WorldWideScience

Sample records for radon emanation measurements

  1. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  2. Uranium-bearing wastes and their radon emanation

    International Nuclear Information System (INIS)

    Sasaki, Tomozo; Imamura, Mitsutaka; Gunji, Yasuyoshi

    2007-01-01

    There are no data available with regard to radon emanation coefficients for uranium-bearing wastes; such data are needed for the assessment of radiation exposure from radon that will be generated in the distant future as one uranium progeny at shallow land disposal sites for uranium-bearing wastes. There are many kinds of uranium-bearing wastes. However, it is not necessary to measure the radon emanation coefficients for all of them for two reasons. First, the radon emanation coefficients for uranium-bearing wastes contaminated by dissolved uranium are determined by the uranium chemical form, the manner of uranium deposition on the waste matrix, and the size of the particles which constitute the waste matrix. Therefore, only a few representative measurements are sufficient for such uranium-bearing wastes. Second, it is possible to make theoretical calculations of radon emanation coefficients for uranium-bearing wastes contaminated by UO 2 particles before sintering. In the present study, simulated uranium-bearing wastes contaminated by dissolved uranium were prepared, their radon emanation coefficients were measured and radon emanation coefficients were calculated theoretically for uranium-bearing wastes contaminated by UO 2 particles before sintering. The obtained radon emanation coefficients are distributed at higher values than those for ubiquitous soils and rocks in the natural environment. Therefore, it is not correct to just compare uranium concentrations among uranium-bearing wastes, ubiquitous soils and rocks in terms of radiation exposure. The radon emanation coefficients obtained in the present study have to be employed together with the uranium concentration in uranium-bearing wastes in order to achieve proper assessment of radiation exposure. (author)

  3. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori

    2011-01-01

    To our knowledge, this paper is the most comprehensive review to cover most studies, published in the past three decades at least, of radon emanation measurements. The radon emanation fraction, a possibility of radon atoms generated in a material escaping from its grains, has been widely measured for a variety of materials. The aim of this review is to organize a huge number of such data accumulated. The representative values of the emanation fraction for minerals, rocks, soils, mill tailings and fly ashes were derived to be 0.03, 0.13, 0.20, 0.17 and 0.03, respectively. Current knowledge of the emanation processes was also summarized to discuss their affected factors. - Highlights: → Recent radon emanation measurements were thoroughly reviewed. → Averages of radon emanation fractions: 0.03 (mineral), 0.13 (rock), 0.20 (soil), 0.17 (mill tailing) and 0.03 (fly ash). → Grain-size effect was not significantly found for size larger than 1 μm. → Pore water generally enhances the emanation fraction by a factor of 5 or less. → Definition of 'radon emanation' should be shared among researchers.

  4. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  5. Radon emanation characteristics of uranium mill tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Freeman, H.D.; Hartley, J.N.; Mauch, M.L.; Rogers, V.C.

    1982-01-01

    Radon emanation from uranium mill tailings was examined with respect to the mechanisms of emanation and the physical properties of the tailings which affect emanation. Radon emanation coefficients were measured at ambient moisture on 135 samples from the 1981 field test site at the Grand Junction tailings pile. These coefficients showed a similar trend with moisture to those observed previously with uranium ores, and averaged 0.10 + or - 0.02 at dryness and 0.38 + or - 0.04 for all samples having greater than five weight-percent moisture. Small differences were noted between the maximum values of the coefficients for the sand and slime fractions of the tailings. Separate measurements on tailings from the Vitro tailings pile exhibited much lower emanation coefficients for moist samples, and similar coefficients for dry samples. Alternative emanation measurement techniques were examined and procedures are recommended for use in future work

  6. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material

    International Nuclear Information System (INIS)

    Pellegrini, D.

    1999-01-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  7. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soulé, B. [Université Bordeaux 1, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan (France); Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  8. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  9. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  10. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  11. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G.

    2017-01-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of 226 Ra> 400 Bq kg -1 were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power

  12. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  13. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Anomalous radon emanation linked to preseismic electromagnetic phenomena

    Directory of Open Access Journals (Sweden)

    Y. Omori

    2007-10-01

    Full Text Available Anomalous emanation of radon (222Rn was observed preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes of atmospheric electric field and ionospheric disturbances. Here we analyze atmospheric radon concentration and estimate changes of electrical conditions in atmosphere due to preseismic radon anomaly. The increase of radon emanation obeys crustal damage evolution, following a power-law of time-to-earthquake. Moreover, the radon emanation decreases the atmospheric electric field by 40%, besides influencing the maximum strength of atmospheric electric field by 104–105 V/m enough to trigger ionospheric disturbances. These changes are within the ranges observed or explaining electromagnetic phenomena associated with large earthquakes.

  15. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  16. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  17. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material; Etude de l'emanation du radon a partir de residus de traitement de minerais d'uranium. Mise en evidence de relations entre le facteur d'emanation et les caracteristiques du materiau

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, D

    1999-07-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  18. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  19. Estimation of radon emanation coefficient for soil and flyash

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Ajmal, P.Y.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Since terrestrial materials include radium ( 226 Ra) originating from the decay of uranium ( 238 U), all such materials release radon ( 222 Rn) to varying degrees. When a radium atom decays to radon, the energy generated is strong enough to send the radon atom a distance of about 40 nanometers-this is known as alpha recoil. For a radon atom to escape the radium atom must be within the recoil distance from the grain surface of flyash or soil and the direction of recoil must send the radon atom toward the outside of the grain. Therefore, all of the radon atoms generated by the radium contained in flyash or soil grain are actually not released into pore spaces and mobilized. The fraction of radon atoms generated from radium decay that are released from into flyash or soil pore space is defined as the radon emanation coefficient or emanating power, of the material. Grain size and shape are two of the important factors that control the radon emanation coefficient because they determine in part how much uranium and radium is near enough to the surface of the grain to allow the newly-formed radon to escape into a pore space. In a porous medium, where the radon is in radioactive equilibrium with its parent radium, the emanation coefficient is given by the expression: where C 0 is the undiluted radon activity concentration in the pores of the medium, and C Ra is the radium activity concentration of the sample. The 226 Ra activity concentration of the flyash and soil sample were determined by using the g-spectrometry. C 0 was determined by the can experiment using LR-115 for flyash and soil samples. The C 0 values for flyash and soil samples were found to be 245.7 Bq/m 3 and 714.3 Bq/m 3 respectively. The radon emanation coefficient for flyash was found to be 0.0024 while that for soil was 0.0092. Therefore the soil sample was found to be four times higher radon emanation coefficient than flyash which is in line with the results reported in the literatures. This may suggest

  20. Variation of Radon Emanation in Workplaces as a Function of Room Parameters

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Izzaty Azani Mustafa

    2013-01-01

    Modern life style requires people to spend most of their time indoors either in a house or in the workplace. Most modern buildings are made from soil based material which may consist of low concentration of naturally occurring radioactive materials (NORM). It is known that one of the daughters of natural uranium is 226 Ra which eventually produce radon ( 222 Rn) gas. Recently, more evidence has linked lung cancer to exposure to high levels of radon and also to cigarette-smoking. Consequently, this research was conducted to study the radon emanation rates in different workplaces. The radon emanations in 27 rooms with three different dimension (54 m 3 , 210 m 3 and 351 m 3 ) and different building materials were determined for 96 hours using Sun Nuclear Radon Monitor. The radon emanations in the rooms studied were found to be in the range of 20.6 Bq m -3 hour -1 to 134.3 Bq m -3 hour -1 .The increase in humidity was found to significantly increase the radon emanation rates in the building, whereas the increase in temperature will result the decrease of radon emanation rates. In addition, the findings shows that the radon emanation rates in building were higher during the night until early in the morning which is in agreement with the findings on humidity and temperature factors. (author)

  1. An approach to discriminatively determine thoron and radon emanation rates for a granular material with a scintillation cell

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Meisenberg, Oliver; Tschiersch, Jochen

    2016-01-01

    A powder sandwich technique was applied to determine thoron ("2"2"0Rn) and radon ("2"2"2Rn) emanation rates for a granular material. The feature of this technique is the sample preparation, in which a granular material is put and fixed between two membrane filters. Airflow is directly given to this sandwich sample, will include thoron and radon emanated from the material, and then is transferred to the detector. This method makes sure that thoron and radon emanated are not retained in pore space within the sample volume, which is crucial for the appropriate emanation test. This technique was first introduced by Kanse et al. (2013) with the intention to measure the emanation of thoron - but not of radon - from materials having much higher "2"2"4Ra activity than "2"2"6Ra. In the present study, the methodology for the discriminative determination of thoron and radon emanation rates from a granular material has been examined using a flow-through scintillation cell and sandwich sample. The mathematical model was developed to differentiate total alpha counts into thoron- and radon-associated counts. With a sample of uranium ore, this model was experimentally validated by comparison between the scintillation cell and a reference detector that can discriminatively measure thoron and radon concentrations. Furthermore, the detection limits and uncertainties were evaluated to discuss the characteristics of this method. Key parameters for improving the determination of thoron and radon emanations were found to be the background radon concentration and the leakage of radon from the measurement system, respectively. It was concluded that the present method is advantageous to a sample that has much higher "2"2"6Ra activity than "2"2"4Ra. - Highlights: • The methodology of appropriate and discriminative measurement of thoron and radon emanation is presented. • Measurement of thoron and radon emanated from a sample was made using a scintillation cell. • Detection limits and

  2. Study of radon emanation variations in Morocco soil, correlations with seismic activities and atmospheric parameters

    International Nuclear Information System (INIS)

    Boukhal, H.; Cherkaoui, T.E.; Lferde, M.

    1994-01-01

    In order to verify the possibility of radon signal use in earthquake prediction, a study of radon emanation variation in soil was undertaken. Regular measurements have been carried out in five cities of Morocco ( Rabat, Tetouan, Ifrane, Khouribga, Berchid). The measuring method is based on the solid state nuclear track detectors technique. The good correlation between the different seismic activities and the variations of radon emanation rate in the five stations, have shown the interest of radon use in the earthquake prediction. 1 tab., 2 figs., 2 refs. (author)

  3. Radon emanation rate in construction materials and various design of house

    International Nuclear Information System (INIS)

    Ahmad Asyraf Osman

    2012-01-01

    Indoor air quality are important factors that need to be addressed because it can affect the health and comfort of occupants in it. Among the major sources of indoor air pollution are radon gas. Radiological risk due to radon gas due to its intake into the human body is the major cause of lung cancer. This study was conducted to determine the radon emanation rate that occurs naturally in the building materials and its contains in several kinds of house. Construction materials studied are sand, gravel, cement and bricks. Terrace houses, double storey terrace houses, flats and wooden houses were studied in radon emanation in various types of houses. Radon emanation rates in building materials in a variety of home and the home measured using Sun Nuclear radon monitor (model 1029) and radon gas concentrations are measured in units of Bq m -3 . From the results, granites have recorded the highest radon emissions that is 2.67 μBq kg -1 s -1 , followed by sand with 2.53 μBq kg -1 s -1 . The bricks emission rate were recorded was 2.47 μBq kg -1 s -1 , while Cement recorded the lowest with only 1.46 μBq kg -1 s -1 . In study of radon in a variety of home, the results showed that the single storey terrace houses recorded the highest reading of 25.67 ± 4.96 Bq m -3 . First level Double storey terrace houses recorded 23.24 ± 3.72 Bq m -3 compared with a second level of two-storey terrace house which recorded emission rate of 16.43 ± 2.53 Bq m -3 . Flats were recorded the second lowest with only 13.07 ± 2.38 Bq m -3 . House that recorded the lowest reading was wooden houses that recorded 9.53 ± 1.96 Bq m -3 . (author)

  4. Calculation of radon emanation from a radiferous pile

    International Nuclear Information System (INIS)

    Zettwoog, Pierre.

    1980-07-01

    The theory of unidimensional diffusion of radon in a porous medium, either radiferous or not, is presented taking into account the effects of humidity and the adsorption of radon on the medium. Experimental procedures for determining the two main characteristics of diffusion in a medium, the relaxation length of the diffusion of radon and the emanating power, are described [fr

  5. A study of radon emanation from waste rock at Northern Territory uranium mines

    International Nuclear Information System (INIS)

    Mason, G.C.; Gan, T.H.; Elliott, G.

    1983-01-01

    Field measurements were made of radon emanation rates from waste rock sources at Ranger, Nabarlek and Rum Jungle, three Northern Territory uranium mine sites. The preliminary mean emanation rate was approximately 50 Bq m - 2 s - 2 per percent ore grade

  6. Radon emanation on San Andreas Fault

    International Nuclear Information System (INIS)

    King, C.-Y.

    1978-01-01

    It is stated that subsurface radon emanation monitored in shallow dry holes along an active segment of the San Andreas fault in central California shows spatially coherent large temporal variations that seem to be correlated with local seismicity. (author)

  7. Intercomparison of radon emanation in Moroccan and Tunisian phosphate rocks

    International Nuclear Information System (INIS)

    Khalil, A.; Membrey, F.; Klein, D.; Chambaudet, A.; Iraqui, R.

    1992-01-01

    We suggest a method for measuring the emanation of radon gas of phosphates mineral from different origins using solid state track nuclear detectors (CR39 and LR115) with the aim to determinate radioactivity effects on the human. (author)

  8. Study of radon-222 emanation from sedimentary phosphates and corresponding phosphogypsum. Temperature effect

    International Nuclear Information System (INIS)

    Boujrhal, F.M.

    1993-01-01

    The aim of this study is to examine the effect of temperature on radon emanation from the phosphates of various regions of Morocco, from corresponding phosphogypsum and from teeth fossilized of Youssoufia phosphate. The interpretation of obtained results was carried out by the physicochemical studies with various approaches; the X-ray diffraction analysis, the measurement of the specific surface area and porousness, the determination of the oxygen content by activation analysis with 14 MeV neutron. The thermal treatment between 100 and 900 degrees C conducted to the following points: - An increase of the radon degassing rate, which is first slow when the temperature increase from 20 to 600 degrees C, then becomes brutal beyond this temperature. We attributed this variation to the training effect ( transport effect ) of radon by the others gas susceptible to be released with thermal effect, particularly the CO sub 2. - The reduction of the radon emanation power versus temperature. We could demonstrate a linear correlation between the power emanation and the specific surface area. 122 refs., 102 figs., 20 tabs. (Author)

  9. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1999-01-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported

  10. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    Energy Technology Data Exchange (ETDEWEB)

    Storm, J R; Patterson, J R [University of Adelaide, Adelaide, SA (Australia). Department of Physics and Mathematical Physics

    1999-07-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported.

  11. Modelization of the radon emanation from natural sources in the soil

    International Nuclear Information System (INIS)

    Sabir, A.; Marah, H.; Hlou, L.; Klein, D.; Chambaudet, A.

    1996-01-01

    To evaluate the radon emanation and hence the risk to populations, we have adapted an original mathematical model based on the method of distribute parcels (L. Hlou, These d'etat, Faculte des Sciences, Kenitra, MAROC, 1994). This allows us to follow the migration, in time and space, of a quantity of radon produced in a unit volume as a function of the geological, morphological and structural characteristics of the site studied. Knowing the petrographic and pedologic parameters enables us to calculate the radon concentration in all points inside the soil of the site as well as the radon emanation in the atmosphere. It is therefore possible to calculate the radiological risk for populations brought to live on the site studied. Different applications of this model have been realised in Morocco and in France to demonstrate its efficiency. (author)

  12. Impulsive radon emanation on a creeping segment of the San Andreas fault, California

    International Nuclear Information System (INIS)

    King, C.-Y.

    1984-01-01

    Radon emanation was continuously monitored for several months at two locations along a creeping segment of the San Andreas fault in central California. The recorded emanations showed several impulsive increases that lasted as much as five hours with amplitudes considerably larger than meteorologically induced diurnal variations. Some of the radon increases were accompanied or followed by earthquakes or fault-creep events. They were possibly the result of some sudden outbursts of relatively radon-rich ground gas, sometimes triggered by crustal deformation or vibration. (Auth.)

  13. Fractal theory of radon emanation from solids

    International Nuclear Information System (INIS)

    Semkow, T.M.

    1991-01-01

    The author developed a fractal theory of Rn emanation from solids, based on α recoil from the α decay of Ra. Range straggling of the recoiling Rn atoms in the solid state is included and the fractal geometry is used to describe the roughness of the emanating surface. A fractal dimension D of the surface and the median projected range become important parameters in calculating the radon emanating power E R from solids. A relation between E R and the specific surface area measured by the gas adsorption is derived for the first time, assuming a uniform distribution of the precursor Ra throughout the samples. It is suggested that the E R measurements can be used to determine D of the surfaces on the scale from tens to hundreds of nm. One obtains, for instance, D = 2.17 ± 0.06 for Lipari volcanic glass and D = 2.83 ± 0.03 for pitchblende. In addition, the author suggests a new process of penetrating recoil and modify the role of indirect recoil. The penetrating recoil may be important for rough surfaces, in which case Rn loses its kinetic energy by penetrating a large number of small surface irregularities. The indirect recoil may be important at the very last stage of energy-loss process, for kinetic energies below ∼ 5 keV

  14. Radon and thoron emanation from various marble materials: impact on the workers

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Amghar, A.

    2005-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured inside different pulverized marble material samples by using a method based on determining detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors for the emitted alpha particles. Radon ( 222 Rn) and thoron ( 220 Rn) alpha-activities per unit volume were evaluated inside and outside the marble samples studied. Radon emanation coefficient was determined for the considered marble samples. Alpha- and beta-activities per unit volume of air due to radon, thoron and their progenies were measured in the atmosphere of a marble factory. Equilibrium factors between radon and its progeny and thoron and its decay products were evaluated in the air of the studied marble factory. The committed equivalent doses due to short-lived radon decay products were determined in different regions of the respiratory tract of workers in the considered marble factory

  15. Detailed radon emanation mapping in Northern Latium

    International Nuclear Information System (INIS)

    Aumento, F.

    1993-01-01

    Detailed radon surveys over 5,000 km 2 of Northern Latium, covering the northern part of the volcanic province of Central Italy, commenced in the mid eighties as part of a geothermal exploration programme; the surveys have subsequently been continued and amplified with environmental protection in mind. The area is now covered by ground emission maps, radon levels in water supplies, emissions from the different lithologies and concentrations in houses. The high uraniferous content of the volcanics, the porous nature of the ubiquitous pyroclastics, and active geothermal systems in the area combine to convey to ground level high concentrations of radon. The emissions show strong lateral variations which are geologically and tectonically controlled, such that only detailed surveys reveal the extent and locations of anomalous radon emanations. Unfortunately, long ago towns often developed in strategic locations. For Northern Latium this means on volcanic highs formed by faulted tuff blocks, two geological features associated with particularly high radon emissions. As a result, in contrast to the low average indoor radon concentrations for the greater part of Italy, in some of these town the average values exceed 450 Bq/m 3 . (author). 1 fig

  16. Radiometric maps of Israel - Partial contribution to the understanding of potential radon emanations

    International Nuclear Information System (INIS)

    Vulkan, U.; Shirav, M.

    1997-01-01

    An airborne radiometric survey over parts of Israel was carried out in 1981. The system was comprised from 10 Nal 4 inch x 4 inch x 16 inch detectors, arranged in 4,4 and 2 sensors, with total volume of 1560 inch 3 , and one 4 inch x 4 inch x 16 inch uplooking Nal detector. Flight nominal height was 400 feet. It was found that the Mount Scopus Group (of Senonian origin) is the main source for high uranium - phosphorite rocks of this group contain up to 150 ppm U. Comparing the eU radiometric map with a map of potential radon emanation from rock units, reveals a fair correlation - high radon emanation usually follow the distribution of the Mount Scopus Group in Israel. The correlation between the two maps is excellent over arid terrain where soil cover is missing, whereas over semi-arid - humid areas (western and northern Israel), where soil and cultivation covers are developed, the eU levels over Mount Scopus Group's outcrops are much lower due to absorption of the radiation, and do not depict the full radon potential. Detailed mapping of radon hazards usually exhibit poor correlation between airborne eU data and direct pore radon measurements, even in arid terrain. This phenomenon is attributed to the fact that a radon ''source rock'' (e.g. phosphorite) could be covered with a few up to some tenths of meters of uranium-barren rock. About 0.5 meter cover is enough to absorb all radiation, causing very low airborne eU readings, while the radon free way in this rock is about 10 meters, yielding high pore radon levels when directly measured

  17. Helium and radon-emanation bibliography. Selected references of geologic interest to uranium exploration

    International Nuclear Information System (INIS)

    Adkisson, C.W.; Reimer, G.M.

    1976-01-01

    Selected references on helium and radon gas emanations and geologically related topics are given. There are 172 references primarily related to helium geology, 129 to radon geology, and 171 to helium and radon. These references are of geologic interest to uranium exploration

  18. The radium distribution in some Swedish soils and its effects on radon emanation

    International Nuclear Information System (INIS)

    Edsfeldt, Cecilia

    2001-08-01

    The aim of this study has been to clarify how the radium distribution in soils affects the radon emanation. The distribution of radium, uranium and thorium has been determined using sequential extractions. In the study, soils from two different locations were investigated. In the first part the applicability of the sequential extraction method for determining Ra distribution in different soil types was investigated, using a simple sequential extraction method. Sampled soils were clay, sand and till from the vicinity of the Stockholm Esker. The main part of Rn emanating Ra was associated with Fe oxides in the soil. The methods applied provided information about the radon risk of the soil, but, in order to gain more information on the processes governing Ra distribution and radon emanation in soils, a more detailed sequential extraction procedure would be desirable. The second part consisted of a detailed study of the radionuclide distribution and the geochemistry in a podzolised glacial till from Kloten in northern Vaestmanland. A more detailed sequential extraction procedure was used, and the specific surface area of samples was measured. Samples were taken from E, B, and C horizons; radium and thorium were enriched in the B horizon, whereas uranium had its maximum concentration in the C horizon. Extractable radium primarily occurred in the exchangeable pool, possibly organically complexed, whereas extractable uranium and thorium were mainly Fe oxide bound. Oxide-bound Ra was important only in the B horizon. The radon emanation was not correlated with the amount of exchangeable Ra, but instead with the oxide bound Ra. However, the amount of oxide-bound Ra was too small to account for all the emanated Rn, thus, exchangeable Ra was interpreted as the main source of emanated Rn. This exchangeable Ra was more emanative in the B horizon than in the C horizon. The explanation is the larger surface area of the B horizon samples; the specific surface area appears to be the

  19. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  20. Radon and thoron emanation measurements and the effect of ground water

    International Nuclear Information System (INIS)

    Carriveau, G.W.; Harbottle, G.

    1980-01-01

    In the past, corrections for annual dose rate calculations have used a qualitative approach to the effect of ground water saturation and radon and thoron loss. An example is presented of how this correction can now be precisely determined using natural gamma-ray activities to determine the amount of emanation from ceramic sherds and soil, both in a dry state and saturated with ground water. The experimental data also provide information concerning disequilibria in 234 Th and 226 Ra regions of the decay series. Additionally, approximate values of uranium and thorium concentrations (sufficiently accurate for authenticity work) are provided

  1. Study of variations of radon emanations from soil in Morocco using solid state nuclear track detectors. Correlations with atmospheric parameters and seismic activities

    International Nuclear Information System (INIS)

    Boukhal, H.

    1993-01-01

    This study investigates the quantity variations of radon emanating from soil in accordance with time. It aims to verify the possibility of the radon sign use in earthquake prediction. Regular measures of radon concentration in soil have been carried out over the two years 1991 and 1992 in five towns of Morocco: Rabat, Tetouan, Ifrane and Khouribga, and in geophysic observatory of Ibn Rochd (Berchid region). The measuring method is based on the solid state nuclear track detectors technique. The obtained results have shown an influence of the atmospheric effects on the radon emanation. The experiment proved that, on one hand, the variations of the aforesaid influence are correlated to variations of the pluviometry and the atmospheric temperature and, on the other hand, there is no notable effect of atmospheric pressure or atmospheric humidity. The good correlations between the different seismic activities and the variations of radon emanation rate in the five measurement stations, have shown the interest of radon use in the earthquake prediction field. 81 refs., 100 figs., 17 tabs.(F. M.)

  2. Present knowledge of the effect of cracks on radon emanation from tailings, with implications for mine rehabilitation at Olympic Dam

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1997-01-01

    The weather parameters of air pressure, temperature, rainfall and wind speed affect the rate of radon-222 emanation from the surface of mine tailings. A second set of conditions which form cracks or fissures in tailings and their covers, will also affect the radon flux density and they must be considered in the design of any cover for a rehabilitation program. The Olympic Dam mine expansion program, beginning in 1995, involves a substantial increase in the size of the copper/uranium tailings. As part of monitoring and progressive rehabilitation of the tailings, the rate of emanation of radon-222 from tailings' surfaces was measured, with and without the gross defects of cracking. Theoretical predictions and measurements made in the U.S., are compared with rates of emanation from a cracked surface, modelled as homogeneous with additional surface area due to cracks

  3. Application of nuclear track detectors for radon related measurments

    International Nuclear Information System (INIS)

    Abu-Jarad, F.A.

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author)

  4. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  5. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation

    International Nuclear Information System (INIS)

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A.; Bouquerel, Hélène

    2016-01-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L"−"1 and 10% for 10 mBq L"−"1. While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L"−"1, a conservative experimental estimate is rather 5 mBq L"−"1, corresponding to 0.14 fg g"−"1. The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. - Highlights: • Radium-226 concentration measured with optimized accumulation in a container. • Radon-222 in air measured precisely with scintillation flasks and long countings. • Method tested by repetition tests, dilution experiments, and successful blind tests. • Estimated conservative detection limit without pre-concentration is 5 mBq L"−"1. • Method is portable, cost

  6. Theoretical concepts of fractal geometry semkow by radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.

    1996-01-01

    The objective of this work is to introduce the fractal geometry concept to the study of gaseous emanations in solids, specially with reference to radon emission in mineral grains. The basic elements of fractals theory are developed. A fractal is defined as an auto similar subassembly, which fractal dimension is greater than the topological dimension. Starting from this, and making a brief description of the physicals basis of radon emission in solids, a model between emanation power (E R ) and the ratio s/v (surface to volume), is founded. A Gaussian model is assumed for extent of recoil from alpha decay of Ra-226. Using the results of Pfeifer it is obtained that distribution of pore size is scaled like Br -D-1 , where D: fractal[dimension, B: constant and r: pore radius. After an adequate mathematics expansion, it is found that the expression for emanation power is scaled like r 0 D-3 (r 0 grain radius). We may concluded that if we have a logarithmic graph of E R vs size of grain we can deduce the fractal dimension of the emanation surface. The experimental data of different materials provides an interval into fractal dimension D , between 2.1 to 2.86. (author). 5 refs., 1 tab

  7. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    International Nuclear Information System (INIS)

    Rood, A.S.; White, G.J.

    1999-01-01

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings

  8. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  9. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment

    International Nuclear Information System (INIS)

    Jobbagy, V.; Somlai, J.; Kovacs, J.; Szeiler, G.; Kovacs, T.

    2009-01-01

    Natural radioactivity content, radon emanation and some other physical characteristics of red mud were investigated, so that to identify the possibilities of the safe utilization of such material as a building material additive. Based on the radionuclide concentration, red mud is not permitted to be used directly as a building material, however, mixing of a maximum 20% red mud and 80% clay meets the requirements. The main aim of this work was to determine the dependence of the emanation factor of red mud firing temperature and some other parameters. The relevant experimental procedure was carried out in two different ways: without any additional material, and by adding a known amount of sawdust (5-35 wt%) then firing the sample at a given temperature (100-1000 deg. C). The average emanation factor of the untreated dry red mud was estimated to 20%, which decreased to about 5% at a certain heat treatment. Even lower values were found using semi-reductive atmosphere. It has been concluded that all emanation measurements results correlate well to the firing temperature, the specific surface and the pore volume.

  10. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil; Emanação de radônio-222 em fosforito uranífero de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G., E-mail: emersonemiliano@yahoo.com.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of {sup 226}Ra> 400 Bq kg{sup -1} were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power.

  11. Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher 226 Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA)

  12. Theoretical aspects of the Semkow fractal model in the radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.S.

    1997-01-01

    The basic elements of the Fractals theory are developed. The physical basis of radon emission in solids are described briefly. It is obtained that the emanation power E R of mineral grains is scaled as r 0 D-3 (r 0 : grain radius). From a logarithmic graph E R versus grain size is deduced the fractal dimension of the emanation surface. The experimental data of different materials give an interval in the fractal dimension D between 2.1 and 2.8 (Author)

  13. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  14. Effects of barium chloride treatment of uranium mill tailings and ore on radon emanation and 226Ra levels. Progress report

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Flot, S.L.

    1983-01-01

    The purpose of this study was to investigate the effect of barium chloride treatments on: reduction of 222 Rn emanation from mill wastes; reduction of 226 Ra levels in wastewater; and decreased leachability of 226 Ra from mill wastes. Baseline 226 Ra concentrations were determined for ore and tailings as well as radon emanation fractions. Uranium ore was treated with soluble barium at concentrations of 10, 25, 50, and 100 mg per litre of slurry. The leach-liquor declined in 226 Ra concentration by as much as 50%. When soluble potassium as well as barium was used in the treatment process at equal concentrations of 10, 25, 50, and 100 mg per litre of slurry, a similar reduction was observed. No significant difference was noted between the two treatment regimes. An accelerated leaching experiment was performed on the ore treated with barium chloride. All treatment groups except that treated with 10 mg of soluble barium per litre of slurry showed significant decreases in leachability. Available 222 Rn (corresponds with radon emanation fraction) was measured in treated and untreated ore. Ore treated with concentrations of Ba ++ up to 1.00 mg per gram of ore did not show a statistically significant reduction in available 222 Rn, however when potassium sulfate was also added, a significant decline was noted. This study suggests that barium chloride treatments reduce radon emanation from mill wastes and reduce 226 Ra levels in wastewater. Leachability of 226 Ra from treated samples decreased markedly. 19 references, 8 figures, 7 tables

  15. Correlation between radon gas emanation and porosity in ornamental stones; Correlacao entre emanacao de gas radonio e porosidade de rochas ornamentais do Estado do Ceara, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Leiliane Rufina Pereira de; Artur, Antonio Carlos; Bonotto, Daniel Marcos, E-mail: leili_ane@hotmail.com, E-mail: acartur@rc.unesp.br, E-mail: dbonotto@rc.unesp.br [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil); Nogueira Neto, Jose de Araujo, E-mail: nogueira@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Geologia

    2014-01-15

    This article makes correlations between levels of gas {sup 222}Rn emanation and corresponding porosity for thirteen samples of granitic rocks ornamental state of Ceara. For both determinations of physical indexes (bulk density, apparent porosity and water absorption, the levels of U, monitoring emanation of radon gas are made for a period of 25 days in confinement conditions of the samples under vacuum and petrographic studies of the characteristics rocks, with emphasis on the microfissural state. The sampled rocks provided low values of radon gas emanation between U 0,2 ppm and 13.6 ppm. The correlations between the various results show that the microporous network of the rock is determinant in the rate of emanation of radon gas, overlapping, including the influence of own levels of U present in the rocks. The results also show that the amount of radon gas emanating from the rock is small enough compared to the decay caused by the amount of {sup 238}U. The proposition of gas emanating relative to the total generated by rocks ranging between 0.4% and a maximum of 4.2%. (author)

  16. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  17. Activity measurements of radon from construction materials.

    Science.gov (United States)

    Fior, L; Nicolosi Corrêa, J; Paschuk, S A; Denyak, V V; Schelin, H R; Soreanu Pecequilo, B R; Kappke, J

    2012-07-01

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Measurement of concentrations of radon and its daughters in indoor atmosphere using CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Khan, A.J.; Sharma, K.C.; Varshney, A.K.; Prasad, Rajendra; Tyagi, R.K.

    1988-01-01

    The concentrations of radon and its daughters in rooms having different environmental conditions are measured using CR-39 nuclear track detector. It has been found that the radon concentration inside the rooms depends on ventilation, sub-soil emanation and the housed materials. The use of internal wall coverings such as plaster, distemper and white washing may reduce the radon emanation inside the rooms. The use of paints on walls is the best for reducing the radon concentration inside the rooms. (author). 11 refs

  19. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    Science.gov (United States)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  20. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Girault, F.; Perrier, F.; Ananta Prasad Gajurel; Bishal Nath Upreti; Richon, P.

    2011-01-01

    Effective radium-226 concentration (EC Ra ) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in airtight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1 , with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1 . The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  1. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  2. Activity measurements of radon from construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  3. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    Gou Quanlu; Wang Hengde

    1993-01-01

    This paper presents the relative contribution to indoor radon 222 Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH 2 :CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  4. Emanations and 'induced' radioactivity: from mystery to (mis)use

    International Nuclear Information System (INIS)

    Kolar, Z.I.

    1999-01-01

    The natural Rn isotopes were discovered within the period 1899-1902 and at that time referred to as emanations because they came out (emanated) of sources/materials containing actinium, thorium and radium, respectively. The (somewhat mysterious) emanations appeared to disintegrate into radioactive decay products which by depositing at solid surfaces gave rise to 'induced' radioactivity i.e. radioactive substances with various half-lives. Following the discovery of the emanations the volume of the research involving them and their disintegration products grew steeply. The identity of a number of these radioactive products was soon established. Radium emanation was soon used as a source of RaD ( 210 Pb) to be applied as an 'indicator' (radiotracer) for lead in a study on the solubility of lead sulphide and lead chromate. Moreover, radium and its emanation were introduced into the medical practice. Inhaling radon and drinking radon-containing water became an accepted medicinal use (or misuse?) of that gas. Shortly after the turn of the century, the healing (?) action of natural springs (spas) was attributed to their radium emanation, i.e. radon. Bathing in radioactive spring water and drinking it became very popular. Even today, bathing in radon-containing water is still a common medical treatment in Jachymov, Czech Republic. (author)

  5. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    International Nuclear Information System (INIS)

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-01-01

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building's architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation's indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract

  6. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  7. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  8. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  9. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  10. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  11. Radon measurements in underground and ground constructions in Tashkent city

    International Nuclear Information System (INIS)

    Akimov, V.A.; Yafasov, A.Y.; Vasidov, A.; En, Z.; Tillaev, T.; Tsipin, V.Z.

    2002-01-01

    magnitude 8.5 earthquake in 1966. Taken as a whole, not high concentration level of radon in the subway stations and related underground offices suggest that rocks and ores along which the railway and stations are located, and also construction materials used, are of low radioactivity. The radon concentration level in dwellings was evaluated by long term passive measurements using a cup detector sampler with a filtered end. After putting the detector, the open end was closed by a paper filter in order to prevent the detector from dust and other solid particulates and also from the radon progeny plate-out effect on the detector surface. Thus, the device detects only alphas from a radon gas and those daughters, which are produced inside the cup. The detector samplers were suspended on a ceiling on the distance of ∼200 cm from the floor. The detectors were exposed for 15-30 days. After exposition, the plastics were chemically etched in the 6N NaOH solution at 70 degrees centigrade, for 6 hours. We have measured concentration of radon in air of apartments and offices of reinforced concrete multi story buildings, two- and three-story buildings built with combined slag and burnt bricks and also in detached one-story houses built with unburnt bricks and clay. In multi story buildings the radon level was in the range of 16-97 Bq/m 3 , and average radon accumulation was practically independent of floor level, except for first floor, were radon level was higher due to its permeation from basement. In multi story buildings, radon comes mostly from construction materials. Emanation of radon from the ground depends on many factors, among them presence of uranium and radium in rock and ore constituents, soil porosity, availability of cracks and cavities in subsoil, tectonic activity of the region and others. To study season effect on radon level in air of dwellings and offices, the radon measurements were made in winter and summer periods in the same apartments and detached houses

  12. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  13. Measurement of 222Rn flux, 222Rn emanation and 226Ra concentration from injection well pipe scale

    International Nuclear Information System (INIS)

    Rood, A.S.; Kendrick, D.T.

    1996-01-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of 222 Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed

  14. Method for radon measurement in the subsoil in geothermal prospectus

    International Nuclear Information System (INIS)

    Balcazar G, M.

    1991-02-01

    The present formless describe the technique for radon measurement in the underground, being able to be used as an additional study in the geothermal prospecting. This methodology has been developed in the National Institute of Nuclear Research of Mexico using a film of cellulose nitrate to detect those emanated alpha particles, by the Rn (222). By means of the trace account in this films its settle down the present radon levels in the underground. The present method thinks about as an alternating one to overcome in it leaves the limitations found in the development of the methodology using a radon emanometer ETR-1, of the trade mark SCINTREX. The radon detected by plastics is also an integral method of measuring in a geothermal field that avoids the problems of variations of radon to pluvial precipitations and barometric variations. These variations affect the results strongly when it is used the punctual sampler as it is the ETR-1. (Author)

  15. Predicting radon flux from uranium mill tailings

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.

    1983-11-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, is developing technology for the design of radon barriers for uranium mill tailings piles. To properly design a radon cover for a particular tailings pile, the radon flux emanating from the bare tailings must be known. The tailings characteristics required to calculate the radon flux include radium-226 content, emanating power, bulk density, and radon diffusivity. This paper presents theoretical and practical aspects of estimating the radon flux from an uranium tailings pile. Results of field measurements to verify the calculation methodology are also discussed. 24 references, 4 figures, 4 tables

  16. Exposure emanation methods of prospecting for mineral deposits

    International Nuclear Information System (INIS)

    Titov, V.L.; Venkov, V.A.; Avdeeva, T.Ya.; Kuvshinnikova, E.I.

    1985-01-01

    Fundamentals of the theory and practice of new methods for prospecting of mineral deposits-exposure emanation surveys are stated. Different modifications of these methods are considered: emanation track method, electron alphametry, technique based on the recording of alpha radiation of radon daughter products and thermoluminescent dosemeters. Advanatges of these methods as compared with the conventional emanation survey using emanometers and methods based on the recording of gamma radiation intensity are shown. Problems of the theory and practical aspects of the concrete modifications application as well as systems for data acquisition and processing fields of the methods application, technique of works performance and survey data interpretation are considered in detail; methods sensitivity, probable mechanisms of radon transport in bowels, role of a depth component of the radiactive emanation concentration field are evaluated. Examples of the method application in practice are given, emanation anomalies and their evaluation methods are classified

  17. Formulation of the fundamental basis for the evaluation of the comparability of different measuring method for the determination of ground air radon concentration. Vol. 2. Report on ground air radon measurements - influence factors, measuring methods, evaluation; Erarbeitung fachlicher Grundlagen zur Beurteilung der Vergleichbarkeit unterschiedlicher Messmethoden zur Bestimmung der Radonbodenluftkonzentration. Bd. 2. Sachstandsbericht ''Radonmessungen in der Bodenluft - Einflussfaktoren, Messverfahren, Bewertung''

    Energy Technology Data Exchange (ETDEWEB)

    Kemski, J.; Klingel, R.; Siehl, A.; Neznal, M.; Matolin, M.

