to radon only. Under the same conditions tobacco smoke was inhaled by rats previously exposed to lower doses of radon daughter products (two groups of 30 rats each, at 500 and 100 WLM, respectively). Again, the number of cancers observed was greater than the number of cancers expected if the rats had inhaled radon only. The carcinogenic and potentiating action of tobacco smoke was clearly demonstrated

  20. Effect of smoking on the radon risk in dependence on the time elapsed from exposure

    International Nuclear Information System (INIS)

    Boehm, Radoslav; Holy, Karol; Sedlak, A.

    2013-01-01

    The synergistic effect of cigarette smoking and radon exposure on the lung cancer risk was assessed by using the threshold energy model, which allows the biological effects of radon daughter products on the lung tissue to be analyzed. The shape of the curves describing the relation between the risk and the time after exposure was estimated. The change in the lung function caused by chronic smoking was considered in the calculations. (orig.)

  1. Communicating the risk from radon

    International Nuclear Information System (INIS)

    Fisher, A.; McClelland, G.H.; Schulze, W.D.; Doyle, J.K.

    1991-01-01

    A prominent television station developed a special series of newscasts and public service announcements about radon. This was combined with their advertising of the availability of reduced-price radon test kits in a local supermarket chain. The large number of test kits sold was a success from a marketing perspective, but not from a public health perspective - especially because of the very small share of high readings that were mitigated. In contrast, a study of housing sales showed a much higher testing rate and corresponding mitigation when risk communication accompanied the housing transaction, rather than being directed toward the general public. This paper examined the relative effectiveness of these alternative approaches to radon risk communication, emphasizing the implications for developing and implementing radon programs

  2. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offerman, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.; Yater, J.

    1984-01-01

    Eleven portable air cleaing devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Futhermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. (Author)

  3. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Furthermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. 7 references, 2 figures

  4. Effect of weatherization on radon levels in Maine dwellings

    International Nuclear Information System (INIS)

    Hess, C.T.; Hill, R.C.

    1984-01-01

    A study of radon concentration in the air of 30 Maine dwellings was performed before and after weatherization during November 1982-May 1983. The average radon (.75 pCi/1) was lower than a group of houses in a previous study in October 1980-May 1981 (3.1 pCi/1). The after-weatherization levels show an increase over the before-weatherization levels. Trailers were found to have lower radon concentrations than houses. The maximum value measured was 3.2 pCi/1 before and 6.2 pCi/1 after correction for season of exposure. 13 references, 5 figures, 3 tables

  5. Towards the use of radon distribution in schools as a health indicator

    International Nuclear Information System (INIS)

    Milu, C.; Gheorghe, R.; Dumitrescu, A.

    2006-01-01

    A pilot study concerning indoor radon and gamma dose measurements in school and kindergarten was performed in Bucharest metropolitan area, within a bilateral cooperation between the Institute of Public Health, Bucharest, Romania, and Joszef Stefan Institute, Ljubliana, Slovenia. One hundred schools and kindergartens were included in this study. Because the geological structure of Bucharest subsoil is the same for whole selected aria (a loess platform), the school selection criteria were the age of buildings and the type of building materials. Indoor radon concentrations were measured with nuclear track detectors one month, during the winter. The data have presented a lognormal distribution in the range of (43:477). An arithmetic mean of 146 Bq/m 3 and a geometric mean of 128.18 Bq/m 3 were obtained. Concomitant with indoor radon measurements, gamma dose rate measurement carried out, using thermoluminescence dosimeters. The results ranged from 65.51 to 127.45 n Sv/hour, with a mean of 91.1141(SD12.22) n Sv/mouth and a geometric mean of 90.31 n Sv/hour. The obtained results merely show a preliminary picture of indoor radon and gamma levels in schools and kindergarten from Bucharest and as such a good base for a national monitoring program. (authors)

  6. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    International Nuclear Information System (INIS)

    Nelson, I.C.

    1993-01-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy's (DOE) Radon Research Program and are administratively controlled within the ''Radon Hazards in Homes'' project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ''Mechanisms of Radon Injury'' and ''In vivo/In vitro Radon-Induced Cellular Damage'' projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ''Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,'' ''Laser Measurements of Pb-210,'' ''Radon Transport Modeling in Soils,'' ''Oncogenes in Radiation Carcinogenesis,'' ''Mutation of DNA Targets,'' ''Dosimetry of Radon Progeny,'' and ''Aerosol Technology Development'' also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE's Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research

  7. Lowering the UK domestic radon action level to reduce radiation-induced lung cancer in general population: when and where is it cost effective?

    International Nuclear Information System (INIS)

    Denman, A.R.; Phillips, P.S.

    2008-01-01

    Case studies have shown that radon gas can be present within domestic properties at sufficiently high levels that it can significantly increase the risk of lung cancer in occupants. Recently, Darby et al. (2006) have shown that this risk exists at radon concentrations as low as 100 Bq·m -3 , which is below the UK domestic Action Level of 200 Bq·m -3 . As a result, there have been suggestions that national domestic Action Levels should be reduced. This paper considers the benefits and costs of the domestic radon remediation programmes in the UK, when a range of Action Levels from 125 Bq·m -3 to 600 Bq·m -3 are applied. The variations of total cost, cost-effectiveness, dose reduction and lung cancers saved for each proposed action level, and the proportion of houses over the proposed action level, were estimated. The study shows that, for an Action Level above 200 Bq·m -3 , a completed domestic radon remediation programme in Northamptonshire, where 6.3% of existing houses have initial radon levels over 200 Bq·m -3 , will cost less and will target those most at risk, but will be less cost effective. In addition, a higher Action Level leaves a higher residual dose and greater risk of cancer in the population living in unremediated homes. Reducing the Action Level below 200 Bq·m -3 will prevent more cancers, but at significantly higher cost. It will be less cost-effective, because a significant number of houses with moderate radon levels will be remediated with modest health benefit to occupants. The study suggests that a completed radon remediation programme is most cost-effective with an action level of around 250 to 300 Bq·m -3 . The finding appears to be independent of the percentage of houses over the Action Level. This has clear implications for future health policy. (author)

  8. Communicating radon risk effectively: a mid-course evaluation. Interim report

    International Nuclear Information System (INIS)

    Smith, V.K.; Desvousges, W.H.; Fisher, A.; Johnson, F.R.

    1987-07-01

    A panel of 2300 homeowners was divided into subgroups to test the effectiveness of six alternative ways of explaining the risk from naturally occurring radon gas. The research design focused on two dimensions: qualitative vs. quantitative and directive vs. evaluative. These characteristics led to 4 experimental booklets, which were compared with EPA's Citizen's Guide and a one-page fact sheet. The evaluation examined how much people learned about radon; whether they could form risk perceptions consistent with their home's measured radon level; and whether they felt they had enough information to make a decision about mitigation. The fact sheet did not perform well on any of these evaluation criteria. None of the five booklets clearly was best for all 3 evaluation criteria; the report discusses the implications for designing an effective radon-risk communication program

  9. Some reflections on radon and its measurement

    International Nuclear Information System (INIS)

    Becker, K.

    1991-01-01

    A brief editorial considers mainly two problems concerning radon measurement in residential buildings and its possible health effects. The first relates to the reporting in the literature of radon measurements to an accuracy which exceeds the accuracy of the measuring equipment. Secondly in radioepidemiological studies, care should be exercised in equating uranium miners and people living in houses since their working and living conditions are not comparable; this could sometimes explain an apparent lack of detectable negative health effects in residents. (UK)

  10. Comparative study of radon exposure in Canadian homes and uranium mines - a discussion on the importance of national radon program

    International Nuclear Information System (INIS)

    Chen, Jing

    2017-01-01

    The history of lung cancer in uranium miners is well known for over hundreds of years when the disease was referred to as 'miner's disease' or 'mountain sickness'. Radon levels in uranium mines have decreased significantly over the past 30 years as a result of effective radiation protection measures at workplaces. For the most recent 10-year period, the average radon concentrations to underground and surface workers in Canadian uranium mines were 111 and 11 Bq m -3 , respectively. Based on the recent radon survey carried out in roughly 14 000 homes in 121 health regions across Canada and the more recent radon and thoron survey in 33 Canadian cities and 4000 homes, the average radon concentration in Canadian homes is 77 Bq m -3 . This study demonstrates that, nowadays, workers are exposed to radon in underground mines at a comparable radon level to what Canadians are exposed to at home. Since exposure to indoor radon is the main source of natural radiation exposure to the population, it is important for the National Radon Program to further increase radon awareness, and to encourage more Canadians to take appropriate actions to reduce radon exposure. (authors)

  11. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  12. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny

  13. Radon mapping - Santa Barbara and Ventura counties

    International Nuclear Information System (INIS)

    Churchill, R.

    1997-01-01

    Since 1990, the Department of Conservation''s Division of Mines and Geology (DMG) has provided geologic information and conducted several research projects on geology and radon for the California Department of Health Services (DHS) Radon Program. This article provides a brief overview of radon''s occurrence and impact on human health, and summarizes a recent DMG project for DHS that used geologic, geochemical, and indoor radon measurement data to produce detailed radon potential zone maps for Santa Barbara and Ventura counties

  14. Assessment of radiological effect of the indoor radon and its progeny

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.; Mishra, U.C.

    1988-01-01

    Of all the sources of environmental radiation, radon and its progeny are considered to be responsible for a significant dose to man, especially when they are in enclosed areas like underground mines, caves, cellars, poorly designed and badly ventilated houses. Linear extrapolation from the dose response value of the uranium miners exposed to higher levels of radon and its daughters also suggest that the majority of the lung cancer incidence could be due to radon. Higher indoor radon levels and shift in the disequilibrium of the progeny concentration in dwellings caused by the lower ventilation rate leads to severalfold increase of lung cancer incidence from radon. The large risk which is anticipated calls for further studies in this field and may also lead to the conclusion that the slight, but much feared, burden due to man-made radioactivity could be more than compensated by controlling critical segments of the environmental radioactivity. In this report the study of risk due to breathing of indoor radon is briefly reviewed. Dose equivalent to the exposed tissue of the respiratory tract of the people living in dwellings are evaluated. Like most of the risk assessment of low level radiation, the effort to quantify the effect of radon in terms of death rate dose due to lung cancer attributable to radon levels indoors, has to rely on the extrapolation from the effects of the higher exposure rate. In situations where soil or building materials contain elevated radium levels, living in energy efficient houses may be as dangerous as heavy smoking. (author). 8 tabs., 5 figs., 41 refs

  15. Effects of Radon inhalation on physiology and disorders

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Komoto, Yoshiaki

    1998-01-01

    In the first study, we administered Radon (Rn) to rabbits by inhalation and examined changes in the lipid peroxide (thiobarbituric acid reacting substances; TBARS) level, superoxide dismutase (SOD) activity and membrane fluidity in various organs to clarify the therapeutic effects of Rn. In the second study, we sprayed Rn spring water of various concentrations to rabbits to make the animals inhale them, and examined mainly the responses of biogenic amine neurotransmitters for clarifying the effects of Rn inhalation in the neuronal transmitter system. In the third study, indications for treatment at the Misasa Hot Spring, a Rn producing radioactive spring, include hypertension, diabetes mellitus and pain. To clarify its mechanisms of action on these conditions, we evaluated dynamic changes in blood components such as vasoactive substances after Rn inhalation. Vasodilation, alleviation of diabetic symptoms and morphine-like analgesic effects were observed, suggesting that these changes constitute part of the mechanisms of the Rn spring therapy on the above conditions. (J.P.N.)

  16. Radon exhalation in some building construction materials and effect of plastering and paints on the radon exhalation rate using fired bricks

    International Nuclear Information System (INIS)

    Sharma, Anil; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.; Sharma, A.C.

    2013-01-01

    The technological endeavors of human beings have modified the levels of radiation exposure slightly. The emanation of radon is primarily associated with radium and its ultimate precursor uranium. The radiation dose received by human beings from indoor radon and its progeny is the largest of all doses received either by natural or man-made sources. In order to investigate the effect of paints available in the market on the radon exhalation rate from building materials, several bricks were collected. These bricks were plastered with a mixture of cement and sand. Before measurements bricks were dried for 24 hours. These plastered bricks were then coated with white wash and again dried for 1- 2 hours. After drying the bricks were coated with different brands and colors of paints. Radon exhalation rates measurements were carried out for these painted bricks using 'Sealed can Technique' cylindrical plastic 'Can' of 7.5 cm height and 7.0 cm diameter was sealed to the individual samples by plastic can. In each 'Can' a LR-115 type II plastic detector (2 cm 2cm) was fixed at the top inside of the 'Can', such that the sensitive surface of the detector faces the material and is freely exposed to the emergent radon. Radon decays in the volume of the can record the alpha particles resulting from the 218 Po and 214 Po deposited on the inner wall of the 'Can'. Radon and its daughters will reach an equilibrium in concentration after one week or more. Hence the equilibrium activity of the emergent radon can be obtained from the geometry of the can and the time of exposure. The results will be discussed. (author)

  17. Experimental study of the combined effects of inhalation of radon daughter products and tobacco smoke

    International Nuclear Information System (INIS)

    Chameaud, J.; Perraud, R.; Chretien, J.; Masse, R.; Lafuma, J.

    1979-01-01

    For 10 years, over 500 lung cancers have been induced in rats by inhalations of radon daughter products at various concentrations and cumulated doses. Considering several points and the dose-effect relationship especially, such cancers can be compared with human cancers. This type of experiments, fully mastered, has made it possible to undertake under good conditions the study of the co-carcinogenic effect of various inhaled pollutants such as tobacco smoke. In a first experiment, 100 rats were exposed to a 4000WLM cumulated dose of radon daughter products, knowing that this level induces some 30% of lung cancers. 50 animals were then administered tobacco smoke by inhalation in a fume box during 5 months (350 h.) In the group inhaling radon only, 17 cancers appeared; in the radon -tobacco group 32 cancers bigger and more invasive were observed. Under the same conditions, tobacco smoke was inhaled by rats previously exposed to lower doses of radon daughter products (2 groups of 30 rats, 500 and 100 WLM respectively). Again, the number of cancers observed was higher that the number of cancers expected if the rats had inhaled radon only. This co-carcinogenic and potentiating action of tobacco was clearly demonstrated. Further experiments are considered in order to determine the processes involved

  18. Measurements of the atmospheric concentration of radon in Israel and assessment of its impact on the health of the population

    International Nuclear Information System (INIS)

    Margaliot, M.

    1993-08-01

    We have developed a new method for the examination of the SSNTD foil, which utilizes laser scanning of the foil. The examination consists of examining the scattering pattern of the laser beam in the various regions of the SSNTD foil. This method (patented - US Pat 5,117,120 of 05-26-1992) enables fast and reliable reading of large numbers of SSNTD foils. An apparatus built according to this method was applied to sampling radon measurements conducted in the various regions of Israel, within the framework of the present work. The results of these measurements indicate that the average radon level to which Israel population is exposed is approximately 40 Bq/m3. The resulting equivalent radiation dose was calculated. From that, the health hazard to the population was derived, using the updated risk coefficients, which link radon exposure to increased morbidity and mortality from lung cancer. It was concluded that about 80 cases of death from lung cancer per year, out of an annual total of about 750 in Israel, can be attributed to radon It was also found that the radon level distribution in dwellings in Israel can be described best by the log-normal distribution. The tools developed in this work, combined with the actual experience with large-scale radon measurements, serve as a basis for a future full-scale radon survey in Israel. (authors) 11 tabs., 35 figs., 96 refs

  19. Measurements of the atmospheric concentration of radon in Israel and assessment of its impact on the health of the population

    Energy Technology Data Exchange (ETDEWEB)

    Margaliot, M

    1993-08-01

    We have developed a new method for the examination of the SSNTD foil, which utilizes laser scanning of the foil. The examination consists of examining the scattering pattern of the laser beam in the various regions of the SSNTD foil. This method (patented - US Pat 5,117,120 of 05-26-1992) enables fast and reliable reading of large numbers of SSNTD foils. An apparatus built according to this method was applied to sampling radon measurements conducted in the various regions of Israel, within the framework of the present work. The results of these measurements indicate that the average radon level to which Israel population is exposed is approximately 40 Bq/m3. The resulting equivalent radiation dose was calculated. From that, the health hazard to the population was derived, using the updated risk coefficients, which link radon exposure to increased morbidity and mortality from lung cancer. It was concluded that about 80 cases of death from lung cancer per year, out of an annual total of about 750 in Israel, can be attributed to radon It was also found that the radon level distribution in dwellings in Israel can be described best by the log-normal distribution. The tools developed in this work, combined with the actual experience with large-scale radon measurements, serve as a basis for a future full-scale radon survey in Israel. (authors) 11 tabs., 35 figs., 96 refs.

  20. How well do radon mitigation strategies work?

    International Nuclear Information System (INIS)

    Matson, N.

    1992-01-01

    Naturally occurring radon in homes can't be completely avoided, but it can be minimized. Indoor air quality researchers compared results of six popular ways to mitigate radon in houses in the Spokane River Valley and New Jersey. Over the course of the past decade, Americans have become aware of the health hazards from radon, a naturally occurring gas that can enter a home through a variety of pathways from the surrounding terrain. Recent research carried out at Lawrence Berkeley Laboratory (LBL) and elsewhere suggests that radon mitigation is feasible but requires long-term monitoring to ensure lasting effectiveness. These studies compare the selection, installation, and performance evaluations of several common radon mitigation strategies

  1. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  2. Effects of periodic atmospheric pressure variation on radon entry into buildings

    Science.gov (United States)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  3. Assessing the effectiveness of slab flooring as a barrier to soil gas and radon infiltration

    International Nuclear Information System (INIS)

    Williamson, A.D.; Fowler, C.S.; McDonough, S.E.

    1995-01-01

    Experimental studies on the entry of soil gas and radon into slab-on-grade buildings have been carried out in instrumented, single-zone test structures. This work, as part of the Florida Radon Research Program, focused on the effectiveness of slab flooring variants as barriers to soil gas/radon entry. A second objective was the study of the role of subslab fill soil as both a potential source of and barrier to radon entry. Studies were made in well-sealed (∼ 600 mm 2 ELA) unoccupied test buildings placed on well-characterized, radium-bearing sandy fill soil. The buildings were instrumented with data acquisition systems to continuously monitor indoor radon concentrations, differential pressures at several subsurface locations, weather conditions, and soil moisture. The response of the structures to mechanical depressurization as well as natural driving forces was measured. Limited measurements were made regarding direct diffusive transport of radon through apparently intact concrete slabs, as well as transport through cracks in the floor structure

  4. Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice

    Directory of Open Access Journals (Sweden)

    Teruaki Toyota

    2012-01-01

    Full Text Available We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight after inhaling approximately 4000 Bq/m3 radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.

  5. Carcinogenic effects of radon daughters, uranium ore dust and cigarette smoke in beagle dogs

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Filipy, R.E.; Dagle, G.E.; Stuart, B.O.

    1982-01-01

    The development of pulmonary lesions in beagle dogs was studied following chronic inhalation exposures to radon (at 105 +- 20 nCi/l), radon daughters (at 605 +- 169 WL), uranium ore dust (at 12.9 +- 6.7 mg/m 3 ) and cigarette smoke. Chronic exposures to mixtures of these agents caused significant lifespan shortening compared with controls. Survival times of controls and smoke-exposed dogs were equivalent during the 4 to 5-yr mean survival time of the dogs exposed to radon-daughter and ore-dust mixtures (with or without added cigarette smoke). Animals with tumors of the respiratory tract generally has cumulative radon-daughter exposures exceeding 13,000 WLM; their survival time was longer than that of nontumor-bearing animals. Exposure to cigarette smoke had a mitigating effect on radon daughter-induced tumors. Exposures to smoke from 10 cigarettes/d, 7 d/wk produced no significant respiratory tract lesions. Exposure to 20 cigarettes/d, 7 d/wk resulted in pulmonary emphysema, fibrosis and chronic bronchitis and bronchiolitis. Emphysema and fibrosis were much more prevalent and severe in the dogs exposed to mixtures including radon daughters and uranium/ore dust. These dogs also had adenomatous lesions which progressed to squamous metaplasia of alveolar epithelium, epidermoid carcinoma and bronchioloalveolar carcinoma. Pathologic changes in the airways of these dogs were most prominent in the nasal mucosa, and included a few squamous carcinomas in the nasal cavity. (author)

  6. Elevation of antioxidant enzymes in the clinical effects of radon and thermal therapy for bronchial asthma

    International Nuclear Information System (INIS)

    Mitsunobu, Fumihiro; Hosaki, Yasuhiro; Ashida, Kozo; Tanizaki, Yoshiro; Yamaoka, Kiyonori; Hanamoto, Katsumi; Sugita, Katsuhiro; Kojima, Shuji

    2003-01-01

    An increased systemic production of oxygen-free radicals by activated inflammatory cells is thought to be involved in the pathophysiology of asthma. The aim of this study is to evaluate the clinical effects of radon and thermal therapy on asthma in relation to antioxidant enzymes and lipid peroxide. Radon and thermal therapy were performed once a week. All subjects went to a hot bathroom with a high concentration of radon, and nasal inhalation of vapor from a hot spring was performed for 40 min once a day under conditions of high humidity. The room temperature was 48 deg C; the room radon concentration was 2,080 Bq/m 3 . Blood samples were collected at 2 h, 14, and 28 days after the first therapy. A blood sample also was collected before the first therapy (at body temperature and background radon level) to be used as the control. The forced expiratory volume in one second (%FEV 1 ) was significantly increased 28 days after the first therapy. On day 28, the catalase (CAT) activity was significantly increased in comparison with the control. The superoxide dismutase (SOD) activity was significantly increased compared to the control after first inhalation. On days 14 and 28, the lipid peroxide level was significantly decreased in comparison with the control. In conclusion, the present pilot study has shown that radon and thermal therapy improved the pulmonary function of asthmatics by increasing the reduced activities of antioxidant enzymes. (author)

  7. An overview of radon and thoron research in India

    International Nuclear Information System (INIS)

    Ramola, R.C.

    2015-01-01

    An overview of radon and thoron research in India is presented in this paper. World Health Organisation along with ICRP and UNSCEAR has identified radon as the second cause of lung cancer after smoking. Apart from the health effects of radon, it has also played a role in many scientific areas such as radiotherapy, meteorology and geophysics. Radon has been studied in India by various research groups for its environmental and geophysical applications. The findings of various research groups show that there is a basis to enhance radon and thoron research and practice in the country. To be more efficient, these activities need collaboration with various authorities of the country and with international teams working in the field. Major achievements in radon and thoron research in the country accomplished in the past three decades are highlighted here. (author)

  8. Monitoring effects of river restoration on groundwater with radon

    International Nuclear Information System (INIS)

    Hoehn, Eduard

    2007-01-01

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [de

  9. Relationship between indoor radon and lung cancer: a study of feasibility of an epidemiological study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, S.; Neuberg, D.; DuMouchel, W.; Kleitman, D.; Chernoff, H.

    1981-01-01

    This report describes a study to assess the feasibility of an epidemiologic investigation of the relationship between residential radon exposure and lung cancer. Field measurements of residential radon levels in the State of Maine are described. Using these radon measurements and BEIR, 1980 risk assessments, it is estimated that at most 10% of lung cancers in Maine can be considered attributable to residential radon exposure. Calculations are made of sample sizes necessary for a case-control study of radon and lung cancer, for several levels of radon and smoking health effects. The effects of misclassification of exposure variables on the probability of detecting a radon health effect are discussed. A comparison is made of three different mathematical models which could be used for sample size estimation. Dollar cost estimates are given for conducting an epidemiologic case-control study of the relationship between residential radon exposure and lung cancer.

  10. Relationship between indoor radon and lung cancer: a study of feasibility of an epidemiological study. Final report

    International Nuclear Information System (INIS)

    Rasmussen, S.; Neuberg, D.; DuMouchel, W.; Kleitman, D.; Chernoff, H.

    1981-01-01

    This report describes a study to assess the feasibility of an epidemiologic investigation of the relationship between residential radon exposure and lung cancer. Field measurements of residential radon levels in the State of Maine are described. Using these radon measurements and BEIR, 1980 risk assessments, it is estimated that at most 10% of lung cancers in Maine can be considered attributable to residential radon exposure. Calculations are made of sample sizes necessary for a case-control study of radon and lung cancer, for several levels of radon and smoking health effects. The effects of misclassification of exposure variables on the probability of detecting a radon health effect are discussed. A comparison is made of three different mathematical models which could be used for sample size estimation. Dollar cost estimates are given for conducting an epidemiologic case-control study of the relationship between residential radon exposure and lung cancer

  11. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  12. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    International Nuclear Information System (INIS)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-01-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  13. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  14. Residents in a high radon potential geographic area: Their risk perception and attitude toward testing and mitigation

    International Nuclear Information System (INIS)

    Ferng, S.F.; Lawson, J.K.

    1996-01-01

    Boone County, Indiana was identified by the EPA as one of the high radon potential geographic areas. Health education campaigns are needed to prevent resident's unnecessary radon exposure. In order to design suitable programs, a questionnaire mail survey was conducted to measure socio-demographic characteristics of County resident's knowledge about radon, attitude toward radon testing and mitigation, support of education campaigns, and the best media to deliver radon education campaigns. A stratified random sampling method was applied for a total of 400 samples. The number of samples from each township/city was a proportion of their taxable parcels. The survey return rate was 39.8%. The data were analyzed by Epi Info and SPSS. The statistical significant level was set at α = 0.05. The results showed that resident's knowledge about radon was at a relatively superficial level. There was no association identified between the knowledge of radon and gender, age, family income, or education, except that females more frequently believed in false effects caused by radon. A significant correlation between radon knowledge and home radon tests was observed. Also found in this study was that respondents with better knowledge about diseases caused by radon had more confidence in radon mitigation actions. Newspaper was chosen by respondents as the most favorite media to deliver radon health education campaigns. Health education campaigns for the residents of Boone County might be conducted by local governments and/or other organizations

  15. Nuclear tracks in solids and gas radon measurements

    International Nuclear Information System (INIS)

    Espinosa, G.

    2007-01-01

    Full text: The Department of Energy (DOE), the Environmental Protection Agency (EPA) in USA, and the European Community, have dedicated significant budget to the Radon study, its health effects and remedial actions for controlling and achieving lower levels, in these cases, nationwide research programs have been organized. With the aim to contribute on the radon levels knowledge in our country, the Applied Dosimetry Project at the Physics Institute of the University of Mexico has developed an indoor and outdoor radon measurement methodology. In this paper a passive radon detector device based on CR-39 polycarbonate for use in radon research and routine measurements is presented. As well the methodology for the track formation, automatic reading system, calibration procedure and measurements in a different location, are shown in this work. The results had been compared with dynamic detection systems, and another methodologies and research groups in order to have a high confidence in the radon levels reported. (Author)

  16. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    Science.gov (United States)

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  17. Radon campaigns. Status report 2008; Radontalkoot. Tilannekatsaus 2008

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.; Valmari, T.; Reisbacka, H.; Niemelae, H.; Oinas, T.; Maekelaeinen, I.; Laitinen-Sorvari, R.

