WorldWideScience

Sample records for radius cation charge

  1. Nuclear charge radius of $^{12}$Be

    CERN Document Server

    Krieger, Andreas; Bissell, Mark L; Frömmgen, Nadja; Geppert, Christopher; Hammen, Michael; Kreim, Kim; Kowalska, Magdalena; Krämer, Jörg; Neff, Thomas; Neugart, Rainer; Neyens, Gerda; Nörtershäuser, Wilfried; Novotny, Christian; Sanchez, Rodolfo; Yordanov, Deyan T

    2012-01-01

    The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\\delta ^{10,12} = 0.69(5)$ fm$^{2}$ compared to $\\delta ^{10,11} = 0.49(5)$ fm$^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.

  2. A measurement of the kaon charge radius

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Gianetti, P.; Giazzotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Triggiani, G.; Beck, G.A.; Bologna, G.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Budinich, M.; Liello, F.; Ragusa, F.; Rolandi, L.; Stefanini, A.; Fabbri, F.L.; Laurelli, P.; Zallo, A.; Gren, M.G.; Landon, M.P.J.; March, P.V.; Strong, J.A.; Tenchini, R.; Meroni, E.

    1986-01-01

    The negative kaon electromagnetic form factor has been measured in the space-like q 2 range 0.015-0.10 (GeV/c) 2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius K 2 >=0.34±0.05 fm 2 . From data collected simultaneously for πe scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be π 2 >- K 2 >=0.10±0.045 fm 2 . (orig.)

  3. On the charge radius of the neutrino

    CERN Document Server

    Bernabeu, J; Papavassiliou, J; Vidal, J

    2000-01-01

    Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite, depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is process-independent. This definition stems solely from an effective proper photon-neutrino one-loop vertex, with no reference to box or self-energy contributions. The role of the $WW$ box in this construction is critically examined. In particular it is shown that the exclusion of the effective WW box from the definition of the neutrino charge radius is not a matter of convention but is in fact dynamically realized when the target-fermions are right-handedly polarized. In this way we obtain a unique decomposition of effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. We elaborate on the tree-level origin of the mechanism which enforces at one-loop level massive cancellations among the longitudinal momenta appearing in the Feynman diagrams, and in particular those associat...

  4. Nuclear charge radius of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rodolfo, E-mail: R.Sanchez@GSI.de; Noertershaeuser, Wilfried [Gesellschaft fuer Schwerionenforschung (Germany); Dax, Andreas [CERN(Switzerland); Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas [Gesellschaft fuer Schwerionenforschung (Germany); Wojtaszek, Agnieszka [Swietokrzyska Academy, Institute of Physics (Poland); Bushaw, Bruce A. [Pacific Northwest National Laboratory (United States); Drake, Gordon W. F. [University of Windsor, Department of Physics (Canada); Yan Zongchao [University of New Brunswick, Department of Physics (Canada); Zimmermann, Claus [Physikalisches Institut, Eberhard Karls Universitaet Tuebingen (Germany); Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D. [Tri-University Meson Facility (Canada)

    2006-07-15

    We have determined the nuclear charge radius of {sup 11}Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the {sup 7}Li-{sup 11}Li isotope shift (IS) was measured in the 2s{yields}3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10{sup -5}. The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from {sup 6}Li to {sup 9}Li, and then increase with {sup 11}Li about 11% larger than {sup 9}Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of {sup 11}Li; thus, the results are compared with a number of nuclear structure models.

  5. Nuclear charge radius of 11Li

    International Nuclear Information System (INIS)

    Sanchez, Rodolfo; Noertershaeuser, Wilfried; Dax, Andreas; Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas; Wojtaszek, Agnieszka; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan Zongchao; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D.

    2006-01-01

    We have determined the nuclear charge radius of 11 Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7 Li- 11 Li isotope shift (IS) was measured in the 2s → 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 -5 . The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6 Li to 9 Li, and then increase with 11 Li about 11% larger than 9 Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11 Li; thus, the results are compared with a number of nuclear structure models.

  6. A measurement of the pion charge radius

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Codino, A.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.; Counihan, M.J.; Frank, S.G.F.; Harvey, J.; Storey, D.; Menasce, D.; Meroni, E.; Moroni, L.

    1984-01-01

    We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 2 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of (rho 2 )sup(1/2) = 0.657 +- 0.012 fm. (orig.)

  7. Charge Radius Measurement of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    Kluge, H-J; Kuehl, T; Simon, H; Wang, Haiming; Zimmermann, C; Onishi, T; Tanihata, I; Wakasugi, M

    2002-01-01

    %IS385 %title\\\\ \\\\The root-mean-square charge radius of $^{11}$Li will be determined by measuring the isotope shift of a suitable atomic transition in a laser spectroscopic experiment. Comparing the charge radii of the lithium isotopes obtained by this nuclear-model-independent method with the relevant mass radii obtained before will help to answer the question whether the proton distribution in halo nuclei at the neutron drip-line is decoupled to the first order from their neutron distribution. The necessary experimental sensitivity requires the maximum possible rate of $^{11}$Li nuclei in a beam of low emittance which can only be provided by ISOLDE.

  8. Neutron charge radius and the neutron electric form factor

    International Nuclear Information System (INIS)

    Gentile, T. R.; Crawford, C. B.

    2011-01-01

    For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G E n , vs the square of the four-momentum transfer, Q 2 . Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G E n data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G E n (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

  9. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  10. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  11. Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties

    Science.gov (United States)

    Martelli, Fausto; Vuilleumier, Rodolphe; Simonin, Jean-Pierre; Spezia, Riccardo

    2012-10-01

    In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.

  12. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    Science.gov (United States)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  13. The effective neutrino charge radius in the presence of fermion masses

    International Nuclear Information System (INIS)

    Binosi, D.; Bernabeu, J.; Papavassiliou, J.

    2005-01-01

    We show how the crucial gauge cancellations leading to a physical definition of an effective neutrino charge radius persist in the presence of non-vanishing fermion masses. An explicit one-loop calculation demonstrates that, as happens in the massless case, the pinch technique rearrangement of the Feynman amplitudes, together with the judicious exploitation of the fundamental current relation J α (3) =2(J Z +sinθ w 2 J γ ) α , leads to a completely gauge independent definition of the effective neutrino charge radius. Using the formalism of the Nielsen identities it is further proved that the same cancellation mechanism operates unaltered to all orders in perturbation theory

  14. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  15. Adsorption of cations onto positively charged surface mesopores.

    Science.gov (United States)

    Neue, Uwe; Iraneta, Pamela; Gritti, Fabrice; Guiochon, Georges

    2013-11-29

    Uwe Neue developed a theoretical treatment to account for the adsorption of ions on mesopores of packing materials the walls of which are bonded to ionic ligands but left this work unfinished. We elaborated upon this treatment and refined it, based on the equivalence that he suggested between charged surface particles and a membrane that separates two ionic solutions but is impermeable to one specification. He had written that the electro-chemical potentials in both ionic solutions are equal (Donnan equilibrium). The equilibrium between the surface and the pore concentrations is accounted for by an homogeneous electrostatically modified Langmuir (EML) isotherm model. The theoretical results are presented for four different charge surface concentrations σ0=0, 0.001, 0.002, and 0.003C/m(2), using a phosphate buffer (W(S)pH=2.65) of ionic strength I=10mM. The average pore size, the specific surface area, and the specific pore volume of the stationary phase were Dp=140Å, Sp=182m(2)/g, and Vp=0.70cm(3)/g, respectively. The theoretical results provide the quantitative difference between the ionic strength, the pH, and the concentrations of all the ions in the pores and in the bulk eluent. The theory predicts (1) that the retention times of cations under linear conditions is lower and (2) that their band widths under overloaded conditions for a given retention factor shrinks when the surface charge density σ0 is increased. These theoretical results are in good agreement with experimental results published previously and explain them. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Nuclear moments and the change of the mean square charge radius of neutron deficient thallium isotopes

    International Nuclear Information System (INIS)

    Menges, R.; Dinger, U.; Boos, N.; Huber, G.; Schroeder, S.

    1992-01-01

    The hyperfine structure, isotope and isomeric shifts in the atomic transition 6p 2 P 3/2 -7s 2 S 1/2 , λ=535 nm have been measured for the I=7 and I=2 states of 190,192,194,196 Tl, the I=1/2 and I=9/2 states of 191 Tl and the I=7 isomer of 188 Tl. The thallium isotopes were prepared as fast atomic beams at the GSI on-line mass separator following fusion reactions and - in some cases - subsequent β-decay. The nuclear dipole moments, electric quadrupole moments and the change in the nuclear mean square charge radius are evaluated. The uu-isotopes show an isomeric shift which changes sign between 192 Tl and 194 Tl. (orig.)

  17. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    Science.gov (United States)

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  18. New Measurement of the 1 S -3 S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle

    Science.gov (United States)

    Fleurbaey, Hélène; Galtier, Sandrine; Thomas, Simon; Bonnaud, Marie; Julien, Lucile; Biraben, François; Nez, François; Abgrall, Michel; Guéna, Jocelyne

    2018-05-01

    We present a new measurement of the 1 S -3 S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9 ×10-13. The proton charge radius deduced from this measurement, rp=0.877 (13 ) fm , is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of rp from muonic hydrogen spectroscopy.

  19. Compact stars with a small electric charge: the limiting radius to mass relation and the maximum mass for incompressible matter

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Jose P.S.; Lopes, Francisco J.; Quinta, Goncalo [Universidade de Lisboa, UL, Departamento de Fisica, Centro Multidisciplinar de Astrofisica, CENTRA, Instituto Superior Tecnico, IST, Lisbon (Portugal); Zanchin, Vilson T. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil)

    2015-02-01

    One of the stiffest equations of state for matter in a compact star is constant energy density and this generates the interior Schwarzschild radius to mass relation and the Misner maximum mass for relativistic compact stars. If dark matter populates the interior of stars, and this matter is supersymmetric or of some other type, some of it possessing a tiny electric charge, there is the possibility that highly compact stars can trap a small but non-negligible electric charge. In this case the radius to mass relation for such compact stars should get modifications. We use an analytical scheme to investigate the limiting radius to mass relation and the maximum mass of relativistic stars made of an incompressible fluid with a small electric charge. The investigation is carried out by using the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation, together with the other equations of structure, with the further hypothesis that the charge distribution is proportional to the energy density. The approach relies on Volkoff and Misner's method to solve the TOV equation. For zero charge one gets the interior Schwarzschild limit, and supposing incompressible boson or fermion matter with constituents with masses of the order of the neutron mass one finds that the maximum mass is the Misner mass. For a small electric charge, our analytical approximating scheme, valid in first order in the star's electric charge, shows that the maximum mass increases relatively to the uncharged case, whereas the minimum possible radius decreases, an expected effect since the new field is repulsive, aiding the pressure to sustain the star against gravitational collapse. (orig.)

  20. Antimony(3) ethylenediaminetetraacetate complexes with single- and doubly charged cations

    International Nuclear Information System (INIS)

    Davidovich, R.L.; Logvinova, V.B.; Kajdalova, T.A.

    1998-01-01

    The antimony(3) ethylenediaminetetraacetate complexes with alkaline and bivalent metals cations of the M + Sb(Edta) · H 2 O (M + = K, Rb, Cs, NH 4 ), M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Co, Cd) composition are synthesized. Roentgenographic and IR-spectroscopic characteristics of the synthesized substances are determined. Two groups of the isostructural compounds: M + Sb(Edta) · H 2 O (M + = K, Rb, NH 4 ) and M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Mn, Co, Cd) are established [ru

  1. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius

    Science.gov (United States)

    Kolachevsky, N.; Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Haensch, T. W.; Udem, Th.

    2018-02-01

    The core of the "proton radius puzzle" is the discrepancy of four standard deviations between the proton root mean square charge radii (rp) determined from regular hydrogen (H), and the muonic hydrogen atom (μp). We have measured the 2S-4P transition frequency in H, utilizing a cryogenic beam of H and directly demonstrate that quantum interference of neighboring atomic resonances can lead to line shifts much larger than the proton radius discrepancy. Using an asymmetric fit function we obtain rp = 0.8335(95) fm and the Rydberg constant R∞ = 10 973 731.568 076 (96) m-1. The new value for rp is 3.3 combined standard deviations smaller than the latest CODATA value, but in good agreement with the value from μp.

  2. Effect of charge of quaternary ammonium cations on lipophilicity and electroanalytical parameters : Task for ion transfer voltammetry

    NARCIS (Netherlands)

    Poltorak, L.; Sudholter, E.J.R.; de Smet, L.C.P.M.

    2017-01-01

    The electrochemical behavior of three differently charged drug molecules (zwitter-ionic acetylcarnitine, bi-cationic succinylcholine and tri-cationic gallamine) was studied at the interface between two immiscible electrolyte solutions. Tetramethylammonium was used as a model mono cationic

  3. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  4. Relating saturation capacity to charge density in strong cation exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Novel applications of Lattice QCD: Parton Distributions, proton charge radius and neutron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Alexandrou Constantia

    2017-01-01

    Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.

  6. Laser systems for collinear spectroscopy and the charge radius of 12Be

    International Nuclear Information System (INIS)

    Krieger, Andreas

    2012-01-01

    Collinear laser spectroscopy has been used to investigate the nuclear charge radii of shortlived medium- and heavy-Z nuclei for more than three decades. But it became only recently be applicable to low-Z nuclei. This region of the nuclear chart attracts attention because so-called ab-initio nuclear models, based on realistic nucleon-nucleon potentials, can only be applied to the lightest elements due to the rapidly increasing calculational demands with the number of nucleons. Furthermore, strong clusterization of atomic nuclei occurs and the encountered halo nuclei are presently subject of intense research. The isotopic chain of beryllium exhibits the prime example of a one-neutron halo nucleus, 11 Be, and the two- or four-neutron halo nucleus 14 Be. 12 Be is a key isotope between these two exotic nuclei and particularly interesting because the nuclear shell model predicts a shell closure for the magic neutron number N = 8. In the course of this thesis, several frequency-stabilized laser systems for collinear laser spectroscopy have been developed. At TRIGA-SPEC a frequency-doubled diode laser system with a tapered amplifier and a frequency comb-stabilized titanium-sapphire laser with a frequency doubling stage are now available for the spectroscopy of refractory metals above molybdenum. They have already been used for test-experiments and commissioning of the TRIGA-LASER beamline. Furthermore, frequency-quadrupling of the Ti:Sa laser was demonstrated to expand the emitted wavelengths into the 200 nm region. At ISOLDE/CERN a frequency comb-stabilized and an iodine-stabilized dye laser were installed and applied for laser spectroscopy of 9,10,11,12 Be + . The improved laser system and the development of a delayed photon-ion coincidence detection improved the sensitivity of the beryllium spectroscopy by more than two orders of magnitude and, thus, the previous measurements of 7-11 Be could be extended for the first time to the short-lived isotope 12 Be. In addition

  7. Laser systems for collinear spectroscopy and the charge radius of {sup 12}Be

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, Andreas

    2012-03-30

    Collinear laser spectroscopy has been used to investigate the nuclear charge radii of shortlived medium- and heavy-Z nuclei for more than three decades. But it became only recently be applicable to low-Z nuclei. This region of the nuclear chart attracts attention because so-called ab-initio nuclear models, based on realistic nucleon-nucleon potentials, can only be applied to the lightest elements due to the rapidly increasing calculational demands with the number of nucleons. Furthermore, strong clusterization of atomic nuclei occurs and the encountered halo nuclei are presently subject of intense research. The isotopic chain of beryllium exhibits the prime example of a one-neutron halo nucleus, {sup 11}Be, and the two- or four-neutron halo nucleus {sup 14}Be. {sup 12}Be is a key isotope between these two exotic nuclei and particularly interesting because the nuclear shell model predicts a shell closure for the magic neutron number N = 8. In the course of this thesis, several frequency-stabilized laser systems for collinear laser spectroscopy have been developed. At TRIGA-SPEC a frequency-doubled diode laser system with a tapered amplifier and a frequency comb-stabilized titanium-sapphire laser with a frequency doubling stage are now available for the spectroscopy of refractory metals above molybdenum. They have already been used for test-experiments and commissioning of the TRIGA-LASER beamline. Furthermore, frequency-quadrupling of the Ti:Sa laser was demonstrated to expand the emitted wavelengths into the 200 nm region. At ISOLDE/CERN a frequency comb-stabilized and an iodine-stabilized dye laser were installed and applied for laser spectroscopy of {sup 9,10,11,12}Be{sup +}. The improved laser system and the development of a delayed photon-ion coincidence detection improved the sensitivity of the beryllium spectroscopy by more than two orders of magnitude and, thus, the previous measurements of {sup 7-11}Be could be extended for the first time to the short

  8. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA.

    Science.gov (United States)

    Yang, J P; Huang, L

    1997-09-01

    Since cationic liposome was first developed as a lipofection reagent, a drawback has been noted in that the efficiency of lipofection decreases dramatically after addition of serum to the lipofection medium. This drawback hampers the application of cationic liposome for systematic delivery of genes. In the present studies, we found that the effect of serum on DC-chol liposome-mediated lipofection is dependent on the charge ratio of liposome to DNA. Serum inhibited lipofection activity of the lipoplex at low charge ratios, whereas it enhanced the lipofection activity at high charge ratios. This phenomenon was observed using DOTAP/DOPE but not lipofectamine. Measurement of cellular association of DNA showed that serum could reduce the binding of lipoplex to cells at all tested charge ratios, i.e. 0-10.6. Removal of negatively charged proteins from serum by DEAE Sephacel column abolished the inhibitory effect of serum on lipofection. The fraction contained only negatively charged serum proteins which strongly inhibited lipofection at low charge ratios but not at higher charge ratios. Furthermore, preincubation of serum with positively charged polylysine, which neutralized negatively charged serum proteins, eliminated the inhibitory effect of serum on lipofection. In summary, inactivation of cationic liposome by serum is due to negatively charged serum proteins and it can be overcome by increasing charge ratio of cationic liposome-DNA lipoplexes or by neutralizing the serum with polylysine.

  9. The K-meson form factor and charge radius: linking low-energy data to future Jefferson Laboratory measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krutov, A.F. [Samara University, Samara (Russian Federation); Troitsky, S.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow (Russian Federation); Troitsky, V.E. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2017-07-15

    Starting from a successful model of the π-meson electromagnetic form factor, we calculate a similar form factor, F{sub K}(Q{sup 2}), of the charged K meson for a wide range of the momentum transfer squared, Q{sup 2}. The only remaining free parameter is to be determined from the measurements of the K-meson charge radius, r{sub K}. We fit this single parameter to the published data of the NA-7 experiment which measured F{sub K}(Q{sup 2}) at Q{sup 2} → 0 and determine our preferred range of r{sub K}, which happens to be close to recent lattice results. Still, the accuracy in the determination of r{sub K} is poor. However, future measurements of the K-meson electromagnetic form factor at Q{sup 2}

  10. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  11. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  12. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  13. On the neutron charge radius and the new experiments proposed for the precise (n,e) - scattering length measurement

    International Nuclear Information System (INIS)

    Enik, T.L.; Mitsyna, L.V.; Nikolenko, V.G.; Oprea, I.A.; Parzhitsky, S.S.; Popov, A.B.; Samosvat, G.S.; Vtiuryn, V.A.

    1999-01-01

    Relationship between the n,e scattering length, b ne , the neutron mean square charge radius n 2 > and anomalous magnetic moment μ n , the quantities which characterize the internal structure of the neutron, was investigated. The performed analysis showed that in the framework of the modern cloudy bag model (CBM) of the nucleon the values of b ne is determined by the value of n 2 > without the so-called Foldy term being taken into account, while in the framework of the phenomenological Foldy approach the experimental values of ne > obtained up to date can be described only by this Foldy term within an accuracy of about 10%, i.e. by the anomalous magnetic moment of the neutron, μ n . Then a necessity is obvious to obtain b ne with higher accuracy than in previous experiments. To remove the contradictions in the experimental b ne estimates, new experiments to measure the energy dependence of the slow neutron scattering cross section by 86 Kr and scattering anisotropy on Xe isotopes, have been proposed. The investigation has been performed at Frank Laboratory of Neutron Physics, JINR. (authors)

  14. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    Science.gov (United States)

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  15. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    Science.gov (United States)

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  16. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer; Renaud, Nicolas; Stoumpos, Constantinos C.; Schatz, George C.; Hupp, Joseph T.; Farha, Omar K.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2016-08-04

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH3NH3PbI3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition. For CH3NH3PbI3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH3NH3+) inside the perovskite crystal structure.

  17. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayss, M. K.; Armentrout, P. B.; Oomens, J.; Schaefer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+,K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectra

  18. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayß, M.K.; Armentrout, P.B.; Oomens, J.; Schäfer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+, K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD

  19. Table of charged particle energies versus magnetic field strength x orbit radius (Bρ) for A = 1 to 7 (100< (Bρ) < 1200 kG.cm)

    International Nuclear Information System (INIS)

    Bianchi, L.

    1969-01-01

    A table of charged particle energies versus magnetic field strength x orbit radius (B ρ ) is presented. Particles p, d, t, 3 He ++ , 4 He + , 4 He ++ , 6 Li + , 6 Li ++ , 6 Li +++ , 7 Li + , 7 Li ++ , 7 Li +++ . Values of B ρ : 100 to 1200 kG.cm by steps of 0.5 kG.cm. Values of energies are given in keV. (author) [fr

  20. Surface charge density determines the efficiency of cationic gemini surfactant based lipofection.

    Science.gov (United States)

    Ryhänen, Samppa J; Säily, Matti J; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M; Kinnunen, Paavo K J

    2003-01-01

    The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with X(SR-1) > or = 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with X(SR-1) > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when X(SR-1) > 0.50. Condensation of DNA in turn seems to be required for efficient transfection.

  1. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Adsorption of tetrabutylammonium cations on negatively charged surfaces of the Hg, Ga, In-Ga, Tl-Ga electrodes

    International Nuclear Information System (INIS)

    Damaskin, B.B.; Baturina, O.A.; Vykhodtseva, L.N.; Emets, V.V.; Kazarinov, V.E.

    1999-01-01

    The differential capacitance curves in the 0.05M Na 2 SO 4 + [(C 4 H 9 ) 4 N]BF 4 aqueous solutions on the electrodes of mercury gallium and also of the In-Ga and Tl-Ga alloys are obtained. The adsorption parameters of the tetrabutylammonium cations on each of the electrodes within the frames of two parallel condensers model, supplemented by the Frumkin isotherm are calculated. The conclusion is made that different adsorption behaviour of the (C 4 H 9 ) 4 N + cations on the gallium subgroup metals by the electrodes high negative charges is related to nonuniform electrochemical work of the output electrons [ru

  3. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    Science.gov (United States)

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  4. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  5. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    Science.gov (United States)

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for

  6. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    Science.gov (United States)

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  7. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  8. Cation-mediated conversion of the state of charge in uranium arene inverted-sandwich complexes

    Energy Technology Data Exchange (ETDEWEB)

    Camp, Clement; Mougel, Victor; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble (France); Maron, Laurent [LCPNO, CNRS and INSA, UPS, Universite de Toulouse (France)

    2013-12-16

    Two new arene inverted-sandwich complexes of uranium supported by siloxide ancillary ligands [K{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (3) and [K{sub 2}{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (4) were synthesized by the reduction of the parent arene-bridged complex [{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (2) with stoichiometric amounts of KC{sub 8} yielding a rare family of inverted-sandwich complexes in three states of charge. The structural data and computational studies of the electronic structure are in agreement with the presence of high-valent uranium centers bridged by a reduced tetra-anionic toluene with the best formulation being U{sup V}-(arene{sup 4-})-U{sup V}, KU{sup IV}-(arene{sup 4-})-U{sup V}, and K{sub 2}U{sup IV}-(arene{sup 4-})-U{sup IV} for complexes 2, 3, and 4 respectively. The potassium cations in complexes 3 and 4 are coordinated to the siloxide ligands both in the solid state and in solution. The addition of KOTf (OTf=triflate) to the neutral compound 2 promotes its disproportionation to yield complexes 3 and 4 (depending on the stoichiometry) and the U{sup IV} mononuclear complex [U(OSi(OtBu){sub 3}){sub 3}(OTf)(thf){sub 2}] (5). This unprecedented reactivity demonstrates the key role of potassium for the stability of these complexes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Beard, Matthew C.; Johnson, Justin C. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States)

    2016-06-01

    Highlights: • Photoluminescence and transient absorption are used to probe PbS QD films. • Cation-exchanged PbS QDs show room-temperature PL emission. • Bimolecular recombination is shown for the first time in coupled, PbS QD films. - Abstract: Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  10. A simple connection of the (electroweak) anapole moment with the (electroweak) charge radius of a massless left-handed Dirac neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, A. [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    Assuming that the neutrino is a massless left-handed Dirac particle, we show that the neutrino anapole moment and the neutrino charge radius satisfy the simple relation a{sub v} =(r{sup 2}{sub v}) /6, in the context of the Standard Model of the electroweak interactions. We also show that the neutrino electroweak anapole moment a{sub v}l{sup E}W and the neutrino electroweak charge radius (r{sup 2}{sub v}){sup E}W, which have been defined through the v{sub l}l' scattering at the one-loop level and are physical quantities, also obey the relation a{sub v}l{sup E}W =(r{sup 2}{sub v}){sup E}W/6. [Spanish] Suponiendo que el neutrino es una particula de Dirac, sin masa y con helicidad izquierda, mostramos que el momento anapolar a{sub v} y el radio de carga (r{sub v}{sup 2}) del neutrino satisfacen la relacion simple a{sub v} =(r{sup 2}{sub v}) /6, en el contexto del Modelo Estandar de las interacciones electrodebiles. Ademas, mostramos que el momento anapolar electrodebil a{sub v}l{sup E}W y el radio de carga electrodebil (r{sup 2}{sub v}){sup E}W del neutrino, los cuales han sido definidos a traves de la dispersion v{sub l}l' a nivel de un lazo y que son cantidades fisicas, tambien obedecen la relacion a{sub v}l{sup E}W =(r{sup 2}{sub v}){sup E}W/6.