    2012-03-15

    The report on ground air radon measurements covers the following issues: Introduction; Radon in the geogenic underground: emanation, migration, exhalation; Influencing factors: geochemical parameters, structural situation, geomorphology, exogenic effects; Ground air measurements: site exploration, tectonics, earth quake prognosis, radon in ground air and buildings; Radon measurement: sampling and measuring methods, error consideration, comparative measurements, practical examples; measuring regulations and recommendations; Variability of the radon concentration: temporal variation, sampling depth, spatial variations; Evaluation and conclusions.

  18. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T

    1998-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  19. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  20. Evaluation of the open vial method in the radon measurement

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.

    2014-10-01

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  1. Integral measurement system for radon

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Pena E, R.

    1996-01-01

    The Integral measurement system for Radon is an equipment to detect, counting and storage data of alpha particles produced by Radon 222 which is emanated through the terrestrial peel surface. This equipment was designed in the Special Designs Department of the National Institute of Nuclear Research. It supplies information about the behavior at long time (41 days) on each type of alpha radiation that is present into the environment as well as into the terrestrial peel. The program is formed by an User program, where it is possible to determine the operation parameters of a portable probe that contains, a semiconductor detector, a microprocessor as a control central unit, a real time clock and calendar to determine the occurred events chronology, a non-volatile memory device for storage the acquired data and an interface to establish the serial communications with other personal computers. (Author)

  2. Radon and Thoron emanation testwork on Nolans Rare Earths ores

    International Nuclear Information System (INIS)

    Sonter, Mark; Grose, Jeremy

    2016-01-01

    This paper reports on a series of experiments performed on two bulk ore samples for Arafura Resources' Nolans Rare Earths project, intended to derive information on radon (Rn222) and thoron (Rn220) emanation rates (fluxes) under various circumstances. This data is needed to enable development of predictions of Rn and Tn releases from exposed mine bench ore, ore stockpiles, and tailings, and thus assist in estimation of airborne concentrations within the areas of the future Mine and Processing plant. In turn these estimates will provide guidance on the quantitative risk and the necessity or otherwise of invoking specific control measures, either in design or in operating procedures. This testwork was carried out during the period 2nd to 15th July, at Arafura's Winnellie facility in Darwin. Conclusions are that for uncrushed ore, Rn flux numbers are around 1.0Bq/m"2/s, Tn numbers appear to cluster around 200-300 Bq/m"2/s. Crushing gave no change in Rn flux, Tn flux was doubled for calc-silicate material. Wetting gave significant reductions for both Rn and Tn for ores sampled, and clay capping reduced Rn flux marginally but Tn was reduced by a factor of 100.

  3. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  4. Development of a low-level radon reference chamber; Entwicklung einer Low-Level-Radon-Referenzkammer

    Energy Technology Data Exchange (ETDEWEB)

    Linzmaier, Diana

    2013-01-04

    The naturally occurring, radioactive noble gas radon-222 exists worldwide in different activity concentrations in the air. During the decay of radon-222, decay products are generated which are electrically charged and attach to aerosols in the air. Together with the aerosols, the radon is inhaled and exhaled by humans. While the radon is nearly completely exhaled, ca. 20 % of the inhaled aerosols remain in the lungs in one breath cycle. Due to ionizing radiation, in a chain of events, lung cancer might occur. Consequently, radon and its decay products are according to the current findings the second leading cause of lung cancer. At the workplace and in the home measurements of radon activity concentration are performed to determine the radiation exposition of humans. All measurement devices for the determination of radon activity concentration are calibrated above 1000 Bq/m{sup 3}, even though the mean value of the present investigation in Germany shows only 50 Bq/m{sup 3}. For the calibration of measurement devices in the range below 1000 Bq/m{sup 3} over a long time period, the generation of a stable reference atmosphere is presented in this work. Due to a long term calibration (t>5 days) of the measurement devices, smaller uncertainties result for the calibration factor. For the calibration procedure, a so-called low-level radon reference chamber was set up and started operation. The generation of a stable reference atmosphere is effected by means of emanation sources which consist of a radium-226 activity standard. On the basis of {gamma}-spectrometry, the effective emanation coefficient ofthe emanation sources is determined. The traceability of the activity concentration in the reference volume is realized via the activity ofthe radium-226, the emanation coefficient and the volume. With the emanation sources produced, stable reference atmospheres within the range of 150 Bq/m{sup 3} to 1900 Bq/m{sup 3} are achieved. For the realization, maintenance and

  5. Radon exhalation rates from slate stone samples in Aravali Range in Haryana

    International Nuclear Information System (INIS)

    Upadhyay, S.B.; Kant, K.; Chakarvarti, S.K.

    2012-01-01

    The slate stone tiles are very popular in covering the walls of the rooms. Radon is released into ambient air from slate stones due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in slates stones is related to radioactivity in the rocks from which the slate stone tiles are formed. In the present investigation, the radon emanated from slate stone samples collected from different slate mines in Aravali range of hills in the Haryana state of Northern India has been estimated. For the measurement of radon concentration emanated from these samples, alpha-sensitive LR-115 type II plastic track detectors have been used. The alpha particles emitted from the radon form tracks in these detectors. After chemical etching the track density of registered tracks is used to calculate radon concentration and exhalation rates of radon using required formulae. The measurements indicate normal to some higher levels of radon concentration emanated from the slat stone samples collected from Aravali range of hills in north India. The results will be discussed in full paper. (author)

  6. Method for radon measurement in the subsoil in geothermal prospectus; Metodos de medicion de radon en el subsuelo en prospeccion geotermica

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M

    1991-02-15

    The present formless describe the technique for radon measurement in the underground, being able to be used as an additional study in the geothermal prospecting. This methodology has been developed in the National Institute of Nuclear Research of Mexico using a film of cellulose nitrate to detect those emanated alpha particles, by the Rn (222). By means of the trace account in this films its settle down the present radon levels in the underground. The present method thinks about as an alternating one to overcome in it leaves the limitations found in the development of the methodology using a radon emanometer ETR-1, of the trade mark SCINTREX. The radon detected by plastics is also an integral method of measuring in a geothermal field that avoids the problems of variations of radon to pluvial precipitations and barometric variations. These variations affect the results strongly when it is used the punctual sampler as it is the ETR-1. (Author)

  7. Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Haffez, A.-F.; Hunyadi, I.; Toth-Szilagyi, M.

    1986-01-01

    There are large discrepancies in data available in the literature for the exhalation and diffusion behaviour of radon in various materials. Therefore there is a need for more studies in this field. For this purpose we have developed and used track methods to measure mass and areal exhalation rates of radon from different fly ashes and sand. In addition, methods were also developed to determine the diffusion length of radon and the porosity of materials. For getting the radon emanation coefficient we have applied the autoradiographic method and the ''can-technique'' for determining the real and effective radium contents. The disturbing effect expected from the geometry of measuring cans and samples is discussed. Relations are derived for the correction of such effect.

  8. Radon as an environmental risk: concentration measurements in family buildings at Cordoba city

    International Nuclear Information System (INIS)

    Bonzi, A.; Murua, C.; Martin, H.R.

    1992-01-01

    Measurements of radon concentration at homes are usual activities in the last years at the countries with uranium in their soils. On the other hand, the man's radiological protection about radiation is related to the environmental actions for a healthy life, but not much known for a public. The great quantities of ore with uranium can be an important source of irradiation when they are used as building materials. The soils are important too for the emanations of radon in the interior of buildings and for these reasons, the radon concentration measurements in Cordoba familiar houses were implemented in the summer of 1991. The Alpha Track Technique and the results obtained indicate the need of other measurements and a winter measurement for investigation variations of radon concentration. The typical values measured were low, about 4.13 Bq/m 3 if they are compared with other Argentine values measured. This paper discusses the procedure, techniques and criteria used in the work held in Cordoba city, Argentina. (Author)

  9. Investigations of radon and radon daughters in surficial aquifers of florida

    International Nuclear Information System (INIS)

    1991-05-01

    The principal purpose of the investigation was to test the hypothesis that radon soil flux, considered the principal source of indoor radon contamination, has an underlying relationship to the radon content of associated shallow groundwaters. The working hypothesis was that radon build-up in both soil and shallow groundwater is basically a consequence of the same factor, radon emanation from soil grains and the solid surfaces of the aquifers. Groundwater may be advantageous as an indicator of radon potential. Another object of the project was to investigate temporal and spatial trends of radon daughter products in shallow aquifers. After analyzing all of the radon soil, flux, and groundwater measurements made over the two-year study period, it is clear that while there is no direct relationship between either radon soil concentration or flux and groundwater radon. Measurements in wells where polonium is present at very high concentrations have shown that 210Po is largely unsupported by its radioactive predecessor, and that polonium is considerably more variable, in both space and time than other parameters measured in the same wells, including radon

  10. Evaluation of the open vial method in the radon measurement; Evaluacion del metodo del vial abierto en la medicion de radon

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  11. Techniques and principles for mapping of integrated radon emanation within the earth

    International Nuclear Information System (INIS)

    Fleischer, R.L; Mogro-Campero, A.

    1980-01-01

    Radon signals from within the ground are used in locating subsurface uranium deposits and are of potential use in sensing impending earthquakes. Several factors are documented that affect the reproducibility and reliability of radon measurements, and new methods are described that make current state-of-the-art radon measurements much improved over those obtainable in the past

  12. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA of Ramsar

    Directory of Open Access Journals (Sweden)

    Amanat B

    2013-12-01

    Full Text Available Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the signifcant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause in creased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some com parative measurements (with active methods have been performed. Method: The method is based upon measurements by a diffusion chamber, includ ing two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/ thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and cor relation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active mea surements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil.

  13. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    Science.gov (United States)

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  14. Radioactive emanations in fumarole gases of a series of volcanoes in Kamchatka

    International Nuclear Information System (INIS)

    Adamchuk, Yu.V.; Firstov, P.P.

    1986-01-01

    The results of measurements of volume activity of emanations in fumarole gases of a series of acting volcanoes in Kamchatka during 1980-1983 are presented. The value of radon concentration in Avachinski volcano fumaroles equal ∼ 2 emanes did not change substantially as compared with the data for 1966. The highest activity (11.5±0.4 emanes) is registered in the Bezymyannyj volcano fumaroles. The emanation site survey of fumarole fields of the second cone of the Great fractured Tolbachinski eruption (GFTE) revealed the narrowly localized zone of radioactive emanation emissions. The radon emission in the above zone in 1981 constitutes (2.3 ± 0.4)x10 -6 Ci/s. Using this estimation, time (34-42 days) and average rate (2.5-3.0 m/h) of depth gases hoisting from magmatic focus are calculated as well as filtration rock characteristics in the narrowly localized near-mouth zone of the second cone of GCTE North outburst in the post eruptive period: permeability coefficient (0.1-4.3 darci), porosity (3-15 %) and mean value of cracks and pores opening (0.6-2.0)x10 -3 cm). The found characteristic values proved to be compared with parameters of crushing zone near epicenters of underground nuclear explosions

  15. Observation of radon content in soil gas

    International Nuclear Information System (INIS)

    Mino, Kazuo; Nishimura, Susumu

    1979-01-01

    For earthquake prediction, precursory phenomena before the large earthquakes have been investigated in many countries. In China and some other places, they made a success of predictions of the large earthquakes by catching precursory phenomena. Variation of Radon content of underground gas and water is also one of those phenomena. In our country, the decrease of Radon content was observed several days before the large earthquake which occured near Izu Peninsula on January, 14, 1978. We also begin to observe variation of Radon content of underground gas. The purpose of our observation is a study on the Radon gas content before and after earthquakes. According to the results of the test investigation, the change of atmospheric pressure is mutually related with variation of Radon content in soil gas. Effect of atmospheric pressure is about one Eman, which is significant value comparison with the change, before the large earthquake, a few or several Emans. But, when correction of atmospheric pressure's effect was done, the change of Radon content maybe decrease 5/100 Emans. Above result tells the possibility of detecting the precursor of large earthquake, if Radon content change was over a few Emans. (author)

  16. Measurement of radon flux and tailings parameters for quantifying the source term due to radon exhalation from U tailings pile at Jaduguda

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Mayya, Y.S.; Sapra, B.K.; Gaware, J.J.; Khuswaha, H.S.

    2010-01-01

    Full text: The exposures from radon ( 222 Rn) and its decay products have been received considerable attention in the world community because of their adverse health effect. There are various natural and man-made sources of radon present in our environment. Among the man-made sources, the U tailings (waste product from U mining and milling facility) may be considered an important one because it contains significant amount of 226 Ra activity after the U extraction from the ore bodies. These tailings (slurry form) are being impounded into a repository site nearby the facility called 'Tailings Pile' (TP). Significant amount of radon emission takes place from this area by the process of emanation and exhalation. Hence, a study was taken up to quantify the source term arising due to radon emission from uranium tailings pile at Jaduguda in Jharkhand state. In-situ experiments were conducted at 40 locations of the uranium tailings pile in three seasons namely summer, rainy and winter to measure the radon fluxes. The measurements were carried out by deploying a cylindrical chamber, attached to a continuous radon monitor, on the surface of the tailings pile. The dimension of the chamber was selected by using a recently developed two dimensional theory of soil chamber, so that radon concentration growth will be in exponential fashion and the data generated within 2-3 hours of deployment period will be sufficient for accurately deriving the actual radon flux. After the data collection, the fluxes were derived by fitting an exponential growth function to the plot of radon concentration with time. The fluxes were also predicted by diffusion theory using the measured tailings parameters such as 226 Ra content, radon emanation factor, porosity, temperature and moisture. An excellent matching between the predicted and measured fluxes was observed. The validity of diffusion theory in the matrix of U tailings pile provides an alternate method for back-calculating the tailings

  17. Detailed effects of particle size and surface area on 222Rn emanation of a phosphate rock.

    Science.gov (United States)

    Haquin, Gustavo; Yungrais, Zohar; Ilzycer, Danielle; Zafrir, Hovav; Weisbrod, Noam

    2017-12-01

    The dependency of radon emanation on soil texture was investigated using the closed chamber method. Ground phosphate rock with a large specific surface area was analyzed, and the presence of inner pores, as well as a high degree of roughness and heterogeneity in the phosphate particles, was found. The average radon emanation of the dry phosphate was 0.145 ± 0.016. The emanation coefficient was highest (0.169 ± 0.019) for the smallest particles (210 μm). The reduction rate followed an inverse power law. As expected, a linear dependence between the emanation coefficient and the specific surface area was found, being lower than predicted for the large specific surface area. This was most likely due to an increase in the embedding effect of radon atoms in adjacent grains separated by micropores. Results indicate that knowledge of grain radium distribution is crucial to making accurate emanation predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radon hazard map in Bas-Rhin, final report

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of radon (geochemical properties, origin, emanation and transfer to surface, related health hazard, exposure factor, modalities for the struggle against radon), of the study context, framework and objective, and of the Bas-Rhin geological context, this report presents the exploited data: definition of the geological uranium potential, direct measurements and geochemical analysis, indicators (lithologic characterization, surface radioactivity, drifting alluvial deposits), factors promoting inhalation, measurements in buildings. It presents and comments maps of the radon geological potential and of radon hazard. It proposes an assessment of radon potential hazard for different areas of the district, and reports measurements performed in Strasbourg, Eckbolsheim, Bischeim and Haguenau

  19. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  20. A calibration facility for radon fluxmeter

    International Nuclear Information System (INIS)

    Li Xianjie; Qiu Shoukang; Zhou Jianliang; Liu Chunkui; Pan Jialin; Yang Mingli

    1998-01-01

    Calibration facilities for radon fluxmeter with three kinds of different emanation medium have been developed. The stability of radon flux is 5%, 9% (RSD) respectively. The uniformity of radon flux is 4.5%, 8.5% (RSD) respectively. These specifications fulfill the calibration requirement for radon fluxmeter. The determination of radon flux of facility takes full account of eliminating the main error source-attenuation effect (including leakage and back diffusion etc.): not only prevent attenuation and make a relevant correction. Therefore the accuracy of determination is assured. The calibration, intercomparison of radon flux meter and the quantitatively evaluation on the measurement method of radon flux are made to be possible by the successful establishment of this facility. (author)

  1. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  2. Radon emanation over an orebody: search for long-distance transport of radon

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Hart, H.R. Jr.; Mogro-Campero, A.

    1980-01-01

    Discovery of subsurface uranium ore could be facilitated by recognition of measurable concentrations of the radioactive gas 222 Rn near the surface of the earth. Integrated measurements made over several weeks' time show promise of giving greater reproducibility than short-term measurements, which are more subject to meteorological variability. Improved methods of integrated randon measurements-free of 220 Rn, thermal-track fading, and mositure-condensation effects-allow readings that generally are highly stable over time. Sixteen kilometers north of Thoreau, New Mexico, reading taken at 60-cm depth over a 13-month interval for 55 positions give different-but nearly constant-monthly readings at each position; the typical standard deviation was 22 percent. Superimposed on that stable pattern have been three periods during which spatially grouped radon readings increased by a factor of two or more over their normal values. The simplest tenable description of the increases is sporadic puffs of upflowing gas, originating from unknown depths. The measurements are consistent with an upward velocity of flow of about 10 -3 cm/s (centimeters per second). If this velocity is maintained to depth, it is still insufficient to transport detectable amounts of radon from the orebody at 90-m depth, but it would be sufficient to reveal ore at 50 m or less. Downhole measurements of permeability yield values generally too low for signals to be delivered from the orebody by any of the mechanisms already modeled

  3. Radon Mapping of the Osijek Town

    International Nuclear Information System (INIS)

    Radolic, V.; Faj, Z.; Smit, G.; Culo, D.; Planinic, J.

    1998-01-01

    After ten years investigation of radon seasonal variations at three very different locations, as well as radon concentration measurements in kindergartens and schools, systematical indoor radon measurements were undertaken in dwellings of Osijek. Indoor radon was measured by means of the LR-115 nuclear track detector at 48 town locations that gave the arithmetic mean of 71.6 Bq m -3 , standard deviation of 44.0 Bq m -3 and geometric mean of 60.1 Bq m -3 , for the radon concentration range from 23 to 186 Bq m -3 . The empirical frequency distribution of radon concentrations, with the class width of 20 Bq m -3 , was in accordance with the theoretical log-normal distribution which was shown with χ 2 - test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. Thus supposition was confirmed by radon measurement in the soil gas using radon emanators with the LR-115 film that showed the positive correlation between radon concentrations in the soil and indoors. Radon measurements in Osijeks primary schools pointed out a school that had the highest radon concentration (300 Bq m -3 ) considering all the former indoor radon measurements. The radon distribution in the school building was investigated afterwards radon mitigation procedures were undertaken. (author)

  4. Radon emanations: a tectonic indicator in the Dharamsala area of Himalayan Frontal Zone, Himachal Pradesh

    International Nuclear Information System (INIS)

    Dhar, Sunil

    2013-01-01

    While throughout the length of Himalayas good exposures of the tertiary and the pre-Tertiary occurs occur, but in the Dharamsala and its adjoining areas of Himalayan Frontal Zone, tertiary and the pre-Tertiary rocks are present within a short aerial distance. This diverse lithology within a short span of distance along with the structural heterogeneity has made this region of Himalayas tectonically significant. This unique tectano-stratigraphic configuration of this area is primarily attributed to the major faults and folds which are either along the Himalayan trend or transverse to it. Interestingly the area is seismically active and falls in the High Seismic Zone-V of seismic atlas of India. It has been observed that regional thrusts systems and lineaments, control seismo-tectonic activity in the region. Contemporary geomorphological re-adjustments in the form of erosion intensity (meandering/drainage pattern or river incision) as a result of active nature of lineaments have been observed. In addition, due to the rampant seismic activity in the region especially in year 2013, the area has witnessed a sequence of landslides. The study further reveals these the signatures of morphological adjustment coincide with zones which have deciphered higher proportions of radon activity. Because radon transport through rocks is largely dependent on the geology of the area, which includes lithology, compaction, porosity structural/tectonic features like thrusts, faults, joints and fractures. Occurrences of landslide the thrust zones, coupled with high emanations of radon (both in soil and water) alludes attention towards dominant role of neo-tectonic activity in the area. (author)

  5. White sand potentially suppresses radon emission from uranium tailings

    Science.gov (United States)

    Abdel Ghany, H. A.; El Aassy, Ibrahim E.; Ibrahim, Eman M.; Gamil, S. H.

    2018-03-01

    Uranium tailings represent a huge radioactive waste contaminant, where radon emanation is considered a major health hazard. Many trials have been conducted to minimize radon exhalation rate by using different covering materials. In the present work, three covering materials, commonly available in the local environment, (kaolin, white sand and bentonite) have been used with different thickness 10, 15, and 20 mm). 238U, 232Th, 40K and the radon exhalation rate were measured by using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector and solid state nuclear track detectors (CR-39). Radon exhalation rate, calculated before and after covering, ranged from 2.80 ± 0.14 to 4.20 ± 0.21 Bq m-2 h-1, and from 0.30 ± 0.01 to 4.00 ± 0.20 Bq m-2 h-1, respectively. Also, the attenuation coefficients of different covering materials and radon emanation were calculated. The obtained results demonstrate that covering of uranium tailings by kaolin, white sand and bentonite has potentially minimized both the radon exhalation rate and the corresponding internal doses.

  6. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  7. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  8. Review of high-sensitivity Radon studies

    Science.gov (United States)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  9. Certain problems about radon. Pt.1

    International Nuclear Information System (INIS)

    Wu Huishan

    2005-01-01

    Discussion has been made on certain pointed out problems which presently influence the work and development of radon survey, and certain specific problems have been put forward which should be paid much attention and taken measures. Among the problems, some come from cognition, i.e. two kinds of balance and examination about radon, chief culprit of radon's daughter, multiply control and migration, the significance of radon in the water and soil, important standards for designing and evaluating the sites of construction projects, thoughts on the mechanism of the harm of radon and its daughters, diseases causing of both high and low radon, difficulty of emanation of indoor radon, normal low radon from natural marble; and others must be resolved specifically, i.e. establishment of national radon standards as quickly as possible, improvement of on-the-spot examination technique, national-wide radon survey with multiple disciplines and technology, the research on the mechanism of radon's harm and the establishment national radon study center. (authors)

  10. Radon sources emanation in granitic soil and saprolite

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

    1993-08-01

    Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

  11. Study of the effects of atmospheric parameters on ground radon concentration by track technique

    International Nuclear Information System (INIS)

    Tidjani, Adams

    1988-01-01

    Radon emanation was continuously monitored for 24 months, accompanied by measurements of atmospheric parameters. Integrated measurments of radon concentrations have been performed with LR-115 cellulose nitrate track detectors. The monitoring was conducted at 16 sites distributed around the Dakar University area. Observed changes in radon concentration are interpreted as being caused by changes in meteorological conditions and ocean tides. (author)

  12. A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects

    International Nuclear Information System (INIS)

    Tayyeb, Z.A.; Kinsara, A.R.; Farid, S.M.

    1998-01-01

    Several studies have shown that water-borne 222 Rn contributes to indoor air concentrations. A passive radon measurement method was employed to determine radon activity concentrations in the water of Jeddah city (Saudi Arabia). Tap water, flushing water and drinking water, including natural mineral water, artificial mineral water and distilled water, have been investigated for their radon concentrations. It is observed that the radon concentration in natural mineral water samples is the highest and that in flush water, it is the lowest. From these measurements, the corresponding annual effective dose for the stomach and the lung are determined. It is found that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanated from tap water and flushing water. Moreover, it is also seen that the annual effective dose resulting from inhalation of radon emanated from tap water and flushing water is negligible compared to the total annual effective dose for indoor radon in Jeddah. (author)

  13. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  14. Indoor radon measurements in the Women College, Dammam, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qahtani, Mona [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Passive radon dosimeters, based on alpha particle etched track detectors, were used in the indoor radon survey of the College of Science for Girls in Dammam, Saudi Arabia. A total of 95 dosimeters were distributed in the academic departments and the administrative building in the College. The exposure time in all the buildings was one complete lunar year in the period October 2001-October 2002 to get the average annual indoor radon concentration. All the buildings were constructed with ready-made concrete, except the administrative building which constructed with ordinary concrete bricks. A significant difference in the average indoor radon concentrations in the two types of buildings was found. The average indoor radon concentration in the ready-made concrete buildings was 6+/-2Bqm{sup -3} whereas that for the ordinary concrete brick building was 24+/-2Bqm{sup -3}. This could be due to the fact that ready-made concrete has a significantly less voids for the radon to emanate compared with ordinary concrete bricks. The indoor radon concentration in the ground floor is slightly higher than that in the first and second floors.

  15. Comparison of techniques active and passive in measurement of radon concentration ("2"2"2Ra) in the air

    International Nuclear Information System (INIS)

    Oliveira, Evaldo Paulo de

    2017-01-01

    The purpose of this work was to perform a study comparing radon concentration measurements between two techniques used to measure radon gas in the air: one using LEXAN polycarbonate plastic detectors and the other the continuous monitor in AlphaGUARD passive mode. The concentrations of radon gas within radon emanation chambers were measured using calibrated / traceable sources generating "2"2"2Rn through "2"2"6Ra. In calibration the 'calibration factor' or 'sensitivity' was determined for the LEXAN plastic detector. The calibration work of the dosimeters was carried out at the Radon Laboratory of the Environmental Analysis Division - DIRAD IRD/CNEN and at the Natural Radioactivity Laboratory (LRN) of the Center for the Development of Nuclear Technology (CDTN/CNEN). The 'calibration factor' or 'sensitivity' was found to be 32.34 (traits.cm"-"2)/(kBq.d.m"-"3). This factor was used to determine the radon concentration measured by the LEXAN plastic detectors. Also in the calibration, the efficiencies for LEXAN (94.1% ± 9.7%) and AlphaGUARD (92.5% ± 7.2%) were determined. The statistical analysis used showed good parity in the results of the measurements. It was concluded that the results were satisfactory and will serve as a good reference for studies related to the radon air meters used in this work. (author)

  16. The carrying out of a radiometric analysis method applicable to Moroccan phosphates. Study of the uranium amounts, of the U/Ra equilibrium ratio and of 222-radon emanation rates

    International Nuclear Information System (INIS)

    Choukri, A.

    1987-01-01

    A radiometric analysis method for the determination of the uranium and the radium amounts in Moroccan phosphate has been carried out, using NaI(Tl) scintillator to detect gamma radiation of 238-U and 235-U radioactive daughters. The analysis results permit to calculate the U/Ra equilibrium ratio and the emanation rates of 222-Rn versus temperature. The U/Ra disequilibria permit to detect the secondary contribution of a recent uranium. The 222-Rn emanation rates are useful in the evaluation of the radiological hazards related to the phosphate radioactivity. This method was applied to study the phosphate Ganntour deposit and showed that the uranium content ranges from 25ppm to 350ppm, that the U/Ra ratio ranges from 0.6 to 2.2 with an exceptional value of 4.5. The emanation rate of natural radon is between 0% and 27%. The radon forced emanation by heating or by adding different acids has also been studied. The phosphate attack with H 2 SO 4 and HNO 3 , using the analysis method, showed that a maximum degassing appears at 0.9cc/g for H 2 SO 4 and 1.1cc/g for HNO 3 . By adding H 2 SO 4 , 30% of uranium (without radium) passed in the solution and by adding HNO 3 uranium and radium are divided among the solid and the liquid phases. 22 refs., 49 figs., 25 tabs. (author)

  17. Radon Measurements in Vojvodina

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Todorovic, N.; Veskovic, M.

    2013-01-01

    Recent analyses of epidemiological studies of lung cancer risk from residential exposures demonstrate a statistically significant increase per unit of exposure below average annual concentrations of about 200 Bq/m 3 . Indoor radon measurements performed in Novi Sad in about 400 houses and flats are presented and discussed in this paper. By measuring gamma-activity of radon daughters, radon activity concentration was determined to be 50 Bq/m 3 . In Vojvodina region indoor radon levels were measured by alpha track detectors CR-39 on about 3000 locations during the winter seasons in the period of three years (2003-2005). The main aim of the present study was to explore the critical group of population for radon exposure and to estimate maximal annual doses. Existing radon maps which identify regions with elevated radon levels will improve data collection and analysis for the future radon campaigns. Collaboration on the JRC program of European indoor radon map and implementation of grid system are also discussed.(author)

  18. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    caused by the homogenous radon concentrations measured in the Laxemar area. The radon concentrations in near surface water measured in Forsmark showed large variability with both low and high radon concentrations. This large variability in radon concentration could not be explained by the flow pattern of the groundwater since no clear correlation between radon concentration and recharge/discharge classification was found. The radon concentration was also measured at different depths in the soil profile at three locations in the Forsmark area. The results showed large differences with increasing radon concentration with increasing depth. This gradient of radon concentration can be explained largely by the radon emanation potential of the local soil type at different depths. High radon concentrations were found in wells with higher radon emanation potential like till and bedrock. These observations showed the importance of the radon emanation potential of the local soil for the radon concentration in groundwater. The main purpose of this study has been to evaluate the use of radon as a tracer for groundwater flow patterns. The method is based on the ingrowth of radon from its progenitor radium according to the law of radioactive decay. According to this law the radon concentration in groundwater will reach equilibrium conditions after approximately 30 days in contact with the surrounding soil. The equilibrium radon concentration of the near surface groundwater was measured at several location in the Forsmark area and a range of the steady state radon concentration was calculated. The measured steady state radon concentration was then used to evaluate the radon concentrations measured in near surface groundwater in the area. A recharge/discharge classification of the wells was done based on the range of steady state radon concentration and the measured radon concentrations in groundwater. All wells with radon concentration below the steady state radon concentration were

  19. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  20. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners

  1. Evaluation of experiences in long-term radon and radon-daughter measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1982-12-01

    Pacific Northwest Laboratory (PNL) is performing side-by-side measurements of radon and radon daughter concentrations using several instruments and techniques, and is comparing these measurements with side-by-side measurements made by other investigators at other locations. The standard deviation of the differences between the (natural) logarithms of the Terradex Track Etch radon concentrations and the logarithms of the Radon Progency Integrating Sampling Units (RPISU) radon daughter concentrations (S.D.-ln) measured in 50 buildings in Edgemont, South Dakota, was 0.37. Using this S.D.-ln, it can be calculated that if the Track Etch radon daughter concentration is 0.010 WL there should be only a 14% probability that the RPISU average would be greater than 0.015 WL, and only a 3% probability tht the RPISU average would be greater than 0.020 WL. If buildings had been cleared from remedial action when the Track Etch averages were less than 0.10 WL, then about 61% of the buildings would have been cleared from remedial action, and only a few percent of these buildings would have actually had average RPISU concentrations greater than 0.015 WL. The S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements made by ALARA at Grand Junction, the PERM radon measurements and the MOD-225 radon daughter measurements made by Mound Facility at Canonsburg and Middlesex, and the PERM and Track Etch radon measurements made by Mound Facility at Salt Lake City were similar to the S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements at Edgemont

  2. Uranium and radon surveys in western Himalaya

    International Nuclear Information System (INIS)

    Virk, H.S.

    1997-01-01

    The water samples from mountain springs, streams and river systems in the western Himalaya were collected and analysed in the laboratory for uranium and radon contents. It is observed that the Himalayan river system is conspicuous by its high dissolved uranium and radium concentration. The water samples contain from 0.89 ppb to 63.4 ppb of uranium and from 34 Bq/I to 364 Bq/I of radon. The radon emanation in soil is measured by the track-etch method, emanometry and alpha-logger technique. The daily and long-term variation of radon was monitored in some mineralized zones of Himachal Pradesh (HP) state with high uranium content in the soil. The maximum values of radon are recorded in Chhinjra, Rameda, Samurkala and Kasol areas of HP. (author)

  3. Standardization of radon measurements

    International Nuclear Information System (INIS)

    Matuszek, J.M.; Hutchinson, J.A.; Lance, B.H.; Virgil, M.G.; Mahoney, R.J.

    1988-01-01

    Radon escaping from soil into homes appears to present the single greatest source of radiation exposure that most people will ever face. Measurement protocols for the relatively inert gas inextricably link the method of collection with the counting of the specimen. The most commonly used methods depend on the measurement of dislocation sites on plastic α-track detectors or on the adsorption of radon onto activated charcoal for subsequent counting of the γ-rays produced by decay of the radon progeny. The uncertainties inherent to the radon-measurement methods used commercially in the United States are far greater than those for measurements of other environmental radionuclides. The results of this preliminary study raise doubts as to whether existing proficiency-testing programs can provide assurance that radon-measurement methods are representative of actual conditions in any dwelling. 17 refs., 1 figs., 4 tabs

  4. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Radon measurements over a natural-gas contaminated aquifer

    International Nuclear Information System (INIS)

    Palacios, D.; Fusella, E.; Avila, Y.; Salas, J.; Teixeira, D.; Fernández, G.; Salas, A.; Sajo-Bohus, L.; Greaves, E.; Barros, H.; Bolívar, M.; Regalado, J.

    2013-01-01

    Radon and thoron concentrations in soil pores in a gas production region of the Anzoategui State, Venezuela, were determined by active and passive methods. In this region, water wells are contaminated by natural gas and gas leaks exist in the nearby river. Based on soil gas Radon data surface hydrocarbon seeps were identified. Radon and thoron concentration maps show anomalously high values near the river gas leaks decreasing in the direction of water wells where natural gas is also detected. The area where the highest concentrations of 222 Rn were detected seems to indicate the surface projection of the aquifer contaminated with natural gas. The Radon/Thoron ratio revealed a micro-localized anomaly, indicating the area where the gas comes from deep layers of the subsoil. The radon map determined by the passive method showed a marked positive anomaly around abandoned gas wells. The high anomalous Radon concentration localized near the trails of ascending gas bubbles at the river indicates the zone trough where natural gases are ascending with greater ease, associated with a deep geological fault, being this the main source of methane penetration into the aquifer. It is suggested that the source of the natural gas may be due to leaks at deep sites along the structure of some of the abandoned wells located at the North-East of the studied area. - Highlights: ► High Radon/Thoron ratios were localized near the natural-gas emanations in a river. ► Natural gases are ascending trough a deep geological fault. ► Apparently, the radon anomaly shows the site where natural gas enters the aquifer. ► Natural gas source may be related to leaks in the structure of abandoned gas wells

  6. Natural radioactivity and radon specific exhalation rate of zircon sands

    International Nuclear Information System (INIS)

    Righi, S.; Verita, S.; Bruzzi, L.; Albertazzi, A.

    2006-01-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using γ-spectrometry. Methods used for determining radon consisted in determining the 222 Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of 238 U and 232 Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The 222 Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  7. Radon concentration and exhalation measurements with semiconductor detector and electrostatic precipitator working in a closed circulation system

    International Nuclear Information System (INIS)

    Wojcik, M.; Morawska, L.

    1982-01-01

    An apparatus is described and a method presented for the determination of concentration of radon emanated from solid and liquid samples. In this method an object or a sample of air is closed in an hermetically sealed chamber. The air contaminated by radon and its daughters is circulated in a closed system a few times through an electrostatic precipitator mounted in one housing with a semiconductor Si Li detector. The concentration of radon is determined by the alpha activity measurement of its daughters. The sensitivity of the apparatus is very high. While calculating a radon concentration from an activity measurement of RaA (fast method) the sensitivity is about 0.07 pCi/l and when measuring the activity of RaC' (slow method) it is 0.008 pCi/l. Due to the application of an electrostatic precipitator and a silicon detector it is possible to perform alpha spectrometric measurements and thus separate activities of RaA, RaC', and ThC and to calculate 222 Rn or 220 Rn concentrations. The efficiency of RaA, RaB, RaC, ThB and ThC collection is constant, due to the method involving the circulation of the air through the electrostatic precipitator several times. (author)

  8. Radon as a groundwater tracer in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Grolander, Sara

    2009-10-01

    caused by the homogenous radon concentrations measured in the Laxemar area. The radon concentrations in near surface water measured in Forsmark showed large variability with both low and high radon concentrations. This large variability in radon concentration could not be explained by the flow pattern of the groundwater since no clear correlation between radon concentration and recharge/discharge classification was found. The radon concentration was also measured at different depths in the soil profile at three locations in the Forsmark area. The results showed large differences with increasing radon concentration with increasing depth. This gradient of radon concentration can be explained largely by the radon emanation potential of the local soil type at different depths. High radon concentrations were found in wells with higher radon emanation potential like till and bedrock. These observations showed the importance of the radon emanation potential of the local soil for the radon concentration in groundwater. The main purpose of this study has been to evaluate the use of radon as a tracer for groundwater flow patterns. The method is based on the ingrowth of radon from its progenitor radium according to the law of radioactive decay. According to this law the radon concentration in groundwater will reach equilibrium conditions after approximately 30 days in contact with the surrounding soil. The equilibrium radon concentration of the near surface groundwater was measured at several location in the Forsmark area and a range of the steady state radon concentration was calculated. The measured steady state radon concentration was then used to evaluate the radon concentrations measured in near surface groundwater in the area. A recharge/discharge classification of the wells was done based on the range of steady state radon concentration and the measured radon concentrations in groundwater. All wells with radon concentration below the steady state radon concentration were

  9. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  10. Radon and its measurement

    International Nuclear Information System (INIS)

    Penzo, Silvia

    2006-03-01

    The work reviews the topics concerning the problem of the indoor radon and its measurement. The initial stage deals with the general features of radon, from the historical remarks about its discovery to the formation mechanisms in the soil, then passing to describe the transport processes that lead the radon to enter into the buildings. The mean radon concentration distribution among the Italian regions is reported and compared with the situation in the other countries of the world. A particular importance is given to present the national law concerning the radioprotection from the natural sources of ionizing radiations; a paragraph is completely devoted to this argument and to discuss the differences between the Italian approach and the regulations applied in the Test of Europe for both workplaces and dwellings. Chapter 3 describes the different detectors and methods to measure the radon and its short mean live decay products concentrations, together with the operative procedures and guides provided by the Italian law and by the international bodies. As an example of typical radon passive measurement device. the new ENEA detector developed at the Institute of Radioprotection is presented and discussed. Appendix 1 is entirely devoted to discuss the main remedial actions for decreasing the radon indoor concentration both for old and new buildings; appendix 2 reports the main quantities related to radon and radioprotection [it

  11. Improved thomas formula for radon measurement

    International Nuclear Information System (INIS)

    Ji Changsong

    1991-06-01

    The FT 648 type portable absolute radon meter has been developed and the designing principle of this instrument is introduced. The absolute radon meter differs from relative radon meter. By using structure parameters, operating parameters and readout of this instrument, the radon content of measured gas is obtained directly without calibration in advance. Normally, the calibration is done by a standard radioactive gaseous source of which the radon concentration is known. The systematic error is removed by adding filter-efficiency Σ, α self-absorption correction β, energy spectrum correction S, geometric factor Ω of probe and gravity dropping correction factor G to the Thomas formula for radon measurement of two-filter method. The atmosphere radon content, which is given in hour-average, in Beijing area was measured by FT 648 type absolute radon meter. The measurement lasted continuously for several days and nights and a 'saddle shape' of radon content-time curve was observed. The day's average radon content was 8.5 Bq·m -3

  12. Environmental radon monitoring in Khartoum dwellings

    International Nuclear Information System (INIS)

    Mohamed, I. S.