    2008-12-15

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m3 was exceeded during the two first campaign seasons. Among the households that replied

  18. Indoor air radon

    International Nuclear Information System (INIS)

    Cothern, C.R.

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references

  19. Modeled atmospheric radon concentrations from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  20. Modeled atmospheric radon concentrations from uranium mines

    International Nuclear Information System (INIS)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs

  1. Indoor radon II

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Because of the growing interest in and public concern about indoor radon, APCA, in April 1987, sponsored the Second International Specialty Conference on Indoor Radon. This book is the proceedings of this conference and includes discussions on: A current assessment of the nature of the problem; Issues related to health effects and risk assessment; The development of public and private sector initiatives; Research into methods of control and prevention; International perspectives; and Measurement methods and programs. The material is intended for the technically oriented and for those responsible for developing programs and initiatives to address this important public health issue. Contributors include federal, state, and provincial program officials and members of the academic and private sectors

  2. Scopingreport radon

    International Nuclear Information System (INIS)

    Blaauboer, R.O.; Vaas, L.H.; Hesse, J.M.; Slooff, W.

    1989-09-01

    This report contains general information on radon concerning the existing standards, sources and emissions, the exposure levels and effect levels. lt serves as a basis for the discussion during the exploratory melting to be held in November/December 1989, aimed at determining the contents of the Integrated Criteria Document Radon. Attention is focussd on Rn-222 (radon) and Rn-220 (thoron), presently of public interest because of radon gas pollution in private homes. In the Netherlands air quality standards nor product standards for the exhalation rate of building materials have been recommended. The major source of radon in the Netherlands is the soil gas (> 97%), minor sources are phosphate residues and building materials (> 2% in total). Hence, the major concern is the transfer through the inhalation of air, the lung being the most critical organ at risk to develop cancer. Compared to risks for humans, the risks of radon and its daughters for aquatic and terrestric organisms, as well as for agricultural crops and livestock, are assumed to be limited. In the Netherlands the average dose for man due to radon and thoron progeny is appr. 1.2 mSv per year, the estimated dose range being 0.1-3.5 mSv per year. This dose contributes for about 50% to rhe total exposure due to all sources of ionizing radiation. Of this dose respectively 80% is caused by radon and about 90% is received indoor. The estimated dose for the general population corresponds to a risk for inducing fatal cancers of about 15 x 10-6 per year, ranging from 1.2 x 10-6 to 44 x 10-6 which exceeds the risk limit of 1 x 10-6 per year -as defined in the standardization policy in the Netherlands for a single source of ionizing radiation-with a factor 15 (1- 44). Reduction of exposure is only possible in the indoor environment. Several techniques have been described to reduce the indoor dose, resulting from exhalation of the soil and building materials. )aut- hor). 37 refs.; 3 figs.; 8 tabs

  3. A comparative review of the effectiveness of radon remediation programmes in hospitals, schools and homes in Northamptonshire, UK

    International Nuclear Information System (INIS)

    Denman, A.R.; Phillips, P.S.; Tornberg, R.

    2000-01-01

    are found and remediated. The total cost of each programme per man-sievert saved annually was estimated to be pound 195,400 for NHS, pound 20,400 for Schools, and currently pound 144,200 for houses, dropping to pound 27,000 if all houses are remediated. Comparisons between the programmes in schools, hospitals and domestic properties, show that it is most cost effective to conduct radon remediation in schools in a radon Affected Area. It is almost as cost effective to remediate domestic properties in the same area, but only if all householders can be encouraged to undertake any necessary remediation. In the UK with only 10% of such households having so far organised remediation, a review of current strategy is required. The exemption of remediation work from VAT would be a simple means of reducing costs, and demonstrating government commitment to reducing radon health risks. Despite this the domestic programme is already achieving a greater reduction in collective dose. It may be appropriate to consider a graduated approach to radon mitigation, with schools being remediated over a wider area than either domestic properties or the over-ground workplace. (author)

  4. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Experience in mines shows that a very high concentration of radon daughters builds up in an unventilated dead end heading. Even minimal air movement results in a drastic reduction in radon daughter concentration. Designing the ventilation system to provide an optimized flow of fresh air into the workplace results in acceptable climatic conditions and radon daughter levels. The example of the Director fluorospar mine in Newfoundland is used to illustrate the actual design and operation of a ventilation system that provided effective radon daughter control. It was found at this mine that the age of the air underground should be kept as low as possible; that no areas of the mine should be left unventilated unless they could be kept at negative pressure; that a comparatively simple remote control and monitoring system helped stabilize ventilation and detected upsets; that the ventilation system should operate continuously, even when the mine is shut down for short periods; and that pressurization of the mine seemed to inhibit radon influx

  5. Indoor radon pollution: update. Bibliographic series

    International Nuclear Information System (INIS)

    Richard, S.A.

    1988-12-01

    This bibliography focuses on indoor radon pollution problems and is organized according to the following major topic areas: I-Overview (covering general areas such as law and policy, popular press, communication and education, indoor air and books); II-Health Effects (epidemiology, risk estimates, and dosimetry); III-Exposure (house construction, geology, source, physical properties, and radon in water); IV-Surveys (national and international case studies); V-Mitigation; and VI-Measurement Techniques. Section VIII-Appendix, lists State Contacts

  6. The effect of filtration on radon daughter atmospheres: Laboratory and field experiments

    International Nuclear Information System (INIS)

    Jonassen, N.; Jensen, B.

    1987-01-01

    Airborne radon daughters may be removed from the air by internal filtration using mechanical or electrofilters. The effect of the filtration may be evaluated in absolute measure by the decrease in the potential alpha energy concentration (or equivalent equilibrium concentration) or relatively by the decrease in the equilibrium factor. The filtration, however, may also change the distribution of airborne radon daughter activity between the unattached and the aerosol-attached state in a way to increase the radiological dose corresponding to a given potential alpha energy concentration. The paper describes a series of laboratory and field experiments which indicate that it is possible by the use of household electrofilters with filtration rates of 2-3 h -1 to lower the radon daughter concentrations to about 20 -30 % and the average radiological dose to about 50-60 % of the value in unfiltered air

  7. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. If the subject moved to an environment with a lower radon concentration from an environment with a higher level of radon, the result would be an exhalation of radon, and the initial exhalation rate of radon should depend of the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. The author reports a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. 8 figures.

  8. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. Movement of the subject to an environment with a lower radon concentration from an environment with a higher level of radon would result in an exhalation of radon, and the initial exhalation rate of radon should depend on the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. We report a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. (author).

  9. Radon Gas in Ireland Joint Position Statement by the Radiological Protection Institute of Ireland and the Health Service Executive

    International Nuclear Information System (INIS)

    Part, A.M.; Colgan, P.A.; Fenton, D.; Kelly, I.; Long, S.; O'Mahony, M.; Pollard, D.

    2010-04-01

    This position statement is written by the Health Service Executive and the Radiological Protection Institute of Ireland with a view to forming and influencing policy in this area. It provides a summary of the health risks associated with radon exposure in Ireland and the steps that can be taken to reduce those risks. It outlines suggested ongoing work to reduce both the population dose from radon and the individual dose to those most at risk and considers future work needed to improve national policy to achieve these objectives

  10. Swiss radon programme 'RAPROS'

    International Nuclear Information System (INIS)

    Zeller, W.

    1992-03-01

    The results of the five-year radon research program RAPROS presented in this report, allow for scientifically valid statements on the origin of elevated levels of indoor radon in Switzerland. These results form a basis for recommendations and for actions to be taken. Indoor radon concentrations have been measured in more than 4000 living-rooms and 2000 basements; a sampling density of about 0.2% of the Swiss housing stock. According to these measurements radon leads to an estimated average annual effective dose of 2 milli-Sievert, although in some regions the annual dose may be much higher. Extrapolation of the existing data shows that in about 10'000 Swiss houses radon may exceed 1000 Bq/m 3 . For these houses remedial actions are recommended. There seems to be no radon problem in the large cities in the Swiss Plateau. High indoor radon concentrations in Switzerland are due to the soil beneath the buildings. Data from the study indicated that the most important soil characteristic influencing indoor radon concentrations was its gas permeability. Because natural ventilation in a heated house creates a slight underpressure in the lower levels with respect to surrounding soils, radon is driven from the soil into the building. Weatherization of the houses to reduce energy consumption had in most cases no effect on the indoor radon concentrations. Radon from tap water or from building materials does not contribute significantly to indoor radon levels in Switzerland. The high levels in the Jura Mountains are thought to be associated with karstic limestone bedrock. Several houses within Switzerland have now been modified to reduce radon levels. The most successful mitigation technique combined forced-air ventilation with tightening of the basement to decrease or prevent air infiltration from the soil. (author) figs., tabs., refs

  11. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  12. Health Risks due to Exposure to Radon in Homes in Ireland

    International Nuclear Information System (INIS)

    2005-09-01

    This document summarises the evidence that links exposure to radon in homes with an increase in lung cancer. Using the most recent risk estimates derived from epidemiological studies carried out abroad, the risk associated with radon exposure in homes in Ireland is derived. The relationship between exposure to radon and cigarette smoking is also discussed

  13. Factors affecting passive monitoring of radon

    International Nuclear Information System (INIS)

    Asano, Tomohiro; Kahn, B.

    1989-09-01

    In recent years, increasing cancer has been expressed as a possible health hazards associated with long-term exposures to a large population at a low level of radon in the environment. Because radon is ubiquitous nuclide, nation-wide monitoring is necessary to determine lung cancer risk. For such purpose, passive sampling methods with track etch detector or charcoal adsorption collector may have the advantage in lower cost and convenience. The charcoal adsorption collector is considered in this study. Various factors may significantly affect the charcoal adsorption mechanism on its practical application. Moisture effects are discussed here as having major impact on radon collection by charcoal. Set of equations are presented in this report to describe adsorption of radon including moisture effects. (author) 61 refs

  14. Radon: Not so Noble

    Indian Academy of Sciences (India)

    Radon in the Environment and Associated Health Problems ... is presently working on emission of ... Radon isotope 222 has a half-life of 3.8 days, long enough to ..... 222Rn concentration of one WL for 170 working hours in one month.

  15. Study of radon-222 emanation from sedimentary phosphates and corresponding phosphogypsum. Temperature effect

    International Nuclear Information System (INIS)

    Boujrhal, F.M.

    1993-01-01

    The aim of this study is to examine the effect of temperature on radon emanation from the phosphates of various regions of Morocco, from corresponding phosphogypsum and from teeth fossilized of Youssoufia phosphate. The interpretation of obtained results was carried out by the physicochemical studies with various approaches; the X-ray diffraction analysis, the measurement of the specific surface area and porousness, the determination of the oxygen content by activation analysis with 14 MeV neutron. The thermal treatment between 100 and 900 degrees C conducted to the following points: - An increase of the radon degassing rate, which is first slow when the temperature increase from 20 to 600 degrees C, then becomes brutal beyond this temperature. We attributed this variation to the training effect ( transport effect ) of radon by the others gas susceptible to be released with thermal effect, particularly the CO sub 2. - The reduction of the radon emanation power versus temperature. We could demonstrate a linear correlation between the power emanation and the specific surface area. 122 refs., 102 figs., 20 tabs. (Author)

  16. Sampling strategies for indoor radon investigations

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1983-01-01

    Recent investigations prompted by concern about the environmental effects of residential energy conservation have produced many accounts of indoor radon concentrations far above background levels. In many instances time-normalized annual exposures exceeded the 4 WLM per year standard currently used for uranium mining. Further investigations of indoor radon exposures are necessary to judge the extent of the problem and to estimate the practicality of health effects studies. A number of trends can be discerned as more indoor surveys are reported. It is becoming increasingly clear that local geological factors play a major, if not dominant role in determining the distribution of indoor radon concentrations in a given area. Within a giving locale, indoor radon concentrations tend to be log-normally distributed, and sample means differ markedly from one region to another. The appreciation of geological factors and the general log-normality of radon distributions will improve the accuracy of population dose estimates and facilitate the design of preliminary health effects studies. The relative merits of grab samples, short and long term integrated samples, and more complicated dose assessment strategies are discussed in the context of several types of epidemiological investigations. A new passive radon sampler with a 24 hour integration time is described and evaluated as a tool for pilot investigations

  17. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.; Saum, D.W.

    1990-01-01

    This article reports on radon mitigation in school buildings. Subslab depressurization (SSD) has been the most successful and widely used radon reduction method in houses. Thus far, it has also substantially reduced radon levels in a number of schools. Schools often have interior footings or thickened slabs that may create barriers for subslab air flow if a SSD system is the mitigation option. Review of foundation plans and subslab air flow testing will help to determine the presence and effect of such barriers. HVAC systems in schools vary considerable and tend to have a greater influence on pressure differentials (and consequently radon levels) than do heating and air-conditioning systems encountered in the radon mitigation of houses. As part of any radon mitigation method, ASHRAE Standard 62-1989 should be consulted to determine if the installed HVAC system is designed and operated to achieve minimum ventilation standards for indoor air quality

  18. Radon Measurements in Egypt using passive etched track detectors. A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A [National Network of Radiation Physics. Atomic Energy Authority (Egypt); Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, (Egypt); El-Arabi, A M [Physics Department, Faculty of Science, South Valley University, Qena, (Egypt)

    2005-04-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water.

  19. Determination of the Radon Concentration and Radioactivity Level in Karaca Cave

    International Nuclear Information System (INIS)

    Kara, A.

    2008-01-01

    In this study, the radon gas concentration in the Karaca cave which is open to tourism has been determined and the negative effects of radon gas on people were discussed. Karaca cave (Gumushane) is visited by many tourists every year. The measurements of radon gas concentration which affects the health of human beings negatively and even causes the lung cancer when it reaches high points have been done for the summer and winter season. LR-115 passive radon detector was used to determine radon concentrations in the cave both winter and summer season. The average radon concentration in the Karaca cave were determined as 823 Bq/m 3 and 1023 Bq/m 3 for the summer and winter season, respectively. Moreover, to find out the natural radioactivity in the cave, the gamma spectroscopic analysis of soil, stone and stalagmite samples were carried out and their relations with the radon gas in the cave atmosphere was analyzed

  20. Radon Measurements in Egypt using passive etched track detectors. A Review

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Hussein, A.S.; El-Arabi, A.M.

    2005-01-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water

  1. Lung Deposition And Biological Effects Of Inhaled Radon Progenies

    International Nuclear Information System (INIS)

    Balashazy, I.; Farkas, A.; Szoke, I.; Moustafa, M.; Kudela, G.

    2010-01-01

    Inhaled radon progenies provide more than the half of natural radiation exposure. There is increasing evidence that the cellular distribution of radiation burden is an important factor regarding the biological response to ionisation radiation, thus, one of our tasks was the characterisation of the distribution of cellular exposure. Histological studies of former uranium miners presented strong correlation between primer deposition hot spots and neoplastic lesions. Most of these lesions were located along the carinal regions of the large bronchial airways. In the present work, computational fluid dynamics (CFD) approaches have been applied to simulate the deposition distribution of inhaled radon progenies along central human airways. The geometry and the cellular structure of epithelial lung tissue were numerically reconstructed based on anatomical and histological data. Single and multiple ha-hit and cellular dose distributions have been computed applying Monte Carlo modelling techniques at different breathing conditions. Figure 1. Deposition enhancement factor (EF) of inhaled radon progenies on a central airway bifurcation in airway generations 4-5 during light physical activity breathing condition. Size of scanning surface element is a 45μm side triangle. Left panel: EF max=1400,Dp=200 nm (attached). Right panel: EF max1290, Dp= 1 nm (unattached). Values of local per average deposition densities, that is, enhancement factors (Figure 1), hit probabilities and doses may be up to two-three orders of magnitude higher in the deposition hot spots than the average values. Dose calculations revealed that some cell clusters may receive high doses even at low exposure conditions. Applying the model to different radiation exposure conditions useful relations can be received regarding the linear-non threshold hypothesis

  2. Radon analyser

    International Nuclear Information System (INIS)

    1981-01-01

    The process claimed includes the steps of transferring radon gas produced by a sample to a charcoal trap, cooled to a temperature whereby the radon is absorbed by the charcoal, heating the charcoal trap to a sufficient temperature to release the radon, and transferring the radon to a counting device where the gas particles are counted

  3. Strategy for the reduction of radon exposure in Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    Elevated indoor radon concentrations are a more extensive problem in Norway than in many other countries. It has been estimated that indoor radon causes approximately 300 deaths from lung cancer each year in Norway. On average, avoiding lung cancer increases life expectancy by 14 to 18 years. Radon is a radioactive noble gas formed continually is a decay product from uranium. Uranium is a natural constituent existing in varying concentrations in bedrock, minerals and soils. For this reason, both the soil air and groundwater contain radon. Radon in buildings normally originates from the soil air in the underlying ground. Indoor air pressure is often low, so that radon-containing air from the surrounding ground gets sucked in through cracks in the building foundations. Elevated indoor radon concentrations can be due to household water drawn from groundwater wells, and radon gas can also be emitted from building materials such as certain types of stone or concrete containing high levels of natural radioactivity. Norway, Sweden and Finland are among the the countries in the world with the highest average indoor radon concentrations. Geological conditions and the cool climate pose a big challenge, but the radon problem can be solved in a cost-effective way. Radon is the most common cause of lung cancer after active smoking. At a radon concentration of 100 Bq/m3, which is not far from the estimated average for Norwegian housing, the risks of dying of radon-induced lung cancer before the age of 75 are 0.1 % for non-smokers and 2 % for smokers, respectively. Many buildings in Norway have radon levels that exceed this. The most important health impact of radon exposure is the increased risk of lung cancer. This increase in risk is assumed to be linear in relation to radon concentration (i.e., the risk is 10 times higher at 1000 Bq/m3 compared to 100 Bq/m3). The risk also increases linearly with exposure time, i.e. there is a tenfold greater risk of contracting lung cancer

  4. Strategy for the reduction of radon exposure in Norway

    International Nuclear Information System (INIS)

    2010-05-01

    Elevated indoor radon concentrations are a more extensive problem in Norway than in many other countries. It has been estimated that indoor radon causes approximately 300 deaths from lung cancer each year in Norway. On average, avoiding lung cancer increases life expectancy by 14 to 18 years. Radon is a radioactive noble gas formed continually is a decay product from uranium. Uranium is a natural constituent existing in varying concentrations in bedrock, minerals and soils. For this reason, both the soil air and groundwater contain radon. Radon in buildings normally originates from the soil air in the underlying ground. Indoor air pressure is often low, so that radon-containing air from the surrounding ground gets sucked in through cracks in the building foundations. Elevated indoor radon concentrations can be due to household water drawn from groundwater wells, and radon gas can also be emitted from building materials such as certain types of stone or concrete containing high levels of natural radioactivity. Norway, Sweden and Finland are among the the countries in the world with the highest average indoor radon concentrations. Geological conditions and the cool climate pose a big challenge, but the radon problem can be solved in a cost-effective way. Radon is the most common cause of lung cancer after active smoking. At a radon concentration of 100 Bq/m3, which is not far from the estimated average for Norwegian housing, the risks of dying of radon-induced lung cancer before the age of 75 are 0.1 % for non-smokers and 2 % for smokers, respectively. Many buildings in Norway have radon levels that exceed this. The most important health impact of radon exposure is the increased risk of lung cancer. This increase in risk is assumed to be linear in relation to radon concentration (i.e., the risk is 10 times higher at 1000 Bq/m3 compared to 100 Bq/m3). The risk also increases linearly with exposure time, i.e. there is a tenfold greater risk of contracting lung cancer

  5. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings

    International Nuclear Information System (INIS)

    Hafez, A.F.; Hussein, A.S.

    2001-01-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations inside the tombs ranged from 540 to 3115 Bq m -3 . The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 μSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr -1 limit

  6. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings.

    Science.gov (United States)

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.

  7. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations inside the tombs ranged from 540 to 3115 Bq m{sup -3}. The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 {mu}Sv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr{sup -1} limit.

  8. Experimental study of the combined effect of cigarette smoke and an active burden of radon-222

    International Nuclear Information System (INIS)

    Chameaud, J.; Perraud, R.; Chretien, J.; Masse, R.; Lafuma, J.

    1978-01-01

    Previous studies on the carcinogenic effect of radon-222 derivatives have yielded accurate relationships, for each radon dose, between the dose value and the frequencies and latency times of lung cancers. In the present work, one hundred rats were subjected, over one-and-a-half months, to a total dose of 3600 WLM, chosen because it corresponds to a 30% occurrence of cancers. Fifty of these animals then inhaled cigarette smoke during 50 ten-minute sessions per week. The total time for these inhalations was 350 hours spread over about six months. In the 'radon' group (50 rats), 17 animals were found to have lung cancer. In the 'radon + tobacco' group (50 rats), 32 cancers were observed; moreover, the tumours in this group were much more extensive, multifocal and invasive. Animals subjected to cigarette smoke alone have never shown lung cancer. The effect of tobacco as a co-factor in carcinogenesis has thus been varified experimentally, although inhaled cigarette smoke alone is not carcinogenic in rats. (author)

  9. Sex and smoking sensitive model of radon induced lung cancer

    International Nuclear Information System (INIS)

    Zhukovsky, M.; Yarmoshenko, I.

    2006-01-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  10. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  11. Combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice

    International Nuclear Information System (INIS)

    Etani, Reo; Kataoka, Takahiro; Nishiyama, Yuichi; Takata, Yuji; Yamaoka, Kiyonori

    2015-01-01

    It has been reported that radon inhalation activates antioxidative functions in liver and has an antioxidative effect against hepatopathy similar to that of the antioxidative effects of ascorbic acid (VC) or α-tocopherol (VE). In this study, we examined the combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice. ICR mice were subjected to intraperitoneal (i.p.) administration of alcohol after pretreating with air only (sham) or radon at a concentration of approximately 2000 Bq/m 3 for 24 hours and i.p. administration of VC (300 mg/kg body weight) or VE (300 mg/kg body weight). In mice injected with alcohol, the combined radon and antioxidant vitamins treatment significantly decreased the activities of glutamic oxaloacetic transaminase in serum compared to not only the alcohol-administered group (sham group), but also the radon inhalation with alcohol administration group or the vitamin and alcohol administration group. In addition, radon inhalation significantly increased the antioxidant level, in such as the catalase activity and the total glutathione content in liver compared to the sham group. These results suggested that the combined radon and antioxidant vitamin treatment could effectively inhibit alcohol-induced hepatopathy in mice without any antagonizing action. (author)

  12. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  13. Assessment of radon-induced health risk for occupants of a house built on uranium ore residue

    International Nuclear Information System (INIS)

    Clero, E.; Marie, L.; Challeton-De Vathaire, C.; Laurier, D.; Rannou, A.

    2016-01-01

    At the request of French public authorities, the Institute of Radiological Protection and Nuclear Safety has assessed the radiological situation of a house built on uranium ore residues in Haute-Vienne and the health risks induced from exposure to radon for all occupants. Classified as a lung carcinogen by the World Health Organization, radon is a proven cause of lung cancer in case of regular inhalation over a long period, and the risk increases with cumulative exposure. Radon exposure was reconstructed for various standard profiles of house occupancy. A risk model derived from a European epidemiological study was used to calculate the lifetime probability of death from lung cancer according to these standard profiles. Risk assessment of the occupants of the house highlighted the following main findings. For a resident school child having been exposed to radon from birth to the age of 7, the lifetime relative risk (LRR) was estimated at 5. For last adult and young adult residents having lived more than 10 years in the house, the probability of death from lung cancer was in the same order of magnitude as that of a regular cigarette smoker, with a LRR from 10 to 13 and a lifetime probability of death from lung cancer between 3 and 4%. If these individuals smoked regularly, in addition to being exposed to radon, this probability would be between 6 and 32% (supposing an additive or multiplicative interaction). For former occupants (non-smokers) having been exposed 10 years during childhood, the LRR was two-fold lower. For children having been in day care in the house, the increased probability of death from lung cancer was low, with a LRR lower than 2. Supposing, as in adults, that the risk decreases beyond 30 years after the end of radon exposure, the increase was almost zero for former occupants exposed during childhood and during day care, with a LRR close to 1. (authors)

  14. A radon progeny sampler for the determination of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Laboratory, Victoria (Australia)

    1997-12-01

    The design and simulated performance is described of a two-stage sampler (HE-Sampler) for {sup 222}Rn progeny. This HE-Sampler has a collection efficiency optimised to match the particle size dependency of the radon progeny dose conversion factor (DCF), derived from the latest Respiratory Tract Model of the International Commission on Radiological Protection, as implemented in the computer code RADEP. The He-Sampler comprises a wire screen pre-separator, matched to the nasal deposition, and a wire screen collector, matched to the respiratory tract collection. This HE-Sampler allows for the estimation of the radiation dose from the inhalation of {sup 222}Rn progeny, derived from two concurrent alpha particle activity measurements, one on the HE-Sampler screen collector and one on a reference filter sample. As a first approximation, the DCF is proportional to the collected fraction. The HE-Sampler response was simulated for a range of radon progeny size distributions to determine the error in the estimated DCF values. The simulation results show that the HE-Sampler is relatively insensitive to variations in sampling rate and in the screen parameters, particularly for environmental exposure. (Author).

  15. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  16. Calculation of lung cancer incidence in the Netherlands by smoking and radon exposure. Implications for the effect of radon; Berekening van de longkankerincidentie in Nederland door roken en blootstelling aan radon. Implicaties voor het effect van radon

    Energy Technology Data Exchange (ETDEWEB)

    Leenhouts, H.P.; Brugmans, J.P. [Laboratorium voor Stralingsonderzoek, Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven (Netherlands)

    2001-09-01

    Although the main cause of lung cancer is smoking cigarettes, part of the cases are subscribed to radon exposure, in particular {alpha}-radiation from daughter products. However, the relation between lung cancer and radon exposure is rather insecure. Based on international reports (e.g. BEIR VI) and extrapolation of lung cancer incidence in uranium mine workers to the population of the USA and subsequently to the Netherlands, the number of lung cancer cases in the Netherlands is estimated to be circa 800 per year, varying between 200-2000. Results of the analysis are summarized in this article. 10 refs.