  11. Effect of the Cationic Block Structure on the Characteristics of Sludge Flocs Formed by Charge Neutralization and Patching

    Directory of Open Access Journals (Sweden)

    Huaili Zheng

    2017-05-01

    Full Text Available In this study, a template copolymer (TPAA of (3-Acrylamidopropyl trimethylammonium chloride (AATPAC and acrylamide (AM was successfully synthesized though ultrasonic-initiated template copolymerization (UTP, using sodium polyacrylate (PAAS as a template. TPAA was characterized by an evident cationic microblock structure which was observed through the analyses of the reactivity ratio, Fourier transform infrared spectroscopy (FTIR, 1H (13C nuclear magnetic resonance spectroscopy (1H (13C NMR, and thermogravimetry/differential scanning calorimetry (TG/DSC. The introduction of the template could improve the monomer (AATPAC reactivity ratio and increase the length and amount of AATPAC segments. This novel cationic microblock structure extremely enhanced the ability of charge neutralization, patching, and bridging, thus improving the activated sludge flocculation performance. The experiments of floc formation, breakage, and regrowth revealed that the cationic microblock structure in the copolymer resulted in large and compact flocs, and these flocs had a rapid regrowth when broken. Finally, the larger and more compact flocs contributed to the formation of more channels and voids, and therefore the specific resistance to filtration (SRF reached a minimum.

  12. On the proton radius problem

    OpenAIRE

    Giannini, M. M.; Santopinto, E.

    2013-01-01

    The recent values of the proton charge radius obtained by means of muonic-hydrogen laser spectroscopy are about $4\\%$ different from the electron scattering data. It has been suggested that the proton radius is actually measured in different frames and that, starting from a non relativistic quark model calculation, the Lorentz transformation of the form factors accounts properly for the discepancy. We shall show that the relation between the charge radii measured in different frames can be de...

  13. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    Science.gov (United States)

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  14. Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin-Graphene Oxide Composites

    Science.gov (United States)

    Bajjou, O.; Bakour, A.; Khenfouch, M.; Baitoul, M.; Mothudi, B.; Maaza, M.; Faulques, E.

    2018-02-01

    Composites of graphene oxide (GO) functionalized with Sn(V) tetrakis (4-pyridyl)porphyrin (SnTPyP2+) and meso-tetrakis(4-phenylsulfonic acid)porphyrin (H4TPPS4 2- ) were prepared at different pH values.Successful synthesis of water-soluble stable suspension of GO-SnTPyP2+ and GO-H4TPPS4 2-was confirmed using various spectroscopic techniques, including scanning electronic microscopy (SEM), Raman spectroscopy, and ultraviolet-visible (UV-Vis) absorption. Variation of the pH was found to strongly influence the optical properties of the GO-SnTPyP2+ and GO-H4TPPS4 2-composites, as demonstrated by the UV-Vis absorption results. Steady-state photoluminescence (PL) and time-resolved PL (TRPL) results for both composites showed PL quenching and decrease in the exciton mean lifetime, suggesting strong excited-state interactions between the different components. Moreover, charge carrier dynamics study revealed that insertion of GO into both porphyrin derivatives led to faster mean lifetime for excitons with a slight advantage in the case of the cationic porphyrin-GO composite, making it a better choice for charge separation applications thanks to the higher efficiency of charge/energy transfer interactions.

  15. Dynamics of chemical reactions of multiply-charged cations: Information from beam scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2015-01-01

    Roč. 378, FEB 2015 (2015), s. 113-126 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Multiply-charged ions * Dynamics of chemical reactions * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  16. Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state

    International Nuclear Information System (INIS)

    Li Song; Chen Shan-Jun; Chen Yan; Chen Peng

    2016-01-01

    The SF radical and its singly charged cation and anion, SF + and SF − , have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core–valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SF n (n = −1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. (paper)

  17. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  19. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  20. Novel doubly charged cation based electrolytes for non-aqueous supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jaenes, Alar; Kurig, Heisi; Romann, Tavo; Lust, Enn [Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu (Estonia)

    2010-04-15

    The electrochemical characteristics for the electrical double layer capacitors based on the titanium carbide derived carbon (CDC-TiC) electrodes in 0.4 M N,N-dimethyl-1,4-diazabicyclo[2,2,2]octanediium tetrafluoroborate (DMDABCO(BF{sub 4}){sub 2}), 0.2 M DMDABCO(BF{sub 4}){sub 2} + 0.2 M triethylmethylammonium tetrafluoroborate (TEMABF{sub 4}), and 0.4 M TEMABF{sub 4} in {gamma}-butyrolactone ({gamma}-BL) have been studied using cyclic voltammetry, constant current charging/discharging and electrochemical impedance spectroscopy. The ideal electrical double layer capacitor behaviour was observed in a wide region of cell voltages (U {<=} 3.0 V) for the CDC-TiC electrodes in 0.4 M DMDABCO(BF{sub 4}){sub 2} in {gamma}-BL. The geometry of solvation shells around DMDABCO{sup 2+}, TEMA{sup +}, and BF{sub 4}{sup -} have been optimized with molecular dynamics calculations and the coordination numbers equal to 15, 7 or 8, respectively, have been proposed and compared with electrochemical and gas sorption data for CDC-TiC. The gravimetric capacitance (129 F g{sup -1}), high gravimetric energy (40.6 Wh kg{sup -1}) and power (93 kW kg{sup -1}) were established for the CDC-TiC electrodes in 0.4 M DMDABCO(BF{sub 4}){sub 2} {gamma}-BL solution. (author)

  1. Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state

    Science.gov (United States)

    Song, Li; Shan-Jun, Chen; Yan, Chen; Peng, Chen

    2016-03-01

    The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n = -1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21).

  2. Effect of Viscosity and Polar Properties of Solvent on Dynamics of Photoinduced Charge Transfer in BTA-1 Cation — Derivative of Thioflavin T

    Science.gov (United States)

    Gogoleva, S. D.; Stsiapura, V. I.

    2018-05-01

    It was found that the spectral and fluorescent properties of BTA-1C cation in protic and aprotic solvents differ. It was shown that for solutions in long-chain alcohols viscosity is the main factor that determines the dynamics of intramolecular charge transfer in the excited state of the BTA-1C molecule. In the case of aprotic solvents a correlation was found between the rate constant of twisted intramolecular charge transfer (TICT) during rotation of fragments of the molecule in relation to each other in the excited state and the solvent relaxation rate: k TICT 1/τ S .

  3. Adjacent effect on positive charge transfer from radical cation of n-dodecane to scavenger studied by supbicosecond pulse radiolysis, statistical and Monte Carlo approach

    International Nuclear Information System (INIS)

    Saeki, A.; Tagawa, S.; Kozawa, T.; Yoshida, Y.

    2003-01-01

    Time-dependent behaviors of radical cation in n-dodecane in the presence of high-concentrated cation scavenger triethylamine were measured by subpicosecond pulse radiolysis system. The significant reduction of the initial yield in the optical density was observed. This reduction were not able to be explained by the first order rate constant. Therefore, we assumed that this phenomena occur due to the adjacent effect of the solute molecules. We approached this effect by the statistical model and configurational-bias Monte Carlo method. In both methods, we supposed a condition that the cation site in the radical cation is delocalized and will be scavenged rapidly within the time resolution if the solute molecules is adjacent to any sites of the solvent. In addition to the adjacent effect, the fact that a large part of the solvent molecules is excluded by the solute molecules especially at high concentration was taken into consideration. First, we formulated this effect by a statistical model. In addition to the above assumption, this model is based on the following assumption; the effects of molecule's shape, conformation and interaction among molecules were ignored and the aggregation of the solute molecules were treated randomly. As a result, the formula indicated good agreement with the experimental data. Second, as another approach, we adopted the configurational-bias Monte Carlo simulation to reproduce the liquid system. The OLPS model was used to describe the intermolecular and intramolecular potentials. The adjacent effect estimated by this method corresponded to the experimental data with a threshold of 0.5 nm. This value are close to a typical reaction radius. The average number of adjacent solvent molecules and the distribution of aggregated solute's number were also collected from the position data

  4. Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery.

    Science.gov (United States)

    Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing

    2018-03-30

    Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.

    2017-02-04

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  6. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.; Parida, Manas R.; Besong, Tabot M.D.; Maity, Partha; Bootharaju, Megalamane Siddaramappa; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  7. Organic solvation of intercalated cations in V/sub 2/O/sub 5/ xerogels

    International Nuclear Information System (INIS)

    Lemordant, D.; Bouhaouss, A.; Aldbert, P.; Baffier, N.

    1986-01-01

    V/sub 2/O/sub 5/ xerogels (V/sub 2/O/sub 5/, 1.6H/sub 2/O) undergo a topotactic reversible exchange reaction at room temperature in organic solvents containing monovalent alkali or divalent (Mn/sup 2+/) cations. Basal spacing are dependent on solvent type and charge-to-radius ratio of guest cations. From the interlayer distances, two solvation stages have been inferred, depending on the nature of the solvent and of the cation, except with Cs/sup +/ for which no intracrystalline swelling by organic solvents is observed

  8. Puzzling out the proton radius puzzle

    Directory of Open Access Journals (Sweden)

    Mihovilovič Miha

    2014-01-01

    Full Text Available The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.

  9. Puzzling out the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovič, M.; Merkel, H.; Weber, A. [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-01-22

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.

  10. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Science.gov (United States)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  11. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Directory of Open Access Journals (Sweden)

    Mónika Valiskó

    2018-02-01

    Full Text Available The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ϵ = 78.5, and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson’s equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 − 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm−2. The anions are monovalent with a fixed diameter d− = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K. We provide all the raw data in the supplementary material.

  12. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  13. Ever-changing proton radius?

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovic, Miha [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the presently best value obtained from elastic scattering experiments remains unexplained and represents a burning problem of today's nuclear physics. Therefore, several new experiments are underway, committed to provide new insight into the problem. High-precision electron scattering experiments are in progress at the Jefferson Lab and the Mainz Microtron. As a counterpart to these measurements, a muon-proton scattering experiment is envisioned at the Paul Scherrer Institute. Together with the nuclear scattering experiments, new atomic measurements are underway at the Max Planck Institute in Garching, which aim to further improve also the spectroscopic results on electronic hydrogen. These experiments are complemented by extensive theoretical efforts focused on studying various processes contributing to the atomic Lamb shift measurements that could explain the difference, as well as on pursuing different ways to interpret nuclear form-factor measurements, which could lead to a consistent value of the radius. In this presentation the currently best proton radius measurements are summarized, and the importance of the observed inconsistency between the hydrogen and the muonic-hydrogen data is discussed. Selected new experiments dedicated to remeasuring the radius are described, and the results of the MAMI experiment are presented.

  14. Determination of the change of nuclear charge radius in the 81 keV transition of {sup 133}Cs by implantation of {sup 133}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Hisakazu; Tanaka, Eiji; Ishii, Hiroko [Shinshu Univ., Matsumoto, Nagano (Japan)] [and others

    1996-04-01

    {sup 133}Cs is a useful probe for studying the binding state of substances with high ionic bond because {sup 133}Cs is only one nuclear species belonging to the alkali elements to make it possible to determine both the Moessbauer effect and the internal conversion electron by the same transition. In this paper, {Delta}R/R (the difference in the nuclear charge radii between the excited state and the ground state of nucleus) in the 81 KeV transition of {sup 133}Cs was determined by the internal conversion method which measured the Moessbauer isomer shift and the strength of internal conversion of the external electron. Al, Zn and Mo are used as the matrices for observation. On Zn and Mo, {Delta}R/R{approx}+0.5x10{sup -4} is derived as the initial value from {rho}4s(0)theor=1344.7 a.u., R=1.2xA{sup 1/3} fm, the isomer shift {delta} and the internal conversion strength ratio (0+P)/N{sub 1} (=({alpha}{sub o}+{alpha}{sub p})/{alpha}N{sub 1}). (S.Y.)

  15. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  16. Purification of Anthocyanins with o-Dihydroxy Arrangement by Sorption in Cationic Resins Charged with Fe(III

    Directory of Open Access Journals (Sweden)

    Araceli Castañeda-Ovando

    2014-01-01

    Full Text Available In the present work, a new purification method of anthocyanins with o-dihydroxy arrangement is proposed. This method is based on a ligand-exchange mechanism, using a cationic exchange resin loaded with metallic ions in order to increase the affinity of the resin to the anthocyanin(s with o-dihydroxy arrangement. This method was used to purify the main anthocyanin (cyanidin-3-glucoside; Cy-3-glc from the anthocyanic methanolic extract of blue corn. The best sorption result was using Fe(III in its ion form. The purification procedure begins with the formation of a metal-anthocyanin complex (Cy-3-glc-Fe which was optimal at pH 5, followed by a NaOH 0.1 M elution process in order to eliminate anthocyanins without o-dihydroxy arrangement, sugars, and organic acids. Finally, the pure anthocyanin is obtained by adding HCl 0.1 M which breaks the metal-anthocyanin complex.

  17. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  18. Interaction of cationic porphyrins with DNA: Importance of the number and position of the charges and minimum structural requirements for intercalation

    International Nuclear Information System (INIS)

    Sari, M.A.; Battioni, J.P.; Dupre, D.; Mansuy, D.; Le Pecq, J.B.

    1990-01-01

    Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl] n (aryl) 4-n porphyrin]M (M = H 2 , Cu II , or ClFe III ), with n = 2-4, have been synthesized and characterized by UV-visible and 1 H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper (II) or iron (III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high and a linear decrease of log K app with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur

  19. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    Science.gov (United States)

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics.

    Science.gov (United States)

    Novelli, Vittoria; Barbero, Nadia; Barolo, Claudia; Viscardi, Guido; Sliwa, Michel; Sauvage, Frédéric

    2017-10-18

    By optimizing the lithium concentration in an electrolyte to 50 mmol L -1 and the dye-to-chenodeoxycholic acid ratio in a VG1-based dye solution, we achieved 4.7% power conversion efficiency under standard AM 1.5G conditions. In addition to this performance, we herein discuss the role played by lithium in the electrolyte and its interplay in the charge transfer processes from ms to fs dynamics. Based on electrochemical impedance spectroscopy, photoluminescence and pump-probe transient absorption spectroscopy, we conclude that although lithium increases the electron diffusion length, this has no satisfactory impact on electron injection and even slows dye regeneration. This study provides evidence that lithium is not only specifically adsorbed on the surface of TiO 2 but prompts a molecular reorganization of the self-assembled dye monolayer, forming harmful H-aggregates.

  1. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    Science.gov (United States)

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  2. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  3. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    Science.gov (United States)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  4. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    Science.gov (United States)

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that

  5. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  6. Study Application of RADIUS Protocol on Ethernet

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; YANG Huan-yu; LI Hong

    2004-01-01

    This paper presents how to apply the RADIUS (Remote Authentication Dial In User Service)protocol ,which is generally applied to dial-up network, to the authentication & charge of Broad Band accessing control system on Ethernet. It is provided that the Broad Band accessing control system included a self-designed communication protocol is used in communicating between an terminal user and Network Access Server .The interface module on the servers side and the Radius system is also given in this article.

  7. Spectroscopy of muonic atoms and the proton radius puzzle

    Science.gov (United States)

    Antognini, Aldo

    2017-09-01

    We have measured several 2 S -2 P transitions in muonic hydrogen (μp), muonic deuterium (μd) and muonic helium ions (μ3He, μ4He). From muonic hydrogen we extracted a proton charge radius 20 times more precise than obtained from electron-proton scattering and hydrogen high-precision laser spectroscopy but at a variance of 7 σ from these values. This discrepancy is nowadays referred to as the proton radius puzzle. New insight has been recently provided by the first determination of the deuteron charge radius from laser spectroscopy of μd. The status of the proton charge radius puzzle including the new insights obtained by μd spectroscopy will be discussed. Work supported by the Swiss National Science Foundation SNF-200021-165854 and the ERC CoG. #725039.

  8. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  9. The PRad experiment and the proton radius puzzle

    Directory of Open Access Journals (Sweden)

    Gasparian Ashot

    2014-06-01

    Full Text Available New results from the recent muonic hydrogen experiments seriously questioned our knowledge of the proton charge radius, rp. The new value, with its unprecedented less than sub-percent precision, is currently up to eight standard deviation smaller than the average value from all previous experiments, triggering the well-known “proton charge radius puzzle” in nuclear and atomic physics. The PRad collaboration is currently preparing a novel, magnetic-spectrometer-free ep scattering experiment in Hall B at JLab for a new independent rp measurement to address this growing “puzzle” in physics.

  10. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    Science.gov (United States)

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

  11. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  12. Electric arc radius and characteristics

    International Nuclear Information System (INIS)

    Fang, T.M.

    1980-01-01

    The heat transfer equation of an arc discharge has been solved. The arc is assumed to be a cylinder with negligible axial variation and the dominant heat transfer process is conduction radially inside the column and radiation/convection at the outside edge. The symmetric consideration allows a simple one-dimensional formulation. By taking into account proper variation of the electrical conductivity as function of temperature, the heat balance equation has been solved analytically. The radius of the arc and its current-field characteristics have also been obtained. The conventional results that E approx. I 0 5385 and R approx. I 0 7693 with E being the applied field, I the current, and R the radius of the cylindrical arc, have been proved to be simply limiting cases of our more general characteristics. The results can be applied quite widely including, among others, the neutral beam injection project in nuclear fusion and MHD energy conversion

  13. On joint numerical radius II

    Czech Academy of Sciences Publication Activity Database

    Drnovšek, R.; Müller, Vladimír

    2014-01-01

    Roč. 62, č. 9 (2014), s. 1197-1204 ISSN 0308-1087 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : joint numerical range * numerical radius Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/03081087.2013.816303

  14. The cation-π interaction.

    Science.gov (United States)

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  15. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  16. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  17. The radius of RX Eridani

    International Nuclear Information System (INIS)

    Woolley, R.; Dean, J.

    1976-01-01

    Photoelectric observations of the light curves of RX Eri obtained in B, V and I, and radial velocity determinations, are combined to determine the radius by a method originally proposed by van Hoof which avoids matching colours in the rising and falling branches of the light curve and concentrates on the falling branch. The results agree well with those from other stars determined by the normal Baade-Wesselink method, but the method is easier to apply if the colour curve is flat in the falling branch. The parameters found for the star are r 0 = 5.5 Sun, mass = 0.45 Sun, and Msub(v) = + 0sup(m).54. (author)

  18. Table of charged particle energies versus magnetic field strength x orbit radius (B{rho}) for A = 1 to 7 (100< (B{rho}) < 1200 kG.cm); Table des energies des particules chargees en fonction de la rigidite magnetique (B{rho}) pour A = 1 a 7 (100< (B{rho}) < 1200 kG.cm)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A table of charged particle energies versus magnetic field strength x orbit radius (B{sub {rho}}) is presented. Particles p, d, t, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++}. Values of B{sub {rho}}: 100 to 1200 kG.cm by steps of 0.5 kG.cm. Values of energies are given in keV. (author) [French] Nous presentons une table des energies de protons, deutons, tritons, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++} en fonction de leur rigidite magnetique (B{sub {rho}}). Les valeurs de B{sub {rho}} sont comprises entre 100 et 1200 kG.cm par pas de 0.5 kG.cm. Les valeurs des energies sont donnees en keV. (auteur)

  19. Experimental study of finite Larmor radius effects

    International Nuclear Information System (INIS)

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N 2 , and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10 15 /cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 μsec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 μF, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption

  20. [Noncovalent cation-π interactions--their role in nature].

    Science.gov (United States)

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  1. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  2. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  3. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Science.gov (United States)

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  4. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    Snegirev, V.F.; Galakhov, M.V.; Makarov, K.N.; Bakhmutov, V.I.

    1986-01-01

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13 C NMR method

  5. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  6. Is the proton radius puzzle evidence of extra dimensions?

    Energy Technology Data Exchange (ETDEWEB)

    Dahia, F.; Lemos, A.S. [Universidade Federal da Paraiba, Department of Physics, Joao Pessoa, PB (Brazil)

    2016-08-15

    The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between the 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds. (orig.)

  7. Proton radius, Darwin-Foldy term and radiative corrections

    International Nuclear Information System (INIS)

    Jentschura, U.D.

    2011-01-01

    We discuss the role of the so-called Darwin-Foldy term in the evaluation of the proton and deuteron charge radii from atomic hydrogen spectroscopy and nuclear scattering data. The question of whether this term should be included or excluded from the nuclear radius has been controversially discussed in the literature. We attempt to clarify which literature values correspond to which conventions. A detailed discussion of the conventions appears useful because a recent experiment [R. Pohl et al., Nature 466, 213 (2010)] has indicated that there is a discrepancy between the proton charge radii inferred from ordinary ('electronic') atomic hydrogen and muonic hydrogen. We also investigate the role of quantum electrodynamic radiative corrections in the determination of nuclear radii from scattering data, and propose a definition of the nuclear self energy which is compatible with the subtraction of the radiative corrections in scattering experiments. (author)

  8. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  9. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  10. Charge states of ions, and mechanisms of charge ordering transitions

    Science.gov (United States)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  11. Equivalent pore radius and velocity of elastic waves in shale. Skjold Flank-1 Well, Danish North Sea

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Oji, Collins O.

    2013-01-01

    and BET specific surface were obtained from these samples using kaolinite and smectite as reference. The cuttings samples were also characterized with respect to mineralogical composition, content of organic carbon and cation exchange capacity.Equivalent pore radius was calculated from porosity and BET...

  12. The electric charge of neutrinos and plasmon decay

    CERN Document Server

    Altherr, Tanguy

    1994-01-01

    By using both thermal field theory and a somewhat more intuitive method, we define the electric charge as well as the charge radius of neutrinos propagating inside a plasma. We show that electron neutrinos acquire a charge radius of order $\\sim 6.5 \\times 10^{-16}$ cm, regardless of the properties of the medium. Then, we compute the rate of plasmon decay which such an electric charge or a charge radius implies. Taking into account the relativistic effects of the degenerate electron gas, we compare our results to various approximations as well as to recent calculations and determine the regimes where the electric charge or the charge radius does mediate the decay of plasmons. Finally, we discuss the stellar limits on any anomalous charge radius of neutrinos.