    1992-03-01

    Radon is a naturally occurring radioactive gas that is released into the surrounding environment. Existence of this gas indoors ( house and dwelling ) mainly depends on its source in the building materials, the soil beneath the buildings and the ventilation of the rooms. In this study the technique of ground activated charcoal and gamma spectrometry system are used for Radon measurement. This technique has been calibrated and optimized. The main reason for radon determination in house comes from the fact that Radon and its daughters are directly responsible of lung cancer and some kidney diseases. The measurements, in this study, have been performed for Khartoum indoors. 644 rooms have been measured. These rooms were sorted out into groups according to their building material as well as the ventilation of each room. The measurements covered the whole year ( the three main seasons ) to see the variation of Radon level, since its emanation is affected by the temperature. Also monthly outdoor measurements have been performed in different locations in Khartoum. On the basis of the results obtained, the radiation dose received by the public due to the inhalation of this gas has been calculated. The average annual effective dose was found to be 1.2 m Sv. (author). 33 refs., 17 tabs., 24 figs

  13. A study of radon activity inside some houses in Bangladesh

    International Nuclear Information System (INIS)

    Islam, G.S.; Islam, M.A.; Farid, S.M.; Rahman, A.

    1988-01-01

    The solid state nuclear track detector CR-39 has been used for long term measurements of the radon-222 emanation from building materials and the resultant activity inside houses in Bangladesh. Particular attention is paid to a special type of house with thick walls made entirely of mud. The radon-exhalation rate of the walls of these mud-built houses is found to be consistently higher than that of brick-built houses. (author)

  14. Development and application of a model to calculate the distribution of radon in houses

    International Nuclear Information System (INIS)

    Haider, B.; Papamokos, E.; Ferron, G.; Peter, J.; Unverfaerth, L.

    1990-01-01

    In order to produce a radon profile of the examined houses, an electronic measuring process was used to determine the concentration of radon decomposition products. The measurements were made inside flats with the doors closed, in vertical air exchange between the cellars and the storeys of houses and in the cellar itself. The measured decomposition product and measured gas concentrations show that, apart from the cellar floor, part of the building material makes a considerable contribution to emanation of radon and thoron. It was found that a model for calculating the loading of the inhabitants of a house with radon is not yet available due to the complicated flat geometry and the activities of the inhabitants. (DG) [de

  15. Radon anomalies along faults in North of Jordan

    International Nuclear Information System (INIS)

    Al-Tamimi, M.H.; Abumurad, K.M.

    2001-01-01

    Radon emanation was sampled in five locations in a limestone quarry area using SSNTDs CR-39. Radon levels in the soil air at four different well-known traceable fault planes were measured along a traverse line perpendicular to each of these faults. Radon levels at the fault were higher by a factor of 3-10 than away from the faults. However, some sites have broader shoulders than the others. The method was applied along a fifth inferred fault zone. The results show anomalous radon level in the sampled station near the fault zone, which gave a radon value higher by three times than background. This study draws its importance from the fact that in Jordan many cities and villages have been established over an intensive faulted land. Also, our study has considerable implications for the future radon mapping. Moreover, radon gas is proved to be a good tool for fault zones detection

  16. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  17. Recalibration of the 226Ra emanation analysis system

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.; Markun, F.

    1982-01-01

    The 226 Ra emanation system was found to require recalibration. The gain of the various counting systems was established to about +-0.5%. The variance introduced into the analysis by multiple counting systems was low and corresponded to a fractional standard deviation of +-0.5%. The variance introduced into the analysis by both multiple counting systems and multiple counting chambers needs to be redetermined but is less than a fractional standard deviation of +-2%. The newly established calibration factor of 5.66 cpm/pg 226 Ra is about 6% greater than that used previously. The leakage of radon into the greased fittings of the emanation flask which was indicated in an earlier study was not confirmed

  18. From the beginning of radon therapy

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1986-01-01

    The revival of the radon therapy in several countries since the end of the Second World War was the occasion for a review to the beginnings of this special form of radiotherapy. Initially the early history of radioactivity research is described which among others led to the detection of the emanation as a daughter product of radium. After this followed the evidence of the emanation as a constituent of the natural atmosphere. The establishment of its presence in spring-waters led to the knowledge that there are more than average concentrations of emanation in several mineral springs. In the second part of the article the therapeutic use of the natural radon springs initiated by this is described in its development and importance for Austria (Badgastein, St. Joachimsthal) and Germany (Bad Brambach) up to the beginning of the First World War. (author)

  19. Radon risk in Alpine regions in Austria: Risk assessment as a settlement planning strategy

    International Nuclear Information System (INIS)

    Gruber, V.; Baumgartner, A.; Seidel, C.; Maringer, F. J.

    2008-01-01

    Soil gas radon measurements complement indispensable and well-established radon indoor measurements in Austria. Radon in soil gas is a result of geochemical conditions as well as of geology, mineralogy, geophysics and meteorology. Therefore, geological factors can help to predict potential indoor radon concentrations via soil gas. Soil gas radon measurements in well-defined geological units give an estimate of local and regional radon hazards and build the basis for radon risk maps, which could be used for land-use planning and urban development. The creation of maps makes an important contribution to health care. For this purpose, several research projects were carried out in Austria. On the one hand, a study was already conducted in Lower Austria to determine the influence of meteorological and soil physical parameters on radon concentrations in soil gas and to evaluate soil gas radon concentrations with a radon emanation and migration model. On the other hand, radon measurements on different geomorphologic formations in the Austrian Alps, which are potential settlement areas, are of special interest. (authors)

  20. Radon concentration in spring and groundwater of Shillong agglomeration

    International Nuclear Information System (INIS)

    Walia, D.; Wahlang, P.; Lyngdoh, A.C.; Saxena, A.; Sharma, Y.; Maibam, D.

    2010-01-01

    Water samples in the month of February 2010 to April 2010 are collected from 06 springs (sample code S1-S6) and 18 wells (sample code W1-W18) of the Shillong agglomeration in radon-tight 1L bottles, considering the geological structures, nearness to the steep slopes and accessibility of the water sources. The measurement of radon in water samples is carried out using ionization chamber Alphaguard along with an accessory (fabricated in the laboratory). Initially, background radon of the empty set-up is measured for 30 minutes before every water-sample measurement. The water samples are placed in a closed gas cycle in degassing vessel and then radon is expelled using the pump and magnetic stirrer. The security vessel is connected with the degassing vessel to minimize the inflow of water vapour to the Alphaguard. The measuring cycle is repeated 3 times in order to obtain a better precision. The arithmetic mean of the radon concentrations are used for calculating the annual effective dose for ingestion of water from each bore well and spring. The pH, electrical conductivity and temperature are measured so as to correlate the meteorological parameters with the radon emanation

  1. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  2. A study of radon variation in dwelling during 1988

    International Nuclear Information System (INIS)

    Shaikh, A.N.; Ramachandran, T.V.; Muraleedharan, T.S.; Subbaramu, M.C.

    1989-01-01

    Natural radioactivity due to radon and its progeny levels indoors contributes significantly to the total radiation to man. The main source of radon and its progeny in a dwelling is the emanation of radon gas from soil. The temperature and ventilation vary in a dwelling during the year. These parameters influence the indoor radon levels. The seasonal variation of radon was studied in a dwelling as well as in the outside air. The filter paper method and alpha counting, and the solid state track detector technique and track counting were used to study the radon levels. The geometric mean of radon daughters concentrations were 0.5 mWL and 0.8 mWL measured by filter-paper method and SSNTD method respectively. The geometric mean of radon concentrations were 6.2 Bqm -3 and 10.0 Bqm -3 by filter-paper method and SSNTD method respectively. (author). 3 figs., 3 tabs., 13 refs

  3. Determination of risk zones, due to radon : prospecting and analysis of spring water in Wallonia

    International Nuclear Information System (INIS)

    1990-01-01

    The emanation of radon from geologic formations can be detected by analyzing the ground water at the emergence of springs. Two measuring methods are described and compared : the Lucas method and the liquid scintillation method. Although more sampling has to be done, a first conclusion can be drawn from the results. The link between the radium concentration in some geologic formations and the determination of risk zones for radon contamination can be proved through radon measurements in water. 9 figs., 6 tabs., 2 charts (H.E.)

  4. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    International Nuclear Information System (INIS)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A.

    2017-01-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD TM detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  5. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A., E-mail: baarreth@gmail.com, E-mail: allan_perna@hotmail.com, E-mail: daninarloch@hotmail.com, E-mail: aviadelclaro@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: spaschuk@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica e Departamento Academico de Construcao Civil

    2017-07-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD{sup TM} detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  6. Determination of radon exhalation rates from tiles using active and passive techniques

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-01-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m -2 h -1 , which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile

  7. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  8. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    Science.gov (United States)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is

  9. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  10. Transport properties and microstructure changes of talc characterized by emanation

    Czech Academy of Sciences Publication Activity Database

    Pérez-Maqueda, L. A.; Balek, Vladimír; Poyato, J.; Šubrt, Jan; Beneš, M.; Ramírez-Valle, V.; Buntseva, I.M.; Beckman, I. N.; Pérez-Rodríguez, J. L.

    2008-01-01

    Roč. 92, č. 1 (2008), s. 253-258 ISSN 1388-6150 R&D Projects: GA MŠk LC523 Grant - others:MST(ES) MAT 2005-04838 Institutional research plan: CEZ:AV0Z40320502 Keywords : DTA emanation thermal analysis * microstructure changes * radon diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 1.630, year: 2008

  11. Measuring your radon risk

    International Nuclear Information System (INIS)

    Mackmurdo, R.

    1994-01-01

    In its annual report for 1992/93, the NRPB has warned that tens of thousands of UK employees may be exposed to high levels of radon at work. In addition to those who work underground, employees at risk of radon-induced lung cancer are typically those who spend long periods indoors. This article reviews the implications for all employers especially those in low or unknown levels of radon who resist taking measurements in the belief that by not measuring, they are not liable. (UK)

  12. Quality assurance for radon measurements in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Foerster, E.; Schmidt, V.

    2005-01-01

    Full text: Radiation protection regarding work activities at workplaces with naturally occurring radiation has been regulated in the German Radiation Protection Ordinance. Regulations refer only to workplaces where the presence of natural radiation leads to a significant increase in the exposure of workers. These workplaces were identified in the following working areas with enhanced exposures to radon-222: underground mines, including visitor mines and show caves; radon-spas and galleries; water supply and distribution industries. Presently, regulations are being initiated by the German government to limit the exposures to radon in homes. For radon measurements at workplaces passive radon devices for individual monitoring as well as active measuring systems for workplace monitoring can be used. However, passive radon devices are preferred for radon measurements in homes because of low costs and availability in large quantities. To assure the quality of radon measurements the German Federal Office for Radiation Protection (BfS) has established annual interlaboratory comparisons for passive radon devices. The comparisons are carried out in the BfS radon calibration laboratory accredited by the German Calibration Service. Passive radon devices which use solid state track detectors, electrets or activated charcoal can be submitted. Approved radon services which offer radon measurements to determine radon exposure in homes and at workplaces have to pass the comparisons successfully. (author)

  13. A search for correlation between seismicity and radon anomaly in hot springs

    International Nuclear Information System (INIS)

    Amin, B.S.; Rama

    1982-01-01

    Measurements of radon contents of the exholved gas emanating from several hot water springs along the Western Coast of India are reported here. Concentration of radon in gas phase of individual sprinqs varied in general, directly with the surface temperature of the water emerging from the respective springs, and showed little variation with time. Radon measurements were carried out continuously for about two years at two hot springs located at Ganeshpuri and Sathivali in the coastal area of Northern Maharashtra. The distant tremors did not cause any variation in the radon content. There was no marked local seismic activity during the period of observations, and the levels of radon stayed essentially constant. The measurements were also carried out at a hot spring in Assam, for about 8 months. These also did not show any significant variation; this period too lacked any marked local seismicity. (author)

  14. Determination of radon exhalation rates from tiles using active and passive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-06-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m{sup -2} h{sup -1}, which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile.

  15. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  16. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  17. The role of house surveys in geological radon potential mapping

    International Nuclear Information System (INIS)

    Ball, K.

    1997-01-01

    Because radon levels vary widely between apparently identical buildings on the same geological unit, no map can predict the radon level in an individual building. Maps can, however, give the probability that a building in a particular locality is above a threshold of radon concentration such as a reference or action level. The probability may be calculated for a particular building type or for a mixture of building types. In the latter case the probability is in effect an estimate of the proportion of buildings above the threshold level. Alternatively maps can provide estimates of the mean radon levels in buildings by area. Maps showing the geographical variation in probability that new or existing building will exceed a radon reference level are used to prevent excessive exposures to radon. The information may be used in various ways, such as to target information campaigns encouraging measurement of radon levels in homes or to modify regulations for new buildings. The data which are used to provide the estimates of the proportion of buildings above a threshold may be radon measurements results from a sample of buildings, or may be indirect indicators such as ground radium concentrations, emanation coefficients and permeability measurements. Consistency in radon measurement protocols and detailed positional information are prerequisites for mapping radon prone areas based upon house data. Grouping building radon measurements by geological formation and superficial cover can produce radon potential maps which are more spatially accurate than grid square maps and more accurate in estimating numbers of homes affected than mapping based only on measuring geological and pedagogical properties

  18. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  19. Application of CR-39 to radon measurement

    International Nuclear Information System (INIS)

    Miyake, Hiroshi

    1988-01-01

    CR-39, an ally diglycol carbonate, has recently come into wider use as material for solid-state track detector. Etching with NaOH or KOH solution allow CR-39 to develop extremely clear etch pits attributed to alpha rays. The most widely used method for measuring radon concentration employs a plastic cup with a solid-state track detector mounted at its bottom to detect alpha rays resulting from radon or its daughters that disintegrate within or on the wall of the cup. Simple in mechanism and low in cost, this method is suitable for such a case where the radon concentration distribution over a wide area has to be measured by using a large number of devices. The concentration of radon alone can be measured with the aid of a filter attached to the mouth of the cup to remove the daughters of radon and thoron. The simplest and most effective way of improving the sensitivity of a solid-state track detector for radon concentration measurement is to electrostatically collect daughters resulting from decay of radon onto the surface of the detector. Another method widely used to determine the radon concentration is to measure the concentration of the radon daughters instead of direct measurement of the concentration of radon itself. (Nogami, K.)

  20. Radon in service and industrial premises (rooms) of Tashkent

    International Nuclear Information System (INIS)

    Mirahmedova, N.M.; Akimov, V.A.; Mullagalieva, F.G.

    2004-01-01

    Full text: The radon map of the Tashkent is received in some approach on the basis of 800 surveyed inhabited and industrial premises, are designed average for one year radiating doze come on the average city dweller. Is paid attention to huge medical-biological danger natural and technogenesis of radon emanations, the question on acceptance of the special state program 'Radon' is put

  1. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    Jilek, K.; Brabec, M.

    2004-01-01

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  2. Probabilistic neural network algorithm for using radon emanations as an earthquake precursor

    International Nuclear Information System (INIS)

    Gupta, Dhawal; Shahani, D.T.

    2014-01-01

    The investigation throughout the world in past two decades provides evidence which indicate that significance variation of radon and other soil gases occur in association with major geophysical events such as earthquake. The traditional statistical algorithm includes regression to remove the effect of the meteorological parameters from the raw radon and anomalies are calculated either taking the periodicity in seasonal variations or periodicity computed using Fast Fourier Transform. In case of neural networks the regression step is avoided. A neural network model can be found which can learn the behavior of radon with respect to meteorological parameter in order that changing emission patterns may be adapted to by the model on its own. The output of this neural model is the estimated radon values. This estimated radon value is used to decide whether anomalous behavior of radon has occurred and a valid precursor may be identified. The neural network model developed using Radial Basis function network gave a prediction rate of 87.7%. The same was accompanied by huge false alarms. The present paper deals with improved neural network algorithm using Probabilistic Neural Networks that requires neither an explicit step of regression nor use of any specific period. This neural network model reduces the false alarms to zero and gave same prediction rate as RBF networks. (author)

  3. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, D.; Kumar, Rajeev; Singh, A.K.; Prasad, Rajendra E-mail: aptolrp@amu.up.nic.in

    2001-11-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  5. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  6. Effects of barium chlorine treatment of uranium ore on 222Rn emanation and 226Ra leachability from mill tailings

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Church, S.L.; Whicker, F.W.

    1985-01-01

    The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on 222 Rn emanation from mill tailings, 226 Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for 226 Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the 226 Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced

  7. Determination of the emanation coefficient of radon for the South Karelia soil

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, V V

    1975-01-01

    Measurements have been obtained for so-called 'reference' plots which are used for the calibration of airborne gamma-spectrometric instruments - in all about 200 spot observations, not counting the results of continuous survey taken while in motion. The gamma-spectrometric measurements were carried out taking into account as far as possible a number of disturbing factors, such as the fluctuations in soil moisture, atmospheric precipitation, variations in the atmospheric radon concentration due to the temperature inversions.

  8. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Kelleher, K.; McLaughlin, J.P.; Fenton, D.; Colgan, P.A.

    2006-01-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  9. Measurement of radon concentration in water using the portable radon survey meter.

    Science.gov (United States)

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be water was >20 Bq l(-1).

  10. New devices for radon measurements

    International Nuclear Information System (INIS)

    Sevostyanov, V.N.

    2004-01-01

    This work includes the description of two new devices for radon surveys developed by the authors and produced in Kazakhstan. The first appliance is 'Ramon-Radon-01' used to measure 222 Rn radon in various mediums such as air, water, soil, and radon exhalation. The major advantage of the appliance lies in the absence of radioactive pollution in it after measurements. The appliances widely used in the CIS such as 'RAA-01', 'Alpharad' (produced by 'MTM Zaschita', Russia) and 'Alphaguard' (Germany) take samples directly to the measuring camera. For instance, the activity concentration of samples after they are taken by 'RAA-01' and 'Alpharad' is measured by means of electrostatic precipitation of RaA ( 218 Po) atoms to the square of semiconductor detector with subsequent registration of RaA alpha decay. The obvious disadvantage is that the subsequent measurement of relatively small 222 Rn activity concentration values after great values of 222 Rn activity concentration have been obtained requires a considerable exposure of the appliance sometimes exceeding 10 hours. Therefore, appliances register a relatively low value of the top measurement range of 20 KBq/m 3 . 'Alphaguard' has similar limitation resulting from precipitation of radon daughter decay products on the walls of ionizing chamber where radon activity concentration is measured. The radioactive lag of 'RAA-01', 'Alpharad' and 'Alphaguard' makes them of little use as well for automatic monitoring in the conditions of abruptly time negative derivatives on change of radon activity concentration. The second advantage is that 'Ramon-Radon-01', as opposed to above described appliances, registers almost zero radioactive lag, thanks to its constructive peculiarities which enable an abrupt increase of top range of measured value up to 5x10 5 Bq/m 3 , only limited by velocity of electron units of the appliance. The third advantage is that measurement discontinuity is determined only by time of full measurement cycle

  11. Radon measurements in soils of Lagoa Real Uranium Province, BA: preliminary results

    International Nuclear Information System (INIS)

    Alves, James V.; Rocha, Zildete; Fuzikawa, Kazuo; Neves, J.M. Correia; Matos, Evando C. de

    2007-01-01

    The Cachoeira U mine in the Lagoa Real Uranium Province is the sole uranium producing mine in Brazil today. The necessity to increase ore reserves in the area is a reality, making any exploration efforts worthwhile to reach this objective. An exploration method based on radon detection in soil gas using the AlphaGUARD PQ2000PRO equipment was tested on two radiometric anomalies (no. 31 and no. 35) in the neighborhood of the mine. The results obtained indicated the technique as a helpful method for exploration of buried radioactive deposits. The method can not only discriminate thoron from radon but as a consequence indicate the original emanation source as well, making the method still more valuable in the search for uranium deposits. (author)

  12. Radon movement simulation in overburden by the 'Scattered Packet Method'

    International Nuclear Information System (INIS)

    Marah, H.; Sabir, A.; Hlou, L.; Tayebi, M.

    1998-01-01

    The analysis of Radon ( 222 Rn) movement in overburden needs the resolution of the General Equation of Transport in porous medium, involving diffusion and convection. Generally this equation was derived and solved analytically. The 'Scattered Packed Method' is a recent mathematical method of resolution, initially developed for the electrons movements in the semiconductors studies. In this paper, we have adapted this method to simulate radon emanation in porous medium. The keys parameters are the radon concentration at the source, the diffusion coefficient, and the geometry. To show the efficiency of this method, several cases of increasing complexity are considered. This model allows to follow the migration, in the time and space, of radon produced as a function of the characteristics of the studied site. Forty soil radon measurements were taken from a North Moroccan fault. Forward modeling of the radon anomalies produces satisfactory fits of the observed data and allows the overburden thickness determination. (author)

  13. A study of the physico-chemical characteristics of a solid radon 222 source

    International Nuclear Information System (INIS)

    Chuiton, G.

    1990-01-01

    A solid radon 222 source is described; it is made of a manganese oxide impregnated acrylic felt disc on which radium 226 is fixed. The disc is incorporated into a scanning device allowing the passage through the felt of a radon 222 free gas (air or nitrogen) previously led to a relative humidity of air near to saturation. At the device outlet, a stable activity of radon 222 is obtained. The preparation, characteristics and radiochemical stability conditions of the 226 radium source are presented. Following a description of the scanning device, the radon 222 emanation coefficient is studied as a function of the relative humidity of air. The reliability of the device is assessed by an uncertainty calculation for the utilisation conditions recommended. Finally, an approach to the physico-chemical processes governing radon 222 emanation rate in the device is set forth [fr

  14. Indoor radon measurement in some adobe houses in the Kassena Nankana area of the Upper East Region

    International Nuclear Information System (INIS)

    Quashie, F. K.

    2010-06-01

    Inhalation of radon and its daughter products is the major contributor to the total exposure of the population to natural radiation. The present study has measured radon gas concentration in some Adobe houses and the soil radon gas around these houses in the Kassena Nankana Area of the Upper East Region by using passive radon indoor dosimeter containing solid-state nuclear track detector (SSNTD) commercially known as LR - 115 (type II, pelliculable). Fifty (50) indoor radon dosimeters were placed in the various Adobe houses in the study area. Additionally, thirty (30) dosimeters were placed in the soil around some of the houses at a depth of 75 cm. Soil radon dosimeters were retrieved after two (2) weeks while the indoor radon dosimeters were retrieved after 78 to 82 days. The detectors were then chemically etched. The digital laser optic system and the spark counter coupled with microfiche reader were used in counting both the indoor and soil detectors respectively. Indoor radon concentration in the study area range from 35.28 Bq/m 3 to 244.22 Bq/m 3 . An active dosimeter known as the radon scout plus which gives instantaneous readings between 1 to 3 hours was also used in nineteen of the adobe houses in the study area and a total average radon concentration of 56.90 Bq/m3 was obtained. The soil radon concentration was also found to range from 2.12 kBq/m 3 to 15.03 kBq/m 3 . A good correlation was found to exist between the soil radon concentration and that of the indoor radon concentration with a correlation coefficient of about 0.61. The mean radon emanation coefficient of some fifteen (15) soil samples monitored was 0.46. The average annual effective dose was estimated to be about 1.66 mSv/y and that of the average annual effective dose using the equilibrium equivalent factor (F) was 1.00 mSv/y

  15. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  16. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Groves-Kirkby, C.J.; Woolridge, A.C.; Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M.; Tornberg, R.

    2006-01-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  17. Continuous measurement of Radon emanations from soil and groundwaters in southern France (Alpes Maritimes). Preliminary results

    International Nuclear Information System (INIS)

    Oddou, A.; Nault, L.; Campredon, R.; Bernat, M.

    1983-01-01

    Two types of automated instruments which monitor the emission of radon from rocks and groundwaters are actually being set up in a few localities of the French-Italian Alpe-Maritimes (SE France). The first results are presented [fr

  18. Experience from using plastic film in radon measurement

    International Nuclear Information System (INIS)

    Joensson, G.

    1999-01-01

    Plastic film is a useful detector of radon gas. The method of detection of the gas is used for several decades to measure radon concentrations both indoors and in soil. Experiences from radon measurements in Sweden indoors, in soil and in water using the plastic film Kodak LR 115-II are discussed in this report. Some examples are given from various projects. One example is taken from a large scale mapping of indoor radon levels in houses, where the building material is the main source of radon. In another example the measurements from a large scale soil radon mapping are discussed. The use of the plastic film for measurements of radon levels in water is also discussed. All the investigations are made in order to give the authorities concerned information of the radon situation and to study the connection between high indoor radon levels and various types of cancers

  19. Improved radon-flux-measurement system for uranium-tailings pile measurement

    International Nuclear Information System (INIS)

    Freeman, H.D.

    1981-10-01

    The Pacific Northwest Laboratory (PNL) is developing cover technology for uranium mill tailings that will inhibit the diffusion of radon to the atmosphere. As part of this cover program, an improved radon flux measurement system has been developed. The radon measurement system is a recirculating, pressure-balanced, flow-through system that uses activated carbon at ambient temperatures to collect the radon. With the system, an area of 0.93 m 2 is sampled for periods ranging from 1 to 12 h. The activated carbon is removed from the radon trap and the collected radon is determined by counting the 214 Bi daughter product. Development of the system included studies to determine the efficiency of activated carbon, relative calibration measurements and field measurements made during 1980 at the inactive tailings pile in Grand Junction, Colorado. Results of these studies are presented

  20. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  1. A study of radon 222 transfer indoors

    International Nuclear Information System (INIS)

    Maximilien, R.; Robe, M.C.; Archimbaud, M.

    1985-01-01

    Indoor exposure can vary considerably depending upon the natural environment (geology, climate), man-made arrangements (building materials, insulation and ventilation systems...) or way of living. In order to specify the sources and assess their respective contribution in a given dwelling, a good knowledge of radon transfer and dispersion processes is required as well as a heavy experimental device (continuous radon and ventilation monitoring...). The study must be limited to some cases selected by a systematic measurement program either because they are representative of dwelling conditions, or preferably on account of their high radon level, the origin of which will be investigated. As a consequence, countermeasures can be developed. A pilot study has been carried out on radon transport in two houses of the Rhone river valley. The two houses -selected among 131 other ones for their high radon levels- are built with the same architectural approach and located very close to each other, yet the factors accounting for domestic exposure are quite different. Indoor parameters are at the origin of various radon concentrations in the case of low natural ventilation; conversely, outdoor parameters only seem to act in the case of high ventilation. For a larger part, however, radon seems to emanate from under the foundations of both houses [fr

  2. Ventilation measurements as an adjunct to radon measurements in buildings

    International Nuclear Information System (INIS)

    Knutson, E.O.; Franklin, H.

    1977-01-01

    The concentration of radon in a building is a function of the radon sources within the building and of the building's ventilation characteristics. To complement its radon measurement program, HASL is currently assessing apparatus and procedures for measuring building ventilation. Results are reported from ventilation measurements made in the laboratory and in a residential building

  3. Radon as a geophysical tracer on Mars: study of its transport, first evidence and development of an instrument for its measurement

    International Nuclear Information System (INIS)

    Meslin, Pierre-Yves

    2008-01-01

    Radon-222, an inert and radioactive gas stemming from the uranium decay series, and its progeny are often used as tracers to study transfers in soils and in the atmosphere. They have also been studied on the surface of the Moon in connection with lunar outgassing. On Mars, where radon has never been studied nor measured so far, we show that their measurement could provide new insight and constraints on the chemical nature of the hydrogen measured in the Martian soil, in surface-atmosphere exchange processes, in atmospheric transport and, finally, in the dust cycle. Our approach is based on a coupled soil-atmosphere transport model implemented into the Global Circulation Model LMDZ. It includes the source term, the diffusion and adsorption of radon within the soil, and its atmospheric transport. The model input parameters are derived either experimentally (emanation factor and adsorption coefficient extrapolated to low temperatures) or by realistic models of porous media (diffusion coefficient at low pressure and as a function of the water saturation level). The model yields predictive maps of the radon exhalation rate as well as 3D fields of concentration in the soil and atmosphere, which will allow direct comparison with bismuth-214 measurements made by the GRS onboard the Mars Odyssey orbiter. We present preliminary results on this subject. An analysis of alpha spectra acquired by the APXS of the rover Opportunity is also presented, which shows evidence of a polonium-210 deposit on atmospheric dust, providing the first indirect proof of the presence of radon in the Martian atmosphere. We propose a simplified dust cycle model that enables us to infer an estimate of the global average radon exhalation rate on Mars. Lastly, we simulate the performance of an alpha spectrometer aimed at measuring radon and its progeny on the surface of the planet. (author)

  4. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Winter, I.; Philipsborn, H. von

    1997-01-01

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m 3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.) [de

  5. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  6. Radon measurements: the sources of uncertainties

    International Nuclear Information System (INIS)

    Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav

    2008-01-01

    Full text: Radon measurements are quite complicated process and the correct estimation of uncertainties is very important. The sources of uncertainties for grab sampling, short term measurements (charcoal canisters), long term measurements (track detectors) and retrospective measurements (surface traps) are analyzed. The main sources of uncertainties for grab sampling measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. These sources are also common both for short term measurements (charcoal canisters) and long term measurements (track detectors). Usually during the calibration the high radon concentrations are used (1-5 kBq/m 3 ) and the Poisson random error rarely exceed some percents. Nevertheless the dispersion of measured values even during the calibration usually exceeds the Poisson dispersion expected on the basis of counting statistic. The origins of such non-Poisson random errors during calibration are different for different kinds of instrumental measurements. At present not all sources of non-Poisson random errors are trustworthy identified. The initial calibration accuracy of working devices rarely exceeds the value 20%. The real radon concentrations usually are in the range from some tens to some hundreds Becquerel per cubic meter and for low radon levels Poisson random error can reach up to 20%. The random non-Poisson errors and residual systematic biases are depends on the kind of measurement technique and the environmental conditions during radon measurements. For charcoal canisters there are additional sources of the measurement errors due to influence of air humidity and the variations of radon concentration during the canister exposure. The accuracy of long term measurements by track detectors will depend on the quality of chemical etching after exposure and the influence of season radon variations. The main sources of

  7. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  8. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  9. Intercomparison 2003 for Radon measurement services at PSI

    CERN Document Server

    Butterweck, G

    2003-01-01

    Twelve radon measurement services participated in the 2003 Radon Intercomparison Exercise performed at the Reference Laboratory for Radon Gas Activity Concentration Measurements at Paul Scherrer Institut (PSI) during March 13th to 24th, 2003. Ten of these laboratories were approved by the Swiss Federal Office of Public Health and their participation in the intercomparison exercise was a requirement to warrant quality of measurement. Radon gas detectors (etched-track and electret ionisation chambers) and instruments (ionisation chambers and electrostatic precipitation) were exposed in the PSI Radon Chamber in a reference atmosphere with an average radon gas concentration of 1950 Bqm sup - sup 3 leading to a radon gas exposure of 517 kBqhm sup - sup 3. Additional five electret-detectors of an approved measuring service were purchased by the Swiss Federal Office of Public Health for a spot check. Two of these were exposed as described above, two had an exposure of 247 kBqhm sup - sup 3 at an average radon concen...

  10. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Bavarnegin, E.; Fathabadi, N.; Vahabi Moghaddam, M.; Vasheghani Farahani, M.; Moradi, M.; Babakhni, A.

    2013-01-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m −2 h −1 . The 226 Ra, 232 Th and 40 K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of 226 Ra, 232 Th and 40 K content varied from below the minimum detection limit up to 86,400 Bq kg −1 , 187 Bq kg −1 and 1350 Bq kg −1 , respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. -- Highlights: ► In the selection process of local samples, portable scintillometer (NaI) was used. ► The activity concentration of 226 Ra varied from below the MDL up to 86400 Bq kg −1 . ► The activity concentration of 232 Th varied from below the MDL up to 187 Bq kg −1 . ► The activity concentration of 40 K varied from below the MDL up to 1350 Bq kg −1

  11. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  12. Radon measurements in hispaniola dwellings

    International Nuclear Information System (INIS)

    Gutierrez, J.; Colgan, P.A.; Cancio, D.

    1996-01-01

    The results of a national radon survey and a number of regional surveys of radon in spanish dwelling are reviewed. The best estimate of the geometric mean of indoor radon concentrations is 41.1. Bq/m -3 and single-family dwellings have been shown to be more at risk than apartments. Results need to be interpreted with some caution due to differences in survey methodologies and measurement procedures. The risks from radon exposure are put in perspective by comparison with other voluntary risks. Finally, although a number of 'high risk' areas have already been identified, it is concluded that implementation of a national programme to reduce radon exposure may await a better definition of the problem extent. (authors). 20 refs., 1 tab

  13. Radon levels reduced through venting of house foundations

    International Nuclear Information System (INIS)

    Sivborg, P.; Johansson, I.; Strindehag, O.

    1981-01-01

    It has been confirmed that the radon emanation from the ground poses a more importent radiation hazard than the radon contained in the building material. In this article a simple system for ventilation of the gases produced under the foundation of a small houses is described. This ventilation system reduced the radondaughters concentration in a house by a factor of ten. (L.E.)

  14. Radon in the water from drilled wells. Results from an investigation in Oerebro; Radon i vatten fraan bergborrade brunnar. Resultat fraan en undersoekning i oerebro kommun

    Energy Technology Data Exchange (ETDEWEB)

    Liden, E.; Andersson, Lennart [Regionsjukhuset, Oerebro (Sweden). Yrkes- och miljoemedicinska kliniken; Linden, A. [Svensk Geofysik AB, Falun (Sweden); Aakerblom, G. [Statens Straalskyddsinstitut, Stockholm (Sweden); Aakesson, T. [Miljoe- och haelsoskyddsfoervaltningen, Oerebro (Sweden)

    1995-09-01

    In 1991 a drilled well containing water with a radon count of about 20,000 Bq/l was found in the city of Oerebro in southern Sweden. A study was started to develop measures to decrease the radon content of water, investigate public health risks and determine the prevalence of high-radon waters in Sweden. 1991-94 various techniques were tested to reduce the concentration of radon in water. The efficiency of aerating high-radon drinking water was studied under field conditions using two modified aerators in a well, in a pressure tank, and in a column of pellets. The efficiency varied from 20 to 99%. A survey of radon in water from 269 drilled wells was conducted in the Municipality of Oerebro. In water from 78 wells, the mean concentration of radon was 1336 Bq/l. The emanation of radon during normal household activities was studied in a home supplied with water from a drilled well whose radon count was approx 20,000 Bq/l. A geological investigation revealed the presence of thin Uranium-loaded fissures in the bedrock (granite) surrounding the well. 130 refs, 16 figs, 14 tabs.

  15. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  16. Radon in balneology - measurement of radon retention by patients and radiation protection for personell

    International Nuclear Information System (INIS)

    Just, G.; Falkenbach, A.; Grunewald, W.A.; Philipsborn, H. von

    2001-01-01

    In radon balneology patients are exposed to radon either from water or air through the skin or through inhalation. Drinking radon water was not included in the study. Previously, the radon transfer has been determined for an estimate of the medically active amount of radon retained in the patient. A simpler approach of measuring radon in expiration under and after exposure has now been standardised and applied to probands under different conditions of exposure. In addition, radon decay products were measured in sweat, saliva and in the skin. Experimental parameters were evaluated for a comparison of different concentrations observed under different conditions. Results are likely to improve both therapy for patients and radiation protection for members of the personnel. (orig.) [de

  17. A Radon Chamber without Radium Source for Detector Calibration and Radon Measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Karunakara, N.

    2008-01-01

    A radon chamber of volume 216 liters was designed and constructed for calibration of radon detectors and radon test measurements. The main feature of this chamber is that the active 226 Ra source, to generate the 222 Rn inside the chamber volume, is not required. Instead, 222 Rn from soil gas is utilized for this purpose. The supply of radon comes from the soil gas. Soil gas is drawn from the soil to fill the chamber with high radon concentration levels (∼ 80 kBq/m3). Desired radon concentration levels can be obtained by drawing the soil gas for different time durations and/or flow rate (author)

  18. Radon exhalation rates from soil and sand samples collected from the vicinity of Yamuna river

    International Nuclear Information System (INIS)

    Garg, A.K.; Sushil Kumar; Chauhan, Pooja; Chauhan, R.P.

    2011-01-01

    Soil, sand and stones are the most popular building materials for Indian dwellings. Radon is released into ambient air from these materials due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in sand and soils is related to radioactivity in the rocks from which they are formed. These materials contain varying amount of uranium. In the present investigation, the radon emanated from soil and sand samples from different locations in the vicinity of Yamuna river has been estimated. The samples have been collected from different locations near the Yamuna river. The samples collecting sites are from Yamunanagar in Haryana to Delhi. The radon concentration in different samples has been calculated, based upon the data, the mass and the surface exhalation rates of radon emanated from them have also been calculated

  19. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  20. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  1. Radon 226 and natural Uranium in potable waters to the Argentina Republic

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    1998-01-01

    157 samples were analyzed in the Buenos Aires City. Gathered in the domiciliary distribution net and private wells. The radon 226 concentration to determines for the radon 226 emanation technique and liquid scintilligraphy. The natural uranium concentration one carries out for fluorimetric methods

  2. Dry radon gas generator

    International Nuclear Information System (INIS)

    Vandrish, G.