  17. Radon: risk to health? El radón: ¿riesgo para la salud?

    Directory of Open Access Journals (Sweden)

    Juan Miguel Barros Dios

    2011-12-01

    Full Text Available Radon (Rn222 is a radioactive noble gas whose origin is Radium (Ra226 when it emits an alpha particle (two protons and two neutrons or a helium nucleus. Rn222 transforms in another radioactive element (Po218 when an alpha particle is emitted. Its carcinogenic effect on the lung was discovered various decades ago, first on uranium miners and later on general population exposed at home to residential radon. The main factor influencing radon concentration in dwellings is the uranium content of the subsoil, since uranium is the first element of the radioactive disintegration chain where radon appears. Geological risk areas of Spain due to their granite and therefore uranium content are Galicia, the Northwest and the West of Spain. Numerous countries of Europe and America have enforced legislation focused to protect population and reduce radon concentration in order to prevent lung cancer appearance. These laws comprise public buildings and private homes. Since the late 80s, alpha radiation generated by radon and its short-life descendents has been classified as carcinogenic agents by the International Agency for Research on Cancer (Lyon, 1988 and the National Research Council (BEIR IV, 1988.El radón (Rn222 es un gas noble radiactivo que procede directamente del radio (Ra226 cuando este emite una partícula alfa (dos protones y dos neutrones o núcleo de helio, y que a su vez se transforma en otro elemento radiactivo (Po218 al desprenderse de otra partícula alfa. Desde hace varias décadas se conoce su efecto como factor de riesgo del cáncer primario pulmonar, primero en mineros del uranio y posteriormente en la población general expuesta al radón residencial en hogares construidos sobre suelos de rocas ricas en uranio (U238, elemento inicial de la cadena de degradación radiactiva de la que procede el radón. Áreas geológicamente constituidas por granitos o pizarras, como son las de gran parte de Galicia y todo el noroeste y oeste de la pen

  18. Lung cancer risk from radon and smoking - additive or multiplicative effect?

    International Nuclear Information System (INIS)

    Tomasek, L.

    2016-01-01

    The aim of the work is to evaluate the risk of lung cancer when combined radon and smoking exposure. Methodologically the evaluation is based on case and control study nested in two cohort studies, including 11,000 miners and 12,000 residents exposed to high concentrations of radon in homes. Radon exposure in individuals is complemented by information on smoking gained personally from them or from their relatives. The study is based on 1,073 cases of lung cancer among miners and 372 cases in population study. Control subjects were randomly selected in each study based on gender, year of birth and age achieved. The combined effect of smoking and radon is evaluated using the so-called geometric mixed models, whose special case is an additive or multiplicative model. The resulting model of the risk is closer to additive interaction (parameter of mixed model 0.2). The consequences of the model in the study of population are illustrated by estimates of lifetime risk in a hypothetical population of smokers and nonsmokers. Compared to the multiplicative risk model, the lifetime risk significantly increased according to the best geometric mixed model, especially in the population of non-smokers. (author)

  19. Radiological risk assessment of environmental radon

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  20. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  1. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  2. Monitoring effects of river restoration on groundwater with radon; Ueberwachung der Auswirkungen von Flussaufweitungen auf das Grundwasser mittels Radon

    Energy Technology Data Exchange (ETDEWEB)

    Hoehn, Eduard [Eawag, Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, Duebendorf (Switzerland)

    2007-03-15

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [German] Die Renaturierung des voralpinen Flusses Toess in der Schotterebene des Linsentals (suedlich Winterthur, Nordschweiz) mit einer Befreiung von seinen Uferverbauungen gab Anlass zu Traceruntersuchungen im Fluss und im Grundwasser des kiessandigen Schotters. In diesem Gebiet infiltriert der Fluss ueberall und immer natuerlicherweise ins Grundwasser, welches stark als Trinkwasser genutzt wird. Radon-Aktivitaetskonzentrationen von frisch infiltriertem Grundwasser wurden interpretiert als Radon-Grundwasseralter fuer Strecken zwischen dem Fluss und Grundwasserbeobachtungsrohren. Nach einem

  3. Calculation of lung cancer incidence in the Netherlands by smoking and radon exposure. Implications for the effect of radon

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Brugmans, J.P.

    2001-01-01

    Although the main cause of lung cancer is smoking cigarettes, part of the cases are subscribed to radon exposure, in particular α-radiation from daughter products. However, the relation between lung cancer and radon exposure is rather insecure. Based on international reports (e.g. BEIR VI) and extrapolation of lung cancer incidence in uranium mine workers to the population of the USA and subsequently to the Netherlands, the number of lung cancer cases in the Netherlands is estimated to be circa 800 per year, varying between 200-2000. Results of the analysis are summarized in this article. 10 refs

  4. Determination of Radon-222 and Thoron Concentration in Decorative Stone Warehouses Indoor Air and the Received Effective Dose by Staff

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2015-06-01

    Full Text Available Background: Radon is a colorless, odorless, and radioactive gas that can be emitted from decorative stones such as granite, marble, etc. Inhaling radon gas in a long period may cause for incidence of lung cancer among peoples. Material and Methods: In this cross-sectional descriptive study, Radon 222 and Thoron concentrations in background and indoor air were measured in four decorative stones warehouse using portable radon meter(RTM1688-2 model. Totally, 24 samples of 24- hours concentrations in indoor air and 24 samples of 4-hours concentrations of Radon 222 and thoron in the background air at three stages were measured. Then, received effective dose of Radon 222 and Thoron was calculated by UNSCEAR equations. Results: The mean radon concentrations for indoor and background air were 74±37 and 34±16 Bq/m3, respectively. The mean radon concentrations for indoor air in decorative stones warehouses for DSW1, DSW2, DSW3 and DSW4 were 72.50±34, 98.25±43, 34.42±18 and 88.92±51 Bq/m3, respectively. The received effective dose mean of Radon 222 and Thoron by the staff at 8 working hours was 0.53±0.18 and 0.05±0.03 mSv/y and in 16 working hours was 1.05±0.36 and 0.11±0.07 mSv/y, respectively. Generally, the mean received effective dose by staff from Radon at 8 and 16 working hours was 0.58±0.2  and 1.16±0.41 mSv/y, respectively. Conclusions: Radon concentration mean in indoor air and the received effective dose mean by staff was lower than the standards level. Decorative stone warehouses were the resources for accumulation of Radon gas that can be reduced by corrective actions.

  5. Lessons from radon

    International Nuclear Information System (INIS)

    Nichols, M.

    1993-01-01

    At EPA there is a public outreach program that the Office of Air and Radiation (OAR) has developed for radon. To meet the difficult challenge radon presented, OAR's Radon Division developed working relationships with national nonprofit groups who share a mission. These groups have well-established communication networks with their memberships for advancing their goals. Such diverse groups as the American Lung Association, the Advertising Council, the National Association of Counties (NACo), the Consumer Federation of America, the National Association of Homebuilders, and the National Safety Council have joined with EPA to reduce radon health risks. Through this alliance, EPA has been able to take advantage of communication channels that it could never replicate on tis own. Every group working with EPA disseminates the radon message through its own established channels to reach its constituency. These partners wield authority in their fields and are ideal for addressing the concerns of their audiences

  6. Effects of natural and forced basement ventilation on radon levels in single-family dwellings. Final report, May 90-Aug 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-06-01

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton University research houses over several seasons and under different building operating conditions show the functional dependence of radon entry rate on basement depressurization. The work clarifies the role of natural ventilation in reducing indoor radon concentrations. The work shows conclusively that natural ventilation can decrease radon levels two ways: (1) by simple dilution, and (2) by providing a pressure break (defined as any opening in the building shell that reduces the outdoor/indoor differential pressure). This reduces building depressurization and thus the amount of radon-contaminated soil gas that is drawn into the building

  7. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  8. Experimental, statistical, and biological models of radon carcinogenesis

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig

  9. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose

    International Nuclear Information System (INIS)

    Lario, J.; Sanchez-Moral, S.; Canaveras, J.C.; Cuezva, S.; Soler, V.

    2005-01-01

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The 222 Rn levels monitored inside the cave ranges from 186 Bq m -3 to 7120 Bq m -3 , with an annual average of 3562 Bq m -3 . In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated

  10. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  11. National indoor radon survey in Filipino homes

    International Nuclear Information System (INIS)

    Dela Cruz, Fe M.; Garcia, Teofilo Y.; Palad, Lorna Jean H.; Cobar, Ma. Lucia C.; Duran, Emerenciana B.

    2012-01-01

    This paper presents the results of the first national survey of indoor radon concentrations in different types of Filipino houses throughout the Philippines. Measurements were carried out using 2,626 CR-39 alpha track detectors that were deployed in selected houses for a period of six months. Results of analyses showed that indoor radon concentration in Filipino houses ranged from 1.4 to 57.6 Bq/m 3 with a mean value of 21.4 ± 9.2 Bq/m 3 . This leads to an estimated annual average effective dose equivalent of 0.4 mSv. There are slight differences in the mean concentrations of radon in different types of houses, which ranged from 19.4 to 25.3 Bq/m 3 . Highest mean radon concentrations were observed in houses made of concrete with a mean radon value of 25.3 ± 10.1 Bq/m 3 . Radon concentrations in the houses surveyed were below the action limits of 200 Bq/m 3 set by the National Radiological Protection Board (NRPB) and do not pose any hazard to the health of the occupants. (author)

  12. Comparative study on the inhibitory effects of antioxidant vitamins and radon on carbon tetrachloride-induced hepatopathy

    International Nuclear Information System (INIS)

    Kataoka, Takahiro; Nishiyama, Yuichi; Yamato, Keiko; Teraoka, Junichi; Morii, Yuji; Taguchi, Takehito; Yamaoka, Kiyonori; Sakoda, Akihiro; Ishimori, Yuu

    2012-01-01

    We have previously reported that radon inhalation activates anti-oxidative functions and inhibits carbon tetrachloride (CCl 4 )-induced hepatopathy. It has also been reported that antioxidant vitamins can inhibit CCl 4 -induced hepatopathy. In the current study, we examined the comparative efficacy of treatment with radon, ascorbic acid and α-tocopherol on CCl 4 -induced hepatopathy. Mice were subjected to intraperitoneal injection of CCl 4 after inhaling approximately 1000 or 2000 Bq/m 3 radon for 24 h, or immediately after intraperitoneal injection of ascorbic acid (100, 300, or 500 mg/kg bodyweight) or α-tocopherol (100, 300, or 500 mg/kg bodyweight). We estimated the inhibitory effects on CCl 4 -induced hepatopathy based on hepatic function-associated parameters, oxidative damage-associated parameters and histological changes. The results revealed that the therapeutic effects of radon inhalation were almost equivalent to treatment with ascorbic acid at a dose of 500 mg/kg or α-tocopherol at a dose of 300 mg/kg. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver were significantly higher in mice exposed to radon than in mice treated with CCl 4 alone. These findings suggest that radon inhalation has an anti-oxidative effect against CCl 4 -induced hepatopathy similar to the anti-oxidative effects of ascorbic acid or α-tocopherol due to the induction of anti-oxidative functions. (author)

  13. Radon in dwellings the national radon survey Cavan, Dublin, Louth, Monaghan and Wicklow

    International Nuclear Information System (INIS)

    Duffy, J.T.; Mackin, G.M.; Fennell, S.G.; Madden, J.S.; McGarry, A.T.; Colgan, P.A.

    1996-10-01

    This report presents the first results of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The average radon concentrations for the houses measured in counties Cavan, Dublin, Louth, Monaghan and Wicklow ranged from 69 to 138 Bq/m 3 with individual values as high as 1000 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings

  14. Radon in dwellings the national radon survey Clare, Limerick and Tipperary

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1998-12-01

    This report presents the results of the fourth phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Clare, Limerick and Tipperary. The average radon concentrations for the houses measured in these counties were 88 Bq/m 3 , 77 Bq/m 3 and 79 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  15. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  16. Radon concentrations in well water in Sichuan Province, China

    International Nuclear Information System (INIS)

    Chen Yibin; Wu Qun; Zhang Bo; Chen Daifu

    1998-01-01

    There are 110 million people in Sichuan Province, China. Although most of the people in cities of Sichuan use river water, which contains low levels of radon, as potable water, people in countryside and in some communities of big cities still use well water as domestic consumption. This paper reports the radon concentrations in well water investigated in four cities, i.e. Chengdu, Chongqing, Leshan and Leijiang in Sichuan Province. Of the 80 wells investigated, the radon concentrations range from 3.5 to 181.6 KBqm -3 . Of the four cities, Chongqing has the highest well water radon concentration with the average 49.6 ± 54.1 KBqm -3 and the greatest variation. The investigation in four cities showed that the radon concentrations in well water are much higher than that in tap-water. In Chongqing where there are complex geological structures, mainly granite stratum, for example, the average radon concentration in well water is 112 times higher than that in the tap-water, and even much higher than that in river water in Yangtse River, Jialing River, Jinsha River and Mingjiang River. The population in four cities is about one sixth of the total population in Sichuan Province. Because of the common use of well water and the high radon concentrations in well water in Sichuan Province, the health effect of radon in well water to the public should be stressed. (author)

  17. Environmental assessment of indoor radon gas exposure health hazards and some of its public risks

    International Nuclear Information System (INIS)

    Hussein, Abd El-Razik. Z.; Ibrahim, M.Se.; Ragab, M.H.; El-Bukhari, M.S.

    2005-01-01

    This study examine the relationship between indoor radon gas exposure and the cancer risk and housing characteristics in lung cancer risk houses (CRH) compared to non lung cancer risk houses (NCRH). Mean radon concentrations measured by active method were significantly higher among CRH compared to NCRH, 9:93 pCi/L versus 4.56 pCi/L, respectively. There was no statistically significant diurnal variation as regards radon levels in all examined houses. Indoor radon concentrations show statistically significance in houses with bad ventilation (low air change rate) compared to houses with good ventilation (high air change rate). Houses with floor material of tiles, had statistically significant higher radon concentrations. Neither finishing wall material nor indoor gas source shows statistically significance as regard radon levels. Radon levels > 4 pCi/L (US EPA action level) were statistically significance higher in bed rooms compared levels in living rooms. High radon concentrations were reported in lung cane risk houses and in houses with bad ventilation

  18. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  19. Risks from radon

    International Nuclear Information System (INIS)

    Doll, Richard

    1992-01-01

    The best estimate of risk to which everyone is exposed from natural radon in buildings is now obtained by extrapolation from observations on men exposed to radon in mines. The relationship between dose and effect derived by the US National Research Council implies that about 6% of the current life-time risk of developing the disease in the UK is attributable to radon, but for residents of some houses it will be much greater. This estimate is dependent on many assumptions, some of which are certainly wrong, and reliable estimates can be obtained only by direct observations on people living in different houses. It is possible that radon may also cause some risk of other cancers, notably leukaemia, but such risks, if real, are certainly small. Studies in progress should provide reliable estimates of all radon induced risks within a few years. (author)

  20. Radon exhalation rates of concrete modified with fly ash and silica fumes

    International Nuclear Information System (INIS)

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  1. Mathematical models for radiation effects on human health

    International Nuclear Information System (INIS)

    Negi, U.S.; Petwal, K.C.

    2015-01-01

    In this paper, we are proposing a theoretical approach of basic mathematical models for radiation effect on human health. The largest natural sources of radiation exposure to humans are radon gas. While radon gas has always been in the environment, awareness of its contribution to human radiation exposure has increased in recent years. Radon's primary pathway is through air space in soil and rock. Pressure differences between the soil and the inside of buildings may cause radon gas to move indoors. Radon decays to radon daughters, some of which emit alpha radiation. Alpha-emitting radon daughters are adsorbed on to dust particles which, when inhaled, are trapped in the lungs and may cause gene damage, mutations and finally cancer. Exposure to excess UV radiation increases risk of skin cancer but there is also a dark side. The incidence of all types of skin cancer is related to exposure to UV radiation. Non-melanoma skin cancer, eye melanoma, and lip cancer have also been related to natural UV light

  2. Mitigation of the effective dose of radon decay products through the use of an air cleaner in a dwelling in Okinawa, Japan

    International Nuclear Information System (INIS)

    Kranrod, Chutima; Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Janik, Miroslaw; Shingaki, Reina; Furukawa, Masahide; Chanyotha, Supitcha; Chankow, Nares

    2009-01-01

    Field measurements were conducted to assess the effects of an air cleaner on radon mitigation in a dwelling with a high radon concentration in Okinawa, Japan. The measurements included indoor radon concentration, individual radon progeny concentration, equilibrium equivalent concentration of radon (EECRn), unattached fraction, and size distribution of aerosol-attached radon progeny. These measurements were conducted in a 74 m 3 room with/without the use of an air cleaner. The results showed that the mean radon concentration during the measurement was quite high (301 Bq m -3 ). The operation of air cleaner decreased the radon progeny activity concentration, EECRn and equilibrium factor by 33%, 57% and 71%, respectively, whereas the unattached fraction increased by 174%. In addition, the activity concentration of attached radon progeny in the accumulation mode (50-2000 nm) was obviously deceased by 42%, when the air cleaner was operated. According to dosimetric calculations, the operation of air cleaner reduced the effective dose due to radon progeny by about 50%.

  3. Some basic facts about radioactive radon

    International Nuclear Information System (INIS)

    Duval, J.S.; Tanner, A.B.

    1990-01-01

    This article presents some basic facts about 222 Rn. These facts include: half-life; diffusion patterns; how radon enters a house; health risks; and means of definition and estimation of radon hazard potential

  4. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    International Nuclear Information System (INIS)

    Martinez, J.E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-01-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m 3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values. - Highlights: • High levels of Radon in a workplace can increase health risks in the employees. • Using the typical equilibrium factor 0.4 could lead to an error in the estimation of radon doses. • We present a method for radon equilibrium determination. • Equilibrium factor is calculated by gamma spectrometry measuring of radon progeny concentrations in the air.

  5. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  6. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  7. The cost-effectiveness of remedial and preventative measures against radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Aanestad, K.

    2006-01-01

    Full text of publication follows: The indoor radon concentrations in Norway are among the highest in Europe. This is partly explained by the geology due to the large occurrences of radium rich soil and bedrock (e.g. alum shale and uranium rich granites), large occurrences of highly permeable unconsolidated sediments (e.g. moraines and eskers), and the construction of buildings due to the cold climate. An additional factor is the extensive use of highly permeable light expanded clay aggregates in the foundation construction. Entry of radon from the building ground is the dominant source of indoor radon in Norway. Based on the results of nation-wide surveys it has been concluded that most homes with high levels of radon are located on highly permeable sediments, and some of the homes on are sometimes very difficult and expensive to mitigate. In order to limit the mitigation costs it is therefore important the cost -effectiveness of measures is optimised. In this paper, the results of a Norwegian analysis of the cost -effectiveness of remedial measures in existing dwellings and preventative measures in new buildings will be presented. The analysis on measures in existing dwellings is based on data from approximately 1100 buildings which were mitigated by grants from the Government during the National Action Plan against Cancer between 1999 and 2003. The results show that the mitigation costs are significantly higher than earlier estimates based on controlled experiments in research projects, and it seem as though the mitigation costs have been significantly underestimated in earlier cost-effect analysis. There are several factor that have contributed to an increase of the mitigation costs and some of these factors will be discusses in more detail in this paper. The upper level for new dwellings is 200 Bq/m 3 and it is generally recommended by the Norwegian authorities that preventative measures are implemented in all new dwellings. By this strategy the costs of

  8. Cost and effectiveness of radon-resistant features in new school buildings

    International Nuclear Information System (INIS)

    Craig, A.B.; Leovic, K.W.; Saum, D.W.

    1991-01-01

    Recent concerns over elevated levels of radon in existing buildings have prompted the design and construction of a number of school buildings that either are radon resistant or incorporate features that facilitate post-construction mitigation if needed. This paper describes initial results of a study of several schools with radon-resistant features that were recently constructed in the northeastern US. These designs are generally based on experience with radon mitigation in existing houses and schools and radon-resistant new house construction. The study was limited to slab-on-grade schools, where the most common radon-resistant school design is active subslab depressurization (ASD). The additional construction costs for eight schools built with ASD ranged from $3 to $11 per square meter of slab area. The radon contractors who designed these systems have tended to overdesign the radon-reduction systems in the absence of specific written guidance to follow to lessen potential liability in the event of system failure. Design features include detailed sealing of all stab cracks, multiple exhaust stacks, and extensive subslab piping. Recent Environmental Protection Agency (EPA) research on radon mitigation suggests that simpler ASD systems may provide sufficient radon resistance in new large buildings at lower costs. Components of a specification for radon-resistant school construction are discussed, based on comments from radon system designers. Another school being studied was built with a heating, ventilating, and air-conditioning (HVAC) pressurization radon control system, and considerations for this type of system are examined

  9. Exposure due to radon in homes - an IAEA perspective

    International Nuclear Information System (INIS)

    Navratilova-Rovenska, K.; Boal, T.; Colgan, T.

    2014-01-01

    The results of miner and residential epidemiology studies provide statistically strong evidence of harmful effects of exposure due to radon and its progeny. With the publication of the fifth edition of the International Basic Safety Standards, of the World Health Organizations Handbook on Indoor Radon and new ICRP statement on radon, there is increased interest from the public health and radiation protection authorities on controlling exposure due to radon and its progeny.The IAEA Safety Requirements publication 'Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards' sets out requirements on governments for control of existing exposure situations, which includes exposure due to radon. The types of situation that are included in the scope of existing exposure situations include exposure in workplaces for which the exposure due to radon is not required by or directly related to the work and for which annual average activity concentrations due to 222 Rn must not exceed a maximum reference level of 1000 Bq/m 3 annual activity concentration, as well as exposure in dwellings and in other buildings with high occupancy factors for members of the public for which the reference level must not exceed a maximum value of 300 Bq/m 3 . These requirements include: collecting data on the activity concentrations of radon in dwellings and other buildings with high occupancy by the public; providing information on exposure due to radon and the associated health risks; and if necessary, to develop an action plan for controlling public exposure to radon. The IAEA has developed a Safety Guide to provide guidance on developing the radon action plan: 'Protection of the Public against Exposure Indoors due to Radon and Other Natural Sources of Radiation'. This presentation will summarize the information on the assistance that the IAEA is currently providing to IAEA Member States to develop radon action plans. These activities include

  10. MEASUREMENT OF RADON EXHALATION RATE, RADIUM ACTIVITY AND ANNUAL EFFECTIVE DOSE FROM BRICKS AND CEMENT SAMPLES COLLECTED FROM DERA ISMAIL KHAN

    OpenAIRE

    Nisar Ahmad; Mohamad Suhaimi Jaafar; Sohail Aziz Khan; Tabassum Nasir; Sajjad Ahmad; Muhammad Rahim

    2014-01-01

    Radon concentration, exhalation rate, radium activity and annual effective dose have been measured from baked and unbaked bricks and cement samples commonly used as construction material in the dwellings of Dera Ismail Khan City, Pakistan. CR-39 based NRPB radon dosimeters and RAD7 have been used as passive and active devises. The values of radon concentration for baked, unbaked bricks and cements obtained from passive and active techniques were found in good agreement. Average values of rado...

  11. Radon exposures in the UK

    International Nuclear Information System (INIS)

    O'Riordan, M.C.

    1992-01-01

    Public and occupational health protection against radon is provided in the UK. Protection is advised where geological conditions cause high concentrations in domestic and commercial buildings. These circumstances are described and the resulting exposures reviewed. An account is given of the limitation scheme for radon in the home and the regulatory scheme for radon at work, the manner in which they are implemented, and the degree to which they are successful. (author)

  12. Modeling the potential impacts of different radon policies for the U.S. housing stock

    International Nuclear Information System (INIS)

    Peterson, M.D.; Ritchie, I.M.

    1995-01-01

    According to the Environmental Protection Agency (EPA) and other public health agencies in the United States, radon may be the leading cause (along with passive smoking) of lung cancer deaths among nonsmokers. Radon is estimated to be the second leading cause of lung cancer death in smokers behind smoking-related lung cancer. EPA estimates that 7,000 to 30,000 lung cancer deaths each year are due to radon exposure. (It is implied that radon-related lung cancer deaths can be prevented by reducing radon levels below EPA's guideline levels). Current EPA radon policy is based on a strategy of education, the transfer of testing and remediation technologies to the public and private sectors, and recently proposed radon-resistant construction standards for new homes. This paper models the effectiveness of current proposed, and alternative policies for reducing radon risks in U.S. residential construction. The results of our analysis suggest that EPS's projections of 2,200 'lives saved annually' as a result of its current action level of 4 pCi/l will not be achieved with its current policy in the near future. Overall, the response of radon-related mortality to most policy options is delayed and flat due in part to the large number of houses with low radon levels and the long latency period between radon exposure and the development of cancer. The modeling results suggest that more aggressive smoking reduction programs may yield greater benefits in overall lung cancer mortality (but not reduced radon exposure) than most radon-related policies. (au)

  13. Radon in waters from health resorts of the Sudety Mountains (SW Poland)

    International Nuclear Information System (INIS)

    Ciezkowski, W.; Przylibski, T.A.

    1997-01-01

    This paper discusses the geological background related to the presence of selected radon waters in the Sudety Mountains. Special attention is paid to radon waters whose chemical composition is formed within metamorphic rocks (mainly gneisses). The physical, chemical, and isotopic characteristics of the waters of Ladek Zdroj, Czerniawa Zdroj and Swieradow Zdroj are presented. The rocks at these locations are briefly characterized by their U, Th, and Ra contents. It was found that the basic role in enrichment of these waters with radon is played by the 100 m deep near-surface zone. This is related to the increased emanation coefficient in this zone as a consequence of weathering processes. It is also shown that the residence time of water in the rocks is not important for radon genesis. (author)

  14. Field evaluation and health assessment of air cleaners in removing radon decay products in domestic environments

    International Nuclear Information System (INIS)

    Li, Chih-Shan.

    1990-01-01

    In this study, field evaluations of two types of air cleaners were conducted in three single-family houses. The measurements included radon concentration, particle number concentration, and concentration and size distribution of radon decay products. The influence on the behavior of radon decay products by various indoor particles both with and without the air cleaning systems was investigated. A room model was used to calculate the changes in the aerosol parameters caused by the operation of the air cleaners. Using the James dosimetric models (1989 and 1990), the changes in the hourly bronchial dose rate per Bq m -3 radon for men, women, and children can be estimated for various domestic environments. 94 refs., 60 figs., 28 tabs

  15. A cost-effectiveness analysis of radon protection methods in domestic properties: a comparative case study in Brixworth, Northamptonshire, UK

    International Nuclear Information System (INIS)

    Coskeran, Thomas; Denman, Antony; Phillips, Paul; Tornberg, Roger

    2006-01-01

    Building regulations in the UK have since 1992 required that radon-proof membranes be installed in new domestic properties to protect residents against the adverse effects of radon. This study compares the cost-effectiveness of the current regulatory regime with an alternative that would entail new properties being tested for radon after construction, and being remediated if necessary. The alternative regime is found to be more cost-effective for a sample of properties in Brixworth, Northamptonshire, UK. For this regime, the central estimate of cost per quality-adjusted life-year gained, the measure of cost-effectiveness used, is Pounds 2869 compared to Pounds 6182 for installing membranes, results suggesting a case for re-examining the current regulations on radon protection in new properties. Pilot studies will, however, be needed to consider how different means of protecting residents of new properties against radon might operate in practice and to provide improved evidence on their relative cost-effectiveness

  16. Geology and occurrence of radon precursors

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1990-01-01

    The discovery that radioactive radon gas may occur as a significant indoor contaminant in houses and in the workplace has had far-reaching consequences in public health, real estate marketing, the construction industry, health and liability insurance underwriting, and in legislation at the federal and state levels. Many factors are known to affect radon level inside a building - its location, construction, ventilation, and substructure; the climate of the region in which it is located and the life styles of it occupants, for example. Despite the importance of assessing the hazard radon contamination may represent, the economic cost and the time required to screen hundreds of millions of individual buildings make such an effort impracticable. The effectiveness of large-scale regional screening to evaluate radon potential depends on an understanding of the chemical and physical properties of the gas, and of the geological and geochemical factors which control the distribution of its radioactive progenitors, radium, uranium and thorium. It is the purpose of this paper to review and summarize our present knowledge of these large-scale controls on radon occurrence

  17. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  18. Radon measurements in Ghana: health risk assesment at the Lake Bosomtwi basin

    International Nuclear Information System (INIS)

    Andam, A.A.B.; Addison, E.C.K.; Nani, E.K.; Amankwah, E.A.

