WorldWideScience

Sample records for radiotherapy-based stereotactic body

  1. Rib fracture following stereotactic body radiotherapy: a potential pitfall.

    Science.gov (United States)

    Stanic, Sinisa; Boike, Thomas P; Rule, William G; Timmerman, Robert D

    2011-11-01

    Although the incidence of rib fractures after conventional radiotherapy is generally low (rib fractures are a relatively common complication of stereotactic body radiotherapy. For malignancy adjacent to the chest wall, the incidence of rib fractures after stereotactic body radiotherapy is as high as 10%. Unrecognized bone fractures can mimic bone metastases on bone scintigraphy, can lead to extensive workup, and can even lead to consideration of unnecessary systemic chemotherapy, as treatment decisions can be based on imaging findings alone. Nuclear medicine physicians and diagnostic radiologists should always consider rib fracture in the differential diagnosis.

  2. Stereotactic Radiosurgery (SRS) / Stereotactic body radiotherapy (SBRT): Benefit to Irish patients and Irish Healthcare Economy

    LENUS (Irish Health Repository)

    Cagney, DN

    2017-01-01

    Cancer incidence across Europe is projected to rise rapidly over the next decade. This rising cancer incidence is mirrored by increasing use of and indications for stereotactic radiation. This paper seeks to summarize the exponential increase in indications for stereotactic radiotherapy as well as the evolving economic advantages of stereotactic radiosurgery and stereotactic body radiotherapy

  3. Utility Estimation of the Manufactured Stereotactic Body Radiotherapy Immobilization

    International Nuclear Information System (INIS)

    Lee, Dong Hoon; Ahn, Jong Ho; Seo, Jeong Min; Shin, Eun Hyeak; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Immobilizations used in order to maintain the reproducibility of a patient set-up and the stable posture for a long period are important more than anything else for the accurate treatment when the stereotactic body radiotherapy is underway. So the purpose of this study is to adapt the optimum immobilizations for the stereotactic body radiotherapy by comparing two commercial immobilizations with the self-manufactured immobilizations. Five people were selected for the experiment and three different immobilizations (A: Wing-board, B: BodyFix system, C: Arm up holder with vac-lock) were used to each target. After deciding on the target's most stable respiratory cycles, the targets were asked to wear a goggle monitor and maintain their respiration regularly for thirty minutes to obtain the respiratory signals. To analyze the respiratory signal, the standard deviation and the variation value of the peak value and the valley value of the respiratory signal were separated by time zone with the self-developed program at the hospital and each tie-downs were compared for the estimation by calculating a comparative index using the above. The stability of each immobilizations were measured in consideration of deviation changes studied in each respiratory time lapse. Comparative indexes of each immobilizations of each experimenter are shown to be A: 11.20, B: 4.87, C: 1.63 / A: 3.94, B: 0.67, C: 0.13 / A: 2.41, B: 0.29, C: 0.04 / A: 0.16, B: 0.19, C: 0.007 / A: 35.70, B: 2.37, C: 1.86. And when all five experimenters wore the immobilizations C, the test proved the most stable value while four people wearing A and one man wearing D expressed relatively the most unstable respiratory outcomes. The self-developed immobilizations, so called the arm up holder vac-lock for the stereotactic body radiotherapy is expected to improve the effect of the treatment by decreasing the intra-fraction organ motions because it keeps the respiration more stable than other two immobilizations

  4. Emerging technologies in stereotactic body radiotherapy.

    Science.gov (United States)

    Ma, Lijun; Wang, Lei; Tseng, Chia-Lin; Sahgal, Arjun

    2017-09-01

    Stereotactic body radiation therapy (SBRT) stems from the initial developments of intra-cranial stereotactic radiosurgery (SRS). Despite similarity in their names and clinical goals of delivering a sufficiently high tumoricidal dose, maximal sparing of the surrounding normal tissues and a short treatment course, SBRT technologies have transformed from the early days of body frame-based treatments with X-ray verification to primarily image-guided procedures with cone-beam CT or stereoscopic X-ray systems and non-rigid body immo-bilization. As a result of the incorporation of image-guidance systems and multi-leaf col-limators into mainstream linac systems, and treatment planning systems that have also evolved to allow for routine dose calculations to permit intensity modulated radiotherapy and volumetric modulated arc therapy (VMAT), SBRT has disseminated rapidly in the community to manage many disease sites that include oligometastases, spine lesions, lung, prostate, liver, renal cell, pelvic tumors, and head and neck tumors etc. In this article, we review the physical principles and paradigms that led to the widespread adoption of SBRT practice as well as technical caveats specific to individual SBRT technologies. From the perspective of treatment delivery, we categorically described (I) C-arm linac-based SBRT technologies; (II) robotically manipulated X-band CyberKnife® technology; and (III) emerging specialized systems for SBRT that include integrated MRI-linear accelerators and the imaged-guided Gamma Knife Perfexion Icon system with expanded multi-isocenter treatments of skull-based tumors, head-and-neck and cervical-spine lesions.

  5. Percutaneous fiducial marker placement prior to stereotactic body radiotherapy for malignant liver tumors: an initial experience

    International Nuclear Information System (INIS)

    Ohta, Kengo; Shimohira, Masashi; Murai, Taro; Nishimura, Junichi; Iwata, Hiromitsu; Ogino, Hiroyuki; Hashizume, Takuya; Shibamoto, Yuta

    2016-01-01

    The aim of this study was to describe our initial experience with a gold flexible linear fiducial marker and to evaluate the safety and technical and clinical efficacy of stereotactic body radiotherapy using this marker for malignant liver tumors. Between July 2012 and February 2015, 18 patients underwent percutaneous fiducial marker placement before stereotactic body radiotherapy for malignant liver tumors. We evaluated the technical and clinical success rates of the procedure and the associated complications. Technical success was defined as successful placement of the fiducial marker at the target site, and clinical success was defined as the completion of stereotactic body radiotherapy without the marker dropping out of position. All 18 fiducial markers were placed successfully, so the technical success rate was 100% (18/18). All 18 patients were able to undergo stereotactic body radiotherapy without marker migration. Thus, the clinical success rate was 100% (18/18). Slight pneumothorax occurred as a minor complication in one case. No major complications such as coil migration or bleeding were observed. The examined percutaneous fiducial marker was safely placed in the liver and appeared to be useful for stereotactic body radiotherapy for malignant liver tumors

  6. Stereotactic body radiotherapy for liver tumors. Principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Sterzing, Florian; Brunner, Thomas B.; Ernst, Iris; Greve, Burkhard; Baus, Wolfgang W.; Herfarth, Klaus; Guckenberger, Matthias

    2014-01-01

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a practical guideline for safe and effective stereotactic body radiotherapy (SBRT) of liver tumors. The literature on the clinical evidence of SBRT for both primary liver tumors and liver metastases was reviewed and analyzed focusing on both physical requirements and special biological characteristics. Recommendations were developed for patient selection, imaging, planning, treatment delivery, motion management, dose reporting, and follow-up. Radiation dose constraints to critical organs at risk are provided. SBRT is a well-established treatment option for primary and secondary liver tumors associated with low morbidity. (orig.) [de

  7. Stereotactic body radiotherapy in lung cancer: an update

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; Moraes, Fabio Ynoe de; Neves Junior, Wellington Furtado Pimenta; Carvalho, Heloisa de Andrade, E-mail: heloisa.carvalho@hc.fm.usp.br [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Gadia, Rafael [Hospital Sirio-Libanes, Brasilia, DF (Brazil). Departamento de Radioterapia; Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Radiologia e Oncologia. Servico de Radioterapia

    2015-07-15

    For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. (author)

  8. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  9. Stereotactic body radiotherapy a practical guide

    CERN Document Server

    Gaya, Andrew

    2015-01-01

    Collecting the key information in this burgeoning field into a single volume, this handbook for clinical oncology trainees and consultants covers all of the basic aspects of stereotactic radiotherapy systems and treatment and includes plenty of case studies.

  10. Phase II study on stereotactic body radiotherapy of colorectal metastases

    DEFF Research Database (Denmark)

    Høyer, Morten; Roed, Henrik; Traberg Hansen, Anders

    2006-01-01

    Surgical resection provides long term survival in approximately 30% of patients with colorectal carcinoma (CRC) liver metastases. However, only a limited number of patients with CRC-metastases are amendable for surgery. We have tested the effect of stereotactic body radiotherapy (SBRT) in the tre......Surgical resection provides long term survival in approximately 30% of patients with colorectal carcinoma (CRC) liver metastases. However, only a limited number of patients with CRC-metastases are amendable for surgery. We have tested the effect of stereotactic body radiotherapy (SBRT......) in the treatment of inoperable patients with CRC-metastases. Sixty-four patients with a total number of 141 CRC-metastases in the liver (n = 44), lung (n = 12), lymph nodes (n = 3), suprarenal gland (n = 1) or two organs (n = 4) were treated with SBRT with a central dose of 15 Gy x 3 within 5-8 days. Median follow...... due to hepatic failure, one patient was operated for a colonic perforation and two patients were conservatively treated for duodenal ulcerations. Beside these, only moderate toxicities such as nausea, diarrhoea and skin reactions were observed. SBRT in patients with inoperable CRC-metastases resulted...

  11. Target migration from re-inflation of adjacent atelectasis during lung stereotactic body radiotherapy.

    Science.gov (United States)

    Mao, Bijing; Verma, Vivek; Zheng, Dandan; Zhu, Xiaofeng; Bennion, Nathan R; Bhirud, Abhijeet R; Poole, Maria A; Zhen, Weining

    2017-06-10

    Stereotactic body radiotherapy (SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer (NSCLC). Herein, we highlight the importance of interfraction image guidance during SBRT. We describe a case of early-stage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction. The case exemplifies the importance of cross-sectional image-guided radiotherapy that shows the intended target, as opposed to aligning based on rigid anatomy alone, especially in cases associated with potentially "volatile" anatomic areas.

  12. Stereotactic Body Radiotherapy for Centrally Located Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuming WAN

    2018-05-01

    Full Text Available A few study has proven that about 90% of local control rates might be benefit from stereotactic body radiotherapy (SBRT for patients with medically inoperable stage I non-small cell lung cancer (NSCLC, it is reported SBRT associated overall survival and tumor specific survival is comparable with those treated with surgery. SBRT has been accepted as the first line treatment for inoperable patients with peripheral located stage I NSCLC. However, the role of SBRT in centrally located lesions is controversial for potential toxic effects from the adjacent anatomical structure. This paper will review the definition, indication, dose regimens, dose-volume constraints for organs at risk, radiation technology, treatment side effect of centrally located NSCLC treated with SBRT and stereotactic body proton therapy.

  13. Treatment of Sarcoma Lung Metastases with Stereotactic Body Radiotherapy

    Directory of Open Access Journals (Sweden)

    Adam D. Lindsay

    2018-01-01

    Full Text Available Background. The most common site of sarcoma metastasis is the lung. Surgical resection of pulmonary metastases and chemotherapy are treatment options that have been employed, but many patients are poor candidates for these treatments for multiple host or tumor-related reasons. In this group of patients, radiation might provide a less morbid treatment alternative. We sought to evaluate the efficacy of radiotherapy in the treatment of metastatic sarcoma to the lung. Methods. Stereotactic body radiotherapy (SBRT was used to treat 117 pulmonary metastases in 44 patients. Patients were followed with serial computed tomography imaging of the chest. The primary endpoint was failure of control of a pulmonary lesion as measured by continued growth. Radiation-associated complications were recorded. Results. The majority of patients (84% received a total dose of 50 Gy per metastatic nodule utilizing an image-guided SBRT technique. The median interval follow-up was 14.2 months (range 1.6–98.6 months. Overall survival was 82% at two years and 50% at five years. Of 117 metastatic nodules treated, six nodules showed failure of treatment (95% control rate. Twenty patients (27% developed new metastatic lesions and underwent further SBRT. The side effects of SBRT included transient radiation pneumonitis n=6, cough n=2, rib fracture n=1, chronic pain n=1, dermatitis n=1, and dyspnea n=1. Conclusion. Stereotactic body radiotherapy is an effective and safe treatment for the ablation of pulmonary metastasis from sarcoma. Further work is needed to evaluate the optimal role of SBRT relative to surgery or chemotherapy for treatment of metastatic sarcoma.

  14. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison

    OpenAIRE

    Guzle Adas, Yasemin; Yazici, Omer; Kekilli, Esra; Kiran, Ferat

    2018-01-01

    Objective: Metallic implants have impacts on dose distribution of radiotherapy. Our purpose is evaluating impact of metallic implants with different dose calculation algorithms on dose distribution. Material and Methods: Two patients with metallic implants on vertebral body were included in this study. They were treated with stereotactic radiotherapy. The data of the patients were retrospectively re-calculated with different TPSs and calculation algorithms. Ray-Tracing (Ry-Tc), Mont...

  15. Stereotactic body radiotherapy for lung cancer: how much does it really cost?

    Science.gov (United States)

    Lievens, Yolande; Obyn, Caroline; Mertens, Anne-Sophie; Van Halewyck, Dries; Hulstaert, Frank

    2015-03-01

    Despite the lack of randomized evidence, stereotactic body radiotherapy (SBRT) is being accepted as superior to conventional radiotherapy for patients with T1-2N0 non-small-cell lung cancer in the periphery of the lung and unfit or unwilling to undergo surgery. To introduce SBRT in a system of coverage with evidence development, a correct financing had to be determined. A time-driven activity-based costing model for radiotherapy was developed. Resource cost calculation of all radiotherapy treatments, standard and innovative, was conducted in 10 Belgian radiotherapy centers in the second half of 2012. The average cost of lung SBRT across the 10 centers (6221&OV0556;) is in the range of the average costs of standard fractionated 3D-conformal radiotherapy (5919&OV0556;) and intensity-modulated radiotherapy (7379&OV0556;) for lung cancer. Hypofractionated 3D-conformal radiotherapy and intensity-modulated radiotherapy schemes are less costly (3993&OV0556; respectively 4730&OV0556;). The SBRT cost increases with the number of fractions and is highly dependent of personnel and equipment use. SBRT cost varies more by centre than conventional radiotherapy cost, reflecting different technologies, stages in the learning curve and a lack of clear guidance in this field. Time-driven activity-based costing of radiotherapy is feasible in a multicentre setup, resulting in real-life resource costs that can form the basis for correct reimbursement schemes, supporting an early yet controlled introduction of innovative radiotherapy techniques in clinical practice.

  16. Noninvasive patient fixation for extracranial stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lohr, Frank; Debus, Juergen; Frank, Claudia; Herfarth, Klaus; Pastyr, Otto; Rhein, Bernhard; Bahner, Malte L.; Schlegel, Wolfgang; Wannenmacher, Michael

    1999-01-01

    Purpose: To evaluate the setup accuracy that can be achieved with a novel noninvasive patient fixation technique based on a body cast attached to a recently developed stereotactic body frame during fractionated extracranial stereotactic radiotherapy. Methods and Materials: Thirty-one CT studies (≥ 20 slices, thickness: 3 mm) from 5 patients who were immobilized in a body cast attached to a stereotactic body frame for treatment of para medullary tumors in the thoracic or lumbar spine were evaluated with respect to setup accuracy. The immobilization device consisted of a custom-made wrap-around body cast that extended from the neck to the thighs and a separate head mask, both made from Scotchcast. Each CT study was performed immediately before or after every second or third actual treatment fraction without repositioning the patient between CT and treatment. The stereotactic localization system was mounted and the isocenter as initially located stereo tactically was marked with fiducials for each CT study. Deviation of the treated isocenter as compared to the planned position was measured in all three dimensions. Results: The immobilization device can be easily handled, attached to and removed from the stereotactic frame and thus enables treatment of multiple patients with the same stereotactic frame each day. Mean patient movements of 1.6 mm ± 1.2 mm (laterolateral [LL]), 1.4 mm ± 1.0 mm (anterior-posterior [AP]), 2.3 mm ± 1.3 mm (transversal vectorial error [VE]) and < slice thickness = 3 mm (cranio caudal [CC]) were recorded for the targets in the thoracic spine and 1.4 mm ± 1.0 mm (LL), 1.2 mm ± 0.7 mm (AP), 1.8 mm ± 1.2 mm (VE), and < 3 mm (CC) for the lumbar spine. The worst case deviation was 3.9 mm for the first patient with the target in the thoracic spine (in the LL direction). Combining those numbers (mean transversal VE for both locations and maximum CC error of 3 mm), the mean three-dimensional vectorial patient movement and thus the mean overall

  17. Stereotactic body radiotherapy: current strategies and future development

    Science.gov (United States)

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  18. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  19. Definition of stereotactic body radiotherapy. Principles and practice for the treatment of stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Guckenberger, M.; Sauer, O.; Andratschke, N.; Alheit, H.; Holy, R.; Moustakis, C.; Nestle, U.

    2014-01-01

    This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft fuer Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy. (orig.) [de

  20. Stereotactic body radiotherapy for liver tumors. Principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sterzing, Florian [Deutsches Krebsforschungszentrum (DKFZ), Klinische Kooperationseinheit Strahlentherapie, Heidelberg (Germany); Radiologische Universitaetsklinik, Abteilung fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Brunner, Thomas B. [Universitaetsklinikum Freiburg, Klinik fuer Strahlenheilkunde, Radiologische Klinik, Freiburg (Germany); Ernst, Iris; Greve, Burkhard [Universitaetsklinikum Muenster, Klinik fuer Strahlentherapie - Radioonkologie, Muenster (Germany); Baus, Wolfgang W. [Universitaetsklinikum Koeln, Klinik und Poliklinik fuer Strahlentherapie, Koeln (Germany); Herfarth, Klaus [Radiologische Universitaetsklinik, Abteilung fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Guckenberger, Matthias [UniversitaetsSpital Zuerich, Klinik fuer Radio-Onkologie, Zuerich (Switzerland)

    2014-10-15

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a practical guideline for safe and effective stereotactic body radiotherapy (SBRT) of liver tumors. The literature on the clinical evidence of SBRT for both primary liver tumors and liver metastases was reviewed and analyzed focusing on both physical requirements and special biological characteristics. Recommendations were developed for patient selection, imaging, planning, treatment delivery, motion management, dose reporting, and follow-up. Radiation dose constraints to critical organs at risk are provided. SBRT is a well-established treatment option for primary and secondary liver tumors associated with low morbidity. (orig.) [German] Die Arbeitsgruppe Stereotaxie der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) legt hier eine Empfehlung zur sicheren und effektiven Durchfuehrung der SBRT von Lebertumoren vor. Eine Literaturrecherche zur Untersuchung der Evidenz der SBRT sowohl fuer primaere Lebertumore als auch fuer Lebermetastasen wurde durchgefuehrt. Auf dieser Basis werden Empfehlungen fuer technisch-physikalische Voraussetzungen wie auch fuer die taegliche Praxis der Leber-SBRT gegeben. Weiterhin werden radiobiologische Besonderheiten dieses Verfahrens dargestellt. Praktische Vorgaben werden fuer Patientenselektion, Bildgebung, Planung, Applikation, Bewegungsmanagement, Dosisdokumentation und Follow-up gegeben. Dosisempfehlungen fuer die kritischen Risikoorgane werden dargestellt. Die SBRT stellt eine etablierte Behandlungsmethode fuer primaere und sekundaere Lebertumore dar und ist mit niedriger Morbiditaet assoziiert. (orig.)

  1. Reirradiation of brain and skull base tumors with fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Tokuuye, Koichi; Akine, Yasuyuki; Sumi, Minako; Kagami, Yoshikazu; Ikeda, Hiroshi; Oyama, Hiroshi; Inou, Yasushi; Shibui, Soichiro; Nomura, Kazuhiro

    1998-01-01

    Purpose: We evaluated the feasibility of fractionated stereotactic radiotherapy for small intracranial recurrences after conventional radiotherapy. Methods and Materials: Nineteen patients who had initially undergone conventional radiotherapy to intracranial lesions, receiving a median total dose of 50 Gy in 5 weeks, were retreated with stereotactic radiotherapy for their recurrences and received a median total dose of 42 Gy in seven fractions over 2.3 weeks. Results: Of the 19 patients, 15 achieved local control 3-51 months after reirradiation. No patient suffered from acute reaction, but one patient with a history of extensive radiotherapy developed progressive radionecrosis 9 months after reirradiation. Conclusions: Fractionated stereotactic radiotherapy of intracranial recurrences appears to be effective in achieving in local control with negligible morbidity. We believe it merits further investigation in a prospective study

  2. Stereotactic radiotherapy in pediatric indications

    International Nuclear Information System (INIS)

    Bernier-Chastagner, V.; Supiot, S.; Carrie, C.; Helfre, S.

    2012-01-01

    Stereotactic radiotherapy is a very high precision procedure, which has been limited to radiosurgery for a long time. Technological improvements allowed the development of radiotherapy in stereotactic conditions, leading to a lot of innovations. Previously indicated for cerebral pathologies, this procedure is now developed for extra-cerebral locations. In paediatrics, stereotactic radiotherapy is still limited, delivered precociously, due to the possibility of long-term late effects that needs to be addressed. This review reports the different useful conditions, technical evolutions, and the current validated paediatric indications, with differences from adults, and future directions. (authors)

  3. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Takayama, Kenji; Matsuo, Yukinori; Norihisa, Yoshiki; Mizowaki, Takashi; Sakamoto, Takashi; Sakamoto, Masato; Mitsumori, Michihide; Shibuya, Keiko; Araki, Norio; Yano, Shinsuke; Hiraoka, Masahiro

    2005-01-01

    Purpose: To evaluate the clinical outcomes of 48 Gy of three-dimensional stereotactic radiotherapy in four fractions for treating Stage I lung cancer using a stereotactic body frame. Methods and Materials: Forty-five patients who were treated between September 1998 and February 2004 were included in this study. Thirty-two patients had Stage IA lung cancer, and the other 13 had Stage IB lung cancer where tumor size was less than 4 cm in diameter. Three-dimensional treatment planning using 6-10 noncoplanar beams was performed to maintain the target dose homogeneity and to decrease the irradiated lung volume >20 Gy. All patients were irradiated using a stereotactic body frame and received four single 12 Gy high doses of radiation at the isocenter over 5-13 (median = 12) days. Results: Seven tumors (16%) completely disappeared after treatment (CR) and 38 tumors (84%) decreased in size by 30% or more (PR). Therefore, all tumors showed local response. During the follow-up of 6-71 (median = 30) months, no pulmonary complications greater than an National Cancer Institute-Common Toxicity Criteria of Grade 3 were noted. No other vascular, cardiac, esophageal, or neurologic toxicities were encountered. Forty-four (98%) of 45 tumors were locally controlled during the follow-up period. However, regional recurrences and distant metastases occurred in 3 and 5 of T1 patients and zero and 4 of T2 patients, respectively. For Stage IA lung cancer, the disease-free survival and overall survival rates after 1 and 3 years were 80% and 72%, and 92% and 83%, respectively, whereas for Stage IB lung cancer, the disease-free survival and overall survival rates were 92% and 71%, and 82% and 72%, respectively. Conclusion: Forty-eight Gy of 3D stereotactic radiotherapy in 4 fractions using a stereotactic body frame is useful for the treatment of Stage I lung tumors

  4. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    Science.gov (United States)

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; psimulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  5. Salvage Reirradiaton With Stereotactic Body Radiotherapy for Locally Recurrent Head-and-Neck Tumors

    International Nuclear Information System (INIS)

    Cengiz, Mustafa; Ozyigit, Goekhan; Yazici, Goezde; Dogan, Ali; Yildiz, Ferah; Zorlu, Faruk; Guerkaynak, Murat; Gullu, Ibrahim H.; Hosal, Sefik; Akyol, Fadil

    2011-01-01

    Purpose: In this study, we present our results of reirradiation of locally recurrent head-and-neck cancer with image-guided, fractionated, frameless stereotactic body radiotherapy technique. Methods and Materials: From July 2007 to February 2009, 46 patients were treated using the CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey. All patients had recurrent, unresectable, and previously irradiated head-and-neck cancer. The most prominent site was the nasopharynx (32.6%), and the most common histopathology was epidermoid carcinoma. The planning target volume was defined as the gross tumor volume identified on magnetic resonance imaging and computed tomography. There were 22 female and 24 male patients. Median age was 53 years (range, 19-87 years). The median tumor dose with stereotactic body radiotherapy was 30 Gy (range, 18-35 Gy) in a median of five (range, one to five) fractions. Results: Of 37 patients whose response to therapy was evaluated, 10 patients (27%) had complete tumor regression, 11 (29.8%) had partial response, and 10 (27%) had stable disease. Ultimate local disease control was achieved in 31 patients (83.8%). The overall survival was 11.93 months in median (ranged, 11.4 - 17.4 months), and the median progression free survival was 10.5 months. One-year progression-free survival and overall survival were 41% and 46%, respectively. Grade II or greater long-term complications were observed in 6 (13.3%) patients. On follow-up, 8 (17.3%) patients had carotid blow-out syndrome, and 7 (15.2%) patients died of bleeding from carotid arteries. We discovered that this fatal syndrome occurred only in patients with tumor surrounding carotid arteries and carotid arteries receiving all prescribed dose. Conclusions: Stereotactic body radiotherapy is an appealing treatment option for patients with recurrent head-and-neck cancer previously treated with radiation to high doses. Good local control with

  6. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias; Brunner, Thomas B.; Niyazi, Maximilian

    2016-01-01

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [de

  7. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate...

  8. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kylie H. [School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Okoye, Christian C.; Patel, Ravi B. [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002 (Australia); Biswas, Tithi; Ellis, Rodney J.; Yao, Min; Machtay, Mitchell; Lo, Simon S., E-mail: Simon.Lo@uhhospitals.org [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC) in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta), lung parenchyma (e.g., radiation pneumonitis), and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve). We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  9. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kylie H. Kang

    2015-06-01

    Full Text Available Stereotactic body radiotherapy (SBRT has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta, lung parenchyma (e.g., radiation pneumonitis, and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve. We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  10. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    International Nuclear Information System (INIS)

    Holmes, Timothy W.; Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-01-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management

  11. Stereotactic radiotherapy for vestibular schwannoma

    DEFF Research Database (Denmark)

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL......; Web of Science; CAB Abstracts; ISRCTN and additional sources for published and unpublished trials. The date of the search was 24 July 2014. SELECTION CRITERIA: Randomised controlled trials (RCTs) exploring the efficacy of stereotactic radiotherapy compared with observation alone, microsurgical...

  12. Nomogram based overall survival prediction in stereotactic body radiotherapy for oligo-metastatic lung disease

    DEFF Research Database (Denmark)

    Tanadini-Lang, S; Rieber, J; Filippi, A R

    2017-01-01

    BACKGROUND: Radical local treatment of pulmonary metastases is practiced with increasing frequency due to acknowledgment and better understanding of oligo-metastatic disease. This study aimed to develop a nomogram predicting overall survival (OS) after stereotactic body radiotherapy (SBRT......) for pulmonary metastases. PATIENTS AND METHODS: A multi-institutional database of 670 patients treated with SBRT for pulmonary metastases was used as training cohort. Cox regression analysis with bidirectional variable elimination was performed to identify factors to be included into the nomogram model...... to predict 2-year OS. The calibration rate of the nomogram was assessed by plotting the actual Kaplan-Meier 2-year OS against the nomogram predicted survival. The nomogram was externally validated using two separate monocentric databases of 145 and 92 patients treated with SBRT for pulmonary metastases...

  13. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  14. Comparing conVEntional RadioTherapy with stereotactIC body radiotherapy in patients with spinAL metastases: study protocol for an randomized controlled trial following the cohort multiple randomized controlled trial design

    International Nuclear Information System (INIS)

    Velden, Joanne M. van der; Verkooijen, Helena M.; Seravalli, Enrica; Hes, Jochem; Gerlich, A. Sophie; Kasperts, Nicolien; Eppinga, Wietse S. C.; Verlaan, Jorrit-Jan; Vulpen, Marco van

    2016-01-01

    Standard radiotherapy is the treatment of first choice in patients with symptomatic spinal metastases, but is only moderately effective. Stereotactic body radiation therapy is increasingly used to treat spinal metastases, without randomized evidence of superiority over standard radiotherapy. The VERTICAL study aims to quantify the effect of stereotactic radiation therapy in patients with metastatic spinal disease. This study follows the ‘cohort multiple Randomized Controlled Trial’ design. The VERTICAL study is conducted within the PRESENT cohort. In PRESENT, all patients with bone metastases referred for radiation therapy are enrolled. For each patient, clinical and patient-reported outcomes are captured at baseline and at regular intervals during follow-up. In addition, patients give informed consent to be offered experimental interventions. Within PRESENT, 110 patients are identified as a sub cohort of eligible patients (i.e. patients with unirradiated painful, mechanically stable spinal metastases who are able to undergo stereotactic radiation therapy). After a protocol amendment, also patients with non-spinal bony metastases are eligible. From the sub cohort, a random selection of patients is offered stereotactic radiation therapy (n = 55), which patients may accept or refuse. Only patients accepting stereotactic radiation therapy sign informed consent for the VERTICAL trial. Non-selected patients (n = 55) receive standard radiotherapy, and are not aware of them serving as controls. Primary endpoint is pain response after three months. Data will be analyzed by intention to treat, complemented by instrumental variable analysis in case of substantial refusal of the stereotactic radiation therapy in the intervention arm. This study is designed to quantify the treatment response after (stereotactic) radiation therapy in patients with symptomatic spinal metastases. This is the first randomized study in palliative care following the cohort multiple Randomized

  15. Primary lung sarcoma treated with stereotactic ablative radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Yeo SG

    2017-07-01

    Full Text Available Seung-Gu Yeo Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea Abstract: Primary lung sarcoma (PLS is an extremely rare, very aggressive malignancy. Surgical removal is considered the treatment of choice, and patients who have been given conventional radiotherapy have had inferior outcomes. This study is the first describing a case of PLS treated with stereotactic ablative radiotherapy (SABR, which precisely targets a small tumor with a markedly higher biologically effective dose than conventional radiotherapy. The patient was an 82-year-old man who was diagnosed with primary lung leiomyosarcoma based on radiology, pathology, and immunohistochemical examinations. The PLS was located in the right lower lobe and measured 2.5 cm. No regional nodal or distant organ metastasis was observed. He was inoperable medically. The SABR was performed using volumetric modulated arc therapy and a dose of 56 Gy in four fractions. Follow-up computed tomography 2 months after SABR revealed a complete tumor response. The toxicity was limited to mild respiratory symptoms. The patient is alive and has had no evidence of disease for 2 years. This study suggests that SABR can be a safe and effective treatment option for PLS. Keywords: primary lung sarcoma, leiomyosarcoma, stereotactic ablative radiotherapy, stereotactic body radiotherapy, radiation therapy, sarcoma 

  16. (18)F-FDG PET during stereotactic body radiotherapy for stage I lung tumours cannot predict outcome : a pilot study

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Pruim, Jan; Ubbels, Jan F.; Groen, Harry J. M.; Langendijk, Johannes A.; Widder, Joachim

    (18)F-Fluorodeoxyglucose positron emission tomography (FDG PET) has been used to assess metabolic response several months after stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer. However, whether a metabolic response can be observed already during treatment and thus

  17. Stereotactic Body Radiotherapy Reirradiation for Recurrent Epidural Spinal Metastases

    International Nuclear Information System (INIS)

    Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard

    2011-01-01

    Purpose: When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. Methods and Materials: SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy × 3 = 24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gy x 5 = 25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. Results: The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. Conclusions: SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients.

  18. Stereotactic Body Radiotherapy Reirradiation for Recurrent Epidural Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Anand, E-mail: amahadev@bidmc.harvard.edu [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Floyd, Scott [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Wong, Eric; Jeyapalan, Suriya [Department of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Groff, Michael; Kasper, Ekkehard [Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel)

    2011-12-01

    Purpose: When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. Methods and Materials: SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy Multiplication-Sign 3 = 24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gy x 5 = 25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. Results: The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. Conclusions: SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients.

  19. Stereotactic body radiotherapy reirradiation for recurrent epidural spinal metastases.

    Science.gov (United States)

    Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard

    2011-12-01

    When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy×3=24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gyx5=25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Superior target delineation for stereotactic body radiotherapy of bone metastases from renal cell carcinoma on MRI compared to CT

    NARCIS (Netherlands)

    Prins, Fieke M.; Van Der Velden, Joanne M.; Gerlich, Anne S.; Kotte, Alexis N.T.J.; Eppinga, Wietse S.C.; Kasperts, Nicolien; Verlaan, Jorrit J.; Pameijer, Frank A.; Kerkmeijer, Linda G.W.

    2017-01-01

    Background: In metastatic renal cell carcinoma (mRCC) there has been a treatment shift towards targeted therapy, which has resulted in improved overall survival. Therefore, there is a need for better local control of the tumor and its metastases. Image-guided stereotactic body radiotherapy (SBRT) in

  1. Similar-Case-Based Optimization of Beam Arrangements in Stereotactic Body Radiotherapy for Assisting Treatment Planners

    Directory of Open Access Journals (Sweden)

    Taiki Magome

    2013-01-01

    Full Text Available Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT to assist treatment planners. Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP. Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P<0.05 in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung. Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.

  2. Enable dosimetric of the Stereotactic Body Frame from Elekta in treatment planning systems for Radiotherapy

    International Nuclear Information System (INIS)

    Gonzalez Perez, Y.; Caballero Pinelo, R.; Alfonso Laguardia, R.