    1979-10-01

    A radon gas standard with a source strength of 120037 pCi capable of delivering 121 pCi of radon gas successively to a large number of cells has been developed. The absolute source strength has been calibrated against two radium solution standards and is accurate to 4 percent. A large number of cells (approxiiately 50) may be calibrated conveniently on a daily basis with appropriate corrections for sequential changes in the amount of gas delivered, and a correction for the growth of radon in the standard on successive days. Daily calibration of ten cells or less does not require these corrections. The standard is suitable for field use and the source emanation rate is stable over extreme temperatue and pressure ranges and over six months

  3. A micromegas detector for {sup 222}Rn emanations measurements

    Energy Technology Data Exchange (ETDEWEB)

    García, J. A.; Garza, J. G.; Irastorza, I. G.; Mirallas, H. [Laboratorio de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza (Spain)

    2013-08-08

    The {sup 222}Rn emanation has significant contribution in the overall background for rare event searches experiments. In order to measure this emanations a high sensitivity detector has been designed. The detection method is based on the electrostatic collection of the {sup 222}Rn daughters on a Micromegas detector. Using a chamber with a volume of 21.2 l for the collection of {sup 218}Po and {sup 214}Po progeny of {sup 222}Rn and a 12 × 12cm{sup 2} pixelized Micromegas for the α detection. The advantages of the Micromegas detectors are the low intrinsic radioactivity and the track reconstruction of the α’s, having excellent capabilities for event discrimination.

  4. Investigations of outbursts and tremors in Polish collieries with application of radon measurements

    International Nuclear Information System (INIS)

    Wysocka, M.

    2010-01-01

    In the 80's and 90's of the last century some attempts were undertaken to apply specific radiometric methods to support the prediction of outbursts in collieries, located in Lower Silesian Coal Basin (LSCB) in south-western Poland. This idea was developed as an analogy to the application of radon changes in groundwater prior to earthquakes, and on this basis the hypothesis of variations of radon emanation from coal seams, preceding approaching outburst, was formulated. It has been stated, that a certain correlation between temporal and spatial variations of radon level and the level of outburst's hazard existed. Then, new investigations have been started in copper and coal mines with the hope to use radon as a tool for the prediction of another dynamic phenomena - tremors. In the case of these investigations, only weak evidences were found. In the last years the occurrence of outburst was noticed in the collieries of Upper Silesian Coal Basin (USCB). Therefore, we started observations of changes of radon concentration in gas, sampled from headings, driven in endangered coal seams. The goal of the research is an attempt to formulate '' radon index of outburst hazard '' to support other, routinely used, methods of the prediction of dangerous events. In this paper some results of investigations, done in collieries in LSCB and in copper mines are quoted to give the background for preliminary results of new research, ongoing in one of the coal mines in the Upper Silesia region. (authors)

  5. Radon remediation of a two-storey UK dwelling by active sub-slab depressurization: observations on hourly Radon concentration variations

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored at hourly intervals throughout a 5-week period during which sub-slab depressurization remediation measures, including an active sump system, were installed. Remediation of the property was accomplished successfully, with the mean radon levels upstairs and downstairs greatly reduced and the prominent diurnal variability in radon levels present prior to remediation almost completely removed. Following remediation, upstairs and downstairs radon concentrations were 32% and 16% of their pre-remediation values respectively. The mean downstairs radon concentration was lower than that upstairs, with pre-and post-remediation values of the upstairs/downstairs concentration ratio, R U/D , of 0.93 and 1.76 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 hour or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure-difference prior to remediation. This correlation disappears following remediation, confirming the effectiveness of the remediation procedure in mitigating radon ingress from the ground via the stack-effect. Overall, these observations provide further evidence that radon emanation from building materials makes a not insignificant contribution to radon concentration levels within the building. Furthermore, since this component remains essentially unaffected by sub-slab depressurization, its proportional contribution to the total radon levels in the home increases following remediation, leading to the conclusion that where

  6. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Haywood, F.F.; Perdue, P.T.; Christian, D.J.; Leggett, R.W.; Dickson, H.W.; Myrick, T.E.

    1980-03-01

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site

  7. Measuring radon in the workplace

    International Nuclear Information System (INIS)

    Boyd, M.

    1990-01-01

    The Environmental Protection Agency (EPA) has issued guidance for testing for radon in homes and interim guidance for testing in schools. Information on testing for radon in the workplace is the next initiative and this paper describes the current status of this effort. The results of measurements made in several buildings in the Washington, DC area are discussed. In this paper a discussion of preliminary guidance on radon survey design that has been offered to Federal agencies is presented

  8. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Yarmoshenko, I.V.; Kelleher, K.; Paridaens, J.; Mc Laughlin, J.P.; Celikovic, I.; Ujic, P.; Onischenko, A.D.; Jovanovic, S.; Demajo, A.; Birovljev, A.; Bochicchio, F.

    2007-01-01

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped 210 Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted 210 Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m -3 , whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods

  9. In-field radon measurement in water: a novel approach

    International Nuclear Information System (INIS)

    Talha, S.A.; Meijer, R.J. de; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Hlatshwayo, I.N.

    2010-01-01

    This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L -1 radon in-water. -- Research highlights: →Radon-in-water, large volume container, in-field measurements, MEDUSA gamma-ray detection system.

  10. Ground-truthing predicted indoor radon concentrations by using soil-gas radon measurements

    International Nuclear Information System (INIS)

    Reimer, G.M.

    2001-01-01

    Predicting indoor radon potential has gained in importance even as the national radon programs began to wane. A cooperative study to produce radon potential maps was conducted by the Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), Department of Energy (DOE), and Lawrence Berkeley Laboratory (LBL) with the latter taking the lead role. A county-wide predictive model based dominantly on the National Uranium Resource Evaluation (NURE) aerorad data and secondly on geology, both small-scale data bases was developed. However, that model breaks down in counties of complex geology and does not provide a means to evaluate the potential of an individual home or building site. Soil-gas radon measurements on a large scale are currently shown to provide information for estimating radon potential at individual sites sort out the complex geology so that the small-scale prediction index can be validated. An example from Frederick County, Maryland indicates a positive correlation between indoor measurements and soil-gas data. The method does not rely on a single measurement, but a series that incorporate seasonal and meteorological considerations. (author)

  11. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  12. QA/QC For Radon Concentration Measurement With Charcoal Canister

    International Nuclear Information System (INIS)

    Pantelic, G.; Zivanovic, M.; Rajacic, M.; Krneta Nikolic, J.; Todorovic, D.

    2015-01-01

    The primary concern of any measuring of radon or radon progeny must be the quality of the results. A good quality assurance program, when properly designed and diligently followed, ensures that laboratory staff will be able to produce the type and quality of measurement results which is needed and expected. Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. Upon closing the detectors, the measurement was carried out after achieving the equilibrium between radon and its daughters (at least 3 hours) using NaI or HPGe detector. Radon concentrations as well as measurement uncertainties were calculated according to US EPA protocol 520/5-87-005. Detectors used for the measurements were calibrated by 226Ra standard of known activity in the same geometry. Standard and background canisters are used for QA and QC, as well as for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. Background canister is a regular radon measurement canister, which has never been exposed. The detector background and detector efficiency are measured to ascertain whether they are within the warning and acceptance limits. (author).

  13. Radon measurement studies in Kazakhstan

    International Nuclear Information System (INIS)

    Sevost'yanov, V.N.

    2003-01-01

    Today, one has to admit that despite the important role and certain achievements in providing the radiation control in Kazakhstan, radon measurements still present some problems related to clear definition of physical quantities applied, correct use of methods, and application of adequate measuring devices to meet requirements of regulatory documents currently in effect, such as NRB-99. The paper provides some data on radon measurements, describes the problem status in Kazakhstan and proposes ways to solve it. (author)

  14. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  15. Multivariate signal processing in measurements of radon and radon daughters in air

    International Nuclear Information System (INIS)

    Urbanski, P.; Machaj, B.

    2000-01-01

    Extensive measurements of radon and radon daughters concentration gauge in a radon chamber were carried out. Count rate 'spectra' against time at the output of radiation detectors were measured and registered. The count rate spectra were then processed employing Principal Component Regression (PCR). A root mean square error of the count rate was estimated. It was found that PCR processing removes a great part of count rate random fluctuations originating from the radiation statistics that results in a decrease of count rate random error. The root mean square error of count rate in a radon daughter monitor is about 3 times lower, which is equivalent to the error of the gauge with a 9 times higher air flow rate if no PCR processing is used. In case of the radon concentration gauge the increase of sensitivity is even higher and amounts to 5 times. (author)

  16. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  17. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  18. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  19. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  20. Emanation thermal analysis. Principle of the method, preparation of samples and apparatus

    International Nuclear Information System (INIS)

    Balek, V.; Pentinghaus, H.J.

    1993-12-01

    Principles of the title method are outlined and the sample preparation procedures and instrumental designs are described. The publication is divided into chapters as follows: (I) Introduction; (II) Sample labelling: (II.1) Introducing parent nuclides as a source of inert gas in solid; Distribution of inert gas in the sample; (II.2) Introducing inert gases without parent nuclides (using the recoil effect of nuclear reactions and using ion bombardment); (II.3) Choice of the suitable labelling technique; (III) Equipment for emanation thermal analysis: (III.1) Inert gas detection and measurement of inert gas release rate; (III.2) System of carrier gas flow and stabilization; (IV) Determination of the optimal conditions for radon release rate measurement; (V) Example of ETA measurement. (P.A.). 1 tab., 10 figs. 5 refs

  1. Evaluation of the performance characteristics of radon and radon-daughter concentration measurement devices under controlled environmental conditions

    International Nuclear Information System (INIS)

    Pearson, M.D.

    1989-04-01

    The Technical Measurements Center (TMC) conducted a study to expose 10 radon and 7 radon-daughter concentration measurement devices in the DOE/GJPO Radon/Radon-Daughter Environmental Chamber for a series of 24 controlled-environment tests. The tests evaluated the devices' response to temperature, relative humidity, dew point, condensation-nuclei concentration, radon-daughter/radon equilibrium ratio, and non-uniform radon and radon-daughter concentration. Devices were evaluated for linear response as a function of concentration. In addition to response to environmental parameters, the evaluation included determining the utility of the devices in providing reasonable assurance of compliance with the radon and radon-daughter concentration standards for DOE remedial action programs. This reasonable assurance criterion is based on a coefficient of variation of 25 percent for devices deployed for year-long measurements and a coefficient of variation of 18 percent for devices deployed for intermittent sampling. 39 refs., 65 figs., 33 tabs

  2. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  3. Measurements of indoor radon concentration in Libyan cities

    International Nuclear Information System (INIS)

    Elarabiy, S. F.; Khalifa, M.; Misrati, N.; Chahboune, N.; Ahmed, M.

    2012-12-01

    Studies confirm that the risk of exposure to indor radon is attributable to lung cancer worldwide. The relationship between radon exposure and cancer is a linear one which necessitates for need for measurements of indoor radon concentration. This paper presents the results of measurements of indoor radon in several libya cities using CR-39 plastic. The results showed that the average radon concentration in the cities of Tripoli, Al-harcha and Alrajaban were 48.8 Bg/m 3 , 51.4 Bg/m 3 and 55.5 Bg/m 3 respectively. The average indoor radon concentration in Libya is low comparing with other studies. (Author)

  4. Proceedings of radon and radon progeny measurements in Australia symposium

    International Nuclear Information System (INIS)

    Akber, R.A.; Harris, F.

    1994-01-01

    This publication contain papers presented at a symposium on radon and radon progeny measurements in Australia, held in Canberra on 18 February 1994. The emphasis was on results of measurements in different exposure situations, however information on methodology and techniques was also included. The scope of the symposium expanded through participation by scientists from China, French Polynesia and New Zealand. A list of participants and their organizations is included at the end of the proceedings. refs., tabs., figs

  5. Assessment of radon exposure in Austria based on geology and settlement

    International Nuclear Information System (INIS)

    Gruber, Valeria; Seidel, Claudia

    2008-01-01

    In Austria a fundamental radon indoor data net (about 40 000 measurements) exists. These radon indoor data are standardized and provide averaged political communities' values. This data net should be enhanced by soil gas measurements with regard to geological conditions, to avoid averaging and influences by political boundaries. Different geological units (characterized by geology, geochemical conditions, mineralogy, geophysics) will be surveyed regarding radon concentration by soil gas measurements and estimated to their potential radon hazard. To assess the radon exposure of the population geological units are selected which are either existing settlement areas or potential ones. So this survey can also provide a basis for land use planning. In this paper results of first studies for this purpose are shown. 160 soil gas measurements were carried out in different soil and sediment deposits originating from different ice age glacier movements in the Alps. These deposits are popular settlement areas, and indoor radon levels of some 1000 Bq/l were detected. 50 % of the results of soil gas radon measurements were above 60 kBq/m 3 , 18 % above 120 kBq/m 3 , which is likely to exceed the indoor radon standard of 400 Bq/l according to the Austrian standard ONORM S 5280-2. Higher radon activity concentrations were found in older ice ages, because of further progressed weathering. The radon soil gas measurements were carried out in different seasons to verify seasonal variations, and other parameters like Ra-226, Ra-228 activity concentration in soils, radon emanation factor, soil permeability and soil moisture were determined and related to the radon activity concentration. According to the example of this study, further soil gas measurements will be carried out in selected geological units. Additional research on the impact of actual dwelling and inhabitation situation on public exposure due to radon in Austria is being done currently. The soil gas radon measurement data

  6. Uranium distribution and radon exhalation from Brazilian dimension stones

    International Nuclear Information System (INIS)

    Amaral, P.G.Q.; Galembeck, T.M.B.; Bonotto, D.M.; Artur, A.C.

    2012-01-01

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espírito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of 222 Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the 222 Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: ► Integration of distinct radiometric data acquired in dimension stones. ► Dimension stones are extensively commercialized abroad. ► Rn exhalation above the EPA threshold limit of 4 pCi/L.

  7. Uranium distribution and radon exhalation from Brazilian dimension stones

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, P.G.Q.; Galembeck, T.M.B. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2012-04-15

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espirito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of {sup 222}Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the {sup 222}Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: Black-Right-Pointing-Pointer Integration of distinct radiometric data acquired in dimension stones. Black-Right-Pointing-Pointer Dimension stones are extensively commercialized abroad. Black-Right-Pointing-Pointer Rn exhalation above the EPA threshold limit of 4 pCi/L.

  8. Indoor radon measurements in Athens, Greece

    International Nuclear Information System (INIS)

    Proukakis, C.; Molfetas, M.; Ntalles, K.; Georgiou, E.; Serefoglou, A.

    1987-01-01

    A pilot study was carried out in order to measure air concentrations of radon 222 and 220 isotopes in Athenian houses, as a first step of a national survey in Greece. In this paper the authors deal with radon concentration in air and water and will rely on measurements conducted in Greece. (author)

  9. Seasonal Variability in European Radon Measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying

  10. Measuring radon source magnitude in residential buildings

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Nero, A.V.

    1981-08-01

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1 -1 h -1 . Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon

  11. Absolute measurement method of environment radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1989-11-01

    A portable environment radon content device with a 40 liter decay chamber based on the method of Thomas double filter radon content absolute measurement has been developed. The correctness of the method of Thomas double filter absolute measurement has been verified by the experiments to measure the sampling gas density of radon that the theoretical density has been known. In addition, the intrinsic uncertainty of this method is also determined in the experiments. The confidence of this device is about 95%, the sensitivity is better than 0.37 Bqm -3 and the intrinsic uncertainty is less than 10%. The results show that the selected measuring and structure parameters are reasonable and the experimental methods are acceptable. In this method, the influence on the measured values from the radioactive equilibrium of radon and its daughters, the ratio of combination daughters to the total daughters and the fraction of charged particles has been excluded in the theory and experimental methods. The formula of Thomas double filter absolute measuring radon is applicable to the cylinder decay chamber, and the applicability is also verified when the diameter of exit filter is much smaller than the diameter of inlet filter

  12. Radon measurements in Rio de Janeiro

    International Nuclear Information System (INIS)

    Magalhaes, M.H.; Amaral, E.C.S.; Sachett, I.

    2002-01-01

    Few data are available on the dynamic of radon in the air for tropical climate conditions. The strong influence of the climatological characteristics on the transport of gases and particulates in air makes not adequate the use of data obtained at regions with different climate. Outdoor and indoor measurements of radon equilibrium equivalent concentrations (EEC) have been done for one-year period in Rio de Janeiro. Continuous measurements were performed using a radon monitor with an alpha spectrometry detector. Pluviometric index, temperature and humidity were registered. The paper presents the long term behaviour of outdoor radon equilibrium equivalent concentration results, their correlation with temperature and the influence of the pluviometric index. Maximum values were obtained during winter and minimum in summer, strongly influenced by the rain. A strong inverse correlation with temperature was found. (author)

  13. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  14. Absolute measurement of environmental radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1987-01-01

    A transportable meter for environmental radon measurement with a 40 liter decay chamber is designed on the principle of Thomas two-filter radon content absolute measurement. The sensitivity is 0.37 Bq·m -3 with 95% confidence level. This paper describes the experimental method of measuremment and it's intrinsic uncertainty. The typical intrinsic uncertainty (for n x 3.7 Bq·m -3 radon concentration) is <10%. The parameter of exit filter effeciency is introduced into the formula, and the verification is done for the case when the diameter of the exit filter is much less than the inlet one

  15. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  16. Radon remedial measures in cold climate

    International Nuclear Information System (INIS)

    Birovljev, A.

    2004-01-01

    A view is taken that mitigation of an indoor radon problem is often more complex than usually assumed, and that additional factors should be considered to avoid situations in which after mitigation the radon problem may be solved, but other problems have been created. Emphasis is put on how the choice and design of radon remedial measures are influenced not only by effectiveness in reducing radon levels indoors, but also by climatic factors, energy-saving aspects, as well as economic and psycho-social factors. Climatic conditions give rise to several concerns when attempting to mitigate a radon problem in areas with large seasonal temperature variations. Problems with humidity, energy consumption and durability of sealing materials are probably the most prominent issues. Commonly used radon remedial measures and their effectiveness in Norway is reviewed. Discussion is focused on principles and technical solutions which produce good results, and those which don't perform so well in cold Norwegian climate. Innovative technical solutions which successfully resolve some of the main conflicting issues are discussed. Results of some preliminary tests showing performance of such solutions in reduction of radon levels are presented. Other aspects of mitigation systems, such as need and cost of maintenance, longevity, noise levels, 'additional benefits', etc., are briefly mentioned. Homeowners' perceptions and willingness to implement various mitigation solutions are briefly reviewed. Based on discussion, several guiding principles which may be adopted in search for optimal solutions are suggested. (author)

  17. Radon exhalation in some building construction materials and effect of plastering and paints on the radon exhalation rate using fired bricks

    International Nuclear Information System (INIS)

    Sharma, Anil; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.; Sharma, A.C.

    2013-01-01

    The technological endeavors of human beings have modified the levels of radiation exposure slightly. The emanation of radon is primarily associated with radium and its ultimate precursor uranium. The radiation dose received by human beings from indoor radon and its progeny is the largest of all doses received either by natural or man-made sources. In order to investigate the effect of paints available in the market on the radon exhalation rate from building materials, several bricks were collected. These bricks were plastered with a mixture of cement and sand. Before measurements bricks were dried for 24 hours. These plastered bricks were then coated with white wash and again dried for 1- 2 hours. After drying the bricks were coated with different brands and colors of paints. Radon exhalation rates measurements were carried out for these painted bricks using 'Sealed can Technique' cylindrical plastic 'Can' of 7.5 cm height and 7.0 cm diameter was sealed to the individual samples by plastic can. In each 'Can' a LR-115 type II plastic detector (2 cm 2cm) was fixed at the top inside of the 'Can', such that the sensitive surface of the detector faces the material and is freely exposed to the emergent radon. Radon decays in the volume of the can record the alpha particles resulting from the 218 Po and 214 Po deposited on the inner wall of the 'Can'. Radon and its daughters will reach an equilibrium in concentration after one week or more. Hence the equilibrium activity of the emergent radon can be obtained from the geometry of the can and the time of exposure. The results will be discussed. (author)

  18. Nuclear tracks in solids and gas radon measurements

    International Nuclear Information System (INIS)

    Espinosa, G.

    2007-01-01

    Full text: The Department of Energy (DOE), the Environmental Protection Agency (EPA) in USA, and the European Community, have dedicated significant budget to the Radon study, its health effects and remedial actions for controlling and achieving lower levels, in these cases, nationwide research programs have been organized. With the aim to contribute on the radon levels knowledge in our country, the Applied Dosimetry Project at the Physics Institute of the University of Mexico has developed an indoor and outdoor radon measurement methodology. In this paper a passive radon detector device based on CR-39 polycarbonate for use in radon research and routine measurements is presented. As well the methodology for the track formation, automatic reading system, calibration procedure and measurements in a different location, are shown in this work. The results had been compared with dynamic detection systems, and another methodologies and research groups in order to have a high confidence in the radon levels reported. (Author)

  19. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  20. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  1. Reinforced natural radioactivity: the case of radon measurement

    International Nuclear Information System (INIS)

    Bernhard, S.; Desray, M.

    2009-01-01

    Summarizing a presentation of radon measurement instruments, of their use and of the interpretation of their results, the authors briefly recall the origin of exposures to radon (geological or occupational), indicate the three types of control (detection of presence of radon, search for and characterization of sources and transfer ways, worker dosimetric follow-on) and the three types of measurement (selective, integrated or continuous), and evoke the range of measurement instruments

  2. Radon measurements in mines and dwellings

    International Nuclear Information System (INIS)

    Urban, M.

    1985-01-01

    Radon measurements using a time integrating passive radon dosemeter (MAKROFOL track etch detector) have been performed in Brazilian and German mines and dwellings. The present state of the measurement technique is summarized. The results are presented together with exposure calculations and dose estimations for occupational exposure in open pit and underground mines and for the general public in houses. (orig./HP) [de

  3. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  4. Comparison of techniques active and passive in measurement of radon concentration ({sup 222}Ra) in the air; Comparacao de tecnicas ativa e passiva na medicao de concentracao de radonio ({sup 222}Rn) no ar

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Evaldo Paulo de

    2017-11-01

    The purpose of this work was to perform a study comparing radon concentration measurements between two techniques used to measure radon gas in the air: one using LEXAN polycarbonate plastic detectors and the other the continuous monitor in AlphaGUARD passive mode. The concentrations of radon gas within radon emanation chambers were measured using calibrated / traceable sources generating {sup 222}Rn through {sup 226}Ra. In calibration the 'calibration factor' or 'sensitivity' was determined for the LEXAN plastic detector. The calibration work of the dosimeters was carried out at the Radon Laboratory of the Environmental Analysis Division - DIRAD IRD/CNEN and at the Natural Radioactivity Laboratory (LRN) of the Center for the Development of Nuclear Technology (CDTN/CNEN). The 'calibration factor' or 'sensitivity' was found to be 32.34 (traits.cm{sup -2})/(kBq.d.m{sup -3}). This factor was used to determine the radon concentration measured by the LEXAN plastic detectors. Also in the calibration, the efficiencies for LEXAN (94.1% ± 9.7%) and AlphaGUARD (92.5% ± 7.2%) were determined. The statistical analysis used showed good parity in the results of the measurements. It was concluded that the results were satisfactory and will serve as a good reference for studies related to the radon air meters used in this work. (author)

  5. National radon measurement-proficiency program: Individual proficiency report

    International Nuclear Information System (INIS)

    1992-05-01

    In February 1986, the U.S. Environmental Protection Agency (EPA) established the Radon Measurement Proficiency (RMP) Program to assist the public in identifying organizations capable of providing reliable radon measurement services. In December 1991, EPA announced the new individual proficiency listing category in the RMP Program. Individuals applying for this new listing status must demonstrate knowledge of radon measurement fundamentals by passing a written proficiency examination, maintain affiliation with an RMP listed organization, and meet other program requirements. This report lists those individuals who have met the requirements of the RMP Program as of April 30, 1992. These requirements are designed to provide minimum proficiency criteria for individuals who provide radon measurement services on-site in a residential environment

  6. Radon gas measurement in Corum

    International Nuclear Information System (INIS)

    Uzbey, S.; Celebi, N.

    2009-01-01

    The existence of the natural radioactive sources in earth's crust which has long half-life and the degradation products of these in the environmental medium such as earth, rocks, foods, water, air, forms the basis of radiation which people are exposed to. Radon is the unique radioactive gas in the nature and it is made up of radium which is the result of uranium degradation. It is necessary to determine the radon concentration because of the difference in the concentration of uranium existence in different places. TAEK (Turkish Atomic Energy Authority) allows 400 Bq/m 3 of radon concentration at houses, 1000 Bq/m 3 at offices per year. In this attempt, government buildings, houses and offices were determined as the sampling places in Corum city center and towns to represent Corum. While disposing the radon measuring detectors, places which are close to the ground level were preferred. 74 radon detectors were left in those places for 60 days and in the end the detectors were collected while discontinuing the connection of environment and they were assessed. According to the results, the average radon gas concentration in 14 government buildings is 71,71 Bq/m 3 , in 15 offices 32,26 Bq/m 3 and at houses 42,34 Bq/m 3 .

  7. Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Musazay, M.S. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Aksoy, A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Measurements of radon exhalation for a total of 205 selected samples of construction materials used in Saudi Arabia were carried out using an active radon gas analyzer with an emanation container. It was found that granite samples were the main source of radon exhalation. The radon exhalation rates per unit area from these granite samples varied from below the minimum detection limit up to 13.1Bqm{sup -2}h{sup -1} with an average of 1.5 +/-1.9(1{sigma})Bqm{sup -2}h{sup -1}. The radium contents of 27 granite samples were measured using an HPGe-based {gamma} spectroscopy setup. The {sup 226}Ra content of the granites varied from below the minimum detection limit up to 297Bqkg{sup -1}, with an average of 83+/-73(1{sigma})Bqkg{sup -1}. The linear correlation coefficient between exhaled radon and radium content was found to be 0.90.

  8. Efficient measurement of radon daughters

    International Nuclear Information System (INIS)

    Rolle, R.

    1992-01-01

    In environmental control there is an increasing need for efficient measurement of radon and thoron daughters in air. Measuring instruments should be rugged and portable for field use, while also permitting unattended operation for several days. Simple operating procedures should permit evaluation of rapidly changing concentrations over extended periods. These requirements demand careful balance in the design of hardware and measuring procedures. The design principles for a continuous flow-through spectrometer, that has been developed for precision sequential measurement of radon and thoron daughters, are described. Because of the high precision of measurement, this type of instrument should find application in environments from technologically enhanced natural radiation to the very lowest natural background situations. (author)

  9. Study of 222Rn emanation levels present in naturally occurring radioactive materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis; Lima, Clara Teresa S.

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas installations, is usual in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. The segregation of contaminated residues although necessary, is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the installation with controlled access. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scales are mixtures of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporate 226 Ra and 228 Ra in their structures. The objective of this work was to measure the emanations of the radon present in NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of α particle tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Since the number of those tracks resulted proportional to the emanation rate of 222 Rn this methodology allowed the comparison of contamination levels in analyzed samples. (author)

  10. The Radon Book. Preventive measures in new buildings

    International Nuclear Information System (INIS)

    Clavensjoe, Bertil; Aakerblom, Gustav

    2004-01-01

    This book describes in text and picture how one can prevent that the radon concentrations in new buildings become to high. The book's centre of gravity lies on how to build in order to prevent that radon gas from the ground enters the building. The book contains extensive information about ground radon and how to examine the ground before constructing a new building. Release of radon from ground water and construction material is treated, as well as technology for measurement of radon and gamma radiation. The book presents current threshold values/recommended values for radon and the authorities' regulations and recommendations. The book is directed to persons who professionally need knowledge about radon and how to prevent that radon is accumulated in new buildings

  11. Radon problem in uranium industry

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1991-01-01

    Radon emission is invariably associated with the mining and processing of uranium ores. Radon (sup(222)Rn) enters mine atmosphere through diffusion from exposed ore body, fractures and fissures in the rocks and is also brought in by ground water. Being the progenitor of a series of short lived radioisotopes it contributes over 70% of the radiation dose to mine workers and thus accounts for nearly 30% of the total radiation doses received by workers in the whole nuclear industry. This paper summarises the data on radon emanation from the ore body, backfilled sands and mine water. Radon and its progeny concentrations in different haulage levels and stopes of the Jaduguda uranium mine are presented to emphasise the need for a well planned ventilation system to control radiation exposure of miners. Results of radon monitoring from a few exploratory uranium mines are included to indicate the need for a good ventilation system from inception of the mining operations. Relative contribution of mine exhaust and tailings surfaces to the environmental radon are also given. Some instruments developed locally for monitoring of radon and its progeny in mines and in the environment are briefly described to indicate the progress made in this field. (author). 17 refs., 2 figs., 6 tabs

  12. Indoor radon measurements and methodologies in Latin American countries

    International Nuclear Information System (INIS)

    Canoba, A.; Lopez, F.O.; Arnaud, M.I.; Oliveira, A.A.; Neman, R.S.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R.; Osorio, A.M.; Aparecido, R.; Rodriguez, C.; Moreno, V.; Vasquez, R.; Espinosa, G.; Golzarri, J.I.; Martinez, T.; Navarrete, M.; Cabrera, I.; Segovia, N.; Pena, P.; Tamez, E.; Pereyra, P.; Lopez-Herrera, M.E.; Sajo-Bohus, L.

    2001-01-01

    According to the current international guidelines concerning environmental problems, it is necessary to evaluate and to know the indoor radon levels, specially since most of the natural radiation dose to man comes from radon gas and its progeny. Several countries have established National Institutions and National Programs for the study of radon and its connection with lung cancer risk and public health. The aim of this work is to present the indoor radon measurements and the detection methods used for different regions of Latin America (LA) in countries such as Argentina, Brazil, Ecuador, Mexico, Peru and Venezuela. This study shows that the passive radon devices based on alpha particle nuclear track methodology (NTM) is one of the more generalized methods in LA for long term indoor radon measurements, CR-39, LR-115 and Makrofol being the more commonly used detector materials. The participating institutions and the radon level measurements in the different countries are presented in this contribution

  13. Indoor radon measurements in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico)], E-mail: espinosa@fisica.unam.mx; Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Bogard, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6480 (United States); Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Ponciano, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)

    2008-08-15

    Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R=0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87Bqm{sup -3}.

  14. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  15. Comparison of five-minute radon-daughter measurements with long-term radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1983-01-01

    Five-minute air filter radon daughter measurements were made in 84 buildings in Edgemont, South Dakota, in which annual average radon daughter concentrations have been determined from six 100-hour Radon Progeny Integrating Sampling Unit (RPISU) measurements. Averaging radon concentrations were also determined in 50 of these buildings using Terradex Track Etch detectors. The standard deviation of the difference between the (natural) logarithms of the RPISU annual averages and the logarithms of the air filter measurements (SD-ln) was found to be 0.52. This SD-ln is considerably smaller than the SD-ln of 0.71 between the RPISU annual averages and the air filter measurements reported by ALARA at Grand Junction, Colorado; presumably because a considerable number of air filter measurements in Edgemont were disregarded because of short turnover times or high wind speeds. Using the SD-ln of 0.52 it can be calculated that there would only be a 5% probability in Edgemont that the RPISU annual average would be greater than 0.015 WL if the five-minute measurement were equal to 0.010 WL. This indicates that the procedure used in Edgemont of clearing buildings from remedial action if the five-minute measurement were less than 0.010 WL was reasonable. There was about a 28% probability that the RPISU annual average would be less than 0.015 WL if the five-minute measurement were 0.033 WL, indicating that the procedure of performing an engineering assessment if the average of two five-minute measurements was greater than 0.033 WL was also reasonable. Comparison indicates that the average of two RPISU measurements taken six months apart would provide a dependable estimate of the annual average

  16. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  17. Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects

    International Nuclear Information System (INIS)

    Xinwei, L.

    2006-01-01

    This paper presents the results of radon concentration measurements in drinking water from the municipal water supply system and private wells located in Baoji (China)). The measurements were carried out on 69 samples. The mean values of tap water and well water were found to be 12 kBq m -3 with a maximum of 18 kBq m -3 and 41 kBq m -3 with a maximum of 127 kBq m -3 , respectively. The well water samples obtained from different depth-well (water-bearing levels), i.e. shallow well (well depth under 10 m) water, middle well (well depth 10-30 m) water and deep well water, have respective mean values of 24, 34 and 56 kBq m -3 . The contributions of the observed radon concentration in drinking water to indoor radon account for 2.8-13.2% of the mean value of Shaanxi indoor radon concentration and the effective dose to the dweller owing to inhalation of radon emanating from household water is 0.03-0.14 mSv y -1 . (authors)

  18. Measurements of radon concentrations at caves in Jeju

    Energy Technology Data Exchange (ETDEWEB)

    Go, S. H.; Kang, D. H.; Jung, B. J. [Cheju National University, Cheju (Korea, Republic of)

    2004-07-01

    Radon is a radioactive gas emitting {alpha} particles. It is chemically stable due to its inert characteristic. While its daughter products, {sup 218}Po, {sup 214}Bi, {sup 214}Pb and {sup 214}Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 {approx} 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m{sup 3}. With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m{sup 3} and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m{sup 3} suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor.

  19. Measurements of radon concentrations at caves in Jeju

    International Nuclear Information System (INIS)

    Go, S. H.; Kang, D. H.; Jung, B. J.

    2004-01-01

    Radon is a radioactive gas emitting α particles. It is chemically stable due to its inert characteristic. While its daughter products, 218 Po, 214 Bi, 214 Pb and 214 Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 ∼ 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m 3 . With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m 3 and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m 3 suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor

  20. Radon measurement in the spa of Bizovac

    International Nuclear Information System (INIS)

    Faj, Z.; Radolic, V.; Suveljak, B.; Planinic, J.

    1996-01-01

    The spa of Bizovac is located 20 km on the west of Osijek in east Croatia. Radon concentrations in the air and water of the Bizovac spa were measured by the Radhome silicon detector and the average values were obtained as 70 Bq/m 3 in the indoor pool, 40 Bq/m 3 in the hotel room and 135 Bq/m 3 in the closed therapeutic bathroom. A special experiment was performed in a closed therapeutic bathroom by three bathtubes filled up with geothermal water as well as normal (potable) one from water-supply. Using measured radon concentrations in air by Radhome detector under the mentioned conditions in the closed bathroom, radon concentrations were assessed for the geothermal water as 25.3 Bq/m 3 and 2.7 Bq/m 3 for potable water. Radon in potable water, measured by the sampling glass ampoule and scintillation cell, had the concentration of 3.5 Bq/m 3 . The radon transfer factor from water to air in the indoor pool and therapeutic bathroom was 10 and 40 times higher than for normal dwelling factor (10 -4 ), respectively. The effective dose equivalent of inhaled radon for permanent personnel under the worst conditions in the spa (closed therapeutic bathroom) was 5.4 mSv/y, but visitors spending two weeks in the Bizovac spa could receive the dose of 77 μSv. (author)

  1. Comparative study of short- and long-term indoor radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman,; Abdalla, Khalid [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    Short-term indoor radon measurements are used widely. Therefore, it is interesting to find out a correlation between these measurements and long-term measurements which reflect a better average radon concentration of individual measurement. To find the correlation between the two measurements of indoor radon concentrations at low radon levels, a study was carried out at 34 locations of King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia using active and passive methods. In the short-term active method, a radon gas analyzer (AlphaGUARD) was used for a duration of 24 h in each measurement. In the long-term passive method, CR-39 based radon dosimeters were utilized for a period of 6 months, from January 2006 to June 2006. The short-term active measurements showed that the average, minimum and maximum radon concentrations were 19, 8 and 58Bqm{sup -3}, respectively, with a standard deviation of 8.6Bqm{sup -3}. The long-term passive measurements showed that the average, minimum and maximum radon concentrations were 25, 10 and 67Bqm{sup -3}, respectively, with a standard deviation of 12Bqm{sup -3}. The two measurements showed a poor correlation (R{sup 2}=0.38). The long-term measurements showed on the average higher concentrations by a factor of 1.3.

  2. The 2010 calibration campaign for radon gas measuring instruments at PSI

    International Nuclear Information System (INIS)

    Butterweck, G.; Schuler, Ch.; Mayer, S.

    2011-01-01

    Twenty radon measurement services or the respective analytical laboratories participated in the 2010 Radon Intercomparison Exercise performed at the Reference Laboratory for Radon Gas Activity Concentration Measurements at the Paul Scherrer Institute (PSI) from August 27 th to August 31 st , 2010 on behalf of the Swiss Federal Office of Public Health (FOPH). Twelve of these laboratories were approved by the FOPH and their participation in the intercomparison exercise was a requirement to warrant quality of measurement. Radon gas dosemeters (track-etch, electronic and electret) and instruments (ionisation chambers) were exposed in the PSI Radon Chamber in a reference atmosphere with an average radon gas concentration of 595 Bq m -3 leading to a radon gas exposure of 57 kBq h m -3 . The exposure of 57 kBq h m -3 was close to the lower value of the measuring range defined in the Radon Measurement Ordinance ('Radon-Messmittelverordnung'). (authors)

  3. New apparatus for measuring radon adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Hassan, N.M.; Hines, A.L.; Ghosh, T.K.; Loyalka, S.K.; Ketring, A.R.

    1991-01-01

    A new experimental system was designed to measure radon uptake by solid adsorbents from air or other carrier gases/vapors. The total amount of radon adsorbed corresponding to a specific gas-phase concentration was determined by simultaneously measuring the solid-phase and gas-phase concentrations. The system was used to measure radon adsorption isotherms on BPL activated carbon at 288, 298, and 308 K and on silica gel and molecular sieve 13X at 298 K. The isotherms were of type III according to Brunauer's classification. The heat of adsorption data indicated that the BPL activated carbon provided a heterogeneous surface for radon adsorption. The equilibrium data were correlated by the Freundlich equation. In this paper the possible adsorption mechanism and the use of the adsorption isotherms to measure indoor radon concentrations are discussed

  4. Radon Measurement Proficiency (RMP) Program methods and devices

    International Nuclear Information System (INIS)

    Harrison, J.; Hoornbeek, J.; Jalbert, P.; Sensintaffar, E.; Hopper, R.