    2007-01-01

    The need to assess the risk of exposure to radon and its daughters stems from the reality, that radon is a potential carcinogenic. We report Radon-222 risk assessment, from measurements on soil and sediments taken from six towns along the Lake Bosomtwi basin at two levels of 10cm and 20cm. The current and future prospects of Lake Bosomtwi, the largest natural lake in Ghana, make this assessment imperative, since radon forms half of natural background radiation. Spatial Analyser Decision Assistant (SADA) algorithms were used to model the measured radon concentrations under two land-use scenarios, namely residential and recreational. Setting the data under a targeted risk of 1E-6,we found that the external exposure was below that of the maximum concentrations to the measurements. This indicates that the radon levels around those towns as of the time of the measurements is low and below limits which can cause carcinogenic threats. The mean risk associated with the sampled locations was found to be 9E-11 at the recreational areas and 2E-8 at residential centres. To confirm the authenticity of the point risk analysis, geospatial modelling based on inverse distance interpolation schemes were performed. The results tally closely with that of the measured point risk analysis with and error margin of 2% and 1.3 % for both land use scenarios at 10 cm and 20 cm depth respectively. (au)

  19. Study of the effects of atmospheric parameters on ground radon concentration by track technique

    International Nuclear Information System (INIS)

    Tidjani, Adams

    1988-01-01

    Radon emanation was continuously monitored for 24 months, accompanied by measurements of atmospheric parameters. Integrated measurments of radon concentrations have been performed with LR-115 cellulose nitrate track detectors. The monitoring was conducted at 16 sites distributed around the Dakar University area. Observed changes in radon concentration are interpreted as being caused by changes in meteorological conditions and ocean tides. (author)

  20. Results of indoor radon measurements in the republic of macedonia: - a review -

    International Nuclear Information System (INIS)

    Stojanovska, Zdenka; Boev, Blazho; Boev, Ivan

    2017-01-01

    Radon and its short lived decay products accumulated in indoor environment are the main source of public exposure to natural radiations. The health effects as well as a great number of natural and artificial factors affecting the radon accumulation in indoor environments are some of the motives for the scientific interest in radon issue. Following this global trend, many studies of indoor radon in the Balkan region, including the Republic of Macedonia have been conducted in the last decade. This paper is an overview of the published papers regarding indoor radon concentration measurements with nuclear track detectors in the Republic of Macedonia. It gives basic information about the spatial and temporal variability of indoor radon over the territory of the country, following by a description of the some factors which affect its variations. This review attempts: to organize available indoor radon results in order to show clear picture of the so far conducted surveys; to highlight the need for continuation of more extensive radon investigation in workplaces; to motivate the building professionals to create as much as possible mitigation methods for indoor radon reduction, to motivate the health professionals for epidemiological studies etc. (author)

  1. Legal issues in radon affairs

    International Nuclear Information System (INIS)

    Massuelle, M.H.

    1999-01-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of experts and the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise

  2. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  3. An overview of Ireland's National Radon Policy

    International Nuclear Information System (INIS)

    Long, S.; Fenton, D.

    2011-01-01

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Dept. of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy. (authors)

  4. A continuous monitor for the measurement of environmental radon

    International Nuclear Information System (INIS)

    Chittaporn, P.; Eisenbud, M.; Harley, N.H.

    1981-01-01

    Although inhaled short-lived 222 Rn daughters deliver the pertinent α dose for assessing human health effects, radon daughters do not of themselves exist in any atmosphere for more than 2-3 hr. Their long-lived parent (3.82 day) 222 Rn supports the daughter activity and it is the transport of 222 Rn which ultimately determines dose. Without an understanding of the long and short-term temporal patterns of indoor and outdoor 222 Rn it is impossible to understand the factors which are important in establishing any human health hazard from the daughters. This work describes a new continuous environmental radon monitor which measures radon alone without interference from radon daughters. The detector is a cylinder (13 cm diameter x 14 cm high), is lined with alpha scintillation phospor on a Mylar substrate and is portable and easily constructed from inexpensive and commercially available materials. (author)

  5. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  6. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  7. Radon - The management of the risk related to radon

    International Nuclear Information System (INIS)

    2010-01-01

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  8. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  9. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  10. Radon risk communication research: Practical lessons

    International Nuclear Information System (INIS)

    Fisher, A.; Johnson, F.R.

    1990-01-01

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. There are now a number of completed studies that have examined how well alternative ways of communicating about radon risk have accomplished the goals of motivating appropriate testing and mitigation. This paper summarizes the research results that are most crucial for planning and implementing effective radon risk communication programs. We identify six reasons why people do not respond to radon as a serious threat and provide some remedies suggested by radon studies

  11. Effect of the number of cigarettes smoked and of radon exposure on the lung cancer risk

    International Nuclear Information System (INIS)

    Boehm, R.; Holy, K.; Sedlak, A.

    2012-01-01

    The relation between the extent of cigarette smoking and the lung cancer risk in people exposed to radon was examined. The changes in the airway geometry due to an increased production of mucus caused by smoking were taken into account. The mucous layer protects the target cells from the effects of ionizing radiation. The radiation risk per unit exposure decreases with the number of cigarettes smoked, in contrast to the total risk, which increases to stagnate in the range of extensive daily cigarette smoking. Lung damage in chronic smokers should be taken into account, though. (orig.)

  12. Radon and thoron emanation measurements and the effect of ground water

    International Nuclear Information System (INIS)

    Carriveau, G.W.; Harbottle, G.

    1980-01-01

    In the past, corrections for annual dose rate calculations have used a qualitative approach to the effect of ground water saturation and radon and thoron loss. An example is presented of how this correction can now be precisely determined using natural gamma-ray activities to determine the amount of emanation from ceramic sherds and soil, both in a dry state and saturated with ground water. The experimental data also provide information concerning disequilibria in 234 Th and 226 Ra regions of the decay series. Additionally, approximate values of uranium and thorium concentrations (sufficiently accurate for authenticity work) are provided

  13. Effect on the viability in populations of Drosophila Melanogaster chronically exposed to Radon; Efecto sobre la viabilidad en poblaciones de Drosophila melanogaster cronicamente expuestas a Radon

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V M [Depto. de Biologia, ININ, Km.36.5 Carr. Mexico-Toluca, Salazar, Edo. de Mexico (Mexico)

    2004-07-01

    A four generations population of Drosophila melanogaster chronically subjected to the following radon concentrations were analyzed: 30 {+-} 7, 12 {+-} 2, 43 {+-} 5, 25 {+-} 7, 14 {+-} 2, 6 {+-} 2, 78 {+-} 1, 58 {+-} 5 and 74 {+-} 7 k B/m{sup 3} with estimated doses of 1.209, 0.1, 2.088, 0.869, 0.156, 0.03, 3.18, 2.12 and 2.878 mGy by generation and their respective ones witness, in order to determine the effect of the radiation in the induction of detrimental genes, also measuring the effect of the viability with regard to the fecundity and the differential viability in categories of genes with smaller effects. So much the induction of detrimental genes like the distribution of the viability with regard to the fecundity for categories they did not show inductor effect due to the treatment with radon. Notwithstanding, the changes caused by the relating treatment to the fecundity they caused in three of the four comparisons possible significant results in the production of descendants, improving the adaptation of the populations, like it has been demonstrated by other authors.

  14. Occupational studies of radon daughters and lung cancer

    International Nuclear Information System (INIS)

    Hornung, R.W.; Ballew, M.A.

    1988-01-01

    The relationship between exposure to radon daughters and lung cancer mortality has been established. The purpose of this paper is to review some of the major studies of the health effects due to exposure to the decay products of radon gas and to discuss their potential implications with regard to risk associated with indoor radon. There has been much recent interest in the health hazards associated with radon largely motivated by the discovery of high levels of this radioactive gas in the Reading Prong (a geological area in Pennsylvania and New Jersey) and subsequently throughout the United States. Although at least three studies in the U.S. have been initiated to better estimate the lung cancer risks from low level indoor radon exposure, the results will not be known for several years. Consequently, present knowledge concerning such risks is almost entirely derived from studies of underground exposure to miners. Those studies effectively exclude women and children; therefore, assumptions must be made with regard to risk to a large segment of the population. Before discussing current health studies of radon daughter exposure, some background information is presented

  15. The bystander effect in experimental systems and compatibility with radon-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Little, M.P.; Wakeford, R.

    2002-01-01

    Bystander effects following exposure to α-particles have been observed in C3H 10T 1/2 cells and in other experimental systems, and imply that linearly extrapolating low-dose risks from high-dose data might materially underestimate risk. The ratio of lung cancer risk among persons exposed to low and high doses of radon daughters is 2.4-4.0, with an upper 95% confidence limit (CL) of about 14. Assuming that the bystander effect observed in the C3H 10T 1/2 data applies to human lung cells in vivo, the epidemiological data imply that the number of neighbouring cells that can contribute to the bystander effect is between 0 and 1, with an upper 95% CL of about 7. As a consequence, the bystander effect observed in the C3H 10T 1/2 system probably does not play a large part in the process of radon-induced lung carcinogenesis in humans. Other experimental data relating to the bystander effect after α-particle exposure are surveyed; some of these data are more compatible with the epidemiological data. (author)

  16. Physics underlying the searching for radon sources in houses

    International Nuclear Information System (INIS)

    Thomas, J.

    1992-01-01

    The radon diagnostics of houses is briefly outlined. The aim of radon diagnostics consists in the identification of radon sources (subsoil, building material, water), location of the main and side pathways of radon inlet in the building, quantification of the amounts of radon passing through the pathways and spreading through the house. The stack effect of radon suction from the subsoil into the building due to the temperature difference or underpressure caused by wind is described. The radon risk is different in the different seasons of the year and also varies throughout the day. Good diagnosis of radon transfer into a house requires a great deal of skill. (M.D.). 1 fig

  17. Radon and risk of cancer

    International Nuclear Information System (INIS)

    Rootwelt, K.

    1988-01-01

    The article reviews present knowledge on the possible detriment to health of radon in homes. It is concluded that inducement of lung cancer has neither been proved nor disproved. Large-scale epidemiological studies are in progress. Until the results of these studies have been reported, frightening anti-radon propaganda should be discouraged

  18. An evaluation of the effectiveness of the UK programme to protect new buildings in radon affected areas

    International Nuclear Information System (INIS)

    Denman, A.R.; Fraser, J.; Phillips, P.S.

    2000-01-01

    estate some 30% of houses were found to be above the Action Level. Over 85% of householders were unaware of the risks of radon, or that they had to test the radon level to judge whether a fan needed to be fitted. There is sufficient new domestic building in the UK to achieve significant health gains by specifying protective measures. However, the measures in lower risk areas rely on the householder being aware of the radon hazard and testing the level. In two estates in Northamptonshire it has been shown that no-one advised the householders, and so the secondary protection provided was wasted. In addition, the affected areas were poorly delineated in 1992, as one of the estates was shown to be on geology that should have been in the high risk category. If secondary protection is specified in lower risk affected areas, then significantly increased public awareness is required. Alternatively, the installation of a radon membrane, which does not rely on public awareness and action, should be adopted, if the remediation measures are to achieve the goal of reducing health risks from radon to the general public. (author)

  19. The matter of radon

    International Nuclear Information System (INIS)

    O'Riordan, M.C.; O'Riordan, C.N.

    1992-01-01

    By comparison with the radiation doses from radon, the doses to individual members of the public and to the general community from nuclear activities are quite trivial. Doses from radon in some British homes exceed the statutory dose limit for nuclear workers;the collective dose from radon is two thousand times the value for nuclear discharges. And yet, too little attention - legal or otherwise - is paid to this radioactive pollutant. An attempt is made in this paper to compensate for the neglect. The origins, properties and harmful effects of radon are described. Measurements in homes and places of work are summarised. Voluntary and regulatory controls on exposure are elucidated. Questions of public administration, confidentiality of information and sale of property are discussed. Prospects for progress are assessed. (author)

  20. Effect on the viability in populations of Drosophila Melanogaster chronically exposed to Radon

    International Nuclear Information System (INIS)

    Salceda, V.M.

    2004-01-01

    A four generations population of Drosophila melanogaster chronically subjected to the following radon concentrations were analyzed: 30 ± 7, 12 ± 2, 43 ± 5, 25 ± 7, 14 ± 2, 6 ± 2, 78 ± 1, 58 ± 5 and 74 ± 7 k B/m 3 with estimated doses of 1.209, 0.1, 2.088, 0.869, 0.156, 0.03, 3.18, 2.12 and 2.878 mGy by generation and their respective ones witness, in order to determine the effect of the radiation in the induction of detrimental genes, also measuring the effect of the viability with regard to the fecundity and the differential viability in categories of genes with smaller effects. So much the induction of detrimental genes like the distribution of the viability with regard to the fecundity for categories they did not show inductor effect due to the treatment with radon. Notwithstanding, the changes caused by the relating treatment to the fecundity they caused in three of the four comparisons possible significant results in the production of descendants, improving the adaptation of the populations, like it has been demonstrated by other authors

  1. The history, development and the present status of the radon measurement programme in the United States of America

    International Nuclear Information System (INIS)

    George, A.C.

    2015-01-01

    The US radon measurement programme began in the late 1950's by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that <2 % of the radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m -3 (4 pCi l -1 ) may be ∼8.5 million because ∼50

  2. Cigarette smoking increases radon working level exposures to all occupants of the smoker's home

    International Nuclear Information System (INIS)

    Johnson, R.H. Jr.; Rosario, A. Jr.

    1990-01-01

    This paper reports that the 1988 National Academy of Sciences report on radon health risks evaluated the combined effects of radon exposures and cigarettes on the lung cancer risk to smokers. This report showed that the risk of lung cancer is about 10 times greater for smokers than for nonsmokers at the same Working Level exposures. In 1986, the Surgeon General reported that 106,000 lung cancer deaths occurred among smokers. Therefore, the health risks of cigarettes alone or in combination with radon exposures are well recognized. What has not been studied is the effect of cigarette smoke on the Working Levels in homes that increases the exposure to radon decay products to all occupants, both smokers and nonsmokers. Preliminary studies in a radon chamber at Radon QC showed that the smoke from a single cigarette increased the Working Levels by a factor of five within four hours. Furthermore, the Working Levels remained at an elevated level for more than 24 hours. The equilibrium ratio of radon decay products to radon gas also went from about 14% up to 71%, with a slow decrease over 24 hours. Similar studies in the homes of a smoker and nonsmoker confirmed the laboratory observations. The studies in homes also showed the effects of thoron decay products

  3. Radon exhalation from granitic rocks

    International Nuclear Information System (INIS)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina; Denyak, Valeriy

    2017-01-01

    Naturally occurring radionuclides such as radon ( 222 Rn), its decay products and other elements from the radioactive series of uranium ( 238 U and 235 U) and thorium ( 232 Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ( 222 Rn), thoron ( 220 Rn), radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the 222 Rn and 220 Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The 222 Rn and 220 Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m 3 to 2087±19 Bq/m 3 , which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  4. Determination of Radon Level in Drinking Water in Mehriz Villages and Evaluation the Annual Effective Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-03-01

    Results: Radon concentrations of samples ranged from 0.187 BqL-1 to 14.8 BqL-1.These results were related to samples No.12 and 9 and also to aqueducts of Tang-e-chenar and Malekabad village respectively. Based on the amount of radon in the sample, the lowest annual effective absorbed dose through drinking water or breathing(In an environment where water was used was 0.0005msv/y and the maximum amount was 0.04msv/y. Conclusion: Apart from samples No.9 and 16 that were elated to the aqueduct of Malekabad village and a private well in Dare Miankoohvillagehaving48 persons as total population, Radon concentrations of other samples used by people of Mehriz villages as drinking water was low and less than permitted limit set by the Environmental Protection Agency of United States of America.

  5. The effect of an engineered closure cap on radon gas transport from a shallow land burial site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US Department of Energy (DOE) Order 5820.2A requires performance assessment of all new and existing low level radioactive waste disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Mathematical models, which in themselves point out data needs and therefore drive site characterization, provide a logical means of performing the required flux estimations. The effects of an engineered closure cap on radon gas transport in a very dry alluvial soil in the southwestern desert are considered in detail in this paper. Our model (Lindstrom, et al. 1992 a ampersand b and Cawlfield et al. 1992 a ampersand b) was constructed in a site specific fashion because the existing mathematical models of noble gas transport from the spatial point of origin in the low level waste repository through the surrounding soil and closure cap with subsequent release to the atmosphere are few in numbers (Nazaroff, 1992)

  6. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de

  7. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    -state diffusive radon profiles in dry and wet soils, (2) steady-state entry of soil gas and radon into a house, (3) time-dependent radon exhalation from abuilding-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  8. Radon levels in Croatian spas

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Stanic, D.; Planinic, J.

    2005-01-01

    Average radon concentrations in the air and geothermal water of spa pools in Croatia were 40.3 Bq/m 3 and 4.5 kBq/m 3 , respectively. Substantial difference between radon concentrations in pool and spring water is explained by the mixing normal and geothermal water in the pool and with radon decay. The estimated annual effective dose received by the personnel in the spa of Stubicke toplice, Croatia was 0.7 mSv. At the same location, the calculated transfer factor of radon for the air and thermal water in the pool was 4.9x10 -3 .(author)

  9. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  10. The unattached fraction of radon decay products: Potential effects of in-home air cleaners on lung cancer risk

    International Nuclear Information System (INIS)

    Brady, P.A.

    1991-01-01

    Radon decay products are a factor in the development of lung cancer. Because of their efficient deposition within the lung, the fraction of decay products not attached to particulate (i.e., the unattached fraction) is very important in lung dosimetry. This study simulated the use of two in-home air cleaning devices to reduce airborne particulate concentrations, measure the effect on the unattached fraction, and estimate the radon lung cancer risk. Radon was released into a chamber having a volume-to-surface-area ratio similar to a small home. At radon-decay product equilibrium, radon and airborne particle concentrations were measured, and the concentration of the unattached fraction was estimated. The effect of particle concentration on the unattached fraction was then determined. The average unattached fractions corresponding to the particle concentration ranges expected for the air cleaning devices were used to calculate the annual alpha radiation dose and annual radon lung cancer for men, women and children at rest and under light activity. The annual doses and related risks were compared to those used in the models published by the Environmental Protection Agency. For particulate concentrations of a home with no particulate generating activities (e.g., smoking, cooking), the electronic air cleaner is predicted to reduce the unattached fraction from seven percent (the value used by the NCRP and confirmed in this study) to four percent. These conditions represent the maximum reduction in the unattached fraction. The decrease in the unattached fraction is tentatively attributed to an increase in plateout. Based on these results, a reduction of less than ten percent in the calculated annual lung cancer risk is found in all cases

  11. Limited applicability of cost-effectiveness and cost-benefit analyses for the optimization of radon remedial measures

    International Nuclear Information System (INIS)

    Jiránek, Martin; Rovenská, Kateřina

    2010-01-01

    Ways of using different decision-aiding techniques for optimizing and evaluating radon remedial measures have been studied on a large set of data obtained from the remediation of 32 houses that had an original indoor radon concentration level above 1,000 Bq/m 3 (around 0.2 % of all dwellings in the Czech Republic have a radon concentration higher than 1,000 Bq/ m 3 ). Detailed information about radon concentrations before and after remediation, type and extent of remedial measures and installation and operation costs were used as the input parameters for a comparison of costs and for determining the efficiencies, for a cost-benefit analysis and a cost-effectiveness analysis, in order to find out whether these criteria and techniques provide sufficient and relevant information for the improvement and optimization of remediation. The study has delivered quite new results. It is confirmed that the installation costs of remedial measures do not depend on the original level of indoor radon concentration, but on the technical state of the building. In addition, the study reveals that the efficiency of remediation does not depend on the installation costs. Each of the studied remedial measures will on an average save 0.3 lives and gain 4.3 years of life. On one hand, the general decision-aiding techniques - cost-benefit analysis and cost-effectiveness analysis - lead to the conclusion that the remedial measures reducing the indoor radon concentration from values above 1,000 Bq/m 3 to values below the action level of 400 Bq/m 3 are always acceptable and reasonable. On the other hand, these analytical techniques can neither help the designer to choose the proper remedial measure nor provide information resulting in improved remediation. (author)

  12. Radon in the workplace

    International Nuclear Information System (INIS)

    Scivyer, C.R.; Gregory, T.J.

    1995-01-01

    This Guide has been prepared for the Health and Safety Executive (HSE) by the Building Research Establishment (BRE). Following the guidance is not compulsory and you are free to take other action. However if you do follow the guidance you will normally be doing enough to comply with the law. Health and Safety Inspectors seek to secure compliance with the law and may refer to this guidance as illustrating good practice. In the past, concern about exposure of employees to radon has largely centred on the mining environment. In recent times, with increased knowledge and mapping of radon levels in homes, attention has increasingly turned to radon exposure in buildings used for work purposes. Now there is a considerable fund of information to show that employees in some buildings can receive very significant radiation doses from radon. Surveys show that levels of radon tend to be higher in buildings with small rooms, such as offices rather than larger factory and warehouse constructions. The particular problem is that the nature of the work process gives no clue as to the radon hazard that may exist, and the employer may be unaware of its presence and how to deal with it. This Guide is aimed principally at employers and those who control buildings used for work purposes, or their representatives. It offers guidance on practical measures for reducing radon levels in workplaces. The guidance should also be of interest and assistance to those, such as surveyors and builders, concerned with specifying and carrying out the necessary remedial measures. Advice is provided for the majority of building types and construction situations likely to be encountered in larger non-domestic buildings. For buildings where construction is similar to that found in dwellings the guidance published by BRE on remedial measures for dwellings should be used. BRE prepared this Guide with assistance from the National Radiological Protection Board (NRPB) and Cornwall County Council under contract

  13. Mitigation effects of radon decay products by air cleaner

    International Nuclear Information System (INIS)

    Kazuki Iwaoka; Tetsuo Ishikawa; Hidenori Yonehara; Shinji Tokonami

    2013-01-01

    One of the most effective methods for reducing exposure is the use of air cleaners. In this study, a dose mitigation of a commonly-used Japanese air cleaner under conditions in which aerosols are continuously supplied was investigated. Although the values of the EERC during an operation of air cleaner decreased, values of the f p increased with the use of air cleaner. An effective dose was calculated on the basis of our experimental results, resulting in the dose mitigation of about 40 % by the air cleaner. Air cleaners can be regarded as an effective tool for the dose mitigation under with conditions in which aerosols are continuously supplied. (author)

  14. Genetic effects of radon 222 in a population of Drosophila melanogaster chronically exposed; Efectos geneticos del radon 222 en una poblacion de Drosophila melanogaster cronicamente expuesta

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V M [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico). Dept. de Biologia

    1997-07-01

    It was investigated the mutagenic effect of Radon 222 during a experimental period of 11 generations. In this lapse Drosophila melanogaster larvae line Canton-S were maintained in a radon atmosphere. In each test generation had been extracted males, consequently exposed to radiation which were subjected to a crossing series with a bearer marker genes of according to the Wallace experimental design (1956). Due to the experimental conditions it only was determined the recessive lethal mutations frequency for the second chromosome in the 1,4,7 and 11 generations. Of all study it was conduced in parallel way a non-treated witness population. The concentrations at which was subjected the experimental population varied of generation to generation from 12 {+-} 2 to 43 {+-} 5 kBq/m{sup 3}. Our analysis correspond to lethality determination in 1182 second chromosomes distributed between two populations and the different exposition generations. The study allow to determine the respective frequencies of recessive lethal genes varying according to the population and/or generation between 10.53 and 22.02%. The statistical analysis of data did not show significant differences among the different populations. (Author)

  15. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  16. Mineral dusts and radon in uranium mines

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1991-01-01

    The Environmental Protection Agency (EPA) continues to assert that radon is a major cause of lung cancer in this country. EPA is fostering a radon program that could entail huge financial and emotional costs while yielding negligible benefits to public health. Justification for the program was the occurrence of lung cancer in men exposed to huge amounts of radon, mineral dusts, and other lung irritants in uranium mines on the Colorado Plateau. Lung cancer has been reported in about 356 cigarette smokers and in about 25 nonsmokers. During the era of high radon levels, monitoring was sporadic. Conditions in only a small fraction of the mines were measured, and that on a few separate occasions. Later, cumulative exposure to radon was calculated on the basis of measurements involving only a tiny fraction of the miners. Some were exposed to more than 15,000 pCi/liter of radon and its products. The level in the average home is about 1.5 pCi/liter. In making extrapolations from mine to home, the assumption is made that residents are in their dwellings most of the time and that miners spend only 170 hours a month in the mine. Two major questionable assumptions are involved in extrapolations from high doses of radon in the mines to low doses in homes. One is that no threshold is involved; that is, that humans have no remediation mechanism for α particle damages. There is evidence to the contrary. The most unrealistic assumption is that heavy exposure to silica has no effect on inducing lung cancer. Many studies have shown that silica dust causes lung cancer in animals. Exposure of human culture cells to silica has resulted in formation of neoplastic tissue. EPA has no solid evidence that exposures to 4 pCi/liter of radon causes lung cancer in either smokers or nonsmokers. Indeed, there is abundant evidence to the contrary in the fact that in states with high levels of radon, inhabitants have less lung cancer than those in states with low levels

  17. Effect of home construction on indoor radon in Virginia and Maryland

    International Nuclear Information System (INIS)

    Mushrush, G.W.; Mose, D.G.

    1988-01-01

    The levels of indoor radon in approximately 500 homes located in two contiguous counties of northern Virginia and southern Maryland have been measured during four consecutive, three month seasonal intervals using alpha-track detectors. These two counties represent an area of about 700 square miles. Results from the winter period show that the indoor radon levels were about twice as high as anticipated. In some areas, more than 50% of the homes had winter indoor radon levels above 4 pCi/liter, the EPA's recommended action level. For the spring and fall periods, indoor radon levels showed a considerable drop with approximately 35% of the homes above 4 pCi/L. Summer values were even lower with approximately 25% of the homes above 4 pCi/L.Indoor radon can be related to the weather, but home construction demonstrably determines indoor radon levels

  18. Efficiency of radon reduction techniques and strategies

    International Nuclear Information System (INIS)

    Hubert, Ph.; Monchecourt, D.