    2015-01-01

    The purpose of this study is to evaluate the commissioning of a stereotactic body frame (SBF ® , Elekta) professional treatment planning systems (TPS) model Elekta's PrecisePlan ® and ERGO++®, for highly foxused delivery of megavoltage photon beams intended for treating tumors located in the thorax and abdominal region. For this purpose we applicated a dedicate stereotactic body frame (SBF ® , Elekta) intended for high precision radiotherapy in extra-cranial located tumors was studied. Issues associated with their implementation in the TPSs were evaluated comparing the dose calculations in two studies of CT under different conditions. an anthropomorphic thorax phantom, model CIRS Thorax IMRT ® , was used in designing several test cases. Ion chamber measurement was permormed in selected points in the phantom, for comparison purposes with dose calculated by the treatment planning systems. The commissioning of the stereotactic body frame (SBF ® , Elekta) and the stereotactic localization was verified, including the dose calculation verification in presence the SBF. The attenuation factors measured for the SBF were obtained and corrected in the TPS PrecisePlan ® , the biggest discrepancies obtained were ∼5% for the oblique sectors (inferior corners), because the minimum permissible value for the software is 0.95 while the real value measured was 0.898. It was studied the SBF, their components and their interference in depth with the photon beams and their implementation in the TPS. The introduction of the correction factors demonstrated to be effective to reduce the eventual errors of dose calculation in the TPS . (Author)

  3. Multimedia educational services in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Bazioglou, M.; Theodorou, K.; Kappas, C.

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is more of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding and database development. (authors)

  4. Stereotactic radiotherapy for wet age-related macular degeneration: current perspectives

    Directory of Open Access Journals (Sweden)

    Neffendorf JE

    2015-09-01

    Full Text Available James E Neffendorf, Timothy L Jackson Department of Ophthalmology, School of Medicine, King’s College London, London, United Kingdom Abstract: Neovascular age-related macular degeneration is a leading cause of blindness in the developed world. Currently, the treatment of choice is intravitreal injections of anti-VEGF medications. These require frequent dosing, up to monthly, and impose a substantial burden on patients and the health economy. Ionizing radiation was proposed as a possible treatment for age-related macular degeneration due to its anti-inflammatory and anti-fibrotic properties. Stereotactic radiotherapy is an outpatient-based radiotherapy platform that provides stereotactic application of low energy X-ray to the retina in three highly collimated beams that cross the inferior sclera to overlap at the macula. A randomized, double-masked, sham-controlled trial of 230 patients (INTREPID showed that a single dose of stereotactic radiotherapy significantly reduces the number of intravitreal anti-VEGF injections needed over 2 years. A larger randomized controlled trial (STAR is underway. Keywords: wet age-related macular degeneration, radiation therapy, stereotactic radiotherapy, vascular endothelial growth factor

  5. Stereotactic radiotherapy for pediatric intracranial germ cell tumors

    International Nuclear Information System (INIS)

    Zissiadis, Yvonne; Dutton, Sharon; Kieran, Mark; Goumnerova, Liliana; Scott, R. Michael; Kooy, Hanne M.; Tarbell, Nancy J.

    2001-01-01

    Purpose: Intracranial germ cell tumors are rare, radiosensitive tumors seen most commonly in the second and third decades of life. Radiotherapy alone has been the primary treatment modality for germinomas, and is used with chemotherapy for nongerminomatous tumors. Stereotactic radiotherapy techniques minimize the volume of surrounding normal tissue irradiated and, hence, the late radiation morbidity. This study reports our experience with stereotactic radiotherapy in this group of tumors. Methods and Materials: Between December 1992 and December 1998, 18 patients with intracranial germ cell tumors were treated with stereotactic radiotherapy. A total of 23 histologically proven tumors were treated. Thirteen patients had a histologic diagnosis of germinoma, and 5 patients had germinoma with nongerminomatous elements. Of those patients with a histologic diagnosis of germinoma, 5 had multiple midline tumors. The median age of the patients was 12.9 years (range, 5.6-17.5 years). Results: A boost using stereotactic radiotherapy was delivered to 19 tumors following whole-brain radiation in 8 cases and craniospinal radiation in 11 cases. Three tumors were treated with stereotactic radiotherapy to the tumor volume alone following chemotherapy, and 1 tumor received a boost using stereotactic radiosurgery following craniospinal radiation. A median dose of 2520 cGy (range, 1500-3600) cGy was given to the whole brain, and a median dose of 2160 (range, 2100-2600) cGy was given to the spinal field. The median boost dose to the tumor was 2600 (range, 2160-3600) cGy, given by stereotactic radiotherapy delivered to the 95% isodose line. At a median follow-up time of 40 (range, 12-73) months, no local or marginal recurrences were reported in patients with germinoma. Two patients with nongerminomatous tumors have relapsed. One had elevation of tumor markers only at 37 months following treatment, and the other had persistent disease following chemotherapy and radiation therapy. Eight

  6. Stereotactic Body Radiotherapy for Localized Ureter Transitional Cell Carcinoma: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Maehata

    2015-01-01

    Full Text Available The gold standard management for ureter transitional cell carcinoma (UTCC is radical nephroureterectomy with excision of the bladder cuff. However, some patients cannot undergo this procedure for several reasons. In the case reports described herein, we performed stereotactic body radiotherapy (SBRT on three patients with inoperable or surgery-rejected localized UTCC. Two out of the three patients did not develop local recurrence or distant metastasis during the observation period. However, recurrence was detected in the bladder of one patient 22 months after the treatment. No acute or late adverse events occurred in any of the three patients. SBRT may become one of the treatment options for inoperable or surgery-rejected UTCC patients.

  7. Stereotactic body radiotherapy: a promising treatment option for the boost of oropharyngeal cancers not suitable for brachytherapy: a single-institutional experience.

    NARCIS (Netherlands)

    Al-Mamgani, A.; Tans, L.; Teguh, D.N.; Rooij, P. van; Zwijnenburg, E.M.; Levendag, P.C.

    2012-01-01

    PURPOSE: To prospectively assess the outcome and toxicity of frameless stereotactic body radiotherapy (SBRT) as a treatment option for boosting primary oropharyngeal cancers (OPC) in patients who not suitable for the standard brachytherapy boost (BTB). METHODS AND MATERIALS: Between 2005 and 2010,

  8. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Kim, Won Woo; Park, In Hwan; Kim, Hee Jong; Lee, Eun Jin; Jung, Jae Hoon [Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Lawrence Chin Soo; Song, Chang W. [Dept. of Radiation Oncology, University of Minnesota Medical School, Minneapolis (United States)

    2015-12-15

    Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

  9. Optimization of Stereotactic Radiotherapy Treatment Delivery Technique for Base-Of-Skull Meningiomas

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-01-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm 3 ) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p 3 , the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm 3 , there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p 3 , due to improved conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe

  10. The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2011-01-01

    Full Text Available Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT, also known as stereotactic ablative radiotherapy (SABR, in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses.

  11. Preliminary experience with frameless stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Buatti, John M.; Bova, Frank J.; Friedman, William A.; Meeks, Sanford L.; Ellis, Thomas L.; Marcus, Robert B.; Zuofeng, Li; Mendenhall, William M.

    1997-01-01

    .07. Rotational errors (degrees): Anterior-posterior, 0.02 ± 0.04; lateral, 0.02 ± 0.02; axial, 0.04 ± 0.05. No patient treatment was delivered beyond the specifications of 0.3 mm and 0.3 degrees and all patient treatments were tabulated to give the mean accuracy of delivery for each patient using the 0.3 mm limit. Daily treatment took approximately 15 minutes per patient and demonstrated that digital patient positioning using a virtual-reality-based treatment delivery system is feasible, practical, and more accurate than currently available systems. Conclusion: Our initial experience with stereotactic radiotherapy using infrared camera system guidance was good. Patient selection and treatment strategies are rapidly evolving. Treatment accuracy was outstanding and the treatment approach was practical

  12. Stereotactic body radiotherapy for primary renal cell carcinoma and adrenal metastases.

    Science.gov (United States)

    Kothari, Gargi; Louie, Alexander V; Pryor, David; Vela, Ian; Lo, Simon S; Teh, Bin S; Siva, Shankar

    2017-09-01

    The incidence of renal cell carcinoma (RCC) and metastatic adrenal lesions continues to rise and present evolving complexities in terms of management. Technical challenges in treatment delivery are compounded by the setting of an ageing patient population with multiple medical co-morbidities. While the standard of care treatment for both primary RCC and oligometastatic adrenal lesions has typically been surgery, a number of patients may be medically or surgically inoperable, and for whom alternative options require consideration. Additionally, in metastatic disease, surgery presents an invasive option, sometimes with unacceptable risks of perioperative morbidity and therefore is considered a less desirable option to some. Stereotactic body radiotherapy (SBRT) is an established radiotherapy technique that is rapidly being incorporated into many radiotherapy departments, particu-larly with the increasing availability and capabilities of modern linear accelerators to deliver precise image guided treatment. There are considerable advantages of SBRT including its ability to provide a non-invasive ablative treatment with very few treatment sessions, with emerging evidence showing promising rates of local control (LC) and low associated mor-bidity. This review details the use of SBRT for primary RCC as well as adrenal metastases, focusing on issues including patient selection, technical considerations, and patient out-comes. Furthermore, this review explores some recent insights into the radiobiology of RCC, the immunomodulatory effects of SBRT, and the use of systemic agents with SBRT.

  13. Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Non-Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery?

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroshi, E-mail: honishi@yamanashi.ac.jp [School of Medicine, Yamanashi University, Yamanashi (Japan); Shirato, Hiroki [School of Medicine, Hokkaido University, Sapporo (Japan); Nagata, Yasushi [School of Medicine, Hiroshima University, Hiroshima (Japan); Hiraoka, Masahiro [School of Medicine, Kyoto University, Kyoto (Japan); Fujino, Masaharu [School of Medicine, Hokkaido University, Sapporo (Japan); School of Medicine, Yamanashi University, Yamanashi (Japan); Gomi, Kotaro [Cancer Institute Suwa Red-Cross Hospital, Suwa (Japan); Karasawa, Katsuyuki [Tokyo Metropolitan Komagome Hospital, Tokyo (Japan); Hayakawa, Kazushige; Niibe, Yuzuru [Kitasato University, Kanagawa (Japan); Takai, Yoshihiro [School of Medicine, Hirosaki University, Hirosaki (Japan); Kimura, Tomoki [School of Medicine, Kagawa University, Hiroshima (Japan); Takeda, Atsuya [Ofuna Chuo Hospital, Kanagawa (Japan); Ouchi, Atsushi [Keijinkai Hospital, Sapporo (Japan); Hareyama, Masato [Sapporo Medical University, Sapporo (Japan); Kokubo, Masaki [Institute of Biomedical Research and Innovation, Kobe (Japan); Kozuka, Takuyo [School of Cancer Institute Ariake Hospital, Tokyo (Japan); Arimoto, Takuro [Kitami Red Cross Hospital, Kitami (Japan); Hara, Ryusuke [National Institute of Radiological Science, Chiba (Japan); Itami, Jun [National Cancer Center, Tokyo (Japan); Araki, Tsutomu [School of Medicine, Yamanashi University, Yamanashi (Japan)

    2011-12-01

    Purpose: To review treatment outcomes for stereotactic body radiotherapy (SBRT) in medically operable patients with Stage I non-small-cell lung cancer (NSCLC), using a Japanese multi-institutional database. Patients and Methods: Between 1995 and 2004, a total of 87 patients with Stage I NSCLC (median age, 74 years; T1N0M0, n = 65; T2N0M0, n = 22) who were medically operable but refused surgery were treated using SBRT alone in 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. Total dose was 45-72.5 Gy at the isocenter, administered in 3-10 fractions. Median calculated biological effective dose was 116 Gy (range, 100-141 Gy). Data were collected and analyzed retrospectively. Results: During follow-up (median, 55 months), cumulative local control rates for T1 and T2 tumors at 5 years after SBRT were 92% and 73%, respectively. Pulmonary complications above Grade 2 arose in 1 patient (1.1%). Five-year overall survival rates for Stage IA and IB subgroups were 72% and 62%, respectively. One patient who developed local recurrences safely underwent salvage surgery. Conclusion: Stereotactic body radiotherapy is safe and promising as a radical treatment for operable Stage I NSCLC. The survival rate for SBRT is potentially comparable to that for surgery.

  14. Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Non–Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery?

    International Nuclear Information System (INIS)

    Onishi, Hiroshi; Shirato, Hiroki; Nagata, Yasushi; Hiraoka, Masahiro; Fujino, Masaharu; Gomi, Kotaro; Karasawa, Katsuyuki; Hayakawa, Kazushige; Niibe, Yuzuru; Takai, Yoshihiro; Kimura, Tomoki; Takeda, Atsuya; Ouchi, Atsushi; Hareyama, Masato; Kokubo, Masaki; Kozuka, Takuyo; Arimoto, Takuro; Hara, Ryusuke; Itami, Jun; Araki, Tsutomu

    2011-01-01

    Purpose: To review treatment outcomes for stereotactic body radiotherapy (SBRT) in medically operable patients with Stage I non–small-cell lung cancer (NSCLC), using a Japanese multi-institutional database. Patients and Methods: Between 1995 and 2004, a total of 87 patients with Stage I NSCLC (median age, 74 years; T1N0M0, n = 65; T2N0M0, n = 22) who were medically operable but refused surgery were treated using SBRT alone in 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. Total dose was 45–72.5 Gy at the isocenter, administered in 3–10 fractions. Median calculated biological effective dose was 116 Gy (range, 100–141 Gy). Data were collected and analyzed retrospectively. Results: During follow-up (median, 55 months), cumulative local control rates for T1 and T2 tumors at 5 years after SBRT were 92% and 73%, respectively. Pulmonary complications above Grade 2 arose in 1 patient (1.1%). Five-year overall survival rates for Stage IA and IB subgroups were 72% and 62%, respectively. One patient who developed local recurrences safely underwent salvage surgery. Conclusion: Stereotactic body radiotherapy is safe and promising as a radical treatment for operable Stage I NSCLC. The survival rate for SBRT is potentially comparable to that for surgery.

  15. Efficient and accurate stereotactic radiotherapy using flattening filter free beams and HexaPOD robotic tables

    DEFF Research Database (Denmark)

    Nielsen, Morten; Hansen, C. R.; Brink, C.

    2016-01-01

    Flattening filter free (FFF) high dose rate beam technique was introduced for brain stereotactic radiosurgery (SRS) and lung Stereotactic Body Radiotherapy (SBRT). Furthermore, a HexaPOD treatment table was introduced for the brain SRS to enable correction of rotational setup errors. 19 filter fl...

  16. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    International Nuclear Information System (INIS)

    Norihisa, Yoshiki; Nagata, Yasushi; Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-01-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases

  17. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  18. Preliminary experience with frameless stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Buatti, John M.; Bova, Francis J.; Friedman, William A.; Meeks, Sanford L.; Marcus, Robert B.; Mickle, J. Parker; Ellis, Thomas L.; Mendenhall, William M.

    1998-01-01

    Purpose: To report initial clinical experience with a novel high-precision stereotactic radiotherapy system. Methods and Materials: Sixty patients ranging in age from 2 to 82 years received a total of 1426 treatments with the University of Florida frameless stereotactic radiotherapy system. Of the total, 39 (65%) were treated with stereotactic radiotherapy (SRT) alone, and 21 (35%) received SRT as a component of radiotherapy. Pathologic diagnoses included meningiomas (15 patients), low-grade astrocytomas (11 patients), germinomas (9 patients), and craniopharyngiomas (5 patients). The technique was used as means of dose escalation in 11 patients (18%) with aggressive tumors. Treatment reproducibility was measured by comparing bite plate positioning registered by infrared light-emitting diodes (IRLEDs) with the stereotactic radiosurgery reference system, and with measurements from each treatment arc for the 1426 daily treatments (5808 positions). We chose 0.3 mm vector translation error and 0.3 deg. rotation about each axis as the maximum tolerated misalignment before treating each arc. Results: With a mean follow-up of 11 months, 3 patients had recurrence of malignant disease. Acute side effects were minimal. Of 11 patients with low grade astrocytomas, 4 (36%) had cerebral edema and increased enhancement on MR scans in the first year, and 2 required steroids. All had resolution and marked tumor involution on follow-up imaging. Bite plate reproducibility was as follows. Translational errors: anterior-posterior, 0.01 ± 0.10; lateral, 0.02 ± 0.07; axial, 0.01 ± 0.10. Rotational errors (degrees): anterior-posterior, 0.00 ± 0.03; lateral, 0.00 ± 0.06; axial, 0.01 ± 0.04. No patient treatment was delivered beyond the maximum tolerated misalignment. Daily treatment was delivered in approximately 15 min per patient. Conclusion: Our initial experience with stereotactic radiotherapy using the infrared camera guidance system was good. Patient selection and treatment

  19. Dosimetric impact of a frame-based strategy in stereotactic radiotherapy of lung tumors

    International Nuclear Information System (INIS)

    Waldeland, Einar; Ramberg, Christina; Arnesen, Marius Roethe; Helland, Aaslaug; Brustugun, Odd Terje; Malinen, Eirik

    2012-01-01

    Introduction. Technological innovations have taken stereotactic body radiotherapy (SBRT) from frame-based strategies to image-guided strategies. In this study, cone beam computed tomography (CBCT) images acquired prior to SBRT of patients with lung tumors was used to study the dosimetric impact of a pure frame-based strategy. Material and methods. Thirty patients with inoperable lung tumors were retrospectively analyzed. All patients had received CBCT-guided SBRT with 3 fractions of 15 Gy to the planning target volume (PTV) margin including immobilization in a stereotactic body frame (SBF). Using the set-up corrections from the co-registration of the CBCT with the planning CT, all individual dose plans were recalculated with an isocenter position equal to the initial set-up position. Dose Volume Histogram (DVH) parameters of the recalculated dose plans were then analyzed. Results. The simulated plans showed that 88% of all fractions resulted in minimum 14.5 Gy to the internal target volume (ITV). For the simulated summed treatment (3 fractions per patient), 83% of the patients would minimum receive the prescription dose (45 Gy) to 100% of the ITV and all except one would receive the prescription dose to more than 90% of the ITV. Conclusions. SBRT including SBF, but without image guidance, results in appropriate dose coverage in most cases, using the current margins. With image guidance, margins for SBRT of lung tumors could possibly be reduced

  20. Clinical experience with a new stereotactic localisation method for fractionated radiotherapy of extracranial lesions

    International Nuclear Information System (INIS)

    Engenhart-Cabillic, R.; Pastyr, O.; Wenz, F.; Debus, J.; Schlegel, W.; Bahner, M.L.; Wannenmacher, M.

    1996-01-01

    Purpose/Objective: Effectiveness of radiotherapy in terms of local control has been shown to be linked with treatment accuracy. Conformal radiation therapy outside the brain maybe limited by relative inaccuracy of positioning and repositioning uncertainty during treatment planning, simulation and radiotherapy. It has been shown that stereotactic localisation methods provide an excellent localisation accuracy for intracranial lesions. The aim of this study was to develop a stereotactic system for the whole body and to test the feasibility in a clinical study. Materials and Method: The system includes a reversible stereotactic patient fixation, localization and positioning system which can be used during CT-imaging for simulation and for treatment. The target volume and adjacent critical structures were outlined for treatment three dimensional planning and the coordinates of the target point were calculated. The overall accuracy of target localization including soft and hardware inaccuracy was measured by a phantom. Three patients with spinal and paraspinal tumors were treated by conventionally fractionated high precision megavoltage radiotherapy with this system. The treatment time was 6 weeks in each patients. The stereotactic coordinates of anatomical landmarks as well as implanted fiducals were measured by CT-imaging, X-ray localization and electronic portal imaging at 20 different paraspinal localisations. Stereotactic CT-imaging was performed for treatment planning and once a week during treatment. Results: Standard deviation of stereotactic coordinats in the phantom was 0.5 mm in the lateral direction (x), 1.0 mm in the cranio-caudal orientation (z) and 1.2 mm in the dorso-ventral orientation. About 60 minutes are required to immobilise the patient properly for the first set-up and the subsequent daily set-up time during therapy was 10 min. In patients a total of 18 CT examination and 56 portal images have been analysed. The mean variation of the stereotactic

  1. Progression-free Survival Following Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Treatment-naive Recurrence: A Multi-institutional Analysis.

    Science.gov (United States)

    Ost, Piet; Jereczek-Fossa, Barbara Alicja; As, Nicholas Van; Zilli, Thomas; Muacevic, Alexander; Olivier, Kenneth; Henderson, Daniel; Casamassima, Franco; Orecchia, Roberto; Surgo, Alessia; Brown, Lindsay; Tree, Alison; Miralbell, Raymond; De Meerleer, Gert

    2016-01-01

    The literature on metastasis-directed therapy for oligometastatic prostate cancer (PCa) recurrence consists of small heterogeneous studies. This study aimed to reduce the heterogeneity by pooling individual patient data from different institutions treating oligometastatic PCa recurrence with stereotactic body radiotherapy (SBRT). We focussed on patients who were treatment naive, with the aim of determining if SBRT could delay disease progression. We included patients with three or fewer metastases. The Kaplan-Meier method was used to estimate distant progression-free survival (DPFS) and local progression-free survival (LPFS). Toxicity was scored using the Common Terminology Criteria for Adverse Events. In total, 163 metastases were treated in 119 patients. The median DPFS was 21 mo (95% confidence interval, 15-26 mo). A lower radiotherapy dose predicted a higher local recurrence rate with a 3-yr LPFS of 79% for patients treated with a biologically effective dose ≤100Gy versus 99% for patients treated with >100Gy (p=0.01). Seventeen patients (14%) developed toxicity classified as grade 1, and three patients (3%) developed grade 2 toxicity. No grade ≥3 toxicity occurred. These results should serve as a benchmark for future prospective trials. This multi-institutional study pools all of the available data on the use of stereotactic body radiotherapy for limited prostate cancer metastases. We concluded that this approach is safe and associated with a prolonged treatment progression-free survival. Copyright © 2015. Published by Elsevier B.V.

  2. Metallic stent and stereotactic conformal radiotherapy for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Li Yu; Wang Ning; Tian Qihe; Guo Zhanwen; Zhang Haibo; Song Liyan

    2005-01-01

    Objective: To evaluate the effect of metallic stent combined with stereotactic conformal radiotherapy (SCRT) for hilar cholangiocarcinoma. Methods: Fifty-four patients with hilar cholangiocarcinoma were analyzed, including 31 treated with stent plus stereotactic conformal radiotherapy (combined group) and 23 with metallic stent alone (control group). Results: The mean survival time of combined group was 11.1 ± 4.6 months, compared with 5.1 ± 2.8 months of the control group, giving a significant difference between the two groups (P<0.01). Conclusion: The combination of metallic stent and stereotactic conformal radiotherapy is more effective than metallic stent alone for unresectable hilar cholangiocarcinoma. (authors)

  3. IMRT with Stereotactic Body Radiotherapy Boost for High Risk Malignant Salivary Gland Malignancies : A Case Series

    Directory of Open Access Journals (Sweden)

    Sana D Karam

    2014-10-01

    Full Text Available Patients with high risk salivary gland malignancies are at increased risk of local failure. We present our institutional experience with dose escalation using hypofractionated Stereotactic Body Radiotherapy (SBRT in a subset of this rare disease. Over the course of 9 years, 10 patients presenting with skull base invasion, gross disease with one or more adverse features, or those treated with adjuvant radiation with three or more pathologic features were treated with intensity modulated radiation therapy followed by hypofractionated SBRT boost. Patients presented with variable tumor histologies, and in all but one, the tumors were classified as poorly differentiated high grade. Four patients had gross disease, 3 had gross residual disease, 3 had skull base invasion, and 2 patients had rapidly recurrent disease (≤ 6 months that had been previously treated with surgical resection. The median Stereotactic Radiosurgery boost dose was 17.5 Gy (range 10-30 Gy given in a median of 5 fractions (range 3-6 fractions for a total median cumulative dose of 81.2 Gy (range 73.2-95.6 Gy. The majority of the patients received platinum based concurrent chemotherapy with their radiation. At a median follow-up of 32 months (range 12-120 for all patients and 43 months for surviving patients (range 12-120, actuarial 3-year locoregional control, distant control, progression free survival, and overall survival were 88%, 81%, 68%, and 79%, respectively. Only one patient failed locally and two failed distantly. Serious late toxicity included graft ulceration in 1 patient and osteoradionecrosis in another patient, both of which underwent surgical reconstruction. Six patients developed fibrosis. In a subset of patients with salivary gland malignancies with skull base invasion, gross disease, or those treated adjuvantly with three or more adverse pathologic features, hypofractionated SBRT boost to Intensity Modulated Radiotherapy yields good local control rates and

  4. Definition of stereotactic body radiotherapy. Principles and practice for the treatment of stage I non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guckenberger, M.; Sauer, O. [University of Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Andratschke, N. [University of Rostock, Department of Radiotherapy and Radiation Oncology, Rostock (Germany); Alheit, H. [Distler Radiation Oncology, Bautzen/Pirna (Germany); Holy, R. [RWTH Aachen University, Department of Radiation Oncology, Aachen (Germany); Moustakis, C. [University of Muenster, Department of Radiation Oncology, Muenster (Germany); Nestle, U. [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany)

    2014-01-15

    This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft fuer Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy. (orig.) [German] Die Arbeitsgruppe ''Stereotaktische Radiotherapie'' der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) erarbeitete eine Definition der Koerperstereotaxie (SBRT), die sich an vorhandene internationale Definitionen anlehnt: Die SBRT ist eine Form der perkutanen Strahlentherapie, die mit hoher Praezision eine hohe Bestrahlungsdosis in einer oder wenigen Bestrahlungsfraktionen in einem extrakraniellen Zielvolumen appliziert. Zur Praxis der SBRT beim nichtkleinzelligen Bronchialkarzinom (NSCLC) im fruehen Stadium werden detaillierte Empfehlungen gegeben, die den gesamten Ablauf der Behandlung von der Indikationsstellung, Staging, Behandlungsplanung und Applikation sowie Nachsorge umfassen. Die Koerperstereotaxie wurde als Methode der Wahl im Vergleich zu Best Supportive Care, zur konventionell fraktionierten Strahlentherapie sowie zur Radiofrequenzablation identifiziert. Die Ergebnisse nach SBRT und sublobaerer Resektion

  5. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    King, Christopher R.; Brooks, James D.; Gill, Harcharan; Presti, Joseph C.

    2012-01-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 ± 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%–102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  6. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, Christopher R., E-mail: crking@mednet.ucla.edu [Departments of Radiation Oncology and Urology, University of California Los Angeles School of Medicine, Los Angeles, CA (United States); Brooks, James D.; Gill, Harcharan; Presti, Joseph C. [Department of Urology, Stanford University School of Medicine, Stanford, CA (United States)

    2012-02-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 {+-} 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%-102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  7. Management of Spinal Metastases From Renal Cell Carcinoma Using Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, Quynh-Nhu; Shiu, Almon S.; Rhines, Laurence D.; Wang He; Allen, Pamela K.; Wang, Xin Shelley; Chang, Eric L.

    2010-01-01

    Purpose: To evaluate the outcomes associated with stereotactic body radiotherapy (SBRT) in the management of spinal metastases from renal cell carcinoma (RCC). Methods and Materials: SBRT was used in the treatment of patients with spinal metastases from RCC. Patients received either 24 Gy in a single fraction, 27 Gy in three fractions, or 30 Gy delivered in five fractions. Effectiveness of SBRT with respect to tumor control and palliation of pain was assessed using patient-reported outcomes. Results: A total of 48 patients with 55 spinal metastases were treated with SBRT with a median follow-up time of 13.1 months (range, 3.3-54.5 months). The actuarial 1-year spine tumor progression free survival was 82.1%. At pretreatment baseline, 23% patients were pain free; at 1 month and 12 months post-SBRT, 44% and 52% patients were pain free, respectively. No Grade 3-4 neurologic toxicity was observed. Conclusions: The data support SBRT as a safe and effective treatment modality that can be used to achieve good tumor control and palliation of pain associated with RCC spinal metastases. Further evaluation with randomized trials comparing SBRT to conventional radiotherapy may be warranted.

  8. EPID-based in vivo dosimetry for stereotactic body radiotherapy of non-small cell lung tumors: Initial clinical experience.

    Science.gov (United States)

    Consorti, R; Fidanzio, A; Brainovich, V; Mangiacotti, F; De Spirito, M; Mirri, M A; Petrucci, A

    2017-10-01

    EPID-based in vivo dosimetry (IVD) has been implemented for stereotactic body radiotherapy treatments of non-small cell lung cancer to check both isocenter dose and the treatment reproducibility comparing EPID portal images. 15 patients with lung tumors of small dimensions and treated with volumetric modulated arc therapy were enrolled for this initial experience. IVD tests supplied ratios R between in vivo reconstructed and planned isocenter doses. Moreover a γ-like analysis between daily EPID portal images and a reference one, in terms of percentage of points with γ-value smaller than 1, P γlevels of 5% for R ratio, P γlevel, and an average P γ90%. Paradigmatic discrepancies were observed in three patients: a set-up error and a patient morphological change were identified thanks to CBCT image analysis whereas the third discrepancy was not fully justified. This procedure can provide improved patient safety as well as a first step to integrate IVD and CBCT dose recalculation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Stereotactic body radiotherapy (SBRT): Technological innovation and application in gynecologic oncology.

    Science.gov (United States)

    Higginson, Daniel S; Morris, David E; Jones, Ellen L; Clarke-Pearson, Daniel; Varia, Mahesh A

    2011-03-01

    Stereotactic body radiotherapy (SBRT) is a novel form of noninvasive, highly conformal radiation treatment that delivers a high dose to tumor. The advantage of the technique resides in its ability to provide a high dose to tumor but spare normal tissues to an extent not previously possible. In this paper we will provide an introduction and review of this technology with regard to its use in gynecologic malignancies. Preliminary results from our experience are presented for the purpose of illustrating the range of SBRT applications in gynecologic oncology. A comprehensive literature review was conducted and our experience from the past three years was reviewed. Six case series are published that report results of SBRT for gynecologic malignancies. Sixteen gynecologic patients have been treated with SBRT at our institution. Treatment sites include pelvic and periaortic nodes (9 patients), oligometastatic disease (2), and cervical or endometrial primary tumors when other conventional external radiation or brachytherapy techniques were unsuitable (5). Preliminary follow-up at a median of 11 months (range, 0.3-33 months) demonstrates 79% locoregional control, 43% distant failure, and 50% overall survival. SBRT boosts to macroscopic periaortic node recurrences and other sites seem to provide local control and a possibility of long-term disease-free survival in carefully selected patients. Previously this had been difficult to achieve with conventional radiotherapy because of the proximity of periaortic nodes to small bowel. SBRT also offers a novel approach for minimally invasive treatment in the management of gynecological cancer where current surgical and radiotherapy techniques are unsuitable. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Influence of rotational setup error on tumor shift in bony anatomy matching measured with pulmonary point registration in stereotactic body radiotherapy for early lung cancer

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Nishiyama, Kinji; Ueda, Yoshihiro; Miyazaki, Masayoshi; Tsujii, Katsutomo

    2012-01-01

    The objective of this study was to examine the correlation between the patient rotational error measured with pulmonary point registration and tumor shift after bony anatomy matching in stereotactic body radiotherapy for lung cancer. Twenty-six patients with lung cancer who underwent stereotactic body radiotherapy were the subjects. On 104 cone-beam computed tomography measurements performed prior to radiation delivery, rotational setup errors were measured with point registration using pulmonary structures. Translational registration using bony anatomy matching was done and the three-dimensional vector of tumor displacement was measured retrospectively. Correlation among the three-dimensional vector and rotational error and vertebra-tumor distance was investigated quantitatively. The median and maximum rotational errors of the roll, pitch and yaw were 0.8, 0.9 and 0.5, and 6.0, 4.5 and 2.5, respectively. Bony anatomy matching resulted in a 0.2-1.6 cm three-dimensional vector of tumor shift. The shift became larger as the vertebra-tumor distance increased. Multiple regression analysis for the three-dimensional vector indicated that in the case of bony anatomy matching, tumor shifts of 5 and 10 mm were expected for vertebra-tumor distances of 4.46 and 14.1 cm, respectively. Using pulmonary point registration, it was found that the rotational setup error influences the tumor shift. Bony anatomy matching is not appropriate for hypofractionated stereotactic body radiotherapy with a tight margin. (author)

  11. Emerging radiotherapy technology in a developing country: A single Brazilian institution assessment of stereotactic body radiotherapy application

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe; Bonifacio, Lorine Arias; Neves-Junior, Wellington Pimenta; Hanna, Samir Abdallah; Abreu, Carlos Eduardo Cintra Vita; Arruda, Fernando Freire; Silva, Joao Luis Fernandes; Carvalho, Heloisa Andrade, E-mail: fymoraes@gmail.com [Hospital Sirio-Libanes, Sao Paulo, SP(Brazil)

    2016-11-15

    Objective: To provide a quantitative profile of the indications and use of stereotactic body radiotherapy (SBRT) in a developing country oncology-based institution. In addition, to describe the patient and treatment characteristics, and to provide a temporal analysis. Method: SBRT patients treated from 2007 to 2015 were retrospectively evaluated by two independently investigators. Data were stratified and compared in two periods: first experience (FE) (May 2007 to April 2011), and following experience (FollowE) (May 2011 to April 2015). The following parameters were compared between the groups: total number of treated patients and lesions, treatment site, additional image fusion used, formal protocol adoption, and SBRT planning technique. Results: One hundred and seventy-six (176) patients with 191 lesions were treated: 34 (18%) lesions in the FE and 157 (82%) lesions in FollowE. The majority of lesions were metastases (60.3%), and lung (60.2%) was the most common treatment site, followed by spine (31%), and others (8.8%). An average of 1.4 (±0.6) additional imaging exams for delineation was performed. Conformal 3D radiotherapy planning technique was used in 64.4%, and intensity modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT) in the remaining 35.6% (p=0.0001). Higher rates of curative treatments were observed in FE, as well as more lung lesions, patients ≥ 70 years, 3D conformal, number of additional images and ECOG 0, and all presented p<0.05. The global rate of protocol statement was 79%, lung treatment being the most stated. Conclusion: SBRT application is rapidly increasing in our setting. Treatment sites and planning techniques are becoming more diversified and complex. (author)

  12. Stereotactic radiotherapy for brain metastasis

    International Nuclear Information System (INIS)

    Noel, G.; Daisne, J.F.; Thillays, F.