    1991-01-01

    The US EPA developed the voluntary Radon Measurement Proficiency Program in 1986 in response to a Federal and State need for measurement services firms to demonstrate their proficiency with radon measurement methods and devices. Since that time, the program has set basic standards for the radon measurement industry. The program has grown dramatically since its inception. In 1986, fewer than 50 companies participated in the program. By 1989, more than 5,000 companies were participating. Participants represent firms with an analytical capability as well as firms that rely upon another firm for analysis service. Since the beginning of the RMP Program, the Agency has learned a great deal about radon measurement methods and devices. This paper reviews the measurement devices used in the program and what the EPA has learned about them since the program's inception. Performance data from the RMP Program are used to highlight relevant findings

  5. Spatial radon anomalies on active faults in California

    International Nuclear Information System (INIS)

    King, C.-Y.; King, B.-S.; Evans, W.C.; Wei Zhang

    1996-01-01

    Radon emanation has been observed to be anomalously high along active faults in many parts of the world. We tested this relationship by conducting and repeating soil-air radon surveys with a portable radon meter across several faults in California. The results confirm the existence of fault-associated radon anomalies, which show characteristic features that may be related to fault structures but vary in time due to other environmental changes, such as rainfall. Across two creeping faults in San Juan Bautista and Hollister, the radon anomalies showed prominent double peaks straddling the fault-gouge zone during dry summers, but the peak-to-background ratios diminished after significant rain fall during winter. Across a locked segment of the San Andreas fault near Olema, the anomaly has a single peak located several meters southwest of the slip zone associated with the 1906 San Francisco earthquake. Across two fault segments that ruptured during the magnitude 7.5 Landers earthquake in 1992, anomalously high radon concentration was found in the fractures three weeks after the earthquake. We attribute the fault-related anomalies to a slow vertical gas flow in or near the fault zones. Radon generated locally in subsurface soil has a concentration profile that increases three orders of magnitude from the surface to a depth of several meters; thus an upward flow that brings up deeper and radon-richer soil air to the detection level can cause a significantly higher concentration reading. This explanation is consistent with concentrations of carbon dioxide and oxygen, measured in soil-air samples collected during one of the surveys. (Author)

  6. Radon in the air in the Millenium of the Polish State Underground Tourist Route in Klodzko (Lower Silesia, PL)

    International Nuclear Information System (INIS)

    Przylibski, T.A.

    1998-01-01

    The paper presents results of measurements of average monthly radon concentrations in drifts of the Millenium of the Polish State Underground Tourist Route in Klodzko. The studies revealed no significant seasonal fluctuations of radon concentration. Constant influx of radon from the geological basement, and most of all from loess-like loams and rhyolite inliers, is compensated by a natural ventilation system. Only in the summer periods of elevated radon concentrations in the air of the drifts and chambers of the Route can occur. In individual sections it is possible to measure occasional higher radon concentrations caused by local air flow fluctuations in the drifts. The highest concentrations were measured in places with the poorest ventilation - blind drifts ventilated only by backward currents. The average radon concentrations measured do not exceed concentrations allowed in apartment buildings. Therefore, in the Route there is no risk of exposure to excessive amounts of radon for personnel and tourists. The results obtained in the Route's drifts may be compared with minimum results expected in basements of houses in the Old Town in Klodzko. The paper stresses also a role of natural ventilation in protection of underground constructions and apartment buildings against high radon concentrations in areas of its elevated emanations from the geological basement. (author)

  7. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is -3

  8. Radon emanation rate as a function of monazite grain size

    International Nuclear Information System (INIS)

    Yogesan, S.; Stanley, J.D.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    In this study, a sample of monazite from local mining area was divided to 7 parts according to size (μm) and each sample was analysed using silicon surface barrier detector and multichannel analyser. From this study it has found that small grain monazite produced more radon that big grain monazite and radium is distributed on or near the surface of the monazite grain

  9. Radon measurements indoors

    International Nuclear Information System (INIS)

    Joensson, G.

    1983-02-01

    Measurements of Radon concentrations have been made using photographic film detectors in the communities of Uppsala, Soedertaelje and Tyresoe. The result from 6700 filmexposures in both one-family and apartment houses are reported. The fraction of dwellings with radon daughter concentrations exceeding 200 Bq/m 3 is between 3 and 14 percent for one-family houses and 0 to 5 percent for apartment buildings. 8 to 68 percent of the one-family houses and 57 to 83 percent of the apartment buildings had concentrations lower than 70 Bq/m 3 . The seasonal variations were recorded in one-family houses in Uppsala. In houses with low concentrations, the winter values were higher than the summer values. For houses with high concentrations the reversed variation was recorded. (Author)

  10. Measurements of radon and chemical elements: Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V.; Armienta, M.A.; Valdes, C.; Mena, M.; Seidel, J.L.; Monnin, M.

    2002-01-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  11. Preliminary results regarding the first map of residential radon in some regions in Romania

    International Nuclear Information System (INIS)

    Cosma, C.; Cucos Dinu, A.; Dicu, T.

    2013-01-01

    Radon represents the most important contribution of population exposure to natural ionising radiation. This article presents the first indoor radon map in some regions of Romania based on 883 surveyed buildings in the Stei-Baita radon-prone region and 864 in other regions of Romania. Indoor radon measurements were performed in the last 10 y by using CR-39 nuclear track detectors exposed for 3-12 months on ground floor levels of dwellings. Excluding the Stei-Baita radon-prone region, an average indoor radon concentration of 126 Bq m -3 was calculated for Romanian houses. In the Stei-Baita radon-prone area, the average indoor concentration was 292 Bq m -3 . About 21 % of the investigated dwellings in the Stei-Baita radon-prone region exceed the threshold of 400 Bq m -3 , while 5 % of the dwellings in other areas of Romania exceed the same threshold. As expected, indoor radon concentration is not uniformly distributed throughout Romania. The map shows a high variability among surveyed regions, mainly due to the differences in geology. The radon emanation rate is substantially influenced by the soil characteristics, such as the soil permeability and soil gas radon concentration. Since higher permeability enables the increased migration of soil gas and radon from the soil into the building, elevated levels of indoor radon can be expected in more permeable soil environments. (authors)

  12. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  13. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Zhukovsky, M.

    2015-01-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400 000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m"3. Average indoor radon concentration by region ranges from 12 to 207 Bq/m"3. The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m"3. - Highlights: • Reconstruction of indoor radon concentration distribution in Russia was carried out. • Data of official annual 4-DOZ reports were used. • All-Russian average indoor radon concentration is 48 Bq/m"3. • The 95-th percentile is 160 Bq/m"3.

  14. Measurement protocol for radon measurements in workplaces above ground

    International Nuclear Information System (INIS)

    Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    The Swedish Radiation Protection Authority, SSI, has established a measurement protocol for measurements of radon in workplaces. The result from a measurement according to the protocol can be compared to the limit for indoor radon at workplaces, 400 Bq/m 3 issued by the Swedish Work Environment Authority and also to the action level for schools, preschools and public buildings, 400 Bq/m 3 , issued by the National Board of Health and Welfare. The protocol recommends measurements to be done in two steps. The first measurement, called the preliminary measurement, will be done with an integrating measurement method over a period of at least two months. Track etch detectors or electret devices can be used. Since the preliminary measurements often overestimates the radon levels the workers are actually exposed to during working hours, a follow-up measurement has to be done if the preliminary measurement gives a result that exceeds 400 Bq/m 3 . In case there is need for an annual mean for comparison to the action level for schools a long-term measurement has to be done. Otherwise a method for follow-up measurements can be used at once. The follow-up measurement has to show the radon level during working hours. Two measurement strategies can be used depending on the function of the ventilation system. With the ventilation system running constantly, measurements can be done with track etch detectors for ten days or electret devices for five days. If the ventilation system is closed down at night electrets can be used for five days if the devise is open only during working hours or a continuous measurement device can be used for two days. Measurements have to be performed during the heating season, i.e. when the 24-hour average temperature is below +10 deg C, usually between October 1 and April 31. Most importantly the difference between interior and exterior temperatures must be big enough to allow natural draught ventilation system to activate. The result from a

  15. Interim protocols for screening and follow-up radon and radon-decay product measurements. Interim report

    International Nuclear Information System (INIS)

    Magno, P.; Nyberg, P.; Ronca-Battista, M.

    1987-02-01

    This report outlines the recommended strategy for assessing indoor radon levels and provides guidance for interpreting measurement results. It recommends a two-step strategy for making the fewest measurements possible, while ensuring that radon concentrations are not seriously underestimated

  16. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  17. Hourly indoor radon measurements in a research house.

    Science.gov (United States)

    Sesana, Lucia; Begnini, Stefania

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Prealps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of (222)Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence.

  18. Hourly indoor radon measurements in a research house

    International Nuclear Information System (INIS)

    Sesana, L.; Begnini, S.

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Pre-alps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of 222 Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence. (authors)

  19. Radium on soil mineral surfaces: Its mobility under environmental conditions and its role in radon emanation. Final report

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1997-01-01

    The ultimate source of 222 Rn to the atmosphere is, of course, 226 Ra. Tracking the mobility of radium therefore is part of the story of radon flux assessment. The study of radium mobility and radon flux measurements has involved virtually all the reservoirs at the Earth's surface. These include soils, groundwaters, coastal waters and the atmosphere. The attempt to understand the mobility of radium involved the study of almost all the radium isotopes ( 226 Ra, 228 Ra, 224 Ra) and the parent and daughters of these isotopes

  20. Methodology for determination of radon-222 production rate of residential building and experimental verification

    International Nuclear Information System (INIS)

    Tung, Thomas C.W.; Niu, J.L.; Burnett, J.; Lau, Judy O.W.

    2005-01-01

    Indoor radon concentration is mainly associated with the radon production rate of building material, ventilation rate, and the outdoor radon concentrations. Radon production rate of a room is defined as the sum of the products of the radon emanation rates and the exposed areas of the materials. Since the selection of the building materials and the exposed areas are different from room to room, it makes the radon production rate of homes fall in a wide range. Here, the radon production rate of a room is suggested to be quantified by a sealing method, in which the systematic radon growth curve is obtained. The radon production rate of the room can be determined from the initial slope of the growth curve. Three rooms at different homes in Hong Kong were selected in the study for verifying the methodology. The uncertainty characterized by data scatter arisen from the coupling effect of the leakage rate and outdoor radon was also included in the discussion. During the measurements, no occupant was allowed into the home. No mechanical ventilation was involved in the measurement. The indoor and outdoor radon concentrations of the sampled homes were monitored simultaneously and lasted for more than three days. The radon production rates and the uncertainties of three rooms at Homes 1, 2, and 3 were found to be 232.8, 46.0, 414.6, and 20.3, 9.4, 59.2Bqh -1 , respectively. The approach is valid when the air leakage rate of the room is controlled below 0.1h -1

  1. Development of a standard for indoor radon measurements in Australia

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Solomon, S.B.

    1994-01-01

    A standard covering methodologies for the measurement of indoor radon and radon progeny concentrations in air in Australian buildings is currently under preparation as part of a set of standards covering total indoor air quality. This paper outlines the suggested methodology for radon and discusses some of the problems associated with the development of the standard. The draft standard recommends measurement of the radon concentration in air using scintillation cells, charcoal cups and solid state nuclear track detectors, and measurement of radon progeny concentration in air using the Rolle method or the Nazaroff method. 14 refs., 1 tab

  2. Radon migration in the ground: a supplementary review

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1980-01-01

    Water is the most important agent in enabling radon isotopes to escape from solid material: Water absorbs kinetic energy of the recoil atom of radon; it is an active agent in altering and hydrating mineral surfaces, thus enhancing their emanating power; and it decreases the adsorption of radon on mineral surfaces. Once in rock and soil pores, radon atoms migrate by diffusion and by transport in varying proportions. In diffusion and transport calculations, it is desirable to use the radon concentration in the interstitial fluid as the concentration parameter and to include porosity explicity. The transport component is important in dry, permeable soils in the upper layers but is much reduced below depths of several tens of meters. Research in disequilibriums in radionuclides of the uranium and thorium series suggests that much assumed migration of 222 Rn is, in fact, a more general migration of uranium and radium isotopes

  3. One cubic metre NIST traceable radon test chamber

    International Nuclear Information System (INIS)

    Kotrappa, P.; Stieff, F.

    2008-01-01

    With the availability of the National Inst. of Standards and Technology (NIST) Radon Emanation Standard with a content of ∼5000 Bq of 226 Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time. (authors)

  4. Measured radon inside housings the Republic Argentina

    International Nuclear Information System (INIS)

    Canoba, A.; Arnaud, M.; Lopez, F.; Oliveira, A.A.

    1998-01-01

    They have been measured the radon concentration in houses in different city's in Argentina Republic. For they were used it as method mensuration detectors appearances nuclear detecting electrets and detectors based on the adsorption radon in activated carbon

  5. Design, construction and testing of a radon experimental chamber; Diseno, construccion y pruebas de una camara experimental de radon

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A; Balcazar G, M

    1991-10-15

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  6. Operating instructions for LBL radon measurement facilities

    International Nuclear Information System (INIS)

    Ingersoll, J.G.

    1980-06-01

    This manual is intended for users of the radon-measuring facilities of the Radon Project of the Building Ventilation and Indoor Air Quality Program at Lawrence Berkeley Laboratory. The manual comprises three parts. Part 1 sets out the steps involved in collecting, transferring, and counting radon. Part 2 describes the calibration of the transfer system and of the Lucas cells in the counting system. Part 3 outlines the maintenance procedures for the facility

  7. Difficulties in radon measurements at workplaces

    International Nuclear Information System (INIS)

    Kavasi, Norbert; Kovacs, Tibor; Nemeth, Csaba; Szabo, Tibor; Gorjanacz, Zoran; Varhegyi, Andras; Hakl, Jozsef; Somlai, Janos

    2006-01-01

    Different legislation systems can be found in the world concerning radon levels at workplaces. Following the European Union suggestion, a reference level for radon concentration in the air at workplaces was established in several European countries. In Hungary, the relevant legislation has come into effect on 1 January 2003. The determination of average radon concentration might present a problem, especially in places where the monthly average concentrations vary to a great extent. For example, the monthly averages measured in a hospital cave used for treating respiratory diseases showed a 24-fold difference depending on the chosen month. In such cases, attention should be paid when choosing the months and using the results of measurements for dose assessment. Another uncertainty emerges when estimating the annual dose, based on the data coming from long-term measurements, usually using integrated methods such as track detectors. There is a considerable difference between the averages measured during the working hours and over the total time (including nights and weekends), mostly in the cases of rooms with frequent air change like schools, kindergartens and ventilated workplaces. This can lead to a significant overestimation in dose calculation. Special attention needs to be paid to workplaces such as mines, tunnels and open air uranium tailings sites. This paper discusses the possible inaccuracies caused by the improper selection of time periods and methods in the measurements of the average radon concentration at workplaces

  8. Long term and equilibrium factor indoor radon measurements

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Navarrete, M.; Cabrera, L.; Ramirez, A.; Elizarraras, V.

    1998-01-01

    This paper presents the annual radon gas concentrations obtained during the 1994-1995 monitoring campaign using passive electret system (type E-PERM). Radon levels were measured in 154 single family dwellings, in normal occupancy conditions (open house condition) in the metropolitan zone of Mexico City. At the same time radon monitoring was performed outdoors. The results show the general log-normal distribution of integrated indoor radon concentration with an annual indoor mean of 3.8 pCi x l -1 . The seasonal variations show the minimum mean values in the summer season which are 39% lower than that in autumn. Equilibrium factors (F) were measured in 12 typical houses both in autumn and winter using a continuous working level monitor for short-lived radon decay products and H-chamber loaded with a short term electret (HST, E-PERM) for radon gas. The obtained total mean equilibrium factors are: F=0.41±0.17 and F=0.29±0.04 for indoor and outdoor, respectively. A quality program was also improved. (author)

  9. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  10. FOLLOW-UP RADON MEASUREMENTS IN 14 MITIGATED SCHOOLS

    Science.gov (United States)

    The report gives results of a determination of the long-term performance of radon mitigation systems installed in U. S. EPA research schools: radon measurements were conducted in 14 schools that had been mitigated between 1988 and 1991. The measurements were made between Februar...

  11. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  12. Calibration of SSNDT detectors for radon measurements

    International Nuclear Information System (INIS)

    Takahashi, Laura C.; Santos, Talita O.; Pinheiro, Rose Mary M.; Rocha, Zildete

    2017-01-01

    The methods and instrumentation used to measure the concentration of radon need to be calibrated to obtain accurate results. The Nuclear Track Detector is considered the main method of analysis of radon research. Thus, the Natural Radioactivity Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG, Brazil) uses the detector CR-39 (Landauer) to measure the concentration of radon in homes, workplaces, underground mines, soils and in environment. Epidemiological studies reveal the strong relationship between lung cancer and radon exposure. Therefore, it is important to monitor this gas and its progeny in order to assess the radiological risk. The alpha particles emitted by radon and its progeny leave traces on CR-39 due to Coulombian interactions with the atoms of the material. The liquid density of traces is converted to radon concentration by means of a calibration factor obtained in calibrated systems. This work aims to determine the LRN / CDTN calibration factor. To do so, the CR-39 detectors were placed inside the calibration chambers, along with two AlphaGUARD (Saphymo GmbH) detectors and Ra-266 sources with activities of 3,379 kBq or 0.483 kBq, referenced by NIST. From this, six levels of exposure were obtained, which were: 44 kBq.d.m 3 , 4 kBq.d.m 3 , 3 kBq.d.m 3 , 15 kBq.d.m 3 , 30 kBq.d.m 3 , 26 kBq.d.m 3 . The conversion factor between the liquid density of traces and the total exposure time obtained was K = 52.028 ± 0.752 [(trace density.cm -2 ) / (kBq.d.m -3 )]. After the determination of the conversion factor, it was used to measure the concentration of radon in underground mines, obtaining concentration results between 122 ± 24 and 7384 ± 517 kBq.m -3

  13. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  14. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  15. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  16. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  17. Selected aspects of radon presence in medicinal waters in Swieradow Spa; Wybrane aspekty obecnosci radonu w wodach leczniczych Swieradowa Zdroju

    Energy Technology Data Exchange (ETDEWEB)

    Przybilski, T.A. [Politechnika Wroclawska, Wroclaw (Poland)

    1996-12-31

    In the paper results of measurement of radium content in the rocks of the neighbourhood of Swieradow Spa were used to calculate emanating coefficient of rocks. The coefficient was next used to estimate the volume of rocks supplying the intakes with radon; in this estimation radioactive equilibrium between radium and radon in the rocks was assumed. The results obtained lead to the conclusion that such equilibrium is absent and allow estimating its coefficient as 10{sup -6}. It was also proposed to use track detectors to the continuous monitoring of radon concentrations in the ground waters, which was shown on the example of comparison of relative radon concentrations in individual wells of medicinal water intakes. (author). 14 refs, 1 tab.

  18. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    Science.gov (United States)

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  20. A new method for studying the transport of radon and thoron in various building materials using CR-39 and LR-115 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Ktata, A.; Bakhchi, A.

    2000-01-01

    Radon ( 222 Rn) and thoron ( 220 Rn) α-activities per unit volume were measured inside and outside different building materials by using two types of solid state nuclear track detectors (SSNTD) (CR-39 and LR-115 type II). In addition, the radon and thoron emanation coefficients of the studied materials were evaluated. Based on these data, the transport of radon and thoron across parallelepipedic blocks of the building materials could be investigated and radon and thoron global α-activities per unit volume outside different building material blocks were determined. Moreover, the diffusion length and the effective diffusion coefficient of radon in the building materials were evaluated and the total alpha activity due to radon in the atmospheres of different rooms consisting of different building materials was studied

  1. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja; Relations temporelles entre les variations des emanations gazeuses diffuses et l`activite explosive de quelques volcans actifs du Costa-Rica, exemples a l`Arenal, l`Irazu et au Rincon de la Vieja

    Energy Technology Data Exchange (ETDEWEB)

    Baubron, J C [BRGM, 45 - Orleans (France); Allard, P [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Fernandez, E [Obviscori, Heridia (Costa Rica); Hammouya, G [Observatoire de la Soufriere, IPG-P, le Houelmont, 97 - Gourgeyre (France); Soto, G J [ICE, San Jose (Costa Rica)

    1997-12-31

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The {sup 3}He/{sup 4}He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO{sub 2} flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.).

  2. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja; Relations temporelles entre les variations des emanations gazeuses diffuses et l`activite explosive de quelques volcans actifs du Costa-Rica, exemples a l`Arenal, l`Irazu et au Rincon de la Vieja

    Energy Technology Data Exchange (ETDEWEB)

    Baubron, J.C. [BRGM, 45 - Orleans (France); Allard, P. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Fernandez, E. [Obviscori, Heridia (Costa Rica); Hammouya, G. [Observatoire de la Soufriere, IPG-P, le Houelmont, 97 - Gourgeyre (France); Soto, G.J. [ICE, San Jose (Costa Rica)

    1996-12-31

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The {sup 3}He/{sup 4}He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO{sub 2} flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.).

  3. Estimation of effective dose from Rn emanating from 'the minus ion' effect wallpaper

    International Nuclear Information System (INIS)

    Yoshizawa, Y.; Minowa, H.; Morita-Murase, Y.; Furuta, E.

    2006-01-01

    We have examined the wall papers which declared 'the minus ion' effect to estimate external and internal exposure dose from them. Results of gamma-ray spectrometry revealed that they contain 0.03 to 0.35 Bq·g -1 of Th-series nuclides, 208 Tl, 212 Pb, 212 Bi and 228 Ac, and U-series one, 214 Pb. Distributions of radioactive nuclides in the samples were measured using an imaging plate and a FLA-2000 (Fuji Photo Film). The radiation doses from the printed side of the wall papers were 5 to 15 times higher than that of the back side. The 222 Rn concentrations emanating from the wall papers in a sealed container of 50 liter were measured using the PICO-RAD radon detectors. One wall paper showed two to five times higher than the background value. (author)

  4. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  5. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  6. Radon-222 measurements at Chester

    International Nuclear Information System (INIS)

    Fisenne, I.M.

    1982-01-01

    The Environmental Measurements Laboratory has compiled a five year record of continuous hourly radon-222 measurements at Chester, New Jersey. The data for the 1977-1978, 1978-1979, 1979-1980, and 1980-1981 have been reported previously

  7. Response of Radon in a seismic calibration explosion, Israel

    International Nuclear Information System (INIS)

    Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N.

    2009-01-01

    Radon measurements were performed at shallow levels during an in-land 20-ton seismic calibration explosion experiment, simulating a 2.6-M L earthquake, to investigate the influence of the explosive blast and the transitory seismic wave fields on the Radon transport in the country rock, adjacent to the focus of the explosion. The experiment was conducted in a basalt quarry in the northern margin of the Beit Shean valley (Israel). Five gamma-ray sensors were placed, at a depth of about 2 m, along a line located 17-150 m from the edge of the explosion zone. Measurements commenced 4 days before and continued for 9 days after the explosion with 15 min integrations. A 10-s sampling was used in the interval of several hours before and after the explosion itself. Diurnal variations of Radon, reflecting the typical variation pattern of Radon in the shallow environment, were registered before and after the explosion. No significant change in the overall Radon concentration was observed as a consequence of the main explosion as well as three smaller experimental shots (0.5-2 tons) in the 2 h prior to the calibration blast. The seismological data indicate that the transient excess pressure at the farthest Radon sensor was above 5 bar m -1 during 0.2-0.4 s, and evidently much higher at the nearest sensors, but none of the sensors responded by recording any exceptional change in the Radon concentration. Moreover the hypothesis that additional Radon may emanate from solid grains as a result of the excess local pressure exerted by the blast is also not observed. In contrast to a real earthquake event an explosion experiment has neither eventual preceding nor following geodynamic activity. Therefore the absence of significant Radon anomalies during or after the blast does not contradict assumptions, observations or conclusions as the occurrence of Radon anomalies prior or after an earthquake event due to associated long-term geodynamic processes.

  8. Radon gas sampler for indoor and soil measurements and its applications

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Flores, B.; Piermattei, S.; Susanna, A.F.; Seidel, J.L.; Tommasino, L.; Torri, G.

    1988-01-01

    A national large scale survey of indoor radon (based on an optimised sampling strategy) is needed in Italy to obtain average population dose for use in epidemiological studies. Since in the great majority of cases, one of the most important radon sources is the soil and rock beneath the houses, it would be interesting to combine this survey with measurements of bed-soil radon. With these objectives in mind, a new radon monitor device has been developed consisting of two etched track detectors enclosed in a heat-sealed polyethylene bag. When compared with existing techniques, this radon gas sampler presents several advantages for both indoor and outdoor measurements. As a pilot project, radon gas measurements have been carried out in hundreds of different sites and for several locations; measurements have been made for different years. Typical houses with relatively high radon concentrations have also been thoroughly investigated. (author)

  9. Study of the emanation levels of 222Rn present in Naturally Occurring Radioactive Materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria de Fatima da Encarnacao Sa

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas facilities, is a common fact in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. Thus, contaminated residues need to be segregated but, this is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the facility whose access is controlled. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scale is a mixture of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporates 226 Ra and 228 Ra in its structures. The objective of this work was to measure the emanations of the radon present in these NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of particle alpha tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Being that the emanation rate of 222 Rn was proportional to the number of these tracks the methodology permitted the comparison of contamination levels of the analyzed samples. (author)

  10. Effect of radon transport in groundwater upon gamma-ray borehole logs

    International Nuclear Information System (INIS)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/Λh, where Λ is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion

  11. Regressionanalysis of radon measurements; Regressionsanalysen von Radonmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Buermeyer, J.; Neugebauer, T.; Hingmann, H.; Grimm, V.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS); Gundlach, M. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Fachbereich fuer Mathematik, Naturwissenschaften und Informatik

    2016-07-01

    In the course of the renewal of the Radiation Protection Guidelines for Germany, radon becomes a more prominent concern. Thus, it is important to gain more information on the temporal behaviour of radon and its measureable parameters. This work focuses on the determination on possible influencing factors using regression-analysis methods. So far the radon concentration has been analysed and it was revealed, that the most important impact comes from the gradient of the temperature and pressure as the difference of the values in and outside the building. The carbon dioxide, which was logged as an indicator for the influences of the inhabitant does not show the high influence on the Radon levels as expected.

  12. Radon measurements in some areas in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Khan, M.A. [Physics Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, P.O. Box 164, Dhaka-1000 (Bangladesh)], E-mail: hamidkhan1950@yahoo.com; Chowdhury, M.S. [Physics Department, Dhaka University, Dhaka-1000 (Bangladesh)

    2008-08-15

    A survey of radon level measurements using CR-39 has been carried out in some of urban and rural residential areas and one gas explosion area in Bangladesh. The lowest level of radon concentration was found to be 49Bqm{sup -3} inside a hospital in Cox's Bazar district and the highest level was found to be 835Bqm{sup -3} inside a mud-made old residential house in Sylhet city. It was observed that old residential houses were found to have higher levels of radon concentrations compared to newly built houses. The radon level at the gas explosion area at Magurchara in Moulvibazar district was found to be 408{+-}98Bqm{sup -3}.

  13. Radon measurements in some areas in Bangladesh

    International Nuclear Information System (INIS)

    Hamid Khan, M.A.; Chowdhury, M.S.

    2008-01-01

    A survey of radon level measurements using CR-39 has been carried out in some of urban and rural residential areas and one gas explosion area in Bangladesh. The lowest level of radon concentration was found to be 49Bqm -3 inside a hospital in Cox's Bazar district and the highest level was found to be 835Bqm -3 inside a mud-made old residential house in Sylhet city. It was observed that old residential houses were found to have higher levels of radon concentrations compared to newly built houses. The radon level at the gas explosion area at Magurchara in Moulvibazar district was found to be 408±98Bqm -3

  14. Low-level radon measurements by nuclear track detectors

    International Nuclear Information System (INIS)

    Koksal, E. M.; Goksel, S. A.; Alkan, H.

    1985-01-01

    In the work to be described here we have developed a passive nuclear track dosimeter to measure the integrated value of indoor radon (Rn-222) over a long period of time. Passive radon dosimeter which we have developed in our laboratories makes use of two small pieces of CR-39 plastic (Allyl diglycol carbonate) as detectors for registering tracks of alpha particles emitted by radon. These CR-39 plastic detectors are fixed on the inside bottom of a cup-shaped polystrene enclosure which is closed at the top by a tissue permeable for gases only. CR-39 detectors exposed to radon gas in the indoor air for a period of six months then are removed and chemically etched to make the alpha particle tracks visible under the microscope. The counts of tracks are evaluated to determine the radon concentration in the air in comparison with the number of tracks produced by a known concentration of radon gas. By using the passive dosimeters developed and the chemical etching procedure descriped here, measurements of indoor radon concentrations were carried out in 45 houses in different districts of the city of Istanbul. In this pilot experiment mean radon concentrations between 0.7 and 3.5 pCi/l have been found in these houses. In order to improve the counting of alpha tracks produced on the detectors a prototype electrochemical etching system in addition to chemical etching, is being developed. (author)

  15. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    Iida, Takao; Ikebe, Yukimasa; Yamanishi, Hirokuni

    1989-01-01

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h -1 . The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA + ( 218 Po + ) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P 2 O 5 ) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm -2 (Bq m -3 h) -1 . The detection limit of mean radon level is 1.2 Bq m -3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m -3 . The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m -3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m -3 and from 15.5 to 121.1 Bq m -3 , respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  16. Use of Emanation Thermal Analysis in the characterization of nuclear waste forms and their alteration products

    International Nuclear Information System (INIS)

    Balek, V; Malek, Z.; Banba, T.; Mitamura, H.; Vance, E.R.

    1999-01-01

    Emanation Thermal Analysis (ETA) was used for the characterization of thermal behavior of two nuclear waste glasses, basalt volcanic glass and perovskite ceramics before and after hydrolytic treatment. The release of radon, formed by the spontaneous α-decay of 228 Th and 224 Ra and incorporated into samples to a maximum depth of 100 nm from the surface due to the recoil, was measured during heating of the samples from 20 to 1200degC and subsequent cooling. Temperatures of the annealing of surface roughness, micro-cracks and other defects, produced by manufacture and/or by subsequent treatment of glass and ceramic samples, were determined using the ETA. Microstructure changes of glass corrosion accompanying their dehydration and thermal decomposition were characterized by the radon release rate changes. The effect of hydrolytic alteration on the thermal behavior of the nuclear waste glass was revealed by ETA in an early corrosion stage. In the alteration product of the perovskite ceramics the diffusion mobility of radon was assessed in the temperature range 1000-1200degC. The thermal stability of radiation-induced defects in perovskite ceramic powder bombarded by He + ions to doses of 10 14 and 10 16 ions/cm 2 was determined by means of ETA. (author)

  17. A summary of EPA radon chamber tests and results for rounds 3 and 4 of the National Radon Measurement Proficiency Program

    International Nuclear Information System (INIS)

    Smith, J.M.; Sensintaffar, E.L.

    1993-02-01

    The US Environmental Protection Agency's Office of Radiation and Indoor Air (ORIA) established the National Radon Measurement Proficiency (RMP) Program in 1986. Through this voluntary program, participants can demonstrate their ability to measure radon and/or radon decay products by submitting their detection devices to a blind test in a designated radon chamber. In this report, two EPA radon and radon decay products test chambers (chambers A and C) located at the National Air and Radiation Environmental Laboratory in Montgomery, Alabama are described. These chambers were used to expose detectors submitted for testing in Round 4 of the National Radon Measurement Proficiency Program and are used routinely for calibration purposes. Also described are the measurement and calibration procedures which were used to establish the official target values for radon and radon decay products concentrations during RMP Round 4 testing. The results for RMP Round 3 (conducted at the US DOE Environmental Measurements Laboratory radon chamber in New York) and RMP Round 4 (conducted in the two NAREL chambers) are discussed and compared. Following Round 4, the NAREL staff analyzed the collective performance for each measurement method tested in these rounds and found that all methods agreed with the target values within expected limits except for RPISU's and charcoal adsorbers. After analyzing the RMP4 results, NAREL staff spent several months evaluating the difference in charcoal adsorber response between Round 3 and 4 by performing radon chamber tests using EPA 4-inch, open-faced charcoal adsorbers

  18. Study on the influence factors about the soil radon measurement

    International Nuclear Information System (INIS)

    Wu Zixiang; Liu Yanbin; Jia Yuxin; Mai Weiji; Liu Xiaolian; Yang Yuhua

    2006-01-01

    Objective: To explore relevant factors about the soil radon measurement and provide gist of formulating correct measure method by studying the way of the soil radon measurement. Methods: Deflation-ionization room standard is adopted. Results: The concentration of soil radon becomes higher with the sample's volume added, it also augmented with the measure depth increased in certain degree; The concentration of soil radon changes little when sample's depth is above 60 cm; The time of deflation has no obvious influence on the concentration of soil radon, but microwave show serious effect on it; The results will be lowered when the desiccant is humidified, raining has the same affection on it; Plant has some impact on it. Conclusion: The measured results will be affected by microwave, oscillate and plant. Sample's volume and depth, soil's humidity can influence it too. The result's veracity can be guaranteed by choosing appropriate sample and measure condition. (authors)

  19. Radon in Estonian buildings. Establishment of a measurement system and obtained results

    International Nuclear Information System (INIS)

    Pahapill, L.; Rulkov, A.; Swedjemark, G.A.

    1996-12-01

    One purpose of this project was the establishment of a radon monitoring programme inside the state environmental monitoring programme. Another purpose was to investigate regions, expected to have high radon levels indoors. A new method for the long-term measurement of indoor radon was established and the staff for these measurements was trained. The results of the measurement can be used by Estonian decision-makers to work out rules and standards. There is no legislative act in the field of radiation in Estonian at this time. To summarize the results of the measurements we can say that indoor radon concentrations vary by region. The radon investigations must be continued to identify the risk areas and types of housing construction. The results of the state radon monitoring are provided to the municipalities, who advice the owners of planned new houses to select the right construction for the house. A new project will follow with an investigation of radon in randomly selected dwellings, training and equipment for radon measurement in soil, and general advice with regard to radon, as well as assistance in preparing information about radon. 7 refs, 5 figs

  20. Some reflections on radon and its measurement

    International Nuclear Information System (INIS)

    Becker, K.

    1991-01-01

    A brief editorial considers mainly two problems concerning radon measurement in residential buildings and its possible health effects. The first relates to the reporting in the literature of radon measurements to an accuracy which exceeds the accuracy of the measuring equipment. Secondly in radioepidemiological studies, care should be exercised in equating uranium miners and people living in houses since their working and living conditions are not comparable; this could sometimes explain an apparent lack of detectable negative health effects in residents. (UK)

  1. The measurement of radon concentration of soil in a civil construction site

    International Nuclear Information System (INIS)

    Liu Hanbin; Fan Guang

    2004-01-01

    Radon is one of radioactive resources which do harm to human body. Therefore, its concentration in the soil should be measured before the civil construction works. Code for Indoor Environmental Pollution Control of Civil Building Engineering (GB50325-2001) is the main norm used for soil radon concentration measurement. By using FD-3017 RaA radon measuring equipment, the soil radon concentration in a civil building engineering site has been measured, the result shows that the concentration is lower than the regional average value, radon protective measures should not be installed in that site. (authors)

  2. Radon Measurements in Egypt using passive etched track detectors. A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A [National Network of Radiation Physics. Atomic Energy Authority (Egypt); Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, (Egypt); El-Arabi, A M [Physics Department, Faculty of Science, South Valley University, Qena, (Egypt)

    2005-04-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water.

  3. Radon Measurements in Egypt using passive etched track detectors. A Review

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Hussein, A.S.; El-Arabi, A.M.

    2005-01-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water

  4. Indoor and underground radon activity in the northern part of Bangladesh: a preliminary study

    International Nuclear Information System (INIS)

    Haque, A.K.F.; Islam, G.S.; Islam, M.A.

    1991-01-01

    CR-39 solid state nuclear track detectors were used to determine the indoor and underground radon activity at three locations in the northern part of Bangladesh. The indoor radon activity at Naogaon was found to be higher than that at Rajshahi and Ruppur. Radon concentration in the mud-built houses at Naogaon was estimated to be ∼ 500 Bq m -3 (14pCi 1 -1 ) which is more than three times the recommended limit. The underground radon emanation at Naogaon was found to be one order of magnitude higher than that at the other two places. (author)

  5. Radon measurement in Malaysia water samples

    International Nuclear Information System (INIS)

    Ibrahim, A.B.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    This paper reported the results of the measurement of radon in local water. The water samples collected were rainwater, river water, seawater, well water or ground water at area of State of Selangor and Kuala Lumpur. The samples were collected in scintillation cell ZnS(Ag) through Radon Degassing Unit RDU 200. Alpha activity was counted with scintillation counters RD 200 at energy 5.5 MeV. (author)

  6. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m -3 222 Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants' reported values to the EML values, for all four radon device categories, was 0.99 ± 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within ±1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 ± 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm -3 ). The equilibrium factor at that particle concentration level was 0.10--0.22

  7. Determination of radioactivity in and radon emanation coefficient of selected building materials and estimation of radiation exposure from their use

    International Nuclear Information System (INIS)

    Paredes, C.H.

    1984-01-01

    Building materials commonly used in the construction industry and those that were manufactured with waste products of the phosphate industry, and phosphate ores were examined for radioactivity content. Each material was analyzed for Ra-226, Ra-228, and K-40 by gamma-ray spectrometry. The measured radionuclide concentrations for the building materials examined ranged from 0.2-3.9 pCi g -1 for Ra-226, 0.3-1.8 pCi g -1 for Ra-228, and 2.3-37 pCi g -1 for K-40. Waste products of elemental phosphorus manufacture had activity concentrations that ranged from 4.2-54 pCi g -1 for Ra-226, 0.3-1.0 pCi g -1 for Ra-228, and 1.4-6.6 pCi g -1 for K-40. The activity concentrations for phosphate ores from Tennessee and Montana were 5.3 and 36 pCi g -1 for Ra-226, 0.5 and 0.6 pCi g -1 for Ra-228, and 4.8 and 9.0 pCi g -1 for K-40, respectively. The emanation coefficients for the building materials examined ranged from 6.86 x 10 -4 - 5.99 x 10 -2 . Those for the waste products of the phosphate industry ranged from 2.21 x 10 -4 - 3.06 x 10 -2 . The phosphate ores had emanation coefficients in the order of 10 -2 . The emanation coefficients for mineral wool and wall-board slightly increased when measured at a relative humidity of 100% instead of 0%. No dependence of emanation coefficient on humidity was observed for Tenn. phosphate slag

  8. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  9. New method of reducing radon levels in homes

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2006-01-01

    Full text: Radon is a naturally occurring gas seeping into homes and underground structures (buildings, tunnels, hangars, garages, etc.) from the surrounding soil through walls, floor, etc. and emanating from construction materials such as concrete, granite, etc. The level of radon is especially great in regions with the heightened content of uranium in soil and water and with geological breaks of the earth's crust. Concentrations of uranium higher than 10 g per ton of soil have been found in 14 percent of territory of Uzbekistan. As a result, for instance, concentration of radon 10-100 times exceeds the regulation level in 14 percent of premises in Tashkent, 41 percent of premises in Almalik town and 44 percent in Yangiabad town. The purpose of this work was creating a method to reduce concentration of radon gas in buildings and underground structures. We suppose that the most effective technique is a treatment of walls, floors, etc. of basement and underground structures by special chemicals which seal micropores inside the construction materials. Sealing the pores stops radon diffusion and in addition, it blocks another radon pathway - water migration and emanation from concrete, gypsum or other construction materials. In the paper polymeric silico organic compounds are investigated and selected as the chemicals to prevent radon seeping indoors. Gas (air, Ar, Rn 222, H 2 O) permeability of concrete and gypsum after treatment by chemicals has been examined. Influence of types of cement and sand, preliminary treatment by different chemicals, different types of polymeric silico organic compounds, time between treatments, moisture of concrete, time between preparation of chemicals and treatment of concrete (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) have been examined. Surfaces of the samples were treated by spray. Experiments have shown that chosen method of treatment of the construction materials allows reducing

  10. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  11. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  12. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  13. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  14. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    International Nuclear Information System (INIS)

    Martinez, J.E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-01-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m 3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values. - Highlights: • High levels of Radon in a workplace can increase health risks in the employees. • Using the typical equilibrium factor 0.4 could lead to an error in the estimation of radon doses. • We present a method for radon equilibrium determination. • Equilibrium factor is calculated by gamma spectrometry measuring of radon progeny concentrations in the air.