  13. Radius crossover sign: an indication of malreduced radius shaft greenstick fractures.

    Science.gov (United States)

    Wright, Patrick B; Crepeau, Allison E; Herrera-Soto, José A; Price, Charles T

    2012-06-01

    Radius shaft greenstick fractures in children can be a challenging injury to treat because angulation and rotational alignment are difficult to assess. In this report, we describe a simple method for analyzing the deformity and identifying rotational and angular malalignment. This technique involves analyzing the forearm radiographs as 2 segments, proximal and distal, and assuring that the rotational position of each matches the other. We present 3 cases of proximal radius greenstick fractures in malalignment to demonstrate the radius crossover sign. Identifying the radius crossover sign, and proceeding with further closed reduction may prevent deformity that could otherwise result in a significant loss of forearm motion. Level V.

  14. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Hsueh, Chun-Hway; Li, Jia-Han

    2015-01-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect. (paper)

  15. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  16. Selective adsorption of ions in charged slit-systems

    Directory of Open Access Journals (Sweden)

    M.Valiskó

    2013-01-01

    Full Text Available We study the selective adsorption of various cations into a layered slit system using grand canonical Monte Carlo simulations. The slit system is formed by a series of negatively charged membranes. The electrolyte contains two kinds of cations with different sizes and valences modeled by charged hard spheres immersed in a continuum dielectric solvent. We present results for various cases depending on the combinations of the properties of the competing cations. We concentrate to the case when the divalent cations are larger than the monovalent cations. In this case, size and charge have counterbalancing effects, which results in interesting selectivity phenomena.

  17. The earth's radius and the G variation

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York

    1981-01-01

    It has been assumed that if the gravitational constant G was larger in the past, the Earth's radius had to be smaller. The assertion holds provided the input from microphysics (in particular the equation of state) is independent of G. While this is true for some theories of gravity with variable G it is not so in the scale covariant theory, where the pressure can be affected by a variable G in a way that, for a constant mass of the Earth, a larger G in the past implies a larger Earth's radius. Comparison with recent palaeomagnetic data is presented. (author)

  18. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  19. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  20. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  1. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  2. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Tagawa, Seiichi

    2009-01-01

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  3. Spectral Radius and Hamiltonicity of Graphs

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Nikiforov, V.

    2010-01-01

    Roč. 432, č. 9 (2010), s. 2170-2173 ISSN 0024-3795 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hamiltonian cycle * Hamiltonian path * spectral radius Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2010

  4. Effect of Structure on Charge Distribution in the Isatin Anions in Aprotic Environment: Spectral Study

    Directory of Open Access Journals (Sweden)

    Pavol Tisovský

    2017-11-01

    Full Text Available Five isatin anions were prepared by deprotonation of initial isatins in aprotic solvents using basic fluoride and acetate anions (F− and CH3COO−. The F− basicity is sufficient to deprotonate isatin NH hydrogen from all the studied compounds. This process is reversible. In the presence of proton donor solvents, the anions form the corresponding isatins. The isatin hydrogen acidity depends on the overall structure of the isatin derivatives. The anions were characterized by ultraviolet–visible (UV–Vis, Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopy. Interestingly, the anions form aggregates at concentrations above 10−3 mol·dm−3. Further, the effect of cations on the UV–Vis spectra of the studied anions was studied. Charge transfer and its distribution in the anion depends on the radius and the cation electron configuration. The alkali metal cations, tetrabutylammonium (TBA+, Mg2+ and Ag+, interact with the C-2 carbonyl oxygen of the isatin anion. The interaction has a coulombic character. On the other hand, Cd2+, Zn2+, Hg2+, Co2+, and Cu+ cations form a coordinate bond with the isatin nitrogen.

  5. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  6. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  7. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Directory of Open Access Journals (Sweden)

    Yamuna Kunhi Mouvenchery

    Full Text Available It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM molecules via cation bridges (CaB. The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+, Ca(2+ or Na(+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h than deprotonation of functional groups (<2 h and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB and molecular mobility of water (NMR analysis suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is

  8. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  9. Cost Effective RADIUS Authentication for Wireless Clients

    Directory of Open Access Journals (Sweden)

    Alexandru ENACEANU

    2010-12-01

    Full Text Available Network administrators need to keep administrative user information for each network device, but network devices usually support only limited functions for user management. WLAN security is a modern problem that needs to be solved and it requires a lot of overhead especially when applied to corporate wireless networks. Administrators can set up a RADIUS server that uses an external database server to handle authentication, authorization, and accounting for network security issues.

  10. Upper pinch radius limit in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1989-12-01

    A simple static equilibrium model of the Z-pinch is considered where a hot plasma core is surrounded by a cold-mantle (gas blanket). The pinch radius, defined as the radial extension of the fully ionized plasma core, is uniquely determined by the plasma particle. momentum and heat balance equations. In Extrap configurations an octupole field is introduced which imposes a magnetic separatrix on Z-pinch geometry. This makes the conditions for Extrap equilibrium 'overdetermined' when the characteristic pinch radium given by the plasma parameters tends to exceed the characteristic radius of the magnetic separatrix. In this case no conventional pinch equilibrium can exist, and part of the current which is forced into the plasma discharge by external sources must be channelled outside of the separatrix, i.e. into the surrounding support structure of the Extrap conductors and the vessel walls. A possibly existing bootstrap current in the plasma boundary layer is further expected to be 'scraped off' in this case. The present paper gives some illustrations of the marginal case of this upper pinch radius limit, in a state where the pinch current is antiparallel to the external rod currents which generate the octupole field. (authors)

  11. Mass-Radius diagram for compact stars

    International Nuclear Information System (INIS)

    Carvalho, G A; Jr, R M Marinho; Malheiro, M

    2015-01-01

    The compact stars represent the final stage in the evolution of ordinary stars, they are formed when a star ceases its nuclear fuel, in this point the process that sustain its stability will stop. After this, the internal pressure can no longer stand the gravitational force and the star colapses [2]. In this work we investigate the structure of these stars which are described by the equations of Tolman-Openheimer-Volkof (TOV) [1]. These equations show us how the pressure varies with the mass and radius of the star. We consider the TOV equations for both relativistic and non-relativistic cases. In the case of compact stars (white dwarfs and neutron stars) the internal pressure that balances the gravitational pressure is essentialy the pressure coming from the degeneracy of fermions. To have solved the TOV equations we need a equation of state that shows how this internal pressure is related to the energy density or mass density. Instead of using politropic equations of state we have solved the equations numericaly using the exact relativistic energy equation for the model of fermion gas at zero temperature. We obtain results for the mass-radius relation for white dwarfs and we compared with the results obtained using the politropic equations of state. In addition we discussed a good fit for the mass-radius relation. (paper)

  12. Solar radius change between 1925 and 1979

    Science.gov (United States)

    Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.

    1983-01-01

    From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.

  13. Solar radius change between 1925 and 1979

    International Nuclear Information System (INIS)

    Sofia, S.; Fiala, A.D.

    1983-01-01

    By analysing numerous reports, from different locations, on the duration of totality of the solar eclipses on 24 January 1925, and on 26 February 1979, it was found that the solar radius at the earlier date was 0.5 arc s, or 375 km larger than at the later date. The correction to the standard solar radius found for each eclipse was different when different subsets of the observations were used (for example, edge of path of totality timings compared with central timings), suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. However, the differences between the corrections for both eclipses were very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors, as long as the proper consideration is made of the distribution of the observations. It is considered that these results are strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales. (author)

  14. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    Science.gov (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  15. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  16. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  17. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    International Nuclear Information System (INIS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.W.; Meissner, U.G.

    2016-01-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  18. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, M. [University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Kubis, B.; Ruiz de Elvira, J. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Hammer, H.W. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik, Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)

    2016-11-15

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  19. Seasonal variations in Na, K, Mg and Ca charge balance in marine brown algae from Saurashtra Coast (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    ) strongly correlated with Cl content suggesting that these cations were balanced by chloride ions. Divalent cations (Ca + Mg) seem to be balanced by the anion sulphate. Ash content of the algae was accounted by these major cations and anions. Charge...

  20. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  1. Identifi cation of Sectarianism

    Directory of Open Access Journals (Sweden)

    Martinovich Vladimir

    2016-03-01

    Full Text Available «New religious movements and society» is traditionally one of the most sophisticated topics in the area of new religions studies. Its problem field is so huge that up to now by far not all important research themes where even touched by scientists from all over the world. The problem of the process of the identification of sectarianism by diff erent societal institutions is one of such untouched themes that is taken as the main subject of this article. This process by itself is an inseparable part of the every societal deliberate reaction to the very existence of unconventional religiosity, its unstructured and mainly structured types. The focal point of the article is step-by-step analysis of the general structure elements of the process of the identification of sectarianism without any reference to the specific time and place of its flow. Special attention is paid to the analysis of the subjects of the identification of sectarianism, to the criteria for religious groups to be qualified as new religious movements, and to the specific features of the process of documents filtration. The causes of selective perception of sectarianism are disclosed. Some main consequences and unpredictable outcomes of the process of the identification of sectarianism are described.

  2. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  3. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede; Eita, Mohamed Samir; Khan, Jafar Iqbal; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic

  4. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  5. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  6. Small-radius jets to all orders

    CERN Document Server

    Cacciari, Matteo; Soyez, Gregory; Salam, Gavin; Dasgupta, Mrinal

    2015-01-01

    With hadron colliders continuing to push the boundaries of precision, it is becoming increas­ ingly important to have a detailed understanding of the subtleties appearing at smaller values of the jet radius R. We present a method to resum all leading logarithmic terms, a'.; Inn R, using a generating functional approach, as was recently discussed in Ref. 1. We study a variety of observables, such as the inclusive jet spectrum and jet vetoes for Higgs physics, and show that small-R effects can be sizeable. Finally, we compare our calculations to existing ALICE data, and show good agreement.

  7. Linear intra-bone geometry dependencies of the radius: Radius length determination by maximum distal width

    International Nuclear Information System (INIS)

    Baumbach, S.F.; Krusche-Mandl, I.; Huf, W.; Mall, G.; Fialka, C.

    2012-01-01

    Purpose: The aim of the study was to investigate possible linear intra-bone geometry dependencies by determining the relation between the maximum radius length and maximum distal width in two independent populations and test for possible gender or age effects. A strong correlation can help develop more representative fracture models and osteosynthetic devices as well as aid gender and height estimation in anthropologic/forensic cases. Methods: First, maximum radius length and distal width of 100 consecutive patients, aged 20–70 years, were digitally measured on standard lower arm radiographs by two independent investigators. Second, the same measurements were performed ex vivo on a second cohort, 135 isolated, formalin fixed radii. Standard descriptive statistics as well as correlations were calculated and possible gender age influences tested for both populations separately. Results: The radiographic dataset resulted in a correlation of radius length and width of r = 0.753 (adj. R 2 = 0.563, p 2 = 0.592) and side no influence on the correlation. Radius length–width correlation for the isolated radii was r = 0.621 (adj. R 2 = 0.381, p 2 = 0.598). Conclusion: A relatively strong radius length–distal width correlation was found in two different populations, indicating that linear body proportions might not only apply to body height and axial length measurements of long bones but also to proportional dependency of bone shapes in general.

  8. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. QED confronts the radius of the proton

    CERN Document Server

    De Rujula, A

    2011-01-01

    Recent results on muonic hydrogen [1] and the ones compiled by CODATA on ordinary hydrogen and $ep$-scattering [2] are $5\\sigma$ away from each other. Two reasons justify a further look at this subject: 1) One of the approximations used in [1] is not valid for muonic hydrogen. This amounts to a shift of the proton's radius by $\\sim 3$ of the standard deviations of [1], in the "right" direction of data-reconciliation. In field-theory terms, the error is a mismatch of renormalization scales. Once corrected, the proton radius "runs", much as the QCD coupling "constant" does. 2) The result of [1] requires a choice of the "third Zemach moment". Its published independent determination is based on an analysis with a $p$-value --the probability of obtaining data with equal or lesser agreement with the adopted (fit form-factor) hypothesis-- of $3.92\\times 10^{-12}$. In this sense, this quantity is not empirically known. Its value would regulate the level of "tension" between muonic- and ordinary-hydrogen results, curr...

  10. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  11. Finite Larmor radius stabilization of ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tsang, K.T.

    1980-07-01

    A ballooning mode equation that includes full finite Larmor radius effects has been derived from the Vlasov equation for a circular tokamak equilibrium. Numerical solution of this equation shows that finite Larmor radius effects are stabilizing

  12. Calculation of nuclear radius using alpha decay

    International Nuclear Information System (INIS)

    Castro, R.B. de.

    1988-01-01

    Using a Quantum Theory approach for the Alpha-Decay process, a formula is deduced for determination of the nuclear radius of the s-state, that is, a nuclear model with a spherical shell. The hypothesis that it is possible to individualize the alpha particle and the daughter nucleus at the moment of the alpha particle emission is considered. In considered in these conditions, the treatment of a two body problem considered as point particles, repelling each other by Coulomb's Law. Using the new values of the fundamental physical constants, experimentally determinated, by substitution of their numerical values in the proposed, new values of nuclear radii are obtained. These values are compared with those found in the literature. (author) [pt

  13. Research of Precataclysmic Variables with Radius Excesses

    Science.gov (United States)

    Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.

    2017-06-01

    The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.

  14. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  15. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2016-01-01

    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  16. Determination of the root-mean-square radius of the deuteron from present-day experimental data on neutron-proton scattering

    International Nuclear Information System (INIS)

    Babenko, V. A.; Petrov, N. M.

    2008-01-01

    The correlation between the root-mean-square matter radius of the deuteron, r m , and its effective radius, ρ, is investigated. A parabolic relationship between these two quantities makes it possible to determine the root-mean-square radius r m to within 0.01% if the effective radius ρ is known. The matter (r m ), structural (r d ), and charge (r ch ) radii of the deuteron are found with the aid of modern experimental results for phase shifts from the SAID nucleon-nucleon database, and their values are fully consistent with their counterparts deduced by using the experimental value of the effective deuteron radius due to Borbely and his coauthors. The charge-radius value of 2.124(6) fm, which was obtained with the aid of the SAID nucleon-nucleon database, and the charge-radius value of 2.126(12) fm, which was obtained with the aid of the experimental value of the effective radius ρ, are in very good agreement with the present-day chargeradius value of 2.128(11) fm, which was deduced by Sick and Trautmann by processing world-average experimental data on elastic electron scattering by deuterons with allowance for Coulomb distortions.

  17. Dependence of yield of nuclear track-biosensors on track radius and analyte concentration

    Science.gov (United States)

    García-Arellano, H.; Muñoz H., G.; Fink, D.; Vacik, J.; Hnatowicz, V.; Alfonta, L.; Kiv, A.

    2018-04-01

    In swift heavy ion track-based polymeric biosensor foils with incorporated enzymes one exploits the correlation between the analyte concentration and the sensor current, via the enrichment of charged enzymatic reaction products in the track's confinement. Here we study the influence of the etched track radius on the biosensor's efficiency. These sensors are analyte-specific only if both the track radii and the analyte concentration exceed certain threshold values of ∼15 nm and ∼10-6 M (for glucose sensing), respectively. Below these limits the sensor signal stems un-specifically from any charge carrier. In its proper working regime, the inner track walls are smoothly covered by enzymes and the efficiency is practically radius independent. Theory shows that the measured current should be slightly sub-proportional to the analyte concentration; the measurements roughly reconfirm this. Narrower tracks (∼5-15 nm radius) with reduced enzyme coverage lead to decreasing efficiency. Tiny signals visible when the tracks are etched to effective radii between 0 and ∼5 nm are tentatively ascribed to enzymes bonded to surface-near nano-cracks in the polymer foil, resulting from its degradation due to aging, rather than to the tracks. Precondition for this study was the accurate determination of the etched track radii, which is possible only by a nanofluidic approach. This holds to some extent even for enzyme-covered tracks, though in this case most of the wall charges are compensated by enzyme bonding.

  18. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  19. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  20. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  1. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  2. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  3. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  4. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  5. An iterative algorithm for calculating stylus radius unambiguously

    International Nuclear Information System (INIS)

    Vorburger, T V; Zheng, A; Renegar, T B; Song, J-F; Ma, L

    2011-01-01

    The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.

  6. Finite-Larmor-radius stability theory of EBT plasmas

    International Nuclear Information System (INIS)

    Berk, H.L.; Cheng, C.Z.; Rosenbluth, M.N.; Van Dam, J.W.

    1982-11-01

    An eikonal ballooning-mode formalism is developed to describe curvature-driven modes of hot electron plasmas in bumpy tori. The formalism treats frequencies comparable to the ion-cyclotron frequency, as well as arbitrary finite Larmor radius and field polarization, although the detailed analysis is restricted to E/sub parallel/ = 0. Moderate hot-electron finite-Larmor-radius effects are found to lower the background beta core limit, whereas strong finite-Lamor-radius effects produce stabilization

  7. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  8. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  9. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  10. Residual dust charges in discharge afterglow

    International Nuclear Information System (INIS)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-01-01

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar

  11. Limits on the effective quark radius from inclusive ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Sciences; Collaboration: ZEUS Collaboration; and others

    2016-04-15

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb{sup -1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10{sup -16} cm.

  12. Limits on the effective quark radius from inclusive ep scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2016-04-01

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb -1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10 -16 cm.

  13. Limits on the effective quark radius from inclusive $ep$ scattering at HERA

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A; Sukhonos, D

    2016-01-01

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering corresponding to a luminosity of around 1 fb$^{-1}$ have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive $ep$ data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is $0.43\\cdot 10^{-16}$ cm.

  14. From cation to oxide: hydroxylation and condensation of aqueous complexes

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al 3+ ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  15. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  16. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  17. Numerical Radius Inequalities for Finite Sums of Operators

    Directory of Open Access Journals (Sweden)

    Mirmostafaee Alireza Kamel

    2014-12-01

    Full Text Available In this paper, we obtain some sharp inequalities for numerical radius of finite sums of operators. Moreover, we give some applications of our result in estimation of spectral radius. We also compare our results with some known results.

  18. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  19. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  20. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  1. Pearl-necklace complexes of flexible polyanions with neutral-cationic diblock copolymers

    NARCIS (Netherlands)

    Golinska, M.D.; Wolf, de F.A.; Cohen Stuart, M.A.; Hernandez Garcia, A.; Vries, de R.J.

    2013-01-01

    We study the complexation of very asymmetric diblock copolymers (consisting of a cationic block of 12 lysines connected to a 400 amino acid long hydrophilic polypeptide block with a net charge that is nearly zero) with oppositely charged sodium poly(acrylic acid) (NaPAA) with a range of molar masses

  2. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  3. Interaction of cationic drugs with liposomes.

    Science.gov (United States)

    Howell, Brett A; Chauhan, Anuj

    2009-10-20

    Interactions between cationic drugs and anionic liposomes were studied by measuring binding of drugs and the effect of binding on liposome permeability. The measurements were analyzed in the context of a continuum model based on electrostatic interactions and a Langmuir isotherm. Experiments and modeling indicate that, although electrostatic interactions are important, the fraction of drug sequestered in the double-layer is negligible. The majority of drug enters the bilayer with the charged regions interacting with the charged lipid head groups and the lipophilic regions associated with the bilayer. The partitioning of the drug can be described by a Langmuir isotherm with the electrostatic interactions increasing the sublayer concentration of the drug. The binding isotherms are similar for all tricyclic antidepressants (TCA). Bupivacaine (BUP) binds significantly less compared to TCA because its structure is such that the charged region has minimal interactions with the lipid heads once the BUP molecule partitions inside the bilayer. Conversely, the TCAs are linear with distinct hydrophilic and lipophilic regions, allowing the lipophilic regions to lie inside the bilayer and the hydrophilic regions to protrude out. This conformation maximizes the permeability of the bilayer, leading to an increased release of a hydrophilic fluorescent dye from liposomes.

  4. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  5. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Piest, Martin; Engbersen, Johannes F.J.

    2010-01-01

    High cationic charge densities in polymeric vectors result in tight DNA condensation, leading to small highly positively charged polyplexes which show generally high cellular uptake in vitro. However, high cationic charge densities also introduce membrane-disruptive properties to the polymers,

  6. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  7. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  8. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-01-01

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca 2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK a2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d 001 ) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  9. Cation disorder in Ga1212.

    Science.gov (United States)

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  10. A Cationic Smart Copolymer for DNA Binding

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2017-11-01

    Full Text Available A new block copolymer with a temperature-responsive block and a cationic block was prepared by reversible addition-fragmentation chain transfer (RAFT polymerization, with good control of its size and composition. The first block is composed by di(ethylene glycol methyl ether methacrylate (DEGMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA, with the ratio DEGMA/OEGMA being used to choose the volume phase transition temperature of the polymer in water, tunable from ca. 25 to above 90 °C. The second block, of trimethyl-2-methacroyloxyethylammonium chloride (TMEC, is positively charged at physiological pH values and is used for DNA binding. The coacervate complexes between the block copolymer and a model single strand DNA are characterized by fluorescence correlation spectroscopy and fluorescence spectroscopy. The new materials offer good prospects for biomedical application, for example in controlled gene delivery.

  11. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  12. Analysis of the radius and diameter protocols in terms of pricing telecommunication services

    Directory of Open Access Journals (Sweden)

    Vesna M. Radonjić

    2013-06-01

    Full Text Available Accounting of telecommunication services is closely related to the functions of authentication and authorization. These functions are usually considered together and implemented within the same server using a common protocol. The most renowned protocols for authentication, authorization and accounting are the RADIUS and Diameter protocols.   AAA functions and related protocols   In this chapter, the accounting management architecture developed by IETF is presented. It includes the interaction between network elements, accounting servers and billing and charging servers. Accounting data can be used for management, planning and charging users as well as other (specific purposes. Authentication is the process of confirming a user's digital identity, usually through some type of identifiers and related data. Authorization determines whether a particular entity is authorized to perform an activity.   Basic Functions of the RADIUS Protocol   The RADIUS architecture is based on a client-server model. It uses UDP on the transport layer. Transactions between the client and the server are authenticated, which is achieved by using a common secret key that is never sent through the network. Given the limited resources available to network devices, RADIUS facilitates and centralizes charging end users, provides some protection against active attacks by unauthorized users and it has great support from different network equipment vendors. Although RADIUS is a widely accepted protocol for the mechanisms of authentication, authorization and accounting, it has certain shortcomings that may be caused by the protocol itself or by its poor implementation.   Architecture and Operation of the Diameter Protocol   Diameter is a scalable protocol designed by the IETF working group in order to eliminate shortcomings and functional limitations of the RADIUS protocol and eventually to replace it in the near future. Most of the basic Diameter mechanisms and its

  13. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  14. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  15. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  16. Anion and cation partitioning between olivine, plagioclase phenocrysts and the host magma

    International Nuclear Information System (INIS)

    Yurimoto, Hisayoshi; Sueno, Shigeho

    1984-01-01

    Partition coefficients for -1, -2, -3, +1, +2, +3, +4 and +5 valent ions between the groundmass of tholeiite basalt and coexisting olivine and plagioclase phenocrysts from the Mid-Atlantic Ridge have been determined by secondary ion mass spectrometry. The present cation partitioning strongly supports the 'crystal structure control' mechanism. The partition coefficient for an anion is also under control of the crystal structure, so that each of the cation and anion positions in the crystal structure gives rise to a parabola-shaped peak on the partition coefficient vs. ionic radius diagram. (author)

  17. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  18. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  19. Vibrational Spectroscopy of Cation and Anion Channelrhodopsins

    Science.gov (United States)

    Yi, Adrian S.

    Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues inGtACR1compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is

  20. Cationic Polymers Inhibit the Conductance of Lysenin Channels

    Directory of Open Access Journals (Sweden)

    Daniel Fologea

    2013-01-01

    Full Text Available The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin’s functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.

  1. Charge transport problem

    International Nuclear Information System (INIS)

    Lee, E.P.

    1977-01-01

    In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop

  2. Correlation between quarter-point angle and nuclear radius

    Science.gov (United States)

    Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan

    2017-04-01

    The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)

  3. Human Fertility Increases with the Marital-radius

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo; Amorim, António

    2008-01-01

    We report a positive association between marital radius (distance between mates' birthplaces) and fertility detected in a large population. Spurious association due to socioeconomic factors is discarded by a conditional analysis involving income, education, and urbanicity. Strong evidence...