    2012-01-01

    Stereotactic radiosurgery is now well implanted in the radiotherapy treatment tools of brain metastasis. The dose can be delivered in one or multiple sessions. Results seem equivalent. CT scan and MRI imaging are required to delineate and calculate dosimetry. Doses are variable according to the size of the metastases, localization, pathology or equipment. Stabilization or reduction of tumour size is the rules after stereotactic treatment. Impact in terms of overall survival is more difficult to apprehend because of the general context of the disease. Many questions remain unresolved, such as the usefulness of whole brain irradiation, adaptation of the treatment schedule to tumour pathophysiology, role of stereotactic treatment after surgery of metastases, etc. (authors)

  13. Stereotactic Radiotherapy by 6MV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oho, Yoon Kyeong; Kim, Mi Hee; Gil, Hak Jun [Catholic University College of Medicine, Seoul (Korea, Republic of)] (and others)

    1988-12-15

    Eight patients with intracranial tumors or arteriovenous malformation (AVM)s which were less than 3 cm in diameter were treated by a technique of stereotactic radiotherapy during the 4 months period from July 1988 through October 1988 at the Division of Radiation Therapy, Kang-Nam St. Mary's Hospital, Catholic University Medical College. The patients were diagnosed as AVMs in 3 cases, acoustic neurinoma, craniopharyngioma (recurrent), hemangioblastoma, pineocytoma, and pituitary microadenoma in each case. There are several important factors in this procedure, such as localization system, portal, field size, radiation dose, and perioperative supportive care. It is suggested that stereotactic radiotherapy may be performed safely with a radiation dose of 12-30 Gy. So this noninvasive procedure can be used to treat unresectable intracranial tumors or AVMs. Of these, clinical symptoms had been regressed in AVMs in 2 cases at 3 months and 2 months after Stereotactic radiotherapy, one of whom was confirmed slightly regressed on the follow-up angiogram. And also craniopharyngioma and pineocytoma was minimally regressed on 3 month follow-up CT.

  14. Stereotactic Radiotherapy by 6MV Linear Accelerator

    International Nuclear Information System (INIS)

    Oho, Yoon Kyeong; Kim, Mi Hee; Gil, Hak Jun

    1988-01-01

    Eight patients with intracranial tumors or arteriovenous malformation (AVM)s which were less than 3 cm in diameter were treated by a technique of stereotactic radiotherapy during the 4 months period from July 1988 through October 1988 at the Division of Radiation Therapy, Kang-Nam St. Mary's Hospital, Catholic University Medical College. The patients were diagnosed as AVMs in 3 cases, acoustic neurinoma, craniopharyngioma (recurrent), hemangioblastoma, pineocytoma, and pituitary microadenoma in each case. There are several important factors in this procedure, such as localization system, portal, field size, radiation dose, and perioperative supportive care. It is suggested that stereotactic radiotherapy may be performed safely with a radiation dose of 12-30 Gy. So this noninvasive procedure can be used to treat unresectable intracranial tumors or AVMs. Of these, clinical symptoms had been regressed in AVMs in 2 cases at 3 months and 2 months after Stereotactic radiotherapy, one of whom was confirmed slightly regressed on the follow-up angiogram. And also craniopharyngioma and pineocytoma was minimally regressed on 3 month follow-up CT

  15. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  16. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  17. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias [Zurich University Hospital, Department of Radiation Oncology, Zurich (Switzerland); Brunner, Thomas B. [Freiburg University Hospital, Department of Radiation Oncology, Freiburg (Germany); Niyazi, Maximilian [University of Munich, Department of Radiation Oncology, Munich (Germany)

    2016-12-15

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [German] Die Arbeitsgruppe ''Stereotaktische Radiotherapie'' der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) legt eine Zusammenfassung der aktuellen Literatur und daraus resultierende Empfehlungen zur Durchfuehrung der stereotaktischen Strahlentherapie (SBRT) beim Nierenzellkarzinom und beim Pankreaskarzinom vor. Es erfolgte eine Literaturrecherche zur Evidenz der SBRT beim Nierenzell- und Pankreaskarzinom, wobei der Schwerpunkt auf prospektive Studien und technische Aspekte fuer die klinische Umsetzung gelegt wurde. Fuer die SBRT beim Pankreaskarzinom und Nierenzellkarzinom sind bisher nur wenige Studien veroeffentlicht worden, die jedoch konsistent eine hohe Rate an lokaler Tumorkontrolle

  18. Stereotactic Body Radiotherapy for Metastatic and Recurrent Ewing Sarcoma and Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Lindsay C. Brown

    2014-01-01

    Full Text Available Background. Radiotherapy has been utilized for metastatic and recurrent osteosarcoma and Ewing sarcoma (ES, in order to provide palliation and possibly prolong overall or progression-free survival. Stereotactic body radiotherapy (SBRT is convenient for patients and offers the possibility of increased efficacy. We report our early institutional experience using SBRT for recurrent and metastatic osteosarcoma and Ewing sarcoma. Methods. We reviewed all cases of osteosarcoma or ES treated with SBRT between 2008 and 2012. Results. We identified 14 patients with a total of 27 lesions from osteosarcoma (n=19 or ES (n=8. The median total curative/definitive SBRT dose delivered was 40 Gy in 5 fractions (range, 30–60 Gy in 3–10 fractions. The median total palliative SBRT dose delivered was 40 Gy in 5 fractions (range, 16–50 Gy in 1–10 fractions. Two grade 2 and 1 grade 3 late toxicities occurred, consisting of myonecrosis, avascular necrosis with pathologic fracture, and sacral plexopathy. Toxicity was seen in the settings of concurrent chemotherapy and reirradiation. Conclusions. This descriptive report suggests that SBRT may be a feasible local treatment option for patients with osteosarcoma and ES. However, significant toxicity can result, and thus systematic study is warranted to clarify efficacy and characterize long-term toxicity.

  19. Patient reported outcomes following stereotactic ablative radiotherapy or surgery for stage IA non-small-cell lung cancer : Results from the ROSEL multicenter randomized trial

    NARCIS (Netherlands)

    Louie, Alexander V.; van Werkhoven, Erik; Chen, Hanbo; Smit, Egbert F.; Paul, Marinus A.; Widder, Joachim; Groen, Harry J. M.; van den Borne, Ben E. E. M.; De Jaeger, Katrien; Slotman, Ben J.; Senan, Suresh

    2015-01-01

    We report quality of life and indirect costs from patient reported outcomes from the ROSEL randomized control trial comparing stereotactic ablative radiotherapy (SABR, also known as stereotactic body radiotherapy or SBRT) versus surgical resection for medically operable stage IA non-small cell lung

  20. Fractionated stereotactic radiotherapy in patients with acromegaly: an interim single-centre audit

    DEFF Research Database (Denmark)

    Roug, Anne Stidsholt; Rasmussen, Åse Krogh; Juhler, M

    2010-01-01

    To evaluate the effect of fractionated stereotactic radiotherapy (FSRT) in acromegaly in a retrospective analysis.......To evaluate the effect of fractionated stereotactic radiotherapy (FSRT) in acromegaly in a retrospective analysis....

  1. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    International Nuclear Information System (INIS)

    Jong, W L; Ung, N M; Wong, J H D; Ng, K H

    2016-01-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved. (paper)

  2. Inter- and Intrafraction Variability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Case, Robert B.; Sonke, Jan-Jakob; Moseley, Douglas J.; Kim, John; Brock, Kristy K.; Dawson, Laura A.

    2009-01-01

    Purpose: The inter- and intrafraction variability of liver position was assessed in patients with liver cancer treated with kilovoltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy. Methods and Materials: A total of 314 CBCT scans obtained in the treatment position immediately before and after each fraction were evaluated from 29 patients undergoing six-fraction, non-breath-hold stereotactic body radiotherapy for unresectable liver cancer. Off-line, the CBCT scans were sorted into 10 bins, according to the phase of respiration. The liver position (relative to the vertebral bodies) was measured using rigid alignment of the exhale CBCT liver with the exhale planning CT liver, following the alignment of the vertebrae. The interfraction liver position change was measured by comparing the pretreatment CBCT scans, and the intrafraction change was measured from the CBCT scans obtained immediately before and after each fraction. Results: The mean amplitude of liver motion for all patients was 1.8 mm (range, 0.1-5.7), 8.0 mm (range, 0.1-18.8), and 4.3 mm (range 0.1-12.1) in the medial-lateral (ML), craniocaudal (CC), and anteroposterior (AP) directions, respectively. The mean absolute ML, CC, and AP interfraction changes in liver position were 2.0 mm (90th percentile, 4.2), 3.5 mm (90th percentile, 7.3), and 2.3 mm (90th percentile, 4.7). The mean absolute intrafraction ML, CC, and AP changes were 1.3 mm (90th percentile, 2.9), 1.6 mm (90th percentile, 3.6), and 1.5 mm (90th percentile, 3.1), respectively. The interfraction changes were significantly larger than the intrafraction changes, with a CC systematic error of 2.9 and 1.1 mm, respectively. The intraobserver reproducibility (σ, n = 29 fractions) was 1.3 mm in the ML, 1.4 mm in the CC, and 1.6 mm in the AP direction. Conclusion: Interfraction liver position changes relative to the vertebral bodies are an important source of geometric uncertainty, providing a rationale for prefraction

  3. Stereotactic body radiotherapy for primary prostate cancer: a systematic review

    International Nuclear Information System (INIS)

    Tan, Tze-Jian; Foroudi, Farsgad; Gill, Suki; Siva, Shankar

    2014-01-01

    Stereotactic body radiotherapy (SBRT) for prostate cancer allows overall treatment times to be reduced to as little as 1 week while maintaining a non-invasive approach. This study provides a comprehensive summary of the literature relating to SBRT in prostate cancer. A systematic review of the relevant literature was performed using structured search terms. Fourteen phase I–II trials and retrospective studies using SBRT for the treatment of prostate cancer were used. Three studies were identified which addressed cost. Dose fractionation, radiotherapy procedures, biochemical progression-free survival, toxicity, cost and quality of life were critically appraised. A total of 1472 patients were examined across studies. Median follow-up ranged from 11 to 60 months. The most common dose fractionation was 35–36.25Gy in five fractions, used in nine out of 14 studies. Ten of 14 studies used CyberKnife. The overall biochemical progression-free survival ranged 81–100%. Acute grade 2 urinary and rectal toxicities were reported in 5–42% and 0–27% of patients, respectively. Acute grade 3 or more urinary and rectal toxicity were 0.5% and 0%, respectively. Late grade 2 urinary toxicity was reported in 0–29% of patients, while 1.3% had a late grade 3 urinary toxicity. There were no late grade 4 urinary toxicities seen. Late grade 2 rectal toxicity was reported in 0–11%, while 0.5% had a late grade 3 rectal toxicity. Late grade 4 rectal toxicity was reported in 0.2% of patients.

  4. Role of stereotactic body radiotherapy for oligometastasis from colorectal cancer.

    Science.gov (United States)

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo

    2014-04-21

    Systemic chemotherapy has enabled prolongation of survival in patients with stage IV colorectal cancer. This has subsequently increased the relative significance of local therapy for patients with oligometastases because they can be cured by removal of oligometastatic lesions. One of the most frequently reported tumor histologies for oligometastases is colorectal cancer. Resection is the standard therapy in most settings of oligometastases. Recently, studies have shown that stereotactic body radiotherapy (SBRT) may become a treatment option that provides high local control with minimal morbidity. Two-year local control rates following SBRT for hepatic and pulmonary oligometastases are almost over 80% and are even higher for patients treated with high-dose regimens. The indications of SBRT for other metastatic sites or conditions include isolated lymph nodes, spinal and adrenal metastasis, and post-surgical pelvic recurrence. Many retrospective studies have indicated that SBRT for various lesions results in good outcomes with low morbidity, both in the curative and palliative setting. However, few reports with a high level of evidence have indicated the efficacy of SBRT compared to standard therapy. Hereafter, the optimal indication of SBRT needs to be prospectively investigated to obtain convincing evidence.

  5. Re-irradiation: Outcome, cumulative dose and toxicity in patients retreated with stereotactic radiotherapy in the abdominal or pelvic region

    NARCIS (Netherlands)

    H. Abusaris (Huda); M.S. Hoogeman (Mischa); J.J.M.E. Nuyttens (Joost)

    2012-01-01

    textabstractThe purpose of the present study was to explore the outcome, cumulative dose in tumor and organs at risk and toxicity after extra-cranial stereotactic re-irradiation. Twenty-seven patients were evaluated who had been re-irradiated with stereotactic body radiotherapy (SBRT) after

  6. Stereotactic Radiotherapy for Adrenal Gland Metastases: University of Florence Experience

    International Nuclear Information System (INIS)

    Casamassima, Franco; Livi, Lorenzo; Masciullo, Stefano; Menichelli, Claudia; Masi, Laura; Meattini, Icro; Bonucci, Ivano; Agresti, Benedetta; Simontacchi, Gabriele; Doro, Raffaela

    2012-01-01

    Purpose: To evaluate a retrospective single-institution outcome after hypofractionated stereotactic body radiotherapy (SBRT) for adrenal metastases. Methods and Materials: Between February 2002 and December 2009, we treated 48 patients with SBRT for adrenal metastases. The median age of the patient population was 62.7 years (range, 43–77 years). In the majority of patients, the prescription dose was 36 Gy in 3 fractions (70% isodose, 17.14 Gy per fraction at the isocenter). Eight patients were treated with single-fraction stereotactic radiosurgery and forty patients with multi-fraction stereotactic radiotherapy. Results: Overall, the series of patients was followed up for a median of 16.2 months (range, 3–63 months). At the time of analysis, 20 patients were alive and 28 patients were dead. The 1- and 2-year actuarial overall survival rates were 39.7% and 14.5%, respectively. We recorded 48 distant failures and 2 local failures, with a median interval to local failure of 4.9 months. The actuarial 1-year disease control rate was 9%; the actuarial 1- and 2-year local control rate was 90%. Conclusion: Our retrospective study indicated that SBRT for the treatment of adrenal metastases represents a safe and effective option with a control rate of 90% at 2 years.

  7. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    International Nuclear Information System (INIS)

    Wiegner, Ellen A.; King, Christopher R.

    2010-01-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged ≥70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  8. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    Science.gov (United States)

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  9. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  10. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  11. A case study of the neuropsychological outcomes following microsurgery, conventional radiotherapy and stereotactic radiotherapy for an adult's recurrent craniopharyngioma.

    Science.gov (United States)

    Preece, David; Allan, Alfred; Becerra, Rodrigo

    2016-01-01

    To examine the neuropsychological outcomes for an adult patient, 2 years after receiving microsurgery and conventional radiotherapy for a recurrent craniopharyngioma; and the impact of a further intervention, stereotactic radiotherapy, on this level of neuropsychological functioning. JD, a 30 year old male whose recurrent craniopharyngioma had 2 years earlier been treated with two operations and conventional radiotherapy. JD was assessed (using standardized clinical tests) before and after a course of stereotactic radiotherapy. Prior to stereotactic radiotherapy (and 2 years after microsurgery and conventional radiotherapy) JD's IQ was intact, but considerable impairments were present in executive functioning, memory, theory of mind and processing speed. Fifteen months after stereotactic radiotherapy, all neuropsychological domains remained largely static or improved, supporting the utility of this treatment option in the neuropsychological domain. However, deficits in executive functioning, memory and processing speed remained. These findings suggest that, even after multiple treatments, substantial cognitive impairments can be present in an adult patient with a recurrent craniopharyngioma. This profile of deficits underlines the inadequacy of relying purely on IQ as a marker for cognitive health in this population and emphasizes the need to include neuropsychological impairments as a focus of rehabilitation with these patients.

  12. Toxicity after reirradiation of pulmonary tumours with stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Peulen, Heike; Karlsson, Kristin; Lindberg, Karin; Tullgren, Owe; Baumann, Pia; Lax, Ingmar; Lewensohn, Rolf; Wersäll, Peter

    2011-01-01

    Purpose: To assess toxicity and feasibility of reirradiation with stereotactic body radiotherapy (SBRT) after prior lung SBRT for primary lung cancer or lung metastases. Patients and materials: Twenty-nine patients reirradiated with SBRT on 32 lung lesions (11 central, 21 peripheral) were retrospectively reviewed. Median follow-up time was 12 months (range 1–97). The primary endpoint was toxicity, secondary endpoints were local control and overall survival time. Toxicity was scored according to the NCI-CTCAE version 3. Results: Grade 3–4 toxicity was scored 14 times in eight patients. Three patients died because of massive bleeding (grade 5). Larger clinical target volumes (CTV) and central tumour localization were associated with more severe toxicity. There was no correlation between mean lung dose (MLD) and lung toxicity. Local control at 5 months after reirradiation was 52%, as assessed by CT-scan (n = 12) or X-thorax (n = 3). A larger CTV was associated with poorer local control. Kaplan–Meier estimated 1- and 2-year survival rates were 59% and 43%, respectively. Conclusions: Reirradiation with SBRT is feasible although increased risk of toxicity was reported in centrally located tumours. Further research is warranted for more accurate selection of patients suitable for reirradiation with SBRT.

  13. A retrospective review of Cyberknife Stereotactic Body Radiotherapy for Adrenal Tumors (Primary and Metastatic: Winthrop University Hospital experience

    Directory of Open Access Journals (Sweden)

    Amishi eDesai

    2015-08-01

    Full Text Available The adrenal gland is a common site of cancer metastasis. Surgery remains a mainstay of treatment for solitary adrenal metastasis. For patients who cannot undergo surgery, radiation is an alternative option. Stereotactic body radiotherapy (SBRT is an ablative treatment option allowing larger doses to be delivered over a shorter period of time. In this study, we report on our experience with the use of SBRT to treat adrenal metastases using Cyberknife technology. We retrospectively reviewed, the Winthrop-University radiation oncology data base to identify 14 patients for whom SBRT was administered to treat malignant adrenal disease. Of the factors examined, the biologic equivalent dose (BED of radiation delivered was found to be the most important predictor of local adrenal tumor control. We conclude that CyberKnife-based SBRT is a safe, non-invasive modality that has broadened the therapeutic options for the treatment of isolated adrenal metastases.

  14. Cardiac embolization of an implanted fiducial marker for hepatic stereotactic body radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Hennessey Hooman

    2009-11-01

    Full Text Available Abstract Introduction In liver stereotactic body radiotherapy, reduction of normal tissue irradiation requires daily image guidance. This is typically accomplished by imaging a surrogate to the tumor. The surrogate is often an implanted metal fiducial marker. There are few reports addressing the specific risks of hepatic fiducial marker implantation. These risks are assumed to be similar to percutaneous liver biopsies which are associated with a 1-4% complication rate - almost always pain or bleeding. To the best of our knowledge, we present the first case of such a fiducial marker migrating to the heart. Case presentation An 81-year-old Caucasian man (5 years post-gastrectomy for a gastric adenocarcinoma was referred post-second line palliative chemotherapy for radiotherapy of an isolated liver metastasis. It was decided to proceed with treatment and platinum fiducials were chosen for radiation targeting. Under local anesthesia, three Nester embolization coils (Cook Medical Inc., Bloomington, IN, USA were implanted under computed tomography guidance. Before the placement of each coil, the location of the tip of the delivery needle was confirmed by computed tomography imaging. During the procedure, the third coil unexpectedly migrated through the hepatic vein to the inferior vena cava and lodged at the junction of the vena cava and the right atrium. The patient remained asymptomatic. He was immediately referred to angiography for extraction of the coil. Using fluoroscopic guidance, an EN Snare Retrieval System (Hatch Medical L.L.C., Snellville, GA, USA was introduced through a jugular catheter; it successfully grasped the coil and the coil was removed. The patient was kept overnight for observation and no immediate or delayed complications were encountered due to the migration or retrieval of the coil. He subsequently went on to be treated using the remaining fiducials. Conclusion Implanted fiducial markers are increasingly used for stereotactic

  15. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Hugo, Geoffrey; Kestin, Larry L.; Galerani, Ana Paula; Chao, K. Kenneth; Wloch, Jennifer; Yan Di

    2008-01-01

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was ≥5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were ≤2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic (Σ) and random errors (σ) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation

  16. Robust frameless stereotactic localization in extra-cranial radiotherapy

    International Nuclear Information System (INIS)

    Riboldi, Marco; Baroni, Guido; Spadea, Maria Francesca; Bassanini, Fabio; Tagaste, Barbara; Garibaldi, Cristina; Orecchia, Roberto; Pedotti, Antonio

    2006-01-01

    In the field of extra-cranial radiotherapy, several inaccuracies can make the application of frameless stereotactic localization techniques error-prone. When optical tracking systems based on surface fiducials are used, inter- and intra-fractional uncertainties in marker three-dimensional (3D) detection may lead to inexact tumor position estimation, resulting in erroneous patient setup. This is due to the fact that external fiducials misdetection results in deformation effects that are poorly handled in a rigid-body approach. In this work, the performance of two frameless stereotactic localization algorithms for 3D tumor position reconstruction in extra-cranial radiotherapy has been specifically tested. Two strategies, unweighted versus weighted, for stereotactic tumor localization were examined by exploiting data coming from 46 patients treated for extra-cranial lesions. Measured isocenter displacements and rotations were combined to define isocentric procedures, featuring 6 degrees of freedom, for correcting patient alignment (isocentric positioning correction). The sensitivity of the algorithms to uncertainties in the 3D localization of fiducials was investigated by means of 184 numerical simulations. The performance of the implemented isocentric positioning correction was compared to conventional point-based registration. The isocentric positioning correction algorithm was tested on a clinical dataset of inter-fractional and intra-fractional setup errors, which was collected by means of an optical tracker on the same group of patients. The weighted strategy exhibited a lower sensitivity to fiducial localization errors in simulated misalignments than those of the unweighted strategy. Isocenter 3D displacements provided by the weighted strategy were consistently smaller than those featured by the unweighted strategy. The peak decrease in median and quartile values of isocenter 3D displacements were 1.4 and 2.7 mm, respectively. Concerning clinical data, the

  17. Inter- and intrafractional movement of the tumour in extracranial stereotactic radiotherapy of NSCLC

    DEFF Research Database (Denmark)

    Jensen, Henrik R; Hansen, Olfred; Hjelm-Hansen, Mogens

    2008-01-01

    where given a stereotactic treatment. The patients were scanned with normal and uncoached respiration without use of abdominal compression. Each patient had CT-scans performed at four occasions throughout the treatment: As part of the CT-simulation and before the three radiotherapy treatments. At every...... frame were LR: 1.5 mm, AP: 1.1 mm and CC: 1.7 mm (1 SD). DISCUSSION AND CONCLUSIONS: Consecutive CT scans can be used to evaluate the respiration induced tumour movement. For patients immobilized in a stereotactic body frame, large movements of the tumour are rarely seen within the lung...

  18. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  19. Fractionated stereotactic radiotherapy in brain tumors and cervical region. Experience of the Dean Funes Medical Center, first experience in stereotactic radiotherapy and radiosurgery inside the country

    International Nuclear Information System (INIS)

    Castro Vita, H.; Brunetto, M.; Derechinsky, V; Derechinsky, G.; Derechinsky, M.; Gonzalez, S.; Marinello, A.

    2004-01-01

    Purpose: A retrospective study to analyze the results of 53 patients treated with stereotactic radiotherapy in 'Centro Medico Dean Funes' was performed. The patients had brain and head and neck tumors. Patients and methods: From November 1997 to March 2003, 53 patients were treated with stereotactic radiotherapy in 'Centro Medico Dean Funes'. The daily dose administered varied from 1.8 to 2 Gy and the total dose from 30 to 70 Gy. The minimal follow up was 2 months, and the medium follow up 32 months. Local control and survival were analyzed in all patients, as well as tolerance and the complications of the treatment. Results: Since these series represented a very heterogeneous group of patients, the final results were very difficult to compare with other alternative treatments. However, an excellent tolerance to therapy was observed. Some subsets of patients had good results to treatment: patients with metastasis to the orbit, patients with lesions to the sellar and parasellar regions and some who relapsed following conventional radiotherapy, mainly lymphomas. Conclusions: Stereotactic radiotherapy is a valid therapeutic method to treat tumors of the brain and head and neck, as long as the tumor has a moderate size (6 cm. or less) and the shape is cylindrical or ellipsoid. Stereotactic radiation improves the therapeutic ratio as compared with the conventional radiotherapy. It has advantages over the 3D technique, and could compete with IMRT (Intensity modulated radiation therapy). (author) [es

  20. Stereotactic radiotherapy for non-small cell lung cancer: From concept to clinical reality. 2011 update

    International Nuclear Information System (INIS)

    Girard, N.; Mornex, F.

    2011-01-01

    Only 60% of patients with early-stage non-small cell lung cancer (NSCLC), a priori bearing a favorable prognosis, undergo radical resection because of the very frequent co-morbidities occurring in smokers, precluding surgery to be safely performed. Stereotactic radiotherapy consists of the use of multiple radiation micro-beams, allowing high doses of radiation to be delivered to the tumour (ranging from 7.5 to 20 Gy per fraction) in a small number of fractions (one to eight on average). Several studies with long-term follow-up are now available, showing the effectiveness of stereotactic radiotherapy to control stage I/II non-small cell lung cancer in medically inoperable patients. Local control rates are consistently reported to be above 95% with a median survival of 34 to 45 months. Because of these excellent results, stereotactic radiation therapy is now being evaluated in operable patients in several randomized trials with a surgical arm. Ultimately, the efficacy of stereotactic radiotherapy in early-stage tumours leads to hypothesize that it may represent an opportunity for locally-advanced tumors. The specific toxicities of stereotactic radiotherapy mostly correspond to radiation-induced chest wall side effects, especially for peripheral tumours. The use of adapted fractionation schemes has made feasible the use of stereotactic radiotherapy to treat proximal tumours. Overall, from a technical concept to the availability of specific treatment devices and the publication of clinical results, stereotactic radiotherapy represents a model of implementation in thoracic oncology. (authors)

  1. Fractionated brain stereotactic radiotherapy: assessment of repositioning precision using a thermoforming mask

    International Nuclear Information System (INIS)

    Barret, A.; Champeaux-Orange, E.; Bouscayrol, H.; Wachter, T.

    2011-01-01

    The authors report a study which aimed at assessing the patient repositioning precision obtained with a support system used during a brain fractionated stereotactic radiotherapy and comprising a thermoforming mask (Elektra head mask). The repositioning is assessed by means of scano-graphies and superimposition with the stereotactic frame. A three-dimensional vector has been computed for each patient. The average displacement corresponds to that published in literature. The high quality of the support system allows a non invasive brain stereotactic radiotherapy to be performed which is also comfortable for the patient. Short communication

  2. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  3. Hypofractionated stereotactic body radiotherapy (SBRT) for liver metastases. A retrospective analysis of 74 patients treated in the Klinikum rechts der Isar Munich

    International Nuclear Information System (INIS)

    Heppt, Franz Johannes

    2013-01-01

    Purpose of this study was to evaluate the outcome of stereotactic body radiotherapy (SBRT) of liver metastases and prognostic factors for local control and overall survival. From 2000 to 2009 74 patients with 91 metastases were treated at the Department for Radiation Therapy and Oncology (TU Muenchen). With an observed local control rate of 75% after 1 year, SBRT proved as an effective local treatment option. Unfortunately, systemic tumor progression still dominates long term survival in many patients.

  4. Stereotactic radiotherapy in the liver hilum. Basis for future studies

    International Nuclear Information System (INIS)

    Zamboglou, C.; Messmer, M.B.; Momm, F.; Becker, G.

    2012-01-01

    A basis for future trials with stereotactic body radiotherapy (SBRT) for tumors of the liver hilum should be established. Thus, dosage concepts, planning processes, and dose constraints as well as technical innovations are summarized in this contribution. Methods On the background of our own data, the current literature was reviewed. The use of SBRT in the most common tumors of the liver hilum (pancreatic cancer and Klatskin tumors) was investigated. Dose constraints were calculated in 2 Gy standard fractionation doses. Results A total of 8 pilot or phase I/II studies about SBRT in the liver hilum were identified. In recent years, the SBRT technique has developed very quickly from classical stereotactic body frame radiotherapy to IGRT techniques including gating and tracking systems. In the studies using classical body frame technique, patients experienced considerable toxicities (duodenal ulcer/perforation) as compared to tolerable side effects in IGRT studies (<10% grade 3 and 4 toxicities). Dose constraints for duodenum, liver, kidneys, colon, and spinal cord were derived from the investigated studies. Survival and local tumor control data are very heterogeneous: median survival in these patients with locally advanced pancreatic or Klatskin tumors ranges between 5 and 32 months. Excellent local tumor control rates of about 80% over 24 months were achieved using SBRT. Conclusion Despite a few negative results, SBRT seems to be a promising technique in the treatment of tumors of the liver hilum. Highest precision in diagnostics, positioning, and irradiation as well as strict dose constraints should be applied to keep target volumes as small as possible and side effects tolerable. (orig.)

  5. A neurosurgery/stereotactic radiotherapy dedicated PACS for conformal radiotherapy

    International Nuclear Information System (INIS)

    Lefkopoulos, D.; Bocquiault, P.; Levrier, M.; Merienne, L.; Schlienger, M.

    1995-01-01

    To realise conformal cerebral stereotactic irradiations we use a Neurosurgery/stereotactic dedicated PACS between two distant hospitals. It connects the stereotactic neurosurgery planification imaging system NEUROAXIS (Sopelem-Sofretec/Ste Anne Hospital) with the dosimetric TPS ARTEMIS-3D/Dosigray (Tenon Hospital). NEUROAXIS is a computer aided stereotactic biopsies and stereo-electroencephalographies, used by surgeons in operating room. The system determines the precise location data for Talairach radiological equipment (X ray source at 5 meters from film) and the geometry of scanner and MRI stereotactical referentials. It provides a full set of features for lesion localization, geometrical computations, surgical planifications, picture archiving, stereotactic angiography, CT and MRI image processing and networking. It sends images through the French public digital network ISDN (NUMERIS/France Telecom : 2x64 Kbits/s) from Ste Anne to Tenon Hospital. Stereotactic angiographic and CT images are reformatted into the DOSIGRAY image processing environment where 3-D dose distributions, displays and DVHs are computed to determine the optimal treatment. ARTEMIS-3D/Dosigray is a TPS for stereotactic radiotherapy devised by the Tenon Hospital for clinical methodology and 3D dose calculations, optimization software development and the Dosigray company for multimodality imaging, (2D(3D)) computer graphics for dose and anatomical representation and data networking. Communication within the radiation oncology department is provided by local area ETHERNET network, linking heterogeneous systems (Vaxstations-3200; Decstation (5000(240))) by means of different protocols. The works in progress are to send back via the same network the 3-D dose matrix to Neurosurgery department NEUROAXIS system. Our PACS is used since six months to treat patients. It has permitted to improve the treatment quality in comparison with our first version TPS ARTEMIS-3D

  6. Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Murray, Bryan C.; Forster, Kenneth; Timmerman, Robert

    2007-01-01

    Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates

  7. Immune Responses following Stereotactic Body Radiotherapy for Stage I Primary Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Maehata

    2013-01-01

    Full Text Available Purpose. Immune responses following stereotactic body radiotherapy (SBRT for stage I non-small cell lung cancer (NSCLC were examined from the point of view of lymphocyte subset counts and natural killer cell activity (NKA. Patients and Methods. Peripheral blood samples were collected from 62 patients at 4 time points between pretreatment and 4 weeks post-treatment for analysis of the change of total lymphocyte counts (TLC and lymphocyte subset counts of CD3+, CD4+, CD8+, CD19+, CD56+, and NKA. In addition, the changes of lymphocyte subset counts were compared between patients with or without relapse. Further, the correlations between SBRT-related parameters and immune response were analyzed for the purpose of revealing the mechanisms of the immune response. Results. All lymphocyte subset counts and NKA at post-treatment and 1 week post-treatment were significantly lower than pre-treatment (P<0.01. No significant differences in the changes of lymphocyte subset counts were observed among patients with or without relapse. The volume of the vertebral body receiving radiation doses of 3 Gy or more (VV3 significantly correlated with the changes of nearly all lymphocyte subset counts. Conclusions. SBRT for stage I NSCLC induced significant immune suppression, and the decrease of lymphocyte subset counts may be associated with exposure of the vertebral bone marrow.