  15. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja

    International Nuclear Information System (INIS)

    Baubron, J.C.; Allard, P.; Hammouya, G.; Soto, G.J.

    1996-01-01

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The 3 He/ 4 He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO 2 flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.)

  16. Optimized collection, storage and measurement of radon and radon decay products - school experiments

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Geipel, R.; Just, G.

    1998-01-01

    Schools are expected more than ever to teach in physics and chemistry an understanding of radioactivity in its many aspects. Simple experiments on the occurrence, the measurement and the properties of radionuclides are necessary for true understanding. Such experiments are now possible with novel methods of collection and storage of ubiquitous radon and radon decay products from air, water and solids. (orig.) [de

  17. Radon decay product in-door behaviour - parameter, measurement method, and model review

    International Nuclear Information System (INIS)

    Scofield, P.

    1988-01-01

    This report reviews parameters used to characterize indoor radon daughter behavior and concentrations. Certain parameters that affect indoor radon daughter concentrations are described and the values obtained experimentally or theoretically are summarized. Radon daughter measurement methods are reviewed, such as, PAEC, unattached daughters, particle size distributions, and plateout measurement methods. In addition, certain radon pressure driven/diffusion models and indoor radon daughter models are briefly described. (orig.)

  18. Pre- and post construction radon measurements in a new housing development

    International Nuclear Information System (INIS)

    Rydock, J.P.; Naess-Rolstad, A.; Brunsell, J.T.

    2001-01-01

    Results from pre- and post construction radon measurements in a new housing development are presented. The houses were built in an area that had not been previously associated with elevated indoor radon concentrations. Exhalation measurements of gravel and stone from the site and soil gas measurements under several houses did not indicate an elevated radon potential. However, 4 of 21 finished houses (or 19%) exhibited annual average indoor radon concentrations over 200 Bq.m -3 (5.4 pCi/l). The highest concentrations were observed in the first house built in 1 of the 6 houses built differently than the original designs, with the elements of a sub floor ventilation system included for possible radon control if necessary. These results suggest that site investigations can be of limited value in determining where not to include radon protection measures in new housing. Also, that care must be taken to adequately inform everyone involved in the building process of the importance of maintaining a tight seal against the ground to prevent possible radon gas entry into a house. (author)

  19. Definition of correcting factors for absolute radon content measurement formula

    International Nuclear Information System (INIS)

    Ji Changsong; Xiao Ziyun; Yang Jianfeng

    1992-01-01

    The absolute method of radio content measurement is based on thomas radon measurement formula. It was found in experiment that the systematic error existed in radon content measurement by means of thomas formula. By the analysis on the behaviour of radon daughter five factors including filter efficiency, detector construction factor, self-absorbance, energy spectrum factor, and gravity factor were introduced into the thomas formula, so that the systematic error was eliminated. The measuring methods of the five factors are given

  20. Rehabilitation Measures against radon gas entry

    International Nuclear Information System (INIS)

    Frutos Vazquez, Borja; Olaya Adan, Manuel; Esteban Saiz, Jose Luis

    2011-01-01

    Radon gas is a pathological agent for inhabitants of buildings where it is present. Due to its origin in uranium decay chain, it bears radioactive effects that inside human body lead to higher risks of developing lung cancer. It comes from soils containing granite masses or other substrates containing uranium. It enters through common material used in constructions, such as concrete ground slabs, basement walls, etc. In order to avoid such gas immission into inhabited rooms, several measurements cab be considered for existing buildings. This study intends to show the results obtained for radon reductions by means of different constructive solutions, already designed and executed so as to stop radon gas immission into a prototype building constructed for this specific purpose

  1. Radon content in Danish till deposits: relationship with redox conditions and age

    International Nuclear Information System (INIS)

    Gravesen, P.; Roll Jakobsen, P.

    2010-01-01

    This paper presents some results concerning the radon content and emanation rates in different Danish till deposits of Saalian and Weichselian age from a study carried out by the Geological Survey of Denmark and Greenland (GEUS). (LN)

  2. Radon measurements of groundwater in Mexico

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Cortes, A.

    1991-01-01

    Radon measurement has important applications in hydrogeological studies. Specifically, radon measurement is used to determine the fluctuations of the piezometric levels in groundwater and, in some cases, the path of the water, which is one of the key parameters for evaluating hydrogeological resources. Water from springs and deep wells in the Basin of Mexico and the valley of San Luis Potosi were sampled, measured and analyzed by previous authors. In this work, a method for measuring 222 Rn in groundwater by using a passive detector is presented and the results are compared with a similar experiment performed at the same time, using a dynamic method. The aim of the work is to develop a method for detecting, evaluating and measuring the 222 Rn in groundwater by using SSNTD technology. (author)

  3. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  4. Excess bottom radon 222 distribution in deep ocean passages

    International Nuclear Information System (INIS)

    Sarmiento, J.L.; Broecker, W.S.; Biscaye, P.E.

    1978-01-01

    Radon 222 and STD profiles were obtained as part of the Geosecs program in the Vema Channel in the southwest Atlantic Ocean and in the Samoan, Clarion, and Wake Island passages in the Pacific Ocean. The standing crop of excess radon 222 is higher in the passages than at other nearby locations. The most likely explanation for this is that there is a high flux of radon 222 from the floor of the passages. Since much of the floor is covered with manganese nodules and encrustations, the high flux of radon 222 may be attributable to the high concentrations of radium 226 in the outer few millimeters of such deposits. Laboratory measurements of radon 222 emissivity from maganese encrustations obtained in Vema Channel support this hypothesis. The excess radon 222 in the Vema Channel and Wake Island Passage is found in substantial quantities at heights above bottom greatly exceeding the heights at which excess radon 222 is found in nonpassage areas. The horizontal diffusion of radon emanating from the walls of the passages is unlikely to be the cause of the observed concentrations because the ratio of wall surface area to water volume is very low. The profiles must therefore be a result of exceptionally high apparent vertical mixing in the passages. Further work is needed to determine the nature of this apparent vertical mixing. The excess radon 222 and STD data in all four passages have been fit with an empirical model in which it is assumed that the bouyancy flux is constant with distance above bottom. The fits are very good and yield apparent buoyancy fluxes that are between 1 and 3 orders of magnitude greater than those obtained at nearby stations outside the passages for three of the four passages

  5. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  6. Generation and mobility of radon in soil

    International Nuclear Information System (INIS)

    1992-01-01

    Objectives of this research include: (1) To determine the processes that cause large seasonal and short-term changes in the radon (Rn) content of soil gases, and to develop methods of predicting and modeling these variations; (2) to evaluate the relation of Rn emanation coefficients to form of radium (Ra) and other U-series decay products, particularly the role of Ra in organic matter and Fe-oxides; (3) to evaluate the conditions in which convection of gas in soil and bedrock may affect soil gas radon availability in houses; and, (4) to collaborate with other DOE researchers on evaluation of Rn flux into houses, using our well characterized soil sites

  7. Design, construction and testing of a radon experimental chamber

    International Nuclear Information System (INIS)

    Chavez B, A.; Balcazar G, M.

    1991-10-01

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  8. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  9. Measurements of radon in dwellings with CR-39 track detectors

    DEFF Research Database (Denmark)

    Majborn, Benny

    1986-01-01

    A passive integrating dosemeter has been designed for measuring natural radiation in dwellings. The dosemeter contains one or two CR-39 track detectors to measure radon and three thermoluminescence dosemeters to measure external radiation. The dosemeter was investigated in a pilot study in 1983....../84, and it is now used in a nationwide survey of natural radiation in Danish dwellings. The characteristics of the dosemeter with respect to radon measurements are presented, and the radon monitoring results obtained in the pilot study are summarized...

  10. Mapping the geogenic radon potential of the eastern Canary Islands.

    Science.gov (United States)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe

  11. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  12. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  13. Relationship between short and long term radon measurements

    International Nuclear Information System (INIS)

    Martinez, T.; Ramirez, D.; Navarrete, M.; Cabrera, L.; Ramirez, A.; Gonzalez, P.

    2000-01-01

    In this work the radon group of the Faculty of Chemistry at the National University of Mexico presents the results obtained in the establishment of a relation between the short and long term radon measures made with passive electret detectors E-PERM type LLT and HST. The measures were carried out inside single family dwellings (open house condition) located in the southeast of Mexico City (in Xochimilco) during the four seasons of the year 1997. A correlation was established between the short term measures (five days) and those of a long term for every season as well as an annual average, with an equation that relates them. The objective and advantage of this correlation are that with a short term measure it is possible to predict the annual mean radon concentration, that represents a saving of human and economic resources. (author)

  14. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential

    International Nuclear Information System (INIS)

    Kabrt, Franz; Rechberger, Fabian; Schuff, Michael; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Maringer, Franz Josef

    2014-01-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m -3 and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. (authors)

  15. Radon Sources and Associated Risk in terms of Exposure and Dose

    Directory of Open Access Journals (Sweden)

    Efstratios Gregory Vogiannis

    2015-01-01

    Full Text Available Radon concern the international scientific community from early 20th century. Initially as radium emanation, almost the second half of the century as severe harmful to human health. Initial brilliant period of use as medicine, followed by a period of intense concern for its health effects. Primary target groups surveyed were miners early in Europe later in U.S. There is now compelling evidence that radon and its progeny can cause lung cancer. Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions. Indoor Radon and its short-lived progeny attached on aerosol particles or free compose an air mixture that carry a significant energy amount (PAEC. Exposure on PAEC and dose delivered reviewed in detail. Special attention was paid to the case of water workers because lack of adequate data. Radon risk assessment and current legislation regulates dose from radon and its progeny, also were reviewed.

  16. Radon concentration measurements in the desert caves of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mustafa, Hanan [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco P.O. Box 13027, Dhahran 31311 (Saudi Arabia)

    2005-11-15

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm{sup -3}. The average radon concentration in four of the caves was low in the range 74-114Bqm{sup -3}. However, one cave showed an average radon concentration of 451Bqm{sup -3}. Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides.

  17. Radon concentration measurements in the desert caves of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Mustafa, Hanan; Al-Jarallah, M.I.; Fazal-ur-Rehman; Abu-Jarad, F.

    2005-01-01

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm -3 . The average radon concentration in four of the caves was low in the range 74-114Bqm -3 . However, one cave showed an average radon concentration of 451Bqm -3 . Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides

  18. Evaluation of tectonic impact on radon level of lithological units

    International Nuclear Information System (INIS)

    Wolkowicz, S.; Strzelecki, R.

    2000-01-01

    The radon potential maps of the Sudetes Mountains and Upper Silesian Coal Basin have been prepared on a base of arithmetic mean value of radon concentration in soil air in distinguished lithological/stratigraphic units. Both zones of shallow position of ground table and the fault zones influence value of this parameter: the first one affects in specific conditions lowering of background values, the second ones - origin of values several and teen times higher than rock background values. Estimation of power of tectonic influence on general radon potential of the lithological units has been made on a base of examination of histograms of distribution of radon concentration in soil air. In the Sudetes area, 0 % to about 30 % of the measurements is related to fault zones. Higher tectonic engagement (about 30 %) characterizes the Karkonosze Granites, Izera Gneisses and Strzegom Granites. In the cases of Karkonosze Granites and the Strzegom Granites, rock background values concentrations in soil air are a little than 50 kBq/m 3 , what is the value defined for lower threshold of high radon risk areas. In conclusion, presence of numerous fault zones and fissures increases radon risk category with one class. Background modal values of radon emanations, defined for the studied units, in the 5 cases fulfill criteria for medium radon risk areas, and in other cases do not exceed of the threshold 10 kBq/m 3 . It displays, that in the case of low radon potential rocks only a few-percent rich population of measurements related to tectonic zones, is sufficient to substantially deform of the image of the studied unit radon potential. For instance, medium radon potential characterizes the Klodzko - Zloty Stok Granites (the arithmetic mean value of this class is 36.15 kBq/m 3 , n=104) and small tectonic engagement (about 3.8 %). In the result the modal value belongs to the class 20-30 kBq/m 3 . The Poreba Beds in the Upper Silesian Coal Basin are characterised by almost the same radon

  19. Protective measures during construction against radon exposure

    International Nuclear Information System (INIS)

    Horn, W.

    1990-01-01

    Radon, thoron as well as their daughter products have an cancerogeneous effect on the human respiratory tracts. In this respect protective measures in the area of construction are of great importance. This article deals with constructional solutions which consist of different individual measures. Sources of radon are outside air, water, fuels, building materials as well as the building ground. Possible protective measures are divided into area-related (floor structure, intermediate floors, exterior walls of cellar, foundation slab, building ground), line-related (joints, cracks, wall ducts) as well as supplementary measures (tightly closing doors, arrangement of natural cross-ventilation and vertical ventilating shafts). (BWI) [de

  20. Novel technique of reducing radon levels in living premises

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2006-01-01

    Full text: Radon is a naturally occurring gas seeping into homes and underground structures (buildings, tunnels, hangars, garages, etc.) from the surrounding soil through walls, floor, etc. and emanating from construction materials such as concrete, granite, etc. The level of radon is especially great in regions with the higher content of uranium in soil and water and with geological breaks of the Earth's crust. Concentrations of uranium higher than 10 g per ton of soil have been found in 14% of territory of Uzbekistan. As a result, for instance, concentration of radon 10-100 times exceeds the regulation level in 14% of premises in Tashkent, 41% of premises in Almalik town and 44% in Yangiabad town. The purpose of this work was creating a method to reduce concentration of radon gas in buildings and underground structures. We suppose that the most effective technique is a treatment of walls, floors, etc. of basement and underground structures by special chemicals which seal micropores inside the construction materials. Sealing the pores stops radon diffusion and, in addition, it blocks another radon pathway - water migration and emanation from concrete, gypsum or other construction materials. In the paper polymeric silicoorganic compounds are investigated and selected as the chemicals to prevent radon seeping indoors. Gas (air, Ar, Rn-222, H 2 O) permeability of concrete and gypsum after treatment by chemicals has been examined. Influence of types of cement and sand, preliminary treatment by different chemicals, different types of polymeric silicoorganic compounds, time between treatments, moisture of concrete, time between preparation of chemicals and treatment of concrete (ageing of chemicals), time between treatment of concrete and testing (ageing of treated concrete) have been examined. Surfaces of the samples were treated by spray. Experiments have shown that chosen method of treatment of the construction materials allows reducing the coefficient of gas

  1. Radon measurements along active faults in the Langadas Basin, northern Greece

    Directory of Open Access Journals (Sweden)

    C. Papastefanou

    2001-01-01

    Full Text Available A network of three radon stations has been established in the Langadas Basin, northern Greece for radon monitoring by various techniques in earthquake prediction studies. Specially made devices with plastic tubes including Alpha Tracketch Detectors (ATD were installed for registering alpha particles from radon and radon decay products exhaled from the ground, every 2 weeks, by using LR-115, type II, non-strippable Kodak films, starting from December 1996. Simultaneous measurements started using Lucas cells alpha spectrometer for instantaneous radon measurements in soil gas, before and after setting ATDs at the radon stations. Continuous monitoring of radon gas exhaling from the ground started from the middle of August 1999 by using silicon diode detectors, which simultaneously register meteorological parameters, such as rainfall, temperature and barometric pressure. The obtained data were studied together with the data of seismic events, such as the magnitude, ML, of earthquakes that occurred at the Langadas Basin during the period of measurements, as registered by the Laboratory of Geophysics, Aristotle University of Thessaloniki, in order to find out any association between them.

  2. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  3. Determination of groundwater flow velocity by radon measurements

    International Nuclear Information System (INIS)

    Hohn, E.; von Gunten, H.R.

    1990-01-01

    The groundwater resources of glacio-fluvial perialpine valleys are recharged significantly by the infiltration from rivers. The groundwater residence times between rivers and wells should be known in groundwater management problems. Short residence times can be estimated using radon. Radon concentrations in rivers are usually very low. Upon filtration and movement of the water in the ground, radon is picked up and its concentration increases by 2-3 orders of magnitude according to radioactive growth laws. Residence times and flow velocities can be estimated from the increasing radon concentrations measured in groundwater sampling tubes at different distances from the river. Results obtained with this method agree with the results from experiments with artificial tracers

  4. Development of model DTY-104 radon measuring meter

    International Nuclear Information System (INIS)

    Shi Zhixia; Zhang Aiming; Li Yachun; Wang Qingheng

    2000-01-01

    Model DTY-104 radon measuring meter is an improvement on Model DTY-103. 'Difference value method' is used, which has been strictly developed and makes the radon exhalation rate more accurate, instead of using 'simplified difference value method'. The electronic circuit is redesigned and 80C31 single chip processor is used, which makes the operation more convenient and the function strengthened. In a more reasonable manner, the humidity sensor is mounted in the collection chamber. The collection efficiency can be automatically corrected. The technique of exchanging the collection mylar reduces the waiting time and improves work efficiency. The apparatus is applied to the measurement of the radon concentration in the environment and the radon exhalation from the surface of the building materials, walls and ground. The lower detection limit is about 4Bq/m 3 for 222 Rn concentration and 5 x 10 -5 Bq/s/m 2 for 222 Rn exhalation rate

  5. Radon and radon progeny in 70 houses in the Tennessee Valley area: study design and measurement methods

    International Nuclear Information System (INIS)

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.; Quillen, J.L.; Clark, C. Jr.; Doane, R.W.; Wallace, R.G.; Reed, R.P.

    1986-01-01

    Levels of radon and its short-lived airborne progeny are being measured in a year-long study of 70 houses in four states in the Tennessee Valley. Various methods were used to solicit volunteers with differing degrees of success. Criteria for selection of houses in the study included presence of a lower level with cement floor and one or more block walls in contact with the soil, absence of obvious indications of technologically enhanced sources of radium, and proximity to one of four cities, (Knoxville, Chattanooga, Birmingham, or Florence). By design, most houses in the study are in the same neighborhood as at least one other house in the study. Houses range in age from newly constructed to about 40 years old. Most of the houses have more than 2000 square feet of finished floor space. The lower level encompasses a garage in most cases. More complete information pertaining to house characteristics will be gathered in the course of the study. Measurements are being made to obtain information on both location- and season-dependent variation of radon and radon progeny. Simultaneous measurements are made quarterly on both upper and lower levels of each house. Grab samples of air are collected and analyzed for radon using a modified Lucas cell technique. Short-term (10-minute) samples of airborne particulate material are collected and analyzed for radon progeny. One-week integrated measurements of working levels are made once each quarter using modified thermoluminescent dosimeters. Both three- and twelve-month integrated measurements of radon using track-etch monitors are being made. 19 references, 1 figures

  6. Measurements of radon levels inside Mexican caves

    International Nuclear Information System (INIS)

    Borau, J.; Gonzalez, A.; Espinosa, G.; Golzarri, J.I.

    1993-01-01

    Living animal species on earth have been exposed to environmental radon from the very beginning of time. The effects of radiation, combined with other natural parameters such as temperature, humidity, salt contents, etc., have most likely influenced the evaluation of different species. Thus, it is important to know and to evaluate the radon levels, among other radioactive elements present in enclosed environments such as caves, especially since those caves were also the dwellings and refuge of the predecessor of man. In this work we present radon level measurements inside some caves with vestiges of ancient inhabitats and some recently discovered natural caves, using Nuclear Track Detectors. (author)

  7. The effectiveness of radon preventive and remedial measures in Irish homes

    International Nuclear Information System (INIS)

    Long, S; Fenton, D; Cremin, M; Morgan, A

    2013-01-01

    It is estimated that approximately 100 000 Irish homes have radon concentrations above the reference level of 200 Bq m −3 . To minimise the number of new homes with this problem, building regulations require that all new homes built since July 1998 in high radon areas are installed with radon barriers during construction. Measurements on local authority homes in a number of high radon areas have allowed the impact of these new regulations to be assessed. In County Cork a reduction of up to 70% in the mean radon concentration was observed in homes built since 1998 relative to those built before this date. A reduction in both the number of homes exceeding the reference level and the maximum concentration measured in homes was also measured. Homes exceeding the reference level were remediated with the use of an active sump. The results of this remedial work are also presented and show that the mean reduction in radon concentration achieved was 92%. (paper)

  8. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  9. Why measure radon decay products?

    International Nuclear Information System (INIS)

    Rolle, R.; Lettner, H.

    1997-01-01

    Combined development in spectrometry, instrumentation and ventilation modelling with its dependence on short- and long-term weather fluctuations renders possible a new, economical metrology for radon decay products. Short-term measurements can, with few restrictions, be converted to annual exposures of an accuracy superior to that from conventional medium-term Rn gas measurements. (orig.) [de

  10. The influence of thoron on measurement results of radon exhalation rate

    CERN Document Server

    Xiao De Tao; Ling Qiu; Leung, J K C

    2002-01-01

    Because of thoron exhalation, the measurement results of radon exhalation rate using a local still method is usually larger than the true value of radon flux rate of the monitored material surface. The influence of sup 2 sup 1 sup 6 Po(ThA) on radon exhalation rate can be eliminated for sensitive radon monitors. Theoretical evaluations of the influence of sup 2 sup 1 sup 2 Bi(ThC) and sup 2 sup 1 sup 2 Po(ThC')on radon exhalation rate are carried out in a sampler with diameter of 188 mm, and height of 125 mm, and supplied electrostatic field inside (generated by high voltage and electret) under following conditions: the sampling time are 1, 2, 3 h, respectively, thoron exhalation rate is 100 times of radon's. The calculation results indicate that the measurement results of radon flux rate are possibly 35.5% larger than true value due to the influence of thoron for fast and multifunctional radon monitors with electret, high voltage, respectively and using CR-39 SSNTD as detector, but this influence is negligib...

  11. A brief overview on radon measurements in drinking water.

    Science.gov (United States)

    Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael

    2017-07-01

    The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  13. First measurement of radon transfer. Water - skin - blood - air

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Grunewald, W.A.

    2000-01-01

    While radon is disliked in uranium mines and homes, it is used medically in radon spas for the treatment of several ailments. The transfer of radon gas from water, through skin into blood and into expiratory air was studied completely for the first time for a person resting 20-30 min in radon water. For waterborne radon concentrations of 1500±100 Bq/L, 4±1 Bq/L were measured in the blood and 2.4±0.5 kBq/m 3 (Bq/L) in the expiratory air. The results can be understood according to the principles of physiology. The nature of the experiments excluded persons other than the authors. Hence the study has been radiometric (physical), not clinical (medical). (orig.)

  14. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  15. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  16. Radon: guidance on protective measures for new dwellings

    International Nuclear Information System (INIS)

    1991-01-01

    This report gives guidance for reducing the presence of radon in new dwellings and hence reducing the risk to occupants of exposure to radon. This is a follow-up to the interim guidance of 1988. The report provides comprehensive practical details on the methods of protection including both primary and secondary measures. (UK)

  17. Recent investigations and conclusions on radiation exposure from radon and its daughters in rooms

    International Nuclear Information System (INIS)

    Willau, E.

    1984-04-01

    Radon and its daughters emanate from structural materials and are concentrated in closed rooms. Measurements were first made in Vienna in concrete and brick buildings. The difference between these two materials is explained by the effect of different window tightness this being lower in the older brick buildings. It is conjectured that plaster is more important than the bulk wall material. In order to test the influence of the geological ground these measurement in Vienna (rubble ground) were complemented by those in Wagrain (shale ground) and the difference again explained by different window tightness. With regard to height above the ground the radon and daughter concentration was found to 2-3 times higher in cellars and at ground flour than at higher levels. The variation of concentration during and after airing was also investigated. (G.Q.)

  18. Indoor radon measurements in Adelaide, South Australia

    International Nuclear Information System (INIS)

    Paix, D.

    1989-01-01

    In 1986 a study of radon levels in homes in Melbourne was made, using activated charcoal to adsorb the gas from indoor air. Cups containing 25g of activated charcoal were exposed for periods of nominally 7 days. The cups were sealed and the accumulated activity was measured by gamma counting. Cup activity was related to ambient radon concentration by calibrations done in the Australian Radiation Laboratory's radon reference chamber. This work was continued in Adelaide, South Australia (S.A.) between July and November 1986 using the same methods. Cups were exposed in their homes by 213 volunteers from the staff of the S.A. Institute of Technology and the S.A. Health Commission. The median concentration of radon in air was 10 Bq/m 3 , with 90% of values below 35 Bq/m 3 , and 100% below 75 Bq/m 3 . The lower bound of the distribution is poorly defined because of inadequate counting statistics. 4 refs., 6 figs

  19. Radon measurement in the Architectonic Assembly of Guapulo

    International Nuclear Information System (INIS)

    Jarrin Cornejo, Andrea

    2001-01-01

    The radon is a radioactive gas that does not have color nor scent. The radon comes from the natural decomposition of uranium, an element that is in almost all the types of ground, even on the rock and the water. In general, the radon moves upwards, through the ground, until the air that you breathe. The radon-222 is considered like the second cause of the pulmonary cancer soon of the cigarette, existing greater probability of that a person acquires the greater disease whichever is the exhibition that she is put under. The radon comes from the natural decay (radioactive) of the radio-226 in the ground, rocks and water entering to any type of construction. Any construction can have a problem of radon; therefore to examine is the only way to know such risk. Of it is in favor reason, has determined the concentration of Radon-222 in the interior of the Architectonic Assembly of Guapulo. For it, the System E P ERM was used like quantification method (System Environmental Monitor of Radon) that finds the measurement from a diminution of voltage in an electrical ion camera; which, goes has to be proportional to the amount of present gas in the room. The monitoring points are the different parts from the Convent, the University, and the Church in which the predominant materials of construction are the brick, block, stone, tile, plank and marinate. Of the results, the found values average do not surpass in the Architectonic Assembly of Guapulo, the 200 Bq/m3 (maximum limit established internationally for the concentration of Radon). On the other hand, for the different materials from construction the walls of adobe have greater amount of radon to be formed almost in their totality by elements of the ground, followed those of brick, block and concrete respectively. (The author)

  20. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  1. International comparison of radon measurement using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hu Dan; Yang Weigen; Song Jianfeng

    2011-01-01

    It introduces the radon measurements international comparison using solid state track detectors among Zhejiang Environmental Radiation Monitoring Center (RMTC), Japan Chemical Analysis Center (JCAC) and National Institute for Radiological Protection of China CDC (NIRP). The results of the international comparison show that: Compared to the reference values, the measurements' relative deviations of detectors from 3 labs were 2%∼22%, which were exposed in radon chambers with different radon concentration, while the measurements' relative deviations were 0.5%∼13% when exposed in the environment. The measurement's relative deviations of RMTC were 5%∼3% in radon chambers and 0.5%∼9% in the environment, the results met requirements of the relative standards both at home and abroad. (authors)

  2. Remedial measures in Swedish and Norwegian houses - application of radon and radon decay product measurements

    International Nuclear Information System (INIS)

    Just, G.; Philipsborn, H. von; Matolin, M.; Molzahn, D.

    1998-01-01

    Houses and apartments in Sweden and Norway with excessive indoor radon concentrations were studied in detail with a variety of methods, standard and novel ones recently developed. For suitable remediation it is necessary to distinguish soil radon and exhalation from blue (porous) concrete. Our CARBOTEST-S is a simple, sensitive, in-situ method to quantify radon exhalation from existing walls, as well as radon permeability of different protective foils and final quality control of foils applied to existing walls. (orig.) [de

  3. Indoor radon measurements in dwellings of Garhwal Himalaya, Northern India

    International Nuclear Information System (INIS)

    Ramola, R.C.

    1996-01-01

    Measurement of indoor radon and daughters concentration were performed in several houses in Garhwal Himalaya during 1993-95 with solid state nuclear track detector films (LR-115 Type II). The detector films were exposed for a period of three month to one year. The films basically measured total airborne alpha activity but may be calibrated in unite of EEC RN (equilibrium equivalent concentration of radon with equilibrium factor F=0.45) in an environment with known radon and daughters concentrations. A numbers of dwelling in the area exhibited radon daughters concentrations (EEC RN ) exceeding the recommended level. The abnormal values are due to typical house construction (mud house) in the area. The houses are constructed with soil and local stone with a thin paste of mud. Behaviour and abnormality of radon in mud houses are discussed in details the corresponding annual effective dose has been calculated. (author)

  4. Thoron and radon measurements in houses

    International Nuclear Information System (INIS)

    Gauthier, C.

    1980-01-01

    Studies were made to determine what effect thoron daughters have on radon working level measurements in occupied houses at Elliot Lake. The decay of radon daughters is faster than that of thoron daughters. Six hours after sampling radon daughters are no longer present on the filter, and essentially all alpha activity is due to thoron C in transient equilibrium with thoron B. The concentrations can be extrapolated back to the time of the Kuznetz count, and the WL overestimation due to the presence of thoron daughters calculated. It was found using this method that in 70 percent of the samples the thoron contribution was no more than one mWL equivalent, less than the statistical error in the estimation of working levels. Only in buildings with very low ventilation rates and large areas of exposed concrete may corrections for the presence of thoron be necessary

  5. Radon: a problem of terminology

    International Nuclear Information System (INIS)

    Pellegrini, D.; Demongeot, S.

    1995-01-01

    Here are detailed the difficulties to speak about the same thing if we don't use the same language. The example is the radon and what we want to tell about it; it is necessary to explain what words we are using and what mean we want to give them. Then, emanation and exhalation are given with their definitions. Also the terms as factor, flux and rate are redefined. It is a way to make scientific population sensitive to terminology

  6. Radon and thoron measurements at special underground circumstances

    International Nuclear Information System (INIS)

    Kovacs, Tibor; Somlai, Janos; Szeiler, Gabor; Nemeth, Csaba; Tokonami, Shinji; Takahashi, Hiroyuki

    2008-01-01

    In this study a comparative integrating radon ( 222 Rn) and thoron ( 220 Rn) survey executed at underground workplaces are discussed. Two types of solid state nuclear track detectors (Radopot and Raduet) were applied for survey at four sites: a manganese mine, a bauxite mine, a tourist cave and a hospital cave. Several numbers of detecting points were chosen at each site and 1-1 Raduet and Radopot detector were placed at each point. Both detector types contains two polycarbonate (CR-39) foils in different holders in order to determinate the radon as well as the thoron levels. The detectors were changed in 30-60 days periods (approximately monthly) and the survey continued for a year. This study had two aims: 1) To gain information about the radon and thoron concentrations at the chosen places including the seasonal variations; 2) To compare the performance of the two types of detectors and check their response in the special circumstances indicates by these underground places. Concerning the first point the radon concentrations were found to be as the expected ones at the given underground places and were similar to our former measurements. In the case of thoron the results are very variable and significant part of the detectors provides no data or unrealistic data. Concerning the second point there was only a little difference (<10%) between the radon results provided by the two types of detectors. In the case of thoron the two detector types showed high inconsistency. The study suggests that both types of detectors are fit for the integrating radon measurement at these special circumstances but it cannot be stated the same for the thoron measurement. The reason of the unreliability of the thoron measurement could be the high humidity (especially in the caves), the high aerosol concentration (especially in the mines) and the air change rate variation. To find the reasons needs further study. (author)

  7. Radon measurements in the interior of the great pyramid

    Energy Technology Data Exchange (ETDEWEB)

    Kenawy, M A; Morsy, A A [Ain Shams Univ., Cairo (Egypt). College for Girls

    1991-01-01

    Radon concentration measurements were made in the interior of the great pyramid of ''Cheops'' at Giza. Measurements were carried out using CR-39 as a solid state nuclear track detector. The CR-39 sheets were placed inside the Queen's and King's chambers and along the ascending corridor leading to them. An evaluation of the radon concentration is presented and discussed. (author).

  8. Radon measurements concerning engineering-geological problems in lignite mining

    Energy Technology Data Exchange (ETDEWEB)

    Heinicke, J

    1986-07-01

    Radon measurements have been carried out by the aid of solid-state track detectors at the highwall of a lignite mine in order to forecast the eventual course of a landslide. The measured radon distributions and their changes as a function of time indicated that the slope was geodynamically active, but it was not possible to forecast the rate of sliding.

  9. Radon measurements in the interior of the great pyramid

    International Nuclear Information System (INIS)

    Kenawy, M.A.; Morsy, A.A.

    1991-01-01

    Radon concentration measurements were made in the interior of the great pyramid of ''Cheops'' at Giza. Measurements were carried out using CR-39 as a solid state nuclear track detector. The CR-39 sheets were placed inside the Queen's and King's chambers and along the ascending corridor leading to them. An evaluation of the radon concentration is presented and discussed. (author)

  10. Radium-226 content and emanating power of some timepieces manufactured in the years 1926--1951

    International Nuclear Information System (INIS)

    Keane, A.T.; Huff, D.R.

    Thirty-two radium-dial timepieces manufactured in the years 1926 to 1951 by a company in Connecticut were individually sealed in small steel cans for determination of radium-C ( 214 Bi) activity by γ-ray spectroscopy. Each can was counted within a few hours after sealing and again 5 or 6 days later; from the two observations, radium-C activities at time of sealing (nonemanating radium content) and at equilibrium (total radium content) were calculated. The mean radium-226 content of 22 pocket watches was 348 nCi (range, 159 to 606), and the mean emanating power (1-nonemanating Ra/total Ra) was 0.175 (range, 0.09 to 0.33). The mean radium-226 content of 9 wrist watches was 150 nCi (range, 54 to 449), and the mean emanating power was 0.242 (range, 0.12 to 0.34). The radium-226 content of the one small clock was 633 nCi, and its emanating power was 0.15. The concentration of radon-222 in the air of a sealed room of dimensions 3 x 3 x 3 m would be increased by about 3 pCi/l if a watch containing 400 nCi of radium-226 with an emanating power of 0.2 were left in the room for a few weeks. (U.S.)

  11. Radon in waters from health resorts of the Sudety Mountains (SW Poland)

    International Nuclear Information System (INIS)

    Ciezkowski, W.; Przylibski, T.A.

    1997-01-01

    This paper discusses the geological background related to the presence of selected radon waters in the Sudety Mountains. Special attention is paid to radon waters whose chemical composition is formed within metamorphic rocks (mainly gneisses). The physical, chemical, and isotopic characteristics of the waters of Ladek Zdroj, Czerniawa Zdroj and Swieradow Zdroj are presented. The rocks at these locations are briefly characterized by their U, Th, and Ra contents. It was found that the basic role in enrichment of these waters with radon is played by the 100 m deep near-surface zone. This is related to the increased emanation coefficient in this zone as a consequence of weathering processes. It is also shown that the residence time of water in the rocks is not important for radon genesis. (author)

  12. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  13. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  14. Express method and radon gas measurement detector

    International Nuclear Information System (INIS)

    Khajdarov, R.A.; Khajdarov, R.R.

    2004-01-01

    The purpose of this work was to improve the activated charcoal adsorption method. The detector consisted of an electronic unit (200 mm x 180 mm x 80 mm) and a scintillation cell (a tube 200 mm long, 60 mm diam.). The electronic unit contained a power supply, amplifier, discriminator, timer, counter and indicator. The scintillation cell contained a zinc sulfide scintillator, photomultiplier, preamplifier, high voltage power supply and a 200 ml chamber above the scintillator. This chamber was intended to situate activated carbon fibrous absorber and air compressor. In this method, air is drawn through a filter to remove radon decay products and then through the activated carbon cloth by using a compressor. Sampling takes between 5 and 15 minutes. After the sampling, the cloth is heated for 5-10 sec up to 200-250 deg C by electric current passing through the fiber. Radon gas evaporates from the cloth and the device detects scintillation pulses. Owing to a high radon preconcentration factor (by adsorption of radon on the activated carbon cloth from 50-150 L of air of and evaporation into the small volume of the chamber), the detection limit of the method is 2-4 Bq/m 3 . Since the distance between the filter, cloth and scintillator is over 80 mm, the detector only measures radiation from radon without interference from the radon decay products, remaining in the filter and cloth

  15. The discussion on a new measure method of radon chamber leak rate

    International Nuclear Information System (INIS)

    Zhang Junkui; Tang Bing

    2010-01-01

    Radon chamber is the third standard radon source. The leak rate is the key parameter for the radon chamber to naturally and safely operate. One way, that measure the leak rate is introduced. The experience result is that the way is simple and veracious to measure the leak rate. (authors)

  16. Measurement of radon and thoron progenies in Coimbatore

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mahendraprasad, M.; Meenakshisundaram, V.; Santhanam, R.; Raghunath, V.M.

    2001-01-01

    The radon and thoron daughter concentrations have been measured in different dwellings of Coimbatore city by grab sampling method and two count. It has been found that the radon daughter concentration varies from 0.5 to 10.5 mWL with mean value of 2.9 mWL and that of thoron progeny is from 0.7 to 16.3 mWL with mean value of 3.8 mWL. The average annual effective dose equivalent due to radon daughters is found to be 1.3 mSv and that of thoron progeny is 3.8 mSv. (author)

  17. α-Spectrometry of radon-bearing mine air

    International Nuclear Information System (INIS)

    Haider, B.; Huber, J.

    1978-01-01

    To know the activity distribution in mine air may be very helpful. For this purpose an automatic monitoring station for α-spectrometry had been built and tested in an adit of the Muellenbach pilot mine. The distribution of the short-life radon daughter products has been registered. Some test data are explained. They can also facilitate the location of emanation sources. (orig.) 891 HP/orig. 892 MB [de

  18. Radon permeability of foils measured by SSNTD technique (non-equilibrium approach)

    Energy Technology Data Exchange (ETDEWEB)

    Hakl, J.; Hunyadi, I.; Toth-Szilagyi, M. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1991-01-01

    Alpha sensitive solid state nuclear track detectors find wide application in the measurement of indoor radon and in field surveys. These detectors are sensitive both to radon and thoron. A separate estimation of concentrations of the two radon isotopes is an everyday problem. One possible way to solve this problem is based on the great difference between the radon and thoron decay constants. This means that thoron can be excluded from the sensitive volume of the radon measuring device by placing a proper gas permeable polymeric membrane over its opening window. The most important parameter determining the suitability of a given membrane for this task is its permeability constant. There are two possible ways to estimate this constant. One is to use long exposure times (>30 days) allowing steady state conditions for the radon concentration to form in the irradiation chamber. The other is to use a more complicated mathematical evaluation. An exact mathematical method has been developed to describe the radon concentration levels inside the irradiation chamber as a function of time. In this case the measurement can be done far from steady-state condition and the required exposure times range from some hours to a few days only. (author).