  4. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  5. Geneva University - Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle

    CERN Multimedia

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 12 May 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle Dr Aldo Antogninia , CREMA Collaboration, Max Planck Institute, Germany At the Paul Scherrer Institut, Switzerland, we have measured several 2S-2P transition frequencies in muonic hydrogen (µp) and deuterium (µd) by means of laser spectroscopy. This results in an order of magnitude improvement on the rms charge radius values of the proton and the deuteron. Additionally the Zemach radii and the deuteron polarizability are also inferred. The new proton radius value is deduced with a relative accuracy of 0.1% but strongly disagrees from CODATA. The origin of this discrepancy is not yet known. It may come from theo...

  6. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    Science.gov (United States)

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  7. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  8. DML and Foil Measurements of ETA Beam Radius

    International Nuclear Information System (INIS)

    Nexsen, W; Weir, J

    2005-01-01

    Simultaneous measurements of the ETA beam radius have been made with a quartz foil and a diamagnetic loop (DML). While the measurements agreed at some settings they diverged at others. While the DML measures the rms radius of the total beam, the foil measures mainly the core and the divergence can be explained by the presence of a low density halo. Evidence of such a halo from other measurements is presented

  9. Generalized spectral radius and its max algebra version

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír; Peperko, A.

    2013-01-01

    Roč. 439, č. 4 (2013), s. 1006-1016 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : generalized spectral radius * joint spectral radius * Berger-Wang formula Subject RIV: BA - General Mathematics Impact factor: 0.983, year: 2013 http://www.sciencedirect.com/science/article/pii/S0024379512007380

  10. Density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic aluminum nitride clusters

    Science.gov (United States)

    Guo, Ling

    CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on-top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2-4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd-even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size.

  11. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  12. Experiments in the accelerator beam: change in the charge radius of 2+ rotational levels

    International Nuclear Information System (INIS)

    Hanna, S.S.

    1977-01-01

    The method of in-beam implantation is discussed and illustrated by implantation of 57 Fe into single crystals of semiconductors. The application to isotopes which cannot be produced by radioactive sources is illustrated by a study of the isomer shifts in isotopic series of rotational nuclei. Spectra obtained for implantation of 57 Fe into single crystals of germanium as a function of temperature are shown. Two well defined sites are observed. The right hand resonance can be identified with a substitutional site, while the left hand resonance is produced by either an interstitial or a ''damage'' site. A series of experiments are considered which illustrate the use of in-beam implantation to produce high-quality, single-line sources of nuclei which cannot be produced by radioactive parents. In particular, these experiments measure the isomer shifts in a complete series of isotopes. Usually only the proton-rich isotopes can be measured with radioactive sources; in-beam implantation can then be used to complete the series. The Gd and Yb series are completed in this way. 10 references

  13. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    Science.gov (United States)

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  14. The creep bending of short radius pipe bends

    International Nuclear Information System (INIS)

    Spence, John

    1975-01-01

    In existing and proposed liquid metal fast breeder reactor design the pipework has considerable importance. Parts of the LMFBR include thin walled short radius bends which are expected to operate in the creep regime. In linear elasticity it is known that the assumption of long radius bends is not too severe as far as the flexibility characteristics are concerned although some modifications are necessary for accurate determination of the stresses. No data exists for nonlinear creep. Current work is aimed at elucidating the effect of the various assumptions common to linear elastic theory in so far as they affect the creep characteristics of bends on systems. Herein an energy based analysis using a simple n power constitutive law for stationary creep is employed to derive basic design data for flexibilities and stresses which will be necessary before complete systems can be assessed for creep. The analysis shows on comparison with the long radius work that the assumption of R>r is not much more restrictive in creep than for linear elasticity. Flexibilities for short radius bends appear to be well approximated by the long radius values. Thus the attractive reference stress information already derived may be used directly to find deformations without a complete knowledge of the constitutive relationship. However, stresses are somewhat different. Fortunately the maximum deviation occurs at relatively low levels of stress, the peak stresses being in fair agreement. When n=1 the present results reduce essentially to those obtained from existing linear elastic theory

  15. New double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, 01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [Department of Physical Chemistry and Crystallography, University of Geneva, 1211 Geneva (Switzerland)

    2011-07-01

    Complex hydrides are under consideration for on-board hydrogen storage due to their high hydrogen density. However, up to now conventional borohydrides are either too stable or unstable for applications as in PEM fuel cells (60-120 C). Recently, double-cation borohydride systems have attracted great interest. The desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by the combination of appropriate cations. The stability was found to be intermediate between the single-cation borohydride systems. Two combinations were sucessfully synthesised by metathesis reaction via high energy ball milling. Al-Li-borohydride shows desorption at about 70 C combined with a very high hydrogen density (17.2 wt.%) and the Na-Al-borohydride (14.2 wt.%) decomposes around 90 C. Both desorption temperatures are in the target range for applications. The decomposition pathways were observed by in-situ-Raman spectroscopy, DSC (Differential Scanning Calorimetry), TG (Thermogravimetry) and thermal desorption measurements.

  16. Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.

    Science.gov (United States)

    Valero, Laura; Otero, Toribio F; Martínez, José G

    2014-02-03

    The movement of the bilayer (polypyrrole-dodecylbenzenesulfonate/tape) during artificial muscle bending under flow of current square waves was studied in aqueous solutions of chloride salts. During current flow, polypyrrole redox reactions result in variations in the volumes of the films and macroscopic bending: swelling by reduction with expulsion of cations and shrinking by oxidation with the insertion of cations. The described angles follow a linear function, different in each of the studied salts, of the consumed charge: they are faradaic polymeric muscles. The linearity indicates that cations are the only exchanged ions in the studied potential range. By flow of the same specific charge in every electrolyte, different angles were described by the muscle. The charge and the angle allow the number and volume of both the exchanged cations and the water molecules (related to a reference) between the film to be determined, in addition to the electrolyte per unit of charge during the driving reaction. The attained apparent solvation numbers for the exchanged cations were: 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.25, and 0.0 for Na(+), Mg(2+), La(3+), Li(+), Ca(2+), K(+), Rb(+), and Cs(+), respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    International Nuclear Information System (INIS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P.; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice

    2014-01-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed

  18. The Compton Radius, the de Broglie Radius, the Planck Constant, and the Bohr Orbits

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2011-04-01

    Full Text Available The Bohr orbits of the hydrogen atom and the Planck constant can be derived classically from the Maxwell equations and the assumption that there is a variation in the electron's velocity about its average value. The resonant nature of the circulating electron and its induced magnetic and Faraday fields prevents a radiative collapse of the electron into the nuclear proton. The derived Planck constant is $h=2pi e^2/alpha c$, where $e$, $alpha$, and $c$ are the electronic charge, the fine structure constant, and the speed of light. The fact that the Planck vacuum (PV theory derives the same Planck constant independently of the above implies that the two derivations are related. The following highlights that connection.

  19. The Compton Radius, the de Broglie Radius, the Planck Constant, and the Bohr Orbits

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2011-04-01

    Full Text Available The Bohr orbits of the hydrogen atom and the Planck constant can be derived classically from the Maxwell equations and the assumption that there is a variation in the electron’s velocity about its average value [1]. The resonant nature of the circulating electron and its induced magnetic and Faraday fields prevents a radiative collapse of the electron into the nuclear proton. The derived Planck constant is h = 2 e 2 = c , where e , , and c are the electronic charge, the fine structure constant, and the speed of light. The fact that the Planck vacuum (PV theory [2] derives the same Planck constant independently of the above implies that the two derivations are related. The following highlights that connection.

  20. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  1. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  2. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  3. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos

    2014-05-19

    We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.

  4. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  5. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  6. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  7. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  8. Thoughts on the so-called 'radius-capitellum axis'

    International Nuclear Information System (INIS)

    Schild, H.; Mueller, H.A.; Wagner, H.; Baetz, W.; Mainz Univ.

    1982-01-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull. (orig.) [de

  9. Thoughts on the so-called radius-capitellum axis

    Energy Technology Data Exchange (ETDEWEB)

    Schild, H; Mueller, H A; Wagner, H; Baetz, W

    1982-02-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull.

  10. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  11. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  12. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  13. Calcium depletion in rabbit myocardium. Calcium paradox protection by hypothermia and cation substitution.

    Science.gov (United States)

    Rich, T L; Langer, G A

    1982-08-01

    The purpose of this study was to define further the basis of control of myocardial membrane permeability by further examination of the "calcium paradox." To this end, the protective effect of hypothermia and addition of micromolar amounts of divalent cations during the Ca-free perfusion period were studied. Damage during Ca++ repletion to the isolated arterially perfused, interventricular rabbit septum was assessed by contracture development, loss of developed tension, and loss of 42K and creatine kinase. Progressive hypothermia prolongs the time of Ca-free perfusion needed to cause similar 42K, creatine kinase and developed tension losses upon Ca++ repletion. Complete protection against the Ca-paradox after 30-60 minutes Ca-free perfusion is seen at 18 degree C. The inclusion of 50 microM Ca++ during 30 minutes "Ca-free" perfusion also provides complete protection during Ca++ repletion i.e., there was full mechanical recovery with no 42K or creatine kinase loss. Other divalent cations perfused in 50 microM concentrations during the Ca-free period exhibited variable ability to protect when Ca++ was reperfused. The order of effectiveness (Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Mg++) was related to the crystal ionic radius, with those cations whose radii are closest to that of Ca++ (0.99 A) exerting the greatest protective effect. The cation sequence for effectiveness in Ca-paradox protection is the same sequence for potency of excitation-contraction uncoupling. The mechanism of hypothermic protection is likely a phase transition in the membrane lipids (from a more liquid to a less liquid state) which stabilizes membrane structure and preserves Ca++ permeability characteristics during the Ca-free period. The mechanism of protection via cation addition is perhaps a cation's ability to substitute for Ca++ (dependent on unhydrated crystal ionic radius) at critical sarcolemmal binding sites to preserve control of Ca++ permability during

  14. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  16. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  17. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  18. Postglomerular capillary solute flux restricted by shape and charge in the dog

    International Nuclear Information System (INIS)

    Whiteside, C.; Silverman, M.

    1987-01-01

    The permselectivity characteristics of the postglomerular (PG) microcirculation in dog kidney were investigated employing 3 H-labeled cationic (DEAE) and anionic sulfated dextrans (dextran-SO 4 ) ranging from 19 to 29 angstrom Stokes-Einstein Radius. With the use of the multiple-indicator dilution (MID) technique, a bolus injection was made into the left renal artery and timed serial samples were obtained from renal venous and urine outflows. The injection solution contained 125 I-labeled albumin (plasma reference), [ 14 C]inulin and/or creatinine (glomerular and interstitial references), and a test [ 3 H]dextran probe. A control run was carried out with tracer, then charge interaction was analyzed by repeating the MID run with excess unlabeled compound or after protamine sulfate infusion. After loading, renal vein recovery and mean transit time (bar t) were unchanged relative to [ 14 C]inulin for [ 3 H]dextran-SO 4 . But excess DEAE resulted in reduced recovery and decreased bar t for [ 3 H]DEAE. After protamine sulfate, the renal vein and urine recoveries of [ 3 H]dextran-SO 4 decreased and the renal vein bar t increased. These findings demonstrate saturable anionic binding sites in the PG microcirculation. Under conditions where charge interaction was eliminated, the ratio of renal vein bar t for 125 I-albumin to cationic or anionic dextran was always less than its ratio to neutral dextran, implying a larger apparent volume of distribution. The authors concluded that PG capillaries also limit solute flux on the basis of shape

  19. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  20. Acceleration of beam ions during major radius compression in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Bitter, M.; Hammett, G.W.

    1985-09-01

    Tangentially co-injected deuterium beam ions were accelerated from 82 keV up to 150 keV during a major radius compression experiment in TFTR. The ion energy spectra and the variation in fusion yield were in good agreement with Fokker-Planck code simulations. In addition, the plasma rotation velocity was observed to rise during compression

  1. Coulomb corrections to scattering length and effective radius

    International Nuclear Information System (INIS)

    Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.

    1983-01-01

    The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics

  2. Radius ratio effects on natural heat transfer in concentric annulus

    DEFF Research Database (Denmark)

    Alipour, M.; Hosseini, R.; Kolaei, Alireza Rezania

    2013-01-01

    This paper studies natural convection heat transfer in vertical and electrically heated annulus. The metallic cylinders mounted concentrically in a parallel tube. Measurements are carried out for four input electric powers and three radius ratios with an apparatus immersed in stagnant air...

  3. Social Support Contributes to Outcomes following Distal Radius Fractures

    Directory of Open Access Journals (Sweden)

    Caitlin J. Symonette

    2013-01-01

    Full Text Available Background. Distal radius fractures are the most common fracture of the upper extremity and cause variable disability. This study examined the role of social support in patient-reported pain and disability at one year following distal radius fracture. Methods. The Medical Outcomes Study Social Support Survey was administered to a prospective cohort of 291 subjects with distal radius fractures at their baseline visit. Pearson correlations and stepwise linear regression models (F-to-remove 0.10 were used to identify whether social support contributes to wrist fracture outcomes. The primary outcome of pain and disability at one year was measured using the Patient Rated Wrist Evaluation. Results. Most injuries were low energy (67.5% and were treated nonoperatively (71.9%. Pearson correlation analysis revealed that higher reported social support correlated with improved Patient Rated Wrist Evaluation scores at 1 year, r(n=181=-0.22, P<0.05. Of the subscales within the Social Support Survey, emotional/informational support explained a significant proportion of the variance in 1-year Patient Rated Wrist Evaluation scores, R2=4.7%, F (1, 181 = 9.98, P<0.05. Conclusion. Lower emotional/informational social support at the time of distal radius fracture contributes a small but significant percentage to patient-reported pain and disability outcomes.

  4. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-01-01

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  5. Finite Larmor radius flute mode theory with end loss

    International Nuclear Information System (INIS)

    Kotelnikov, I.A.; Berk, H.L.

    1993-08-01

    The theory of flute mode stability is developed for a two-energy- component plasma partially terminated by a conducting limiter. The formalism is developed as a preliminary study of the effect of end-loss in open-ended mirror machines where large Larmor radius effects are important

  6. Effect of limiter end loss in finite Larmor radius theory

    International Nuclear Information System (INIS)

    Berk, H.L.; Kotelnikov, I.A.

    1993-08-01

    We have examined the effect of incomplete line tying on the MHD flute mode with FLR (finite Larmor radius) effects. We show that the combination of line tying and FLR effects can slow down MHD instability, but cannot produce complete stabilization

  7. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...

  8. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... variously described as determined by the ocular biometric variables. There have been many studies on the relationship between refractive error and ocular axial length (AL), anterior chamber depth, corneal radius of curvature (CR), keratometric readings as well as other ocular biometric variables such as ...

  9. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos; Ketcheson, David I.

    2014-01-01

    -Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend

  10. Nonlinear buckling analyses of a small-radius carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  11. Thrombocytopenia-absent radius syndrome: a clinical genetic study.

    NARCIS (Netherlands)

    Greenhalgh, K.L.; Howell, R.; Bottani, A.; Ancliff, P.J.; Brunner, H.G.; Verschuuren-Bemelmans, C.C.; Vernon, E.; Brown, K.W.; Newbury-Ecob, R.

    2002-01-01

    The thrombocytopenia-absent radius (TAR) syndrome is a congenital malformation syndrome characterised by bilateral absence of the radii and a thrombocytopenia. The lower limbs, gastrointestinal, cardiovascular, and other systems may also be involved. Shaw and Oliver in 1959 were the first to

  12. Thrombocytopenia-absent radius syndrome : a clinical genetic study

    NARCIS (Netherlands)

    Greenhalgh, KL; Howell, RT; Bottani, A; Ancliff, PJ; Brunner, HG; Verschuuren-Bemelmans, CC; Vernon, E; Brown, KW; Newbury-Ecob, RA

    2002-01-01

    The thrombocytopenia-absent radius (TAR) syndrome is a congenital malformation syndrome characterised by bilateral absence of the radii and a thrombocytopenia. The lower limbs, gastrointestinal, cardiovascular, and other systems may also be involved. Shaw and Oliver in 1959 were the first to

  13. Individualist-Collectivist Culture and Trust Radius : A Multilevel Approach

    NARCIS (Netherlands)

    van Hoorn, André

    We apply a multilevel approach to examine empirically the nexus between individualist and collectivist culture on the one hand and people’s radius of trust on the other. People’s trust level (i.e., the intensity with which people trust other people) has been extensively studied. Increasingly,

  14. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  15. Study of a pulsed capillary discharge with a modulated radius

    NARCIS (Netherlands)

    Broks, B.H.P.; Dijk, van W.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    In this contribution, we present a plasma physical model of a pulsed capillary discharge with a modulated radius. Using a 2D time-dependent model, we have modeled the plasma and wall properties of this channel. It was found that properties of the central plasma are different than the properties of a

  16. Recognizing chaotic states in stadium billiard by calculating gyration radius

    Directory of Open Access Journals (Sweden)

    M. Barezi

    2006-12-01

    Full Text Available   Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.

  17. On finite larmor radius stabilization of Z-pinches

    International Nuclear Information System (INIS)

    Hellsten, T.

    1982-12-01

    Finite Larmor radius stabilization of Z-pinches is discussed. Stability criteria can be derived for a class of equilibria having constant mass and current density. The internal modes can be stabilized provided the line density not exceed a critical value of the order of 10 18 ions/m. (Author)

  18. 21 CFR 886.1450 - Corneal radius measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... corneal size by superimposing the image of the cornea on a scale at the focal length of the lens of a...

  19. Artificial gravity: head movements during short-radius centrifugation

    NARCIS (Netherlands)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects

  20. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  1. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  2. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  3. Influence of asymmetrical drawing radius deviation in micro deep drawing

    Science.gov (United States)

    Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.

    2017-09-01

    Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.

  4. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  5. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  6. Interactions between charged spherical macroions

    International Nuclear Information System (INIS)

    Stevens, M.J.; Falk, M.L.; Robbins, M.O.

    1996-01-01

    Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics

  7. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  8. Removal of Cd2+, Cr3+, Cu2+, Hg2+, Pb2+ and Zn2+ cations

    African Journals Online (AJOL)

    2006-04-20

    Apr 20, 2006 ... Studies in Malawi have revealed high levels of particular heavy metals in ... respectively. Many processes for the removal of heavy metals from water ... acteristic of the metal ion itself such as its ionic radius, charge size and ...

  9. Multi-signalling cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline based hetarylazo dye

    International Nuclear Information System (INIS)

    Kaur, Paramjit; Sareen, Divya; Kaur, Mandeep; Singh, Kamaljit

    2013-01-01

    Graphical abstract: The chromogenic and electrochemical behaviour of bis(pyridine-2-yl methyl)aniline based hetarylazo dye gets perturbed in the presence of cations, most effective being Cu 2+ . The conversion of ICT to ICT/MLCT is witnessed by TD-DFT calculations. -- Highlights: •Cation sensing of hetarylazo dye based upon visual, absorption and electrochemical changes is described. •Sensing mechanism is based upon perturbation in intramolecular charge-transfer upon interaction with cations. •Sensing protocol is supported by 1 H NMR studies as well as theoretical calculations. •Hetarylazo dye acts as a multichannel sensor. •Response of the dye towards various cations has also been explored in acidic pH window. -- Abstract: We investigated the cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline appended hetarylazo dye via chromogenic and electrochemical transduction channels. The binding pocket constituting both the pyridyl as well as aniline nitrogen atoms acts as recognition site for the cations and consequent perturbation in the intramolecular charge-transfer prevailing in the dye results in the chromogenic response manifested in the form of hypsochromic shift in the intramolecular charge-transfer band and the attendant naked-eye color changes. The dye exhibits significant changes in its electrochemical behaviour in the presence of cations. The experimental results are also rationalized by time-dependent density functional theory (TD-DFT) calculations

  10. Variable radius cartography - History and perspectives of a new discipline

    Science.gov (United States)

    Scalera, Giancarlo

    2014-05-01

    The map that Toscanelli sent to Columbus was an unconscious application of cartography at a smaller radius than the real. The first really conscious attempts to represent the geography of Earth on globes of radius less than the current one occurred after the formulation of the concept of expanding Earth through geological time. The American chemist and geologist Richard Owen (1810-1890) in his book Key to the geology of the globe (1857) described the principles of what he himself called Anatomical Geology, with the Earth growing as a biological organism. The book contained a global paleogeographic map of the Earth that would have had a radius of about 4000 kilometers. In 1928 J.A.H. Kerkhoff (under the pseudonym Aero-dilettant) published a series of paleogeographic globes on which the modern oceans disappeared. With the same artisan methods of transfer continental outlines from a sphere to a smaller one, in 1933 O.C. Hilgenberg represented three different geological epochs, and, later, for the first time mapped paleopoles with their site-pole segments of meridian. Even today the traditional method of Hilgenberg is followed by senior researchers (Klaus Vogel, 2003) and younger geologists (James Maxlow). In England Hugh Owen applied the methods of traditional cartography to the variable radius one. His Atlas of Continental Displacement was in the 70s and 80s, for this discipline, a real milestone. While in the field of constant radius paleogeography the adherents to plate tectonics created many computer codes of automatic mapping (Bullard et al., 1965; Smith & Hallam, 1970; Scotese et al., 1979; and many others), in the variable radius field few tried to reach the same task. In 1972 in United States a first very simple attempt (but was not further developed) came from a private, R.B. Perry, followed by the still not-computerized Atlas of Owen, and both them constituted inspiration for the construction of a FORTRAN variable radius mapping code at INGV, with which it

  11. How good are Hartree-Fock charge densities

    International Nuclear Information System (INIS)

    Campi, X.

    1975-01-01

    The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr

  12. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  13. Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    In a study of the adsorption behavior of cations onto quartz, the distribution coefficient of a variety of cations was determined using the batch method, and using the titration method, the surface charge densities of quartz in a number of electrolyte solutions. The two values thus determined were analyzed applying the electrical double-layer model, from which optimum parameter values were derived for double-layer electrostatics and intrinsic adsorption equilibrium constants. Based on these parameter values, the mechanism of cation adsorption is discussed: A key factor governing this mechanism proved to be the hydration behavior of cations. Consideration of the Coulomb interaction between the adsorbate ions and adsorbent surface led to the finding of a simple rule governing in common the adsorption equilibrium constants of different metal ions. (author)

  14. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  15. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  16. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations....... The number of water moleculesentering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primarymembrane hydration number of the cation involved...... in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  17. Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic and organic cations.

    Science.gov (United States)

    Andreeva, Nadezhda A; Chaban, Vitaly V

    2017-03-01

    Efficient design of ionic compounds requires a systematic understanding of cation-anion interactions. Weakening of electrostatic attraction is essential to increase the liquid range of the ionic compound and decrease its melting point. Here, we report simulations of the closest-approach cation-anion distances in a variety of ion pairs containing the tetrakis(pentafluorophenyl)borate (TFPB - ) anion. Small alkali cations (Li + , Na + ) penetrate the TFPB - core, whereas K + and larger organic cations do not. In the latter case, the shortest possible distance from the cations to the boron atom of TFPB - ranges from 0.50 nm to 0.63 nm. TFPB - was shown to be substantially rigid, providing a steric hindrance to thermodynamically efficient cation-anion coordination. Our results prove that TFPB - is more efficient for electrostatic charge confinement than the tetraoctylammonium cation, whereas the perfluorophenyl group is more efficient than linear alkyl chains. These simulations will motivate development of TFPB - -based ionic liquids with low phase transition points. Graphical Abstract Ionic configuration of the equilibrated "TFPB + K"system.

  18. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Linear free energy relationship applied to trivalent cations with lanthanum and actinium oxide and hydroxide structure

    International Nuclear Information System (INIS)

    Ragavan, Anpalaki J.