  8. Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes

    Directory of Open Access Journals (Sweden)

    King Christopher R

    2011-01-01

    Full Text Available Abstract Purpose Hypofractionated, stereotactic body radiotherapy (SBRT is an emerging treatment approach for prostate cancer. We present the outcomes for low-risk prostate cancer patients with a median follow-up of 5 years after SBRT. Method and Materials Between Dec. 2003 and Dec. 2005, a pooled cohort of 41 consecutive patients from Stanford, CA and Naples, FL received SBRT with CyberKnife for clinically localized, low-risk prostate cancer. Prescribed dose was 35-36.25 Gy in five fractions. No patient received hormone therapy. Kaplan-Meier biochemical progression-free survival (defined using the Phoenix method and RTOG toxicity outcomes were assessed. Results At a median follow-up of 5 years, the biochemical progression-free survival was 93% (95% CI = 84.7% to 100%. Acute side effects resolved within 1-3 months of treatment completion. There were no grade 4 toxicities. No late grade 3 rectal toxicity occurred, and only one late grade 3 genitourinary toxicity occurred following repeated urologic instrumentation. Conclusion Five-year results of SBRT for localized prostate cancer demonstrate the efficacy and safety of shorter courses of high dose per fraction radiation delivered with SBRT technique. Ongoing clinical trials are underway to further explore this treatment approach.

  9. Hypofractionated stereotactic body radiotherapy in low- and intermediate-risk prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hun Jung; Phak, Jeong Hoon; Kim, Woo Chul [Dept. of Radiation Oncology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2016-12-15

    Stereotactic body radiotherapy (SBRT) takes advantage of low α/β ratio of prostate cancer to deliver a large dose in few fractions. We examined clinical outcomes of SBRT using CyberKnife for the treatment of low- and intermediate-risk prostate cancer. This study was based on a retrospective analysis of the 33 patients treated with SBRT using CyberKnife for localized prostate cancer (27.3% in low-risk and 72.7% in intermediate-risk). Total dose of 36.25 Gy in 5 fractions of 7.25 Gy were administered. The acute and late toxicities were recorded using the Radiation Therapy Oncology Group scale. Prostate-specific antigen (PSA) response was monitored. Thirty-three patients with a median 51 months (range, 6 to 71 months) follow-up were analyzed. There was no biochemical failure. Median PSA nadir was 0.27 ng/mL at median 33 months and PSA bounce occurred in 30.3% (n = 10) of patients at median at median 10.5 months after SBRT. No grade 3 acute toxicity was noted. The 18.2% of the patients had acute grade 2 genitourinary (GU) toxicities and 21.2% had acute grade 2 gastrointestinal (GI) toxicities. After follow-up of 2 months, most complications had returned to baseline. There was no grade 3 late GU and GI toxicity. Our experience with SBRT using CyberKnife in low- and intermediate-risk prostate cancer demonstrates favorable efficacy and toxicity. Further studies with more patients and longer follow-up duration are required.

  10. Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours

    International Nuclear Information System (INIS)

    Boudou, Caroline; Balosso, Jacques; Esteve, Francois; Elleaume, Helene

    2005-01-01

    A radiation dose enhancement can be obtained in brain tumours after infusion of an iodinated contrast agent and irradiation with kilovoltage x-rays in tomography mode. The aim of this study was to assess dosimetric properties of the synchrotron stereotactic radiotherapy technique applied to humans (SSR) for preparing clinical trials. We designed an interface for dose computation based on a Monte Carlo code (MCNPX). A patient head was constructed from computed tomography (CT) data and a tumour volume was modelled. Dose distributions were calculated in SSR configuration for various energy beam and iodine content in the target volume. From the calculations, it appears that the iodine-filled target (10 mg ml -1 ) can be efficiently irradiated by a monochromatic beam of energy ranging from 50 to 85 keV. This paper demonstrates the feasibility of stereotactic radiotherapy for treating deep-seated brain tumours with monoenergetic x-rays from a synchrotron

  11. Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system

    Directory of Open Access Journals (Sweden)

    Montagnoli Roberto

    2010-01-01

    Full Text Available Abstract Background To assess the accuracy of fractionated stereotactic radiotherapy (FSRT using a stereotactic mask fixation system. Patients and Methods Sixteen patients treated with FSRT were involved in the study. A commercial stereotactic mask fixation system (BrainLAB AG was used for patient immobilization. Serial CT scans obtained before and during FSRT were used to assess the accuracy of patient immobilization by comparing the isocenter position. Daily portal imaging were acquired to establish day to day patient position variation. Displacement errors along the different directions were calculated as combination of systematic and random errors. Results The mean isocenter displacements based on localization and verification CT imaging were 0.1 mm (SD 0.3 mm in the lateral direction, 0.1 mm (SD 0.4 mm in the anteroposterior, and 0.3 mm (SD 0.4 mm in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.4 mm, being maximum 1.4 mm. No significant differences were found during the treatment (P = 0.4. The overall isocenter displacement as calculated by 456 anterior and lateral portal images were 0.3 mm (SD 0.9 mm in the mediolateral direction, -0.2 mm (SD 1 mm in the anteroposterior direction, and 0.2 mm (SD 1.1 mm in the craniocaudal direction. The largest displacement of 2.7 mm was seen in the cranio-caudal direction, with 95% of displacements Conclusions The results indicate that the setup error of the presented mask system evaluated by CT verification scans and portal imaging are minimal. Reproducibility of the isocenter position is in the best range of positioning reproducibility reported for other stereotactic systems.

  12. CT simulation in stereotactic brain radiotherapy - analysis of isocenter reproducibility with mask fixation

    International Nuclear Information System (INIS)

    Willner, Jochen; Flentje, Michael; Bratengeier, Klaus

    1997-01-01

    Background and purpose: CT verification and measurement of isocenter deviation using repeated mask fixation in linac-based stereotactic high dose radiotherapy of brain metastases were performed in this study. Materials and methods: For stereotactic radiotherapy of brain metastases a commercial head mask fixation device based on thermoplastic materials (BrainLAB) was used. A two-step planning-treatment procedure was performed. Immediately before treatment the patient was relocated in the mask and a verification CT scan of the radiopaque marked isocenter was performed and if necessary its position was corrected. The verification procedure is described in detail. Twenty-two CT verifications in 16 patients were analyzed. Deviations were measured separately for each direction. A 3D-deviation vector was calculated. Additionally the average amount of deviation in each of the three dimensions was calculated. Results: The mean deviation and standard deviation (SD) of the isocenter was 0.4 mm (SD 1.5 mm) in the longitudinal direction, -0.1 mm (SD 1.8 mm) in the lateral direction and 0.1 mm (SD 1.2 mm) in the anterior-posterior direction. The mean three-dimensional distance (3D-vector) between the verified and the corrected isocenter was 2.4 mm (SD 1.3 mm). The average deviation (without consideration of direction) was 1.1 mm (SD 1.1 mm), 1.3 mm (SD 1.3 mm) and 0.8 mm (SD 0.9 mm) in the longitudinal, lateral and sagittal directions, respectively. No correlation was found between 3D-deviation and the distance of the isocenter from the reference plane nor between deviation and the position of metastases in the brain (central versus peripheral or between different lobes), or the date of treatment. Conclusion: Reproducibility of the isocenter using the presented mask fixation is in the range of positioning reproducibility reported for other non-invasive fixation devices for stereotactic brain treatment. Our results underline the importance of CT verification as a quality

  13. Stereotactic Body Radiotherapy for Oligometastasis: Opportunities for Biology to Guide Clinical Management.

    Science.gov (United States)

    Correa, Rohann J M; Salama, Joseph K; Milano, Michael T; Palma, David A

    2016-01-01

    Oligometastasis refers to a state of limited metastatic disease burden, in which surgical or ablative treatment to all known visible metastases holds promise to extend survival or even effect cure. Stereotactic body radiotherapy is a form of radiation treatment capable of delivering a high biologically effective dose of radiation in a highly conformal manner, with a favorable toxicity profile. Enthusiasm for oligometastasis ablation, however, should be counterbalanced against the limited supporting evidence. It remains unknown to what extent (if any) ablation influences survival or quality of life. Rising clinical equipoise necessitates the completion of randomized controlled trials to assess this, several of which are underway. However, a lack of clear identification criteria or biomarkers to define the oligometastatic state hampers optimal patient selection.This narrative review explores the evolutionary origins of oligometastasis, the steps of the metastatic process at which oligometastases may arise, and the biomolecular mediators of this state. It discusses clinical outcomes with treatment of oligometastases, ongoing trials, and areas of basic and translational research that may lead to novel biomarkers. These efforts should provide a clearer, biomolecular definition of oligometastatic disease and aid in the accurate selection of patients for ablative therapies.

  14. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    International Nuclear Information System (INIS)

    Norrgaard, F. Stefan E.; Kulmala, Jarmo A.J.; Minn, Heikki R.I.; Sipilae, Petri M.

    1998-01-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 deg. arcs separated by 36 deg. angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress. (author)

  15. Extracranial stereotactic radiotherapy: preliminary results with the CyberKnife.

    Science.gov (United States)

    Lartigau, Eric; Mirabel, Xavier; Prevost, Bernard; Lacornerie, Thomas; Dubus, Francois; Sarrazin, Thierry

    2009-04-01

    In the field of radiation oncology, equipment for fractionated radiotherapy and single-dose radiosurgery has become increasingly accurate, together with the introduction of robotized treatments. A robot is a device that can be programmed to carry out accurate, repeated and adjusted tasks in a given environment. Treatment of extracranial lesions involves taking into account organ mobility (tumor and healthy tissue) whilst retaining the ability to stereotactically locate the target. New imaging techniques (single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), positron emission tomography (PET)) provide further relevant information to slice images (computed tomography (CT) scans, MRI) for target definition. Hypo-fractionated treatments can only be used for curative treatment if the target is accurately defined and tracked during treatment. The CyberKnife is a non-invasive system of radiosurgery and fractionated stereotactic radiotherapy. For intracranial lesions treated by single-dose radiosurgery, it has been used to treat meningioma, acoustic neuromas, pituitary adenoma, metastases, arteriovenous malformations and refractory pain (trigeminal neuralgia). More than 10,000 patients have been treated worldwide. Currently, the most significant developments are in the field of extracranial stereotactic radiotherapy (lung, liver, reirradiation, prostate, etc.). Clinical results obtained in the CyberKnife Nord-Ouest program after 1 year of experience are presented. Copyright 2009 S. Karger AG, Basel.

  16. Treatment by stereotactic radiotherapy of tumoral injuries after implant placement: preliminary study

    International Nuclear Information System (INIS)

    Meingan, P.; Rio, E.; Labbe-Devilliers, C.; Geffroy, D.; Ricaud-Couprie, M.; Doutriaux-Dumoulin, I.

    2009-01-01

    Objective: to evaluate the interest and the place of stereotactic radiotherapy in the treatment of primitive or secondary tumoral injuries of the liver. To describe the technique of implants placement. Conclusion: the liver stereotactic radiotherapy, after implant placement, seems to be an alternative or complementary therapy to the radiofrequency for patients refused for surgery, with moderated side effects and a noticeable survival. Complementary studies, especially associated to radiofrequency must be considered. (N.C.)

  17. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  18. Non small cells stage I bronchial cancers: three-dimensional radiotherapy and radiotherapy in stereotactic conditions; Cancers bronchiques non a petites cellules de stade I: radiotherapie tridimensionnelle et radiotherapie en conditions stereotaxiques

    Energy Technology Data Exchange (ETDEWEB)

    Schipman, B.; Bosset, J.F. [CHU, 25 - Besancon (France); Marchesi, V.; Beckendorf, V.; Desandes, E.; Peiffert, D. [CRLCC Alexis-Vautrin, 54 - Vandaeuvre-les-Nancy (France); Bosset, M. [CHU, 26 - Valence (France)

    2010-10-15

    The authors report a comparison between three-dimensional conformation radiotherapy and robotic irradiation in stereotactic conditions (with CyberKnife) for patients suffering from a bronchial cancer with no small cells of stage I. Acute and late toxicity have been recorded, and the monitoring comprised a clinic examination and a thoracic scanography. The external radiotherapy results in an important local control rate and an acceptable toxicity. Some prospective studies are still needed to compare three-dimensional conformation respiratory-gated radiotherapy and radiotherapy in stereotactic conditions. Short communication

  19. Reproducibility and geometric accuracy of the fixster system during hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lindvall, Peter; Bergström, Per; Löfroth, Per-Olov; Henriksson, Roger; Bergenheim, A Tommy

    2008-01-01

    Hypofractionated radiotherapy has been used for the treatment of AVMs and brain metastases. Hypofractionation necessitates the use of a relocatable stereotactic frame that has to be applied on several occasions. The stereotactic frame needs to have a high degree of reproducibility, and patient positioning is crucial to achieve a high accuracy of the treatment. In this study we have, by radiological means, evaluated the reproducibility of the isocenter in consecutive treatment sessions using the Fixster frame. Deviations in the X, Y and Z-axis were measured in 10 patients treated with hypofractionated radiotherapy. The mean deviation in the X-axis was 0.4 mm (range -2.1 – 2.1, median 0.7 mm) and in the Y-axis -0.3 mm (range -1.4 – 0.7, median -0.2 mm). The mean deviation in the Z-axis was -0.6 (range -1.4 – 1.4, median 0.0 mm). There is a high degree of reproducibility of the isocenter during successive treatment sessions with HCSRT using the Fixster frame for stereotactic targeting. The high reducibility enables a safe treatment using hypofractionated stereotactic radiotherapy

  20. SU-F-T-566: Absolute Film Dosimetry for Stereotactic Radiosurgery and Stereotactic Body Radiotherapy Quality Assurance Using Gafchromic EBT3 Films

    Energy Technology Data Exchange (ETDEWEB)

    Wen, N; Lu, S; Qin, Y; Huang, Y; Zhao, B; Liu, C; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To evaluate the dosimetric uncertainty associated with Gafchromic (EBT3) films and establish an absolute dosimetry protocol for Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT). Methods: EBT3 films were irradiated at each of seven different dose levels between 1 and 15 Gy with open fields, and standard deviations of dose maps were calculated at each color channel for evaluation. A scanner non-uniform response correction map was built by registering and comparing film doses to the reference diode array-based dose map delivered with the same doses. To determine the temporal dependence of EBT3 films, the average correction factors of different dose levels as a function of time were evaluated up to four days after irradiation. An integrated film dosimetry protocol was developed for dose calibration, calibration curve fitting, dose mapping, and profile/gamma analysis. Patient specific quality assurance (PSQA) was performed for 93 SRS/SBRT treatment plans. Results: The scanner response varied within 1% for the field sizes less than 5 × 5 cm{sup 2}, and up to 5% for the field sizes of 10 × 10 cm{sup 2}. The scanner correction method was able to remove visually evident, irregular detector responses found for larger field sizes. The dose response of the film changed rapidly (∼10%) in the first two hours and plateaued afterwards, ∼3% change between 2 and 24 hours. The mean uncertainties (mean of the standard deviations) were <0.5% over the dose range 1∼15Gy for all color channels for the OD response curves. The percentage of points passing the 3%/1mm gamma criteria based on absolute dose analysis, averaged over all tests, was 95.0 ± 4.2. Conclusion: We have developed an absolute film dose dosimetry protocol using EBT3 films. The overall uncertainty has been established to be approximately 1% for SRS and SBRT PSQA. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.

  1. Neurosymptomatic carvenous sinus meningioma: a 15-years experience with fractionated stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Correa, Sebastião Francisco Miranda; Marta, Gustavo Nader; Teixeira, Manoel Jacobsen

    2014-01-01

    The tumor removal of Cavernous Sinus Meningiomas usually results in severe neurological deficits. Stereotactic radiosurgery (SRS) and fractionated Stereotactic radiotherapy (SRT) are advanced modalities of radiotherapy for treatment of patients with inoperable and symptomatic CSMs. The authors evaluated the long term symptomatology, the image findings, and the toxicity of patients with CSMs treated with SRS or SRT. From 1994 to 2009, 89 patients with symptomatic CSMs were treated with SRS or SRT. The indication was based on tumour volume and or proximity to the optic chiasm. The median single dose of SRS was 14 Gy, while the SRT total dose, ranged from 50.4 to 54 Gy fractionated in 1.8-2 Gy/dose. The median follow-up period lasted 73 months. The clinical and radiological improvement was the same despite the method of radiotherapy; 41.6% (SRS) and 48.3% (SRT) of patients treated. The disease-free survivals were 98.8%, 92.3% and 92.3%, in 5, 10, and 15 years, respectively. There was no statistical difference in relation to the symptoms and image findings between both methods. According to the Common Toxicity Criteria, 7% of the patients presented transient optic neuropathy during 3 months (grade 2) and recovered with dexamethasone, 2 patients had trigeminal neuropathy (grade 2) and improved rapidly, and one patient presented total occlusion of the internal carotid artery without neurological deficit (grade 2). Temporary lethargy and headache (grade 1) were the most frequent immediate complications. No severe complications occurred. Stereotactic Radiosurgery and fractionated Stereotactic Radiotherapy were equally safe and effective in the management of symptomatic CSMs

  2. Effect of stereotactic body radiotherapy versus intensity-modulated radiotherapy in primary liver cancer patients with secondary malignant tumor of vertebra

    Directory of Open Access Journals (Sweden)

    SUN Jing

    2016-06-01

    Full Text Available ObjectiveTo investigate the effect of stereotactic body radiotherapy (SBRT versus intensity-modulated radiotherapy (IMRT in primary liver cancer (PLC patients with secondary malignant tumor of vertebra. MethodsA total of 49 PLC patients with secondary metastatic tumor of vertebra, who were treated in our hospital from December 2011 to January 2014, were enrolled and divided into group A (20 patients treated with SBRT and group B (29 patients treated with IMRT. The prescribed dose was 35 Gy in 5 fractions in group A and 35 Gy in 10 fractions in group B. The time to pain relief, imaging findings, and survival analysis were used to evaluate pain-relieving effect, the condition of lesions, and survival time. The t-test was used to compare continuous data between groups, and the chi-square test was used to compare categorical data between groups. The K-M method was used to plot survival curves for both groups, and the log-rank test was used for survival difference analysis. ResultsThe proportion of patients who achieved complete or partial remission and stable disease shown by radiological examination after radiotherapy showed no significant difference between group A and group B (P=0.873. The pain relief rate also showed no significant difference between group A and group B (P=0.908. The time of pain relief showed a significant difference between group A and group B (t=-3.353, P<0.01. The overall survival showed no significant difference between the two groups (P=0.346. ConclusionRadiotherapy has a definite therapeutic effect in PLC patients with secondary malignant tumor of vertebra. SBRT and IMRT have similar pain-relieving effects. However, with the same prescribed dose, SBRT has a short time to pain relief and does not lead to serious intolerable acute or late toxic and side effects in surrounding fast-response tissues.

  3. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.; Yang, Wensha; Benedict, Stanley H.; Sheng Ke; Schefter, Tracey E.; Kavanagh, Brian D.; Larner, James M.

    2010-01-01

    Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving ≥20, ≥30, ≥40, ≥50, and ≥60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R 2 = 0.9552). A volume threshold of 30 cm 3 was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm 3 receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to 3 , if possible, to reduce the risk of toxicity without compromising tumor coverage.

  4. Phantom-to-clinic development of hypofractionated stereotactic body radiotherapy for early-stage glottic laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chuxiong [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Chun, Stephen G. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Sumer, Baran D. [Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Nedzi, Lucien A.; Abdulrahman, Ramzi E. [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Yordy, John S. [Valley Radiation Therapy Center, Anchorage, AK (United States); Lee, Pam; Hrycushko, Brian [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Solberg, Timothy D. [Department of Radiation Oncology, Abramson Comprehensive Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Ahn, Chul [Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX (United States); Timmerman, Robert D. [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Schwartz, David L., E-mail: david.schwartz214@gmail.com [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States)

    2017-07-01

    The purpose of this study was to commission and clinically test a robotic stereotactic delivery system (CyberKnife, Sunnyvale, CA) to treat early-stage glottic laryngeal cancer. We enrolled 15 patients with cTis-T2N0M0 carcinoma of the glottic larynx onto an institutional review board (IRB)-approved clinical trial. Stereotactic body radiotherapy (SBRT) plans prescribed 45 Gy/10 fractions to the involved hemilarynx. SBRT dosimetry was compared with (1) standard carotid-sparing laryngeal intensity-modulated radiation therapy (IMRT) and (2) selective hemilaryngeal IMRT. Our results demonstrate that SBRT plans improved sparing of the contralateral arytenoid (mean 20.0 Gy reduction, p <0.001), ipsilateral carotid D{sub max} (mean 20.6 Gy reduction, p <0.001), contralateral carotid D{sub max} (mean 28.1 Gy reduction, p <0.001), and thyroid D{sub mean} (mean 15.0 Gy reduction, p <0.001) relative to carotid-sparing IMRT. SBRT also modestly improved dose sparing to the contralateral arytenoid (mean 4.8 Gy reduction, p = 0.13) and spinal cord D{sub max} (mean 4.9 Gy reduction, p = 0.015) relative to selective hemilaryngeal IMRT plans. This “phantom-to-clinic” feasibility study confirmed that hypofractionated SBRT treatment for early-stage laryngeal cancer can potentially spare dose to adjacent normal tissues relative to current IMRT standards. Clinical efficacy and toxicity correlates continue to be collected through an ongoing prospective trial.

  5. Clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy for lung tumors.

    Science.gov (United States)

    Asai, Kaori; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Matsuo, Yoshio; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Shinoto, Makoto; Matsumoto, Keiji; Hirata, Hidenari; Honda, Hiroshi

    2015-12-01

    We retrospectively investigated the clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy (SBRT) for lung tumors. Between April 2003 and July 2012, 473 patients with lung tumors were treated with SBRT. We identified 12 patients (2.5 %) with pneumothorax caused by SBRT, and evaluated the clinical features of pneumothorax. All of the tumors were primary lung cancers. The severity of radiation pneumonitis was grade 1 in 10 patients and grade 2 in two patients. Nine patients had emphysema. The planning target volume and pleura overlapped in 11 patients, and the tumors were attached to the pleura in 7 patients. Rib fractures were observed in three patients before or at the same time as the diagnosis of pneumothorax. The median time to onset of pneumothorax after SBRT was 18.5 months (4-84 months). The severity of pneumothorax was grade 1 in 11 patients and grade 3 in one patient. Although pneumothorax was a relatively rare late adverse effect after SBRT, some patients demonstrated pneumothorax after SBRT for peripheral lung tumors. Although most pneumothorax was generally tolerable and self-limiting, careful follow-up is needed.

  6. Clinical outcome of stereotactic body radiotherapy of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Kondo, Hidehiro

    2007-01-01

    The aim of this study was to investigate the clinical outcome of stereotactic body radiotherapy (SBRT) of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system. The subjects were 19 patients who had localized lung tumor (11 primaries, 8 metastases) between May 2003 and October 2005. Treatment was conducted on 19 lung tumors by fixed multiple noncoplanar conformal beams with a standard linear accelerator. The isocentric dose was 54 Gy in nine fractions. The median overall treatment time was 15 days (range 11-22 days). All patients were immobilized by a thermo-shell and a custom-made headrest during the treatment. The crude local tumor control rate was 95% during the follow-up of 9.4-39.5 (median 17.7) months. In-field recurrence was noted in only one patient at the last follow-up. The Kaplan-Meier overall survival rate at 2 years was 89.5%. Grade 1 radiation pneumonia and grade 1 radiation fibrosis were observed in 12 of the 19 patients. Treatment-related severe early and late complications were not observed in this series. The stereotactic body radiotherapy of 54 Gy in nine fractions achieved acceptable tumor control without any severe complications. The results suggest that SBRT can be one of the alternatives for patients with localized lung tumors. (author)

  7. [Stereotactic body radiation therapy for spinal metastases].

    Science.gov (United States)

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. The university of Florida frameless high-precision stereotactic radiotherapy system

    International Nuclear Information System (INIS)

    Bova, Francis J.; Buatti, John M.; Friedman, William A.; Mendenhall, William M.; Yang, Ching-Chong; Liu, Chihray

    1997-01-01

    Purpose: To develop and test a system for high precision fractionated stereotactic radiotherapy that separates immobilization and localization devices. Methods and Materials: Patient localization is achieved through detection and digital registration of an independent bite plate system. The bite plate is made and linked to a set of six infrared light emitting diodes (IRLEDs). These IRLEDs are detected by an infrared camera system that identifies the position of each IRLED within 0.1 to 0.15 mm. Calibration of the camera system defines isocenter and translational X, Y, and Z axes of the stereotactic radiosurgery subsystem and thereby digitally defines the virtual treatment room space in a computer linked to the camera system. Positions of the bite plate's IRLEDs are processed digitally using a computer algorithm so that positional differences between an actual bite plate position and a desired position can be resolved within 0.1 mm of translation (X, Y, and Z distance) and 0.1 degree of rotation. Furthermore, bite plate misalignment can be displayed digitally in real time with translational (x, y, and z) and rotational (roll, pitch, and yaw) parameters for an actual bite plate position. Immobilization is achieved by a custom head mold and thermal plastic mask linked by hook-and-loop fastener tape. The head holder system permits rotational and translational movements for daily treatment positioning based on the bite plate localization system. Initial testing of the localization system was performed on 20 patients treated with radiosurgery. The system was used to treat 11 patients with fractionated stereotactic radiotherapy. Results: Assessment of bite plate localization in radiosurgery patients revealed that the patient's bite plate could be positioned and repositioned within 0.5 ± 0.3 mm (standard deviation). After adjustments, the first 11 patients were treated with the bite plate repositioning error reduced to 0.2 ± 0.1 mm. Conclusions: High precision

  9. Effectiveness of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombosis.

    Directory of Open Access Journals (Sweden)

    Mian Xi

    Full Text Available BACKGROUND: To report the feasibility, efficacy, and toxicity of stereotactic body radiotherapy (SBRT for the treatment of portal vein tumor thrombosis (PVTT and/or inferior vena cava tumor thrombosis (IVCTT in patients with advanced hepatocellular carcinoma (HCC. MATERIALS AND METHODS: Forty-one patients treated with SBRT using volumetric modulated arc therapy (VMAT for HCC with PVTT/IVCTT between July 2010 and May 2012 were analyzed. Of these, 33 had PVTT and 8 had IVCTT. SBRT was designed to target the tumor thrombosis and deliver a median total dose of 36 Gy (range, 30-48 Gy in six fractions during two weeks. RESULTS: The median follow-up was 10.0 months. At the time of analysis, 15 (36.6% achieved complete response, 16 (39.0% achieved partial response, 7 (17.1% patients were stable, and three (7.3% patients showed progressive disease. No treatment-related Grade 4/5 toxicity was seen within three months after SBRT. One patient had Grade 3 elevation of bilirubin. The one-year overall survival rate was 50.3%, with a median survival of 13.0 months. The only independent predictive factor associated with better survival was response to radiotherapy. CONCLUSIONS: VMAT-based SBRT is a safe and effective treatment option for PVTT/IVCTT in HCC. Prospective randomized controlled trials are warranted to validate the role of SBRT in these patients.

  10. Setup verification in stereotactic radiotherapy using digitally reconstructed radiograph (DRR)

    International Nuclear Information System (INIS)

    Cho, Byung Chul; Oh, Do Hoon; Bae, Hoon Sik

    1999-01-01

    To develop a method for verifying a treatment setup in stereotactic radiotherapy by matching portal images to DRRs. Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mast frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anterior/posterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned isocenter and fiducial markers are printed out on transparent films. And then, they were overlaid over orthogonal portal images by matching anatomical structures. From three different kind of objects (isocenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), and the displacement error between fiducial markers and isocenters (localization error)were measured. Localization errors were 1.5±0.3 mm (lateral), and immobilization errors were 1.9±0.5 mm (AP), 1.9±0.4 mm (lateral). In addition, overall setup errors were 1.6±0.9 mm (AP), 1.3±0.4 mm(lateral). From these orthogonal displacement errors, maximum 3D displacement errors(√(ΔAP) 2 +(ΔLat) 2 ) were found to be 1.7±0.4 mm for localization, 2.6±0.6 mm for immobilization, and 2.3±0.7 mm for overall treatment setup. By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy

  11. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  12. Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung

    International Nuclear Information System (INIS)

    Bishawi, Muath; Kim, Bong; Moore, William H.; Bilfinger, Thomas V.

    2012-01-01

    Purpose: Surgical resection remains the standard of care for operable early-stage non–small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patients were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% ≤50% predicted, FEV%/forced vital capacity [FVC]% ≤70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 ± 5 vs. 40 ± 9 (p = 0.4) and 77 ± 0.5 vs. 73 ± 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL CO ) did significantly increase for the No-COPD group after SBRT treatment: 60 ± 24 vs. 69 ± 22 (p = 0.022); however, DL CO was unchanged for the COPD group: 49 ± 13 vs. 50 ± 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 ± 24 to 9 ± 16 (p 1 and FVC, but it shrank tumor volume and improved DL CO for patients without COPD.

  13. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    International Nuclear Information System (INIS)

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence; Chang, Stephanie; Kuo, Timothy; Ford, James M.; Fisher, George A.; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Greco, Ralph; Yang, George P.; Koong, Albert C.

    2008-01-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife. Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant

  14. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  15. Cerebral control and survival after stereotactic radiotherapy of brain metastases

    International Nuclear Information System (INIS)

    Arnold, Elmar Till

    2014-01-01

    This retrospective study, including 275 patients who underwent stereotactic radiotherapy due to brain metastases between 2003 and 2008, investigates influencing factors regarding cerebral control and survival, symptomatic effects and a potential benefit for patients older than 70 years. We were able to identify risk factors for remote brain failure which leads to a therapeutic recommendation. Furthermore we confirm a positive symptomatic effect and a benefit of stereotactic readiotherapy for patients over 70 years.

  16. Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongbao [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Hoisak, Jeremy D.P.; Li, Nan; Jiang, Carrie [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Tian, Zhen [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Gautier, Quentin; Zarepisheh, Masoud [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Wu, Zhaoxia; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Jia, Xun [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); and others

    2015-01-01

    Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volume (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.

  17. The Early Result of Whole Pelvic Radiotherapy and Stereotactic Body Radiotherapy Boost for High Risk Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Yu-Wei eLin

    2014-10-01

    Full Text Available PurposeThe rationale for hypofractionated radiotherapy in the treatment of prostate cancer is based on the modern understanding of radiobiology and advances in stereotactic body radiotherapy (SBRT techniques. Whole-pelvis irradiation combined with SBRT boost for high-risk prostate cancer might escalate biologically effective dose without increasing toxicity. Here, we report our 4-year results of SBRT boost for high-risk localized prostate cancer.Methods and MaterialsFrom October 2009 to August 2012, 41 patients of newly diagnosed, high-risk or very high-risk (NCCN definition localized prostate cancer patients were treated with whole-pelvis irradiation and SBRT boost. The whole pelvis dose was 45Gy (25 fractions of 1.8Gy. The SBRT boost dose was 21 Gy (three fractions of 7 Gy. Ninety percent of these patients received hormone therapy. The toxicities of gastrointestinal (GI and genitourinary (GU tracts were scored by Common Toxicity Criteria Adverse Effect (CTCAE v3.0. Biochemical failure was defined by Phoenix definition.ResultsMedian follow-up was 42 months. Mean PSA before treatment was 44.18 ng/ml. Mean PSA level at 3, 6, 12, 18, and 24 months was 0.94, 0.44, 0.13, 0.12, and 0.05 ng/ml, respectively. The estimated 4-year biochemical failure-free survival was 91.9%. Three biochemical failures were observed. GI and GU tract toxicities were minimal. No grade 3 acute GU or GI toxicity was noted. During radiation therapy, 27% of the patient had grade 2 acute GU toxicity and 12% had grade 2 acute GI toxicity. At 3 months, most toxicity scores had returned to baseline. At the last follow up, there was no grade 3 late GU or GI toxicity.ConclusionsWhole-pelvis irradiation combined with SBRT boost for high-risk localized prostate cancer is feasible with minimal toxicity and encouraging biochemical failure-free survival. Continued accrual and follow-up would be necessary to confirm the biochemical control rate and the toxicity profiles.

  18. Hypofractionated stereotactic radiotherapy for malignant tumors of the lung

    Directory of Open Access Journals (Sweden)

    О. Ю. Аникеева

    2015-10-01

    Full Text Available Hypofractionated stereotactic radiotherapy was used for 26 patients at medically inoperable stage I of non-small cell lung cancer with dose escalation of 48-54 Gy prescribed at 90 or 95% isodose level in 3-4 fractions. Nine-months local control and cancer-specific survival were 82.0 and 66.8% respectively, with minimal toxicity. For metastatic lung tumors local control was obtained in 92% cases. Hypofractionated stereotactic radiation therapy (SBRT is safe and feasible for the treatment of inoperable primary lung cancer and single lung metastasis.