    2000-01-01

    Radon is a lung carcinogen recognized by the World Health Organisation and it is present in dwellings. In France, the first actions to measure the exposition of the population were made in 1982, and the first national recommendation was published in 1999. In parallel, information booklets on radon and possible actions to lower its concentration in house were made available to the public. The aim of this study was to test the economic feasibility of different methods to reduce radon level in housing. The first step was to identify the cost and the radon reduction rate of different methods, all based on insulation or ventilation of the buildings. Using the data of the Environmental Protection Agency (EPA), we selected six measures and combined them to obtain a total of twenty potential solutions. We also used the 'duration' model of the Biological Effects of Ionising Radiation committee (BEIR VI) to determine the probability of dying from a cancer associated to a fixed exposure to radon. Knowing this information, it was possible to make cost-efficiency analysis on our data and thus keep six interesting methods. Combining these results with the value of human life of the human capital approach we could find what was the most interesting method to apply for a known level of radon and a specific duration of exposure in a house. In given house, for each level of initial exposure, a cost benefit approach allowed to determine if one, or several techniques, or none, is worthwhile to apply. In favorable cases (i.e : easily remediable houses), and with a figure for the price of human life of about 0,9 MEuro, actions should be undertaken at levels as low as 80 Bq.m -3 . As we know the radon distribution in France, the second step was to see what would be the effects on this distribution if all inhabitants used the optimal approach against their radon exposure defined by our function. Thus, overall costs and overall risks could be computed. However, in public health issues, the

  19. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  20. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  1. Genetic effects of radon 222 in a population of Drosophila melanogaster chronically exposed

    International Nuclear Information System (INIS)

    Salceda, V.M.

    1997-01-01

    It was investigated the mutagenic effect of Radon 222 during a experimental period of 11 generations. In this lapse Drosophila melanogaster larvae line Canton-S were maintained in a radon atmosphere. In each test generation had been extracted males, consequently exposed to radiation which were subjected to a crossing series with a bearer marker genes of according to the Wallace experimental design (1956). Due to the experimental conditions it only was determined the recessive lethal mutations frequency for the second chromosome in the 1,4,7 and 11 generations. Of all study it was conduced in parallel way a non-treated witness population. The concentrations at which was subjected the experimental population varied of generation to generation from 12 ± 2 to 43 ± 5 kBq/m 3 . Our analysis correspond to lethality determination in 1182 second chromosomes distributed between two populations and the different exposition generations. The study allow to determine the respective frequencies of recessive lethal genes varying according to the population and/or generation between 10.53 and 22.02%. The statistical analysis of data did not show significant differences among the different populations. (Author)

  2. Radon: an environmental pollutant

    International Nuclear Information System (INIS)

    Mills, W.A.

    1979-01-01

    Radiological concerns with the disposal and use of mining and milling residues have heightened to the point that federal agencies are asking or being asked to formulate new regulactions for controlling radon daughters from a variety of sources - radioactivity previously considered to be part of our natural environment. Based on information derived from epidemiologic studies of underground miners, particularly uranium miners, the health impact on the general public is being projected. Depending on the assumptions made, these projections vary widely. Because of these variations in health risks, decisions on control measures have even wider implications on economic and social considerations. Thus the question: is radon an environmental pollutant. While not fully answering the question, recognizing the uncertainties in assessing and controlling radon daughters can put the question in better perspective

  3. On indoor radon contamination monitoring with SSNTDs: Experimental results concerning plate-out and self-plate-out effects

    International Nuclear Information System (INIS)

    Bigazzi, G.; Hadler, J.C.; Paulo, S.R.

    1989-01-01

    Measurements of the alpha activities of 222 Rn and its daughters were performed, both inside a glass recipient and in closed rooms, employing SSNTDs (CR-39 and nuclear emulsion). The experimental results presented here show that plate-out and self-plate-out effects should be taken into account when SSNTDs are employed in indoor radon contamination monitoring. (orig.)

  4. How dangerous is radon in buildings? - Some reflections from Europe

    International Nuclear Information System (INIS)

    Becker, K.

    1994-01-01

    ICRP published recommendations on indoor radon in 1987. Based on the suggested action levels for new and existing houses of 200 and 400 Bq/m 3 , various countries established levels of their own which vary between 150 Bq/m 3 in the United States, and 200-250 in most European countries. In 1989, the ICRP Task Group responsible for radon proposed another increase of the risk factors by about a factor of three. This would imply more radon-induced lung cancers in certain nonsmoking population groups than are totally observed. On the other hand, there is an increasing number of scientists who seriously question the validity of the ICRP assumptions, and all the more or less official governmental actions based on them -- including the substantial socioeconomic impact of remedial measures which would be required in high-radon areas. In this editorial the author discusses some cases in which people have exposed themselves to radon for its supposedly therapeutic effects and have not apparently suffered an increase in health problems as would have been expected based on data of lung cancer in uranium miners. The author discusses the complexity of determining the health hazards of radon gas and the associated problems of establishing safe exposure limits. 11 refs

  5. The radium distribution in some Swedish soils and its effects on radon emanation

    International Nuclear Information System (INIS)

    Edsfeldt, Cecilia

    2001-08-01

    main governing parameter for Rn emanation in this soil. The surface area is largely created by the precipitation of amorphous Fe oxides, thus, Fe oxides has a significant effect on Rn emanation. Comparing the two studies, the Stockholm samples had the same amounts of oxide-bound Fe and surface-bound Ra. Still the radon emanation was much smaller for these samples than in the Kloten soil. The amount of organic matter in the B horizon of the Kloten soil is however, much larger than the organic matter content in the Stockholm samples. It is suggested that the large Rn emanation in the B horizon of Kloten is caused by the combined effect of Fe oxides and organic matter. The variability of 226 Ra distribution in soils was also investigated. The 226 Ra distribution was determined for samples from 60-70 cm and 80-90 cm depth, from three adjacent soil profiles in a podzolic glacial till. Ra distributions, and estimations of Rn risk based on the Ra distributions, of a single soil profile, are likely to be representative for a similar area, provided that the samples are taken from a sufficient depth

  6. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  7. A detailed evaluation of the individual health benefits arising in a domestic property following radon remediation - a case-study in Northamptonshire, U.K

    International Nuclear Information System (INIS)

    Denman, A.R.; Briggs, D.J.; Allison, C.C.; Groves-Kirkby, C.J.; Phillips, P.S.; Crockett, R.G.M.

    2008-01-01

    Radon gas occurs naturally in the environment with variable distribution, concentrating sufficiently in the built environment in some areas to pose a public health risk. Radon levels can be successfully reduced in affected buildings, and large-scale remediation programmes have been justified in terms of accrued costs and benefits. We present results from a house where radon levels in the main living-room and master bedroom were monitored on an hourly basis over extended periods before and after radon remediation by sub-slab depressurisation. These results were combined with results from a recent occupancy survey to estimate the health impact on occupants spending varying times in the home. Prior to remediation, mean hourly radon exposure is moderately linearly correlated (R 2 = 0.66-0.78) with time spent in the house. Following remediation, correlation is significantly enhanced (R 2 = 0.91-0.95), but the exposure reduction of an occupant following remediation is less than that predicted using the NRPB protocol

  8. A detailed evaluation of the individual health benefits arising in a domestic property following radon remediation - a case-study in Northamptonshire, U.K

    Energy Technology Data Exchange (ETDEWEB)

    Denman, A.R. [Medical Physics Department, Northampton General Hospital NHS Trust, Cliftonville, Northampton NN1 5BD (United Kingdom); School of Health, University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom)], E-mail: tony.denman@northampton.ac.uk; Briggs, D.J. [Department of Epidemiology and Public Health, Imperial College of Science, Technology and Medicine, London W1 2PG (United Kingdom)], E-mail: d.briggs@imperial.ac.uk; Allison, C.C. [Medical Physics Department, Northampton General Hospital NHS Trust, Cliftonville, Northampton NN1 5BD (United Kingdom)], E-mail: claire.allison@ngh.nhs.uk; Groves-Kirkby, C.J. [Medical Physics Department, Northampton General Hospital NHS Trust, Cliftonville, Northampton NN1 5BD (United Kingdom)], E-mail: chris.groves-kirkby@ngh.nhs.uk; Phillips, P.S. [School of Applied Sciences, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom)], E-mail: paul.phillips@northampton.ac.uk; Crockett, R.G.M. [School of Applied Sciences, University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom)], E-mail: robin.crockett@northampton.ac.uk

    2008-07-15

    Radon gas occurs naturally in the environment with variable distribution, concentrating sufficiently in the built environment in some areas to pose a public health risk. Radon levels can be successfully reduced in affected buildings, and large-scale remediation programmes have been justified in terms of accrued costs and benefits. We present results from a house where radon levels in the main living-room and master bedroom were monitored on an hourly basis over extended periods before and after radon remediation by sub-slab depressurisation. These results were combined with results from a recent occupancy survey to estimate the health impact on occupants spending varying times in the home. Prior to remediation, mean hourly radon exposure is moderately linearly correlated (R{sup 2} = 0.66-0.78) with time spent in the house. Following remediation, correlation is significantly enhanced (R{sup 2} = 0.91-0.95), but the exposure reduction of an occupant following remediation is less than that predicted using the NRPB protocol.

  9. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  10. Perception of radon risk in typical non-uranium mines in China

    International Nuclear Information System (INIS)

    Fu Yinhua; Sun Quanfu; Du Weixia; Lei Suwen; Lei Shujie; Wang Haijun; Qian Yekan; Li Xiaoyin; Su Xu

    2008-01-01

    Objective: To investigate the perception of risk flora occupational exposure to radon among the non-uranium miners in China, and to explore its major influence factors. Methods: 2836 workers from 24 mines in 9 provinces/regions were interviewed. Logit regress analysis was used to identify the major influence factors. Results: Among the interviewed mine workers, 13.3% of them had heard of radon, 29.0% of those miners who had heard of radon had some knowledge of the source of radon. Only 1.8% of the investigated mine workers had correct perception of health risk resulted from exposure to radon. The major factors to influence the radon risk perception included education degree and type of employment, perception was lower in those miners with low education or temporally employed. Perception level differed by province/regions and mines. Sex, age, and working length of the current job were not the main factors to influence the risk perception. Conclusions: The perception of radon risk resulted from occupational exposure among the Chinese non-uranium mine workers is low. More works are needed to effectively implement notification of occupational health hazards, which is stipulated by Chinese law on prevention and control of occupational disease, and one of the important factors in radon mitigation in mines. (authors)

  11. An evaluation of the quantitative effects on radon gas from the modification of a home heating and air conditioning system

    International Nuclear Information System (INIS)

    Montague, A.

    1991-01-01

    The quantitative effects associated with the design, construction, operation, environmental and meteorological conditions on radon gas levels in a typical residential dwelling with a basement, having a measured radon level of approximately 20 pico-curies/liter (pCi/L), are evaluated. After several mechanical and electrical modifications are made on the dwelling's heating system, two different furnace breathing modes are studied. The effect on radon levels in the dwelling are observed as the furnace receives all of its combustion, draft and ventilation air - as the experiment alternates, on a bi-weekly basis - from inside and then outside the dwelling. Radon, barometric pressure, outside temperature, relative humidity, wind-speed and direction are monitored continuously; special household activity in the dwelling is also observed. A novel differential air pressure technique is used to measure inside versus outside house air pressure variations, twice each day, resulting from meteorological conditions, dwelling activity, and the furnace breathing mode. A rigorous statistical analysis is employed that includes sequential linear regression of time-series data, trend corrections to remove variations that contribute to the variance in the data without addition useful information. A novel approach using an electrical analog, to screen out unwanted variations is applied, by utilizing a computer routine to simulate the effect of an electronic RC filter, to achieve the desired analytical discrimination

  12. Health Effects of Indoor Air Pollutants and their Mitigation and Control (invited paper)

    International Nuclear Information System (INIS)

    Maroni, M.

    1998-01-01

    The nature of chemical, biological and physical contaminants present in indoor air, their sources, and the health effects they cause are reviewed. Among the physical agents, the interaction between tobacco smoke and radon is discussed. Control and improvement of indoor air quality can be achieved combining the use of two main strategies: proper design and construction of buildings, and control of indoor air pollution through source control, ventilation, air cleaning, exposure control, or a combination of them. A number of control measures primarily targeted to pollutants other than radon can also be particularly effective for radon. On the other hand, measures primarily targeted to radon containment can also be beneficial for other pollutants. Effective programmes on indoor air improvement are urgently needed to benefit the health, comfort and productivity of our communities. (author)

  13. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  14. The history, development and the present status of the radon measurement programme in the United States of America.

    Science.gov (United States)

    George, A C

    2015-11-01

    The US radon measurement programme began in the late 1950s by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m(-3) (4 pCi l(-1)) may be ∼8.5 million because ∼50 million homes were added since 1990 to the home

  15. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  16. Report of the special committee for the study of physiological effects of radon in human

    International Nuclear Information System (INIS)

    1998-01-01

    This report outlines the activities of the committee for the study of physiological effects of radon in human based on the presentation in the meetings by the members in the period, 1996-1998. The methods to estimate the exposed dose of radon (Rn) have been considerably improved now. But it is necessary to consider living conditions such as housing conditions, respiratory ratio as well as physical measurements such as Rn concentration, its balance factor, the ratio of non-absorbed component, for accurate evaluation of the physiological effects of Rn. This committee was established aiming to investigate the physiological effects of Rn in human bodies and solve the problems in this area. In a period from 1996 to 1998, meeting was held nine times by the committee. The respective main themes were as follows: the purpose of this committee and the plans of activities in future for the first meeting, indoor Rn level and balance factor for the second, outdoor Rn level and aerosol of its daughter nuclides for the third, respiratory air movement model for the 4th, Rn inhalation, epidemiological study of Rn for the 5th, epidemiological study of Rn for the 6th, problems in Rn level survey for the 7th, behaviors of Rn and its daughter nuclides in occupational environment for 9th, and variance in dose calibration factor and biological effects of α-ray for 10th. At present, dose evaluation and risk evaluation for Rn exposure include considerable uncertainty. Accurate dose evaluation for Rn is necessary to determine the limitation dose for human bodies to repress the physiological effects. (M.N.)

  17. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  18. Radon -- an environmental hazard

    International Nuclear Information System (INIS)

    Faheem, M.; Rahman, R.; Rahman, S.; Matiullah

    2005-01-01

    Humans have always been exposed throughout its period of experience to naturally occurring sources of ionizing radiation or natural background radiation, It is an established fact that even these low background doses are harmful to man and cause increased cancer risk. About half of our radiation comes from radon, a radioactive gas coming from normal materials in the ground. Several building materials such as granite, bricks, sand, cement etc., contain uranium in various amounts. The radioactive gas /sup 222/Rn produced in these materials due to decay of 226Ra is transported to indoor air through diffusion and convective flow. It seeps out of soil and rocks, well water, building materials and other sources at a varied rate. Amongst the naturally occurring radioisotopes, radon is the most harmful one that can be a cause of lung cancer. Radon isotopes are born by the decay of radium and radium production in turns comes from uranium or thorium decay. For humans the greatest importance among Radon isotopes is attributed to /sup 222/Rn because it is the longest lived of the three naturally produced isotopes. Drinking water also poses a threat. Radon gas is dissolved in water and is released into the air via water faucets, showerheads, etc. the lack of understanding has so far lead to speculative estimates of pollutant related health hazards. (author)

  19. Ion climate and radon concentration

    International Nuclear Information System (INIS)

    Busbarna, L.

    1981-01-01

    Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)

  20. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  1. The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A. F.; Rajaa, G.

    2002-09-01

    Portland cement was mixed with different kind of sand (calcite and silica) in different ratio to produce radioactive specimens with radium chloride. The release of radon from these samples was studied. The results showed that radon release from the calcite-cement samples increased with the increases of the sand mixed ratio until fixed value (about 20%) then decreased to less than its release from the beginning, and the release changed with the sand size also. Radon release from silica-cement samples had the same observations of calcite-cement samples. It was found that calcite-cement reduced the radon exhalation quantity rather than the silica-cement samples. The decreases of the radon exhalation from the cement-sand may be due to the creation of free spaces in the samples, which gave the possibility to radon to decay into these free spaces rather than radon exhalation. The daughters of the radon decay 214 Bi and 214 Pb reported by gamma measurements of the cement-sand samples. (author)

  2. Cost and effectiveness of radon-resistant features in new school buildings

    International Nuclear Information System (INIS)

    Craig, A.B.; Leovie, K.W.

    1991-01-01

    Recent concerns over elevated levels of radon in existing buildings have prompted the design and construction of a number of school buildings that either are radon resistant or incorporate features that facilitate post-construction mitigation if needed. This paper described initial results of a study of several schools with radon-resistant features that were recently constructed in the northeastern U.S. These designs are generally based on experience with radon mitigation in existing houses and schools and radon-resistant new house construction. The study was limited to slab-on-grade schools, where the most common radon-resistant school design is active subslab depressurization (ASD). The additional construction costs for eight schools built with ASD ranged from $3 to $11 per square meter of slab area. The radon contractors who designed these systems have tended to overdesign the radon-reduction systems in the absence of specific written guidance to follow to lessen potential liability in the event of system failure. Design features include detailed sealing of all slab cracks, multiple exhaust stacks, and extensive subslab piping

  3. Risk assessment of radon in the South Dayi District of the Volta Region, Ghana

    Directory of Open Access Journals (Sweden)

    Charles Y. Ansre

    2018-01-01

    Full Text Available Radon is a globally present and known radioactive gas with its ability to cause lung cancer as its major health implication. Ghana currently lacks national policies on radon gas and substantive radon vulnerability map largely due to lack of adequate baseline radon concentration data for the entire country. LR115 type II detectors were deployed in 30 sites/homes within the South-Dayi District. The detectors were retrieved after specified periods and analyzed for the radon concentration at the Nuclear Track Detection Laboratory of the Ghana Atomic Energy Commission. From the results, indoor radon concentration was found to range from 11.60 to 111.07 Bq/m3 with the mean value for the district being 34.90 ± 20.18 Bq/m3, a value lower than the mean global indoor concentration of 40 Bq/m3. The values of 0.44 mS/yr, 8.80 mSv/yr and 1.01 mSv/yr were the mean annual; absorbed dose, equivalent dose and effective dose to lungs respectively for the populace of the district. The mean soil radon concentration for the district was 1.76 ± 0.91 kBq/m3 with values ranging from 0.38 to 3.93 kBq/m3. Correlation and T-test analysis was performed to establish strength of the linear relationship between indoor radon concentration and the soil radon concentration, indoor radon concentration on altitude and soil radon concentration on altitude.

  4. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  5. Contribution of waterborne radon to home air quality

    International Nuclear Information System (INIS)

    Deb, A.K.

    1994-01-01

    Radon-222 is a member of the uranium decay chain and is formed from the decay of radium-226. Radon and its decay products emit alpha particles during the decay process. If radon is inhaled, alpha particles emitted from inhaled radon and its daughters increase the risk of lung cancer. Radon is soluble in water; thus when radon comes in contact with groundwater it dissolves. The radon concentration in groundwater may range from 100 pCi/L to 1,000,000 pCi/L. When water with a high radon level is used in the home, radon is released from the water to the air and thus can increase indoor air radon concentration. Considering the estimated health risk from radon in public water supply systems, EPA has proposed a maximum contaminant level (MCL) of 300 pCi/L for radon in public drinking water supplies. To address the health risks of radon in water and the proposed regulations, the American Water Works Association Research Foundation (AWWARF) initiated a study to determine the contribution of waterborne radon to radon levels in indoor household air

  6. Effect of ventilation on concentrations of indoor radon- and thoron-progeny: Experimental verification of a simple model

    International Nuclear Information System (INIS)

    Sheets, R.W.; Thompson, C.C.

    1993-01-01

    Different models relating the dependence of radon ( 222 Rn)- and thoron ( 220 Rn)-progeny activities on room ventilation rates are presented in the literature. Some of these models predict that, as the rate of ventilation increases, activities of thoron progeny decrease more rapidly than those of radon progeny. Other models predict the opposite trend. In this study alpha activities of the radon progeny, 218 Po, 214 Pb, and 214 Bi, together with the thoron progeny 212 Pb, were measured over periods of several days in two rooms of a closed, heated house. Effective ventilation rates were calculated from measured 214 Pb/ 214 Bi ratios. A simple model in which progeny concentrations decrease by radioactive decay and by dilution with outside air has been used to calculate 212 Pb/ 214 Pb ratios as a function of ventilation rate. Calculated ratios are found to correlate significantly with experimentally-determined ratios (R 2 ∼ 0.5--0.8 at p < 0.005) confirming that, for this house, thoron progeny activities decrease faster than radon progeny activities with increasing rates of ventilation

  7. The effect of mineral radon water applied in the form of full baths on blood pressure in patients with hypertension

    Directory of Open Access Journals (Sweden)

    Amila Kapetanović

    2013-04-01

    Full Text Available Introduction: Due to patients’ safety, increased blood pressure often restricts wider use of mineral water for therapeutic purposes in rehabilitation practice. The aim of this study was to examine the effect of radon mineral water applied in the form of full baths on blood pressure in people with hypertension.Methods: A total of 27 patients, average age 58.10 years with hypertension were included in the study. Balneotherapy was applied in the form of full baths with mineral radon water of neutral temperature. Values of systolic and diastolic blood pressure were measured before and after twenty minutes therapy on the first and fifth day of treatment.Results: On the first day of treatment there was no significant change in blood pressure after the application of full baths with mineral radon water of neutral temperature (systolic pressure t = 0.697, not significant; diastolic pressure t = 0.505, not significant. On the fi fth day of treatment there was no significant changes in blood pressure after the application of medical baths with mineral radon water of neutral temperature (systolic pressure t = 1.372, not significant; diastolic pressure t = 1.372, not significant.Conclusion: The significant increase of blood pressure in patients with mild and moderate hypertension is not expected when Fojnica water (radioactive mineral water is being used in the form of full baths of neutral temperature, which allows a broader application of this balneo procedure in rehabilitation practice.

  8. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Asha, E-mail: ashasachdeva78@gmail.com [Department of Applied Science, Ferozepur College of Engineering and Technology, Farozshah, Ferozepur-142052, Punjab (India); Mittal, Sudhir, E-mail: sudhirmittal03@gmail.com [Department of Applied Sciences, Punjab Technical University, Jalandhar-144601, Punjab (India); Mehra, Rohit [Department of Physics, Dr. B.R.Ambedkar National Institute of Technology, Jalandhar-144011 (India)

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  9. Effect of radon and its progeny on the expression and mutation of p53 in lung tissues of mice

    International Nuclear Information System (INIS)

    Piao Chunnan; Tian Mei; Liu Jianxiang; Ruan Jianlei; Su Xu

    2010-01-01

    Objective: To explore the effect of radon and its progeny on the expression and mutations of p53 in lung tissue of mouse model. Methods: Apoptosis was detected by terminal deoxynucleotidy transferase-mediated dUTP-biotin nick end labeling. The expression of p53 gene was analyzed by immunohistochemistry, Western blot and realtime-PCR. PCR-SSCP was used to detect the mutation of p53 in lung tissues. Results: Compared with those in the control group, the apoptotic index were increased significantly in 30 WLM and 60 WLM groups (t=18.11, -10.30, P<0.05). The p53 protein was increased significantly (t=-11.08, P<0.05; t=-7.00, P<0.05) in 30 WLM and 60 WLM groups. The mutation of p53 gene was not detected in lungs of radon-exposure mice. Conclusions: Lung and bronchus might be the targets of radon and its progeny, and p53 gene plays an important role in the progression of radon-induced lung injury. (authors)

  10. Study of underground radon transport

    International Nuclear Information System (INIS)

    Csige, I.; Hakl, J.; Lenart, L.

    1990-01-01

    The soil gas radon content measurements with solid state nuclear track detectors (SSNTDs) are widely used in geoscience, for instance in uranium exploration and earthquake prediction. In these applications the radon frequently is used as a natural tracer of underground fluid transport processes. Obviously, to get the soil radon measuring method more and more effective the study of these transport processes in deeper part of the Earth is fundamental. The Track Detector Group in the Institute of Nuclear Research of the Hungarian Academy of Sciences in Debrecen has been performing environmental radon activity concentration measurements since 1977 with alpha sensitive SSNTDs. These types of measurements were initiated and widely used by the late head of the group Dr. G. Somogyi, who devoted his life to better understanding of the nature. The measurements in caves, springs and drilled wells proved to be effective to study these underground radon transport processes. We are glad to present some results of our investigations. 7 refs, 7 figs

  11. The control of radon levels in houses

    International Nuclear Information System (INIS)

    Al-Jarallah, M. B. I.

    2007-01-01

    The article speaks about radon entry ways to houses, the technologies of controlling the level of radon in indoors and four possible ways to solve the problem of high concentration of radon gas in housing and protection from being gathered to a certain extent that is harmful to health. These methods are: removal of the radon source, modifying the radon source, ventilation and air filtration. The article also addresses the impact of reducing the consumption of heating energy in homes and buildings using thermal insulators in floors, walls, ceilings and doors and making double glazed windows that confine the air. It has been proven that there is a steady relationship between energy conservation measures in housing and the increase of radon concentration by two to three times. In a lot of buildings, where conservation measures have been taken, materials to conserve heat are used, which themselves launch radon and this may lead to increased levels of the gas in the housing.

  12. Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (Joint research)

    International Nuclear Information System (INIS)

    Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Kataoka, Takahiro; Yamato, Keiko; Nishiyama, Yuichi

    2013-06-01

    Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and absorbed doses of radon. From 2007 to 2011, the following results were obtained. (1) Literature on effects of radon for the low-dose range was surveyed to determine the present tasks. (2) The first Japanese large-scale facility was developed for radon inhalation experiments with small animals. (3) Relationships between radon concentration and inhalation time were widely examined to understand the change in antioxidative functions due to radon, which are the most basic parameters. (4) Inhibitory effects of radon on oxidative damages were observed using model mice with reactive oxygen- or free radical-related diseases like alcohol-induced oxidative damages and type I diabetes. (5) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon was examined and the model for calculation of absorbed doses for organs and tissues was obtained. (author)

  13. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  14. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  15. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry

    International Nuclear Information System (INIS)

    Szoke, Istvan; Balashazy, Imre; Farkas, Arpad; Hofmann, Werner

    2007-01-01

    The human tracheobronchial system has a very complex structure including cylindrical airway ducts connected by airway bifurcation units. The deposition of the inhaled aerosols within the airways exhibits a very inhomogeneous pattern. The formation of deposition hot spots near the carinal ridge has been confirmed by experimental and computational fluid and particle dynamics (CFPD) methods. In spite of these observations, current radon lung dosimetry models apply infinitely long cylinders as models of the airway system and assume uniform deposition of the inhaled radon progenies along the airway walls. The aim of this study is to investigate the effect of airway geometry and non-uniform activity distributions within bronchial bifurcations on cellular dose distributions. In order to answer these questions, the nuclear doses of the bronchial epithelium were calculated in three different irradiation situations. (1) First, CFPD methods were applied to calculate the distribution of the deposited alpha-emitting nuclides in a numerically constructed idealized airway bifurcation. (2) Second, the deposited radionuclides were randomly distributed along the surface of the above-mentioned geometry. (3) Finally, calculations were made in cylindrical geometries corresponding to the parent and daughter branches of the bifurcation geometry assuming random nuclide activity distribution. In all three models, the same 218 Po and 214 Po surface activities per tissue volumes were assumed. Two conclusions can be drawn from this analysis: (i) average nuclear doses are very similar in all three cases (minor differences can be attributed to differences in the linear energy transfer (LET) spectra) and (ii) dose distributions are significantly different in all three cases, with the highest doses at the carinal ridge in case 3. (authors)

  16. Application of nuclear track detectors for radon related measurments

    International Nuclear Information System (INIS)

    Abu-Jarad, F.A.