    2006-01-01

    Linear free energy relationships for trivalent cations with crystalline M 2 O 3 and, M(OH) 3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔG f,MvX 0 =a MvX ΔG n,M 3+ 0 +b MvX +β MvX r M 3+ , where the coefficients a MvX , b MvX , and β MvX characterize a particular structural family of MvX, r M 3+ is the ionic radius of M 3+ cation, ΔG f,MvX 0 is the standard Gibbs free energy of formation of MvX and ΔG n,M 3+ 0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: a MvX =0.2705, b MvX =-1984.75 (kJ/mol), and β MvX =197.24 (kJ/molnm). The coefficients for the hydroxide family are: a MvX =0.1587, b MvX =-1474.09 (kJ/mol), and β MvX =791.70 (kJ/molnm).

  20. Influences on the radius of the auroral oval

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2009-07-01

    Full Text Available We examine the variation in the radius of the auroral oval, as measured from auroral images gathered by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE spacecraft, in response to solar wind inputs measured by the Advanced Composition Explorer (ACE spacecraft for the two year interval June 2000 to May 2002. Our main finding is that the oval radius increases when the ring current, as measured by the Sym-H index, is intensified during geomagnetic storms. We discuss our findings within the context of the expanding/contracting polar cap paradigm, in terms of a modification of substorm onset conditions by the magnetic perturbation associated with the ring current.

  1. Effect of second-sphere cation nature on the character of IR spectra of molybdeum(4, 5) cyanide complexes

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Semenishin, D.I.; Vretsena, N.B.; Chernyak, B.I.

    1989-01-01

    The effect of nature of second-sphere cations on IR spectra of molybdeum (4, 5) cyanide complexes is studied. It is found that the increase in the first ionization potential (radius decrease) brings about the increase in the frequency of valent variations ν (CN). This proves the possibility of formation of bridge bonds Mo-CN-M in the compounds (M-alkali, alkaline earth or rare earth metal, Cs, Y). The conclusion is made on a considerable effect of the nature of second-sphere cations and oxidation degree of complexing agent atoms on the nature of IR spectra of octacyanomolybdates (4, 5)

  2. Single Vs Mixed Organic Cation for Low Temperature Processed Perovskite Solar Cells

    International Nuclear Information System (INIS)

    Mahmud, Md Arafat; Elumalai, Naveen Kumar; Upama, Mushfika Baishakhi; Wang, Dian; Wright, Matthew; Chan, Kah Howe; Xu, Cheng; Haque, Faiazul; Uddin, Ashraf

    2016-01-01

    Highlights: • Low temperature processed ZnO based single & mixed organic cation perovskite device. • 37% higher PCE in mixed cation perovskite solar cells (PSCs) than single cation ones. • Mixed cation PSCs exhibit significantly reduced photocurrent hysteresis. • Mixed cation PSCs demonstrate three fold higher device stability than single cation PSCs. • Electronic properties are analyzed using Electrochemical Impedance Spectroscopy. - Abstract: The present work reports a comparative study between single and mixed organic cation based MAPbI 3 and MA 0.6 FA 0.4 PbI 3 perovskite devices fabricated in conjunction with low temperature processed (<150 °C) ZnO electron transport layers. MA 0.6 FA 0.4 PbI 3 perovskite devices demonstrate 37% higher power conversion efficiency compared to MAPbI 3 perovskite devices developed on the ZnO ETL. In addition, MA 0.6 FA 0.4 PbI 3 devices exhibit very low photocurrent hysteresis and they are three-fold more stable than conventional MAPbI 3 PSCs (perovskite solar cells). An in-depth analysis on the charge transport properties in both fresh and aged devices has been carried out using electrochemical impedance spectroscopy analysis to comprehend the enhanced device stability of the mixed perovskite devices developed on the ZnO ETL. The study also investigates into the interfacial charge transfer characteristics associated with the ZnO/mixed organic cation perovskite interface and concomitant influence on the inherent electronic properties.

  3. Local Convergence and Radius of Convergence for Modified Newton Method

    Directory of Open Access Journals (Sweden)

    Măruşter Ştefan

    2017-12-01

    Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.

  4. Finite-Larmor-radius effects on z-pinch stability

    Science.gov (United States)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  5. Finite-Larmor-radius effects on z-pinch stability

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, J.; Faghihi, M. (Royal Inst. of Tech., Stockholm (Sweden))

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m{sup 2}B{sup 2}/{mu}{sub 0}{ge}0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths {lambda}/{alpha}{le}1, where {alpha} denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N''{sub max}=5x10{sup 18}m{sup -1} is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10{sup 20} m{sup -1}. (author).

  6. Finite-Larmor-radius effects on z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1989-01-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m 2 B 2 /μ 0 ≥0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths λ/α≤1, where α denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N'' max =5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (author)

  7. Factors Associated with Infection Following Open Distal Radius Fractures

    OpenAIRE

    Glueck, Dane A.; Charoglu, Constantine P.; Lawton, Jeffrey N.

    2009-01-01

    Open fractures are often classified according to a system described by Gustilo and Anderson. However, this system was applied to open long bone factures, which may not predict the incidence of infection in open metaphyseal fractures of the upper extremity. Other studies have found that wound contamination and systemic illness were the best predictors of infections in open hand fractures. Our study assessed infection in open distal radius fractures and identifies factors that are associated wi...

  8. Fractures of the shafts of the radius and ulna

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Although the clinical presentation of fracture of the forearm bones is usually quite obvious, thorough radiologic examination of the radius and ulna and adjacent wrist and elbow joints is mandatory. Standard views of the forearm of the patient include the AP and lateral projections. The degree of shortening, angulation, rotation, and comminution should be noted. The selected films must be long enough to include the adjacent elbow and wrist joints

  9. THE SIZE-VIRIAL RADIUS RELATION OF GALAXIES

    International Nuclear Information System (INIS)

    Kravtsov, Andrey V.

    2013-01-01

    I use the abundance matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to derive estimates of the virial radius, R 200 , for galaxies of different morphological types and a wide range of stellar masses. I show that over eight orders of magnitude in stellar mass galaxies of all morphological types follow an approximately linear relation between half-mass radius of their stellar distribution, r 1/2 , and virial radius, r 1/2 ≈ 0.015 R 200 , with scatter of ≈0.2 dex. Such scaling is in remarkable agreement with the expectation of models that assume that galaxy sizes are controlled by halo angular momentum, r 1/2 ∝λR 200 , where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter expected from the distribution of λ. Moreover, I show that when the stellar and gas surface density profiles of galaxies of different morphological types are rescaled by the radius r n = 0.015 R 200 , the rescaled profiles follow approximately universal exponential (for late types) and de Vaucouleurs (for early types) form with scatter of only ≈30%-50% at R ≈ 1-3r n . Remarkably, both late- and early-type galaxies have similar mean stellar surface density profiles at R ∼> 1r n . The main difference between their stellar distributions is thus at R n . The results of this study imply that galaxy sizes and radial distribution of baryons are shaped primarily by properties of their parent halos and that the sizes of both late-type disks and early-type spheroids are controlled by halo angular momentum.

  10. Localized electronic states: the small radius potential approximation

    International Nuclear Information System (INIS)

    Steslicka, M.; Jurczyszyn, L.

    1984-09-01

    Using a quasi three-dimensional crystal model we investigate the localized electronic states, generated by the crystal surface covered by foreign atoms. Two such states are found in the first forbidden energy gap and, because of their localization properties, called the Tamm-like and adsorption-like states. Using the small radius potential approximation, the properties of both types of states were discussed in detail. (author)

  11. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  12. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  13. Cation coordination in oxychloride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Holland, D [Physics Department, Warwick University, Coventry (United Kingdom); Bland, J [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom); Johnson, C E [Physics Department, Northern Illinois University, DeKalb, IL (United States); Thomas, M F [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom)

    2003-02-19

    Glasses containing mixtures of cations and anions of nominal compositions [Sb{sub 2}O{sub 3}]{sub x} - [ZnCl{sub 2}]{sub 1-x} where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb){sub 2}(OZn)] and [Zn(ClZn){sub 2}(OSb){sub 2}].

  14. Cation coordination in oxychloride glasses

    International Nuclear Information System (INIS)

    Johnson, J A; Holland, D; Bland, J; Johnson, C E; Thomas, M F

    2003-01-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb 2 O 3 ] x - [ZnCl 2 ] 1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb) 2 (OZn)] and [Zn(ClZn) 2 (OSb) 2

  15. Fractures of the distal radius in children: A retrospective evaluation

    Directory of Open Access Journals (Sweden)

    Selma Yazıcı

    2012-06-01

    Full Text Available Objectives: This study designed to evaluate the resultsof treatment, closed reduction and percutaneous wires, ofthe distal radius fractures in children.Materials and methods: A retrospective analysis wascarried out in children aged between 5-15 years who presentedwith a displaced fracture of the distal radius to ourhospital. They were initially treated with closed reductionand cast immobilization. If the fractures redisplaced treatedby percutaneous Kirschner (K- wire with scope undera general anaesthesia.Results: Totally 104 patients, who have distal radius fractureswere treated by closed reduction and immobilizationin a plaster cast. 13 patient who have distal radiusfractures were treated by closed reduction under generalanaesthesia and fixed by percutaneous Kirschner (K-wire. Patients with impaired the alignment of the fracturein late period were usually completely displaced fractures.(n=5, 4,3%, in early period, completely displaced fractures(n=5, 4,3% are superior to partial displaced fractures(n=2, 1,7%.Conclusion: In our study, when children with distal radiusfracture first come, they were treated by closed reductionand immobilization in a plaster cast. We thought that inredisplaced fractures patients were suitable for the closedreduction with percutaneous wire treatment.

  16. Conversion of radius of curvature to power (and vice versa)

    Science.gov (United States)

    Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.

    2015-09-01

    Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.

  17. Characterizing SL2S galaxy groups using the Einstein radius

    DEFF Research Database (Denmark)

    Verdugo, T.; Motta, V.; Foex, G.

    2014-01-01

    Aims. We aim to study the reliability of RA (the distance from the arcs to the center of the lens) as a measure of the Einstein radius in galaxy groups. In addition, we want to analyze the possibility of using RA as a proxy to characterize some properties of galaxy groups, such as luminosity (L......) and richness (N). Methods. We analyzed the Einstein radius, θE, in our sample of Strong Lensing Legacy Survey (SL2S) galaxy groups, and compared it with RA, using three different approaches: 1) the velocity dispersion obtained from weak lensing assuming a singular isothermal sphere profile (θE,I); 2) a strong.......7 ± 0.2)RA, θE,II = (0.4 ± 1.5) + (1.1 ± 0.4)RA, and θE,III = (0.4 ± 1.5) + (0.9 ± 0.3)RA for each method respectively. We found weak evidence of anti-correlation between RA and z, with Log RA = (0.58 ± 0.06) − (0.04 ± 0.1)z, suggesting a possible evolution of the Einstein radius with z, as reported...

  18. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  19. Electrostatic bending response of a charged helix

    Science.gov (United States)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  20. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  1. Electronic spectra of astrophysically interesting cations

    Energy Technology Data Exchange (ETDEWEB)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch; Johnson, Anatoly, E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel (Switzerland)

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  2. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  3. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  4. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    Science.gov (United States)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  5. Ion exchange centres of sorption of alkaline and alkaline-earth cations on hydrated titanium and tin dioxides

    International Nuclear Information System (INIS)

    Denisova, T.A.; Perekhozheva, T.N.; Sharigin, L.M.; Pletnev, R.N.

    1986-01-01

    The nature of exchange centres of one- and two-charged cations on hydrated titanium and tin dioxides by means of paramagnetic resonance method is studied. The sorption of cations of Na + , Cs + , Ca 2+ was carried out at 25 and 90 deg C at ph=5.0-10.4 on samples of hydrated titanium dioxide and hydrated tin dioxide, obtained by sol gel method and calcined at 150 deg C and 300 deg C accordingly.

  6. Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing

    International Nuclear Information System (INIS)

    Liu, Jian

    2012-01-01

    This paper estimates the charging demand of an early electric vehicle (EV) market in Beijing and proposes an assignment model to distribute charging infrastructure. It finds that each type of charging infrastructure has its limitation, and integration is needed to offer a reliable charging service. It also reveals that the service radius of fast charging stations directly influences the final distribution pattern and an infrastructure deployment strategy with short service radius for fast charging stations has relatively fewer disturbances on the power grid. Additionally, although the adoption of electric vehicles will cause an additional electrical load on the Beijing's power grid, this additional load can be accommodated by the current grid's capacity via the charging time management and the battery swap strategy. - Highlight: ► Charging posts, fast charging stations, and battery swap stations should be integrated. ► Charging posts at home parking places will take a major role in a charging network. ► A service radius of 2 km is proposed for fast charging stations deployment. ► The additional charging load from EVs can be accommodated by charging time management.

  7. Factors associated with infection following open distal radius fractures.

    Science.gov (United States)

    Glueck, Dane A; Charoglu, Constantine P; Lawton, Jeffrey N

    2009-09-01

    Open fractures are often classified according to a system described by Gustilo and Anderson. However, this system was applied to open long bone fractures, which may not predict the incidence of infection in open metaphyseal fractures of the upper extremity. Other studies have found that wound contamination and systemic illness were the best predictors of infections in open hand fractures. Our study assessed infection in open distal radius fractures and identifies factors that are associated with these infections. We hypothesize that contamination, rather than absolute wound size, is the best predictor of infection associated with open distal radius fractures. A review by CPT code yielded 42 patients with open distal radius fractures between 1997 and 2002 treated at a level one trauma center. Medical records and radiographic follow-up were reviewed to assess the time to irrigation and debridement, the number of debridements in initial treatment period, the method of operative stabilization, the Gustilo and Anderson type of fracture, the Swanson type of fracture, and description of wound contamination. Forty-two patients were followed up for an average of 15 months (range 4 to 68 months). Twenty-four fractures were classified as Gustilo and Anderson type I, ten were type II, and eight were type III, 30 were Swanson type I, and 12 were Swanson type II. Five of the 42 fractures were considered contaminated. Two were exposed to fecal contamination. The others were contaminated with tar, dirt/grass, and gravel, respectively. Three of 42 (7%) fractures developed infections. All three infected cases received a single irrigation and debridement. Two of five contaminated fractures (40%) developed a polymicrobial infection. Both were exposed to fecal contamination and, therefore, considered Swanson type II fractures. They were classified as Gustilo and Anderson type II and IIIB based solely upon the size of the wound. Both required multiple debridements and eventually wrist

  8. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  9. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L.; Morsink, S. M. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB, T6G 2E1 (Canada); Fiege, J. D. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Leahy, D. A. [Department of Physics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 (Canada)

    2016-12-20

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  10. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Kane, Stephen R., E-mail: natalie.hinkel@gmail.com [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  11. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    International Nuclear Information System (INIS)

    Hinkel, Natalie R.; Kane, Stephen R.

    2013-01-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets μ Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery

  12. Fractal analysis of bone architecture at distal radius

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)

  13. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  14. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-03

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material.

  15. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    Science.gov (United States)

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  16. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    Science.gov (United States)

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic.

  17. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  18. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  19. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  20. Paediatric post-traumatic cortical defects of the distal radius

    International Nuclear Information System (INIS)

    Roach, Richard T.; Summers, Bruce N.; Cassar-Pullicino, Victor

    2002-01-01

    Paediatric post-traumatic cortical defects, although rare, are predominately seen affecting the distal radius following a greenstick or torus fracture. We review the literature and present a further two cases supported by CT and MRI. Images from an acute greenstick fracture are also presented to help understand the pathogenesis. Defects are typically solitary on plain radiographs and are usually noticed late, proximal to the site of compression. They are non-expansile in an otherwise healthy child. CT and MRI may reveal smaller multiple subperiosteal defects. Typical defects require no further management other than reassurance and advice that they may occasionally cause discomfort but resolve with time. (orig.)

  1. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  2. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  3. Stability of charge and orbital order in half-doped Y{sub 0.5}Ca{sub 0.5}MnO{sub 3} nanocrystallites

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Putul Malla, E-mail: putularun@gmail.com; Ghosh, Barnali, E-mail: barnali@bose.res.in; Raychaudhuri, A. K., E-mail: arup@bose.res.in [S N Bose National Centre for Basic Sciences, Unit for Nano Science, Department of Condensed Matter Physics and Materials Science (India); Kaushik, S. D.; Siruguri, V. [UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre (India)

    2013-04-15

    In this paper, we report a detailed study of the structure, magnetic, and electrical transport properties in nanocrystallites of hole-doped manganite Y{sub 0.5}Ca{sub 0.5}MnO{sub 3}, with the aim to study the effect of size reduction on the stability of the charge-orbital order and the antiferromagnetic spin order that are seen in the bulk samples of the half-doped manganite. The investigations have been done in the general context of investigating how size reduction affects competing interactions in complex oxides and thus, changes their ground state. The bulk sample of the material (average crystallite size {approx}1 {mu}m), with the smallest radius of the cation in A-site (Y), shows a robust charge and orbital ordered insulating state below the transition temperature near 290 K and an antiferromagnetic spin order at 110 K. The experiments carried out on well-characterized nanocrystalline samples, with average crystallite sizes down to 75 nm, establish that the size reduction changes the structural parameters, and the charge and orbital ordering are suppressed. However, the antiferromagnetic spin order (as revealed by neutron diffraction experiments carried out down to 2 K) persists in the nanocrystallites and co-exists with ferromagnetic order below 110 K. The nanocrystalline samples have significant lower resistivities (by few orders) compared to those of the bulk samples in the temperature range 10-300 K. This corroborates the formation of the ferromagnetic moments in the nanocrystallites.

  4. The influence of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices

    International Nuclear Information System (INIS)

    Idris, A; Pullen, K

    2013-01-01

    The effects of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices are presented in this paper. Both experimental and CFD results show that chamfering and corner radiusing improve the discharge coefficient of rotating orifices. For non-inclined rotating orifices, the discharge coefficient reduces with increasing speed, but chamfered and radiused orifices manage to have higher discharge coefficient (C d ) than the straight edge orifices. Comparing between chamfering and corner radiusing, the radiused corner orifice has the highest C d at every rotational speed. This is because the inlet radius helps guiding the flow into the orifice and avoiding flow separation at the inlet.

  5. Aggregation behavior and intermicellar interactions of cationic Gemini surfactants: Effects of alkyl chain, spacer lengths and temperature

    International Nuclear Information System (INIS)

    Hajy Alimohammadi, Marjan; Javadian, Soheila; Gharibi, Hussein; Tehrani-Bagha, Ali reza; Alavijeh, Mohammad Rashidi; Kakaei, Karim

    2012-01-01

    Graphical abstract: Highlights: → Enthalpy-entropy compensation relation was found between and for gemini surfactants. → The intermicellar interaction parameters are influenced with increasing the lengths of the tail and the spacer of gemini surfactants. → Increasing temperature decreases the intermicellar interaction parameters. → The changes in micellar surface charge density, and phase transition between spherical and rod geometries explain the data. - Abstract: The aggregation behavior of the cationic Gemini surfactants C m H 2m+1 N(CH 3 ) 2 (CH 2 ) S (CH 3 ) 2 N C m H 2m+1 ,2Br - with m = 12, 14 and s = 2, 4 were studied by performing surface tension, electrical conductivity, pulsed field gradient nuclear magnetic resonance (PFG-NMR), and cyclic voltammetry (CV) measurements over the temperature range 298 K to 323 K. The critical micelle concentration (CMC), surface excess (Γ max ), mean molecular surface area (A min ), degree of counter ion dissociation (α), and the thermodynamic parameters of micellization were determined from the surface tension and conductance data. An enthalpy-entropy compensation effect was observed and all the plots of enthalpy-entropy compensation exhibit excellent linearity. The micellar self-diffusion coefficients (D m ) and intermicellar interaction parameters (k d ) were obtained from the PFG-NMR and CV measurements. These results are discussed in terms of the intermicellar interactions, the effects of the chain and spacer lengths on the micellar surface charge density, and the phase transition between spherical and rod geometries. The intermicellar interaction parameters were found to decrease slightly with increasing temperature for 14-4-14, which suggests that the micellar surface charge density decreases with increasing temperature. The mean values of the hydrodynamic radius, R h , and the aggregation number, N agg , of the Gemini surfactants'm-4-m micelles were calculated from the micellar self-diffusion coefficient

  6. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    Science.gov (United States)

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  7. Stellar Initial Mass Function: Trends With Galaxy Mass And Radius

    Science.gov (United States)

    Parikh, Taniya

    2017-06-01

    There is currently no consensus about the exact shape and, in particular, the universality of the stellar initial mass function (IMF). For massive galaxies, it has been found that near-infrared (NIR) absorption features, which are sensitive to the ratio of dwarf to giant stars, deviate from a Milky Way-like IMF; their modelling seems to require a larger fraction of low mass stars. There are now increasing results looking at whether the IMF varies not only with galaxy mass, but also radially within galaxies. The SDSS-IV/MaNGA integral-field survey will provide spatially resolved spectroscopy for 10,000 galaxies at R 2000 from 360-1000nm. Spectra of early-type galaxies were stacked to achieve high S/N which is particularly important for features in the NIR. Trends with galaxy radius and mass were compared to stellar population models for a range of absorption features in order to separate degeneracies due to changes in stellar population parameters, such as age, metallicity and element abundances, with potential changes in the IMF. Results for 611 galaxies show that we do not require an IMF steeper than Kroupa as a function of galaxy mass or radius based on the NaI index. The Wing-Ford band hints towards a steeper IMF at large radii however we do not have reliable measurements for the most massive galaxies.

  8. Finite Larmor radius effects on Z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-10-01

    The effect of finite Larmor radius (FLR) on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the Incompressible FLR MHD model; a collisionless fluid model which consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD 2rdp/dr+m 2 B 2 /μ 0 >=0 predicts instability for internal modes unless the current density becomes singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall terms have a damping, however not stabilizing, effect, in agreement with earlier work. Specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m=1 modes are then fully stabilized over the cross-section for wavelengths λ/a max =3-5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (authors)

  9. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  10. Hydroforming Process for an Ultrasmall Bending Radius Elbow

    Directory of Open Access Journals (Sweden)

    Shangwen Ruan

    2018-01-01

    Full Text Available Bent pipes are widely used in automotive, aviation, and aerospace industries for delivering fluids. Parts having small relative bending radiuses are called elbows. However, fabricating a thin-walled elbow part using the simple bending process poses many challenges. One possible way to manufacture elbows is with the stamping-welding process. The major drawbacks of this method include the decline in sealing performance and the addition in weight attributed to the lap welding process. Tube hydroforming (THF is considered as a feasible solution to these problems. However, the forming process could be quite complex, and multistep forming is necessary. This study investigates the effects of preliminary processes on elbow forming such as bending, partition forming, and heat treatment and presents a high-performance optimized process design to achieve an ultrasmall radius elbow. The effects of multistep forming on the thickness distribution and the heat treatment on the microstructure have been evaluated. The results obtained from simulations show a reasonable agreement with those from the experiments.

  11. Cationic polymers and their therapeutic potential

    NARCIS (Netherlands)

    Samal, S.K.; Dash, M.; van Vlierberghe, S.; Kaplan, D.; Chiellini, E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Dubruel, P.

    2012-01-01

    The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent

  12. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  13. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  14. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific

    Science.gov (United States)

    Takagi, Hiroshi; Wu, Wenjie

    2016-03-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.

  15. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry.

    Science.gov (United States)

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M

    2017-02-10

    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Internal Structure of Charged Particles in a GRT Gravitational Model

    Science.gov (United States)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2018-05-01

    With the help of an exact solution of the Einstein and Maxwell equations, the internal structure of a multiply connected space of wormhole type with two unclosed static throats leading out of it into two parallel vacuum spaces or into one space is investigated in GRT for a free electric field and dust-like matter. The given geometry is considered as a particle-antiparticle pair with fundamental constants arising in the form of first integrals in the solution of the Cauchy problem - electric charges ±e of opposite sign in the throats and rest mass m0 - the total gravitational mass of the inner world of the particle in the throat. With the help of the energy conservation law, the unremovable rotation of the internal structure is included and the projection of the angular momentum of which onto the rotation axis is identified with the z-projection of the spin of the charged particle. The radius of 2-Gaussian curvature of the throat R* is identified with the charge radius of the particle, and the z-projection of the magnetic moment and the g-factor are found. The feasibility of the given gravitational model is confirmed by the found condition of independence of the spin quantum number of the electron and the proton s = 1/2 of the charge radius R* and the relativistic rest mass m* of the rotating throat, which is reliably confirmed experimentally, and also by the coincidence with high accuracy of the proton radius calculated in the model R*p = 0.8412·10-13 cm with the value of the proton charge radius obtained experimentally by measuring the Lamb shift on muonic hydrogen. The electron in the given model also turns out to be a structured particle with radius R*e = 3.8617·10-11 cm.