  19. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    International Nuclear Information System (INIS)

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  20. LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Georg, Dietmar; Zehetmayer, Martin; Bogner, Joachim; Georgopoulos, Michael; Poetter, Richard

    2003-01-01

    Purpose: To study local tumor control and radiogenic side effects after fractionated LINAC based stereotactic radiotherapy for selected uveal melanoma. Patients and methods: Between June 1997 and March 2001, 90 patients suffering from uveal melanoma were treated at a LINAC with 6 MV. The head was immobilized with a modified stereotactic frame system (BrainLAB). For stabilization of the eye position a light source was integrated into the mask system in front of the healthy or the diseased eye. A mini-video camera was used for on-line eye movement control. Tumors included in the study were either located unfavorably with respect to macula and optical disc ( 7 mm. Median tumor volume was 305±234 mm 3 (range 70-1430 mm 3 ), and mean tumor height was 5.4±2.3 mm (range 2.7-15.9 mm). Total doses of 70 (single dose 14 Gy at 80% isodose) or 60 Gy (single dose 12 Gy at 80% isodose) were applied in five fractions within 10 days. The first fractionation results in total dose (TD) (2 Gy) of 175 Gy for tumor and 238 Gy for normal tissue, corresponding values for the second fractionation schedule are 135 and 180 Gy, respectively. Results: After a median follow-up of 20 months (range 1-48 months) local control was achieved in 98% (n=88). The mean relative tumor reductions were 24, 27, and 37% after 12, 24 and 36 months. Three patients (3.3%) developed metastases. Secondary enucleation was performed in seven patients (7.7%). Long term side effects were retinopathy (25.5%), cataract (18.9%), optic neuropathy (20%), and secondary neovascular glaucoma (8.8%). Conclusion: Fractionated LINAC based stereotactic photon beam therapy in conjunction with a dedicated eye movement control system is a highly effective method to treat unfavorably located uveal melanoma. Total doses of 60 Gy (single dose 12 Gy) are considered to be sufficient to achieve good local tumor control

  1. Stereotactic Body Radiotherapy for the Treatment of Renal Tumors

    Directory of Open Access Journals (Sweden)

    Michael Hanzly

    2014-09-01

    Full Text Available The purpose of this study was to evaluate the response of actively growing renal masses to stereotactic body radiation therapy (SBRT. We retrospectively reviewed our institutional review board–approved kidney database and identified 4 patients who underwent SBRT, 15 Gy dose, for their rapidly growing renal masses. Three patients had a decreased tumor size after radiation treatment by 20.8%, 38.1%, and 20%. The other patient had a size gain of 5.6%. This patient maintained a similar tumor growth rate before and after SBRT. Mean follow-up time was 13.8 months. SBRT represents an effective management option in select patients with larger rapidly growing kidney masses.

  2. Stability of percutaneously implanted markers for lung stereotactic radiotherapy

    DEFF Research Database (Denmark)

    Persson, Gitte Bjørnsen Fredberg; Josipovic, Mirjana; Von Der Recke, Peter

    2013-01-01

    The purpose of this study was to evaluate the stability of complex markers implanted into lung tumors throughout a course of stereotactic body radiotherapy (SBRT). Fifteen patients referred for lung SBRT were prospectively included. Radio-opaque markers were implanted percutaneously, guided...... mm in one or more registrations throughout the SBRT course. This is the first study to evaluate stability of complex markers implanted percutaneously into lung tumors for image guidance in SBRT. We conclude that the observed stability of marker position within the tumor indicates that complex markers...... can be used as surrogates for tumor position during a short course of SBRT as long as the uncertainties related to their position within the tumor are incorporated into the planning target volume....

  3. Single-centre experience of stereotactic radiosurgery and fractionated stereotactic radiotherapy for prolactinomas with the linear accelerator.

    Science.gov (United States)

    Wilson, Peter J; Williams, Janet Rosemary; Smee, Robert Ian

    2015-06-01

    Primary management of prolactinomas is usually medical, with surgery a secondary option where necessary. This study is a review of a single centre's experience with focused radiotherapy where benefit was not gained by medical or surgical approaches. Radiotherapy as an alternative and adjuvant treatment for prolactinomas has been performed at our institution with the linear accelerator since 1990. We present a retrospective review of 13 patients managed with stereotactic radiosurgery (SRS) and 5 managed with fractionated stereotactic radiotherapy (FSRT), as well as 5 managed with conventional radiotherapy, at the Prince of Wales Hospital. Patients with a histopathologically diagnosed prolactinoma were eligible. Those patients who had a confirmed pathological diagnosis of prolactinoma following surgical intervention, a prolactin level elevated above 500 μg/L, or a prolactin level persistently elevated above 200 μg/L with exclusion of other causes were represented in this review. At the end of documented follow-up (SRS median 6 years, FSRT median 2 years), no SRS patients showed an increase in tumour volume. After FSRT, 1 patient showed an increase in size, 2 showed a decrease in size and 2 patients showed no change. Prolactin levels trended towards improvement after SRS and FSRT, but no patients achieved the remission level of <20 μg/L. Seven of 13 patients in the SRS group achieved a level of <500 μg/L, whereas no patients reached this target after FSRT. A reduction in prolactin level is frequent after SRS and FSRT for prolactinomas; however, true biochemical remission is uncommon. Tumour volume control in this series was excellent, but this may be related to the natural history of the disease. Morbidity and mortality after stereotactic radiation were very low in this series. © 2014 The Royal Australian and New Zealand College of Radiologists.

  4. A Multidisciplinary Evaluation of a Web-based eLearning Training Programme for SAFRON II (TROG 13.01): a Multicentre Randomised Study of Stereotactic Radiotherapy for Lung Metastases.

    Science.gov (United States)

    Pham, D; Hardcastle, N; Foroudi, F; Kron, T; Bressel, M; Hilder, B; Chesson, B; Oates, R; Montgomery, R; Ball, D; Siva, S

    2016-09-01

    In technically advanced multicentre clinical trials, participating centres can benefit from a credentialing programme before participating in the trial. Education of staff in participating centres is an important aspect of a successful clinical trial. In the multicentre study of fractionated versus single fraction stereotactic ablative body radiotherapy in lung oligometastases (TROG 13.01), knowledge transfer of stereotactic ablative body radiotherapy techniques to the local multidisciplinary team is intended as part of the credentialing process. In this study, a web-based learning platform was developed to provide education and training for the multidisciplinary trial teams at geographically distinct sites. A web-based platform using eLearning software consisting of seven training modules was developed. These modules were based on extracranial stereotactic theory covering the following discrete modules: Clinical background; Planning technique and evaluation; Planning optimisation; Four-dimensional computed tomography simulation; Patient-specific quality assurance; Cone beam computed tomography and image guidance; Contouring organs at risk. Radiation oncologists, medical physicists and radiation therapists from hospitals in Australia and New Zealand were invited to participate in this study. Each discipline was enrolled into a subset of modules (core modules) and was evaluated before and after completing each module. The effectiveness of the eLearning training will be evaluated based on (i) knowledge retention after participation in the web-based training and (ii) confidence evaluation after participation in the training. Evaluation consisted of a knowledge test and confidence evaluation using a Likert scale. In total, 130 participants were enrolled into the eLearning programme: 81 radiation therapists (62.3%), 27 medical physicists (20.8%) and 22 radiation oncologists (16.9%). There was an average absolute improvement of 14% in test score (P 4 weeks) after

  5. Stereotactic body radiotherapy for centrally located stage I NSCLC. A multicenter analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schanne, Daniel H.; Nestle, Ursula; Grosu, Anca L. [Universitaetsklinik Freiburg, Klinik fuer Strahlenheilkunde, Freiburg (Germany); Allgaeuer, Michael [Barmherzige Brueder, Klinik fuer Strahlentherapie, Regensburg (Germany); Andratschke, Nicolaus; Molls, Michael [TU Muenchen, Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Muenchen (Germany); Appold, Steffen [Universitaetsklinikum Dresden, Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden (Germany); Dieckmann, Ute [Allgemeines Krankenhaus Wien, Univ. Klinik fuer Strahlentherapie, Wien (Austria); Ernst, Iris [Universitaetsklinikum Muenster, Klinik fuer Strahlentherapie, Muenster (Germany); Ganswindt, Ute [LMU Muenchen, Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Holy, Richard [Universitaetsklinikum Aachen, Klinik fuer Strahlentherapie, Aachen (Germany); Nevinny-Stickel, Meinhard [Medizinischen Universitaet Innsbruck, Univ. Klinik fuer Strahlentherapie und Radioonkologie, Innsbruck (Austria); Semrau, Sabine [Universitaetsklinikum Erlangen, Strahlenklinik Erlangen, Erlangen (Germany); Sterzing, Florian [Universitaetsklinikum Heidelberg, Klinik fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Wittig, Andrea [Philipps-Universitaet Marburg, Klinik fuer Strahlentherapie und Radioonkologie, Marburg (Germany); Guckenberger, Matthias [Universitaet Wuerzburg, Klinik und Poliklinik fuer Strahlentherapie, Wuerzburg (Germany)

    2014-08-27

    The purpose of this work is to analyze patterns of care and outcome after stereotactic body radiotherapy (SBRT) for centrally located, early-stage, non-small cell lung cancer (NSCLC) and to address the question of potential risk for increased toxicity in this entity. A total of 90 patients with centrally located NSCLC were identified among 613 cases in a database of 13 German and Austrian academic radiotherapy centers. The outcome of centrally located NSCLC was compared to that of cases with peripheral tumor location from the same database. Patients with central tumors most commonly presented with UICC stage IB (50 %), while the majority of peripheral lesions were stage IA (56 %). Average tumor diameters were 3.3 cm (central) and 2.8 cm (peripheral). Staging PET/CT was available for 73 and 74 % of peripheral and central tumors, respectively. Biopsy was performed in 84 % (peripheral) and 88 % (central) of cases. Doses varied significantly between central and peripheral lesions with a median BED{sub 10} of 72 Gy and 84 Gy, respectively (p < 0.001). Fractionation differed as well with medians of 5 (central) and 3 (peripheral) fractions (p < 0.001). In the Kaplan-Meier analysis, 3-year actuarial overall survival was 29 % (central) and 51 % (peripheral; p = 0.004) and freedom from local progression was 52 % (central) and 84 % (peripheral; p < 0.001). Toxicity after treatment of central tumors was low with no grade III/IV and one grade V event. Mortality rates were 0 and 1 % after 30 and 60 days, respectively. Local tumor control in patients treated with SBRT for centrally located, early-stage NSCLC was favorable, provided ablative radiation doses were prescribed. This was, however, not the case in the majority of patients, possibly due to concerns about treatment-related toxicity. Reported toxicity was low, but prospective trials are needed to resolve the existing uncertainties and to establish safe high-dose regimens for this cohort of patients. (orig.) [German] Ziel

  6. Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Bishawi, Muath [Division of Cardiothoracic Surgery, Stony Brook University Medical Center, Stony Brook, NY (United States); Kim, Bong [Division of Radiology, Stony Brook University Medical Center, Stony Brook, NY (United States); Moore, William H. [Division of Radiation Oncology, Stony Brook University, Stony Brook, NY (United States); Bilfinger, Thomas V., E-mail: Thomas.bilfinger@stonybrook.edu [Division of Cardiothoracic Surgery, Stony Brook University Medical Center, Stony Brook, NY (United States)

    2012-01-01

    Purpose: Surgical resection remains the standard of care for operable early-stage non-small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patients were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% {<=}50% predicted, FEV%/forced vital capacity [FVC]% {<=}70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 {+-} 5 vs. 40 {+-} 9 (p = 0.4) and 77 {+-} 0.5 vs. 73 {+-} 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL{sub CO}) did significantly increase for the No-COPD group after SBRT treatment: 60 {+-} 24 vs. 69 {+-} 22 (p = 0.022); however, DL{sub CO} was unchanged for the COPD group: 49 {+-} 13 vs. 50 {+-} 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 {+-} 24 to 9 {+-} 16 (p < 0.001), and there was a trend in the COPD patients from 12 {+-} 9 to 6 {+-} 5 (p = 0.06). Conclusion: SBRT did not seem to have an effect on FEV{sub 1} and FVC, but it shrank tumor volume and

  7. Single Fraction Stereotactic Ablative Body Radiotherapy for Oligometastasis: Outcomes from 132 Consecutive Patients.

    Science.gov (United States)

    Gandhidasan, S; Ball, D; Kron, T; Bressel, M; Shaw, M; Chu, J; Chander, S; Wheeler, G; Plumridge, N; Chesson, B; David, S; Siva, S

    2018-03-01

    Stereotactic ablative body radiotherapy (SABR) is currently used to treat oligometastases, but the optimum dose/fractionation schedule is unknown. In this study, we evaluated outcomes after single fraction SABR in patients with oligometastatic disease. Single institutional retrospective review of patients treated with single fraction SABR for one to three oligometastases between 2010 and 2015. The primary outcome was freedom from widespread disease defined as distant recurrence not amenable to surgery or SABR; or recurrence with four or more metastases. In total, 186 treatments were delivered in 132 patients. The two most common target sites were lung (51%) and bone (40%). The most frequent single fraction prescription dose was 26 Gy (47%). The most common primary malignancy was genitourinary (n = 46 patients). Freedom from widespread disease was 75% at 1 year (95% confidence interval 67-83%) and 52% at 2 years (95% confidence interval 42-63%). Freedom from local progression at 1 year was 90% (95% confidence interval 85-95%) and at 2 years was 84% (95% confidence interval 77-91%). A compression fracture of the lumbar vertebra was the only grade 3+ treatment-related toxicity. Single fraction SABR is associated with a high rate of freedom from widespread disease, favourable local control and low toxicity comparable with historic multi-fraction SABR reports. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Stereotactic body radiation therapy (SBRT) in the treatment of liver metastases: State of the art; Radiotherapie en conditions stereotaxiques des metastases hepatiques

    Energy Technology Data Exchange (ETDEWEB)

    De Bari, B.; Guillet, M.; Mornex, F. [Departement de radiotherapie oncologie, centre hospitalier Lyon-Sud, chemin du Grand-Revoyet, 69310 Pierre-Benite (France); EA3738, domaine Rockefeller, universite Claude-Bernard, 8, avenue Rockefeller, 69373 Lyon cedex 08 (France)

    2011-02-15

    Liver metastases are frequently found in oncologic patients. Chemotherapy is the standard treatment in pluri-metastatic patients, with the possibility to obtain a clear improvement of their prognosis. Local treatment (surgery, radiofrequency, cryo-therapy, radiotherapy, etc.) could be proposed for oligo-metastatic patients, particularly for those with a good prognosis. Historically, radiation therapy has had a limited role in the treatment of liver metastases because of its toxicity when whole liver irradiation was delivered. Improvements in the knowledge of liver radiobiology and radio-pathology as well as technical innovations in delivering radiation therapy are the basis of the modern partial liver irradiation concept. In this historical and therapeutic landscape, extracranial stereotactic radiation therapy is particularly interesting for the treatment of liver metastases. This review summarises published data on stereotactic radiotherapy for the treatment of liver metastases. (authors)

  9. Evaluation of time, attendance of medical staff, and resources during stereotactic radiotherapy/radiosurgery. QUIRO-DEGRO trial

    Energy Technology Data Exchange (ETDEWEB)

    Zabel-du Bois, A.; Milker-Zabel, S.; Debus, J. [Heidelberg Univ. (Germany). Dept. of Radiotherapy and Radiooncology; Henzel, M.; Engenhart-Cabillic, R. [Marburg Univ. (Germany). Dept. of Radiotherapy and Radiation Oncology; Popp, W. [Prime Networks AG, Basel (Switzerland); Sack, H. [Essen Univ. (Germany). Dept. of Radiation Oncology

    2012-09-15

    Background: The German Society of Radiation Oncology ('Deutsche Gesellschaft fuer Radioonkologie', DEGRO) initiated a multicenter trial to develop and evaluate adequate modules to assert core processes and subprocesses in radiotherapy. The aim of this prospective evaluation was to methodical assess the required resources (technical equipment and medical staff) for stereotactic radiotherapy/radiosurgery. Material and methods: At two radiotherapy centers of excellence (University Hospitals of Heidelberg and Marburg/Giessen), the manpower and time required for the implementation of intra- and extracranial stereotactic radiotherapy was prospectively collected consistently over a 3-month period. The data were collected using specifically developed process acquisition tools and standard forms and were evaluated using specific process analysis tools. Results: For intracranial (extracranial) fractionated stereotactic radiotherapy (FSRT) and radiosurgery (RS), a total of 1,925 (270) and 199 (36) records, respectively, could be evaluated. The approximate time needed to customize the immobilization device was median 37 min (89 min) for FRST and 31 min (26 min) for RS, for the contrast enhanced planning studies 22 and 27 min (25 and 28 min), for physical treatment planning 122 and 59 min (187 and 27 min), for the first and routine radiotherapy sessions for FSRT 40 and 13 min (58 and 31 min), respectively. The median time needed for the RS session was 58 min (45 min). The corresponding minimal manpower needed was 2 technicians for customization of the immobilization device, 2.5 technicians and 1 consultant for the contrast-enhanced planning studies, 1 consultant, 0.5 resident and 0.67 medical physics expert (MPE) for physical treatment planning, as well as 1 consultant, 0.5 resident, and 2.5 technicians for the first radiotherapy treatment and 2.33 technicians for routine radiotherapy sessions. Conclusion: For the first time, the resource requirements for a

  10. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lindsay, WD; Berlind, CG; Gee, JC; Simone, CB

    2015-01-01

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  11. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, WD [University of Pennsylvania, Philadelphia, PA (United States); Oncora Medical, LLC, Philadelphia, PA (United States); Berlind, CG [Georgia Institute of Technology, Atlanta, GA (Georgia); Oncora Medical, LLC, Philadelphia, PA (United States); Gee, JC; Simone, CB [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  12. Intrafraction Variation of Mean Tumor Position During Image-Guided Hypofractionated Stereotactic Body Radiotherapy for Lung Cancer

    International Nuclear Information System (INIS)

    Shah, Chirag; Grills, Inga S.; Kestin, Larry L.; McGrath, Samuel; Ye Hong; Martin, Shannon K.; Yan Di

    2012-01-01

    Purpose: Prolonged delivery times during daily cone-beam computed tomography (CBCT)-guided lung stereotactic body radiotherapy (SBRT) introduce concerns regarding intrafraction variation (IFV) of the mean target position (MTP). The purpose of this study was to evaluate the magnitude of the IFV-MTP and to assess target margins required to compensate for IFV and postonline CBCT correction residuals. Patient, treatment, and tumor characteristics were analyzed with respect to their impact on IFV-MTP. Methods and Materials: A total of 126 patients with 140 tumors underwent 659 fractions of lung SBRT. Dose prescribed was 48 or 60 Gy in 12 Gy fractions. Translational target position correction of the MTP was performed via onboard CBCT. IFV-MTP was measured as the difference in MTP between the postcorrection CBCT and the posttreatment CBCT excluding residual error. Results: IFV-MTP was 0.2 ± 1.8 mm, 0.1 ± 1.9 mm, and 0.01 ± 1.5 mm in the craniocaudal, anteroposterior, and mediolateral dimensions and the IFV-MTP vector was 2.3 ± 2.1 mm. Treatment time and excursion were found to be significant predictors of IFV-MTP. An IFV-MTP vector greater than 2 and 5 mm was seen in 40.8% and 7.2% of fractions, respectively. IFV-MTP greater than 2 mm was seen in heavier patients with larger excursions and longer treatment times. Significant differences in IFV-MTP were seen between immobilization devices. The stereotactic frame immobilization device was found to be significantly less likely to have an IFV-MTP vector greater than 2 mm compared with the alpha cradle, BodyFIX, and hybrid immobilization devices. Conclusions: Treatment time and respiratory excursion are significantly associated with IFV-MTP. Significant differences in IFV-MTP were found between immobilization devices. Target margins for IFV-MTP plus post-correction residuals are dependent on immobilization device with 5-mm uniform margins being acceptable for the frame immobilization device.

  13. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy: a Pareto front analysis for liver metastases.

    Science.gov (United States)

    Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G

    2017-11-27

    We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists

  14. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Wang SW

    2016-08-01

    Full Text Available Shu-wen Wang,1 Juan Ren,1 Yan-li Yan,2 Chao-fan Xue,2 Li Tan,2 Xiao-wei Ma2 1Department of Radiotherapy, First Affiliated Hospital of Xian Jiaotong University, 2Medical School of Xian Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC. Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B. There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05. The local failure rate (P<0.05 and distant metastasis rate (P>0.05 were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03, and the survival rate at 1 year was 87% vs 63%, (P<0.05. The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05. Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. Keywords: non-small-cell lung cancer, hypofractionated radiotherapy, stereotactic radiotherapy, segmentation, intensity-modulated radiotherapy, image-guided radiation therapy technology

  15. Nelson's syndrome: single centre experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Wilson, Peter J; Williams, Janet R; Smee, Robert I

    2014-09-01

    Nelson's syndrome is a unique clinical phenomenon of growth of a pituitary adenoma following bilateral adrenalectomies for the control of Cushing's disease. Primary management is surgical, with limited effective medical therapies available. We report our own institution's series of this pathology managed with radiation: prior to 1990, 12 patients were managed with conventional radiotherapy, and between 1990 and 2007, five patients underwent stereotactic radiosurgery (SRS) and two patients fractionated stereotactic radiotherapy (FSRT), both using the linear accelerator (LINAC). Tumour control was equivocal, with two of the five SRS patients having a reduction in tumour volume, one patient remaining unchanged, and two patients having an increase in volume. In the FSRT group, one patient had a decrease in tumour volume whilst the other had an increase in volume. Treatment related morbidity was low. Nelson's syndrome is a challenging clinical scenario, with a highly variable response to radiation in our series. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    International Nuclear Information System (INIS)

    Yuan Jiankui; Wang, Jian Z.; Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-01-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The α/β ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible α/β ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens

  17. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wassia, Rolina; Dal Pra, Alan; Shun, Kitty; Shaban, Ahmed [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Corriveau, Christine [Department of Ophthalmology, Notre Dame Hospital, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Edelstein, Chaim; Deschenes, Jean [Department of Ophthalmology, McGill University Health Centre, Montreal, Quebec (Canada); Ruo, Russel; Patrocinio, Horacio [Department of Medical Physics, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Cury, Fabio L.B. [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); DeBlois, Francois [Department of Medical Physics, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Shenouda, George, E-mail: george.shenouda@muhc.mcgill.ca [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada)

    2011-11-15

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1-77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30-92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  18. Pattern of Progression after Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Nodal Recurrences.

    Science.gov (United States)

    Ost, P; Jereczek-Fossa, B A; Van As, N; Zilli, T; Tree, A; Henderson, D; Orecchia, R; Casamassima, F; Surgo, A; Miralbell, R; De Meerleer, G

    2016-09-01

    To report the relapse pattern of stereotactic body radiotherapy (SBRT) for oligorecurrent nodal prostate cancer (PCa). PCa patients with ≤3 lymph nodes (N1/M1a) at the time of recurrence were treated with SBRT. SBRT was defined as a radiotherapy dose of at least 5 Gy per fraction to a biological effective dose of at least 80 Gy to all metastatic sites. Distant progression-free survival was defined as the time interval between the first day of SBRT and appearance of new metastatic lesions, outside the high-dose region. Relapses after SBRT were recorded and compared with the initially treated site. Secondary end points were local control, time to palliative androgen deprivation therapy and toxicity scored using the Common Terminology Criteria for Adverse Events v4.0. Overall, 89 metastases were treated in 72 patients. The median distant progression-free survival was 21 months (95% confidence interval 16-25 months) with 88% of patients having ≤3 metastases at the time of progression. The median time from first SBRT to the start of palliative androgen deprivation therapy was 44 months (95% confidence interval 17-70 months). Most relapses (68%) occurred in nodal regions. Relapses after pelvic nodal SBRT (n = 36) were located in the pelvis (n = 14), retroperitoneum (n = 1), pelvis and retroperitoneum (n = 8) or in non-nodal regions (n = 13). Relapses after SBRT for extrapelvic nodes (n = 5) were located in the pelvis (n = 1) or the pelvis and retroperitoneum (n = 4). Late grade 1 and 2 toxicity was observed in 17% (n = 12) and 4% of patients (n = 3). SBRT for oligometastatic PCa nodal recurrences is safe. Most subsequent relapses are again nodal and oligometastatic. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. St. Joseph's Hospital Barrow Neurological Institute stereitatic radiotherapy experience comparison of Gamma Knife and CyberKnife

    International Nuclear Information System (INIS)

    Kresl, J.J.

    2006-01-01

    The clinical utilisation stereotactic radiotherapy continues to increase in breadth and scope within the medical community. However, no single standard treatment platform exists for the delivery of stereotactic radiotherapy treatments. This is because although there are several commercially available platforms capable of delivering stereotactic radiotherapy treatments, each platform has unique abilities and limitations. The most widely used stereotactic radiotherapy system for intracranial treatments is the Gamma Knife. The first image guided robotic stereotactic radiotherapy system enabling body stereotactic radiotherapy is the CyberKnife. Both are available at the Barrow Neurological Institute. We describe our experience with the complementary use of these two distinct treatment platforms. This permits us to make a meaningful comparison and to detail their contrasting advantages and disadvantages for state of the art for stereotactic radiotherapy. (author)

  20. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study

    International Nuclear Information System (INIS)

    Hurkmans, Coen W; Cuijpers, Johan P; Lagerwaard, Frank J; Widder, Joachim; Heide, Uulke A van der; Schuring, Danny; Senan, Suresh

    2009-01-01

    A phase III multi-centre randomised trial (ROSEL) has been initiated to establish the role of stereotactic radiotherapy in patients with operable stage IA lung cancer. Due to rapid changes in radiotherapy technology and evolving techniques for image-guided delivery, guidelines had to be developed in order to ensure uniformity in implementation of stereotactic radiotherapy in this multi-centre study. A Quality Assurance Working Party was formed by radiation oncologists and clinical physicists from both academic as well as non-academic hospitals that had already implemented stereotactic radiotherapy for lung cancer. A literature survey was conducted and consensus meetings were held in which both the knowledge from the literature and clinical experience were pooled. In addition, a planning study was performed in 26 stage I patients, of which 22 were stage 1A, in order to develop and evaluate the planning guidelines. Plans were optimised according to parameters adopted from RTOG trials using both an algorithm with a simple homogeneity correction (Type A) and a more advanced algorithm (Type B). Dose conformity requirements were then formulated based on these results. Based on current literature and expert experience, guidelines were formulated for this phase III study of stereotactic radiotherapy versus surgery. These guidelines can serve to facilitate the design of future multi-centre clinical trials of stereotactic radiotherapy in other patient groups and aid a more uniform implementation of this technique outside clinical trials

  1. Linear accelerator based stereotactic radiosurgery with micro multi-leaf collimator : technological advancement in precision radiotherapy

    International Nuclear Information System (INIS)

    Dayananda, S.; Kinhikar, R.A.; Saju, Sherley; Deshpande, D.D.; Jalali, R.; Sarin, R.; Shrivastava, S.K.; Dinshaw, K.A.

    2003-01-01

    Stereotactic Radiosurgery (SRS) is an advancement on precision radiotherapy, in which stereo tactically guided localized high dose is delivered to the lesion (target) in a single fraction, while sparing the surrounding normal tissue. Radiosurgery has been used to treat variety of benign and malignant lesions as well as functional disorders in brain such as arteriovenous malformation (AVM), acoustic neuroma, solitary primary brain tumor, single metastasis, pituitary adenoma etc

  2. Outcomes following definitive stereotactic body radiotherapy for patients with Child-Pugh B or C hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Culleton, Shaelyn; Jiang, Haiyan; Haddad, Carol R.; Kim, John; Brierley, Jim; Brade, Anthony; Ringash, Jolie; Dawson, Laura A.

    2014-01-01

    Purpose: To report outcomes in patients with Child-Pugh B or C (CP B/C) hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT). Methods and materials: A prospective study of SBRT was developed for patients with CP B7 or B8 unresectable HCC, <10 cm. Selected ineligible patients (e.g. CP > B8, >10 cm) treated off-study from 2004 to July 2012 were also reviewed. Patients were excluded if they were treated as a bridge-to-liver-transplant. Results: 29 patients with CP B/C HCC were treated with SBRT (median dose 30 Gy in 6 fractions) from 2004 to December 2012. The majority had CP B7 liver function (69%) and portal vein tumor thrombosis (76%). The median survival was 7.9 months (95% CI: 2.8–15.1). Survival was significantly better in patients with CP = B7 and AFP ⩽ 4491 ng/mL. Of 16 evaluable patients, 63% had a decline in CP score by ⩾2 points at 3 months. Conclusion: SBRT is a treatment option for selected HCC patients with small HCCs and modestly impaired (CP B7) liver function

  3. Stereotactic body radiotherapy (SBRT) for multiple pulmonary oligometastases: Analysis of number and timing of repeat SBRT as impact factors on treatment safety and efficacy.

    Science.gov (United States)

    Klement, R J; Hoerner-Rieber, J; Adebahr, S; Andratschke, N; Blanck, O; Boda-Heggemann, J; Duma, M; Eble, M J; Eich, H C; Flentje, M; Gerum, S; Hass, P; Henkenberens, C; Hildebrandt, G; Imhoff, D; Kahl, K H; Klass, N D; Krempien, R; Lohaus, F; Petersen, C; Schrade, E; Wendt, T G; Wittig, A; Guckenberger, M

    2018-03-03

    Stereotactic body radiotherapy (SBRT) for oligometastatic disease is characterized by an excellent safety profile; however, experiences are mostly based on treatment of one single metastasis. It was the aim of this study to evaluate safety and efficacy of SBRT for multiple pulmonary metastases. This study is based on a retrospective database of the DEGRO stereotactic working group, consisting of 637 patients with 858 treatments. Cox regression and logistic regression were used to analyze the association between the number of SBRT treatments or the number and the timing of repeat SBRT courses with overall survival (OS) and the risk of early death. Out of 637 patients, 145 patients were treated for multiple pulmonary metastases; 88 patients received all SBRT treatments within one month whereas 57 patients were treated with repeat SBRT separated by at least one month. Median OS for the total patient population was 23.5 months and OS was not significantly influenced by the overall number of SBRT treatments or the number and timing of repeat SBRT courses. The risk of early death within 3 and 6 months was not increased in patients treated with multiple SBRT treatments, and no grade 4 or grade 5 toxicity was observed in these patients. In appropriately selected patients, synchronous SBRT for multiple pulmonary oligometastases and repeat SBRT may have a comparable safety and efficacy profile compared to SBRT for one single oligometastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Stereotactic Body Radiotherapy for Metastatic Lung Cancer as Oligo-Recurrence: An Analysis of 42 Cases

    Directory of Open Access Journals (Sweden)

    Wataru Takahashi

    2012-01-01

    Full Text Available Purpose. To investigate the outcome and toxicity of stereotactic body radiotherapy (SBRT in patients with oligo-recurrence cancer in the lung (ORCL. Methods and Materials. A retrospective review of 42 patients with ORCL who underwent SBRT in our two hospitals was conducted. We evaluated the outcome and adverse effects after SBRT for ORCL. Results. All patients finished their SBRT course without interruptions of toxicity reasons. The median follow-up period was 20 months (range, 1–90 months. The 2-year local control rate and overall survival were 87% (95% CI, 75–99% and 65% (95% CI, 48–82%. As for prognostic factor, the OS of patients with a short disease-free interval (DFI months, between the initial therapy and SBRT for ORCL, was significantly worse than the OS of long DFI months (. The most commonly observed late effect was radiation pneumonitis. One patient had grade 4 gastrointestinal toxicity (perforation of gastric tube. No other ≧ grade 3 acute and late adverse events occurred. There were no treatment-related deaths during this study. Conclusions. In patients with ORCL, radical treatment with SBRT is safe and provides a chance for long-term survival by offering favorable local control.

  5. Cushing's disease: a single centre's experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Wilson, P J; Williams, J R; Smee, R I

    2014-01-01

    Cushing's disease is hypercortisolaemia secondary to an adrenocorticotrophic hormone secreting pituitary adenoma. Primary management is almost always surgical, with limited effective medical interventions available. Adjuvant therapy in the form of radiation is gaining popularity, with the bulk of the literature related to the Gamma Knife. We present the results from our own institution using the linear accelerator (LINAC) since 1990. Thirty-six patients who underwent stereotactic radiosurgery (SRS), one patient who underwent fractionated stereotactic radiotherapy (FSRT) and for the purposes of comparison, 13 patients who had undergone conventional radiotherapy prior to 1990, were included in the analysis. Serum cortisol levels improved in nine of 36 (25%) SRS patients and 24 hour urinary free cortisol levels improved in 13 of 36 patients (36.1%). Tumour volume control was excellent in the SRS group with deterioration in only one patient (3%). The patient who underwent FSRT had a highly aggressive tumour refractory to radiation. Published by Elsevier Ltd.

  6. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  7. Prediction of Chest Wall Toxicity From Lung Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Stephans, Kevin L., E-mail: stephak@ccf.org [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States); Djemil, Toufik; Tendulkar, Rahul D. [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States); Robinson, Cliff G. [Department of Radiation Oncology, Siteman Cancer Center, Washington University, St Louis, MO (United States); Reddy, Chandana A.; Videtic, Gregory M.M. [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States)

    2012-02-01

    Purpose: To determine patient, tumor, and treatment factors related to the development of late chest wall toxicity after lung stereotactic body radiotherapy (SBRT). Methods and Materials: We reviewed a registry of 134 patients treated with lung SBRT to 60 Gy in 3 fractions who had greater than 1 year of clinical follow-up and no history of multiple treatments to the same lobe (n = 48). Patients were treated as per Radiation Therapy Oncology Group Protocol 0236 without specific chest wall avoidance criteria. The chest wall was retrospectively contoured. Thirty-two lesions measured less than 3 cm, and sixteen measured 3 to 5 cm. The median planning target volume was 29 cm{sup 3}. Results: With a median follow-up of 18.8 months, 10 patients had late symptomatic chest wall toxicity (4 Grade 1 and 6 Grade 2) at a median of 8.8 months after SBRT. No patient characteristics (age, diabetes, hypertension, peripheral vascular disease, or body mass index) were predictive for toxicity, whereas there was a trend for continued smoking (p = 0.066; odds ratio [OR], 4.4). Greatest single tumor dimension (p = 0.047; OR, 2.63) and planning target volume (p = 0.040; OR, 1.04) were correlated with toxicity, whereas distance from tumor edge to chest wall and gross tumor volume did not reach statistical significance. Volumes of chest wall receiving 30 Gy (V30) through 70 Gy (V70) were all highly significant, although this correlation weakened for V65 and V70 and maximum chest wall point dose only trended to significance (p = 0.06). On multivariate analysis, tumor volume was no longer correlated with toxicity and only V30 through V60 remained statistically significant. Conclusions: Tumor size and chest wall dosimetry are correlated to late chest wall toxicity. Only chest wall V30 through V60 remained significant on multivariate analysis. Restricting V30 to 30 cm{sup 3} or less and V60 to 3 cm{sup 3} or less should result in a 10% to 15% risk of late chest wall toxicity or lower.