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author)

  17. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  18. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    Science.gov (United States)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  19. Protection of workers from radon

    International Nuclear Information System (INIS)

    Jacques, P.

    1992-01-01

    The TUC regards exposure to radon as one of a range of health hazards in industry which need to be controlled. In the case of radon the costs of control measures are very much lower than the costs of averting similar doses in the nuclear industry. All employers in the areas affected should be able to demonstrate that they have taken appropriate steps to determine the risks from radon and have introduced remedial measures where appropriate. The TUC considers it essential that trade union safety representatives should be fully involved and consulted about the problem. (Author)

  20. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    Hanchey, L.A.

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  1. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-04-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  2. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  3. Effect of radon inhalations on certain oxyda-reductive enzymes in adrenols of white rats

    International Nuclear Information System (INIS)

    Robaczynski, J.; Kaplonska, J.; Lozinska, E.

    1974-01-01

    Histochemical investigations were carried out on adrenals of white rats after radon inhalations from inhalers in Swieradow-spa. Increased reactions of oxydo-reductive enzymes: NAD tetrazolium reductase, succinic dehydrogenase and glucose-6-phosphate dehydrogenase were observed in the adrenal cortex, particularly in the zona reticularis which was hypertrophied. Raised activity of oxydo-reductive enzymes in the cells of adrenal cortex evidences increased metabolism in these cells which may reflect increased production of hormones. Finding of stimulation of adrenocortical cells after radon inhalations is of essential importance for explanation of the biological mechanism of action of radon used in balneotherapy. (author)

  4. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  5. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways

    International Nuclear Information System (INIS)

    Fakir, H.; Hofmann, W.; Aubineau-Laniece, I.

    2006-01-01

    The effects of radiological and morphological source heterogeneities in straight and Y-shaped bronchial airways on hit frequencies and Micro-dosimetric quantities in epithelial cells have been investigated previously. The goal of the present study is to relate these physical quantities to transformation frequencies in sensitive target cells and to radon-induced lung cancer risk. Based on an effect-specific track length model, computed linear energy transfer (LET) spectra were converted to corresponding transformation frequencies for different activity distributions and source - target configurations. Average transformation probabilities were considerably enhanced for radon progeny accumulations and target cells at the carinal ridge, relative to uniform activity distributions and target cells located along the curved and straight airway portions at the same exposure level. Although uncorrelated transformation probabilities produce a linear dose - effect relationship, correlated transformations first increase depending on the LET, but then decrease significantly when exceeding a defined number of hits or cumulative exposure level. (authors)

  6. ERRICCA radon model intercomparison exercise

    International Nuclear Information System (INIS)

    Andersen, C.E.; Albarracin, D.; Csige, I.; Graaf, E.R. van der; Jiranek, M.; Rehs, B.; Svoboda, Z.; Toro, L.

    1999-04-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to more fundamental studies of radon transport. To ascertain that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Research into Radon in Construction Concerted Action. The test comprises the following cases: 1) Steady-state diffusive radon profiles in dry and wet soils, 2) steady-state entry of soil gas and radon into a house, 3) time-dependent radon exhalation from a building-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive transport of radon, flux calculations, and partitioning of radon between air and water in soil pores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because of this, all groups scrutinized their computations (once more) and engaged in follow-up discussions with others. During this debugging process, problems were indeed identified (and eliminated). The accordingly revised results were in better agreement than those reported initially. Some discrepancies, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommended that additional exercises are carried out. (au)

  7. Project radon final report

    International Nuclear Information System (INIS)

    Ekholm, S.; Rossby, U.

    1990-01-01

    The main radiation problem in Sweden is due to radon in dwellings. At the Swedish State Power Board, R, D and D about radon has been going on since 1980. The work has concentrated on the important questions: How to find building with enhanced radon levels?; How to accurately decide on measures that will give adequate cleaning-up results, using appropriate measurement procedures; What cleaning-up effect is possible to achieve with an electro-filter?; and What cleaning-up effects are possible to achieve with different types of ventilation systems? The R, D and D-work, has been pursued in cooperation with universities of technology in Denmark and Finland, equipment manufacturers, consultants and authorities concerned. It was decided in December 1986 to give an offer to some SSPB-employees to investigate the radon situation of their dwellings, in order to test methods of measurement and cleaning-up under realistic conditions and to develop the methods to commercial maturity. The investigation was named 'Project Radon' and was carried out in three years with costs amounting to 1 M dollars. During the project less comprehensive radon measurements, named 'trace-measurements' were undertaken in about 1300 dwellings and more elaborate measurements, leading to suggestions of actions to be taken, in about 400 dwellings. Out of the suggestions, about 50 are carried out including control measurement after actions taken. The control measurement have shown that the ability to suggest appropriate actions is very successful - in just one case was a minor additional action necessary. The high reliability is achieved by always doing elaborate measurements before suggested mitigation method is decided on. (authors)

  8. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  9. A calibration facility for radon fluxmeter

    International Nuclear Information System (INIS)

    Li Xianjie; Qiu Shoukang; Zhou Jianliang; Liu Chunkui; Pan Jialin; Yang Mingli

    1998-01-01

    Calibration facilities for radon fluxmeter with three kinds of different emanation medium have been developed. The stability of radon flux is 5%, 9% (RSD) respectively. The uniformity of radon flux is 4.5%, 8.5% (RSD) respectively. These specifications fulfill the calibration requirement for radon fluxmeter. The determination of radon flux of facility takes full account of eliminating the main error source-attenuation effect (including leakage and back diffusion etc.): not only prevent attenuation and make a relevant correction. Therefore the accuracy of determination is assured. The calibration, intercomparison of radon flux meter and the quantitatively evaluation on the measurement method of radon flux are made to be possible by the successful establishment of this facility. (author)

  10. Quantitative evaluation of the lung cancer deaths attributable to residential radon: A simple method and results for all the 21 Italian Regions

    International Nuclear Information System (INIS)

    Bochicchio, F.; Antignani, S.; Venoso, G.; Forastiere, F.

    2013-01-01

    Pooled analyses of epidemiological case-control studies on lung cancer and residential radon have shown that radon exposure in dwellings increases lung cancer risk, and that the increase is statistically significant also for prolonged exposures to low-medium level of radon concentration, i.e. levels commonly found in many dwellings. In this paper, a simple method to evaluate the health burden due to the presence of radon in homes (i.e. the number of lung cancer deaths attributable to radon exposure in dwellings) was presented. This method is based on the following parameters: i) the excess relative risk per unit of exposure evaluated in case-control studies; ii) the average radon concentration that can be considered representative of population exposure in dwellings; iii) the total number of lung cancer deaths occurring each year. Moreover, the interaction between radon and cigarette smoking is needed to be taken into account: in fact, although most of the persons are non-smokers, most of the lung cancer deaths attributed to radon are actually due to the multiplicative effect of radon and cigarette smoking. To show this effect, the number of radon related lung cancer deaths estimated to occur among current, former and never smokers was calculated separately for males and females, taking into account the relative risk of lung cancer for the different smoking categories and the prevalence of smoking habits. The methodology described in this work was applied to all the 21 Italian Regions in order to illustrate it. The overall fraction of lung cancer deaths attributable to radon in Italy is about 10%, with values in individual Regions ranging from 4% to 16%. The greater part of the lung cancers attributable to radon is estimated to occur among current smokers for both males and females (72% and 60%, respectively, at national level). This is due to the synergistic effects of radon and cigarette smoking, which should therefore be taken into account in policies aimed to

  11. Role of radon in comparisons of effects of radioactivity releases from nuclear power, coal burning and phosphate mining

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L [Argonne National Lab., IL (USA); Pittsburgh Univ., PA (USA))

    1981-01-01

    It is shown that radon emissions are the predominant source of radiation exposure from nuclear power, coal burning or phosphate mining. For very long time spans, erosion of the continents must be considered, and in this perspective bringing uranium to the earth's surface has no effect since it would eventually reach the surface anyhow, so coal burning and phosphate mining have no net effect; however, nuclear power saves lives by removing the radon source, the net effect ultimately being a saving of 350 lives/GWe-yr. If only effects over 500 yr are considered, lives saved by removal of uranium in mining exceed lives lost due to radon emissions from the nuclear industry under regulations now being instituted, and the net fatalities per GWe-yr caused by all radioactivity releases are 0.017 for nuclear vs 0.045 for coal burning; the effects of radioactivity releases by 1-yr of present annual operations are 10 times larger for phosphate mining than for coal burning.

  12. Radon programme in the Czech Republic

    International Nuclear Information System (INIS)

    Hulka, J.; Thomas, J.

    2003-01-01

    The framework of the Radon programme in the Czech republic includes both precautionary measures and interventions. The programme informally started in early eighties has been now incorporated in national legislation (Atomic Act, Radiation Protection Decree, etc.). Aim of precautionary measures is to avert construction of building above natural radiation guidance levels (200 Bq/m 3 for indoor radon concentration and 0.5 Sv/h for gamma dose rate) by protection of new buildings against soil radon ingress, by regulation of natural radioactivity in building materials and supplied water. Aim of interventions is to identify buildings affected by enhanced natural radioactivity and help owners to put into effect reasonable remedial measures. Two sets of intervention levels for indoor natural exposure were established: guidance intervention levels 400 Bq/m 3 (indoor radon), 1.0 Sv/h (indoor gamma dose rate) and limit values 4000 Bq/m 3 and 10 Sv/h. The radon programme is based both on governmental and private activities. The governmental activities include representative and targeted indoor radon survey, subsidy for radon mitigation, mitigation test measurements and public information on radon issue. The private activities include radon measurement (radon index of building site, indoor measurements, radon diagnosis) and remedial measures. More than 100 commercial companies were authorised by Radiation Protection Authority (SUJB) to provide these measurements

  13. Present practices of the Department of National Health and Welfare for the area monitoring of radon and daughter products

    International Nuclear Information System (INIS)

    Taniguchi, H.

    1977-01-01

    The present practices of the Radiation Protection Bureau for the measurement of radon and daughter products have been briefly described. For radon gas, the Lucas chamber method is in use. Short-lived radon daughter products are determined by the modified Kusnetz method. These field methods are supported by radioanalytical procedures carried out at the environmental radioactivity laboratory. Some recent studies using these methods have been briefly summarized. Concentrations of daughter products up to 29 WL were found in a columbium mine and 63 WL in a tin mine under development. The level of radon daughters in some homes in a uranium mining community ranged up to 2 WL

  14. Radon reduction and radon-resistant construction demonstrations in New York state. Final report

    International Nuclear Information System (INIS)

    1991-02-01

    A survey of radon levels in New York State homes indicates that approximately 4.4 percent of the homes have long-term living area radon concentrations above the U.S. EPA guideline of four pCi/l. The project addressed the effectiveness of techniques to reduce the radon level in existing homes and to prevent the occurrence of high radon concentrations in new homes. The goal of the project was to demonstrate the effectiveness of radon reduction techniques in homes containing indoor radon concentrations of more than the current EPA guidelines of four pCi/l. At the same time, radon-resistant construction techniques were demonstrated in homes under construction to provide guidelines for houses being built in areas with a danger of high radon levels. The project demonstrated new radon mitigation techniques in homes containing indoor radon concentrations exceeding four pCi/l; assessed the value of previously installed radon reduction procedures, and demonstrated new radon-resistant construction methods

  15. Preliminary study of the contamination by Radon Gas in dwelling enclosures in Costa Rica

    International Nuclear Information System (INIS)

    Loria, L.G.; Jimenez, R.; Gallardo, M.C.

    1993-01-01

    The use of Solid State Nuclear Track detectors (SSNTD), LR-115 type II-Quick, is one of the convenient technique to assess the average radiation levels of alpha activities in the environment. This technique has been used to assess the Radon concentration in some areas of San Jose, Costa Rica. Exposed SSNTD films are chemically etched in an alkaline solution and the density of alpha tracks are given as concentration (pCi/L) of Radon. The only known health effect associated with exposure to elevated levels of Radon is an increased risk of developing lung cancer. (authors). 10 refs, 4 figs, 3 tabs

  16. Cost-effectiveness analysis of public education and incentive programs for controlling radon in the home. Final report

    International Nuclear Information System (INIS)

    Bierma, T.J.; Swartzman, D.

    1988-12-01

    The objective of this study was to evaluate the cost-effectiveness in Illinois of five radon public education and incentive program options. Programs evaluated included (1) no program, (2) a toll-free hotline and information packet, (3) free short-term monitors, (4) free confirmatory monitors, and (5) low-interest loans. Existing literature and expert opinion were used to estimate program costs and public responses under the various programs. Computer simulation, with Monte Carlo sampling, was used for uncertainty and sensitivity analysis. The cost-effectiveness model was analyzed based on assumed radon exposures to Illinois citizens. Results for standard conditions indicate that budget levels under approximately $30,000 do not warrant a radon education and incentive program. For budget levels of approximately $30,000 to $1 million, Program 2 was most effective, and Program 3 was most effective above this level. Sensitivity analyses indicate the results are relatively insensitive to input variable assumptions with the exception of public-response estimates. Study results suggest that all of the programs evaluated are likely to be relatively ineffective. Considerable improvement may be possible using more innovative approaches to public education

  17. The effectiveness of radon preventive and remedial measures in Irish homes

    International Nuclear Information System (INIS)

    Long, S; Fenton, D; Cremin, M; Morgan, A

    2013-01-01

    It is estimated that approximately 100 000 Irish homes have radon concentrations above the reference level of 200 Bq m −3 . To minimise the number of new homes with this problem, building regulations require that all new homes built since July 1998 in high radon areas are installed with radon barriers during construction. Measurements on local authority homes in a number of high radon areas have allowed the impact of these new regulations to be assessed. In County Cork a reduction of up to 70% in the mean radon concentration was observed in homes built since 1998 relative to those built before this date. A reduction in both the number of homes exceeding the reference level and the maximum concentration measured in homes was also measured. Homes exceeding the reference level were remediated with the use of an active sump. The results of this remedial work are also presented and show that the mean reduction in radon concentration achieved was 92%. (paper)

  18. The practical use of electrets in a public health radon remediation campaign

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Phillips, P.S.; Crockett, R.G.M.; Woolridge, A.; Gillmore, G.K.

    2005-01-01

    As part of a long-term assessment of domestic radon in Northamptonshire, England, a batch of 50 commercially available electrets was deployed for nearly 1000 exposures, individual exposure periods ranging from one to eight weeks. Responsivity was comparable with that of recently-calibrated Durridge RAD-7 continuously-monitoring equipment. Voltage history analysis indicated mean voltage decay during manufacturers' QA assessment of 0.059 ± 0.026 V day -1 , increasing to 0.114 ± 0.073 V day -1 during storage to first use and to 0.204 ± 0.49 V day -1 during inter-deployment storage. At a representative elevated radon concentration of 500 Bq m -3 , the resulting perturbation is 3% over a 7-day deployment; at the typical mean Northamptonshire level of 80 Bq m -3 it approaches 22%. Each electret can be used for up to 25 measurements, which makes the technology attractive for organisational use. It is not suited for deployment by individual householders

  19. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  20. Combined effect of radon exposure and smoking on lung cancer risk - result of a case-control study among Czech miners

    International Nuclear Information System (INIS)

    Tomasek, Ladislav

    2010-01-01

    Because of the predominant role of cigarette smoking as a cause of lung cancer, an understanding of the joint effect of smoking and radon exposure is needed for the assessment of the risk from radon. The aim of the present work is to verify differences in smoking specific risk coefficients observed earlier (BEIR VI). The present study includes two cohorts of uranium miners in west and central Bohemia and one cohort of burnt clay miners exposed to radon. In the nested study, for each case of lung cancer (observed in 1954-2007) with smoking data up to three controls were selected from all cohort members matched by year of birth, age, and the cohort. Data on smoking in the study were collected from subjects in person, from medical records, and from relatives. The statistical assessment of the study was based on conditional logistic regression with linear dependence of estimated relative risk on radon exposure

  1. Radon Activity measurements in Drinking Water and in Indoors of Dwellings of Dwellings, using RAD7

    International Nuclear Information System (INIS)

    Mehra, R.; Badhan, K.; Sonkawade, R.G.

    2011-01-01

    The purpose of this study is to investigate the radon levels of groundwater being used for drinking and indoor radon levels in the environs of villages/towns of Hoshiarpur district of Punjab, India, to determine the health hazards. Radon concentrations in the collected water samples were measured with RAD7 an electronic radon detector connected to a RAD- H 2 O accessory (Durridge Co., USA). In the setup, the RAD7 detector was used for measuring radon in water by connecting it with a bubbling kit which enables to degas radon from a water sample into the air in a closed loop. A sample of water was taken in a radon-tight reagent bottle of 250 ml capacity connected in a close circuit with a zinc sulphide coated detection chamber which acts as scintillator to detect alpha activity and a glass bulb containing calcium chloride to absorb the moisture. Air was then circulated in a closed circuit for a period of 5-10 min until the radon was uniformly mixed with the air and the resulting alpha activity was recorded and it directly gives the radon concentration. The measured radon concentration in drinking water ranges from 2.03 BqL -1 to 6.65 BqL -1 with an average value of 4.27 BqL -1 . The measured values of radon concentration in drinking water are well within the range (4 to 40 BqL -1 ) suggested for radon concentration in water for human consumption by the United Nations Scientific Committee on the Effects of Atomic Radiation. The measured values of indoor radon concentration in dwellings of the same area vary from 10 Bqm -3 to 28.2 Bqm -3 with an average value of 20.28 Bqm -3 . The measured values for drinking water and for indoor air for the study area suggest that the area is safe for residents and there is no significant threat to the population as per as radon concentration is concerned

  2. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222 Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  3. Radon - from knowledge to action: an all-around cleared issue of radiation protection?

    Energy Technology Data Exchange (ETDEWEB)

    Maringer, F.J. [Vienna Univ. of Natural Resources and Applied Life Science, BEV - Federal Office of Metrology and Surveying (Austria); Vienna Univ. of Technology, Low-Level Counting Laboratory Arsenal, Wien (Austria)

    2006-07-01

    The knowledge about radon is well established in the radiation protection world. After many decades of research work done worldwide by many radiation protection scientists and research teams, the sources and origin, the transport through the soil and into the buildings, and the radiobiological effects of radon progenies in the human respiratory tract are well known. When typing 'radon' in web search engines e.g. www.google.at about 5.1 Million hits are appearing. A countless number of papers have been published in the field of radon research and the ICRP has established radiation protection principles for radon exposure at home and at workplaces. So far, the radon issue seemed well ticked off in the scientific world of radiation protection and the scientists could give more attention to other and more newsworthy problems and questions. But this is only half the truth. The implementation of radon mitigation and precaution standards needs continuously scientific attendance and research networking on an international level. Otherwise the radon issue could degrade easily to a simplified technical and economical exercise without sustainable results in public health. In this paper the radon investigations in Austria which have been carried out in the last 20 years and the applied methods and derived standards for mitigation and precaution in the home and workplace sectors are given. The future strategy and scientific and social necessities in the radon issue are outlined comprehensively. The agreed and proposed research objectives and cooperation which seems necessary are discussed in consideration of the medium-term European radiation protection context. (authors)

  4. Radon - from knowledge to action: an all-around cleared issue of radiation protection?

    International Nuclear Information System (INIS)

    Maringer, F.J.

    2006-01-01

    The knowledge about radon is well established in the radiation protection world. After many decades of research work done worldwide by many radiation protection scientists and research teams, the sources and origin, the transport through the soil and into the buildings, and the radiobiological effects of radon progenies in the human respiratory tract are well known. When typing 'radon' in web search engines e.g. www.google.at about 5.1 Million hits are appearing. A countless number of papers have been published in the field of radon research and the ICRP has established radiation protection principles for radon exposure at home and at workplaces. So far, the radon issue seemed well ticked off in the scientific world of radiation protection and the scientists could give more attention to other and more newsworthy problems and questions. But this is only half the truth. The implementation of radon mitigation and precaution standards needs continuously scientific attendance and research networking on an international level. Otherwise the radon issue could degrade easily to a simplified technical and economical exercise without sustainable results in public health. In this paper the radon investigations in Austria which have been carried out in the last 20 years and the applied methods and derived standards for mitigation and precaution in the home and workplace sectors are given. The future strategy and scientific and social necessities in the radon issue are outlined comprehensively. The agreed and proposed research objectives and cooperation which seems necessary are discussed in consideration of the medium-term European radiation protection context. (authors)

  5. Radon dose assessment in underground mines in Brazil

    International Nuclear Information System (INIS)

    Santos, T.O.; Rocha, Z.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B.; Oliveira, A.H.

    2014-01-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a -1 (mean 9 mSv a -1 ). (authors)

  6. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India

    International Nuclear Information System (INIS)

    Mittal, Sudhir; Asha Rani; Mehra, Rohit

    2015-01-01

    In the present investigation, analysis of radon concentration in 20 water and soil samples collected from different locations of Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using RAD7 an electronic Radon detector. The water samples are taken from hand pumps and tube wells having depths ranging from 50 to 600 feet. All the soil gas measurements have been carried out at 100 cm depth. The measured radon concentration in water samples lies in the range from 0.50 to 22 Bq l -1 with the mean value of 4.42 Bq l -1 . Only in one water sample radon concentration is found to be higher than the safe limit of 11 Bq l -1 recommended US Environmental Protection Agency (USEPA, 1991). The measured value of radon concentration in all ground water samples is within the safe limit from 4 to 40 Bq l -1 recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2008). The total annual effective dose estimated due to radon concentration in water ranges from 1.37 to 60 μSV y -1 with the mean value of 12.08 μSV y -1 . The total annual effective dose from all locations of our studied area is found to be well within the safe limit 0.1 mSv y -1 recommended by World Health Organization (WHO, 2004) and European Council (ED, 1998). Radon measurement in soil samples varies from 941 to 10050 Bq m -3 with the mean value of 4561 Bq m -3 , The radon concentration observed from the soil samples from our study area lies within the range reported by other investigators. Moreover a positive correlation of radon concentration in water with soil samples has been observed. It was observed that the soil and water of Bikaner and Jhunjhunu districts are suitable for drinking and construction purpose without posing any health hazard. (author)

  7. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  8. Radon exhalation from granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: flaviadelclaro@gmail.com, E-mail: spaschuk@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: denyak@gmail.com [Instituto de Pesquisa Pelé Pequeno Príncipe (IPPP), Curitiba, PR (Brazil)

    2017-07-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ({sup 222}Rn), thoron ({sup 220}Rn), radium ({sup 226}Ra), thorium ({sup 232}Th) and potassium ({sup 40}K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the {sup 222}Rn and {sup 220}Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The {sup 222}Rn and {sup 220}Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m{sup 3} to 2087±19 Bq/m{sup 3}, which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  9. Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (2) (Joint research)

    International Nuclear Information System (INIS)

    Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Kataoka, Takahiro; Etani, Reo

    2016-03-01

    Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and exposure doses of radon. From 2009 to 2013, the following results were obtained. (1) Literature on drinking effects of radon hot spring water was surveyed to determine the present tasks. (2) Under the present experimental conditions, drinking of hot spring water into which radon was intentionally introduced using the equipment in the facility did not have significant effects on mice. (3) Inhibitory effects of antioxidant pre-supplements (Vitamins C and E) and radon pre-inhalation on hepatic or renal oxidative damage were examined to make the comparison. (4) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon were studied. (5) Some exposure routes due to inhalation of radon or its progeny were modeled to calculate organ doses in mice. (author)

  10. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  11. Children's Exposure to Radon in Nursery and Primary Schools.

    Science.gov (United States)

    Branco, Pedro T B S; Nunes, Rafael A O; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2016-03-30

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children's exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings' construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings' construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks.

  12. Radiation quality and effective dose equivalent of alpha particles from radon decay products indoors: uncertainties in risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A. (Velindre Hospital, Whitchurch, Cardiff (United Kingdom))

    1994-01-01

    In order to make a better estimate of cancer risk due to radon the radiation quality of alpha particles emitted from the element and its daughters has been re-assessed. In particular, uncertainties in all components involved in the calculations of the effective dose E, have been investigated. This has been done in the light of the recent draft report of the ICRU on quantities and units for use in radiation protection (Allisy et al (1991) ICRU NEWS 2). On the assumption of an indoor radon concentration of 30 Bq.m[sup -3], microdose spectra have been calculated for alpha particles hitting lung cells at different depths. Then the mean quality factor Q-bar in the lung, dose equivalent H[sub T] to the lung and the effective dose have been calculated. A comparison between lung cancer risk from radon and that arising from diagnostic X rays to the chest is made. A suggestion to make the lung weighting factor w[sub T] a function of the fraction of lung cells hit is discussed. (Author).

  13. Health effects

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, L

    1998-07-01

    The main objectives of research in the field of health effects at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality and morbidity in nuclear workers in Belgium; (2) to document the feasibility of retrospective cohort studies in Belgium; (3) to participate in the IARC study; (4) to elucidate the mechanisms of the effects of ionizing radiation on the mammalian embryo during the early phases of its development; (5) to assess the genetic risks of material exposure to ionizing radiation; (6) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (7) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas for 1997 are reported.

  14. Health effects

    International Nuclear Information System (INIS)

    Mahieu, L.

    1998-01-01

    The main objectives of research in the field of health effects at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality and morbidity in nuclear workers in Belgium; (2) to document the feasibility of retrospective cohort studies in Belgium; (3) to participate in the IARC study; (4) to elucidate the mechanisms of the effects of ionizing radiation on the mammalian embryo during the early phases of its development; (5) to assess the genetic risks of material exposure to ionizing radiation; (6) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (7) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas for 1997 are reported

  15. Residential radon survey in Finland

    International Nuclear Information System (INIS)

    Arvela, H.; Maekelaeinen, I.; Castren, O.

    1993-02-01

    The study measured the indoor radon concentration in the dwellings of 3074 persons, selected randomly from the central population register of Finland. Alpha track detectors and two consecutive half year measuring periods were used. The national mean of indoor radon concentration for persons living in low-rise residential buildings as well as blocks of flats was 145 and 82 Bq/m 3 , respectively. The mean for the total population was 123 Bq/m 3 . Based on the decision of the Ministry of Social Affairs and Health in 1992, the indoor radon concentration should not exceed 400 Bq/m 3 in already existing houses, the target for new construction being less than 200 Bq/m 3 . According to the study, the percentage of the Finnish population living in houses with an indoor radon concentration exceeding 200, 400 and 800 Bq/m 3 was 12.3 %, 3.6 % and 1.0 %

  16. The conversion of exposures due to radon into the effective dose: the epidemiological approach

    Energy Technology Data Exchange (ETDEWEB)

    Beck, T.R. [Federal Office for Radiation Protection, Berlin (Germany)

    2017-11-15

    The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year{sup -1} per 100 Bq m{sup -3} (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used. (orig.)