  17. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO 3 single crystals has been studied by means of 18 O 2 / 16 O 2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The

  18. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments

    International Nuclear Information System (INIS)

    Jiang Yang-Wei; Zhang Lin-Xi; Ran Shi-Yong; He Lin-Li; Wang Xiang-Hong

    2015-01-01

    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transitions of DNA are also experimentally observed in mixing spermidine with λ-phage DNA at different concentrations of NaCl/MgCl 2 solutions. (paper)

  19. The effect of ultralow temperature on olefin cation formation by ionic fragmentation in the radiolysis of 2,3-dimethylbutane

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The formation of olefin cations in the radiolysis of 2,3-dimethylbutane (DMB) was studied by ESR at 4.2 and 77 K. When a DMB-SF 6 mixture is γ-irradiated at 77 K, tetramethylethylene (TME) cations are formed remarkably. The formation of the TME cations, however, is suppressed at 4.2 K. When the DMB-SF 6 mixture is γ-irradiated at 4.2 K and then warmed to 77 K, TME cations are formed by thermal annealing. The TME cations are not formed by a charge transfer to olefinic impurities or olefinic products in radiolysis, but by H 2 elimination from parent DMB cations in the ground state. The remarkable formation of olefin cations at 77 K corresponds to the large yields of unsaturated dimers in the radiolysis of DMB at 77 K. The suppression of olefin cation formation at 4.2 K corresponds to the low yields of unsaturated dimers in the radiolysis of DMB at 4.2 K. (author)

  20. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  1. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    Science.gov (United States)

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  2. Experiment for a measurement of the charge radius of the proton at the S-DALINAC and investigation of the fine structure of giant resonances in {sup 28}Si, {sup 48}Ca and {sup 166}Er with the help of the wavelet analysis; Experiment zur Messung des Ladungsradius des Protons am S-DALINAC und Untersuchung der Feinstruktur von Riesenresonanzen in {sup 28}Si, {sup 48}Ca und {sup 166}Er mit Hilfe der Waveletanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Pysmenetska, Inna

    2009-07-22

    The present thesis consists of two parts. In the first part a novel experimental method for the measurement of the proton root-mean-square radius at the S-DALINAC is presented. A setup based on semiconductor detectors is realized. In contrast to previous experiments it allows a simultaneous measurement of the momentum transfer dependence of the elastic electron scattering cross section. A possible suppression of the significant electron and bremsstrahlung background observed in a test experiment was investigated with the help of different methods, such as {delta}E-E telescopes, the time of flight method with a pulsed beam and pulse shape discrimination. The combination of these methods allows a reduction of the background at all scattering angles, which should allow a successful measurement. The response of the detector system was studied with the help of Monte-Carlo simulations with an emphasis on the dependence of the expected accuracy of different parameters. The second part of this work describes an investigation of the fine structure of giant resonances in {sup 28}Si, {sup 48}Ca and {sup 166}Er with the help of a wavelet analysis. The discrete wavelet transform was used for a background determination in spectra of the iso vector E1 and the M2 giant resonances in {sup 48}Ca. This allows the extraction of 1{sup -} und 2{sup -} level densities in the excitation energy region of the respective resonances with the help of a fluctuation analysis. A fluctuation analysis of the fine structure of the isoscalar E2 resonance in {sup 166}Er allows the extraction of the coherent widths of the 2{sup +} states. In the excitation energy region E{sub x}=10-16 MeV widths between 30 and 80 eV are found. The fine structure of the giant resonances is furthermore specified by characteristic scales. In this thesis scales in {sup 28}Si and {sup 48}Ca are extracted with the help of the above mentioned wavelet transform. In {sup 28}Si the isovector E1 and isoscalar E2 resonances were

  3. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saenboonruang, Kiadtisak [Univ. of Virginia, Charlottesville, VA (United States)

    2013-05-01

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, Rn, of a heavy nucleus and the proton radius, Rp, to be in the order of several percent. To accurately obtain the difference, Rn-Rp, which is essentially a neutron skin, the Jefferson Lab Lead (208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of Rn with respect to Rp. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 107 helicity-window quadruplets. The measured parity-violating electroweak asymmetry APV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, Rn-Rp = 0.33+0.16-0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  4. Power decoding Reed-Solomon codes up to the Johnson radius

    DEFF Research Database (Denmark)

    Rosenkilde, Johan Sebastian Heesemann

    2018-01-01

    Power decoding, or "decoding using virtual interleaving" is a technique for decoding Reed-Solomon codes up to the Sudan radius. Since the method's inception, it has been an open question if it is possible to use this approach to decode up to the Johnson radius - the decoding radius of the Guruswami...

  5. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  6. Discrete stochastic charging of aggregate grains

    Science.gov (United States)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  7. Cation transport in isomeric pentanes

    International Nuclear Information System (INIS)

    Gyoergy, Istvan; Gee, Norman; Freeman, G.R.

    1985-01-01

    The cation mobility μsub(+) is measured in n-pentane, isopentane, neo-pentane, and mixtures of n- and neo-pentane over conditions from the normal liquid, through the critical fluid, to the low density gas. Most of the liquid data correlate with the reduced temperature T/Tsub(c). The T/Tsub(c) reflects free volume and viscosity changes. Comparison is made to neutral molecule diffusion. The transition from viscosity control of mobility in the liquid to density control in the dilute gas occurs over the reduced viscosity region 3 > eta/etasub(c) > 0.6, which corresponds to the reduced density region 1.9 > eta/etasub(c) > 0.5. In the saturated gas etaμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average gas nμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average momentum transfer cross sections in the n-/neo-pentane mixtures are similar to those in neo-pentane at low T but similar to those in n-pentane at high T. The present findings are combined with previous electron mobility data in addressing the effect of hydrocarbon molecular (external) shape on the electric breakdown strength of gases

  8. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  9. Small-radius jets to all orders in QCD

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2015-01-01

    As hadron collider physics continues to push the boundaries of precision, it becomes increasingly important to have methods for predicting properties of jets across a broad range of jet radius values R, and in particular for small R. In this paper we resum all leading logarithmic terms, $\\alpha_s^n \\ln^n R$, in the limit of small R, for a wide variety of observables. These include the inclusive jet spectrum, jet vetoes for Higgs physics and jet substructure tools. Some of the quantities that we consider are relevant also for heavy-ion collisions. Furthermore, we examine and comment on the underlying order-by-order convergence of the perturbative series for different R values. Our results indicate that small-R effects can be substantial. Phenomenological studies will appear in a forthcoming companion paper.

  10. Inclusive jet spectrum for small-radius jets

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2016-01-01

    Following on our earlier work on leading-logarithmic (LLR) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their $p_t$-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LLR predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  11. Small-radius jets to all orders in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Dreyer, Frédéric [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Salam, Gavin P. [CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Soyez, Gregory [IPhT, CEA Saclay, CNRS URA 2306, F-91191 Gif-sur-Yvette (France)

    2015-04-08

    As hadron collider physics continues to push the boundaries of precision, it becomes increasingly important to have methods for predicting properties of jets across a broad range of jet radius values R, and in particular for small R. In this paper we resum all leading logarithmic terms, α{sub s}{sup n}ln{sup n} R{sup 2}, in the limit of small R, for a wide variety of observables. These include the inclusive jet spectrum, jet vetoes for Higgs physics and jet substructure tools. Some of the quantities that we consider are relevant also for heavy-ion collisions. Furthermore, we examine and comment on the underlying order-by-order convergence of the perturbative series for different R values. Our results indicate that small-R effects can be substantial. Phenomenological studies will appear in a forthcoming companion paper.

  12. Mass-radius relation for magnetized strange quark stars

    CERN Document Server

    Martinez, A Perez; Paret, D Manreza

    2010-01-01

    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

  13. Inductive voltage adder (IVA) for submillimeter radius electron beam

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-01-01

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway

  14. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  15. Stressor states and the cation crossroads.

    Science.gov (United States)

    Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L

    2010-12-01

    Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.

  16. On Debye radius measurement in an unstable gas discharged plasma

    International Nuclear Information System (INIS)

    Shvilkin, B.N.

    1998-01-01

    It is shown that at low concentrations of charged particles conditions can be realized in a magnetized unstable-to-drift plasma for which concentration perturbations are comparable to the concentration itself. The electron temperature is then determined by potential fluctuations, and the drift oscillation wavelength is of the order of the Debye length

  17. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  18. Radioimmunoassay of human eosinophil cationic protein

    International Nuclear Information System (INIS)

    Venge, P.; Roxin, L.E.; Olsson, I.

    1977-01-01

    A radioimmunosorbent assay has been developed which allows the detection in serum of a cationic protein derived from eosinophil granulocytes. In 34 healthy individuals the mean level was 31 μg/l. with a range of 5 to 55 μg/l. The serum concentration of 'eosinophil' cationic protein was correlated (P<0.001) to the number of eosinophil granulocytes in peripheral blood. Quantitiation of 'eosinophil' cationic protein in serum might be useful in the study of eosinophil granulocyte turnover and function in vivo. (author)

  19. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maciej Milanowski

    Full Text Available The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma-mass spectrometry (ICP-MS was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs extracted from bacterial cells was performed.

  20. Charge radii of octet and decuplet baryons in chiral constituent ...

    Indian Academy of Sciences (India)

    in electron–baryon scattering experiments [4,5] giving rp = 0.877 ± 0.007 fm ... breaking of the SU(3) symmetry and a non-vanishing neutron charge mean square radius ... QCD Lagrangian is not invariant under the chiral transformation. ... of a constituent quark GBs [34–37], successfully explains the 'proton spin problem'.

  1. Absorption of massive scalar field by a charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kyoto Univ. (Japan). Dept. of Physics; Sato, H [Kyoto Univ. (Japan). Research Inst. for Fundamental Physics

    1976-04-12

    Absorption and reflection of charged, massive scalar field by the Reisner-Nordstrom black hole are investigated through a numerical computation. The absorption is suppressed when (Schwarzschild radius)<(Compton wave length) and the amplification of the wave occurs when the level crossing condition is satisfied.

  2. Stability of anionic polymers in presence of multivalent cations

    International Nuclear Information System (INIS)

    Sabbagh, Imad

    1997-01-01

    The objectives of this research thesis were to study the stability of poly-electrolytes in saline environments, and the interactions between ions and poly-electrolytes of different charge densities. After a recall of the properties of neutral polymers and of poly-electrolytes in solution, the author evokes the interactions between poly-electrolytes and counter-ions, and briefly presents two models of stability of poly-electrolytes in saline solutions. Then, he presents different experimental techniques (scattering techniques and electrochemical techniques) and the results obtained when characterizing the used compounds. In the next part, the author discusses the basic differences of solubility between poly-electrolytes with sulfonate or sulfate groups and those with carboxylate groups. A simple model, inspired by the electrostatic model, allows poly-electrolyte phase diagram to be generalised with respect to the chemical affinity of its functional group with ions of opposed sign. The author then reports the study of the behaviour of non-charged poly-acrylic acid in various saline solutions, and then checks the behaviour of this acid within an intermediate range of dissociation level. The poly-acrylic acid structure and the distribution of ions before de-mixing are studied by X-ray and neutron scattering. The author finally tries to understand what is going on when multivalent cations are replaced by positively charged nano-metric particles (dendrimers) [fr

  3. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.219, year: 2015

  4. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  5. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  6. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  7. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  8. Reliability of radiographic measurements for acute distal radius fractures

    International Nuclear Information System (INIS)

    Watson, Narelle J.; Asadollahi, Saeed; Parrish, Frank; Ridgway, Jacqueline; Tran, Phong; Keating, Jennifer L.

    2016-01-01

    The management of distal radial fractures is guided by the interpretation of radiographic findings. The aim of this investigation was to determine the intra- and inter-observer reliability of eight traditionally reported anatomic radiographic parameters in adults with an acute distal radius fracture. Five observers participated. All were routinely involved in making treatment decisions based on distal radius fracture radiographs. Observers performed independent repeated measurements on 30 radiographs for eight anatomical parameters: dorsal shift (mm), intra-articular gap (mm), intra-articular step (mm), palmar tilt (degrees), radial angle (degrees), radial height (mm), radial shift (mm), ulnar variance (mm). Intraclass correlation coefficients (ICCs) and the magnitude of retest errors were calculated. Measurement reliability was summarised as high (ICC > 0.80), moderate (0.60–0.80) or low (<0.60). Intra-observer reliability was high for dorsal shift and palmar tilt; moderate for radial angle, radial height, ulnar variance and radial shift; and low for intra-articular gap and step. Inter-observer reliability was high for palmar tilt; moderate for dorsal shift, ulnar variance, radial angle and radial height; and low for radial shift, intra-articular gap and step. Error magnitude (95 % confidence interval) was within 1–2 mm for intra-articular gap and step, 2–4 mm for ulnar variance, 4–6 mm for radial shift, dorsal shift and radial height, and 6–8° for radial angle and palmar tilt. Based on previous reports of critical values for palmar tilt, ulnar variance and radial angle, error margins appear small enough for measurements to be useful in guiding treatment decisions. Our findings indicate that clinicians cannot reliably measure values ≤1 mm for intra-articular gap and step when interpreting radiographic parameters using the standardised methods investigated in this study. As a guide for treatment selection, palmar tilt, ulnar variance and radial angle

  9. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  10. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    Science.gov (United States)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  11. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  12. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  13. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters

    Science.gov (United States)

    Wu, X.; Senapati, L.; Nayak, S. K.; Selloni, A.; Hajaligol, M.

    2002-08-01

    CO adsorption on small cationic, neutral, and anionic Aun (n=1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, the on-top (one-fold coordinated) is found to be the most favorable one, irrespective of the charge state of the cluster. In addition, planar structures are preferred by both the bare and the CO-adsorbed clusters. The adsorption energies of CO on the cationic clusters are generally greater than those on the neutral and anionic complexes, and decrease with size. The adsorption energies on the anions, instead, increase with cluster size and reach a local maximum at Au5CO-, in agreement with recent experiment. The differences in adsorption energies for the different charge states decrease with increasing cluster size.

  14. Geminate electron--cation recombination in disordered solids

    International Nuclear Information System (INIS)

    Berlin, Y.A.; Chekunaev, N.I.; Goldanskii, V.I.

    1990-01-01

    A theory of a geminate electron--cation recombination has been developed using the percolation approach to the description of the electron transport in disordered solids. Following this approach all trapping sites are separated into two groups. The first group forms a diffusion cluster responsible for the macroscopic charge transfer in disordered media whilethe second group consists of isolated traps playing the role of origins and sinks for mobile electrons. In the framework of such a model an equation has been derived describing the electron motion in the Coulomb field of a parent cation. The solution of this equation in the long time limit shows that the recombination rate decreases vs time as t -(1+α/2) with α being a positive constant or a very weak function of t. In the particular case of Gaussian diffusion α=1 and the kinetic law obtained reduces to that predicted by the well-known Onsager--Smoluchowski theory. However for the dispersive (non-Gaussian) transport in highly disordered systems α<1 and its value depends on the type of disorder, on the energy level structure of trapped electrons and on the specific mechanism of electron migration through the medium

  15. Coordination phenomena of cationic uranium(iv) complexes

    International Nuclear Information System (INIS)

    Rohwer, H.E.

    1974-12-01

    The coordination properties of the cationic uranium(IV) complexes UCl 3 + , UCl 2 2+ , UCl 3+ , and U 4+ were studied in a non-aqueous medium in the presence of perchlorate as counterion which, however, proved to coordinate to a much greater extent than expected. The strong neutral ligand, HMPA, could successively displace some of the perchlorates. An electrostatic model for the U(CIO 4 ) 4 -HMPA-acetone system compared favourably with the actual results. This emphasized the high ionic content in the bonding with actenoid cations, even with such a high charge as +4 . These conclusions are in agreement with studies 75 in which nitrate acts as counter ion. Correspondingly the uranium (IV) chemistry is characterized by the absence of typical 3d-organometallic chemistry, for example, strong bonding with CO, P(Phi) 3 etc, which strongly depends on covalent bonding. This stresses the fact that the d and f orbitals are not readily available for strong bond formation with the actenoids. 76

  16. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  17. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  18. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  19. Exchange of interlayer cations in micaceous minerals. Final report, February 1, 1967--August 31, 1976

    International Nuclear Information System (INIS)

    Scott, A.D.

    1976-08-01

    Laboratory experiments were carried out to establish a comprehensive understanding of the processes and factors governing the sorption and release of interlayer cations in micaceous minerals. A diverse approach with several lines of work was used to delineate the effects of different procedures, solution compositions and mineral properties. It was soon clear that the major factors controlling the exchange of interlayer cations are the blocking effects of dissolved fixable cations and the limiting effects of small particles. By using sodium tetraphenylboron to reduce the blocking effects and by excluding particles that were smaller than 2 μm, however, the subtle effects of many other factors were brought out. The redox status of structural iron, the hydroxyl groups, the interlayer spacing and the layer charge of the minerals are indicative of the type of factors involved and the fact that they are mainly interactive in nature. One conclusion from this work is that most experimental results for interlayer cation exchange are bound to reflect some combination of the controlling factors. More important, however, was the observation that proper management of interlayer cation exchange can make micaceous minerals a good sink for cesium and source of potassium

  20. Inclusive jet spectrum for small-radius jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Manchester M13 9PL (United Kingdom); Dreyer, Frédéric A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France); CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Salam, Gavin P. [CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681,F-91191 Gif-sur-Yvette (France)

    2016-06-09

    Following on our earlier work on leading-logarithmic (LL{sub R}) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their p{sub t}-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LL{sub R} predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  1. AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement

    Science.gov (United States)

    Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B.

    2016-01-01

    Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was “substantial” for fracture types and “fair” for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III PMID:28119795

  2. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Stevenson, David J.

    2013-01-01

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M ⊕ , multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  3. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    Science.gov (United States)

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  4. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  5. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    International Nuclear Information System (INIS)

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a 0 to 3.3a 0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a 0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. (paper)

  6. Synthesis of a cationic thermoresponsive dendrimer and its self-assembly with apoferritin protein cage

    OpenAIRE

    Välimäki, Salla

    2015-01-01

    The aim of this work was to synthesize cationic dendrimer with a thermoresponsive polymer tail and complex the dendrimer with negatively charged apoferritin protein nanocage. These kind of systems are developed, for example, for biomedical applications. Spermine dendron with atom transfer radical polymerization initiator in focal point was synthesized successfully. Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate) was in situ polymerized to the dendron to form the therm...

  7. Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit

    International Nuclear Information System (INIS)

    Aubouy, Miguel; Trizac, Emmanuel; Bocquet, Lyderic

    2003-01-01

    We propose an analytical approximation for the dependence of the effective charge on the bare charge for spherical and cylindrical macro-ions as a function of the size of the colloid and salt content, for the situation of a unique colloid immersed in a sea of electrolyte (where the definition of an effective charge is non-ambiguous). Our approach is based on the Poisson-Boltzmann (PB) mean-field theory. Mathematically speaking, our estimate is asymptotically exact in the limit κa >> 1, where a is the radius of the colloid and κ is the inverse screening length. In practice, a careful comparison with effective charge parameters, obtained by numerically solving the full nonlinear PB theory, proves that our estimate is good down to κa ∼ 1. This is precisely the limit appropriate to treat colloidal suspensions. A particular emphasis is put on the range of parameters suitable to describe both single and double strand DNA molecules under physiological conditions

  8. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    Tweedle, M.F.

    1985-01-01

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99m Tc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  9. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  10. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  11. Improved automatic optic nerve radius estimation from high resolution MRI

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2017-02-01

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  12. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  13. Permeability of cartilage to neutral and charged polysaccharides

    International Nuclear Information System (INIS)

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-01-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 μ) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged 3 H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of 3 H-inulin and 14 C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin

  14. Effects of cation contaminants in conductive TiO2 ceramics

    Science.gov (United States)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  15. Gas phase chemistry of N-benzylbenzamides with silver(I) cations: characterization of benzylsilver cation.

    Science.gov (United States)

    Sun, Hezhi; Jin, Zhe; Quan, Hong; Sun, Cuirong; Pan, Yuanjiang

    2015-03-07

    The benzylsilver cation which emerges from the collisional dissociation of silver(I)-N-benzylbenzamide complexes was characterized by deuterium-labeling experiments, theoretical calculations, breakdown curves and substituent effects. The nucleophilic attack of the carbonyl oxygen on an α-hydrogen results in the generation of the benzylsilver cation, which is competitive to the AgH loss with the α-hydrogen.

  16. On the determination of the proton RMS-radius from electron scattering data

    International Nuclear Information System (INIS)

    Borkowski, F.; Simon, G.G.; Walther, V.H.; Wendling, R.D.

    1975-01-01

    It is shown that the proton rms radius should be determined from fiting a polynomial of second order to the low-q 2 form factors. The commonly used polynomial of first yields radius values which are too small. The proton rms radius has been redetermined from an analysis of the electron scattering data measured at three laboratories. The best fit value is [r 2 sub(E)]sup(1/2) = 0.87 +- 0.02 fm. (orig.) [de

  17. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  18. Charge ordering in the rare earth manganates: the experimental situation

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Cheetham, A.K.; Raveau, Bernard

    2000-01-01

    Charge-ordered phases of rare earth manganates are novel manifestations arising from interactions between the charge carriers and phonons, giving rise to the localization of carriers at specific sites in the lattice below a certain temperature. Accompanying this phenomenon, the Mn 3+ (e g ) orbitals and the associated lattice distortions also exhibit long range ordering (orbital ordering). What makes the manganates even more interesting is the occurrence of complex spin ordering related to anisotropic magnetic interactions. In this article, we discuss the emerging scenario of charge-ordered rare earth manganates in the light of specific case studies and highlight some of the new experimental findings related to spin, orbital and charge ordering. We also examine features such as the charge stripes and phase separation found experimentally in these materials, and discuss the factors that affect charge-ordering such as the size of A-site cations and magnetic and electric fields, as well as isotopic and chemical substitutions. (author)

  19. Study of the external parameters influence on the channel discharge radius in Hg lamps

    International Nuclear Information System (INIS)

    Cristea, M.

    2000-01-01

    In this paper, the plasma electric conductivity and the channel radius for high-pressure mercury arc discharge are calculated. The examined model emphasizes some correlations between various external parameters (current intensity, silicon tube diameter and working pressure) and the channel discharge radius. After model validation, the temperature distribution in the discharge zone is obtained and then the electrons and ions distribution, the electric carriers mobility and the electric conductivity for different lamp characteristics are calculated. The applied numerical simulation shows a linear increase of the channel radius with the tube radius Rw increasing, and a very week pressure dependence (in the range 0.5 - 5 atm.)

  20. The separatrix radius measurement of field-reversed configuration plasma in FRX-L

    International Nuclear Information System (INIS)

    Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.

    2004-01-01

    Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  1. Fractures of the bilateral distal radius and scaphoid: a case report

    Directory of Open Access Journals (Sweden)

    Ozkan Korhan

    2008-03-01

    Full Text Available Abstract Introduction Bilateral fractures of the distal radius and scaphoid are extremely rare injuries. Case presentation A patient with bilateral comminuted, displaced distal fractures of the radius and bilateral fractures of the scaphoid was treated via internal fixation of the scaphoid fractures with Herbert screws and internal fixation of the distal radius fractures with locked volar plating. Conclusion Rigid internal fixation of distal radius and scaphoid fractures is mandatory to start early active rehabilitation of the wrist without the need for wrist immobilization with a plaster or external skeletal fixation.

  2. A mass transfer based variable porosity model with particle radius change for a Lithium-ion battery

    International Nuclear Information System (INIS)

    Ashwin, T.R.; McGordon, A.; Jennings, P.A.