  8. Proton-Based Stereotactic Ablative Radiotherapy in Early-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jonathan D. Grant

    2014-01-01

    Full Text Available Stereotactic ablative radiotherapy (SABR, a recent implementation in the practice of radiation oncology, has been shown to confer high rates of local control in the treatment of early stage non-small-cell lung cancer (NSCLC. This technique, which involves limited invasive procedures and reduced treatment intervals, offers definitive treatment for patients unable or unwilling to undergo an operation. The use of protons in SABR delivery confers the added physical advantage of normal tissue sparing due to the absence of collateral radiation dose delivered to regions distal to the target. This may translate into clinical benefit and a decreased risk of clinical toxicity in patients with nearby critical structures or limited pulmonary reserve. In this review, we present the rationale for proton-based SABR, principles relating to the delivery and planning of this modality, and a summary of published clinical studies.

  9. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    International Nuclear Information System (INIS)

    Al-Wassia, Rolina; Dal Pra, Alan; Shun, Kitty; Shaban, Ahmed; Corriveau, Christine; Edelstein, Chaim; Deschenes, Jean; Ruo, Russel; Patrocinio, Horacio; Cury, Fabio L.B.; DeBlois, François; Shenouda, George

    2011-01-01

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1–77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30–92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  10. Reirradiation of recurrent node-positive non-small cell lung cancer after previous stereotactic radiotherapy for stage I disease. A multi-institutional treatment recommendation

    International Nuclear Information System (INIS)

    Nieder, Carsten; Ruysscher, Dirk de; Gaspar, Laurie E.; Guckenberger, Matthias; Mehta, Minesh P.; Cheung, Patrick; Sahgal, Arjun

    2017-01-01

    Practice guidelines have been developed for early-stage and locally advanced non-small cell lung cancer (NSCLC). However, many common clinical scenarios still require individualized decision making. This is true for locoregional relapse after initial stereotactic radiotherapy (stereotactic body radiation therapy or stereotactic ablative radiotherapy; SBRT or SABR), an increasingly utilized curative treatment option for stage I NSCLC. A consortium of expert radiation oncologists was established with the aim of providing treatment recommendations. In this scenario, a case was distributed to six radiation oncologists who provided their institutions' treatment recommendations. In this case, a patient developed local and mediastinal relapse after SABR (45 Gy, 3 fractions), comparable to the tumor burden in de novo stage IIIA NSCLC. Treatment recommendations were tabulated and a consensus conclusion was developed. Three institutions recommended evaluation for surgery. If the patient was not a surgical candidate, and/or refused surgery, definitive chemoradiation was recommended, including retreating the primary to full dose. European participants were more in favor of a non-surgical approach. None of the participants were reluctant to prescribe reirradiation, but two institutions prescribed doses lower than 60 Gy. Platinum-based doublets together with intensity-modulated radiotherapy were preferred. The institutional recommendations reflect the questions and uncertainties discussed in current stage III guidelines. All institutions agreed that previous SABR is not a contraindication for salvage chemoradiation. In the absence of high-quality prospective trials for recurrent NSCLC, all treatment options recommended in current guidelines for stage III disease can be considered in clinical scenarios such as this. (orig.) [de

  11. Stereotactic radiotherapy by cyberknife of sub-diaphragm digestive tumors; Radiotherapie stereotaxique par Cyberknife des tumeurs digestives sous diaphragmatiques

    Energy Technology Data Exchange (ETDEWEB)

    Taste, H.; Peiffert, D.; Beckendorf, V.; Marchesi, V.; Noel, A. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    2009-10-15

    The stereotactic radiotherapy is a low toxic, efficient therapy offering a supplementary curative alternative, with promising first results, confirmed by literature. ts indications, its place in the therapy strategy stay to determine in the clinical research program. (N.C.)

  12. Stereotactic Body Radiation Therapy in Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A. [Mayo Medical School, College of Medicine, Mayo Clinic, Rochester, MN (United States); Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Rose, Peter S. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (United States); Olivier, Kenneth R. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Brinkmann, Debra H. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Laack, Nadia N., E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States)

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  13. Stereotactic radiotherapy and radiosurgery in pediatric patients: analysis of indications and outcome

    DEFF Research Database (Denmark)

    Mirza, Bilal; Mønsted, Anne; Jensen, Josephine Harding

    2010-01-01

    We describe indications, outcomes, and risk profiles of fractionated stereotactic radiotherapy (SRT) and single fraction "radiosurgery" (SRS) in pediatric patients compared to the adult population and evaluate the causal role of SRS and SRT in inducing new neurological complications....

  14. Stereotactic radiotherapy in oligometastatic cancer.

    Science.gov (United States)

    Kennedy, Thomas A C; Corkum, Mark T; Louie, Alexander V

    2017-09-01

    Oligometastatic cancer describes a disease state somewhere between localized and metastatic cancer. Proposed definitions of oligometastatic disease have typically used a cut-off of five or fewer sites of disease. Treatment of oligometastatic disease should have the goal of long-term local control, and in selected cases, disease remission. While several retrospective cohorts argue for surgical excision of limited metastases (metastasectomy) as the preferred treatment option for several clinical indications, limited randomized data exists for treating oligometastases. Alternatively, stereotactic ablative radiotherapy (SABR) is a radiotherapy technique that combines high radiation doses per fraction with precision targeting with the goal of achieving long-term local control of treated sites. Published cohort studies of SABR have demonstrated excellent local control rates of 70-90% in oligometastatic disease, with long-term survival in some series approaching 20-40%. A recent randomized phase 2 clinical trial by Gomez et al. demonstrated significantly improved progression free survival with aggressive consolidative therapy (surgery, radiotherapy ± chemotherapy or SABR) in oli-gometastatic non-small cell lung cancer (NSCLC). As additional randomized controlled trials are ongoing to determine the efficacy of SABR in oligometastatic disease, SABR is increasingly being used within routine clinical practice. This review article aims to sum-marize the history and current paradigm of the oligometastatic state, review recently pub-lished literature of SABR in oligometastatic cancer and discuss ongoing trials and future directions in this context.

  15. Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Sanuki, Naoko; Enomoto, Tatsuji; Takeda, Toshiaki; Kunieda, Etsuo; Nakajima, Takeshi; Sayama, Koichi

    2008-01-01

    Hypofractionated stereotactic body radiotherapy (SBRT) for pulmonary lesions provides a high local control rate, allows completely painless ambulatory treatment, and is not associated with adverse reactions in most cases. Here we report a 70-year-old lung cancer patient with slight focal pulmonary honeycombing in whom subclinical idiopathic pulmonary fibrosis was exacerbated by SBRT. This experience has important implications for the development of selection criteria prior to SBRT for pulmonary lesions. For SBRT candidates with lung tumors, attention must be paid to the presence of co-morbid interstitial pneumonia even if findings are minimal. Such patients must be informed of potential risks, and careful decision-making must take place when SBRT is being considered. (author)

  16. An ill-conditioning conformal radiotherapy analysis based on singular values decomposition

    International Nuclear Information System (INIS)

    Lefkopoulos, D.; Grandjean, P.; Bendada, S.; Dominique, C.; Platoni, K.; Schlienger, M.

    1995-01-01

    Clinical experience in stereotactic radiotherapy of irregular complex lesions had shown that optimization algorithms were necessary to improve the dose distribution. We have developed a general optimization procedure which can be applied to different conformal irradiation techniques. In this presentation this procedure is tested on the stereotactic radiotherapy modality of complex cerebral lesions treated with multi-isocentric technique based on the 'associated targets methodology'. In this inverse procedure we use the singular value decomposition (SVD) analysis which proposes several optimal solutions for the narrow beams weights of each isocentre. The SVD analysis quantifies the ill-conditioning of the dosimetric calculation of the stereotactic irradiation, using the condition number which is the ratio of the bigger to smaller singular values. Our dose distribution optimization approach consists on the study of the irradiation parameters influence on the stereotactic radiotherapy inverse problem. The adjustment of the different irradiation parameters into the 'SVD optimizer' procedure is realized taking into account the ratio of the quality reconstruction to the time calculation. It will permit a more efficient use of the 'SVD optimizer' in clinical applications for real 3D lesions. The evaluation criteria for the choice of satisfactory solutions are based on the dose-volume histograms and clinical considerations. We will present the efficiency of ''SVD optimizer'' to analyze and predict the ill-conditioning in stereotactic radiotherapy and to recognize the topography of the different beams in order to create optimal reconstructed weighting vector. The planification of stereotactic treatments using the ''SVD optimizer'' is examined for mono-isocentrically and complex dual-isocentrically treated lesions. The application of the SVD optimization technique provides conformal dose distribution for complex intracranial lesions. It is a general optimization procedure

  17. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    International Nuclear Information System (INIS)

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-01-01

    Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. In 47 patients CI (p ≤ 0.003) and HI (p < 0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p ≥ 0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the cortex benefit

  18. Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate.

    Science.gov (United States)

    Linskey, Mark E

    2013-12-01

    By definition, the term "radiosurgery" refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed "stereotactic radiotherapy." There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image--targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS "halo effect." It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the

  19. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma

    International Nuclear Information System (INIS)

    Hoyer, Morten; Roed, Henrik; Sengelov, Lisa; Traberg, Anders; Ohlhuis, Lars; Pedersen, Jorgen; Nellemann, Hanne; Kiil Berthelsen, Anne; Eberholst, Frey; Engelholm, Svend Aage; Maase, Hans von der

    2005-01-01

    Background and purpose: The majority of patients with pancreatic cancer have advanced disease at the time of diagnosis and are not amenable for surgery. Stereotactic radiotherapy (SRT) may be an alternative treatment for patients with locally advanced disease. The effect of SRT was investigated in the present phase-II trial. Patients and methods: Twenty-two patients with locally advanced and surgically non-resectable, histological proven pancreatic carcinoma were included into the trial. The patients were immobilized by the Elekta stereotactic body frame (SBF) or a custom made body frame. SRT was given on standard LINAC with standard multi-leaf collimator. Central dose was 15 Gyx3 within 5-10 days. Results: Evaluation of response was found to be very difficult due to radiation and tumour related tissue reaction. Only two patients (9%) were found to have a partial response (PR), the remaining had no change (NC) or progression (PD) after treatment. Six patients had local tumour progression, but only one patient had an isolated local failure without simultaneous distant metastasis. Median time to local or distant progression was 4.8 months. Median survival time was 5.7 months and only 5% were alive 1 year after treatment. Acute toxicity reported 14 days after treatment was pronounced. There was a significant deterioration of performance status (P=0.008), more nausea (P=0.001) and more pain (P=0.008) after 14 days compared with base-line. However, 8 of 12 patients (66%) improved in performance status, scored less nausea, pain, or needed less analgesic drugs at 3 months after treatment. Four patients suffered from severe mucositis or ulceration of the stomach or duodenum and one of the patients had a non-fatal ulcer perforation of the stomach. Conclusions: SRT was associated with poor outcome, unacceptable toxicity and questionable palliative effect and cannot be recommended for patients with advanced pancreatic carcinoma

  20. Stereotactic radiotherapy for non-small cell lung cancer: From concept to clinical reality. 2011 update; Radiotherapie stereotaxique des cancers broncho-pulmonaires non a petites cellules: d'un concept a une realite clinique. Actualites en 2011

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N. [Service de pneumologie, hopital Louis-Pradel, hospices civils de Lyon, 28, avenue du Doyen-Jean-Lepine, 69500 Bron (France); UMR 754, universite Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex (France); Mornex, F. [Departement de radiotherapie oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Benite cedex (France); EA 37-38, universite Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex (France)

    2011-10-15

    Only 60% of patients with early-stage non-small cell lung cancer (NSCLC), a priori bearing a favorable prognosis, undergo radical resection because of the very frequent co-morbidities occurring in smokers, precluding surgery to be safely performed. Stereotactic radiotherapy consists of the use of multiple radiation micro-beams, allowing high doses of radiation to be delivered to the tumour (ranging from 7.5 to 20 Gy per fraction) in a small number of fractions (one to eight on average). Several studies with long-term follow-up are now available, showing the effectiveness of stereotactic radiotherapy to control stage I/II non-small cell lung cancer in medically inoperable patients. Local control rates are consistently reported to be above 95% with a median survival of 34 to 45 months. Because of these excellent results, stereotactic radiation therapy is now being evaluated in operable patients in several randomized trials with a surgical arm. Ultimately, the efficacy of stereotactic radiotherapy in early-stage tumours leads to hypothesize that it may represent an opportunity for locally-advanced tumors. The specific toxicities of stereotactic radiotherapy mostly correspond to radiation-induced chest wall side effects, especially for peripheral tumours. The use of adapted fractionation schemes has made feasible the use of stereotactic radiotherapy to treat proximal tumours. Overall, from a technical concept to the availability of specific treatment devices and the publication of clinical results, stereotactic radiotherapy represents a model of implementation in thoracic oncology. (authors)

  1. Stereotactic treatment. Definitions and literature overview

    International Nuclear Information System (INIS)

    Fontenla, D.P.

    2008-01-01

    The topics discussed include, among others, the following: Radiosurgery definitions; Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Available uncertainties in SRS; Gamma knife; Linac-based SRS; Components of a radiosurgery system; Stereotactic hardware (brain lab); m3 linac attachment; Radiosurgery - clinical procedure; Cancer management; Rationale for SRT; Role of radiosurgery in the management of intracranial tumors; Indications for stereotactic SRS/SRT; Physical components required for SRS/SRT; Stereotactic patient set-up; Stereotactic CT scan for SRS; Physical components required for SRT: Relocatable head frame (GTC); Patient immobilization; Treatment planning system; Basic requirements for SRS dosimetry (Linac based); Stereotactic set-up QA (Linac); Stereotactic frames and QA; Beam dose measurements; Dose evaluation tools; Phantoms. (P.A.)

  2. Role of functional imaging in treatment plan optimization of stereotactic body radiation therapy for liver cancer.

    Science.gov (United States)

    De Bari, Berardino; Jumeau, Raphael; Deantonio, Letizia; Adib, Salim; Godin, Sarah; Zeverino, Michele; Moeckli, Raphael; Bourhis, Jean; Prior, John O; Ozsahin, Mahmut

    2016-10-13

    We report the first known instance of the clinical use of 99mTc-mebrofenin hepatobiliary scintigraphy (HBS) for the optimization of radiotherapy treatment planning and for the follow-up of acute toxicity in a patient undergoing stereotactic body radiation therapy for hepatocellular carcinoma. In our experience, HBS allowed the identification and the sparing of more functioning liver areas, thus potentially reducing the risk of radiation-induced liver toxicity.

  3. Optimization of the primary collimator settings for fractionated IMRT stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2004-01-01

    Advances in field-shaping techniques for stereotactic radiosurgery/radiotherapy have allowed dynamic adjustment of field shape with gantry rotation (dynamic conformal arc) in an effort to minimize dose to critical structures. Recent work evaluated the potential for increased sparing of dose to normal tissues when the primary collimator setting is optimized to only the size necessary to cover the largest shape of the dynamic micro multi leaf field. Intensity-modulated radiotherapy (IMRT) is now a treatment option for patients receiving stereotactic radiotherapy treatments. This multisegmentation of the dose delivered through multiple fixed treatment fields provides for delivery of uniform dose to the tumor volume while allowing sparing of critical structures, particularly for patients whose tumor volumes are less suited for rotational treatment. For these segmented fields, the total number of monitor units (MUs) delivered may be much greater than the number of MUs required if dose delivery occurred through an unmodulated treatment field. As a result, undesired dose delivered, as leakage through the leaves to tissues outside the area of interest, will be proportionally increased. This work will evaluate the role of optimization of the primary collimator setting for these IMRT treatment fields, and compare these results to treatment fields where the primary collimator settings have not been optimized

  4. Outcomes of Stereotactic Body Radiotherapy (SBRT) treatment of multiple synchronous and recurrent lung nodules

    International Nuclear Information System (INIS)

    Owen, Dawn; Olivier, Kenneth R; Mayo, Charles S; Miller, Robert C; Nelson, Kathryn; Bauer, Heather; Brown, Paul D; Park, Sean S; Ma, Daniel J; Garces, Yolanda I

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is evolving into a standard of care for unresectable lung nodules. Local control has been shown to be in excess of 90% at 3 years. However, some patients present with synchronous lung nodules in the ipsilateral or contralateral lobe or metasynchronous disease. In these cases, patients may receive multiple courses of lung SBRT or a single course for synchronous nodules. The toxicity of such treatment is currently unknown. Between 2006 and 2012, 63 subjects with 128 metasynchronous and synchronous lung nodules were treated at the Mayo Clinic with SBRT. Demographic patient data and dosimetric data regarding SBRT treatments were collected. Acute toxicity (defined as toxicity < 90 days) and late toxicity (defined as toxicity > = 90 days) were reported and graded as per standardized CTCAE 4.0 criteria. Local control, progression free survival and overall survival were also described. The median age of patients treated was 73 years. Sixty five percent were primary or recurrent lung cancers with the remainder metastatic lung nodules of varying histologies. Of 63 patients, 18 had prior high dose external beam radiation to the mediastinum or chest. Dose and fractionation varied but the most common prescriptions were 48 Gy/4 fractions, 54 Gy/3 fractions, and 50 Gy/5 fractions. Only 6 patients demonstrated local recurrence. With a median follow up of 12.6 months, median SBRT specific overall survival and progression free survival were 35.7 months and 10.7 months respectively. Fifty one percent (32/63 patients) experienced acute toxicity, predominantly grade 1 and 2 fatigue. One patient developed acute grade 3 radiation pneumonitis at 75 days. Forty six percent (29/63 patients) developed late effects. Most were grade 1 dyspnea. There was one patient with grade 5 pneumonitis. Multiple courses of SBRT and SBRT delivery after external beam radiotherapy appear to be feasible and safe. Most toxicity was grade 1 and 2 but the risk was

  5. Radiogenic Side Effects After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    Energy Technology Data Exchange (ETDEWEB)

    Dunavoelgyi, Roman [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Dieckmann, Karin [Department of Radiology, Medical University of Vienna, Vienna (Austria); Gleiss, Andreas [Section of Clinical Biometrics, Medical University of Vienna, Vienna (Austria); Sacu, Stefan; Kircher, Karl; Georgopoulos, Michael [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiology, Medical University of Vienna, Vienna (Austria); Zehetmayer, Martin [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Poetter, Richard [Department of Radiology, Medical University of Vienna, Vienna (Austria)

    2012-05-01

    Purpose: To evaluate side effects of hypofractionated stereotactic photon radiotherapy for patients with choroidal melanoma. Patients and Methods: Two hundred and twelve patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at the Medical University of Vienna between 1997 and 2007 with a Linac with 6-MV photon beams in five fractions with 10, 12, or 14 Gy per fraction. Examinations for radiogenic side effects were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and then once a year thereafter until 10 years after radiotherapy. Adverse side effects were assessed using slit-lamp examination, funduscopy, gonioscopy, tonometry, and, if necessary, fundus photography and fluorescein angiography. Evaluations of incidence of side effects are based on an actuarial analysis. Results: One hundred and eighty-nine (89.2%) and 168 (79.2%) of the tumors were within 3 mm of the macula and the optic disc, respectively. The five most common radiotherapy side effects were retinopathy and optic neuropathy (114 cases and 107 cases, respectively), cataract development (87 cases), neovascular glaucoma (46 cases), and corneal epithelium defects (41 cases). In total, 33.6%, 38.5%, 51.2%, 75.5%, and 77.6% of the patients were free of any radiation retinopathy, optic neuropathy, cataract, neovascular glaucoma, or corneal epithelium defects 5 years after radiotherapy, respectively. Conclusion: In centrally located choroidal melanoma hypofractionated stereotactic photon radiotherapy shows a low to moderate rate of adverse long-term side effects comparable with those after proton beam radiotherapy. Future fractionation schemes should seek to further reduce adverse side effects rate while maintaining excellent local tumor control.

  6. Radiogenic Side Effects After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    International Nuclear Information System (INIS)

    Dunavoelgyi, Roman; Dieckmann, Karin; Gleiss, Andreas; Sacu, Stefan; Kircher, Karl; Georgopoulos, Michael; Georg, Dietmar; Zehetmayer, Martin; Poetter, Richard

    2012-01-01

    Purpose: To evaluate side effects of hypofractionated stereotactic photon radiotherapy for patients with choroidal melanoma. Patients and Methods: Two hundred and twelve patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at the Medical University of Vienna between 1997 and 2007 with a Linac with 6-MV photon beams in five fractions with 10, 12, or 14 Gy per fraction. Examinations for radiogenic side effects were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and then once a year thereafter until 10 years after radiotherapy. Adverse side effects were assessed using slit-lamp examination, funduscopy, gonioscopy, tonometry, and, if necessary, fundus photography and fluorescein angiography. Evaluations of incidence of side effects are based on an actuarial analysis. Results: One hundred and eighty-nine (89.2%) and 168 (79.2%) of the tumors were within 3 mm of the macula and the optic disc, respectively. The five most common radiotherapy side effects were retinopathy and optic neuropathy (114 cases and 107 cases, respectively), cataract development (87 cases), neovascular glaucoma (46 cases), and corneal epithelium defects (41 cases). In total, 33.6%, 38.5%, 51.2%, 75.5%, and 77.6% of the patients were free of any radiation retinopathy, optic neuropathy, cataract, neovascular glaucoma, or corneal epithelium defects 5 years after radiotherapy, respectively. Conclusion: In centrally located choroidal melanoma hypofractionated stereotactic photon radiotherapy shows a low to moderate rate of adverse long-term side effects comparable with those after proton beam radiotherapy. Future fractionation schemes should seek to further reduce adverse side effects rate while maintaining excellent local tumor control.

  7. Salvage stereotactic body radiotherapy for locally recurrent non-small cell lung cancer after sublobar resection and I125 vicryl mesh brachytherapy

    Directory of Open Access Journals (Sweden)

    Beant Singh Gill

    2015-05-01

    Full Text Available Purpose: Locally-recurrent non-small cell lung cancer (LR-NSCLC remains challenging treat, particularly in patients having received prior radiotherapy. Heterogeneous populations and varied treatment intent in existing literature result in significant limitations in evaluating efficacy of lung re-irradiation. In order to better establish the impact of re-irradiation in patients with LR-NSCLC following high-dose radiotherapy, we report outcomes for patients treated with prior sublobar resection and brachytherapy that subsequently underwent stereotactic body radiotherapy (SBRT.Methods: A retrospective review of patients initially treated with sublobar resection and I125 vicryl mesh brachytherapy, who later developed LR-NSCLC along the suture line, was performed. Patients received salvage SBRT with curative intent. Dose and fractionation was based on tumor location and size, with a median prescription dose of 48 Gy in 4 fractions (range 20-60 Gy in 1-4 fractions.Results: Thirteen consecutive patients were identified with median follow-up of 2.1 years (range 0.7-5.6 years. Two in-field local failures occurred at 7.5 and 11.1 months, resulting in 2-year local control of 83.9% (95% CI 63.5-100.0%. Two-year disease-free survival and overall survival estimates were 38.5% (95% CI 0.0-65.0% and 65.8% (95% CI, 38.2-93.4%. Four patients (31% remained disease-free at last follow-up. All but one patient who experienced disease recurrence developed isolated or synchronous distant metastases. Only one patient (7.7% developed grade ≥3 toxicity, consisting of grade 3 esophageal stricture following a centrally located recurrence previously treated with radiofrequency ablation.Conclusion: Despite high local radiation doses delivered to lung parenchyma previously with I125 brachytherapy, re-irradiation with SBRT for LR-NSCLC results in excellent local control with limited morbidity, allowing for potential disease cure in a subset of patients.

  8. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Navarro-Martin, Arturo; Cacicedo, Jon; Leaman, Olwen; Sancho, Ismael; García, Elvira; Navarro, Valentin; Guedea, Ferran

    2015-01-01

    To compare thermoplastic masks (TMP) and vacuum cushion system (VCS) to assess differences in interfraction set up accuracy in patients treated with stereotactic radiotherapy (SBRT) for oligometastatic lung cancer. Secondarily, to survey radiotherapy technologists to assess their satisfaction with the two systems. Retrospective study of patients treated with lung SBRT between 2008 to 2012 at our institution. Immobilization was performed for 73 treatment sessions (VCS = 40; TMP = 33). A total of 246 cone-beams were analysed. Patients considered ineligible for surgery with a life expectancy ≥6 months and performance status > 1 were included. Target lesion location was verified by cone beam computed tomography (CBCT) prior to each session, with displacements assessed by CBCT simulation prior to each treatment session. Couch shifts were registered prospectively in vertical, longitudinal, and latero-lateral directions to obtain Kernel coordinates (3D representation). Technologists were surveyed to assess their satisfaction with indexing, positioning, and learning curve of the two systems. Setup displacements were obtained in all patients for each treatment plan and for each session. To assess differences between the immobilization systems, a t-test (Welch) was performed. Mean displacements for the TMP and VC systems, respectively, were as follows: session one, 0.64 cm vs 1.05 cm (p = 0.0002); session two, 0.49 cm vs 1.02 cm (p < 0.0001), and session three, 0.56 vs 0.97 cm (p = 0.0011). TMP resulted in significantly smaller shifts vs. VCS in all three treatment sessions. Technologists rated the learning curve, set up, and positioning more highly for TMP versus VCS. Due to the high doses and steep gradients in lung SBRT, accurate and reproducible inter-fraction set up is essential. We found that thermoplastic masks offers better reproducibility with significantly less interfractional set up displacement than vacuum cushions. Moreover, radiotherapy technologists rated

  9. Postoperative re-irradiation using stereotactic body radiotherapy for metastatic epidural spinal cord compression.

    Science.gov (United States)

    Ito, Kei; Nihei, Keiji; Shimizuguchi, Takuya; Ogawa, Hiroaki; Furuya, Tomohisa; Sugita, Shurei; Hozumi, Takahiro; Keisuke Sasai; Karasawa, Katsuyuki

    2018-06-15

    OBJECTIVE This study aimed to clarify the outcomes of postoperative re-irradiation using stereotactic body radiotherapy (SBRT) for metastatic epidural spinal cord compression (MESCC) in the authors' institution and to identify factors correlated with local control. METHODS Cases in which patients with previously irradiated MESCC underwent decompression surgery followed by spine SBRT as re-irradiation between April 2013 and May 2017 were retrospectively reviewed. The surgical procedures were mainly performed by the posterior approach and included decompression and fixation. The prescribed dose for spine SBRT was 24 Gy in 2 fractions. The primary outcome was local control, which was defined as elimination, shrinkage, or no change of the tumor on CT or MRI obtained approximately every 3 months after SBRT. In addition, various patient-, treatment-, and tumor-specific factors were evaluated to determine their predictive value for local control. RESULTS Twenty-eight cases were identified in the authors' institutional databases as meeting the inclusion criteria. The histology of the primary disease was thyroid cancer in 7 cases, lung cancer in 6, renal cancer in 3, colorectal cancer in 3, and other cancers in 9. The most common previous radiation dose was 30 Gy in 10 fractions (15 cases). The mean interval since the most recent irradiation was 16 months (range 5-132 months). The median duration of follow-up after SBRT was 13 months (range 4-38 months). The 1-year local control rate was 70%. In the analysis of factors related to local control, Bilsky grade, number of vertebral levels in the treatment target, the interval between the latest radiotherapy and SBRT, recursive partitioning analysis (RPA), the prognostic index for spinal metastases (PRISM), and the revised Tokuhashi score were not significantly correlated with local control. The favorable group classified by the Rades prognostic score achieved a significantly higher 1-year local control rate than the unfavorable

  10. Stereotactic body radiotherapy in the treatment of Pancreatic Adenocarcinoma in elderly patients

    International Nuclear Information System (INIS)

    Kim, Carolyn H; Ling, Diane C; Wegner, Rodney E; Flickinger, John C; Heron, Dwight E; Zeh, Herbert; Moser, Arthur J; Burton, Steven A

    2013-01-01

    Treatment of pancreatic adenocarcinoma in the elderly is often complicated by comorbidities that preclude surgery, chemotherapy and/or conventional external beam radiation therapy (EBRT). Stereotactic body radiotherapy (SBRT) has thus garnered interest in this setting. A retrospective review of 26 patients of age ≥ 80 with pancreatic adenocarcinoma treated with definitive SBRT+/-chemotherapy from 2007–2011 was performed. Twenty-seven percent of patients were stage I, 38% were stage II, 27% were stage III and 8% were stage IV. Patients most commonly received 24 Gy/1 fraction or 30-36 Gy/3 fractions. Kaplan-Meier was used to estimate overall survival (OS), local control (LC), cause specific survival (CSS) and freedom-from-metastatic disease (FFMD). The median age was 86 (range 80–91), and median follow-up was 11.6 months (3.5-24.6). The median planning target volume was 21.48 cm 3 (6.1-85.09). Median OS was 7.6 months with 6/12 month OS rates of 65.4%/34.6%, respectively. Median LC was 11.5 months, 6-month and 12-month actuarial LC rates were 60.1% and 41.2%, respectively. There were no independent predictors for LC, but there was a trend for improved LC with prescription dose greater than 20 Gy (p = 0.063). Median CSS was 6.3 months, and 6-month and 12-month actuarial CSS were 53.8% and 23.1%, respectively. Median FFMD was 8.4 months, and 6-month and 12-month actuarial rates were 62.0% and 41.4%, respectively. Nine patients (47%) had local failures, 11 (58%) had distant metastasis, and 7 (37%) had both. There were no acute or late grade 3+ toxicities. Definitive SBRT is feasible, safe and effective in elderly patients who have unresectable disease, have comorbidities precluding surgery or decline surgery

  11. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  12. Chest Wall Toxicity After Stereotactic Body Radiotherapy for Malignant Lesions of the Lung and Liver

    International Nuclear Information System (INIS)

    Andolino, David L.; Forquer, Jeffrey A.; Henderson, Mark A.; Barriger, Robert B.; Shapiro, Ronald H.; Brabham, Jeffrey G.; Johnstone, Peter A.S.; Cardenes, Higinia R.; Fakiris, Achilles J.

    2011-01-01

    Purpose: To quantify the frequency of rib fracture and chest wall (CW) pain and identify the dose-volume parameters that predict CW toxicity after stereotactic body radiotherapy (SBRT). Methods and Materials: The records of patients treated with SBRT between 2000 and 2008 were reviewed, and toxicity was scored according to Common Terminology Criteria for Adverse Events v3.0 for pain and rib fracture. Dosimetric data for CW and rib were analyzed and related to the frequency of toxicity. The risks of CW toxicity were then further characterized according to the median effective concentration (EC 50 ) dose-response model. Results: A total of 347 lesions were treated with a median follow-up of 19 months. Frequency of Grade I and higher CW pain and/or fracture for CW vs. non-CW lesions was 21% vs. 4%, respectively (p 2 > 0.9). According to the EC 50 model, 5 cc and 15 cc of CW receiving 40 Gy predict a 10% and 30% risk of CW toxicity, respectively. Conclusion: Adequate tumor coverage remains the primary objective when treating lung or liver lesions with SBRT. To minimize toxicity when treating lesions in close proximity to the CW, Dmax of the CW and/or ribs should remain <50 Gy, and <5 cc of CW should receive ≥40 Gy.