  19. Radon and radon-daughter exposure measurements by through-etched track registration in cellulose nitrate

    International Nuclear Information System (INIS)

    Knoefell, T.M.J.; Silva Estrada, J.J. da; Tavares, O.A.P.; Martins, J.B.

    1981-01-01

    The use of cellulose nitrate films LR-115 type II (Kodak-Pathe) as a practical, exposure integrating device to measure the level of exposure to alpha particles in atmospheres which contain radon and radon-daughter products is investigated. The analysis of a number of cellulose nitrate films that have been exposed to calibrated radon test-chamber atmospheres has indicated good correlations between through-etched track density p and integrated alpha-particle exposure Σa (Working-Level-Hour). It is shown that the response of the cellulose nitrate detector to radon-daughter alpha-particle exposures is linear, and that reliable conservative estimations of the Working-Level-Hour can be obtained from Σa = 3.0(p-b), where p is expressed in tracks/mm 2 (b is the background level). These results recommend the use of the special red cellulose nitrate films as a convenient dosimeter for monitoring radioactive contaminants in mine atmospheres. (Author) [pt

  20. Traceability on radon measurements at the JAEA Ningyo-toge

    International Nuclear Information System (INIS)

    Ishimori, Yuu

    2007-01-01

    The study on the establishment and maintenance of the traceability on radon measurements at the Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency (JAEA Ningyo-toge) is illustrated in this paper. The primary standard is a radium solution provided by the National Bureau of Standard (present the National Institute of Standards and Technology) in the USA, and the secondary standard is the method with gas-filled ionization chambers calibrated with the solution. The radon reference chamber is utilized to provide reference atmospheres in calibration experiments for other monitors. Through the intercomparison experiments among the international reference institutes, it was confirmed that the reliability and consistency of the secondary standard of the JAEA Ningyo-toge have been retained since 1984. It shows that the calibration and measurement techniques associated with the traceability system constructed have been maintained well at the JAEA Ningyo-toge. Science there is no reference field as a national standard and no method regulated by the Japanese Industrial standard, this paper provides not only reliability and accuracy of the radon measurements at the JAEA Ningyo-toge, but also useful information for the standardization of radon measurements in Japan. (author)

  1. Development of a radon chamber and measurement of the radon solubility in tissues; Entwicklung einer Radonkammer und Messung der Radonloeslichkeit in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas

    2015-04-22

    Every year thousands of patients with inflammatory diseases of the musculoskeletal system undergo radon therapy, but the molecular mechanism and the risk of this therapy are not understood. To study the effects of radon exposure in vitro and in vivo we constructed a radon exposure chamber in the framework of the GREWIS project. With this device we are able to expose samples under controlled and reproducible conditions including the radon galleries in Austria and Germany. Adjustable parameters are radon activity-concentration, temperature, humidity and exposure time. These parameters are permanently monitored and controlled. During experiments with cell cultures it is also possible to adjust the CO{sub 2}-concentration. In addition, experiments with mice can be performed with this setup. To measure the radon kinetics in different types of tissue we exposed tissue samples like fat or muscle and mice in the radonchamber. Afterwards we measured the -spectra of the short living radon decay products lead-214 and bismuth-214 in the exposed samples with a HPGe-Detector. We recorded the spectra at different time points after exposure and calculated the initial amount of radon at the end of the exposure period in the sample and investigated the diffusion of the radon out of it. We compared the results from different types of tissue but also activated coal. In an activated coal sample the radon is bound to it via Van-der-Waals-force and the decay spectra are governed by the life time of the bound radon (3,8 days). In contrast in the biological samples the primary radon diffuses out of the samples in less than 20 minutes and the spectra follow the kinetics of the decay of the daughter products. These measurements where performed for the first time under therapy conditions like in radon galleries and also with higher radon concentration. In our experiments we could see an enhanced accumulation of radon and its decay products in fatty tissue compared to muscle tissue. Also in

  2. Radon measurements using track detector in Wadi Sannur cave

    International Nuclear Information System (INIS)

    Shahin, F.; Eissa, M.F.; Mostafa, R.M.

    2008-01-01

    The most important contributors to the committed effective dose received by population due to natural sources are the short-lived decay products of radon ( 222 Rn). In natural voids, such as caves, most radon will enter the system from diffusion across the rock-air interface. It is well known that factors such as air pressure and temperature control the distribution of radon. The radon concentration measurements in the Wadi Sannur cave in Beni-Suef governorate in the period from 14 th of July 2005 to 17 th of October 2005. The average radon concentrations in the right, left and whole first cave are 916.12 ± 179.09, 819.63 ± 54.72 and 873.90± 147.11 Bq m -3 respectively. The measurements were performed using track etch detector of type Cr-39. After exposure, all detectors were etched chemically in 6.25 M NaOH solution at 70 C degrees for 6 h. The tracks were counted with an optical microscope magnifying 400 times. The average temperature inside the first cave during the period of measurements is 25-26 C degrees. The annual effective doses for the workers and visitors in the cave have been calculated. The average radon concentration in the Wadi Sannur cave, was 873.90 ± 147.11 Bq m -3 . The annual effective doses for worker and visitor in the cave were 1.33 ± 0.24 and 0.041 ± 0.007 mSv respectively. The doses are within the international recommended dose of 1.15 mSv. (author)

  3. Measurement of radon, radon daughters and thoron concentrations by multi-detector devices. No. E/12

    International Nuclear Information System (INIS)

    Somogyi, G.; Varga, Zs.

    1983-01-01

    There is a growing interest in collection of data concerning human exposures to naturally occurring alpha-emitting radionuclides (e.g. in mines, dwellings, building materials, industrial wastes, coal fuel cycle, water supply, soil, plants, etc.). Most of such studies are incomplete for the following reasons: in radon measurements the contribution of thoron is generally neglected, the determination of equilibrium factor is complicated or not possible at all, short- and long-term concentration fluctuations cause difficulties in obtaining representative mean values, the plate-out effect is generally not taken into account. A variety of simple methods were studied that could be used to overcome some of these difficulties by using cups equipped with two or more alpha-sensitive nuclear track detectors. A theoretical foundation of the quantitative measurements with such devices is presented. Experimental data are reported on radon, radon daughters and thoron concentrations measured by multi-detector devices in cave soil gas and in air of Hungarian dwellings. (author)

  4. Indoor radon measurements in dwellings of Mizoram

    International Nuclear Information System (INIS)

    Lalramengzami, R.; Laldawngliana, C.; Sinha, D.; Ghosh, S.; Dwivedi, K.K.

    1995-01-01

    The concentration of indoor radon has been measured in some dwellings of Mizoram state by employing time integrated method using solid state nuclear track detector. This state is located in the north eastern region of India which has been identified as a high background area. The indoor radon levels determined in this work are compared with data obtained from other regions of India and the Environmental Protection Agency (EPA) prescribed safe limit. (author). 7 refs., 2 figs

  5. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  6. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  7. Radon measurements during the building of a low-level laboratory

    CERN Document Server

    Antanasijevic, R; Bikit, I; Banjanac, R; Dragic, A; Joksimovic, D; Krmpotic, D; Udovicic, V; Vukovic, J

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m sup 2. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm sup - sup 3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  8. Radon measurements during the building of a low-level laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J

    1999-06-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m{sup 2}. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm{sup -3} and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  9. Radon measurements during the building of a low-level laboratory

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J.

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m 2 . The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm -3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied

  10. Radon measurements by track detectors in Calabrian workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Nastro, V.; Niceforo, G.; Vuono, D.; Luca, P. de; Nastro, A. [Calabria Univ., Dipt. di Pianificazione Territoriale, Arcavacata di Rende, CS (Italy)

    2006-07-01

    Indoor radon studies have been carried out in some workplaces of the South Calabria (Italy) by track detectors CR-39. This study has been undertaken for the purpose of safeguarding the public healthy: since the European population spends, in average, the most greater part of their time in confined environments(residences and offices) the risks of exposure can be elevated. This radon passive measurements are been effectuated according to the recommendations. The exposure time in the workplaces was two different cycle: three months, and six months. The obtained results indicate a radon concentration not only in an average of low level but also in the range of action level (>500 Bq/m{sup 3}). In this last case will be necessary to reduce the radon pollution by adequate land operation works, and a continuous monitoring is also necessary.

  11. Radon measurements by track detectors in Calabrian workplaces

    International Nuclear Information System (INIS)

    Nastro, V.; Niceforo, G.; Vuono, D.; Luca, P. de; Nastro, A.

    2006-01-01

    Indoor radon studies have been carried out in some workplaces of the South Calabria (Italy) by track detectors CR-39. This study has been undertaken for the purpose of safeguarding the public healthy: since the European population spends, in average, the most greater part of their time in confined environments(residences and offices) the risks of exposure can be elevated. This radon passive measurements are been effectuated according to the recommendations. The exposure time in the workplaces was two different cycle: three months, and six months. The obtained results indicate a radon concentration not only in an average of low level but also in the range of action level (>500 Bq/m 3 ). In this last case will be necessary to reduce the radon pollution by adequate land operation works, and a continuous monitoring is also necessary

  12. Radiological risk assessment of environmental radon

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  13. Can radon gas measurements be used to predict earthquakes?

    International Nuclear Information System (INIS)

    2009-01-01

    After the tragic earthquake of April 6, 2009 in Aquila (Abruzzo), a debate has begun in Italy regarding the alleged prediction of this earthquake by a scientist working in the Gran Sasso National Laboratory, based on radon content measurements. Radon is a radioactive gas originating from the decay of natural radioactive elements present in the soil. IRSN specialists are actively involved in ongoing research projects on the impact of mechanical stresses on radon emissions from underground structures, and some of their results dating from several years ago are being brought up in this debate. These specialists are therefore currently presenting their perspective on the relationships between radon emissions and seismic activity, based on publications on the subject. (authors)

  14. The measure and control system of mini-type radon room based on PC104

    International Nuclear Information System (INIS)

    Zhou Shumin; East China Inst. of Technology, Fuzhou; Tang Bin; Sun Yamin

    2005-01-01

    Radon room is one of the standard equipment which demarcates radon measure instrument. The paper discusses the dynamic method and mathematic model which keeps the radon consistence stability in radon room. The system is developed on PC104. The system can monitor the radon consistence and replenishment radon according the radon control parameter. (authors)

  15. Indoor radon distribution in metropolitan region of Belo Horizonte, Brazil

    International Nuclear Information System (INIS)

    Santos, Talita O.; Oliveira, Arno H. de

    2009-01-01

    Human beings are exposed to ionizing radiation from many natural sources. Radon and its progeny have been recognized as the most important contributors to the natural radioactivity dose, accounting for about half of all human exposure to ionizing radiation. Radon ( 222 Rn) is a α-radioactive noble gas derived from the natural series of uranium (2 38 U), which occurs in a wide concentration range in all geological materials, especially, in rocks, soils and waters. By diffusion and convection, radon migrates from the rocks and soils to atmosphere and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important radon source in dwellings is its emanation from the construction material. The radon progeny concentration in dwellings has been receiving considerable global attention due to its potential effect in causing lung cancer if it deposited in upper respiratory tract when inhaled. This paper presents radon concentration distribution in dwellings in Metropolitan Region of Belo Horizonte - RMBH. The effective dose estimate is also presented for the RMBH inhabitants. The geological settings of the area are Archean rocks of Granitic Gnaissic Complex and of metasediments sequences of the great Precambrian unit of the Iron Quadrangle of Minas Gerais, Brazil. Radon concentration measurements were carried out with continuous detector AlphaGUARD PQ200PRO (Genitron), in passive mode and with passive detectors E-PERM R Eletret Ion Chamber-EIC. The radon progeny concentration was carried out with a solid state alpha spectroscope, the DOSEman PRO (Sarad). It was found an indoor radon concentration varying in a large range from 18.5 to 2671.4 Bq/m -3 , with an average value of 148.0 Bqm -3 and geometric mean equal to 128.2 Bqm -3 . The variable results are due mainly to region geological factors and building material composition of dwellings. The equilibrium factor between radon and its progeny were determined in dwellings, as 0.3 in

  16. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  17. Measurement of radon activity concentration in buildings

    International Nuclear Information System (INIS)

    Godet, J.L.; Perrin, M.L.; Pineau, C.; Dechaux, E.

    2010-01-01

    Radon exposure, along with medical-related exposure, is the leading source of exposure to ionising radiation for the French population. Measurement campaigns are done in the action plan, drawn up by the French nuclear safety authority (ASN), in cooperation with the French directorate for housing, town planning and countryside (DHUP), the French radiation protection and nuclear safety institute (IRSN), the French health monitoring institute (InVS) and the French scientific and technical centre for construction (CSTB). The review of 2005-2008 measurement campaign shows that of the 7356 buildings screened, 84.8% had activity concentration levels below the 400 Bq/m 3 action level. For the other buildings (15.2%), action will be required to reduce human exposure to radon, possibly including building renovation/redevelopment work. In the 1999-2002 measurement campaign,12% of the 13,000 buildings screened had a radon activity concentration level higher than 400 Bq/m 3 . In addition, the ASN and the French general directorate of labour (DGT) are continuing to work on drawing up regulations for occupational risk management. The second national health and environment plan (PNSE 2) was published on 26 June 2009. It follows on from the actions initiated in PNSE 1, a document provided for under the Public Health Act dated 9 August 2004 and under the French 'Grenelle' environmental agreements. On the basis of guidelines laid out in PNSE 2, a radon action plan for 2009-2012 will be drawn up, enabling some of the actions to be continued, particularly in the fields of new building projects and dwellings. (author)

  18. Measurements of the radon-222 concentration in residences of Lima - Peru

    International Nuclear Information System (INIS)

    Pereyra, P.; Lopez, M. E.; Perez, B.

    2014-08-01

    The measurement of the Radon-222 levels was realized in the first semester of 2013 in residences corresponding to 16 districts of the metropolitan area of Lima, including to the zones North, Center and South of the city, during one period of 3 to 6 months in continuous form, with measurement periods of 1 to 2 months. The houses where the measurements were made were selected considering diverse variables as antiquity, construction materials, coatings, soil type, occupational use of the monitored rooms, etc. The measurements were realized in basements, first and second floor of the residences. For the Radon-222 measurements passive detectors of cellulose nitrate (Lr-115) were used. The procedure of data collection, dosimeters reading and the measurement results are shown in this work; this monitoring is the first one that is carried out in this city. The results are only indicators of the present radon rate, by the detectors type not is possible to discriminate the presence of the Radon-222 descendants. (Author)

  19. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  20. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  1. Airborne radon-222 measurement by active sampling with charcoal adsorption and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shizuma, Kiyoshi; Wen, Xiao-qiong; Fukami, Kenji; Iwatani, Kazuo; Hamanaka, Shun-ichi

    1998-01-01

    A simple method for measuring radon concentration in air is presented. Airborne radon is adsorbed in a charcoal bed by an active air sampling. In time, the adsorbed radon comes to attain radioactive equilibrium with its short-lived progeny 214 Pb. Utilizing this fact, radon concentration is derived from γ-ray measurement of 214 Pb. This method is estimated to be capable of detecting radon concentration in air down to 0.79 Bq·m -3 . The adsorption coefficient obtained with the method is compared with what is obtainable with passive sampling. Applications of this method to indoor and outdoor radon measurements are described. (author)

  2. Radon measurement waters from different regions of Transylvania

    International Nuclear Information System (INIS)

    Moldovan, M.; Cosma, C.

    2004-01-01

    Radon exposure is still a very current problem in the scientific world. It is well-known that 222 Rn and its short-lived daughters contribute to the effective dose equivalent, through inhalation, in a percent of 50% of the total effective dose equivalent from natural sources [UNSCEAR, 1988]. The radon gas incorporated in water is transferred into the indoor air by simple utilisation of water for domestic purposes. According to the American standards, the waters with concentrations of radon higher than 11.11 Bq/l (300 pCi/l) must not be consumed. Radon studies are very motivated even from the medical and geophysical point of view. Moreover, interesting correlations can be done between the measured concentration indoors and the concentration of those underground waters that supply them. We measured over 135 samples of groundwater. These were collected from wells, at different depths. The samples were measured after 12 hours, in order to prevent the radon loss. For groundwater measurements we used, a device called LUK-3A, manufactured in Czech Republic, which has a standard deviation of ± 10% and a sensibility of 0.56 Bq/l (15 pCi/l).The method is based on the detection of alpha radioactivity of 222 Rn. It can be set to perform measurements of 222 Rn from water. In case of this method a water sample of 0.3 l is collected into a glass container which is intensely stirred and shaken for one minute. The container is then connected to a vacuumed Lucas cell on one side and on the other side connected to a syringe in which distillated water was introduced having an amount equal to the volume of gas left into the collector container. Three successive measurements of 100 s were made for each sample. Before starting the measurements the background of the Lucas cells that were going to be used was determined. The concentration of radon is calculated using the formula: C Rn = k · N [Bq/l] where k - calibration constant, k = 9.85; N - count of pulses recorded in 100 minutes

  3. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  4. AlphaGUARD, the new reference for continuous radon monitoring in air, soil, gas, water and material

    International Nuclear Information System (INIS)

    Roessler, F.; Buerkin, W.; Villert, J.

    2016-01-01

    The company Saphymo GmbH has more than 25 years of experience in the field of radon measurement. More than 20 years ago Saphymo developed the professional and robust radon monitor AlphaGUARD, quickly recognized as a standard for reliable and continuous measurements of the radon concentration. Today AlphaGUARD is internationally established as the reference in radon measurement. Following up on this success story the new generation of AlphaGUARD can now be presented. Based on the excellent measurement characteristics of its predecessor the new AlphaGUARD combines the well-proven principle of the pulse ionisation chamber with new and additional features. The robust housing is oriented on the well-proven design of the predecessor and includes now an integrated flow controlled and powerful pump. The instrument can be operated in flow as well as in diffusion mode (without pump). Via the new large display and the intuitive menu navigation all measurement data can be retrieved. The presentation of time series in charts is possible as well as the parametrisation of the instrument. A wide range of accessories, developed in cooperation with various radon experts of universities and laboratories, enables the user a varied and flexible application of the AlphaGUARD: Measurement of the radon concentration in air (radon, thoron, radon progenies), in water (sampling and time resolved measurements) and in soil (soil gas measurements, exhalation measurements), emanation measurements from material, multi spot measurement, online measurement with remote data transmission via Ethernet/DSL, Bluetooth, Wi-Fi, GPRS/3G or satellite. Due to its high sensitivity and its fast and linear response over a large measuring range the AlphaGUARD is excellently suited for calibration laboratories. Furthermore the AlphaGUARD enables ideal prerequisites for field applications: robust housing for operations under harsh conditions, long battery life for the measurement at any location, low

  5. Contribution to the study of radon risk assessment - Use of Solid State Nuclear Tracks Detectors (SSNTD) for the measurement of radon in buildings

    International Nuclear Information System (INIS)

    RALAIARISOA, H.L

    2004-01-01

    222 Rn is a natural radioactive gas, originating from the decay of 226 Ra. Both of these radionuclides are elements of 238 U series. Uranium is naturally present in the rocks and soils, therefore radon is always present too because it is a soil gas. Radon takes the most important part in man exposure to natural sources of ionizing radiations. Moreover, it causes lung cancer. It can accumulate in confined environments such as buildings, so that its inhalation is a potential risk for human health. Thus radon measurement is necessary for radiation protection. Integrated measurement using Solid State Nuclear Tracks Detector (SSNTD) is a very common method for radon measurement in buildings because of the low cost of the detectors and their easy application. The measurement technics are based on the interaction of alpha particles emitted by radon with a polymer. Alpha particles produce in the polymer latent tracks, which need chemical revelation to be observable with optical microscopy. The number of revealed tracks is proportionnal to the average volumic activity of 222 Rn corresponding to the time exposure of the detectors.The aim of this thesis work is the continuation of previous study on the preliminary investigations of radon levels in the city of Antananarivo, and to extend this study in Antsirabe, which has been shown as a region of interest. The levels of radon measured in buildings in Antananarivo and Antsirabe are typical values of indoor radon concentration. The average values of concentrations are inferior to 60 Bq.m - 3. The health risk is negligible but not nul. A typical protocol of radon level measurement in Malagasy buildings is suggested to allow the implementation of a risk management policy related to radon within the Malagasy context. [fr

  6. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  7. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  8. Factors influencing upstairs and downstairs radon levels in two-storey dwellings

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Groves-Kirkby, N.P.; Crockett, R.G.M.; Phillips, P.S.; Woolridge, A.C.; Woolridge, A.C.

    2006-01-01

    Environmental radon exposure of residents of two-storey domestic premises is generally estimated on the basis of the measured radon concentrations in, and the relative occupancies of, the principal living-room and bed-room, assuming 45% and 55% occupancy of these two locations respectively. In practice, however, significant case-to-case variability exists, both in the relative periods that individuals spend in the upstairs and downstairs rooms of two-storey homes, and in the relative radon levels in these two areas. Moreover, while it is assumed that radon levels in upper storeys of multi-storey homes will be intrinsically lower than at ground level, this is not always the case, since radon exhalation from the materials from which the house is constructed may contribute significantly to indoor levels. While studies on radon level variability in the individual units in apartment blocks have been reported, the situation in two-storey low-rise dwellings appears not to have been considered. To investigate this, detailed extended measurements of radon concentrations were made in a set of thirty-four homes situated in areas of Northamptonshire known to exhibit high radon levels and declared a radon Affected Area by the United Kingdom (UK) National Radiological Protection Board (NRPB) in 1992. All homes were of typical UK construction of brick/block/stone walls under a pitched tile/slate roof. Approximately 50% of the sample were detached houses, the remainder being semidetached (duplex) or terraced (row-house). Around 25% of the sample possessed cellars, while 12% were single-storey dwellings. In two-storey homes, all monitored bedrooms were on the upper floor. Distribution of the ratios of bedroom/living-room radon levels in individual properties was left-skewed (mean 0.67, median 0.73, range 0.05 to 1.05). The mean is consistent with the outcome of early NRPB studies in England, while the variability depends principally on the characteristics of the property, and not

  9. Factors influencing upstairs and downstairs radon levels in two-storey dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Denman, A.R.; Groves-Kirkby, C.J.; Groves-Kirkby, N.P. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Crockett, R.G.M.; Phillips, P.S.; Woolridge, A.C. [Northampton Univ., School of Applied Sciences (United Kingdom); Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom)

    2006-07-01

    Environmental radon exposure of residents of two-storey domestic premises is generally estimated on the basis of the measured radon concentrations in, and the relative occupancies of, the principal living-room and bed-room, assuming 45% and 55% occupancy of these two locations respectively. In practice, however, significant case-to-case variability exists, both in the relative periods that individuals spend in the upstairs and downstairs rooms of storey homes, and in the relative radon levels in these two areas. Moreover, while it is assumed that radon levels in upper storeys of multi-storey homes will be intrinsically lower than at ground level, this is not always the case, since radon exhalation from the materials from which the house is constructed may contribute significantly to indoor levels. While studies on radon level variability in the individual units in apartment blocks have been reported, the situation in two-storey low-rise dwellings appears not to have been considered. To investigate this, detailed extended measurements of radon concentrations were made in a set of thirty-four homes situated in areas of Northamptonshire known to exhibit high radon levels and declared a radon Affected Area by the United Kingdom (UK) National Radiological Protection Board (NRPB) in 1992. All homes were of typical UK construction of brick/block/stone walls under a pitched tile/slate roof. Approximately 50% of the sample were detached houses, the remainder being semidetached (duplex) or terraced (row-house). Around 25% of the sample possessed cellars, while 12% were single-storey dwellings. In two-storey homes, all monitored bedrooms were on the upper floor. Distribution of the ratios of bedroom/living-room radon levels in individual properties was left-skewed (mean 0.67, median 0.73, range 0.05 to 1.05). The mean is consistent with the outcome of early NRPB studies in England, while the variability depends principally on the characteristics of the property, and not on

  10. Seasonal variation measurements of radon levels in caves using SSNTD method

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Gammage, R.B.; Sajo-Bohus, L.; Viccon-Pale, J.; Signoret-Poillon, M.

    2008-01-01

    The results of radon concentration measurements inside of the Gabriel caves of Mexico, during three consecutive two-month periods covering almost three seasons, are reported in the present work. The radio-ecological importance of this site is related to the radon and its concentration-dynamic behavior in the cave. Further interest in radiation safety motivated this initiative since routine biological field work is done, with people spending long periods of time there. CR-39 passive nuclear track detector was chosen for this survey. Radon concentration levels decrease during the rainy season and show different values depending on the ventilation and geometeorological structure. Measured values range between 956 and 4931Bqm -3 , an indication that radon doses may exceed the allowed values for workers. This project is part of a larger study of indoor radon alpha emitters in Mexican caves

  11. Seasonal variation measurements of radon levels in caves using SSNTD method

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico, D.F. (Mexico)], E-mail: espinosa@fisica.unam.mx; Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico, D.F. (Mexico); Gammage, R.B. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6480 (United States); Sajo-Bohus, L. [Departamento de Fisica, Universidad Simon Bolivar (Venezuela); Viccon-Pale, J.; Signoret-Poillon, M. [El Hombre y su Ambiente, UAM-Xochimilco, Mexico D.F. (Mexico)

    2008-08-15

    The results of radon concentration measurements inside of the Gabriel caves of Mexico, during three consecutive two-month periods covering almost three seasons, are reported in the present work. The radio-ecological importance of this site is related to the radon and its concentration-dynamic behavior in the cave. Further interest in radiation safety motivated this initiative since routine biological field work is done, with people spending long periods of time there. CR-39 passive nuclear track detector was chosen for this survey. Radon concentration levels decrease during the rainy season and show different values depending on the ventilation and geometeorological structure. Measured values range between 956 and 4931Bqm{sup -3}, an indication that radon doses may exceed the allowed values for workers. This project is part of a larger study of indoor radon alpha emitters in Mexican caves.

  12. The suitability of short-term measurements of radon in the built environment

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Phillips, P.S.; Crockett, R.G.M.; Woolridge, A.C.

    2008-01-01

    Although domestic and workplace radon concentration levels often show marked diurnal/short-term variation, overall health risk is determined by the long-term average level, and many national protocols advocate the use of long exposure periods, usually three months, to assess long-term risk. Simple passive measurement techniques, e.g. track-etch, activated charcoal and electret, can, however, provide reasonably accurate determinations with exposures as short as one week, and there is pressure from users and stake holders for assessments within this time period. We report evaluation of the effectiveness of one-week, one-month and three-month exposures over a period of one year in a designated Radon Affected Area in the United Kingdom (UK). Although short-term exposures did not compromise measurement accuracy, short-term radon variability rendered one-week measurements less reliable in predicting annual average radon levels via the conventional methodology. Analysis permitted estimation of the maximum and minimum short-term measured domestic radon concentrations at which there was 95% probability of the predicted annual average being below or above the UK Action Level of 200 Bq·m -3 respectively. Between these limits, the short-term result is equivocal, requiring repetition, and the 'equivocal range' for one-week measurements is significantly wider than for three-month exposures. In any geographical area, domestic radon concentrations are distributed log normally, with many properties having low average levels; a small number exhibit excessive levels, and this distribution must be considered when defining exposures for a radon measurement programme. In low-radon areas, where 1% of houses might exceed the Action Level, a one-week assessment will find that fewer outcomes are equivocal. For high-radon areas, with 20% or more houses over the Action Level, more than 50% of one-week outcomes will be equivocal, requiring repeats. The results of this work will be presented

  13. Radon in schools. An elevation measurement in schools in Baden-Wuerttemberg; Radon in Schulen. Eine Erhebungsmessung in Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Fesenbeck, I.; Naber, C.; Frank, G.; Wilhelm, C.; Schaller, M. [Karlsruher Institut fuer Technologie (Germany). Sicherheit und Umwelt

    2016-07-01

    With an effective dose of about 1.1 mSv per year, radon and its secondary products have the biggest share in the population's natural radiation exposure. For implementation of the new EU directive 2013/59/EURATOM dated January 17, 2014, it is now planned to adapt the limit values of the Radiation Protection Ordinance and to extend the scope of validity in the EU member states. The ''Radon at Schools'' project is to cover an area-wide survey of radon concentrations in room air of schools in Baden-Wuerttemberg. Potential hazards caused by radon-222 and secondary products of radon are to be studied. For the project, 1600 schools were selected and requested to participate by an information letter. Half of the schools is distributed over the entire area of Baden-Wuerttemberg. The other half is located in areas of increased radon potential. Radon concentration in room air is determined passively by Karlsruhe radon exposimeters. Subsequently, active radon measurements will be made at conspicuous schools and information events will be offered for municipalities, teachers, interested parents, and pupils.

  14. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  15. Error in measuring radon in soil gas by means of passive detectors

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. (author)

  16. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  17. Method for measurement of radon diffusion and solubility in solid materials

    Science.gov (United States)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  18. Study on the measurement method of diffusion coefficient for radon in the soil. 2

    International Nuclear Information System (INIS)

    Iida, Takao

    2000-03-01

    To investigate radon behavior in the soil at Ningyo Pass, the radon concentrations in the soil and the radon exhalation rate from soil surface were measured by four continuous soil radon monitoring systems, soil gas sampling method, and accumulation method. The radon concentrations in the soil measured with continuous soil radon monitoring systems varied form 5000 Bq·m -3 to 15000 Bq·m -3 at 10 cm to 40 cm depth. On the other hand, the radon concentrations measured by soil gas sampling method was 15000 Bq·m -3 at 15 cm depth. The accumulation method gives the vales of 0. 36∼0.68 Bq·m -2 ·s -1 for radon exhalation rate from soil surface. To simulate the radon transport in soil, the following parameters of the soil are important: radon diffusion coefficients, dry density, wet density, soil particle density, true density, water content and radium concentration. The measured radon diffusion coefficients in the soil were (1.61±0.09)x10 -6 m 2 s -1 , (8.68±0.23)x10 -7 m 2 s -1 ∼ (1.53±0.12)x10 -6 m 2 s -1 and (2.99±0.32)x10 -6 m 2 s -1 ∼ (4.39±0.43)x10 -6 m 2 s -1 for sandy soils of the campus of Nagoya University, Tsuruga peninsula, and Ningyo Pass, respectively. By using these parameters, the radon transport phenomena in the soil of two layers were calculated by analytical and numerical methods. The radon profile calculated by numerical method agrees fairly well with measured values. By covering of 2 m soil, the radon exhalation rate decreases to 1/4 by analytical method, and 3/5 by numerical method. The covering of normal soil is not so effective for reducing the radon exhalation rate. (author)

  19. Assessment of lung cancer risk from radon in five provinces of Iran

    International Nuclear Information System (INIS)

    Baradaran, S.; Taheri, M.; Setayeshi, S.

    2010-01-01

    Radon is a natural radioactive gas which is produced by decay of the Uranium and emanates from the ground. According to EPA and WHO studies, Radon is the second largest cause of lung cancer after smoking. According to the registered information report of cancer cases from 1985 till now, lung cancer is the second most common death cause in all cancers (after stomach cancer) in Iran. Based on the report of the National Institute of Cancer and the Iranian Ministry of Health, the total death due to lung cancer were estimated to be 5.7%, 4.82%, 4.48% 3.76%, 9% in mentioned provinces. An investigation was made on the relation between lung cancer risk and radon levels. The risk for smoking, the first leading cause of lung cancer, is more greater than for radon, the second leading cause. The results show that there is no direct relation between increased risk of lung cancer from indoor radon exposure, but it cannot be ignored that indoor radon should be considered as a cause of lung cancer in the general population

  20. Current status of programmes to measure and reduce radon exposure in Irish workplaces

    International Nuclear Information System (INIS)

    Colgan, P A; Madden, J S; Synnott, H; Fennell, S; Pollard, D; Fenton, D

    2004-01-01

    National legislation, which implements European Council Directive 96/29/EURATOM in Ireland, sets a reference level of 400 Bq m -3 averaged over any 3 month period for radon exposure in the workplace and also empowers the Radiological Protection Institute of Ireland to direct employers to have radon measurements carried out. This legislation came into effect in May 2000. Radon measurements have already been completed in show caves and other underground workplaces. Between 1998 and 2001, over 33 800 individual radon measurements were carried out in all ground floor offices and classrooms in 3444 schools nationwide as part of a programme undertaken jointly with the Department of Education and Science. Where the average indoor radon concentration in one or more rooms exceeded 200 Bq m -3 , remedial measures were implemented. For concentrations up to 400 Bq m -3 this involved increased ventilation while for higher concentrations an active sump was normally installed. The results of the survey, as well as the effectiveness of the different remedial strategies, are discussed. In the case of other above ground workplaces, different approaches have been adopted. As a first step, workplaces in two known high radon areas were directed to have radon measurements carried out. This programme had limited success because of problems in obtaining accurate workplace databases and a general lack of awareness on the part of employers of the issues involved. From a sample of 2610 employers directed to measure radon, only 408 actually completed measurements and 37 workplaces were identified as having average 3 month average radon concentrations above 400 Bq m -3 . A total of 1356 employers ignored all correspondence, some of which was sent by registered post and signed for on receipt. Current initiatives are focused on the provision of information and include newspaper advertising as well as publications aimed specifically at both employer and employee representative groups. The ability

  1. Current status of programmes to measure and reduce radon exposure in Irish workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, P A; Madden, J S; Synnott, H; Fennell, S; Pollard, D; Fenton, D [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Dublin 14(Ireland)

    2004-06-01

    National legislation, which implements European Council Directive 96/29/EURATOM in Ireland, sets a reference level of 400 Bq m{sup -3} averaged over any 3 month period for radon exposure in the workplace and also empowers the Radiological Protection Institute of Ireland to direct employers to have radon measurements carried out. This legislation came into effect in May 2000. Radon measurements have already been completed in show caves and other underground workplaces. Between 1998 and 2001, over 33 800 individual radon measurements were carried out in all ground floor offices and classrooms in 3444 schools nationwide as part of a programme undertaken jointly with the Department of Education and Science. Where the average indoor radon concentration in one or more rooms exceeded 200 Bq m{sup -3}, remedial measures were implemented. For concentrations up to 400 Bq m{sup -3} this involved increased ventilation while for higher concentrations an active sump was normally installed. The results of the survey, as well as the effectiveness of the different remedial strategies, are discussed. In the case of other above ground workplaces, different approaches have been adopted. As a first step, workplaces in two known high radon areas were directed to have radon measurements carried out. This programme had limited success because of problems in obtaining accurate workplace databases and a general lack of awareness on the part of employers of the issues involved. From a sample of 2610 employers directed to measure radon, only 408 actually completed measurements and 37 workplaces were identified as having average 3 month average radon concentrations above 400 Bq m{sup -3}. A total of 1356 employers ignored all correspondence, some of which was sent by registered post and signed for on receipt. Current initiatives are focused on the provision of information and include newspaper advertising as well as publications aimed specifically at both employer and employee representative

  2. Campaign 1999-2001 of radon measurement in the establishments receiving public

    International Nuclear Information System (INIS)

    2001-11-01

    After some elements of context on the radon measurement in France, and a presentation of realised actions in 2001 by the Ministry in charge of health to manage the radon risk, this document exposes a synthesis in three parts on the situation of radon measurement campaigns in the establishments receiving public. The first part gives the methodology followed to make this state, the second part presents the synthetic results by department, and the last one the results at the regional level. (N.C.)

  3. Radon in schools. An elevation measurement in schools in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    Fesenbeck, I.; Naber, C.; Frank, G.; Wilhelm, C.; Schaller, M.

    2016-01-01

    With an effective dose of about 1.1 mSv per year, radon and its secondary products have the biggest share in the population's natural radiation exposure. For implementation of the new EU directive 2013/59/EURATOM dated January 17, 2014, it is now planned to adapt the limit values of the Radiation Protection Ordinance and to extend the scope of validity in the EU member states. The ''Radon at Schools'' project is to cover an area-wide survey of radon concentrations in room air of schools in Baden-Wuerttemberg. Potential hazards caused by radon-222 and secondary products of radon are to be studied. For the project, 1600 schools were selected and requested to participate by an information letter. Half of the schools is distributed over the entire area of Baden-Wuerttemberg. The other half is located in areas of increased radon potential. Radon concentration in room air is determined passively by Karlsruhe radon exposimeters. Subsequently, active radon measurements will be made at conspicuous schools and information events will be offered for municipalities, teachers, interested parents, and pupils.

  4. Airflow measurement techniques applied to radon mitigation problems

    International Nuclear Information System (INIS)

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab

  5. Radon measurements in 130 schools

    International Nuclear Information System (INIS)

    Peake, R.T.; Schmidt, A.; MacWaters, J.T.; Chmelynski, H.

    1990-01-01

    During the winter of 1989, Rn screening measurements were made in 130 schools distributed across the United States. The primary purpose of the paper is to identify schools suitable for a year-long follow-up study, the results of which will be used to update EPA's guidance for Rn testing in schools. The 130 schools were selected nonrandomly using school characteristics and accessibility in areas where there were known or suspected Rn problems in homes. Levels found in this screening study may indicate the potential for Rn problems in US schools. Over half of the 130 schools tested had at least one radon measurement ≥4 pCi/L, and nearly 20% of the 3028 rooms measured ≥4 pCi/L. The number of rooms ≥4 pCi/L is often three rooms or less. However, schools with more than five rooms ≥4 pCi/L are common in some areas. The data include schools that could be typical of much of the US school population as well as schools which exhibit extreme radon problems, such as those tested in Nashville, TN and Spokane, WA

  6. Long-distance migration of radon within the earth

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Mogro-Campero, A.

    1976-01-01

    There is need for identification and understanding of methods for locating subsurface uranium. A major hope for definitive recognition of ore at depths of more than a few meters is the measurement of the near surface emanation of 222 Rn, the sole distinctive gaseous product of the decay of uranium. Scattered observations suggest that radon can migrate through the earth for distances of greater than or equal to 100 m. A model is proposed in which convective flow of subsurface air or water through a porous medium is induced by the geothermal gradient. Several of the predictions of the model are consistent with observations at a uranium ore deposit in New Mexico

  7. Use of commercial radon monitors for low level radon measurements in dynamically operated VOC emission test chambers

    International Nuclear Information System (INIS)

    Hofmann, M.; Richter, M.; Jann, O.