    2017-01-01

    Highlights: • Mass transfer based model to calculate the porosity variation and radius change. • Can be used with any model that calculates Lithium concentration in electrolyte. • Considers SEI as a mass deposition rather than simply an internal resistance. • Brings more accuracy to the volume specific area and the Butler-Volmer kinetics • Practical applicability in pre-lithiation, lithium plating and stress calculation. - Abstract: Micro pore-clogging in the electrodes due to SEI growth and other side reactions can cause adverse effects on the performance of a Lithium-ion battery. The fundamental problem of volume fraction variation and particle radius change during the charge-discharge process in a lithium-ion battery is modelled in this paper with the help of mass transfer based formulation and demonstrated on a battery with LiCoO_2 chemistry. The model can handle the volume fraction change due to intercalation reaction, solvent reduction side reaction and the electrolyte density change due to side reaction contamination in the battery. The entire calculation presented in this paper models particle radius and volume fraction together and therefore gives greater accuracy in calculating the volume-specific-area of the reacting particles which is an important parameter controlling the Butler-Volmer kinetics. The mass deposit on the electrode (or loss of lithium) gives an indication of the amount of pre-lithiation required to maintain cell performance while the amount of mass deposited on the SEI helps to decide the safe operating condition for which the clogging of pores and capacity fade will be minimal. Moreover the model presented in this paper has wide applicability in analysing the stress development inside the battery due to irreversible porous filling.

  3. Determination of The Optimum Use of Cationic Starch on the Basis of the Mechanical Strengths of Mixed OCC and Virgin NSSC pulps

    Directory of Open Access Journals (Sweden)

    Mansour Ghaffari

    2012-01-01

    Full Text Available This study was carried out to optimize of cationic starch use for improvement of the mechanical properties of mixed OCC & NSSC pulps. NSSC pulps were mixed with the OCC pulps by following weight ratios: 80/20, 70/30 and 60/40, respectively. Cationic starch was used in different charges of 0.5, 1.25, 2 and 3 %. The produced paper strength properties were measured according to Tappi standard. The results obtained from normalized equation showed that treatment of C4 (60% NSSC+ 40% OCC using 3% Cationic starch is the best suitable samples. Also, by increasing the OCC proportion in mixed pulps, tensile, Tear, burst strengths increases, but Concora medium test (CMT and Ring crush test (RCT decreased. In general, by increasing of the cationic starch dosage, mechanical strengths has increased and its improved use had determined by 3% cationic starch.

  4. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  5. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  6. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  7. Effects of Cations on the Hydrogen Bond Network of Liquid Water: New Results from X-ray Absorption Spectroscopy of Liquid Microjets

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Smith, Jared D.; Messer, Benjamin M.; Cohen, Ronald C.; Saykally, Richard J.

    2005-01-01

    The oxygen K-edge absorption spectra (XAS) of aqueous chloride solutions are measured for Li + , Na + , K + , NH + , C(NH2) 3 + , Mg 2+ and Ca 2+ and 4 M cation concentrations. Density functional theory calculation have indicated that the ion-specific spectral variations arise from direct electronic perturbation of the unoccupied orbitals due to the presence of the ions, as a result of differences in charge transfer from the water molecules onto the divalent cations

  8. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  9. Syntheses and Photodynamic Activity of Pegylated Cationic Zn(II-Phthalocyanines in HEp2 Cells

    Directory of Open Access Journals (Sweden)

    Benson G. Ongarora, Xiaoke Hu, Susan D. Verberne-Sutton, Jayne C. Garno, M. Graça H. Vicente

    2012-01-01

    Full Text Available Di-cationic Zn(II-phthalocyanines (ZnPcs are promising photosensitizers for the photodynamic therapy (PDT of cancers and for photoinactivation of viruses and bacteria. Pegylation of photosensitizers in general enhances their water-solubility and tumor cell accumulation. A series of pegylated di-cationic ZnPcs were synthesized from conjugation of a low molecular weight PEG group to a pre-formed Pc macrocycle, or by mixed condensation involving a pegylated phthalonitrile. All pegylated ZnPcs were highly soluble in polar organic solvents but were insoluble in water; they have intense Q absorptions centered at 680 nm and fluorescence quantum yields of ca. 0.2 in DMF. The non-pegylated di-cationic ZnPc 6a formed large aggregates, which were visualized by atomic force microscopy. The cytotoxicity, cellular uptake and subcellular distribution of all cationic ZnPcs were investigated in human carcinoma HEp2 cells. The most phototoxic compounds were found to be the α-substituted Pcs. Among these, Pcs 4a and 16a were the most effective (IC50 ca. 10 μM at 1.5 J/cm2, in part due to the presence of a PEG group and the two positive charges in close proximity (separated by an ethylene group in these macrocycles. The β-substituted ZcPcs 6b and 4b accumulated the most within HEp2 cells but had low photocytoxicity (IC50 > 100 μM at 1.5 J/cm2, possibly as a result of their lower electron density of the ring and more extended conformations compared with the α-substituted Pcs. The results show that the charge distribution about the Pc macrocycle and the intracellular localization of the cationic ZnPcs mainly determine their photodynamic activity.

  10. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    Science.gov (United States)

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in

  11. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    Directory of Open Access Journals (Sweden)

    Bose RJC

    2015-09-01

    Full Text Available Rajendran JC Bose,1,2 Yoshie Arai,1 Jong Chan Ahn,1 Hansoo Park,2 Soo-Hong Lee11Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 2Department of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,l-lactic-co-glycolic acid (PLGA core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV, and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. Keywords: core–shell hybrid nanospheres, lipid concentration, surface modification, low cytotoxicity, transfection efficiency

  12. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  13. Evaluation of sarcopenia in patients with distal radius fractures.

    Science.gov (United States)

    Roh, Young Hak; Koh, Young Do; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Sarcopenia is more prevalent in patients with distal radius fracture (DRF) than in age- and sex-matched controls. Lower appendicular mass index in men and weaker grip strength in both men and women increase the likelihood of DRF. Sarcopenia is a core component of physical frailty that predisposes older people to falls and negatively impacts the activities of daily living. The objectives of this study were to compare the prevalence of sarcopenia in patients with DRF with that in age- and sex-matched controls without DRF; and evaluate the association between sarcopenia and the occurrence of DRF. We prospectively recruited 132 patients over 50 years of age who sustained DRF due to fall and 132 age- and sex-matched controls without DRF. A definition of sarcopenia was based on the consensus of the Asian Working Group for Sarcopenia. Sarcopenic components including appendicular lean body mass, grip strength, and gait speed were compared between the two groups. Other factors assessed for the occurrence of DRF were age, gender, body mass index (BMI), lumbar, and hip bone mineral density (BMD) values. A conditional logistic regression analysis was conducted to evaluate the associations between sarcopenia and the occurrence of DRF. A total of 39 (30%) of 132 DRF patients were sarcopenic, whereas 23 (17%) of the 132 controls were within the sarcopenic criteria (p = 0.048). The patient group had significantly lower lean body mass and weaker grip strength than those of the control group. However, there was no significant difference in gait speed between the two groups. According to regression analysis, lower appendicular mass index in men was associated with an increased incidence of DRF (odds ratio [OR] = 0.84, 95% confidence interval [CI] = 0.72, 0.95) while weaker grip strength and lower total hip BMD values were associated with the occurrence of DRF in both men (OR = 0.77, 95% CI = 0.63, 0.92; and OR = 0.79, 95% CI = 0.64, 0.94, respectively) and women (OR

  14. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  15. Stability of anionic polymers in presence of multivalent cations

    International Nuclear Information System (INIS)

    Sabbagh, Imad

    1997-01-01

    This research thesis aimed at studying the stability of poly-electrolytes in saline environments, and the interactions between ions and poly-electrolytes of different charge densities. For this purpose, the author more particularly studied specific interactions between anionic poly-electrolytes and multivalent cations. After a recall of properties of neutral polymers and poly-electrolytes in solution, the author evokes interactions between poly-electrolytes and counter-ions, and briefly presents two models of stability of poly-electrolytes in saline solutions. The next part presents various experimental spectroscopic and electrochemical techniques and results of the characterization of the used products. Spectroscopic techniques allow ion-polymer interactions at the atomic scale to be studied, and electrochemical techniques allow the behaviour of small ions to be studied. The author then discusses the main differences of solubility between poly-electrolytes containing sulphonate or sulphate groups and those containing carboxylate groups. A model is then developed to generalise phase diagrams of a poly-electrolyte with respect to the chemical affinity of its functional group with ions of opposite sign. The author then addresses the behaviour of a non charged polyacrylic acid in various saline solutions, and presents a phase diagram model [fr

  16. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  17. Ferrocene-based diradicals of imino nitroxide, nitronyl nitroxide and verdazyl, and their cations are possible SMM: A quantum chemical study

    Science.gov (United States)

    Pal, Arun K.; Datta, Sambhu N.

    2017-05-01

    Six diradicals designed from imino nitroxide, verdazyl and nitronyl nitroxide monoradicals coupled via the ferrocene moiety and six corresponding triradical cations are quantum chemically investigated. The transoid conformation is employed for considerations of general stability. All biradicals are found as very weakly and antiferromagnetically coupled. This agrees with experiment. The cations have strong antiferromagnetic spin-coupling. The charge and spin population distributions, spin alternation pattern, and the disjoint nature of SOMOs can be used to explain the nature and extent of magnetic interaction. Calculated EPR characteristics identify the neutral species as well as their cations as possible single molecule magnets.

  18. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  19. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    Science.gov (United States)

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  20. Systematics of nuclear RMS charge radii

    International Nuclear Information System (INIS)

    Brown, B.A.; Bronk, C.; Hodgson, P.E.

    1984-01-01

    The experimental RMS charge radii of isotopic sequences of nuclei are compared with calculations based on the spherical droplet model and spherical single-particle potential models. Harmonic-oscillator, Woods-Saxon and Skyrme Hartree-Fock single-particle potentials are considered. Deviations between experiment and theory are discussed in terms of the model parameters and in terms of the fundamental inadequacies of the models. The experimental B(E2) values connecting the ground states to the lowest 2 + states are used to estimate the increase in RMS radius due to the effects of deformation and zero-point vibrational motion. (author)

  1. CT virtual reality in the preoperative workup of malunited distal radius fractures: preliminary results

    International Nuclear Information System (INIS)

    Rieger, Michael; Gruber, Hannes; Jaschke, Werner R.; Gabl, Markus; Mallouhi, Ammar

    2005-01-01

    Our objective was to evaluate the usefulness of CT virtual preoperative planning in the surgical repositioning of malunited distal radius fracture. Eleven patients with malunited distal radius fracture underwent multislice CT of both wrists. A preoperative workup was performed in a virtual reality environment created from the CT data sets. Virtual planning comprised three main procedures, carrying out the virtual osteotomy of the radius, prediction of the final position of the distal radius after osteotomy and computer-assisted manufacturing of a repositioning device, which was later placed at the surgical osteotomy site to reposition objectively the distal radius fragment before fixation with the osteosynthesis. All patients tolerated the surgical procedure well. During surgery, the orthopedic surgeons were not required in any of the cases to alter the position of the distal radius that was determined by the repositioning device. At postoperative follow-up, the anatomic relationship of the distal radius was restored (radial inclination, 21.4 ; volar tilt, 10.3 ; ulnar variance, 0.5 mm). Clinically, a significant improvement of pronation (P=0.012), supination (P=0.01), flexion (P=0.001) and extension (P=0.006) was achieved. Pain decreased from 54 to 7 points. CT virtual reality is a valuable adjunct for the preoperative workup and surgical reposition of malunited distal radius fractures. (orig.)

  2. Studying the proton 'radius' puzzle with μp elastic scattering

    International Nuclear Information System (INIS)

    Gilman, R.

    2013-01-01

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here

  3. Non union of the neck of radius: a case report and review of the ...

    African Journals Online (AJOL)

    Fractures of the neck of radius are frequent in trauma. They happen without being noticed at the moment of injury of the elbow or in the context of polytrauma. A case of non union of the radius neck occurring in a young person due to ignorance, during first consultation has been reported by the authors. They insist on the ...

  4. Radiographic diagnosis of scapholunate dissociation among intra-articular fractures of the distal radius: interobserver reliability

    NARCIS (Netherlands)

    Gradl, Gertraud; Neuhaus, Valentin; Fuchsberger, Thomas; Guitton, Thierry G.; Prommersberger, Karl-Josef; Ring, David; Wahegaonkar, Abhijeet L.; Shafritz, Adam B.; Garcia, Aida E.; Caputo, Andrew E.; Terrono, Andrew L.; Spoor, Andy B.; Eschler, Anica; Vochteloo, Anne J. H.; Beumer, Annechien; Barquet, Antonio; Kristan, Anze; van der Zwan, Arnard L.; Berner, Arne; Ilyas, Asif; Jubel, Axel; Sutker, Ben; Nolan, Betsy M.; Petrisor, Brad; Cross, Brian J.; Wills, Brian P. D.; Barreto, Camilo J. R.; Fernandes, Carlos H.; Swigart, Carrie; Zalavras, Charalampos; Goldfarb, Charles A.; Cassidy, Charles; Eaton, Charles; Wilson, Chris; Cheng, Christine J.; Wall, Christopher J.; Walsh, Christopher J.; Jones, Christopher M.; Garnavos, Christos; Klostermann, Cyrus; Kirkpatrick, D. Kay; Eygendaal, Denise; Verbeek, Diederik O. F.; Beeres, Frank J. P.; Thomas, George; Ponsen, Kornelis J.; van den Bekerom, Michel P. J.; Schep, Niels; Kloen, Peter; Haverlag, Robert

    2013-01-01

    To evaluate the reliability and accuracy of diagnosis of scapholunate dissociation (SLD) among AO type C (compression articular) fractures of the distal radius. A total of 217 surgeons evaluated 21 sets of radiographs with type C fractures of the distal radius for which the status of the

  5. [Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].

    Science.gov (United States)

    Pitsios, T K

    1983-09-01

    Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.

  6. Relationship between plate removal and Soong grading following surgery for fractured distal radius

    NARCIS (Netherlands)

    Selles, Caroline A.; Reerds, Sam T. H.; Roukema, Gert; van der Vlies, Kees H.; Cleffken, Berry I.; Schep, Niels W. L.

    2018-01-01

    The aim of this study was to determine the relationship between volar plate removal and the Soong classification following fixation for fractured distal radius. In this retrospective cohort study, all consecutive patients who had volar plate fixation for a distal radius fracture in 2011-2015 were

  7. Classification and treatment of distal radius fractures: a survey among orthopaedic trauma surgeons and residents

    NARCIS (Netherlands)

    M.A.M. Mulders (Marjolein A. M.); D. Rikli; J.C. Goslings (Carel); N.W.L. Schep (Niels)

    2017-01-01

    textabstractPurpose: Classification, the definition of an acceptable reduction and indications for surgery in distal radius fracturemanagement are still subject of debate. The purpose of this study was to characterise current distal radius fracture management in Europe. Methods: During the European

  8. Cationic Gelatin Nanoparticles for Drug Delivery to the Ocular Surface: In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Ching-Li Tseng

    2013-01-01

    Full Text Available To develop an effective ocular drug delivery carrier, we prepared two different charged gelatin nanoparticles (GPs and evaluated particle size, surface charge, and morphology. The in vitro biocompatibility of GPs was assessed using human corneal epithelium (HCE cells and in vivo safety by administering them as eye drops to New Zealand rabbits. The GPs prepared using type A gelatin were positively charged (GP(+, +33 mV; size, 180.6±45.7 nm. Water-soluble tetrazolium salt (WST-1 assay showed that both GPs were nontoxic to HCE cells. The fluorescence intensity of HCE cells cultured with cationic GPs conjugated with a fluorescent dye was higher than that of the anionic GP-treated HCE cells. In vivo examination showed no serious irritation to the rabbit eyes. Furthermore, corneal thickness and ocular pressure in the eyes of the treated rabbits were similar to those in the eyes of normal rabbits. Microscopic examination of corneal cryosections showed widely distributed fluorescent nanocarriers, from the anterior to the posterior part of the cornea of the GP(+ group, and higher fluorescence intensity in the GP(+ group was also observed. In conclusion, GPs as cationic colloidal carriers were efficiently adsorbed on the negatively charged cornea without irritating the eyes of the rabbits and can be retained in the cornea for a longer time. Thus, GPs(+ have a great potential as vehicles for ocular drug delivery.

  9. Vertical profiles of droplet effective radius in shallow convective clouds

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2011-05-01

    Full Text Available Conventional satellite retrievals can only provide information on cloud-top droplet effective radius (re. Given the fact that cloud ensembles in a satellite snapshot have different cloud-top heights, Rosenfeld and Lensky (1998 used the cloud-top height and the corresponding cloud-top re from the cloud ensembles in the snapshot to construct a profile of re representative of that in the individual clouds. This study investigates the robustness of this approach in shallow convective clouds based on results from large-eddy simulations (LES for clean (aerosol mixing ratio Na = 25 mg−1, intermediate (Na = 100 mg−1, and polluted (Na = 2000 mg−1 conditions. The cloud-top height and the cloud-top re from the modeled cloud ensembles are used to form a constructed re profile, which is then compared to the in-cloud re profiles. For the polluted and intermediate cases where precipitation is negligible, the constructed re profiles represent the in-cloud re profiles fairly well with a low bias (about 10 %. The method used in Rosenfeld and Lensky (1998 is therefore validated for nonprecipitating shallow cumulus clouds. For the clean, drizzling case, the in-cloud re can be very large and highly variable, and quantitative profiling based on cloud-top re is less useful. The differences in re profiles between clean and polluted conditions derived in this manner are however, distinct. This study also investigates the subadiabatic characteristics of the simulated cumulus clouds to reveal the effect of mixing on re and its evolution. Results indicate that as polluted and moderately polluted clouds develop into their decaying stage, the subadiabatic fraction

  10. Costs Associated With Single-Use and Conventional Sets for Distal Radius Plating.

    Science.gov (United States)

    Fugarino, Bryce; Fox, Mary Patricia; Terhoeve, Cristina; Pappas, Nicholas

    2017-11-01

    Volar plating of distal radius fractures is an increasingly common procedure. Presterilized, single-use volar plate fixation sets have been purported to increase operating room efficiency and decrease cost. The purpose of this study was to compare the actual cost of using a conventional set compared with the projected cost of using its single-use counterpart. We retrospectively analyzed 30 consecutive cases of volar plate fixation in which conventional instrument sets were used. Hardware and processing costs were calculated for the conventional sets and compared with the projected cost of using single-use sets. The mean total cost of hardware and processing for the conventional sets was $2,728, whereas the projected cost for the single-use sets was slightly higher at $2,868. Twenty-three of the 30 cases would have required additional screws not available in the single-use set. The cost of the additional screws needed to supplement the single-use set would have added an average of $282/case. Overall, the combined hardware and processing cost was lower for conventional sets in 25 of the 30 cases. Although the price of the single-use set is less than the mean charge for use of a conventional set, additional screws not available in the single-use set were required in 77% of cases and consequently rendered the conventional set cheaper in 83% of cases. Stocking the single-use sets with additional screws to reflect the most commonly used screw lengths could make these sets more cost effective in the future. Economic and decision analysis IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Adsorption of cationic amylopectin on microcrystalline cellulose.

    NARCIS (Netherlands)

    Steeg, van de H.G.M.; Keizer, de A.; Cohen Stuart, M.A.; Bijsterbosch, B.H.

    1993-01-01

    The effects of electrolyte concentration and pH on the adsorption of cationic amylopectin on microcrystalline cellulose were investigated. The adsorbed amount in the pseudo-plateau of the isotherm showed a maximum as a function of the electrolyte concentration. We compared the data with a recent

  12. Alkynylcarbenium ions and related unsaturated cations

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A [Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don (Russian Federation)

    1998-10-31

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references.

  13. Alkynylcarbenium ions and related unsaturated cations

    International Nuclear Information System (INIS)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A

    1998-01-01

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references

  14. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  15. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  16. Letter: OCCO*+, NNCO*+ and NNNN*+ radical cations.

    Science.gov (United States)

    Flammang, R; Srinivas, R; Nguyen, M T; Gerbaux, P

    2007-01-01

    Chemical ionization of a mixture of nitrogen and carbon monoxide produces three stable isobaric species at m/z 56: OCCO, OCNN and NNNN radical cations. Separated at increased resolution, these ions are readily identified by collisional activation. Neutralization-reionization experiments performed on two different mass spectrometers have not allowed the detection of any recovery signals for the corresponding neutrals.

  17. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  19. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  20. CNDO/2-SCF and PCILO (MO) calculations on the 1-butene/NA/and (charge-transfer) complex

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, R; Meiler, W

    1977-01-01

    CNDO/2-SCF and PCILO (MO) calculations on the 1-Butene/Na/sup +/ (charge-transfer) complex involving the olefinic m electrons were made in connection with butene adsorption in zeolites, including the effect of the cation on the conformation of the butene in the zeolite cavity. Calculations were made of rotational energy barriers, preferred cation arrangements with respect to the butene molecule, and charge distributions by both methods. Taking into account systematic errors with the two methods, it is concluded that the PCILO method, which predicts a stabilization of the skew over the cis conformation by the cation, gives closer agreement with experiment. Graph, tables, diagrams, and 19 references.

  1. On the Field of a Stationary Charged Spherical Source

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2009-04-01

    Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.

  2. Determination of charged particle beam parameters with taking into account of space charge

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.

    2005-01-01

    One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru

  3. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  4. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    Science.gov (United States)

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  5. Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes

    Science.gov (United States)

    Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy

    2018-02-01

    The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.

  6. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    Science.gov (United States)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  7. Dilution thermodynamics of the biologically relevant cation mixtures

    International Nuclear Information System (INIS)

    Kaczyński, Marek; Borowik, Tomasz; Przybyło, Magda; Langner, Marek

    2014-01-01

    Graphical abstract: - Highlights: • Dilution energetics of Ca 2+ can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca 2+ dilution is drastically reduced in the K + presence. • Reduction of the enthalpy change upon Ca 2+ dilution is K + concentration dependent. • The cooperativity of Ca 2+ hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers

  8. Role of divalent cations, pH, cytoskeleton componentes and surface charge on the adhesion of Trichomonas vaginalis to a polystyrene substrate Papel de cátions divalentes, pH, componentes de citoesqueleto e carga de superfície na adesão de Trichomonas vaginalis a um substrato de poliestireno

    Directory of Open Access Journals (Sweden)

    Fernando Costa e Silva Filho

    1987-09-01

    Full Text Available The process of adhesion of three different strains of Trichomonas vaginalis to a polystyrene substrate was analysed. The process of adhesion was dependent on the time of incubation and the pH of the phosphate-buffered solution (PBS in which the parasites were suspended. The highest indices of adhesion were observed after an incubation time of 60 min at pH 6.6. The adhesion index increased when the parasites were incubated in the presence of culture media or when Ca++ or Mg++ was added to the PBS solution, whereas cytochalasin B, trypsin or neuraminidase reduced adhesion. Incubation of the parasites in the presence of poly-L-lysine facilitated the process of adhesion. Incubation of the parasites or polystyrene beads in the presence of poly-L-lysine led to important changes in their surface charge.O processo de adesão de três cepas de Trichomonas vaginalis a um substrato de poliestireno foi estudado. Verificou-se que este processo depende do tempo de incubação e do pH da solução salina em que os parasitos se encontram. A maior taxa de adesão foi observada após 60 minutos de incubação a pH 6,6. A adesão é mior se Ca++ ou Mg++ for adicionado ao meio. Tratamento das células em citocalasina B, tripsina ou neuraminidase reduz a adesão enquanto tratamento com poli-L-lisina facilita esta adesão. Incubação dos parasitos ou esferas de poliestireno na presença de poli-L-lisina provoca alterações importantes na carga de superfície.

  9. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  10. THERMODYNAMICS AND CHARGING OF INTERSTELLAR IRON NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Brandon S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Draine, B. T., E-mail: brandon.s.hensley@jpl.nasa.gov [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2017-01-10

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  11. Formal Valence, 3 d Occupation, and Charge Ordering Transitions

    Science.gov (United States)

    Pickett, Warren

    2014-03-01

    The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.