  17. The conversion of exposures due to radon into the effective dose: the epidemiological approach

    International Nuclear Information System (INIS)

    Beck, T.R.

    2017-01-01

    The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used. (orig.)

  18. Effect of radon transport in groundwater upon gamma-ray borehole logs

    International Nuclear Information System (INIS)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/Λh, where Λ is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion

  19. Studying the Variation of Radon Level in Some Houses in Alexandria City, Egypt

    International Nuclear Information System (INIS)

    Abd El-Zaher, M.; Fahmi, N.M.

    2009-01-01

    Inhalation of indoor radon has been recognized as one of the health hazards. In the present work a set of indoor radon measurements was carried out, in different Egyptian houses in Alexandria city, built of the same type of building materials, using time-integrated passive radon dosimeters containing LR-115 Type II solid state nuclear track detector. Measurements were carried out from October 2007 to June 2008. The results show that, the radon concentrations and the annual effective dose in these houses varied from (38.62 to 120.39) Bq m-3 and (0.96 to 3.06) mSv y-1 respectively. The mean values of radon concentrations in living rooms, bedrooms, bathrooms, and kitchens were: (50.93±7.14), (63.75±7.63), (105.3± 14.67) and (82.38±8.35) Bq m -3 respectively. Also the mean values of annual effective dose were (1.26±0.17), (1.58±0.185), (2.63±0.36) and (2.0± 0.20) mSv y -1 , respectively. This data shows that, bathrooms and kitchens have significantly higher radon concentrations and annual radon dose

  20. The 1996 Radon Intercomparison Exercise at PSI

    International Nuclear Information System (INIS)

    Schuler, C.; Butterweck-Dempewolf, G.

    1997-05-01

    The 1996 Radon Intercomparison Exercise at PSI was organized by the PSI Reference Laboratory for Radon Gas Activity Concentration Measurements. A total of 14 laboratories, companies and institutions participated with radon gas detectors and measuring instruments. The detectors and instruments were exposed in the PSI radon chamber during seven days in a reference atmosphere with an average radon gas concentration of about 6000 Bqm -3 . Comparison of the results of electret ionization chambers, track etch detectors and measuring instruments with the PSI target value showed the criteria for traceability and reproducibility demanded by the Federal Office for Health for the acknowledgement of Swiss Radon Gas Measurement Laboratories to be fulfilled for all participants. Exposure of track etch detectors stored for more than one year demonstrated that this detector type can suffer sensitivity loss by a too long storage period. (author) figs., tabs., refs

  1. Effects of barium chloride treatment of uranium mill tailings and ore on radon emanation and 226Ra levels. Progress report

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Flot, S.L.

    1983-01-01

    The purpose of this study was to investigate the effect of barium chloride treatments on: reduction of 222 Rn emanation from mill wastes; reduction of 226 Ra levels in wastewater; and decreased leachability of 226 Ra from mill wastes. Baseline 226 Ra concentrations were determined for ore and tailings as well as radon emanation fractions. Uranium ore was treated with soluble barium at concentrations of 10, 25, 50, and 100 mg per litre of slurry. The leach-liquor declined in 226 Ra concentration by as much as 50%. When soluble potassium as well as barium was used in the treatment process at equal concentrations of 10, 25, 50, and 100 mg per litre of slurry, a similar reduction was observed. No significant difference was noted between the two treatment regimes. An accelerated leaching experiment was performed on the ore treated with barium chloride. All treatment groups except that treated with 10 mg of soluble barium per litre of slurry showed significant decreases in leachability. Available 222 Rn (corresponds with radon emanation fraction) was measured in treated and untreated ore. Ore treated with concentrations of Ba ++ up to 1.00 mg per gram of ore did not show a statistically significant reduction in available 222 Rn, however when potassium sulfate was also added, a significant decline was noted. This study suggests that barium chloride treatments reduce radon emanation from mill wastes and reduce 226 Ra levels in wastewater. Leachability of 226 Ra from treated samples decreased markedly. 19 references, 8 figures, 7 tables

  2. Radon epidemiology: A guide to the literature

    International Nuclear Information System (INIS)

    Marks, S.

    1988-12-01

    This document was written as a comprehensive overview of the voluminous literature on both uranium miner and residential radon epidemiology studies. This document provides the reader with a fairly complete list of radon epidemiology publications and key features of each, so that readers may further pursue only those publications of interest in the vast body of radon literature. A companion document, exploring all on-going residential radon epidemiology studies will be published by the Office of Health and Environmental Research (OHER), the Department of Energy (DOE) in the spring of 1989

  3. The effects of HVAC system design and operation on radon entry into school buildings

    International Nuclear Information System (INIS)

    Turner, W.A.; Leovic, K.W.; Craig, A.B.

    1990-01-01

    Heating, ventilating, and air conditioning (HVAC) systems in schools vary considerably and tend to have a greater impact on pressure differentials--and consequently radon levels--than do heating and air-conditioning systems in houses. If the HVAC system induces a negative pressure relative to the subslab area, radon can be pulled into the building. If the HVAC system pressurizes the building, it can prevent radon entry as long as the fan is running. However, school HVAC systems are normally set back or turned off on evenings and weekends and, even if the HVAC system pressurizes the school during operation, indoor radon levels may build up during setback periods. In this paper many of the historical methods utilized to deliver ventilation air (outdoor air) over the past 40 years are summarized. In addition, for each type of system presented, the possible impact the ventilation system might be expected to have (positive or negative) on the pressure of the building envelope (and subsequent radon levels in the building) is discussed

  4. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  5. Radon in dwellings the national radon survey Carlow, Donegal, Kildare, Kilkenny, Laois, Leitrim, Longford, Meath, Offaly, Roscommon, Sligo, Waterford, Westmeath and Wexford

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; Duffy, J.T.; Colgan, P.A.

    1997-05-01

    This report presents the results of the second phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Carlow, Donegal, Kildare, Kilkenny, Laois, Leitrim, Longford, Meath, Offaly, Roscommon, Sligo, Waterford, Westmeath and Wexford. The average radon concentrations for the houses measured in these counties ranged from 63 to 147 Bq/m 3 wth individual values as high as 1562 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  6. Survey: Knowledge level of the population about radon in Switzerland; Enquete: niveau de connaissance de la population au sujet du radon en Suisse

    Energy Technology Data Exchange (ETDEWEB)

    Gruson, M.; Murith, C. [Office Federal de la Sante Publique, Section Risques Radiologiques, Berne (Switzerland); Rumo, S. [CBC Marketing Research, Berne (Switzerland)

    2010-01-15

    In 1995, a survey was conducted in order to investigate levels of knowledge about radon among the Swiss population. In 2008, a second survey, using a similar methodology, was carried out by the F.O.P.H.. The new study showed that about 40% of the Swiss population has heard of radon, which represents an increase of 8% over the 1995 survey. Most of the respondents knew that radon causes lung cancer, but believed that the gas also produces other health effects (in particular, migraine and skin conditions). In addition, older people, those with a high level of education and property owners tended to be more familiar with the radon issue than the public at large. The inhabitants of high-risk regions achieved markedly better results, which demonstrate that information campaigns in these regions have been successful. At the same time, additional communication efforts are required in low- and medium-risk municipalities, where the majority of the population lives. (authors)

  7. Radon from coal ash in Colorado. Final report

    International Nuclear Information System (INIS)

    Morse, J.G.

    1981-01-01

    An attempt was made to develop a radiation profile of Colorado, based on available measured radon data. Data reported indicate that the release of radon to the atmosphere during uranium milling and mining is not a significant health hazard or air pollutant, when compared with radon in soils. 1 figure, 2 tables

  8. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  9. Application of CR-39 to radon measurement

    International Nuclear Information System (INIS)

    Miyake, Hiroshi

    1988-01-01

    CR-39, an ally diglycol carbonate, has recently come into wider use as material for solid-state track detector. Etching with NaOH or KOH solution allow CR-39 to develop extremely clear etch pits attributed to alpha rays. The most widely used method for measuring radon concentration employs a plastic cup with a solid-state track detector mounted at its bottom to detect alpha rays resulting from radon or its daughters that disintegrate within or on the wall of the cup. Simple in mechanism and low in cost, this method is suitable for such a case where the radon concentration distribution over a wide area has to be measured by using a large number of devices. The concentration of radon alone can be measured with the aid of a filter attached to the mouth of the cup to remove the daughters of radon and thoron. The simplest and most effective way of improving the sensitivity of a solid-state track detector for radon concentration measurement is to electrostatically collect daughters resulting from decay of radon onto the surface of the detector. Another method widely used to determine the radon concentration is to measure the concentration of the radon daughters instead of direct measurement of the concentration of radon itself. (Nogami, K.)

  10. Outlines of a study of some indicators of exposure of underground workers to radon in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Beno, M; Nikodemova, D; Vladar, M; Fueloep, M; Vicanova, M [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper some indicators of exposure of underground workers to radon in Slovakia which will be used for determination of miners radiation burden and for the radon dose estimate was explained. The projected study has a dose-effect scaffold and its projected goals are on the side of dose assessment: 1) to determine the professional exposure of underground workers to radon by personal dosimetry and to establish a database of integrated personal doses for future epidemiological studies; 2) to introduce the method of counting the radionuclide {sup 210}Pb in the bones and skulls of underground workers. On the side of effect assessment the goals are: 1) to find out if a dependence of the number of chromosomal aberrations (CA) and micronuclei in the lymphocytes from radon dose exists. The measurements of radon in mines, preferentially those by personal dosimeters as well as an existing database of radon concentration measurements in dwellings and caves will serve for the radon dose estimate; 2) to compare the DNA-repair rate in the lymphocytes of people professionally exposed to radon in Slovak caves with the same rate as assessed in unexposed people; 3) to find out the proportional role of confounding factors such as smoking, alcohol abuse, exposure to dust etc., which might influence upon the interpretation of the dose from radon to health response relationship; 4) to establish a central database of lung cancer cases in professionally exposed underground workers for future epidemiological studies. The direct method will rely upon determination of miners radiation burden based on the {sup 210}Pb activity deposited in skeleton. The experimental design to assess the effects will have three main methodological parts: 1) determination of the count of chromosomal aberrations and micronuclei using classical methods; 2) determination of the chromosomal changes using the fluorescent in situ hybridization method; 3) determination of the DNA-repair rate. (J.K.) 8 refs.

  11. Effect of local geology on indoor radon levels: a case study

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels greater that 4 pCi/L in the living space. Homes with elevated radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oad Ridge, Tennessee. (Author)

  12. ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.

    Science.gov (United States)

    Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G

    2018-03-19

    Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.

  13. Human exposure to indoor radon: A survey in the region of Guarda, Portugal

    International Nuclear Information System (INIS)

    Louro, A.; Peralta, L.; Soares, S.; Pereira, A.; Cunha, G.; Belchior, A.; Ferreira, L.; Gil, O. M.; Louro, H.; Pinto, P.; Rodrigues, A. S.; Silva, M. J.; Teles, P.

    2013-01-01

    Radon ( 222 Rn) is a radioactive gas, abundant in granitic areas, such as the city of Guarda at the northeast of Portugal. This gas is recognised as a carcinogenic agent, being appointed by the World Health Organization as the second leading cause of lung cancer after tobacco smoke. Therefore, the knowledge of radon concentrations inside the houses (where people stay longer) is important from the point of view of radiological protection. The main goal of this study was to assess the radon concentration in an area previously identified with a potentially high level of residential radon. The radon concentration was measured using CR-39 detectors, exposed for a period of 2 months in 185 dwellings in the Guarda region. The radon concentration in studied dwellings, ranged between 75 and 7640 Bq m -3 , with a geometric mean of 640 Bq m -3 and an arithmetic mean of 1078 Bq m -3 . Based on a local winter-summer radon concentration variation model, these values would correspond to an annual average concentration of 860 Bq m -3 . Several factors contribute to this large dispersion, the main one being the exact location of housing construction in relation to the geochemical nature of the soil and others the predominant building material and ventilation. Based on the obtained results an average annual effective dose of 15 mSv y -1 is estimated, well above the average previously estimated for Portugal. (authors)

  14. Toxicological profile for radon. Final report

    International Nuclear Information System (INIS)

    1990-12-01

    The ATSDR Toxicological Profile for Radon is intended to characterize succinctly the toxicological and health effects information for the substance. It identifies and reviews the key literature that describes the substance's toxicological properties. Other literature is presented but described in less detail. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The profile begins with a public health statement, which describes in nontechnical language the substance's relevant toxicological properties. Following the statement is material that presents levels of significant human exposure and, where known, significant health effects. The adequacy of information to determine the substance's health effects is described. Research gaps in nontoxic and health effects information are described. Research gaps that are of significance to the protection of public health will be identified in a separate effort. The focus of the document is on health and toxicological information

  15. Radon measurement studies in Kazakhstan

    International Nuclear Information System (INIS)

    Sevost'yanov, V.N.

    2003-01-01

    Today, one has to admit that despite the important role and certain achievements in providing the radiation control in Kazakhstan, radon measurements still present some problems related to clear definition of physical quantities applied, correct use of methods, and application of adequate measuring devices to meet requirements of regulatory documents currently in effect, such as NRB-99. The paper provides some data on radon measurements, describes the problem status in Kazakhstan and proposes ways to solve it. (author)

  16. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  17. Methodology developed to make the Quebec indoor radon potential map

    International Nuclear Information System (INIS)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-01-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m 3 in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for each

  18. Concentration of Radon, thoron and their progeny levels in different types of floorings, walls, rooms and building materials

    International Nuclear Information System (INIS)

    Sathish, L. A.; Nagaraja, K.; Ramanna, H. C.; Nagesh, V.; Sundareshan, S.

    2009-01-01

    Radon, thoron and their progenies are the most important contributions to human exposure from natural sources. Radon exists in soil gas, building materials, Indoor atmosphere etc. Among all the natural sources of radiation dose to human beings, inhalation of radon contributes a lot. The work presented here emphasizes the long term measurements of radon, thoron and their progeny concentrations in about 100 dwellings using solid state nuclear track detectors. Materials and Methods: Measurements were made using dosimeters and the concentrations were estimated by knowing the track density of films through spark counter, and sensitivity factor for bare, filter and membrane films. Results: Presence of radon and thoron in houses is the effect of several aspects such as the activity concentrations of uranium, radium and thorium in the local soil, building materials, ventilation of houses and also entry of radon into houses through the cracks in floor/wall. Conclusion: The observations reveal that the concentrations of radon and/or thoron are relatively higher in granite than in concrete, cement and bricks. In continuation to this the concentration observed in bathrooms is more compared to kitchen bedroom and living rooms. This study discloses that the residential rooms of good ventilation will avoid the health hazards due to radon and its rich materials.

  19. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  20. Evaluation and control of radon daughter hazards in uranium mines

    International Nuclear Information System (INIS)

    Holaday, D.A.

    1974-11-01

    This monograph discusses primarily those health hazards to uranium miners which are produced by exposure to ionizing radiation. Emphasis is placed on the areas of evaluation of exposures to the radioactive gas radon-222 and its short-lived transformation products, and methods of controlling such exposures. A limited discussion of the biological effects of radon and radon daughters is undertaken, and some procedures are given for evaluating hazards created by other common contaminants of mine atmospheres. A large amount of information exists on these topics, some of which is unpublished or is not readily available. While efforts were made to obtain data from all sources, undoubtedly some valuable work was overlooked. The monograph is an endeavor to assemble pertinent information and make it available to those who are concerned with producing uranium at minimal risks. Where they were available, a variety of procedures for evaluating hazards are given, and examples of systems for controlling hazards are included. 154 references

  1. Significance of independent radon entry rate and air exchange rate assessment for the purpose of radon mitigation effectiveness proper evaluation: case studies

    Czech Academy of Sciences Publication Activity Database

    Froňka, A.; Jílek, K.; Moučka, L.; Brabec, Marek

    2011-01-01

    Roč. 145, 2-3 (2011), s. 133-137 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z10300504 Keywords : indoor radon * kalman filter * state-space modeling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.822, year: 2011

  2. Radon: Residential attitudes toward the risk

    International Nuclear Information System (INIS)

    Fort, R.; Hinman, G.; Rosenman, R.; Wandschneider, P.

    1990-01-01

    Veradale, Washington (east of Spokane) is a region of high residential radon concentrations. Three hundred eighty residents of Veradale recently responded to a mail survey designed to elicit (1) their knowledge of and attitudes toward the risks of radon in their homes, (2) the actions they have taken or intend to take to identify and reduce those risks, and (3) policy preferences toward radon. Results reveal that these residents know that they live in an area with high radon levels, that radon causes lung cancer, and that radon will affect their health. However only 11% of respondents have had their homes tested for radon. This especially is puzzling because a large number of respondents claimed that (1) radon was important in home buying decisions, (2) they would test their own homes, (3) they would take action if such tests revealed problems, and (4) their willingness to pay for tests and improvements was well within the current costs of these actions. It remains a mystery why testing is at such a low level. Three other results are of note. First, subsidies for radon tests and home improvements may be having the unintended consequences of unneeded improvements and (potentially) moves without improvements. Second, individuals want radon testing required and results made known during home purchase decisions. Third, at present, weatherization programs that concentrate radon are acceptable to individuals. Of course, the future may hold different results. Administrators of weatherization programs, who are trusted by respondents according to this survey, would do well to institute weatherization programs with reduced radon concentrations in mind

  3. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  4. Radon and its daughters in vivo

    International Nuclear Information System (INIS)

    Rundo, J.

    1983-01-01

    Some aspects of the behavior of radon and its short-lived daughters in vivo are described and a relationship between the radon exhalation rate and time after a meal is demonstrated. A major but short-lived postprandial increase in the exhalation rate of radon produced from skeletally-deposited radium was observed and a similar effect in exhalation rate of environmental radon by persons containing no radium was noted. Persons living in houses with elevated concentrations of radon may contain sufficient activity for its detection by external gamma-ray counting. Some of the activity observed is due to inhaled daughter-products in the chest, and some to daughter-products associated with and produced by the decay of radon throughout the body. 3 references, 8 figures. (MF)

  5. Radon reduction in crawl-space houses

    International Nuclear Information System (INIS)

    Osborne, M.C.; Moore, D.G.; Southerlan, R.E.; Brennan, T.; Pyle, B.E.

    1989-01-01

    This paper gives results of an EPA study of radon-mitigation alternatives for crawl space houses in several houses in Nashville, TN. Application of one of these alternative mitigation options, suction under a polyethylene membrane, has been successful in significantly reducing radon levels in both the crawl space and the house. The large radon concentrations measured under unvented plastic ground covers and the moisture barriers found in many crawl spaces can act as radon-rich reservoirs capable of contaminating a crawl space and house during periods of depressurization. With the exhaust components of the mitigation system in place, radon levels below the plastic decreased by more than 95% under both passive and active suction conditions. Based on the study, the design of a cost-effective subplastic suction passive radon mitigation system for crawl spaces seems promising

  6. Radon reduction in wood foundation system

    International Nuclear Information System (INIS)

    Clark, R.J.

    1990-01-01

    Radon, an issue of growing concern to the building industry. Silently, invisibly, it invades existing structures as it will future foundation structures. This paper addresses the nature and causes of radon, and cost-effective prevention and retrofit techniques used for wood foundation systems. Radon also can enter homes with foundations that use the under-floor as an air distribution system. These building practices will be shown; even materials used in construction may release radon, for example, this may be a problem in a house that has a solar heating system in which its heat is stored in large beds of stone. Stone is most often used in wood foundation construction. The common radon entry points will be looked at, and the latest prevention techniques will be illustrated, such as natural and forced ventilation, sealing major radon sources and entry routes, and sub-slab and sump crock ventilations

  7. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  8. Biological effects in beagle dogs of inhaled radon daughters, uranium ore dust, and cigarette smoke

    International Nuclear Information System (INIS)

    Palmer, R.F.; Filipy, R.E.; Stuart, B.O.; Hackett, P.; Ragan, H.A.; McDonald, K.E.

    1975-01-01

    After 5 years of daily inhalation exposures to 600 WL radon daughters plus uranium ore dust and/or cigarette smoking, observed pulmonary lesions include macrophage proliferation, septal fibrosis, epithelial hyperplasia, emphysema, endothelial proliferation, and bronchiolar-alveolar epithelial changes involving multiple foci of squamous metaplasia with atypia. Epithelial neoplasms were found in the respiratory tracts of three dogs. (U.S.)

  9. Scanning electron microscopy of rat throat and trachea following the effects of radon decay products

    International Nuclear Information System (INIS)

    Rode, J.; Vaupotic, J.; Kobal, I.; Draslar, K.

    1996-01-01

    In two preliminary experiments, five laboratory rats were exposed in a small chamber to radon-rich air. In both experiments the exposure was about 0.9 WLM. The surface of throat and trachea was examined by scanning electron microscope. (author)

  10. Radon, thoron and their progeny levels in some dwellings of Union Territory Chandigarh, India using SSNTDs

    International Nuclear Information System (INIS)

    Mehta, Vimal; Kumar, Amit; Chauhan, R.P.; Mudahar, G.S.

    2013-01-01

    Indoor air quality is an important issue for protection against adverse health effects caused by the inhalation of pollutants because most individuals spend 90% of their time indoors and that indoor air quality is deteriorated by a large variety of sources. Out of these sources radon is a major pollutant and is an important global problem of radiation hygiene. Radon and its progeny are the major contributors in the radiation dose received by general population of the world. Next to cigarette smoking, the inhalation of radon gas and the products of its radioactive disintegration are considered the most significant cause of lung cancer. Due to the potentially serious public health implications of exposure to high levels of radon, the environmental monitoring of radon, thoron and their progeny in some dwellings of Chandigarh, union territory of India has been carried out. The radon-thoron twin dosimeter cups were used for the study. The aim of the study is the possible health risk assessment in the dwellings under consideration. (author)

  11. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  12. Radon investigations - Soil and commercial projects

    International Nuclear Information System (INIS)

    Goodwin, R.W.

    1987-01-01

    The liability issues of radon exposure have prompted potential purchasers of vacant land for commercial/industrial development, and commercial landlords, renting large commercial buildings, to determine the radon gas levels at such sites. This paper deals with both pre-construction sites subject to freezing conditions and to large commercial structures. A correlation of radon gas levels within a commercial building and a sister pre-construction site confirms the validity of using activated charcoal canisters as a cost effective means to combating radon in large structures

  13. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  14. Radon risk perception and testing: Sociodemographic correlates

    International Nuclear Information System (INIS)

    Halpern, M.T.; Warner, K.E.

    1994-01-01

    While numerous health education campaigns have been carried out to alert the public to radon's potential dangers and to encourage testing and mitigation, there has been little follow-up to determine which segments of the public are now most aware of the possible hazards of radon. Using information from the 1990 National Health Interview Survey (NHIS), the authors have examined beliefs regarding radon and radon-testing activities among different sociodemographic groups. They used logistic regression to determine the relationship between these beliefs and actions and age, gender, education, income, minority status, and smoking status. The results suggest relatively superficial knowledge regarding radon, and very little testing, within the survey population. In particular, significantly less knowledge was observed among female and minority respondents, while less testing behavior was seen among older respondents. Lower educational levels and lower family income were associated with both decreased knowledge and testing. Recommendations for future education campaigns are discussed

  15. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  16. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  17. Radon in workplaces - application of new Slovak legislation

    International Nuclear Information System (INIS)

    Futas, M.; Gombala, E.

    1998-01-01

    To carry out the categorization of underground workplaces the work-group comprising workers of State Health Institute of the Slovak Republic in Bratislava and in Banska Bystrica was created. During 1997 this group took the set of radon concentration measurements in four ore mines (Hodrusa Hamre, gold; Talcum - Magnezit Hnusta, talc, magnesite; Zelba Rudnany, barytes, polymetallic ores; Zelba -Siderit Nizna Slana, siderit) and twelve show caves (Belianska, Bystrianska, Demanovska j.Slobody, Demenovska ladova, Dobsinska ladova, Domica, Driny, Gombasecka, Harmanecka, Jasovska, Ochtinska aragonite, Vazecka).The highest radon activity concentration 24470 ± 118 Bq/m 3 in Vazecka cave (location Galeria) was measured According to averaged radon levels the following conclusions were made for show caves: all show caves except two ice caves shall be declared as workplaces with ionizing radiation sources for radon levels high above 1000 Bq/m 3 (the chosen action level 1000 Bq/m 3 corresponds to the annual effective dose 6 mSv providing 2000 working hours spent in such workplace) were detected and no technical mitigation is possible because of preservation of cave decoration. Situation in ore mines ii a bit different. Measured radon levels were found varying in a wide range depending on the position in the mine, work practices and season. The increase of radon gas concentration in summer months was observed as it was expected. In every ore mine workplaces with radon concentration high above the action level were found. Powerful ventilation system is a basic prerequisite and can reduce concentration below the action level. High radon concentration (up to 4200 Bq/m 3 ) in Hodrusa Hereditary Drift (haulage-way from Hodrusa gold mine) were successfully reduced to 200 Bq/m 3 by walling up mouths of the old mine works. In other three mines the current ventilation conditions are not sufficient to ensure radon concentrations below the action level for the time being. This is the

  18. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  19. A perspective on risks from radon

    International Nuclear Information System (INIS)

    Higson, D. J.

    2010-10-01

    In its Statement on Radon (November 2009), the International Commission on Radiological Protection (ICRP) has reduced the upper reference level for radon gas in dwellings to 300 Bq m -3 . The recommended level for workplaces is 1000 Bq m -3 . A risk coefficient of 8 x 10 -10 per Bq h m -3 is recommended without reference to smoking habits. On the basis of these figures: 1) The estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. 2) The estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m -3 . Evidence available from other countries shows that: 1) The effects of radon in the incidences of lung cancer are uncertain at levels less then about 50-100 Bq m -3 . 2) The estimation of risks at levels below 200 Bq m -3 depends on extrapolation from risks observed at higher levels. 3) Risks to non-smokers from radon are 25 times less than risks to smokers. Its concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon. (Author)

  20. A perspective on risks from radon

    International Nuclear Information System (INIS)

    Higson, D.J.

    2011-01-01

    In its Statement on Radon (November 2009), the ICRP has reduced the upper reference level for radon gas in dwellings to 300 Bq m -3 . The recommended level for workplaces is 1000 Bq m -3 . A risk coefficient of 8x10 -10 per Bq h m is recommended without reference to smoking habits. On the basis of these figures,the estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. Also the estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m -3 . Evidence available from other countries shows that: effects on the incidences of lung cancer are uncertain at radon levels below 100 Bq m -3 ; the estimation of risks at levels below 200 Bq m -3 depends on extrapolation from risks observed at higher levels, and risks to non-smokers from radon are 25 times less than risks to smokers. It is concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon.