  13. CyberKnife robotic stereotactic radiotherapy: technical aspects and medical indications; Radiotherapie stereotaxique robotisee par CyberKnife: aspects techniques et indications

    Energy Technology Data Exchange (ETDEWEB)

    Bondiau, P.Y.; Benezery, K.; Gerard, J.P.; Herault, J.; Marcie, S.; Angellier, G. [Centre Antoine-Lacassagne, Dept. de Radiotherapie, 06 - Nice (France); Beckendorf, V.; Peiffert, D.; Noel, A. [Centre Alexis-Vautrin, Dept. de Radiotherapie et Curietherapie, 54 - Vandoeuvre-les-Nancy (France); Mirabel, X.; Marchesi, V.; Lacornerie, T.; Dubus, F.; Sarrazin, T.; Lartigau, E. [Centre Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France)

    2007-11-15

    In 2006, 3 sites have been selected by the Institut national of cancer (Lille, Nancy et Nice) to evaluate a radiotherapy robot, the CyberKnife this machine, able to track mobile tumours in real time, gives new possibilities in the field of extra cranial stereotactic radiotherapy. Functionalities and medico economical issues of the machine will be evaluated during 2 years on the 3 sites. (authors)

  14. Fractionated stereotactic radiotherapy for craniopharyngiomas

    International Nuclear Information System (INIS)

    Schulz-Ertner, Daniela; Frank, Claudia; Herfarth, Klaus K.; Rhein, Bernhard; Wannenmacher, Michael; Debus, Juergen

    2002-01-01

    Purpose: To investigate outcome and toxicity after fractionated stereotactic radiation therapy (FSRT) in patients with craniopharyngiomas. Methods and Materials: Twenty-six patients with craniopharyngiomas were treated with FSRT between May 1989 and February 2001. Median age was 33.5 years (range: 5-57 years). Nine patients received FSRT after surgery as primary treatment, and 17 patients were irradiated for recurrent tumor or progressive growth after initial surgery. Median target dose was 52.2 Gy (range: 50.0-57.6 Gy) with conventional fractionation. Follow-up included MRI and neurologic, ophthalmologic, and endocrinologic examinations. Results: The median follow-up was 43 months (range: 7-143 months). The actuarial local control rate and actuarial overall survival rates were 100% and 100%, respectively, at 5 years and 100% and 83%, respectively, at 10 years. Four patients showed complete response, 14 patients showed partial response, and 8 patients remained stable. In 5 patients, vision improved after radiation therapy. Acute toxicity was mild. One patient required cyst drainage 3 months after radiotherapy. Late toxicity after radiotherapy included impairment of hormone function in 3 out of 18 patients at risk. We did not observe any vision impairment, radionecrosis, or secondary malignancies. Conclusions: FSRT is effective and safe in the treatment of cystic craniopharyngiomas. Toxicity is extremely low using this conformal technique

  15. CBCT-Guided Rapid Arc for stereotactic ablative radiotherapy (SABR) in lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fandino, J. M.; Silva, M. C.; Izquierdo, P.; Candal, A.; Diaz, I.; Fernandez, C.; Gesto, C.; Poncet, M.; Soto, M.; Triana, G.; Losada, C.; Marino, A.

    2013-07-01

    Stereotactic ablative radiotherapy has emerged as a standard treatment option for stage I non-small cell lung cancer in patients unfit for surgery, or who refuse surgery. An increasing number of prospective phase I/II trials, as well as large single and multicenter studies have reported local control rates to be in excess of 85% for early stage non-small cell lung cancer. Volumetric arc therapy RapidArc with tumor-based image guidance technique will be presented as well as our preliminary observations. (Author)

  16. A phase I study on stereotactic body radiotherapy of liver metastases based on functional treatment planning using positron emission tomography with 2-[(18)F]fluoro-2-deoxy-d-galactose

    DEFF Research Database (Denmark)

    Fode, Mette Marie; Bak-Fredslund, Kirstine; Petersen, Jørgen Baltzer

    2017-01-01

    BACKGROUND AND PURPOSE: The galactose analog 2-[18F]fluoro-2-deoxy-d-galactose (FDGal) is used for quantification of regional hepatic metabolic capacity by functional positron emission tomography computerized tomography (PET/CT). In the present study, FDGal PET/CT was used for functional treatment...... planning (FTP) of stereotactic body radiotherapy (SBRT) of liver metastases with the aim of minimizing radiation dose to the best functioning liver tissue. MATERIAL AND METHODS: Fourteen patients referred for SBRT had FDGal PET/CT performed before and one month after the treatment. The planning CT...... and the FDGal PET/CT images were deformable co-registered. RESULTS: A reduction in the mean dose of approximately 2 Gy to the best functioning sub-volumes was obtained. One patient developed grade 2 acute morbidity and no patients experienced grade 3 or higher acute morbidities. The regional hepatic metabolic...

  17. Stereotactic body radiotherapy for lung metastases as oligo-recurrence: a single institutional study.

    Science.gov (United States)

    Aoki, Masahiko; Hatayama, Yoshiomi; Kawaguchi, Hideo; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Miura, Hiroyuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    The purpose of this study was to investigate clinical outcomes following stereotactic body radiotherapy (SBRT) for lung metastases as oligo-recurrence. From May 2003 to June 2014, records for 66 patients with 76 oligo-recurrences in the lungs treated with SBRT were retrospectively reviewed. Oligo-recurrence primary sites and patient numbers were as follows: lungs, 31; colorectal, 13; head and neck, 10; esophagus, 3; uterus, 3; and others, 6. The median SBRT dose was 50 Gy (range, 45-60 Gy) administered in a median of 5 (range, 5-9) fractions. All patients received SBRT, with no acute toxicity. Surviving patients had a median follow-up time of 36.5 months. The 3-year rates of local control, overall survival and disease-free survival were 90.6%, 76.0% and 53.7%, respectively. Longer disease-free interval from initial treatment to SBRT, and non-colorectal cancer were both associated with favorable outcomes. Disease progression after SBRT occurred in 31 patients, most with distant metastases (n = 24) [among whom, 87.5% (n = 21) had new lung metastases]. Among these 21 patients, 12 were judged as having a second oligo-recurrence. Additional SBRT was performed for these 12 patients, and all 12 tumors were controlled without disease progression. Three patients (4.5%) developed Grade 2 radiation pneumonitis. No other late adverse events of Grade ≥2 were identified. Thus, SBRT for oligo-recurrence achieved acceptable tumor control, with additional SBRT also effective for selected patients with a second oligo-recurrence after primary SBRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Multicenter results of stereotactic body radiotherapy (SBRT) for non-resectable primary liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Rafael A.; Rojas, Daniel; Sanabria, Juan R. [Dept. of Surgery, Univ. Hospitals-Case Medical Center, Cleveland, OH (United States)], email: juan.sanabria@uhhospitals.org [and others

    2012-05-15

    Background. An excess of 100 000 individuals are diagnosed with primary liver tumors every year in USA but less than 20% of those patients are amenable to definitive surgical management due to advanced local disease or comorbidities. Local therapies to arrest tumor growth have limited response and have shown no improvement on patient survival. Stereotactic body radiotherapy (SBRT) has emerged as an alternative local ablative therapy. The purpose of this study was to evaluate the tumor response to SBRT in a combined multicenter database. Study design. Patients with advanced hepatocellular carcinoma (HCC, n = 21) or intrahepatic cholangiocarcinoma (ICC, n = 11) treated with SBRT from four Academic Medical Centers were entered into a common database. Statistical analyses were performed for freedom from local progression (FFLP) and patient survival. Results. The overall FFLP for advanced HCC was 63% at a median follow-up of 12.9 months. Median tumor volume decreased from 334.2 to 135 cm{sup 3} (p < 0.004). The median time to local progression was 6.3 months. The 1- and 2-years overall survival rates were 87% and 55%, respectively. Patients with ICC had an overall FFLP of 55.5% at a median follow-up of 7.8 months. The median time to local progression was 4.2 months and the six-month and one-year overall survival rates were 75% and 45%, respectively. The incidence of grade 1-2 toxicities, mostly nausea and fatigue, was 39.5%. Grade 3 and 4 toxicities were present in two and one patients, respectively. Conclusion. Higher rates of FFLP were achieved by SBRT in the treatment of primary liver malignancies with low toxicity.

  19. Stereotactic body radiotherapy and treatment at a high volume facility is associated with improved survival in patients with inoperable stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Koshy, Matthew; Malik, Renuka; Mahmood, Usama; Husain, Zain; Sher, David J.

    2015-01-01

    Background: This study examined the comparative effectiveness of no treatment (NoTx), conventional fractionated radiotherapy (ConvRT), and stereotactic body radiotherapy (SBRT) in patients with inoperable stage I non-small cell lung cancer. This population based cohort also allowed us to examine what facility level characteristics contributed to improved outcomes. Methods: We included patients in the National Cancer Database from 2003 to 2006 with T1-T2N0M0 inoperable lung cancer (n = 13,036). Overall survival (OS) was estimated using Kaplan–Meier methods and Cox proportional hazard regression. Results: The median follow up was 68 months (interquartile range: 35–83 months) in surviving patients. Among the cohort, 52% received NoTx, 41% received ConvRT and 6% received SBRT. The 3-year OS was 28% for NoTx, 36% for ConvRT radiotherapy, and 48% for the SBRT cohort (p < 0.0001). On multivariate analysis, the hazard ratio for SBRT and ConvRT were 0.67 and 0.77, respectively, as compared to NoTx (1.0 ref) (p < 0.0001). Patients treated at a high volume facility vs. low volume facility had a hazard ratio of 0.94 vs. 1.0 (p = 0.01). Conclusions: Patients with early stage inoperable lung cancer treated with SBRT and at a high volume facility had a survival benefit compared to patients treated with ConvRT or NoTx or to those treated at a low volume facility

  20. Design and development of spine phantom to verify dosimetric accuracy of stereotactic body radiation therapy using 3D prnter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seu Ran; Lee, Min Young; Kim, Min Joo; Park, So Hyun; Song Ji Hye; Suh, Tae Suk [Dept. of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sohn, Jason W. [Dept. of Radiation Oncology, College of Medicine, Case Western Reserve University, Cleveland (United States)

    2015-10-15

    The purpose of this study is to verify dosimetric accuracy of delivered dose in spine SBRT as highly precise radiotherapy depending on cancer position using dedicated spine phantom based on 3D printer. Radiation therapy oncology group (RTOG) 0631 suggest different planning method in spine stereotactic body radiation therapy (SBRT) according to location of cancer owing to its distinct shape. The developed phantom especially using DLP method can be utilized as spine SBRT dosimetry research. Our study was able to confirm that the phantom was indeed similar with HU value of human spine as well as its shape.

  1. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  2. 4D imaging for target definition in stereotactic radiotherapy for lung cancer.

    Science.gov (United States)

    Slotman, Ben J; Lagerwaard, Frank J; Senan, Suresh

    2006-01-01

    Stereotactic radiotherapy of Stage I lung tumors has been reported to result in high local control rates that are far superior to those obtained with conventional radiotherapy techniques, and which approach those achieved with primary surgery. Breathing-induced motion of tumor and target tissues is an important issue in this technique and careful attention should be paid to the contouring and the generation of individualized margins. We describe our experience with the use of 4DCT scanning for this group of patients, the use of post-processing tools and the potential benefits of respiratory gating.

  3. Stereotactic Body Radiation Therapy in Spinal Metastases

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-01-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 ± 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10–40 Gy) in a median of three fractions (range, 1–5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18–30 Gy) in a median of three fractions (range, 1–5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  4. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-01-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1–2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85–6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins.

  5. Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma

    International Nuclear Information System (INIS)

    Wersaell, Peter J.; Blomgren, Henric; Lax, Ingmar; Kaelkner, Karl-Mikael; Linder, Christina; Lundell, Goeran; Nilsson, Bo; Nilsson, Sten; Naeslund, Ingemar; Pisa, Pavel; Svedman, Christer

    2005-01-01

    Background and purpose: We investigated the results of using stereotactic radiotherapy (SRT) for 58 patients with renal cell carcinomas (RCC) who were evaluated restrospectively for response rates, local control rates and side effects. Patients and methods: From October 1997 to January 2003, 50 patients suffering from metastatic RCC and eight patients with inoperable primary RCC received high-dose fraction SRT while placed in a stereotactic body-frame. The most common dose/fractionation schedules used were 8 Gyx4, 10 Gyx4 and 15 Gyx3 during approximately 1 week. Results: SRT-treated tumor lesions regressed totally in 30% of the patients at 3-36 months, whereas 60% of the patients had a partial volume reduction or no change after a median follow-up of 37 months (SD 17.4) for censored and 13 months (SD 12.9) for uncensored patients. Side effects were generally mild. Of 162 treated tumors, only three recurred, yielding a local control rate of 90-98%, considering the 8% non-evaluable sites as defined here. For patients with one to three metastases, the time to new spread was 9 months. Conclusions: Our use of SRT for patients with primary and metastatic RCC yielded a high local control rate with low toxicity. Patients with one to three metastases, local recurrences after nephrectomy or inoperable primary tumors benefited the most, i.e. had fewer distant recurrences (13/23) and longer survival times compared to patients with >3 metastases (24/27 recurrences)

  6. Prospective study on stereotactic radiotherapy of limited-stage non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Høyer, Morten; Roed, Henrik; Hansen, Anders Traberg

    2006-01-01

    Purpose: To test the effect of stereotactic body radiotherapy (SBRT) in       the treatment of medically inoperable patients with limited-stage       non-small-cell lung cancer (NSCLC) in a Phase II trial. Methods and       Materials: Forty patients with Stage I NSCLC were treated with SBRT...... resulted in a high       probability of local control and a promising survival rate. The toxicity       after SBRT of lung tumors was moderate. However, deterioration in       performance status, respiratory insufficiency, and other side effects were       observed...

  7. Initial clinical results of linac-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Shrieve, Dennis C.; Alexander, Eben; Kaiser, Ursula B.; Richardson, Gary E.; Black, Peter McL.; Loeffler, Jay S.

    1998-01-01

    Purpose: To retrospectively evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor and hormonal control and adverse effects of the treatment. Subjects and Methods: Forty-eight patients with pituitary adenoma who underwent SRS or SRT between September 1989 and September 1995 were analyzed. Of these, 18 received SRS and 30 received SRT. The median tumor volumes were 1.9 cm 3 for SRS and 5.7 cm 3 for SRT. Eleven of the SRS and 18 of the SRT patients were hormonally active at the time of the initial diagnosis. Four of the SRS and none of the SRT patients had a history of prior radiation therapy. Both SRS and SRT were performed using a dedicated stereotactic 6-MV linear accelerator (LINAC). The dose and normalization used for the SRS varied from 1000 cGy at 85% of the isodose line to 1500 cGy at 65% of the isodose line. For SRT patients, a total dose of 4500 cGy at 90% or 95% of the isodose line was delivered in 25 fractions of 180 cGy daily doses. Results: Disease control--The three year tumor control rate was 91.1% (100% for SRS and 85.3% for SRT). Normalization of the hormonal abnormality was achieved in 47% of the 48 patients (33% for SRS and 54% for SRT). The average time required for normalization was 8.5 months for SRS and 18 months for SRT. Adverse effects--The 3-year rate of freedom from central nervous system adverse effects was 89.7% (72.2% for SRS and 100% for SRT). Three patients who received SRS for a tumor in the cavernous sinus developed a ring enhancement in the temporal lobe as shown by follow-up magnetic resonance imaging. Two of these cases were irreversible and were considered to be radiation necrosis. None of the 48 patients developed new neurocognitive or visual disorders attributable to the irradiation. The incidence of endocrinological adverse effects were similar in the two groups, resulting in 3-year rates of freedom from newly

  8. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT

    International Nuclear Information System (INIS)

    Karger, Christian P; Hipp, Peter; Henze, Marcus; Echner, Gernot; Hoess, Angelika; Schad, Lothar; Hartmann, Guenther H

    2003-01-01

    CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end, the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 ± 0.2 mm. For MRI, the mean deviations ranged between 0.7 ± 0.2 mm and 1.4 ± 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 ± 0.5 mm and 2.4 ± 0.3 mm were obtained. The mean deviations for SPECT were 1.6 ± 0.5 mm and 2.0 ± 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others

  9. Stereotactic Robotic Body Radiotherapy for Patients With Unresectable Hepatic Oligorecurrence.

    Science.gov (United States)

    Berkovic, Patrick; Gulyban, Akos; Nguyen, Paul Viet; Dechambre, David; Martinive, Philippe; Jansen, Nicolas; Lakosi, Ferenc; Janvary, Levente; Coucke, Philippe A

    2017-12-01

    The purpose of this study was to analyze local control (LC), liver progression-free survival (PFS), and distant PFS (DFS), overall survival (OS), and toxicity in a cohort of patients treated with stereotactic body radiotherapy (SBRT) with fiducial tracking for oligorecurrent liver lesions; and to evaluate the potential influence of lesion size, systemic treatment, physical and biologically effective dose (BED), treatment calculation algorithms and other parameters on the obtained results. Unoperable patients with sufficient liver function had [18F]-fluorodeoxyglucose-positron emission tomography-computed tomography and liver magnetic resonance imaging to confirm the oligorecurrent nature of the disease and to further delineate the gross tumor volume (GTV). An intended dose of 45 Gy in 3 fractions was prescribed on the 80% isodose and adapted if risk-related. Treatment was executed with the CyberKnife system (Accuray Inc) platform using fiducials tracking. Initial plans were recalculated using the Monte Carlo algorithm. Patient and treatment data were processed using the Kaplan-Meier method and log rank test for survival analysis. Between 2010 and 2015, 42 patients (55 lesions) were irradiated. The mean GTV and planning target volume (PTV) were 30.5 cc and 96.8 cc, respectively. Treatments were delivered 3 times per week in a median of 3 fractions to a PTV median dose of 54.6 Gy. The mean GTV and PTV D98% were 51.6 Gy and 51.2 Gy, respectively. Heterogeneity corrections did not influence dose parameters. After a median follow-up of 18.9 months, the 1- and 2-year LC/liver PFS/DFS/OS were 81.3%/55%/62.4%/86.9%, and 76.3%/42.3%/52%/78.3%, respectively. Performance status and histology had a significant effect on LC, whereas age (older than 65 years) marginally influenced liver PFS. Clinical target volume physical dose V45 Gy > 95%, generalized equivalent uniform dose (a = -30) > 45 Gy and a BED (α/β = 10) V105 Gy > 96% showed statistically significant effect on

  10. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization.

    Science.gov (United States)

    Moore, Karen; Paterson, Claire; Hicks, Jonathan; Harrow, Stephen; McJury, Mark

    2016-12-01

    A clinical evaluation of the intrafraction and interfraction setup accuracy of a novel thermoplastic mould immobilization device and patient position in early-stage lung cancer being treated with stereotactic radiotherapy at the Beatson West of Scotland Cancer Centre, Glasgow, UK. 35 patients were immobilized in a novel, arms-down position, with a four-point Klarity ™ (Klarity Medical Products, Ohio, US) clear thermoplastic mould fixed to a SinMed (CIVCO Medical solutions, lowa, US) head and neck board. A knee support was also used for patient comfort and support. Pre- and post-treatment kilovoltage cone beam CT (CBCT) images were fused with the planning CT scan to determine intra- and interfraction motion. A total of 175 CBCT scans were analysed in the longitudinal, vertical and lateral directions. The mean intrafraction errors were 0.05 ± 0.77 mm (lateral), 0.44 ± 1.2 mm (superior-inferior) and -1.44 ± 1.35 mm (anteroposterior), respectively. Mean composite three-dimensional displacement vector was 2.14 ± 1.2 mm. Interfraction errors were -0.66 ± 2.35 mm (lateral), -0.13 ± 3.11 mm (superior-inferior) and 0.00 ± 2.94 mm (anteroposterior), with three-dimensional vector 4.08 ± 2.73 mm. Setup accuracy for lung image-guided stereotactic ablative radiotherapy using a unique immobilization device, where patients have arms by their sides, has been shown to be safe and favourably comparable to other published setup data where more complex and cumbersome devices were utilised. There was no arm toxicity reported and low arm doses. Advances in knowledge: We report on the accuracy of a novel patient immobilization device.

  11. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  12. Endocrine and visual function after fractionated stereotactic radiotherapy of perioptic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Semrau, R.; Mueller, R.P. [Universitaetsklinikum Koeln (Germany). Klinik und Poliklinik fuer Strahlentherapie; Treuer, H.; Hoevels, M.; Sturm, V. [Koeln Univ. (Germany). Dept. of Stereotaxy and Functional Neurosurgery

    2013-02-15

    Purpose: To find out whether the use of stereotactic techniques for fractionated radiotherapy reduces toxicity to the endocrine and visual system in patients with benign perioptic tumors. Patients and methods: From 1993 to 2009, 29 patients were treated with fractionated stereotactic radiotherapy. The most frequent tumor types were grade I meningioma (n = 11) and pituitary adenoma (n = 10, 7 nonfunctioning, 3 growth hormone-producing). Patients were immobilized with the GTC frame (Radionics, USA) and the planning target volume (PTV; median 24.7, 4.6-58.6 ml) was irradiated with a total dose of 52.2 Gy (range, 45.0-55.8 Gy) in 1.8-Gy fractions using a linear accelerator (6 MeV photons) equipped with a micro-multileaf collimator. Maximum doses to the optic system and pituitary gland were 53.4 Gy (range, 11.5-57.6 Gy) and 53.6 Gy (range, 12.0-57.9 Gy). Results: Median follow-up was 45 months (range, 10-105 months). Local control was achieved in all but 1 patient (actuarial rate 92% at 5 years and 10 years). In 9 of 29 patients (31%), partial remission was observed (actuarial response rate 40% at 5 years and 10 years). In 4 of 26 patients (15%) with at least partial pituitary function, new hormonal deficits developed (actuarial rate 21% at 5 years and 10 years). This rate was significantly higher in patients treated for a larger PTV ( 25 ml: 0% vs. 42% at 5 years and 10 years, p = 0.028). Visual function improved in 4 of 15 patients (27%) who had prior impairment. None of the patients developed treatment-related optic neuropathy, but 2 patients experienced new disease-related visual deficits. Conclusion: Fractionated stereotactic radiotherapy for benign tumors of the perioptic and sellar region results in satisfactory response and local control rates and does not affect the visual system. The assumption that patients can be spared hypophyseal insufficiency only holds for small tumors. (orig.)

  13. Endocrine and visual function after fractionated stereotactic radiotherapy of perioptic tumors

    International Nuclear Information System (INIS)

    Kocher, M.; Semrau, R.; Mueller, R.P.; Treuer, H.; Hoevels, M.; Sturm, V.

    2013-01-01

    Purpose: To find out whether the use of stereotactic techniques for fractionated radiotherapy reduces toxicity to the endocrine and visual system in patients with benign perioptic tumors. Patients and methods: From 1993 to 2009, 29 patients were treated with fractionated stereotactic radiotherapy. The most frequent tumor types were grade I meningioma (n = 11) and pituitary adenoma (n = 10, 7 nonfunctioning, 3 growth hormone-producing). Patients were immobilized with the GTC frame (Radionics, USA) and the planning target volume (PTV; median 24.7, 4.6-58.6 ml) was irradiated with a total dose of 52.2 Gy (range, 45.0-55.8 Gy) in 1.8-Gy fractions using a linear accelerator (6 MeV photons) equipped with a micro-multileaf collimator. Maximum doses to the optic system and pituitary gland were 53.4 Gy (range, 11.5-57.6 Gy) and 53.6 Gy (range, 12.0-57.9 Gy). Results: Median follow-up was 45 months (range, 10-105 months). Local control was achieved in all but 1 patient (actuarial rate 92% at 5 years and 10 years). In 9 of 29 patients (31%), partial remission was observed (actuarial response rate 40% at 5 years and 10 years). In 4 of 26 patients (15%) with at least partial pituitary function, new hormonal deficits developed (actuarial rate 21% at 5 years and 10 years). This rate was significantly higher in patients treated for a larger PTV ( 25 ml: 0% vs. 42% at 5 years and 10 years, p = 0.028). Visual function improved in 4 of 15 patients (27%) who had prior impairment. None of the patients developed treatment-related optic neuropathy, but 2 patients experienced new disease-related visual deficits. Conclusion: Fractionated stereotactic radiotherapy for benign tumors of the perioptic and sellar region results in satisfactory response and local control rates and does not affect the visual system. The assumption that patients can be spared hypophyseal insufficiency only holds for small tumors. (orig.)

  14. Value of stereotactic radiosurgery in patients with multiple brain metastases

    International Nuclear Information System (INIS)

    Chen Jie; Lin Zhiguo; Li Qingguo; Shen Hong

    2002-01-01

    Objective: To analyze the prognostic factors and evaluate the effect of stereotactic radiosurgery for patients with multiple brain metastases. Methods: Comparison was made in 53 such patients treated by stereotactic radiosurgery plus radiotherapy and 53 treated by radiotherapy alone. Patients were matched-paired according to the following criteria: age, Karnofsky performance scale (KPS) before treatment, extent of systemic cancer and number of brain metastasis. Forty patients had stereotactic radiosurgery, 13 patients stereotactic fractionated radiosurgery. In the stereotactic radiosurgery group, the patients were given a mean marginal dose of 20 Gy. Methods of stereotactic fractionated radiosurgery was 4-12 Gy per fraction , twice a week to a total dose of 15-30 Gy. Whole brain radiotherapy was given immediately after stereotactic radiosurgery. For patients treated by radiotherapy alone, the entire brain was treated by 30-40 Gy in 3-4 weeks. Results: The median survival was 11.6 months in stereotactic radiosurgery plus radiotherapy and 6.7 months in radiotherapy alone. The one year survival rate and one year local control rate were 44.3%, 17.1% and 50.9%, 13. 2%. Those with KPS increased after treatment gave 1-year survivals of 69.8% and 30.2%, respectively. The validity rates in CT or MRI three months after treatment were 82.0% and 55.0%. The difference in the two groups was found to be statistically significant (P < 0.01). 23.3% of death in the stereotactic radiosurgery plus radiotherapy group was due to brain metastasis vs 51.0% in the radiotherapy alone group (P < 0.05). Complication of the two groups was similar. Conclusion: Stereotactic radiosurgery plus radiotherapy is superior to radiotherapy alone for multiple brain metastases in improving the local control and ultimate outcome

  15. Optimization of stereotactic body radiotherapy treatment planning using a multicriteria optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ghandour, Sarah; Cosinschi, Adrien; Mazouni, Zohra; Pachoud, Marc; Matzinger, Oscar [Riviera-Chablais Hospital, Vevey (Switzerland). Cancer Center, Radiotherapy Dept.

    2016-07-01

    To provide high-quality and efficient dosimetric planning for various types of stereotactic body radiotherapy (SBRT) for tumor treatment using a multicriteria optimization (MCO) technique fine-tuned with direct machine parameter optimization (DMPO). Eighteen patients with lung (n = 11), liver (n = 5) or adrenal cell cancer (n = 2) were treated using SBRT in our clinic between December 2014 and June 2015. Plans were generated using the RayStation trademark Treatment Planning System (TPS) with the VMAT technique. Optimal deliverable SBRT plans were first generated using an MCO algorithm to find a well-balanced tradeoff between tumor control and normal tissue sparing in an efficient treatment planning time. Then, the deliverable plan was post-processed using the MCO solution as the starting point for the DMPO algorithm to improve the dose gradient around the planning target volume (PTV) while maintaining the clinician's priorities. The dosimetric quality of the plans was evaluated using dose-volume histogram (DVH) parameters, which account for target coverage and the sparing of healthy tissue, as well as the CI100 and CI50 conformity indexes. Using a combination of the MCO and DMPO algorithms showed that the treatment plans were clinically optimal and conformed to all organ risk dose volume constraints reported in the literature, with a computation time of approximately one hour. The coverage of the PTV (D99% and D95%) and sparing of organs at risk (OAR) were similar between the MCO and MCO + DMPO plans, with no significant differences (p > 0.05) for all the SBRT plans. The average CI100 and CI50 values using MCO + DMPO were significantly better than those with MCO alone (p < 0.05). The MCO technique allows for convergence on an optimal solution for SBRT within an efficient planning time. The combination of the MCO and DMPO techniques yields a better dose gradient, especially for lung tumors.

  16. Performance of a Novel Repositioning Head Frame for Gamma Knife Perfexion and Image-Guided Linac-Based Intracranial Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Ruschin, Mark; Nayebi, Nazanin; Carlsson, Per; Brown, Kevin

    2010-01-01

    Purpose: To evaluate the geometric positioning and immobilization performance of a vacuum bite-block repositioning head frame (RHF) system for Perfexion (PFX-SRT) and linac-based intracranial image-guided stereotactic radiotherapy (SRT). Methods and Materials: Patients with intracranial tumors received linac-based image-guided SRT using the RHF for setup and immobilization. Three hundred thirty-three fractions of radiation were delivered in 12 patients. The accuracy of the RHF was estimated for linac-based SRT with online cone-beam CT (CBCT) and for PFX-SRT with a repositioning check tool (RCT) and offline CBCT. The RCT's ability to act as a surrogate for anatomic position was estimated through comparison to CBCT image matching. Immobilization performance was evaluated daily with pre- and postdose delivery CBCT scans and RCT measurements. Results: The correlation coefficient between RCT- and CBCT-reported displacements was 0.59, 0.75, 0.79 (Right, Superior, and Anterior, respectively). For image-guided linac-based SRT, the mean three-dimensional (3D) setup error was 0.8 mm with interpatient (Σ) and interfraction (σ) variations of 0.1 and 0.4 mm, respectively. For PFX-SRT, the initial, uncorrected mean 3D positioning displacement in stereotactic coordinates was 2.0 mm, with Σ = 1.1 mm and σ = 0.8 mm. Considering only RCT setups o in pitch. The mean 3D intrafraction motion was 0.4 ± 0.3 mm. Conclusion: The RHF provides excellent immobilization for intracranial SRT and PFX-SRT. Some small systematic uncertainties in stereotactic positioning exist and must be considered when generating PFX-SRT treatment plans. The RCT provides reasonable surrogacy for internal anatomic displacement.

  17. Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up

    International Nuclear Information System (INIS)

    Steinvorth, Sarah; Welzel, Grit; Fuss, Martin; Debus, Juergen; Wildermuth, Susanne; Wannenmacher, Michael; Wenz, Frederik

    2003-01-01

    Purpose: The purpose of this study was to evaluate the cognitive outcome after fractionated stereotactic radiotherapy (FSRT) in patients with base of skull meningiomas. Methods and material: A total of 40 patients with base of skull meningiomas were neuro psychologically evaluated before, after the first fraction (1.8 Gy), at the end of FSRT (n=37), 6 weeks (n=24), 6 (n=18) and 12 months (n=14) after FSRT. A comprehensive test battery including assessment of general intelligence, attention and memory functions was used. Alternate forms were used and current mood state was controlled. Results: After the first fraction a transient decline in memory function and simultaneous improvements in attention functions were observed. No cognitive deteriorations were seen during further follow-up, but increases in attention and memory functions were observed. Mood state improved after the first fraction, at the end of radiotherapy and 6 weeks after radiotherapy. Conclusion: The present data support the conclusion that the probability for the development of permanent cognitive dysfunctions appears to be very low after FSRT. The transient memory impairments on day 1 are interpreted as most likely related to an increase of a preexisting peritumoral edema, whereas the significant acute improvements in attention functions are interpreted as practice effects. An analysis of localization specific effects of radiation failed to show clear hemisphere specific cognitive changes

  18. Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients

    DEFF Research Database (Denmark)

    Persson, Oscar; Bartek, Jiri; Shalom, Netanel Ben

    2017-01-01

    OBJECTIVE: Repeated controlled studies have revealed that stereotactic radiosurgery is better than microsurgery for patients with vestibular schwannoma (VS) ... to patients treated with fractionated stereotactic radiotherapy. RESULTS: No randomized controlled trial (RCT) was identified. None of the identified controlled studies comparing SRS with FSRT were eligible according to the inclusion criteria. Nineteen case series on SRS (n = 17) and FSRT (n = 2) were...... included in the systematic review. Loss of tumor control necessitating a new VS-targeted intervention was found in an average of 5.0% of the patients treated with SRS and in 4.8% treated with FSRT. Mean deterioration ratio for patients with serviceable hearing before treatment was 49% for SRS and 45...

  19. Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Astner, Sabrina T.; Theodorou, Marilena; Dobrei-Ciuchendea, Mihaela; Kopp, Christine; Molls, Michael [Dept. of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Auer, Florian [Dept. of Neuroradiology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Grosu, Anca-Ligia [Dept. of Radiotherapy, Univ. Hospital Freiburg (Germany)

    2010-08-15

    Purpose: To evaluate tumor volume reduction in the follow-up of meningiomas after fractionated stereotactic radiotherapy (FSRT) or linac radiosurgery (RS) by using magnetic resonance imaging (MRI). Patients and Methods: In 59 patients with skull base meningiomas, gross tumor volume (GTV) was outlined on contrast-en-hanced MRI before and median 50 months (range 11-92 months) after stereotactic radiotherapy. MRI was performed as an axial three-dimensional gradient-echo T1-weighted sequence at 1.6 mm slice thickness without gap (3D-MRI). Results were compared to the reports of diagnostic findings. Results: Mean tumor size of all 59 meningiomas was 13.9 ml (0.8-62.9 ml) before treatment. There was shrinkage of the treated meningiomas in all but one patient. Within a median volumetric follow-up of 50 months (11-95 months), an absolute mean volume reduction of 4 ml (0-18 ml) was seen. The mean relative size reduction compared to the volume before radiotherapy was 27% (0-73%). Shrinkage measured by 3D-MRI was greater at longer time intervals after radiotherapy. The mean size reduction was 17%, 23%, and 30% (at < 24 months, 24-48 months, and 48-72 months). Conclusion: By using 3D-MRI in almost all patients undergoing radiotherapy of a meningioma, tumor shrinkage is detected. The data presented here demonstrate that volumetric assessment from 3D-MRI provides additional information to routinely used radiologic response measurements. After FSRT or RS, a mean size reduction of 25-45% can be expected within 4 years. (orig.)