  12. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    Science.gov (United States)

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  13. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  14. The radius of the quiescent neutron star in the globular cluster M13

    Science.gov (United States)

    Shaw, A. W.; Heinke, C. O.; Steiner, A. W.; Campana, S.; Cohn, H. N.; Ho, W. C. G.; Lugger, P. M.; Servillat, M.

    2018-06-01

    X-ray spectra of quiescent low-mass X-ray binaries containing neutron stars can be fit with atmosphere models to constrain the mass and the radius. Mass-radius constraints can be used to place limits on the equation of state of dense matter. We perform fits to the X-ray spectrum of a quiescent neutron star in the globular cluster M13, utilizing data from ROSAT, Chandra, and XMM-Newton, and constrain the mass-radius relation. Assuming an atmosphere composed of hydrogen and a 1.4 M⊙ neutron star, we find the radius to be R_NS=12.2^{+1.5}_{-1.1} km, a significant improvement in precision over previous measurements. Incorporating an uncertainty on the distance to M13 relaxes the radius constraints slightly and we find R_NS=12.3^{+1.9}_{-1.7} km (for a 1.4M⊙ neutron star with a hydrogen atmosphere), which is still an improvement in precision over previous measurements, some of which do not consider distance uncertainty. We also discuss how the composition of the atmosphere affects the derived radius, finding that a helium atmosphere implies a significantly larger radius.

  15. Charge-scaling effect in ionic liquids from the charge-density analysis of N,N'-dimethylimidazolium methylsulfate.

    Science.gov (United States)

    Beichel, Witali; Trapp, Nils; Hauf, Christoph; Kohler, Oliver; Eickerling, Georg; Scherer, Wolfgang; Krossing, Ingo

    2014-03-17

    The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical chargedensity analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non-integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]- anion revealed the presence of negative πO→σ*S-O hyperconjugation.

  16. Selective alkylation by photogenerated aryl and vinyl cation

    NARCIS (Netherlands)

    Slegt, Micha

    2006-01-01

    Seven para-substituted phenyl cations and the parent phenyl cation were prepared from iodonium salt precursors. Product studies revealed remarkable chemoselectivity and regioselectivity that could be related to the spin multiplicity of the cations. Also an universal method to fingerprint singlet and

  17. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases

    Directory of Open Access Journals (Sweden)

    Varun Sharma Tandra

    2015-01-01

    Full Text Available Giant cell tumour (GCT is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge.

  18. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides

    Science.gov (United States)

    Li, Run-Ze; Dong, Xi-Ying; Li, Zhi-Qing; Wang, Zi-Wu

    2018-07-01

    We theoretically investigate the correction of exciton Bohr radius in monolayer transition metal dichalcogenides (TMDCs) on different polar substrates arising from the exciton-optical phonon coupling, in which both the intrinsic longitudinal optical phonon and surface optical phonon modes couple with the exciton are taken into account. We find that the exciton Bohr radius is enlarged markedly due to these coupling. Moreover, it can be changed on a large scale by modulating the polarizability of polar substrate and the internal distance between the monolayer TMDCs and polar substrate. Theoretical result provides a potential explanation for the variation of the exciton Bohr radius in experimental measurement.

  19. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    Directory of Open Access Journals (Sweden)

    Bansal Rajni

    2014-04-01

    Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.

  20. X-ray Spectroscopy of the Virgo Cluster out to the Virial Radius

    OpenAIRE

    Urban, O.; Werner, N.; Simionescu, A.; Allen, S. W.; Böhringer, H.

    2011-01-01

    We present results from the analysis of a mosaic of thirteen XMM-Newton pointings covering the Virgo Cluster from its center northwards out to a radius r~1.2 Mpc (~4.5 degrees), reaching the virial radius and beyond. This is the first time that the properties of a modestly sized (M_vir~1.4e14 M_sun, kT~2.3 keV), dynamically young cluster have been studied out to the virial radius. The density profile of the cluster can be described by a surprisingly shallow power-law with index 1.21+/-0.12. I...

  1. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    International Nuclear Information System (INIS)

    Bansal, Rajni; Gautam, Sakshi

    2014-01-01

    We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12 C + 12 C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius. (author)

  2. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    Science.gov (United States)

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  3. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Science.gov (United States)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  4. A 13C NMR Study of 7-Norbornadienyl Cation by Modified Hammett-Brown Equation

    International Nuclear Information System (INIS)

    Park, Jeong Kyu; Shin, Jung Hyu

    1999-01-01

    A series of the para-substituted 7-aryl-norbornadienyl cation (3) was prepared in FSO 3 H/SO 2 ClF solution at -100 .deg. C and their 13 C NMR shifts were measured at -80 .deg. C. The plots of the chemical shifts (changes in chemical shifts) of cationic carbon, Δδ C+ , against our calculated new substituent constant, σ c+ s, gave an excellent correlation (r = 0.994), with a p c+ value of 12.63. These results indicate that the new substituent onstants, σ c+ s, can be successfully employed to compare the relative charge demand of the carbonium ion by π- and πσ-participation

  5. Matrix radiolysis and photoionization of CFCl3. Infrared spectra of CFCl+2 and the parent cation

    International Nuclear Information System (INIS)

    Prochaska, F.T.; Andrews, L.

    1978-01-01

    The ''Freon'' compound CFCl 3 has been subjected to radiolysis and photoionization during condensation with excess argon at 15 K. Infrared spectra of the matrix samples identified stable and free radical products and new absorptions which are attributed to charged species. The molecular ion bands exhibited three different behavior patterns on filtered mercury arc photolysis: The most photosensitive bands, destroyed by 420--1000 nm light, are assigned to the parent cation; several absorptions which photodissociated with 290--1000 nm radiation are due to a molecular anionic species; and new bands reduced by 220--1000 nm light are assigned to the daughter cation CFCl + 2 . The vibrational assignments were confirmed by carbon-13 substitution

  6. Cationic two-dimensional inorganic networks of antimony oxide hydroxide for Lewis acid catalysis.

    Science.gov (United States)

    Yin, Jinlin; Fei, Honghan

    2018-03-28

    We have successfully synthesized a rare example of inorganic layered materials possessing a positive charge, which is well outside the isostructural set of layered double hydroxides. This layered architecture consists of two-dimensional corrugated [Sb 2 O 2 (OH)] + layers with linear α,ω-alkanedisulfonate anions residing in the interlamellar space. This cationic material displays a chemical robustness under highly acidic aqueous conditions (pH = 1). Combining the robust nature and the high density of Sb III sites on the exposed crystal facets, our cationic layered material is an efficient, recyclable catalyst for cyanosilylation of benzaldehyde derivatives with trimethylsilyl cyanide. In addition, the Lewis acidity of the Sb III sites also catalyzes the ketalization of carbonyl groups under "green" solvent-free conditions.

  7. Nanostructure of Cationic Polymer Brush at the Air/Water Interface

    Directory of Open Access Journals (Sweden)

    Matsuoka Hideki

    2013-08-01

    Full Text Available Cationic amphiphilic diblock copolymers were synthesized by RAFT polymerization and the nanostructure of their monolayers was investigated by π-A isotherm and X-ray reflectivity. Carpet layer (dense hydrophilic block layer formation under the hydrophobic layer was confirmed and a “brush” layer was found beneath the carpet layer. However, the thickness of brush layer was much thinner than that of the fully-stretched chain length. The critical salt concentration was found to be 0.01 M NaCl, which is much lower than that of the previous strongly anionic brush. These differences were probably caused by the low effective charge on the brush chains due to the hydrophobic nature of the quarternized ammonium cation.

  8. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations

    International Nuclear Information System (INIS)

    Amthor, Stephan; Noller, Bastian; Lambert, Christoph

    2005-01-01

    The one-electron oxidation potential of 10 triarylamines 1-10 with all permutations of chloro-, methoxy- and methyl-substituents in the three para-positions were determined by cyclic voltammetry. The half wave potential E 1/2 (I) of the first oxidation wave correlates linearly with the number of chloro- and methoxy-substituents. A high long-term stability of the first oxidation wave for all triarylamines was observed by multi-cycle thin-layer measurements. AM1-CISD derived values of the absorption energies are in good agreement with the experiments but differ strongly for the oscillator strengths as well as for neutral compounds 1-10 and their corresponding mono radical cations. The small solvent dependence of the experimental UV/Vis spectra in CH 2 Cl 2 and MeCN reflects a minor charge transfer (CT) character of the electronic transitions of neutral and cationic compounds

  9. Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ernawati Lusi

    2017-03-01

    Full Text Available A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-ylpropane] di-hydrochloride (VA-044 as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

  10. Cationic surfactants for control of fresh- and saltwater mollusks in nuclear cooling systems

    International Nuclear Information System (INIS)

    Post, R.M.; Mallen, E.; Lehmann, F.

    1991-01-01

    One result of the release of the US Nuclear Regulatory Commission's Generic Letter 89-13, Service Water Problems Affecting Safety-Related Equipment, was the heightened awareness of the nuclear industry to the problems of macrofouling in heat exchange systems. The principal mollusk species that contribute to freshwater macrofouling problems are Asiatic Clam (southern United States) and Zebra Mussel (Great Lakes). The predominant saltwater fouling mollusks are the Blue Mussel (Pacific, northern Atlantic), Ribbed Mussel (southern Atlantic, Gulf Coast), and American Oyster (Atlantic, Gulf Coast). The nuclear community's awareness of macrofouling problems and the ineffectiveness of intermittent chlorination programs have led to the development of several chemical control technologies for eliminating macrofouling organism infestation. One technology that has proven effective for the control of macrofouling organisms is the periodic addition of a combination of two cationic charged surfactants, specifically, alkyldimethylbenzylammonium chloride (QUAT) and dodecyl guanidine hydrochloride (DGH). Experience with the cationic surfactants at several nuclear power plants is reported

  11. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  12. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  13. Photodissociation of spatially aligned acetaldehyde cations.

    Science.gov (United States)

    Lee, Suk Kyoung; Silva, Ruchira; Kim, Myung Hwa; Shen, Lei; Suits, Arthur G

    2007-07-26

    Photofragment translational energy and angular distributions are reported for the photodissociation of acetaldehyde cations in the wavelength range 354-363 nm obtained using the DC slice ion imaging technique. Vibrationally selected parent ions were produced by 2+1 resonance-enhanced multiphoton ionization (REMPI) via the 3sCH3CO+, and CH4+. The angular distributions reveal that all product channels have a predominantly parallel recoil anisotropy although the lower beta2 parameter of CH3CO+ indicates the concomitant presence of a perpendicular component. Furthermore, the distinct angular distribution of the CH3CO+ fragments shows a large value of the higher order Legendre polynomial term, providing evidence that acetaldehyde cations are spatially aligned during the ionization process.

  14. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (K d ) of Sr 2+ and Ba 2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10 -2 and 10 -1 . The K d values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  15. Biokinetic data of various radioactive cationic molecules. An attempt at evaluation of significant chemical properties of myotropic agents

    International Nuclear Information System (INIS)

    Munze, R.; Kretzschmar, M.; Syhre, R.; Kampf, G.; Klotzer, D.; Guthert, I.; Bergmann, R.

    1986-01-01

    Research on lipophilic cationic radiopharmaceuticals has been established as an important field of modern radiopharmacology and experimental nuclear medicine. The present state is best demonstrated by scintigrams obtained with Tc-TBI (TBI = tertiary butylisocyanide). These images clearly reveal the advantage of these compounds, namely high information density, which resulted in an excellent delineation of activity accumulations, as well as the lasting drawback represented by partial overlapping of the right lobe of the liver in a certain region of the inferior wall of the heart. Current research is mainly focused on overcoming this disadvantage by synthesizing appropriate compounds with higher heart/liver uptake in man. A more sophisticated rationale than cationic charge and lipophilicity would be much appreciated. This paper deals with possible correlations between the biodistribution and biokinetics of such compounds, though not exclusively for technetium cations, and their important chemical properties such as composition, size, and polar regions within the lipophilic molecule, which are considered significant parameters

  16. Influence of the substitution of β-cyclodextrins by cationic groups on the complexation of organic anions

    International Nuclear Information System (INIS)

    Hbaieb, S.; Kalfat, R.; Chevalier, Y.; Amdouni, N.; Parrot-Lopez, H.

    2008-01-01

    The inclusion complexation of the organic anion, dansyl-acid, by cationic derivatives of β-cyclodextrin has been investigated. A series of cationic β-cyclodextrins with various positive charge has been synthesized by selective functionalization of the primary face of β-cyclodextrin with amino groups. The complexes were of the 1:1 stoichiometry; the stability constants (K 11 ) have been evaluated from UV-Vis measurements by application of the Benesi-Hildebrand equation. The presence of amino groups increased the complexation ability. β-cyclodextrin fully substituted at the primary face with amino groups showed the strongest inclusion binding ability towards the dansyl-acid guest. The enhanced complexation for anions was ascribed to the cationic amino groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented

  17. Influence of the substitution of {beta}-cyclodextrins by cationic groups on the complexation of organic anions

    Energy Technology Data Exchange (ETDEWEB)

    Hbaieb, S. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia)], E-mail: Souhairabouchaira@yahoo.fr; Kalfat, R. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Chevalier, Y. [Laboratoire d' Automatique et de Genie des Procedes (LAGEP), UMR 5007 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: chevalier@lagep.univ-lyon1.fr; Amdouni, N. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Parrot-Lopez, H. [Institut de Chimie et Biochimie Moleculaires et Supramoleculaires (ICBMS), UMR 5246 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: helene.parrot@univ-lyon1.fr

    2008-07-01

    The inclusion complexation of the organic anion, dansyl-acid, by cationic derivatives of {beta}-cyclodextrin has been investigated. A series of cationic {beta}-cyclodextrins with various positive charge has been synthesized by selective functionalization of the primary face of {beta}-cyclodextrin with amino groups. The complexes were of the 1:1 stoichiometry; the stability constants (K{sub 11}) have been evaluated from UV-Vis measurements by application of the Benesi-Hildebrand equation. The presence of amino groups increased the complexation ability. {beta}-cyclodextrin fully substituted at the primary face with amino groups showed the strongest inclusion binding ability towards the dansyl-acid guest. The enhanced complexation for anions was ascribed to the cationic amino groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented.

  18. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  19. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  20. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

    Science.gov (United States)

    2018-01-01

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666

  1. Nuclear charge radii of proton-rich strontium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Smith, J.R.H.; Warner, D.D.; Griffith, J.A.R.; Evans, D.E.; Wells, S.A.; Fawcett, M.J.; Grant, I.S.

    1987-01-01

    A new technique of atom-photon coincidence laser spectroscopy has been developed and used to study the isotope shifts of /sup 78-84/Sr. The results show that neither the droplet model nor existing interacting boson model calculations can adequately describe the rapid onset of nuclear deformation below N = 50. The odd-even staggering of the charge radius is found to be opposite to that normally encountered, indicating the possible existence of permanent octupole distortions

  2. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  3. Synthesis and structure-activity relationships of a series of increasingly hydrophobic cationic steroid lipofection reagents.

    Science.gov (United States)

    Gruneich, Jeffrey A; Diamond, Scott L

    2007-05-01

    The use of cholesterol-based cationic lipids and the ability of glucocorticoids to reduce local inflammatory response to lipoplexes motivated an investigation of structure-activity relationships for cationic steroids. A one-step synthetic scheme using iminothiolane was developed to link spermine to the 21-OH position of steroids via an amidine linkage. Five steroids (cortisol, dexamethasone, corticosterone, 11-deoxycortisol, and 11-deoxycorticosterone) with increasing hydrophobicity of the parent steroid (Log P(ster) from 1.51 to 3.01) were conjugated with spermine, formulated with dioleoylphosphatidylethanolamine (DOPE) at DOPE : steroid mole ratios (R) of R = 0.5 to 2, and then complexed with 1 microg enhanced green fluorescent protein (EGFP) plasmid DNA at charge ratios (CR) = 2 to 24 amines per phosphate (0.5 to 6 steroids per phosphate). The resulting 105 different formulations of the cationic steroid series were used to lipofect bovine aortic endothelial cells. Transgene expression data at either 24 or 48 h post-lipofection for all formulations was collapsed onto master curves when plotted against a single empirical dimensionless parameter, the lipofection index (LI) = CR (Log P(liposome))(Log P(ster)/|DeltaLog P|) [R/(R + 1)] where DeltaLog P = Log P(DOPE)- Log P(ster) and Log P(liposome) is a mole-weighted average of the DOPE/cationic steroid liposome hydrophobicity. For 7 lipofection increased linearly with LI (EGFP approximately 0 for LI 29, thus providing a predictive design rule based on Log P of the hydrophobic moiety of the cationic steroid lipid. Copyright (c) 2007 John Wiley & Sons, Ltd.

  4. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content.

    Science.gov (United States)

    Chan, Chia-Ling; Ewert, Kai K; Majzoub, Ramsey N; Hwu, Yeu-Kuang; Liang, Keng S; Leal, Cecília; Safinya, Cyrus R

    2014-01-01

    Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential application in gene therapy. A key challenge in creating CL-DNA complexes for application is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of a high serum content on TE, even though this may provide design guidelines for application in vivo. We prepared CL-DNA complexes in which we varied the neutral lipid [1,2-dioleoyl-sn-glycerophosphatidylcholine, glycerol-monooleate (GMO), cholesterol], the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, particularly at a high serum content. Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We propose guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. Copyright © 2014 John Wiley & Sons, Ltd.

  5. The colloid fraction and cation-exchange capacity in the soils of Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Nešić Ljiljana

    2015-01-01

    Full Text Available The colloidal complex of soil consists of humus and clay, the most important acidoids which are able to create the bonds between oppositely charged ions (cations through the forces strong enough to provide protection from leaching, and also weak enough to enable absorption through the plant root. This ability becomes more pronounced if the degree of dispersity is higher, i.e. if particles have smaller diameters. Total of 435 soil samples were collected from the surface horizon in 2011, for the purpose of soil fertility control in Vojvodina and prevention of its possible degradation in broader terms. This paper presents a part of study through selected representative soil samples, related to the research results of mechanical composition, basic chemical properties, and cation-exchange capacity in the most frequent types of soils in North Bačka and Banat (chernozem, fluvisol, semiglay, humoglay, solonchak, solonetz, due to the fact that soil fertility and its ecological function in environment protection largely depend on the studied properties. The average content of clay was 25.26%, ranging from 5.76 to 49.44%, the average content of humus was 3.10%, ranging between 1.02 and 4.30%, while the average value of CEC was 27.30 cmol/kg, ranging between 12.03 and 46.06 cmol/kg. Soils with higher content of clay and humus have greater cation-exchange capacity. According to the established average values of CEC in cmol/kg, the order of soil types is as follows: solonetz (40.06, semiglay (31.98, humoglay (30.98, solonchak (26.62, chernozem (22.72, and fluvisol (22.40. Research results have shown that cation-exchange capacity depends on clay fraction and humus content. Higher correlation coefficient between CEC and clay, compared to CEC and humus, indicates that clay content compared to humus content has greater effect on cation-exchange capacity.

  6. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection.

    Science.gov (United States)

    Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo

    2016-01-01

    Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic- co -glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration-time curve (AUC 0-24 h ) and maximum plasma concentration ( C max ) of PRX after IA injection of the cationic NPs were <70% ( P <0.05) and 60% ( P <0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold ( P <0.05) and 1.8-fold ( P <0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint.

  7. Modification of ELESTRES code with new database of flux depression across the pellet radius

    International Nuclear Information System (INIS)

    Sim, Ki Sub; Park, Kwang Suk; Byun, Taek Sang; Suk, Ho Chun

    1995-01-01

    Modification of ELESTRES CANDU fuel performance code with new database of flux depression across the pellet radius is described, and application results of the improved ELESTRES to the fuel performance data are described. (Author) 4 refs., 4 figs

  8. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  9. DHIAP Phase I Technology Demonstration Report: Prototype for Remote Authentication Dail-In User Service (RADIUS)

    National Research Council Canada - National Science Library

    Crane, Lynn

    2000-01-01

    ... a region, is a system that meets the Remote Authentication Dial-In User Service (RADIUS) standard. This report describes the development and trials of the technology and provides an analysis of alternative.

  10. Interchange instability with line-typing and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Riordan, J.C.; Hartman, C.W.

    1977-01-01

    Finite Larmor radius and end effects are included in a treatment of the low-β interchange instability. Higher order modes are shown to be destabilized by incomplete line-tying through an external plasma

  11. Analysis of the Arthroscopically Diagnosed Soft-Tissue Injuries Associated With the Distal Radius Fractures

    Directory of Open Access Journals (Sweden)

    Katerina Katerina Kasapinova

    2014-06-01

    CONCLUSIONS: The frequency of the associated soft-tissue lesions in distal radius fractures is high. Ulnar styloid fracture was identified as risk factor for associated LT lesion, as well as combined lesion of both scapholunate and luntriquetral ligament.

  12. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  13. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  14. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    Science.gov (United States)

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  15. Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    OpenAIRE

    Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong

    2010-01-01

    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel wit...

  16. "Osteoporosis and orthopods" incidences of osteoporosis in distal radius fracture from low energy trauma.

    LENUS (Irish Health Repository)

    Bahari, Syah

    2007-07-01

    Fracture of the distal radius from low energy trauma is a common presentation to orthopaedic trauma services. This fragility type fracture is associated with underlying osteoporosis. Osteoporosis is a \\'silent disease\\' where fragility fracture is a common presentation. Orthopaedic surgeons may be the only physician that these patients encounter. We found a high percentage of female patients who sustained a fragility fracture of the distal radius have an underlying osteoporosis. Further management of osteoporosis is important to prevent future fragility fractures.

  17. Study on Oneself Developed to Apparatus Position of Measurement of BMD in the Distal Radius

    International Nuclear Information System (INIS)

    Han, Man Seok; Song, Jae Yong; Lee, Hyun Kuk; Yu, Se Jong; Kim, Yong Kyun

    2009-01-01

    The aim of this study was to evaluate the difference of bone mineral density according to distal radius rotation and to develop the supporting tool to measure rotation angles. CT scanning and the measurement of BMD by DXA of the appropriate position of the forearm were performed on 20 males. Twenty healthy volunteers without any history of operations, anomalies, or trauma were enrolled. The CT scan was used to evaluate the cross sectional structure and the rotation angle on the horizontal plane of the distal radius. The rotational angle was measured by the m-view program on the PACS monitor. The DXA was used in 20 dried radii of cadaveric specimens in pronation and supination with five and ten degrees, respectively, including a neutral position (zero degrees) to evaluate the changes of BMD according to the rotation. The mean rotation angle of the distal radius on CT was 7.4 degrees of supination in 16 cases (80%), 3.3 degrees of pronation in three cases (15%), and zero degree of neutral in one case (9%), respectively. The total average rotation angle in 20 people was 5.4 degrees of supination. In the cadaveric study, the BMD of the distal radius was different according to the rotational angles. The lowest BMD was obtained at 3.3 degrees of supination. In the case of the measurement of BMD in the distal radius with a neutral position, the rotational angle of the distal radius is close to supination. Pronation is needed for the constant measurement of BMD in the distal radius with the rotation angle measuring at the lowest BMD and about five degrees of pronation of the distal radius is recommended.

  18. The mean free path of protons in nuclei and the nuclear radius

    International Nuclear Information System (INIS)

    Dymarz, R.; Kohmura, T.

    1983-01-01

    We determine the mean free path of protons in nuclei in the energy range 40-1000 MeV. We find that it is necessary to use in the calculation of the mean free path the nuclear radius R which reproduces the reaction and total cross sections consistently and that this radius leads to a rather small mean free path which is comparable with the value obtained in the microscopic calculation in the whole energy region. (orig.)

  19. Mass-Radius Relations of Z and Higgs-Like Bosons

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-01-01

    Full Text Available Relations between the rest mass and the effective radius are deduced for the Z boson and the experimentally discovered Higgs-like boson, in terms of a revised quantum electrodynamic (RQED theory. The latter forms an alternative to the Standard Model of elementary particles. This results in an effective radius of the order of 10 E-18 m for a rest mass of 125 GeV.

  20. Comparative analysis of cation/proton antiporter superfamily in plants.

    Science.gov (United States)

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.