  1. A perspective on risks from radon

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D. J., E-mail: higsond@bigpond.net.a [Australasian Radiation Protection Society, PO Box 7108, Upper Ferntree Gully, Victoria 3156 (Australia)

    2010-10-15

    In its Statement on Radon (November 2009), the International Commission on Radiological Protection (ICRP) has reduced the upper reference level for radon gas in dwellings to 300 Bq m{sup -3}. The recommended level for workplaces is 1000 Bq m{sup -3}. A risk coefficient of 8 x 10{sup -10} per Bq h m{sup -3} is recommended without reference to smoking habits. On the basis of these figures: 1) The estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. 2) The estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m{sup -3}. Evidence available from other countries shows that: 1) The effects of radon in the incidences of lung cancer are uncertain at levels less then about 50-100 Bq m{sup -3}. 2) The estimation of risks at levels below 200 Bq m{sup -3} depends on extrapolation from risks observed at higher levels. 3) Risks to non-smokers from radon are 25 times less than risks to smokers. Its concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon. (Author)

  2. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  3. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements

    International Nuclear Information System (INIS)

    Estrada, Julio Jose da Silva

    1994-01-01

    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of 210 Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measurements were performed in a whole body counter. With this technique, the exposed individuals become, in affect, their own samplers and dosimeters and the estimate of cumulative exposure is not affected by the variation of the atmospheric concentration of radon and its progeny in time and space. Forty individuals identified as living in homes with radon levels ranging from about 740 Bq/m 3 to 150.000 Bq/m 3 were measured. Also, additional 34 measurements were made on personnel from NYUMC/NIEM who live in a residential area surrounding the laboratory in which the levels of radon have been shown to be at below average values. To realize these measurements a methodology was developed to determine the subject's background, using a head phantom made with a cubic plastic container containing known amounts of potassium and calcium dissolved in four liters of water. The effective doses calculated from the in vivo measurements are compared to effective doses estimated, for the same

  4. Mapping of groundwater radon potential

    International Nuclear Information System (INIS)

    Aekerblom, G.; Lindgren, J.

    1997-01-01

    The domestic use of water with elevated radon concentration may represent a public health hazard, partly due to the release of radon to the indoor air. While only a limited number of countries have implemented regulations with respect to radon in water, many more are considering doing so. The compulsory limits proposed by Swedish authorities are 100 Bq/1 for public water, while water from private wells is not to exceed 1000 Bq/1. Furthermore, it is recommended that water with a radon content above 500 Bq/1 should not be given to children under five years of age. In Sweden, the estimated number of wells with radon levels above 1000 Bq/1 exceeds 10,000, with a considerable amount in excess of 10,000 Bq/1. The highest radon concentration in a well supplying drinking water encountered so far is 57,000 Bq/1. Radon levels exceeding 500 Bq/1 are almost exclusively found in wells drilled into bedrock and in springs with intramontaneous water. Elevated ground water radon levels require that the water has passed through bedrock with elevated concentration of uranium, or through fractures with coatings of minerals containing enhanced concentrations of radium-226. Intramontaneous water from areas with uranium-bearing rock types (e.g. uranium-rich granites, pegmatites and vulcanites) often manifests elevated radon levels. Routines for the establishment of risk maps focusing on water are currently under development. The backbone of the process is the access to high spatial resolution radiometric information together with bedrock and soil information on a detailed scale (1:50,000). This information is available from the Geological Survey of Sweden, which is routinely carrying out airborne measurements at an altitude of 30 m and a line spacing of 200 m. While some 60% of Sweden is covered up to now, 75 % is expected to be covered within the next ten years. Other available databases utilized in the risk mapping process include radon measurements in wells, geochemical data from

  5. Slovenian approach in managing exposure to radon at workplaces

    International Nuclear Information System (INIS)

    Vaupotic, J.

    2010-01-01

    Radon was surveyed in all the kindergartens and schools, major hospitals, water plants, wineries, spas, in a number of other public buildings, and karst caves with emphasis on the Postojna Cave (Slovenia). In addition to radon, also the concentration of radon short-lived decay products, equilibrium factor between radon and decay products, and unattached fraction of decay products have been monitored. Effective doses were calculated and used as a criterion to require remediation. (author)

  6. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in

  7. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Mcnaughton, Michael W.

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr- versus 0.3 mSv yr-). The estimated effective dose rate for a more homebound person was about 3 mSv yr-. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-, which is similar to the 1 mSv yr- threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf from radon background exposure in homes stands in contrast to the 0.1 mSv yr- air pathway

  8. Analysis of the cost effectiveness of protecting indoor air from radon from the underlying structures

    International Nuclear Information System (INIS)

    Skrabalek, P.

    2017-01-01

    Exposure to radon in buildings is the largest and yet underestimated source of ionizing radiation doses of the Slovak population. The most affected are the people currently living in family houses, where the radon from the building's constructions is also exposed to radon from building background. At work the authors have shown that protecting the air of family houses and other buildings from radon pollution from underlying structures is not an economic but a political issue. They have shown that preventive protective measures must be taken in the construction of each house, whether it is a family house or another building. The cost of preventive measures for the construction of family houses, while maintaining the current trend, will amount to around 3 million Eur each year, because during that time, approximately 10,300 new buildings were built. These costs are entirely at the expense of builders, because radon protection must be part of the construction project and at present prices range from 225 to 405 Eur per building. Benefits will begin to show at the earliest 25-30 years after construction, and will reach around 12 million Eur (calculated at today's medical care prices and the current minimum wage). The projected costs of identifying occupied homes that urgently need to make remedial measures will reach about 1 million Eur / yr and cover 20,000 homes. It will be necessary to build a laboratory of alpha tremor dosimetry within Slovak legal metrology, with a capacity to process about 50,000 dosimetric kits annually. Examination of the occupied houses by this procedure will last for at least 40 years, because apart from geological and geophysical criteria, there is nothing to exclude any group of houses from the survey. According to estimates from previous surveys, about 16,700 objects need to be identified annually, which need to optimize radon concentration by technical or construction means. The remedial measures will need to be around 24.6 million Eur, of

  9. Training and accreditation for radon professionals in Sweden

    International Nuclear Information System (INIS)

    Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    Radon training courses and seminars on radon have been arranged in Sweden since the early 1980s. A commercial educational company initiated the first regular training courses in 1987. Up to 1990 about 400 persons had attended courses in radon measurement and radon mitigation methods. In 1991 the training programme was taken over by the Swedish Radiation Protection Authority, SSI. Today SSI's Radon Training Programme comprises three different two-day courses, a Basic Radon Course and two continuation courses: Radon Measurements and Radon in Water. Until 2003 SSI also arranged courses about Radon Remedial Measures and Radon Investigation and Risk Map Production. The courses are arranged twice a year. Altogether, about 750 municipal environmental health officers and technicians from private companies have been educated in the SSI training programme between 1991 and 2003. The continuation courses are completed with an examination, consisting of a theoretical test. The names of the persons who pass are being published in a list that is found on the SSI web site. Since no certification system is currently in place for radon professionals in Sweden, this list helps people who need to get in contact with radon counsellors to find one in their area and is used by authorities as well as private house-owners. Since 1991 it has been possible to obtain accreditation for measurements of indoor radon in Sweden and since 1997, also for measurements of radon in water. Although accreditation is voluntary in Sweden, accredited laboratories perform most measurements, both for indoor air and water. Passing the examination in the SSI training courses is a condition for accreditation. The Swedish Board for Accreditation and Conformity Assessment, SWEDAC, is in charge of the accreditation. So far, three major companies have obtained accreditation for measurement of indoor radon and four have been accredited for measurements of radon in water

  10. Calculation of radon emanation from a radiferous pile

    International Nuclear Information System (INIS)

    Zettwoog, Pierre.

    1980-07-01

    The theory of unidimensional diffusion of radon in a porous medium, either radiferous or not, is presented taking into account the effects of humidity and the adsorption of radon on the medium. Experimental procedures for determining the two main characteristics of diffusion in a medium, the relaxation length of the diffusion of radon and the emanating power, are described [fr

  11. Effect of radon baths having a radon concentration of 100 mach units (36. 4 nanocuries/liter) on patients having a deforming osteoarthrosis with myocardial damage

    Energy Technology Data Exchange (ETDEWEB)

    Tsarfis, P G; Kostrova, V D; Gerasimenko, V N; Fiveiskaya, A A

    1974-01-01

    The patients took the radon baths at a temperature of 36/sup 0/C for a period of 15 minutes. The treatment consisted of 14 to 16 baths with a break of one day between baths. After completing the baths, pain in the limbs subsided significantly and disappeared in three-fourths of the patients. Locomotor function improved. Muscle tone increased. Improvement in physical function was noted in 75 out of 80 patients. 3 references. (SJR)

  12. Radon Sources and Associated Risk in terms of Exposure and Dose

    Directory of Open Access Journals (Sweden)

    Efstratios Gregory Vogiannis

    2015-01-01

    Full Text Available Radon concern the international scientific community from early 20th century. Initially as radium emanation, almost the second half of the century as severe harmful to human health. Initial brilliant period of use as medicine, followed by a period of intense concern for its health effects. Primary target groups surveyed were miners early in Europe later in U.S. There is now compelling evidence that radon and its progeny can cause lung cancer. Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions. Indoor Radon and its short-lived progeny attached on aerosol particles or free compose an air mixture that carry a significant energy amount (PAEC. Exposure on PAEC and dose delivered reviewed in detail. Special attention was paid to the case of water workers because lack of adequate data. Radon risk assessment and current legislation regulates dose from radon and its progeny, also were reviewed.

  13. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. Three criteria when used can prevent radon infiltration and lower...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...

  14. Radon legislation and national guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, G

    1999-07-01

    50-500 Bq/l for public waters and 200-1000 Bq/l for private water supplies. 4 EU member states and 11 non-EU European countries have reference levels for the concentration of radioactive elements in building materials. 8 European countries have guidelines regarding radon at city planning and 13 have mapped the radon risk in their countries. It is essential to the work against radon and to future reduction of radon concentrations in dwellings and workplaces that the national states issue recommendations, regulations, directives or laws on radon limits and building practices. In order to have a significant effect on the radon situation, the questionnaire responses show that radon reference levels and regulations must be enforced or very little progress is achieved. Extensive measurement and research programs have been carried out in many in countries. Heretofore, only those countries with enforced regulations have had successful programs, resulting in remedial actions in more than 10,000 buildings. The only exception is USA, which concentrated on extensive information media campaigns on radon and the training of large numbers of contractors to perform measurements and remedial measures.

  15. Radon legislation and national guidelines

    International Nuclear Information System (INIS)

    Aakerblom, G.

    1999-07-01

    -500 Bq/l for public waters and 200-1000 Bq/l for private water supplies. 4 EU member states and 11 non-EU European countries have reference levels for the concentration of radioactive elements in building materials. 8 European countries have guidelines regarding radon at city planning and 13 have mapped the radon risk in their countries. It is essential to the work against radon and to future reduction of radon concentrations in dwellings and workplaces that the national states issue recommendations, regulations, directives or laws on radon limits and building practices. In order to have a significant effect on the radon situation, the questionnaire responses show that radon reference levels and regulations must be enforced or very little progress is achieved. Extensive measurement and research programs have been carried out in many in countries. Heretofore, only those countries with enforced regulations have had successful programs, resulting in remedial actions in more than 10,000 buildings. The only exception is USA, which concentrated on extensive information media campaigns on radon and the training of large numbers of contractors to perform measurements and remedial measures

  16. Radon hazard map in Bas-Rhin, final report

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of radon (geochemical properties, origin, emanation and transfer to surface, related health hazard, exposure factor, modalities for the struggle against radon), of the study context, framework and objective, and of the Bas-Rhin geological context, this report presents the exploited data: definition of the geological uranium potential, direct measurements and geochemical analysis, indicators (lithologic characterization, surface radioactivity, drifting alluvial deposits), factors promoting inhalation, measurements in buildings. It presents and comments maps of the radon geological potential and of radon hazard. It proposes an assessment of radon potential hazard for different areas of the district, and reports measurements performed in Strasbourg, Eckbolsheim, Bischeim and Haguenau

  17. Radon bad or good. One of the curiosity of the end of 20th century

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1995-01-01

    The balneology of health resorts localized in radon rich regions of south-west Poland has been discussed. The historical evolution of the opinion about the influence of small radon doses to human health has been presented. 13 refs

  18. Application of a radon model to explain indoor radon levels in a Swedish house

    International Nuclear Information System (INIS)

    Font, LL.; Baixeras, C.; Joensson, G.; Enge, W.; Ghose, R.

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m -3 . Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results

  19. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    Gou Quanlu; Wang Hengde

    1993-01-01

    This paper presents the relative contribution to indoor radon 222 Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH 2 :CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  20. Effect of local geology on indoor radon levels: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oak Ridge, Tennessee. 7 references, 3 figures, 2 tables.

  1. Effect of local geology on indoor radon levels: a case study

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oak Ridge, Tennessee. 7 references, 3 figures, 2 tables

  2. Developmental toxicology of radon exposures

    International Nuclear Information System (INIS)

    Sikov, M.R.; Cross, F.T.; Mast, T.J.; Palmer, H.E.; James, A.C.; Thrall, K.D.

    1992-01-01

    Concerns about hazards associated with radon exposure in dwellings may be especially relevant to pregnant women, many of whom spend substantial amounts of time in their homes. There are few data concerning the placental transfer and fetoplacental distribution of inhaled radon and decay products or their effects on the conceptus. We performed a study in rats to determine if prenatal effects could be produced by prolonged inhalation exposures to high concentrations of radon throughout gestation. A group of 43 pregnant rats was exposed 18 h d -1 , at a rate of 124 working level months (WLM) per day, from 6 to 19 days of gestation (dg), of radon and daughters adsorbed onto ore dust. A group of 26 pregnant rats from the same shipment was exposed to a filtered-air atmosphere as controls. At 20 dg, the rats were removed from the chambers, killed, and necropsied. The fetuses were evaluated for the presence of toxic effects, which included detailed teratology protocols. These exposures did not produce detectable reproductive toxicity nor teratogenic change. Two other rats were removed from the radon chambers during the last day of exposure, and their tissues were analyzed to determine the distribution of radioactivity and for dosimetry. Samples from these rats suggested that the dose rates to the placenta were roughly threefold those to the fetus but were similar to those to the liver and femur of the pregnant rats. These data indicate that the dose to the conceptus from the decay of placentally transferred radon and its progeny is more important than the contribution of translocated decay products. Translocated radon decay products are an important source of radiation doses to placental structures, however, and may have most of the radioactivity content at birth

  3. Study of the combined effects of smoking and inhalation of uranium ore dust, radon daughters and diesel oil exhaust fumes in hamsters and dogs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, F.T.; Palmer, R.F.; Filipy, R.E.; Busch, R.H.; Stuart, B.O.

    1978-09-01

    Exposure to particulates from uranium ore dust and diesel exhaust soot provoked inflammatory and proliferative responses in lungs. Also exposure to radon and radon daughters yielded increased occurrences of bronchiolar epithelial hyperplasia and metaplastic changes of alveolar epithelium. The data suggest that this cellular change is also a precursor of premalignant change in hamsters. The authors suggest an animal model other than the hamster based on two observations: (1) the Syrian golden hamster has been shown to be highly refractory to carcinoma induction; and (2) that when exposed to realistic levels of agents in life-span exposure regimens, the hamster does not develop lesions. Dog studies with cigarette smoke exposure showed mitigating effects on radon daughter induced respiratory tract cancer. Two reasons are suggested although no empirical evidence was gathered. A strict comparison of human and animal exposures and interpolative models are not possible at this time. (PCS)

  4. Determination of radon activity concentration in drinking water and evaluation of the annual effective dose in Hassan district, Karnataka state, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.

    2015-01-01

    The radon concentration has been determined in 27 drinking water samples of Hassan district and was estimated by using emanometry technique and physicochemical parameters were estimated using standard techniques. The 222 Rn concentrations in water are varying from 0.85 ± 0.2 to 60.74 ± 2.5 Bq l -1 with an average value of 26.5 ± 1.65 Bq l -1 . This study reveals that 66 % of the drinking water samples have radon concentration level in excess of the EPA recommended maximum contamination level of 11.1 Bq l -1 . There is no significant correlation noted between radon concentration and physicochemical parameters. The mean annual effective ingestion doses received from all samples are lower than 0.1 mSv y -1 . (author)

  5. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmid, H.; Clavensjo, B.

    1984-01-01

    The general principles and mechanisms of how soil gas carrying radon infiltrates from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluations of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon where this is a result of infiltrating soil gas and/or exhalation from building materials. A review is given of experience and results acquired up to the summer of 1983. 100 dwellings have been erected with consideration of possible infiltration of soil gas. Modification of design, added costs (investment and operation) and resulting concentration of radon in indoor air is discussed. In general minor modifications are sufficient. (author)

  6. The Norwegian information campaign on radon

    International Nuclear Information System (INIS)

    Thommesen, G.; Strand, T.

    1999-01-01

    The responsibility for providing an overview of 'all factors in the environment which are or may be having a direct or indirect influence on the health - -' rests with the municipal health authorities. In order to enable the municipal staff throughout Norway to accomplish local radon surveys, an information campaign on radon, including printed information material and training courses, was carried out in 1998-99, primarily directed towards municipal civil servants. The two-day training courses comprised of lectures and a compendium covering basic knowledge on ionizing radiation, sources of radon, measurement techniques, health risk, prophylactic and remedial measures, design and accomplishment of survey projects, and information strategy. The printed information material includes booklets providing general information on radon (health risks, measurements, and mitigation), methods for measuring radon in indoor air and construction sites, action levels, and design of municipal radon surveys. Two posters have been issued, one mainly intended for public offices and waiting rooms to motivate the public for radon measurements, the other one intended for municipal personnel and governmental offices, the latter also issued as a collection of fact sheets intended for schools etc. the booklets are displayed on the Internet (www.nrpa.no). The site also contains links to further information on mitigation techniques and economic support to remedial measures. (au)

  7. Radon and progeny sourced dose assessment of spa employees in balneological sites

    International Nuclear Information System (INIS)

    Kemal Uzun, Sefa; Demiroez, Isik

    2016-01-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Saraykoey Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard R with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m -3 and 10 kBq m -3 . Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionnaire forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. (authors)

  8. Effect of source and environmental factors on Rn-222 air concentration

    International Nuclear Information System (INIS)

    Mamoon, A.

    2005-01-01

    Rn-222(radon) air concentration depends on several factors. Some of the factors are source related and other factors are environmentally related. Because high levels of radon concentrations in air have potential health effects, it is important to study the impact of the various factors affecting radon air concentration. Laboratory scale investigations of the various factors affecting radon air concentration were carried out under controlled conditions that allow variation of the various variables

  9. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    to be 60 Bq/m{sup 3}. Using the detriment factor given by ICRP, annually about 90 Estonians are expected to develop lung cancer due to exposure to radon in their homes. Most of them, about 75, are smokers, which are affected by the synergetic effect of the two carcinogens, smoking and radon. In Estonia the source of indoor radon is radon-containing soil air that is transported into the buildings from the ground. Building materials with enhanced radium concentrations are not known in Estonia. In this survey, the highest indoor radon concentrations have been found in the northern part of Estonia where uranium rich Dictyonema shale and uranium containing phosphorous Glauconite sandstone exist in the bedrock and as fragments in the soils. Radon concentrations higher than 400 Bq/m{sup 3} have also been measured in buildings situated in areas with karst formations. Areas with Dictyonema shale, Glauconite sandstone and karst are areas with a special risk for radon.

  10. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo; Aakerblom, Gustav

    2003-10-01

    the detriment factor given by ICRP, annually about 90 Estonians are expected to develop lung cancer due to exposure to radon in their homes. Most of them, about 75, are smokers, which are affected by the synergetic effect of the two carcinogens, smoking and radon. In Estonia the source of indoor radon is radon-containing soil air that is transported into the buildings from the ground. Building materials with enhanced radium concentrations are not known in Estonia. In this survey, the highest indoor radon concentrations have been found in the northern part of Estonia where uranium rich Dictyonema shale and uranium containing phosphorous Glauconite sandstone exist in the bedrock and as fragments in the soils. Radon concentrations higher than 400 Bq/m 3 have also been measured in buildings situated in areas with karst formations. Areas with Dictyonema shale, Glauconite sandstone and karst are areas with a special risk for radon

  11. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmied, H.; Clavensjoe, B.

    1984-01-01

    The general principles and mechanism of how soil gas infiltrates and carries radon from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluation of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon, resulting from infiltrating soil gas and/or exhalation from building materials. A review and evaluation is given of experience and results acquired up to the summer of 1984. 100 dwellings have been constructed with consideration of possible infiltration of soil gas. In general minor modifications are sufficient to prevent infiltration. (Author)

  12. Radon studies in selected workplaces

    International Nuclear Information System (INIS)

    Randle, M.W.

    2000-01-01

    Radon progeny levels were measured in coal mines, a hard rock mine and two underground hydro power stations, to indicate if there is a health problem associated with exposure to radon and radon progeny in these workplaces. The average alpha concentrations ranged from 37 to 276 Bq m -3 , with the highest levels being found in a mine with no ventillation that was being decommissioned. Average dosages were calculated to be 0.1 - 0.7 mSv y -1 . Radon progeny levels in coal mines measured in the return air circuit are indicative of levels to which a worker at the face would be exposed. They were well below international guidelines for intervention in New Zealand mines, as were the slightly higher levels in two underground hydro power stations. These results confirm that radon levels in New Zealand are low. Even in the extreme situation represented by the Sullivan mine with no ventillation the levels do not warrant concern. 11 refs., 2 tabs

  13. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...

  14. Safety at work: radon in the workplace

    International Nuclear Information System (INIS)

    Rimington, J.D.

    1992-01-01

    Under the Health and Safety at Work etc. Act, employers have a duty, so far as reasonably practicable, to maintain a safe working environment. To ensure that this occurs, the Health and Safety Commission defines standards and applies stimuli to make sure the standards are observed. The risk from radon ranks as one of the most severe industrial risks to be encountered in a hazardous industry. The Ionising Radiations Regulations specify a radon concentration above which the regulations apply, and various duties fall on the employer. Where an inspector finds radon concentrations above this level, he has the power to require remedial measures to be undertaken. (Author)

  15. Controlling exposure to radon, France, December 2006

    International Nuclear Information System (INIS)

    Godet, J.L.; Perrin, M.L.; Dechaux, E.; Pineau, C.

    2007-01-01

    Controlling exposure to radon, France, December 2006 Exposure to radon, along with medical exposure, is the leading source of the French population exposure to ionizing radiation. Radon is a confirmed cause of lung cancer in man (classified in group I by the international Agency for research on Cancer (I.A.R.C.)). According to available estimates, the numbers of lung cancers attributable to radon exposure in France are far fewer than those caused by tobacco. However, according to a recent European study, around 9% of lung cancers in Europe may be caused by radon. Thus, due to the number of people exposed, radon has become a public health issue which calls for action, considering that exposure can be significantly reduced by implementing measures which are often simple. Since 2002, the Nuclear Safety Authority (Asn) has proceeded in implementing a new regulatory framework for the risk management related to the presence of radon in public places. The new system is now fully operational. In addition, based on the initiatives adopted by the government in June 2004 in the context of the National Health and Environment Plan (P.N.S.E.), the Asn drew up a plan in 2005, in collaboration with the Ministry for Urban Planning and Construction, to coordinate the actions of various national bodies involved in this field. This three-pronged strategy is as follows: - Creation of a new risk management policy related to the presence of radon in existing homes and in new buildings; - Supporting and controlling the implementation of regulations for managing radon related risks in public places; - Improvement and dissemination of knowledge on radon exposure and its related risks. (author)

  16. Measurement of radon concentration in drinking water in coastal regions of Uttara Kannada District, Karnataka, India

    International Nuclear Information System (INIS)

    Suresh, S.; Rangaswamy, D.R.; Sannappa, J.; Srinivasa, E.

    2018-01-01

    Water is absolutely needed for most life on this earth. Quality of drinking water is the need of the hour for person's health and environmental studies rather it is consumed and transported pollutant in the environment. The most commonly occurring radionuclides in natural water Rn, that cause risk to human health are 222 Rn, 226 Ra and 228 Ra. They emit alpha particles and their inhalation and ingestion may results in high radioactive dose to sensitive cells of lungs, digestive tract and other organs of the human bodies. Radon enriched drinking water poses a potential health risk in two ways: first, transfer of radon from water to indoor air and its inhalation and secondly, through ingestion. Radon monitoring has been increasingly conducted worldwide because of the hazardous effects of radon on the health of human beings. The aim of the present study is to measure radon concentration and to estimate the annual effective dose in drinking water samples in coastal regions of Uttara Kannada district

  17. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material

    International Nuclear Information System (INIS)

    Pellegrini, D.

    1999-01-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  18. Environmental Concentration of Radon and Radon Progeny in a Nuclear Facility in a Decommissioning Stage

    International Nuclear Information System (INIS)

    Ramirez, M. P.; Correa, E.; Sancho, C.

    1999-01-01

    According to the new European Directive 96/29/EURATOM the radiological risk due to natural radionuclides must be consider and the pertinent periodic control must be realized. During the works performed at CIEMAT an estimation of the effective average doses due to Radon inhalation in work places of the installation have been performed. Radon and Radon progeny concentration has been measured in continuous joint whit the meteorological conditions as temperature, pressure and relative humidity. Two different equipment has been used: Alpha-guard whit ionization chamber detector and Eda-wlm-300 whit a semiconductor detector. A passive Radon detector, E-perm has been simultaneously used in the monitoring system. The results obtained during the measuring of Radon and Radon progeny concentrations indoors and estimation of doses have been analyzed and are presented in the paper. (Author) 11 refs

  19. American Lung Association's radon public information program

    International Nuclear Information System (INIS)

    McCurdy, L.E.

    1992-01-01

    The American Lung Association (ALA), the nation's oldest voluntary health organization, is dedicated to the conquest of lung disease and the promotion of lung health. The objective of the ALA Radon Public Information Program is to reduce public exposure to elevated indoor radon levels through implementing grassroots-based radon public awareness campaigns by 22 local ALA groups. The program, which is funded by a grant from the US Environmental Protection Agency (EPA), was initiated in December 1989; the first phase will continue until May, 1991. Activities of local Lung Associations include distribution of free or reduced-cost radon kits; presenting programs in elementary and secondary schools; presenting information on TV news series and talk shows, and on radio Public Service Announcements and talk shows; presenting articles and feature stories in the print media; holding conferences, workshops, and displays at fairs and other exhibitions; distributing radon fact sheets through libraries and utility company mailings; and distributing videos through video chains and libraries. The local Lung Associations also serve as promoters for the EPA/Advertising Council Radon Public Service Announcement Campaign. We will highlight the activities of the groups in communicating radon health risks to the public; we will describe the results obtained and will attempt to evaluate the merits of the various approaches on the basis of the initial results

  20. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  1. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  2. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  3. Indoor radon level in schools of Shillong, Meghalaya

    International Nuclear Information System (INIS)

    Saxena, A.; Sharma, Y.; Maibam, D.; Walia, D.; Diengdoh, E.

    2010-01-01

    Radon ( 222 Rn) in the atmosphere is the most important contributor to human exposure from natural sources. Radon is a noble inert gas; and it decays to radionuclides th