    2017-01-01

    Compared to the intended EU reference level of 300 Bq m -3 for indoor radon concentrations, the contribution of building materials appears to be low. Considering the recommended limit of 100 Bq m -3 by WHO, their contribution is supposed to be relevant, especially at low air exchange rates. This study as part of a two-part research project investigated the suitability of direct low level 222 Rn measurement under simulated indoor conditions with commercial radon monitors and dynamically operated emission test chambers. Active measuring devices based on ionisation or scintillation chambers with 1-σ uncertainties below 8.6% at 20 Bq m -3 were found to be best suitable for a practical test procedure for the determination of radon exhalation rates of building materials. For the measurement of such low concentrations, the knowledge of the accurate device background level is essential. (authors)

  8. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  9. Indoor radon measurements and radon prognosis for eastern Uusimaa. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae and Sipoo

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.

    1995-02-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In the study about 2400 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined form maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurement and geological data were used to assess the radon risk form soil and bedrock in different areas. (15 refs., 19 figs., 9 tabs.)

  10. Radon in soil variations for Vrancea seismic area

    International Nuclear Information System (INIS)

    Zoran, M.

    2002-01-01

    Earthquakes occur as a result of a build up of pressure between colliding sections of the Earth's crust. These sections, known as continental plates, meet at 'fault lines'. According to classical earthquake theory, small earthquakes should continue to grow into large earthquakes until they spread all along the fault line. Vrancea region is fitted to such a model. The mechanical processes of earthquake preparation are always accompanied by deformations, afterwards complex short- or long term precursory phenomena can appear. Macro-fracturing processes are preceded by micro-fracturing phenomena with a resulting radon and other gas precursors (He, CH 4 , NO) anomalies in soil-gas and groundwater. Studies of geochemical and hydrological anomalies preceding significant earthquakes have been reported from China, Japan, Uzbekistan, Mexico, Italy, India and Germany. However, studies of these pre-seismic phenomena have been controversial for several reasons. Temporal variations of radon in soil or water, can give evidence that the emanation of this gas can be correlated with tectonic disturbances. I used nuclear track detectors LR-115 and CN-85 for radon concentration monitoring in soil at 50 cm depth exposed for a period of 30 days in Vrancioaia test area. Time series radon data in soil-gas during of two years long observation period have established that more than 50% of radon concentration increases were correlated with microseismic events of 2-4 magnitude on Richter scale. A clear positive correlation for radon concentration prior one month of seismic event was associated with a registered event of magnitude 5. In order to differentiate the changes due to tectonic disturbances and that of meteorological parameters, were measured barometric pressure, precipitation and temperature. Negative correlation between radon concentration in soil and meteorological parameters was found. To predict a future earthquake, all precursory phenomena must be investigated. The

  11. Radon measurements in well and spring water in Lebanon

    International Nuclear Information System (INIS)

    Abdallah, Samer M.; Habib, Rima R.; Nuwayhid, Rida Y.; Chatila, Malek; Katul, Gabriel

    2007-01-01

    The variation of dissolved radon ( 222 Rn) levels in water supplies remains of interest because of the radiation-induced public health hazards. A large part of the Lebanese population relies on springs and wells for their drinking water. 222 Rn measurements in spring and well water sources were conducted using the E-PERM method at sites ranging from sea level to 1200m above sea level and across several geologic formations within Lebanon. The dissolved radon concentrations ranged from a low of 0.91BqL -1 in a coastal well source to a high of 49.6BqL -1 for a spring source in a mountainous region. Of the 20 sites sampled, only five had radon levels above 11BqL -1 and these mostly occurred in areas adjacent to well-known geological fault zones. A preliminary national average radon level was determined to be about 11.4BqL -1 . In general, as all determined concentrations were well below the 100 and 146BqL -1 revised reference levels proposed in the European Union and the United States, respectively, it is concluded that there is no reason to believe these water sources pose any radon-related hazard. On the other hand, at locations where water is collected directly from the springhead, it is advisable to have a settling/piping system installed allowing for further radon decay and radon loss into the air to alleviate any possible radon problem

  12. Measurements of 222Rn flux with charcoal coanisters

    International Nuclear Information System (INIS)

    Countess, R.J.

    1977-01-01

    Methods used to measure the 222 Rn flux from the ground are discussed. The most common method is the direct accumulation of radon in a closed container resting on the soil surface. An aliquot of the air is transferred from the accumulator either to an ionization chamber or to an alpha scintillation flask for radon analysis. An alternate method consists of entraining the radon emanating from a small area of the ground in an airstream moving in a closed system through a charcoal trap or cold trap. At the end of the sampling period, the trap is sealed and returned to the laboratory where the radon is transferred into an evacuated scintillation flask for analysis. Still another method consists of adsorbing radon in a layer of granular, activated charcoal spread directly on the ground. For analysis, the charcoal is bagged and the 0.61-MeV gamma activity of 214 Bi (RaC) is measured in a gamma spectrometer. These last two methods have the disadvantage that some radon may be lost in transfer prior to analysis. In an improved method, which is simpler than the preceding methods and eliminates this transfer problem, a modified U.S. Army M11 gas mask canister containing activated charcoal is placed directly in contact with the emanating surface and after an exposure period from several hours to several days, depending on the anticipated flux density, the canister is removed from the surface and counted directly in a gamma spectrometer. In addition to precluding losses in sample transfer, a major advantage is that numerous measurements can be made inexpensively due to the low cost of the canisters and their ease of deployment and recovery

  13. Laboratory measurements of radon diffusion through multilayered cover systems for uranium tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rich, D.C.; Nederhand, F.A.; Sandquist, G.M.; Jensen, C.M.

    1981-12-01

    Laboratory measurements of radon fluxes and radon concentration profiles were conducted to characterize the effectiveness of multilayer cover systems for uranium tailings. The cover systems utilized soil and clay materials from proposed disposal sites for the Vitro, Durango, Shiprock, Grand Junction and Riverton tailings piles. Measured radon fluxes were in reasonable agreement with values predicted by multilayer diffusion theory. Results obtained by using air-filled porosities in the diffusion calculations were similar to those obtained by using total porosities. Measured diffusion coefficients were a better basis for predicting radon fluxes than were correlations of diffusion coefficient with moisture or with air porosity. Radon concentration profiles were also fitted by equations for multilayer diffusion in the air-filled space. Layer-order effects in the multilayer cover systems were examined and estimated to amount to 10 to 20 percent for the systems tested. Quality control measurements in support of the multilayer diffusion tests indicated that moisture absorption was not a significant problem in radon flux sampling with charcoal canisters, but that the geometry of the sampler was critical. The geometric design of flux-can samplers was also shown to be important. Enhanced radon diffusion along the walls of the test columns was examined and was found to be insignificant except when the columns had been physically disturbed. Additional moisture injected into two test columns decreased the radon flux, as expected, but appeared to migrate into surrounding materials or to be lost by evaporation. Control of moisture content and compaction in the test columns appeared to be the critical item affecting the accuracies of the experiments

  14. Design and application of a continuous, digital-output, environmental radon measuring instrument

    International Nuclear Information System (INIS)

    Spitz, H.; Wrenn, M.E.

    1977-01-01

    A radon measuring instrument has been developed which can continuously measure environmental concentrations of radon in the atmosphere without employing any air movers or pumps. The unit is entirely passive in design and relies upon the diffusion of radon for sample collection. Since radon is an inert noble gas it will follow the classical theory of motion and diffuse in a direction dependent upon the concentration gradient existing between the atmosphere and the sensitive portion of the detector. A porous foam filter allows radon, but not its daughters, to enter the detector where an electrostatic field is maintained to facilitate collection of the decay products of radon, i.e., initially the positive ions of RaA (Po-218). Alpha particles from RaA and RaC' (Po-214) within the sensitive volume are detected using a ZnS scintillator and photomultiplier tube with the usual complement of electronics

  15. Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Jarallah, M. I.; Fazal ur, Rehman

    2006-01-01

    Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia was carried out using passive radon dosemeters. The objective of this radon survey was to obtain representative indoor radon data of Al-Jauf region. The study is a continuation of radon survey in main cities of Saudi Arabia which constitutes a baseline for Saudi Arabia in the Radon World Atlas. A total of 318 passive radon dosemeters were distributed randomly in the region and placed for a period of 1 y starting from April 2004 to April 2005. The results of indoor radon concentration measurement in 136 dwellings distributed in Al-Jauf region are presented. The remaining dosemeters were lost in the dwellings or mishandled. The results showed that the average, minimum, maximum radon concentrations and standard deviation were 35, 7, 168 and 30 Bq m -3 , respectively. Geometric mean and geometric standard deviation of the radon distribution were found to be 28 and 1.83, respectively. (authors)

  16. Indoor radon measurements in dwellings of four Saudi Arabian cities

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman; Abu-Jarad, F.; Al-Shukri, A

    2003-06-01

    An indoor radon survey of a total of 269 dwellings, with one dosimeter per house, distributed in four Saudi Arabian cities was carried out. The objective of this survey was to carry out indoor radon measurements of two cities in the Eastern Province, Khafji and Hafr Al-Batin and to compare this with two cities in the Western Province, Al-Madina and Taif. The survey provides additional information about indoor radon concentrations in Saudi Arabia. The results of the survey in these cities showed that the overall minimum, maximum and average radon concentration were 7,137 and 30 Bq m{sup -3}, respectively. The lowest average radon concentration (20 Bq m{sup -3}) was found in Hafr Al-Batin, while the highest average concentration was found in Khafji (40 Bq m{sup -3})

  17. Development and implementation of radon daughter measurement in Egypt

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Mohamed, I.H.

    2005-01-01

    During the last decade, a programme was developed to study radon daughter risks and to carry out field and experimental measurements. The Egyptian Atomic Energy Authority lead the implementation of this programme in cooperation with the International Atomic Energy Agency through the coordination project EGY/9/020 and EGY/9/030. Several national authorities participated also in this study such as Nuclear Materials Corporation. This work involved the preparation and calibration of equipment, establishment of measuring techniques, survey in some cities and mines countrywide, and preparation of regulations for radiation safety of the workers who may be exposed to high levels of radon daughters. The study shows that there is no major environmental problem for the public due to exposure to radon daughter. Occupational problem may be probable in some underground mines with bad ventilation. Reported values for radon daughter levels in units of working level ranged from 0-0.26 in some buildings and ruins in the Egyptian cities and from 0-3 working level in underground phosphate and uranium mine in the Egyptian Eastern Desert

  18. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  19. Continuous monitoring systems for indoor radon measurement: construction and results of their testing

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Bujnova, A.; Polaskova, A.; Hola, O.

    2007-01-01

    Two continuous radon monitoring systems were built on the basis of the scintillation chambers. The first system used the large volume scintillation chamber with the volume of 4.5 liters and the second one the commercial scintillation chamber with the volume of 1 liter as the detectors for radon concentration measurement. Both systems were calibrated by Ward-Borak method. The detection limits of monitoring systems are 2.9 Bq · m -3 and 5.1 Bq · m -3 respectively, at -2 hour counting period and 30 % statistical uncertainty. The radon monitoring systems and the professional radon monitor AlphaGUARD were tested in real conditions of working room. The testing showed that long-tenn courses of radon activity concentrations obtained by all three monitors are highly correlated (R 2 ∼0.95). Also the average values of radon activity concentrations calculated on the basis of measured data are identical in the scope of counting errors already at the measurement of the radon activity concentrations in the range of (10-120) Bq · m -3 . (authors)

  20. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  1. An evaluation of passive methods for measurement of radon in dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Lind, B.; Kolstad, A.K.

    1989-01-01

    During the last ten years, different methods have been developed for the measurement of radon in indoor air. In this report the different methods in use by private firms in Norway have been compared. The results of the study show that the methods are quite different in regard to integration time, detection limit and reliability in measurements of radon in indoor air. In 1988 the National Institute of Radiation Hygiene gave directives on the performance of such measurements. In these directives, minimum limits have been set for integration time (7 days) for methods to be used in evaluations of remedial actions. In this report the results from a simple, anonymeous reliability test are reported. The test covered the private firms offering radon meassurement services in Norway. The frequently reported weaknesses by the charcoal method were confirmed in the study. The directives on radon measurements in dwellings are presented. 73 refs.; 11 figs.; 5 tabs

  2. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m 3 corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m 3 . It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m 3 /h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m 3 of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  3. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  4. Quality assurance for environmental radon measurements by LR115 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A [National Network of Radiation Physics, Atomic Energy Authority, Cairo (Egypt); Hafez, A F [Physics Department, Faculty of Science, Alexandria Univercity, Alexandria (Egypt); Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, Cairo (Egypt)

    2007-06-15

    Passive radon dosimeters based on LR115 nuclear track detectors are very attractive for assessment of radon exposure. For developing countries wishing to undertake national radon survey the most appropriate techniques are those making use of LR115 detectors. These detectors are small, cheap, simple, and non-hazardous and provide an entirely adequate tool for large scale use in assessing levels of radon over several months because of the short - term fluctuations in radon concentrations. In this paper, the principles and philosophy in order to improve the quality and reliability of radon exposure under a quality assurance (QA) program are presented . Also examples of how a QA program of radon measurements by LR115 detectors using the can-techniques are well defined and applied.

  5. Quality assurance for environmental radon measurements by LR115 nuclear track detectors

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Hafez, A.F.; Hussein, A.S.

    2007-01-01

    Passive radon dosimeters based on LR115 nuclear track detectors are very attractive for assessment of radon exposure. For developing countries wishing to undertake national radon survey the most appropriate techniques are those making use of LR115 detectors. These detectors are small, cheap, simple, and non-hazardous and provide an entirely adequate tool for large scale use in assessing levels of radon over several months because of the short - term fluctuations in radon concentrations. In this paper, the principles and philosophy in order to improve the quality and reliability of radon exposure under a quality assurance (QA) program are presented . Also examples of how a QA program of radon measurements by LR115 detectors using the can-techniques are well defined and applied

  6. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  7. Radon generation and transport. A journey though matter

    Energy Technology Data Exchange (ETDEWEB)

    Cozmuta, I. [Beckman Institute 139-74 Caltech, Pasadena, CA 91125 (United States)

    2001-12-07

    with the Material and Process Simulation Center at CALTECH, USA, a methodology to estimate the barrier properties of two polymeric membranes - polypropylene (PP) and polyethyleneterephtalate (PET) - with respect to radon is proposed (chapter 13). A standard manufacturing receipt for Dutch concrete is indicated in chapter 8. Radiometric characteristics (radon-release rates, radium contents and emanation coefficients) of concrete components, mortar paste and concrete are compared. Also porosity determinations for cement paste, mortar-sand and concrete samples are shown. All this information is required in one of the steps in the coupling scheme of the two models presented in chapter 6. Based on the model presented in chapter 3, a quantitative estimate of the microstructure (porosity, pore-size distribution) and saturation levels in the porous structure of cement paste and concrete, for various curing and humidity conditions, is presented in chapter 9. This thesis focuses on diffusive transport only and consequently, were investigated in detail the characteristic values of radon-diffusion coefficient in concrete (chapter 10). Two new methods to determine the radon-diffusion coefficient for cubic/rectangular and hollow cylindrical samples, respectively are discussed here and proposed. With the second validated method, the moisture dependence of the radon-diffusion coefficient in concrete was also studied. The parameter that strongly influences radon-release is the moisture content of concrete. To better understand this dependence, a concrete cube was studied in detail (chapter 11) with water contents ranging from totally dry to fully saturated. This profile was also modelled by using combined information from measurements and concrete modelling. In chapter 14 the results of this thesis are assessed in relation to their implications for further research and to radon reduction in concrete.

  8. Radon generation and transport. A journey though matter

    International Nuclear Information System (INIS)

    Cozmuta, I.

    2001-01-01

    with the Material and Process Simulation Center at CALTECH, USA, a methodology to estimate the barrier properties of two polymeric membranes - polypropylene (PP) and polyethyleneterephtalate (PET) - with respect to radon is proposed (chapter 13). A standard manufacturing receipt for Dutch concrete is indicated in chapter 8. Radiometric characteristics (radon-release rates, radium contents and emanation coefficients) of concrete components, mortar paste and concrete are compared. Also porosity determinations for cement paste, mortar-sand and concrete samples are shown. All this information is required in one of the steps in the coupling scheme of the two models presented in chapter 6. Based on the model presented in chapter 3, a quantitative estimate of the microstructure (porosity, pore-size distribution) and saturation levels in the porous structure of cement paste and concrete, for various curing and humidity conditions, is presented in chapter 9. This thesis focuses on diffusive transport only and consequently, were investigated in detail the characteristic values of radon-diffusion coefficient in concrete (chapter 10). Two new methods to determine the radon-diffusion coefficient for cubic/rectangular and hollow cylindrical samples, respectively are discussed here and proposed. With the second validated method, the moisture dependence of the radon-diffusion coefficient in concrete was also studied. The parameter that strongly influences radon-release is the moisture content of concrete. To better understand this dependence, a concrete cube was studied in detail (chapter 11) with water contents ranging from totally dry to fully saturated. This profile was also modelled by using combined information from measurements and concrete modelling. In chapter 14 the results of this thesis are assessed in relation to their implications for further research and to radon reduction in concrete

  9. Radon in air calibration procedure: A primary method

    International Nuclear Information System (INIS)

    Lucas, H.F.; Markun, F.

    1988-01-01

    A procedure has been developed for preparing 3- to 9-iota volumes of air under natural conditions with a known concentration of /sup 222/Rn to be used for calibrating radon systems. Air is passed into a plastic bag through a standard /sup 226/Ra solution (prepared by the U.S. National Bureau of Standards) contained in an emanation flask. This plastic bag retains /sup 222/Rn with little loss into or through the bag walls. The mean ratios of the /sup 222/Rn in the air at 2 and 7 days after filling to that immediately after filling were -.992 +- 0.006 and 0.969 +- 0.008, which suggests a rate of radon loss into the bag of 0.4 +- 0.1%/day

  10. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  11. Variation of radon concentration in soil with different depth along the high background areas in Kerala

    International Nuclear Information System (INIS)

    Sonia, S.R.; Visnu Prasad, A.K.; Jojo, P.J.; Midhun, M.

    2016-01-01

    Radon is one of the naturally occurring radioactive gases in the environment produced from decay of radium isotopes, which are the decay product of 238 U, 232 Th and 235 U. Hence the concentration of uranium and thorium in the bed rock and soil materials determine the amount of radon produced in the soil. The radon produced in the soil migrates through the mechanism of diffusion and convection through pore spaces in the soil, fractures in the rock and along with weak zones such as shear faults, thrust etc. For some geological situations, radon migrates long distances from its place of origin and can be detected by alpha-particle recorders at the earth's surface. Concentration of radon in an area is governed by the radium content in the minerals, radon emanating power in the material, permeability of the soils and underlying rock, and moisture content in the soil

  12. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  13. Calibration of a degassing-emanation line for 222Rn determination in seawater samples

    International Nuclear Information System (INIS)

    Farias, Luciana Aparecida

    2002-01-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine 222 Rn and 226 Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring 226 Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of 222 Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of 222 Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of 222 Rn in excess increases with depth, as expected. (author)

  14. Natural radon as a limnological tracer for the study of vertical and horizontal eddy diffusion

    International Nuclear Information System (INIS)

    Imboden, D.M.

    1979-01-01

    Radon-222 (half-life 3.8 d) has been used successfully as a geochemical tracer for vertical near bottom mixing in the ocean. The parent nuclide radium-226 (half-life 1600 a) occurs in far greater quantities in sediments than in the water column, thus providing a boundary source for emanation of radon. Vertical mixing in lakes may be of central importance for the evolution of chemical and biological processes. Most lakes pass through a stagnation period during which the euphotic zone continuously loses nutrients by sedimentation of plankton through the thermocline. The return flux of nutrients from the sediments through the hypolimnion and thermocline to the euphotic layer can only be understood and quantified if vertical mixing processes are known. The traditional means by which vertical eddy diffusion is calculated is the temperature method. However, temperature changes near the bottom of deep lakes are often too small to be measured. Among various (natural or man-made) geochemical tracers radon-222 seems to be especially suitable for the study of vertical mixing since its 'memory' of about one week very often allows measured activities to be interpreted in terms of a relatively simple steady-state model

  15. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  16. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Redzuwan Yahaya; Muhammad Samudi Yasir

    2013-01-01

    Full-text: Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80 % of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m -3 , 192 Bq m -3 , 176 Bq m -3 and 28 Bq m -3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m -3 for example higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y -1 , 4.85 mSv y -1 , 4.44 mSv y -1 and 0.72 mSv y -1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels for example 3 - 10 mSv y -1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively. (author)

  17. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2014-01-01

    Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m −3 , 192 Bq m −3 , 176 Bq m −3 and 28 Bq m −3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m −3 i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y −1 , 4.85 mSv y −1 , 4.44 mSv y −1 and 0.72 mSv y −1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y −1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively

  18. Measurement of radon activity concentrations in air of Tuzla city

    International Nuclear Information System (INIS)

    Adrovic, F.; Fazlic, R.; Tresnjo, Z.

    2004-01-01

    The survey was conducted over one year in the area of Tuzla city and its surrounding. At the measuring locations there were registered Daily and seasonal variations in outdoor radon concentration were observed, with average values lying within the region of 9 - 30 Bq/m 3 . The results of the measurements will be included in the concentration map of radon activity in Bosnia and Herzegovina, which is under preparation. (P.A.)

  19. The use of an empirical correlation between surface activity and integrated radon exposure in a retrospective radon measurement

    International Nuclear Information System (INIS)

    Cauwels, P.; Poffijn, A.

    1998-01-01

    Retrospective measurements of integrated radon concentration in dwellings over the past decades are dealt with, based on the fact that glass sheets act as a memory for the airborne radon activity due to the implanted 210 Po and 210 Bi activity. The room model established to this purpose by Jacobi in 1972 seems to need some modifications; calculated and measured data suggest the existence of a possible loss of implanted daughter products. (A.K.)

  20. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  1. Development of a portable instantaneous soil radon measurement instrument

    International Nuclear Information System (INIS)

    Wang Yushuang; Ge Liangquan; Jiang Haijing; Lin Yanchang

    2007-01-01

    A dual-channel instantaneous soil radon measurement instrument based on the method of electrostatic collection is designed. It has the features of small size, low cost, and high sensitivity, etc. A single chip microcomputer is adopted as the data processing and control unit. The concentration of radon can be reported in field. The result is also corrected by the pressure sensing system. A double channel discriminator is used so that the detector can eliminate the interference from the progenies of radon except RaA. LCD and MCU based encoding keyboard are used to give users a friendly interface. Operating and function setting is easy. (authors)

  2. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  3. Radon measurements and dose estimate of workers in a manganese ore mine.

    Science.gov (United States)

    Shahrokhi, Amin; Vigh, Tamás; Németh, Csaba; Csordás, Anita; Kovács, Tibor

    2017-06-01

    In the new European Basic Safety Standard (EU-BSS), a new reference level for indoor radon concentration in workplaces has recommended that the annual average activity concentration of indoor radon shall not be higher than 300Bqm -3 . This paper describes the radon concentration level in an underground workplace (manganese ore mine) over long time intervals (4 years). Several common radon monitors devices - including NRPB and Raduet (as a passive method based on CR-39), AlphaGUARD PQ 2000Pro, SARAD EQF3220, TESLA and Pylon WLX (as active methods) - were used for continuous radon measurements. The output results were used, first, to comprised the result of each device, based on conditions present in underground mines; Second, to have comprehensive measurements about all factors that cause workers exposure to radiation (each monitoring device specified for a unique measurement). The results indicate that the mine's staff had successful efforts to reach the strict requirement of the new EU-BSS, and the average annual radon activity concentrations during the working hours were below 300Bqm -3 in the investigated period. The paper presents the effective dose calculations; applying different equilibrium factors suggested by the literature and calculated basing on our measurements at the site, concluding that the differences could be about threefold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Radon measurements in Ghana: health risk assesment at the Lake Bosomtwi basin

    International Nuclear Information System (INIS)

    Andam, A.A.B.; Addison, E.C.K.; Nani, E.K.; Amankwah, E.A.

    2007-01-01

    The need to assess the risk of exposure to radon and its daughters stems from the reality, that radon is a potential carcinogenic. We report Radon-222 risk assessment, from measurements on soil and sediments taken from six towns along the Lake Bosomtwi basin at two levels of 10cm and 20cm. The current and future prospects of Lake Bosomtwi, the largest natural lake in Ghana, make this assessment imperative, since radon forms half of natural background radiation. Spatial Analyser Decision Assistant (SADA) algorithms were used to model the measured radon concentrations under two land-use scenarios, namely residential and recreational. Setting the data under a targeted risk of 1E-6,we found that the external exposure was below that of the maximum concentrations to the measurements. This indicates that the radon levels around those towns as of the time of the measurements is low and below limits which can cause carcinogenic threats. The mean risk associated with the sampled locations was found to be 9E-11 at the recreational areas and 2E-8 at residential centres. To confirm the authenticity of the point risk analysis, geospatial modelling based on inverse distance interpolation schemes were performed. The results tally closely with that of the measured point risk analysis with and error margin of 2% and 1.3 % for both land use scenarios at 10 cm and 20 cm depth respectively. (au)

  5. Measure of exposure of short-lived radon products using an alpha spectrometer for measuring indoor aerosol activity concentration and dose evaluation

    International Nuclear Information System (INIS)

    Berico, M.; Castellani, C. M.; Formignani, M.; Mariotti, F.

    2001-01-01

    A new italian law introduces the regulation of occupational exposure to radon. To evaluate the inhalation of radon daughters by the workers a sampling device has been assembled with the aim of evaluation of unattached and aerosol attached radon daughters' fractions. The instrument, based on selection of the aerosuspended particles by means of a wire screen type battery and subsequent collection on a total filter, allows to describe the behaviour of both fractions using defined temporal pattern of collecting particles and counting them by alpha spectroscopy. A measurement campaign to test the radon daughter dichotomous spectrometer in comparison with a commercial Radon Working Level meter, has been performed in a research laboratory of central Italy affected by high radon concentrations. The radon concentration during the measurement campaign has been also measured. The equilibrium factor F e q ad the attachment factor fp have been evaluated during 3 days campaign. Using the measured mean parameters (radon concentration, F e q, f p ) the dose evaluation for workers using dosimetric approach has been performed. A comparison between the epidemiologic approach, based on the radon concentration, and dosimetric approach is also presented [it

  6. Study of radon 222 permeation through plastic membranes. Application to a measurement method of radon in water

    International Nuclear Information System (INIS)

    Labed, V.; Rannou, A.; Robe, M.C.

    1990-01-01

    Gaseous permeation is a complex phenomenon of gas transfer through some polymers. Original in respect of conventional studies where permeation occurs between two gaseous phases, the present study concerns radon 222 transfer between water and air through a membrane. Polypropylene membranes are tested with an experimental device following time evolution of the phenomenon by measurement of volume activity in water and in air. An application of this study to a method for determination of radon concentration in water by measurement of concentration in air is discussed [fr

  7. Systematic indoor radon and gamma-ray measurements in Slovenian schools

    International Nuclear Information System (INIS)

    Vaupotic, J.; Sikovec, M.; Kobal, I.

    2000-01-01

    During the winter months of 1992/93 and 1993/94, instantaneous indoor radon concentrations and gamma dose rates were measured in 890 schools in Slovenia attended in total by about 280,000 pupils. Under closed conditions, the room to be surveyed was closed for more than 12 h prior to sampling, the air was sampled into alpha scintillation cells with a volume of 700 cm 3 , and alpha activity was measured. An arithmetic mean of 168 Bq m -3 and a geometric mean of 82 Bq m -3 were obtained. In 67% of schools, indoor radon concentrations were below 100 Bq m -3 , and in 8.7% (77 schools with about 16,000 pupils) they exceeded 400 Bq m -3 , which is the proposed Slovene action level. In the majority of cases, radon concentrations were high due to the geological characteristics of the ground. Approximately 70% of schools with high radon levels were found in the Karst region. Gamma dose rates were measured using a portable scintillation counter. An arithmetic mean of 102 nGy h -1 and a geometric mean of 95 nGy h -1 were obtained. No extraordinarily high values were recorded

  8. A continuous monitor for the measurement of environmental radon

    International Nuclear Information System (INIS)

    Chittaporn, P.; Eisenbud, M.; Harley, N.H.

    1981-01-01

    Although inhaled short-lived 222 Rn daughters deliver the pertinent α dose for assessing human health effects, radon daughters do not of themselves exist in any atmosphere for more than 2-3 hr. Their long-lived parent (3.82 day) 222 Rn supports the daughter activity and it is the transport of 222 Rn which ultimately determines dose. Without an understanding of the long and short-term temporal patterns of indoor and outdoor 222 Rn it is impossible to understand the factors which are important in establishing any human health hazard from the daughters. This work describes a new continuous environmental radon monitor which measures radon alone without interference from radon daughters. The detector is a cylinder (13 cm diameter x 14 cm high), is lined with alpha scintillation phospor on a Mylar substrate and is portable and easily constructed from inexpensive and commercially available materials. (author)

  9. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    International Nuclear Information System (INIS)

    Crockett, R.G.M.; Phillips, P.S.; Gillmore, G.K.; Denman, A.R.; Groves-Kirkby, C.J.

    2006-01-01

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel correlation technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon-measurement

  10. The feasible research with measuring radon for taking the soils sample

    International Nuclear Information System (INIS)

    Zeng Bing, Ge Liangquan; Liu Hefan; Li Yeqiang; Zhang Jinzhao; Song Xiao'an

    2010-01-01

    It explains the mechanism of the separation of soil's radon. Through the designed experiment, it confirms the feasibility of measuring radon for taking the soil's sample. It determines the content of the radon and its sub field with indoor and outside through ways of the activated charcoal adsorption, the initiative suction and the diameter mark etching, also the 226 Ra. The paper indicates: it is feasible with measuring radon for taking the soil's sample, and the stability of data is that indoor data are better than outside's. The temperature, the humidity, the rainfall amount, the intensity and so on are the serious influence of the data. If you want to take a soil's sample, you must avoid the rain as far as possible, and avoid the fault zone, the belt of folded strata and complex geologic structure region, and so on. (authors)

  11. Radon Measurements In Preschool And School Facilities In The Municipality Of Bank's Kapur

    International Nuclear Information System (INIS)

    Kadic, I.; Deljkic, D.; Ilic, Z.

    2015-01-01

    Radon is a radioactive noble gas, chemically inert and motile at room temperature. It is a colorless and odorless gas, but the characteristic of radioactivity enables us to detect it and measure it by two methods - the passive and the active one. The results of a research on concentration of radon activity in the air of preschool's and school's indoors in the area of the municipality of Bosanska Krupa in 2013 is shown in this work. To determine radon concentration, passive measuring method was used, canisters of radon with active carbon, with correction for the air humidity. The active carbon is placed into a canister that is opened during measurements and placed on the wanted location. Radon from the air arrives into the canister and is adsorbed on the active carbon which has high affinity towards few gases and steams, including 222Rn. Adsorbed radon in granules of active carbon is decomposed to short-living progeny: 218Po, 214Pb, 214Bi, 214Po and 210Pb. Radon's progeny 214Pb and 214Bi emit gamma-rays, it permits determination of the radon concentration via gamma-spectrometry through mentioned transitions, because three hours later the equilibrium between radon and its progeny in the carbon has already been established. The measurements have been conducted on high-resolution gamma spectrometer Ortec with 30 percent relative efficiency, integrated electronic system (Ortec) and GAMMA VISION (Ortec) software for spectra processing, analysis and evaluation of the results of measurements. The purpose of this work was to detect the levels of radon, targeting the protection of the youngest population in case of high radon concentrations in residential areas. (author).

  12. Diagnostics of and measures against radon concentrations in a dwelling

    International Nuclear Information System (INIS)

    Berger, H.

    1994-02-01

    Results are presented of measurements in a test-dwelling in the period april 1993 - november 1993. The purpose of the measurements was to investigate the possibilities of using a blower door (a fan in a wall of the dwelling) for specifying sources of radon in the dwelling, employing the diagnostic method developed at the KVI (Nuclear Physics Accelerator Institute in Groningen, Netherlands). Special attention is paid to the measurement of two input variables for the diagnostic method: transparency of the walls of the dwelling and the strength of static sources. Also measures aimed at reducing radon concentrations in the dwelling are discussed. The main conclusions are that (a) the pressure-variation method is a valid procedure to measure the transparency of walls and floors; (b) the blower door is a suitable technique for arriving at a correct diagnosis; and (c) over-pressurizing the crawl-space is the most effective measure in reducing the radon concentration of the crawl-space. More research on air flows in the soil is recommended. 21 figs., 28 tabs., 7 refs

  13. Measurements of radon in drinking water (Curitiba, PR, Brazil)

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi; Paschuk, Sergei A.; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: Among the principle mechanisms that bring the radon inside the dwelling is the exhalation and release from the water. It was evaluated that considering the latest mechanism, the exhalation of radon from the water represents about 89% of the cancer risk and the consumption of water with high concentration of radon is related to about 11% of risk cancer. Radon concentration in water could be subject of different factors such as the geology of the area, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. It is well known that the solubility of radon in water is about 510 cm 3 kg -1 at 0 deg C and decreases at higher temperatures. The 222 Rn concentration in various types of natural water in different countries usually is about few Bq/L and is the subject of the National legislation as well as International norms and recommendations. For example, the United States Environmental Protection Agency (USEPA) established a limit of 11.1 Bq/L for the radon level in drinking water and this limit is considered as guideline in Canada and many countries of the European Union. Current work presents the results of more than 100 measurements of 222 Rn activity in drinking water collected at artesian bores at Curitiba region during the period of 2008 - 2009. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology in cooperation with the Nuclear Technology Development Center (CDTN) of Brazilian Nuclear Energy Committee (CNEN). Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specific kit of glass vessels Aqua KIT through the air pump. The equipment was adjusted with air flow of 0.5 L/min. The 222 Rn concentration levels were detected and analyzed by the computer using the software DataEXPERT by GENITRON Instruments. Collected average levels of 222 Rn concentration were processed taking into account the volume of water sample and its temperature

  14. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  15. Review of official measuring methods and official interpretations of measuring results used in the radon programme of the Czech Republic

    International Nuclear Information System (INIS)

    Thomas, J.; Hulka, J.; Fojtikova, I.

    2004-01-01

    Attention is centered on the following topics: 1. Preventive measures (Monitoring the radioactivity in building materials; Monitoring the radioactivity in drinking water; Monitoring the evaluating building sites; Evaluating finished unoccupied new buildings; Survey of occupied new buildings); 2. Measuring methods in the intervention programme (Identification of houses with elevated radon risk; Testing the effectiveness of mitigation; Searching for radon sources - radon diagnosis); 3. Metrological assurance of the Czech Radon Programme. (P.A.)

  16. The efficacy and durability of radon remedial measures

    International Nuclear Information System (INIS)

    Cliff, K.D.; Naismith, S.P.; Scivyer, C.; Stephen, R.

    1994-01-01

    In the UK, over 16,000 homes, from an estimated 100,000, with annual average radon concentrations exceeding the UK Action Level of 200 Bq.m -3 have been discovered. Some 600 householders who have taken action have sought confirmatory measurements from NRPB. Results for 345 such homes are discussed. A number of remedied homes are being remeasured annually to determine the durability of the remedies: results for the first year follow-up measurements are given. In a separate exercise, homes having the highest radon levels known in the UK have been enrolled in a research programme of the Building Research Establishment. The results for 53 homes in which BRE surveyed, designed and supervised remedial work are presented. (author)

  17. Study on absolute humidity influence of NRL-1 measuring apparatus for radon

    International Nuclear Information System (INIS)

    Shan Jian; Xiao Detao; Zhao Guizhi; Zhou Qingzhi; Liu Yan; Qiu Shoukang; Meng Yecheng; Xiong Xinming; Liu Xiaosong; Ma Wenrong

    2014-01-01

    The absolute humidity and temperature's effects on the NRL-1 measuring apparatus for radon were studied in this paper. By controlling the radon activity concentration of the radon laboratory in University of South China and improving the temperature and humidity adjust strategy, different correction factor values under different absolute humidities were obtained. Moreover, a correction curve between 1.90 and 14.91 g/m"3 was also attained. The results show that in the case of absolute humidity, when it is less than 2.4 g/m"3, collection efficiency of the NRL-1 measuring apparatus for radon tends to be constant, and the correction factor of the absolute humidity closes to 1. However, the correction factor increases nonlinearly along with the absolute humidity. (authors)

  18. Radon in public buildings; Radon in oeffentlichen Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Flesch, K. [IAF - Radiooekologie GmbH, Dresden (Germany); Hermann, E. [B.P.S. Engineering GmbH, Zwickau (Germany); Loebner, W. [Wismut GmbH, Chemnitz (Germany); Leissring, B. [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2009-07-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  19. Mitigation of {sup 222}Rn induced background in the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan A.

    2017-07-05

    {sup 222}Rn is a major source of background in many rare-event experiments such as the XENON1T dark matter search. The noble gas radon is created by radioactive decay inside all detector materials and emanates into the sensitive liquid xenon target disabling any detector shielding. Subsequent beta-decays of radon progenies are the dominant source of background in the XENON1T experiment. In order to mitigate radon induced background the detector's construction materials have been selected according to dedicated {sup 222}Rn emanation measurements. In the first part of this thesis, we summarize the results of the XENON1T radon screening campaign and present the measurement of the integral radon emanation rate of the fully assembled detector. The development of a radon removal system which continuously purifies the liquid xenon target from the emanated radon is the topic of the second part of this thesis. In order to demonstrate the suitability of cryogenic distillation as a technique to separate radon from xenon, we developed an experimental setup to measure the depletion of radon in xenon boil-off gas after a single distillation step. In the last part of the thesis, we demonstrate the operation of a radon removal system for the XENON100 experiment. For this first test employing a running dark matter detector, we integrated a multiple stage, cryogenic distillation column in the XENON100 gas purification loop. From the evolution of the radon concentration in XENON100, we investigate the distillation column's radon removal capability and discuss the design and application of a radon removal system for XENON1T and the upcoming XENONnT experiment.

  20. Radon Measurements in underground metro stations in Cairo City, Egypt

    International Nuclear Information System (INIS)

    Hafez, A.F.; Hussein, A.S.; Rasheed, N.M.

    2000-01-01

    Radon activity concentration were measured continuously during the year 1998-1999 at two different underground MERTO stations, namely, Mubarak and El-Sadat. The measurements were performed using the diffusion cups equipped with CR-39 and LR-115 polymeric nuclear track detectors. Using the experimentally measured calibration coefficients of the used detectors and the measured track densities (bare and filtered), the yearly mean radon concentration C=23 Bq m -3 , equilibrium factor F= 0,10 and effective dose E=0,06 mSv y -1 for the employed personal as well as E=5 mu Sv y -1 for the commuter were obtained