  20. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Stiebel-Kalish, Hadas; Reich, Ehud; Gal, Lior; Rappaport, Zvi Harry; Nissim, Ouzi; Pfeffer, Raphael; Spiegelmann, Roberto

    2012-01-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  1. Fractionated Stereotactic Radiotherapy in the Treatment of Vestibular Schwannoma (Acoustic Neuroma): Predicting the Risk of Hydrocephalus

    International Nuclear Information System (INIS)

    Powell, Ceri; Micallef, Caroline; Gonsalves, Adam; Wharram, Bev; Ashley, Sue; Brada, Michael

    2011-01-01

    Purpose: To determine the incidence and predictive factors for the development of hydrocephalus in patients with acoustic neuromas (AN) treated with fractionated stereotactic radiotherapy. Patients and Methods: Seventy-two patients with AN were treated with fractionated stereotactic radiotherapy between 1998 and 2007 (45-50 Gy in 25-30 fractions over 5 to 6 weeks). The pretreatment MRI scan was assessed for tumor characteristics and anatomic distortion independently of subsequent outcome and correlated with the risk of hydrocephalus. Results: At a median follow-up of 49 months (range, 1-120 months), 5-year event-free survival was 95%. Eight patients (11%) developed hydrocephalus within 19 months of radiotherapy, which was successfully treated. On univariate analysis, pretreatment factors predictive of hydrocephalus were maximum diameter (p = 0.005), proximity to midline (p = 0.009), displacement of the fourth ventricle (p = 0.02), partial effacement of the fourth ventricle (p < 0.001), contact with the medulla (p = 0.005), and more brainstem structures (p = 0.004). On multivariate analysis, after adjusting for fourth ventricular effacement, no other variables remained independently associated with hydrocephalus formation. Conclusions: Fractionated stereotactic radiotherapy results in excellent tumor control of AN, albeit with a risk of developing hydrocephalus. Patients at high risk, identified as those with larger tumors with partial effacement of the fourth ventricle before treatment, should be monitored more closely during follow-up. It would also be preferable to offer treatment to patients with progressive AN while the risk of hydrocephalus is low, before the development of marked distortion of fourth ventricle before tumor diameter significantly exceeds 2 cm.

  2. Patient-reported quality of life after stereotactic ablative radiotherapy for early-stage lung cancer

    NARCIS (Netherlands)

    Lagerwaard, F.J.; Aaronson, N.K.; Gundy, C.M.; Haasbeek, C.J.A.; Slotman, B.J.; Senan, S.

    2012-01-01

    Background: Deterioration in health-related quality of life (HRQOL) is frequently observed after surgery for stage I non-small-cell lung cancer. As stereotactic ablative radiotherapy (SABR) can result in local control percentages exceeding 90%, we studied baseline and post-treatment HRQOL in SABR

  3. Stereotactic radiotherapy of meningiomas. Symptomatology, acute and late toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Henzel, M.; Gross, M.W.; Failing, T.; Strassmann, G.; Engenhart-Cabillic, R. [Dept. of Radiation Oncology, Univ. of Gisssen (Germany); Dept. of Radiation Oncology, Marburg Univ. (Germany); Hamm, K.; Surber, G.; Kleinert, G. [Dept. of Stereotactic Neurosurgery and Radiosurgery, Helios Klinikum Erfurt (Germany)

    2006-07-15

    Background and purpose: stereotactic radiosurgery (SRS) is well established in the treatment of skull base meningiomas, but this therapy approach is limited to small tumors only. The fractionated stereotactic radiotherapy (SRT) offers an alternative treatment option. This study aims at local control, symptomatology, and toxicity. Patients and methods: between 1997-2003, 224 patients were treated with SRT (n= 183), hypofractionated SRT (n = 30), and SRS (n = 11). 95/224 were treated with SRT/SRS alone. 129/224 patients underwent previous operations. Freedom from progression and overall survival, toxicity, and symptomatology were evaluated systematically. Additionally, tumor volume (TV) shrinkage was analyzed three-dimensionally within the planning system. Results: the median follow-up was 36 months (range, 12-100 months). Overall survival and freedom from progression for 5 years were 92.9% and 96.9%. Quantitative TV reduction was 26.2% and 30.3% 12 and 18 months after SRT/SRS (p < 0.0001). 95.9% of the patients improved their symptoms or were stable. Clinically significant acute toxicity (CTC III ) was rarely seen (2.5%). Clinically significant late morbidity (III -IV ) or new cranial nerve palsies did not occur. Conclusion: SRT offers an additional treatment option of high efficacy with only few side effects. In the case of large tumor size (> 4 ml) and adjacent critical structures (< 2 mm), SRT is highly recommended. (orig.)

  4. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy.

    Science.gov (United States)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-06-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1-2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85-6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins. © 2016 The Royal Australian and New Zealand College of Radiologists.

  5. Definitive Stereotactic Body Radiotherapy (SBRT) for Extracranial Oligometastases: An International Survey of >1000 Radiation Oncologists.

    Science.gov (United States)

    Lewis, Stephen L; Porceddu, Sandro; Nakamura, Naoki; Palma, David A; Lo, Simon S; Hoskin, Peter; Moghanaki, Drew; Chmura, Steven J; Salama, Joseph K

    2017-08-01

    Stereotactic body radiotherapy (SBRT) is often used to treat patients with oligometastases (OM). Yet, patterns of SBRT practice for OM are unknown. Therefore, we surveyed radiation oncologists internationally, to understand how and when SBRT is used for OM. A 25-question survey was distributed to radiation oncologists. Respondents using SBRT for OM were asked how long they have been treating OM, number of patients treated, organs treated, primary reason for use, doses used, and future intentions. Respondents not using SBRT for OM were asked reasons why SBRT was not used and intentions for future adoption. Data were analyzed anonymously. We received 1007 surveys from 43 countries. Eighty-three percent began using SBRT after 2005 and greater than one third after 2010. Eighty-four percent cited perceived treatment response/durability as the primary reason for using SBRT in OM patients. Commonly treated organs were lung (90%), liver (75%), and spine (70%). SBRT dose/fractionation schemes varied widely. Most would offer a second course to new OM. Nearly all (99%) planned to continue and 66% planned to increase SBRT for OM. Of those not using SBRT, 59% plan to start soon. The most common reason for not using SBRT was lack of clinical efficacy (48%) or lack of necessary image guidance equipment (34%). Radiation oncologists are increasingly using SBRT for OM. The main reason for not using SBRT for OM is a perceived lack of evidence demonstrating clinical advantages. These data strengthen the need for robust prospective clinical trials (ongoing and in development) to demonstrate clinical efficacy given the widespread adoption of SBRT for OM.

  6. Positioning accuracy for lung stereotactic body radiotherapy patients determined by on-treatment cone-beam CT imaging

    Science.gov (United States)

    Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P

    2012-01-01

    Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927

  7. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial 99mTc-DMSA SPECT/CT

    International Nuclear Information System (INIS)

    Jackson, Price; Foroudi, Farshad; Pham, Daniel; Hofman, Michael S; Hardcastle, Nicholas; Callahan, Jason; Kron, Tomas; Siva, Shankar

    2014-01-01

    Stereotactic ablative body radiotherapy (SABR) has been proposed as a definitive treatment for patients with inoperable primary renal cell carcinoma. However, there is little documentation detailing the radiobiological effects of hypofractionated radiation on healthy renal tissue. In this study we describe a methodology for assessment of regional change in renal function in response to single fraction SABR of 26 Gy. In a patient with a solitary kidney, detailed follow-up of kidney function post-treatment was determined through 3-dimensional SPECT/CT imaging and 51 Cr-EDTA measurements. Based on measurements of glomerular filtration rate, renal function declined rapidly by 34% at 3 months, plateaued at 43% loss at 12 months, with minimal further decrease to 49% of baseline by 18 months. The pattern of renal functional change in 99m Tc-DMSA uptake on SPECT/CT imaging correlates with dose delivered. This study demonstrates a dose effect relationship of SABR with loss of kidney function

  8. Geometric accuracy of field alignment in fractionated stereotactic conformal radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Kortmann, Rolf D.; Becker, Gerd; Perelmouter, Jury; Buchgeister, Markus; Meisner, Christoph; Bamberg, Michael

    1999-01-01

    Purpose: To assess the accuracy of field alignment in patients undergoing three-dimensional (3D) conformal radiotherapy of brain tumors, and to evaluate the impact on the definition of planning target volume and control procedures. Methods and Materials: Geometric accuracy was analyzed in 20 patients undergoing fractionated stereotactic conformal radiotherapy for brain tumors. Rigid head fixation was achieved by using cast material. Transfer of stereotactic coordinates was performed by an external positioning device. The accuracy during treatment planning was quantitatively assessed by using repeated computed tomography (CT) examinations in treatment position (reproducibility of isocenter). Linear discrepancies were measured between treatment plan and CT examination. In addition, for each patient, a series of 20 verifications were taken in orthogonal projections. Linear discrepancies were measured between first and all subsequent verifications (accuracy during treatment delivery). Results: For the total group of patients, the distribution of deviations during treatment setup showed mean values between -0.3-1.2 mm, with standard deviations (SD) of 1.3-2.0 mm. During treatment delivery, the distribution of deviations revealed mean values between 0.7-0.8 mm, with SDs of 0.5-0.6 mm, respectively. For all patients, deviations for the transition to the treatment machine were similar to deviations during subsequent treatment delivery, with 95% of all absolute deviations between less than 2.8 and 4.6 mm. Conclusion: Random fluctuations of field displacements during treatment planning and delivery prevail. Therefore, our quantitative data should be considered when prescribing the safety margins of the planning target volume. Repeated CT examination are useful to detect operator errors and large random or systematic deviations before start of treatment. Control procedures during treatment delivery appear to be of limited importance. In addition, our findings should help to

  9. Stereotactic ablative radiotherapy after concomitant chemoradiotherapy in non-small cell lung cancer: A TITE-CRM phase 1 trial.

    Science.gov (United States)

    Doyen, Jérôme; Poudenx, Michel; Gal, Jocelyn; Otto, Josiane; Guerder, Caroline; Naghavi, Arash O; Gérard, Anais; Leysalle, Axel; Cohen, Charlotte; Padovani, Bernard; Ianessi, Antoine; Schiappa, Renaud; Chamorey, Emmanuel; Bondiau, Pierre-Yves

    2018-05-01

    Platinum based chemoradiotherapy is the standard of care for inoperable non-small cell lung cancer (NSCLC). With evidence that NSCLC can have a dose dependent response with stereotactic ablative radiotherapy (SABR), we hypothesize that a SABR boost on residual tumor treated with chemoradiotherapy could increase treatment efficacy. The purpose of this study was to determine feasibility of such an approach. A prospective phase I trial was performed including 26 patients. Time-to-event continual reassessment method (TITE-CRM) was used for dose escalation which ranged from 3 × 7 to 3 × 12 Gy for the stereotactic boost, after 46 Gy (2 Gy per day) of chemoradiotherapy. Median follow-up was of 37.1 months (1.7-60.7), and 3, 4, 3, 3, 9 and 4 patients were included at the dose levels 1, 2, 3, 4, 5 and 6, respectively. During chemoradiotherapy, 9 patients experienced grade 3 toxicity. After stereotactic radiotherapy, 1 patient experienced an esophageal fistula (with local relapse) at the 3 × 11 Gy level, and 1 patient died from hemoptysis at the 3 × 12 Gy level. The 2-year rate of local control, locoregional free survival, metastasis-free survival, and overall survival was 70.3%, 55.5%, 44.5% and 50.8%, respectively. In the treatment of NSCLC with chemoradiotherapy followed by a stereotactic boost, the safe recommended dose in our protocol was a boost dose of 3 × 11 Gy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease. Special reference to survival and radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report — prolonged minimal RIP (pmRIP) — after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD -) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. (author)

  11. Quality of Life After Stereotactic Radiotherapy for Stage I Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Prevost, Jean-Briac; Holt, Bronno van der; Braat, Cora; Klaveren, Robertus J. van; Pattynama, Peter M.; Levendag, Peter C.; Nuyttens, Joost J.

    2010-01-01

    Purpose: To determine the impact of stereotactic radiotherapy on the quality of life of patients with inoperable early-stage non-small-cell lung cancer (NSCLC). Overall survival, local tumor control, and toxicity were also evaluated in this prospective study. Methods and Materials: From January 2006 to February 2008, quality of life, overall survival, and local tumor control were assessed in 39 patients with pathologically confirmed T1 to 2N0M0 NSCLC. These patients were treated with stereotactic radiotherapy. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ) C30 and the QLQ LC13 lung cancer-specific questionnaire were used to investigate changes in quality of life. Assessments were done before treatment, at 3 weeks, and at 2, 4, 6, 9, and 12 months after treatment, until death or progressive disease. Toxicity was evaluated using common terminology criteria for adverse events version 3.0. Results: Emotional functioning improved significantly after treatment. Other function scores and QLQ C30 and QLQ LC13 lung symptoms (such as dyspnea and coughing) showed no significant changes. The overall 2-year survival rate was 62%. After a median follow-up of 17 months, 1 patient had a local recurrence (3%). No grade 4 or 5 treatment-related toxicity occurred. Grade 3 toxicity consisted of thoracic pain, which occurred in 1 patient within 4 months of treatment, while it occurred thereafter in 2 patients. Conclusions: Quality of life was maintained, and emotional functioning improved significantly after stereotactic radiotherapy for stage I NSCLC, while survival was acceptable, local tumor control was high, and toxicity was low.

  12. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-01-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  13. Dose–Response for Stereotactic Body Radiotherapy in Early-Stage Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Olsen, Jeffrey R.; Robinson, Clifford G.; El Naqa, Issam; Creach, Kimberly M.; Drzymala, Robert E.; Bloch, Charles; Parikh, Parag J.; Bradley, Jeffrey D.

    2011-01-01

    Purpose: To compare the efficacy of three lung stereotactic body radiotherapy (SBRT) regimens in a large institutional cohort. Methods: Between 2004 and 2009, 130 patients underwent definitive lung cancer SBRT to a single lesion at the Mallinckrodt Institute of Radiology. We delivered 18 Gy × 3 fractions for peripheral tumors (n = 111) and either 9 Gy × 5 fractions (n = 8) or 10 Gy × 5 fractions (n = 11) for tumors that were central or near critical structures. Univariate and multivariate analysis of prognostic factors was performed using the Cox proportional hazard model. Results: Median follow-up was 11, 16, and 13 months for the 9 Gy × 5, 10 Gy × 5, and 18 Gy × 3 groups, respectively. Local control statistics for Years 1 and 2 were, respectively, 75% and 50% for 9 Gy × 5, 100% and 100% for 10 Gy × 5, and 99% and 91% for 18 Gy × 3. Median overall survival was 14 months, not reached, and 34 months for the 9 Gy × 5, 10 Gy × 5, and 18 Gy × 3 treatments, respectively. No difference in local control or overall survival was found between the 10 Gy × 5 and 18 Gy × 3 groups on log–rank test, but both groups had improved local control and overall survival compared with 9 Gy × 5. Treatment with 9 Gy × 5 was the only independent prognostic factor for reduced local control on multivariate analysis, and increasing age, increasing tumor volume, and poor performance status predicted independently for reduced overall survival. Conclusion: Treatment regimens of 10 Gy × 5 and 18 Gy × 3 seem to be efficacious for lung cancer SBRT and provide superior local control and overall survival compared with 9 Gy × 5.

  14. Measurement of the absorbed dose in the very small size photon beams used in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Derreumaux, S.; Huet, C.; Robbes, I.; Trompier, F.; Boisserie, G.; Brunet, G.; Buchheit, I.; Sarrazin, T.; Chea, M.

    2008-01-01

    After the radiotherapy accident in Toulouse, the French authority of nuclear safety and the French agency of health products safety have asked the IR.S.N. to establish, together with experts from the French society of medical physics and the French society of radiotherapy and oncology, a national protocol on dose calibration for the very small beams used in stereotactic radiotherapy. The research and reflexions of the working group 'GT minifaisceaux ' set up by the I.R.S.N. are presented in this final report. A review of the international literature has been performed. A national survey has been done to know the present practices in the dosimetry of small fields. A campaign of measurements of the data needed to characterize the small beams for the different stereotactic systems has started, using different types of detectors acquired by the I.R.S.N.. In this report are presented a deep synthesis on the problems related to the dosimetry of small fields, the results of the national survey, the first results of the campaign of measurements and the recommendations of the GT. (authors)

  15. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-01-01

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  16. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  17. Management of acoustic neuromas with fractionated stereotactic radiotherapy (FSRT): Long-term results in 106 patients treated in a single institution

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Volk, Sigrid; Schulz-Ertner, Daniela; Huber, Peter E.; Thilmann, Christoph; Debus, Juergen

    2005-01-01

    Purpose: To assess the long-term outcome and toxicity of fractionated stereotactic radiotherapy for acoustic neuromas in 106 patients treated in a single institution. Patients and Methods: Between October 1989 and January 2004, fractionated stereotactic radiotherapy (FSRT) was performed in 106 patients with acoustic neuroma (AN). The median total dose applied was 57.6 Gy in median single fractions of 1.8 Gy in five fractions per week. The median irradiated tumor volume was 3.9 mL (range, 2.7-30.7 mL). The median follow-up time was 48.5 months (range, 3-172 months). Results: Fractionated stereotactic radiotherapy was well tolerated in all patients. Actuarial local tumor control rates at 3- and 5- years after FSRT were 94.3% and 93%, respectively. Actuarial useful hearing preservation was 94% at 5 years. The presence of neurofibromatosis (NF-2) significantly adversely influenced hearing preservation in patients that presented with useful hearing at the initiation of RT (p = 0.00062). Actuarial hearing preservation without the diagnosis of NF-2 was 98%. In cases with NF-2, the hearing preservation rate was 64%. Cranial nerve toxicity other than hearing impairment was rare. The rate of radiation induced toxicity to the trigeminal and facial nerve was 3.4% and 2.3%, respectively. Conclusion: Fractionated stereotactic radiotherapy is safe and efficacious for the treatment of AN, with mild toxicity with regard to hearing loss and cranial nerve function. FSRT might be considered as an equieffective treatment modality compared to neurosurgery and therefore represents an interesting alternative therapy for patients with AN

  18. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Sahgal, Arjun [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Foote, Matthew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Millar, Barbara-Ann; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel, E-mail: Daniel.letourneau@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2012-10-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image

  19. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Li, Winnie; Sahgal, Arjun; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Letourneau, Daniel

    2012-01-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup

  20. Treatment and Prognosis of Isolated Local Relapse after Stereotactic Body Radiotherapy for Clinical Stage I Non-Small-Cell Lung Cancer: Importance of Salvage Surgery.

    Science.gov (United States)

    Hamaji, Masatsugu; Chen, Fengshi; Matsuo, Yukinori; Ueki, Nami; Hiraoka, Masahiro; Date, Hiroshi

    2015-11-01

    Many efforts have been made to detect local relapse (LR) in the follow-up after stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer (NSCLC) although limited data are available on its treatment and prognosis. We aimed to characterize treatment options and clarify long-term outcomes of isolated LR after SBRT for patients with clinical stage I NSCLC. We reviewed our institutional database in search of patients with isolated LR after SBRT for clinical stage I NSCLC at our institution between 1999 and 2013. Patient characteristics were compared with Mann-Whitney U test, χ2 test, or Fisher's exact test as appropriate. Survival outcomes were estimated with Kaplan-Meier method. Potential prognostic factors were investigated using Cox proportional hazard model. Of 308 patients undergoing SBRT for clinical stage I NSCLC, 49 patients were identified to have isolated LR. Twelve patients underwent salvage surgery, none underwent radiotherapy, and eight patients received chemotherapy, whereas 29 patients received best supportive care. No patient characteristic except operability was significantly related with patient selection for LR treatments. Five-year overall survival (OS) rate of the whole cohort was 47.9% from SBRT and 25.7% from LR. Salvage surgery was associated with improved OS after LR (p = 0.014), and 5-year OS for patients undergoing salvage surgery was 79.5% from LR. It was confirmed that our patient selection for salvage surgery for isolated LR was associated with favorable survival outcomes. Operability based on multidisciplinary conferences, rather than measurable patient characteristics, is essential for appropriate patient selection for salvage surgery.

  1. Current Status of Stereotactic Ablative Radiotherapy (SABR for Early-stage 
Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Anhui SHI

    2016-06-01

    Full Text Available High level evidence from randomized studies comparing stereotactic ablative radiotherapy (SABR to surgery is lacking. Although the results of pooled analysis of two randomized trials for STARS and ROSEL showed that SABR is better tolerated and might lead to better overall survival than surgery for operable clinical stage I non-small cell lung cancer (NSCLC, SABR, however, is only recommended as a preferred treatment option for early stage NSCLC patients who cannot or will not undergo surgery. We, therefore, are waiting for the results of the ongoing randomized studies [Veterans affairs lung cancer surgery or stereotactic radiotherapy in the US (VALOR and the SABRTooth study in the United Kingdom (SABRTooths]. Many retrospective and case control studies showed that SABR is safe and effective (local control rate higher than 90%, 5 years survival rate reached 70%, but there are considerable variations in the definitions and staging of lung cancer, operability determination, and surgical approaches to operable lung cancer (open vs video-assisted. Therefore, it is difficult to compare the superiority of radiotherapy and surgery in the treatment of early staged lung cancer. Most studies demonstrated that the efficacy of the two modalities for early staged lung cancer is equivalent; however, due to the limited data, the conclusions from those studies are difficult to be evidence based. Therefore, the controversies will be focusing on the safety and invasiveness of the two treatment modalities. This article will review the ongoing debate in light of these goals.

  2. EORTC 22972-26991/MRC BR10 trial: Fractionated stereotactic boost following conventional radiotherapy of high grade gliomas

    International Nuclear Information System (INIS)

    Baumert, Brigitta G.; Brada, Michael; Bernier, Jacques; Kortmann, Rolf D.; Dehing-Oberije, Cary; Collette, Laurence; Davis, J. Bernard

    2008-01-01

    Background and purpose: The EORTC trial No. 22972 investigated the role of an additional fractionated stereotactic boost (fSRT) to conventional radiotherapy for patients with high grade gliomas. A quality-assurance (QA) programme was run in conjunction with the study and was the first within the EORTC addressing the quality of a supposedly highly accurate treatment technique such as stereotactic radiotherapy. A second aim was to investigate a possible relation between the clinical results of the stereotactic boost arm and the results of the QA. Materials and methods: The trial was closed in 2001 due to low accrual. In total, 25 patients were randomized: 14 into the experimental arm and 11 into the control arm. Six centres randomized patients, 8 centres had completed the dummy run (DR) for the stereotactic boost part. All participating centres (9) were asked to complete a quality-assurance questionnaire. The DR consisted of treatment planning according to the guidelines of the protocol on 3 different tumour volumes drawn on CT images of a humanized phantom. The SRT technique to be used was evaluated by the questionnaire. Clinical data from patients recruited to the boost arm from 6 participating centres were analysed. Results: There was a full compliance to the protocol requirements for 5 centres. Major and minor deviations in conformality were observed for 2 and 3 centres, respectively. Of the 8 centres which completed the DR, one centre did not comply with the requirements of stereotactic radiotherapy concerning accuracy, dosimetry and planning. Median follow-up and median overall survival were 39.2 and 21.4 months, respectively. Acute and late toxicities of the stereotactic boost were low. One radiation necrosis was seen for a patient who has not received the SRT boost. Three reported serious adverse events were all seizures and probably therapy-related. Conclusions: Overall compliance was good but not ideal from the point of view of this highly precise radiation

  3. Treatment of Non-Small Cell Lung Cancer Patients With Proton Beam-Based Stereotactic Body Radiotherapy: Dosimetric Comparison With Photon Plans Highlights Importance of Range Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Panahandeh, Hamid Reza [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Westover, Kenneth [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Adams, Judith; Willers, Henning [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States)

    2012-05-01

    Purpose: Proton beam radiotherapy has been proposed for use in stereotactic body radiotherapy (SBRT) for early-stage non-small-cell lung cancer. In the present study, we sought to analyze how the range uncertainties for protons might affect its therapeutic utility for SBRT. Methods and Materials: Ten patients with early-stage non-small-cell lung cancer received SBRT with two to three proton beams. The patients underwent repeat planning for photon SBRT, and the dose distributions to the normal and tumor tissues were compared with the proton plans. The dosimetric comparisons were performed within an operational definition of high- and low-dose regions representing volumes receiving >50% and <50% of the prescription dose, respectively. Results: In high-dose regions, the average volume receiving {>=}95% of the prescription dose was larger for proton than for photon SBRT (i.e., 46.5 cm{sup 3} vs. 33.5 cm{sup 3}; p = .009, respectively). The corresponding conformity indexes were 2.46 and 1.56. For tumors in close proximity to the chest wall, the chest wall volume receiving {>=}30 Gy was 7 cm{sup 3} larger for protons than for photons (p = .06). In low-dose regions, the lung volume receiving {>=}5 Gy and maximum esophagus dose were smaller for protons than for photons (p = .019 and p < .001, respectively). Conclusions: Protons generate larger high-dose regions than photons because of range uncertainties. This can result in nearby healthy organs (e.g., chest wall) receiving close to the prescription dose, at least when two to three beams are used, such as in our study. Therefore, future research should explore the benefit of using more than three beams to reduce the dose to nearby organs. Additionally, clinical subgroups should be identified that will benefit from proton SBRT.

  4. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Wang Zhiheng; Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-01-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm

  5. Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Zhang, Binglan; Zhu, Fuping; Ma, Xuelei; Tian, Ye; Cao, Dan; Luo, Songe; Xuan, Yu; Liu, Lei; Wei, Yuquan

    2014-01-01

    Purpose: A population-based matched-pair comparison was performed to compare the efficacy of stereotactic body radiotherapy (SBRT) versus surgery for early-stage non-small cell lung cancer (NSCLC). Methods: All the eligible studies were searched by PubMed, Medline, Embase, and the Cochrane Library. The meta-analysis was performed to compare odds ratios (OR) for overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), local control (LC), and distant control (DC). Results: Six studies containing 864 matched patients were included in the meta-analysis. The surgery was associated with a better long-term OS in patients with early-stage NSCLC. The pooled OR and 95% confidence interval (CI) for 1-year, 3-year OS were 1.31 [0.90, 1.91] and 1.82 [1.38, 2.40], respectively. However, the difference in 1-year and 3-year CSS, DFS, LC and DC was not significant. Conclusions: This systematic review found a superior 3-year OS after surgery compared with SBRT, which supports the need to compare both treatments in large prospective, randomized, controlled clinical trials

  6. Surgery or stereotactic body radiotherapy for elderly stage I lung cancer? A propensity score matching analysis.

    Science.gov (United States)

    Miyazaki, Takuro; Yamazaki, Takuya; Nakamura, Daisuke; Sato, Shuntaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Matsumoto, Keitaro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi

    2017-12-01

    The aim of this study was to compare the outcomes of surgery and stereotactic body radiotherapy (SBRT) for elderly clinical stage I non-small cell lung cancer (NSCLC) patients. Patients ≥80 years of age with clinical stage I NSCLC between August 2008 and December 2014 were treated either surgery or SBRT. Propensity score matching was performed to reduce bias in various clinicopathological factors. Surgery was performed in 57 cases and SBRT in 41 cases. In the surgery group, the operations included 34 lobectomies and 23 sublobar resections. In the SBRT group, 27 cases were given 48 Gy in 4 fractions, and 14 were given 60 Gy in 10 fractions. Similar characteristics were identified in age (82 years), gender (male:female ratio 2:1), tumor size (2.2 cm), carcinoembryonic antigen (3.6 ng/ml), Charlson comorbidity index (1), Glasgow prognostic scale (0), and forced expiratory volume in 1 s (1.7 L) after matching. Before matching, the 5-year overall survival (OS) in surgery (68.3%) was significantly better than that in SBRT (47.4%, p = 0.02), and the 5-year disease-specific survival (DSS) (94.1%, 78.2%, p = 0.17) was not significantly different between the groups. The difference in the 5-year OS became non-significant between the matched pairs (57.0%, 49.1%, p = 0.56). The outcomes of surgery and SBRT for elderly patients with the early stage NSCLC were roughly the same.

  7. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  8. Safety and Efficacy of Intensity-Modulated Stereotactic Body Radiotherapy Using Helical Tomotherapy for Lung Cancer and Lung Metastasis

    Directory of Open Access Journals (Sweden)

    Aiko Nagai

    2014-01-01

    Full Text Available Stereotactic body radiotherapy (SBRT proved to be an effective treatment with acceptable toxicity for lung tumors. However, the use of helical intensity-modulated (IM SBRT is controversial. We investigated the outcome of lung tumor patients treated by IMSBRT using helical tomotherapy with a Japanese standard fractionation schedule of 48 Gy in 4 fractions (n=37 or modified protocols of 50–60 Gy in 5–8 fractions (n=35. Median patient’s age was 76 years and median follow-up period for living patients was 20 months (range, 6–46. The median PTV was 6.9 cc in the 4-fraction group and 14 cc in the 5- to 8-fraction group (P=0.001. Grade 2 radiation pneumonitis was seen in 2 of 37 patients in the 4-fraction group and in 2 of 35 patients in the 5- to 8-fraction group (log-rank P=0.92. Other major complications were not observed. The LC rates at 2 years were 87% in the 4-fraction group and 83% in the 5- to 8-fraction group. Helical IMSBRT for lung tumors is safe and effective. Patients with a high risk of developing severe complications may also be safely treated using 5–8 fractions. The results of the current study warrant further studies of helical IMSBRT.

  9. Re-irradiation of recurrent anaplastic ependymoma using radiosurgery or fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Murai, Taro; Sato, Kengo; Iwabuchi, Michio; Manabe, Yoshihiko; Ogino, Hiroyuki; Iwata, Hiromitsu; Tatewaki, Koshi; Yokota, Naoki; Ohta, Seiji; Shibamoto, Yuta

    2016-03-01

    Recurrent ependymomas were retreated with stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT). The efficacy, toxicities, and differences between SRS and FSRT were analyzed. Eight patients with recurrent ependymomas fulfilling the criteria described below were evaluated. Inclusion criteria were: (1) the patient had previously undergone surgery and conventional radiotherapy as first-line treatment; (2) targets were located in or adjacent to the eloquent area or were deep-seated; and (3) the previously irradiated volume overlapped the target lesion. FSRT was delivered to 18 lesions, SRS to 20 lesions. A median follow-up period was 23 months. The local control rate was 76 % at 3 years. No significant differences in local control were observed due to tumor size or fractionation schedule. Lesions receiving >25 Gy/5 fr or 21 Gy/3 fr did not recur within 1 year, whereas no dose-response relationship was observed in those treated with SRS. No grade ≥2 toxicity was observed. Our treatment protocol provided an acceptable LC rate and minimal toxicities. Because local recurrence of tumors may result in patient death, a minimum dose of 21 Gy/3 fr or 25 Gy/5 fr or higher may be most suitable for treatment of these cases.

  10. Results of patient specific quality assurance for patients undergoing stereotactic ablative radiotherapy for lung lesions

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Clements, Natalie; Cramb, Jim; Wanigaratne, Derrick M.; Chesson, Brent; Aarons, Yolanda; Siva, Shankar; Ball, David; Kron, Tomas

    2014-01-01

    Hypofractionated image guided radiotherapy of extracranial targets has become increasingly popular as a treatment modality for inoperable patients with one or more small lesions, often referred to as stereotactic ablative body radiotherapy (SABR). This report details the results of the physical quality assurance (QA) program used for the first 33 lung cancer SABR radiotherapy 3D conformal treatment plans in our centre. SABR involves one or few fractions of high radiation dose delivered in many small fields or arcs with tight margins to mobile targets often delivered through heterogeneous media with non-coplanar beams. We have conducted patient-specific QA similar to the more common intensity modulated radiotherapy QA with particular reference to motion management. Individual patient QA was performed in a Perspex phantom using point dose verification with an ionisation chamber and radiochromic film for verification of the dose distribution both with static and moving detectors to verify motion management strategies. While individual beams could vary by up to 7 %, the total dose in the target was found to be within ±2 % of the prescribed dose for all 33 plans. Film measurements showed qualitative and quantitative agreement between planned and measured isodose line shapes and dimensions. The QA process highlighted the need to account for couch transmission and demonstrated that the ITV construction was appropriate for the treatment technique used. QA is essential for complex radiotherapy deliveries such as SABR. We found individual patient QA helpful in setting up the technique and understanding potential weaknesses in SABR workflow, thus providing confidence in SABR delivery.

  11. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    Energy Technology Data Exchange (ETDEWEB)

    Collen, Christine, E-mail: ccollen@uzbrussel.be [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Ampe, Ben [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Gevaert, Thierry [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Moens, Maarten [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Linthout, Nadine; De Ridder, Mark; Verellen, Dirk [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); D' Haens, Jean [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Storme, Guy [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium)

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  12. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Arimura, H; Toyofuku, F; Higashida, Y; Onizuka, Y; Terashima, H; Egashira, Y; Shioyama, Y; Nomoto, S; Honda, H; Nakamura, K; Yoshidome, S; Anai, S

    2009-01-01

    The purpose of this study was to develop a computerized method for estimation of the location of a lung tumor in cine images on an electronic portal imaging device (EPID) without implanted markers during stereotactic body radiotherapy (SBRT). Each tumor region was segmented in the first EPID cine image, i.e., reference portal image, based on a multiple-gray level thresholding technique and a region growing technique, and then the image including the tumor region was cropped as a 'tumor template' image. The tumor location was determined as the position in which the tumor template image took the maximum cross-correlation value within each consecutive portal image, which was acquired in cine mode on the EPID in treatment. EPID images with 512 x 384 pixels (pixel size: 0.56 mm) were acquired at a sampling rate of 0.5 frame s -1 by using energies of 4, 6 or 10 MV on linear accelerators. We applied our proposed method to EPID cine images (226 frames) of 12 clinical cases (ages: 51-83, mean: 72) with a non-small cell lung cancer. As a result, the average location error between tumor points obtained by our method and the manual method was 1.47 ± 0.60 mm. This preliminary study suggests that our method based on the tumor template matching technique might be feasible for tracking the location of a lung tumor without implanted markers in SBRT.

  13. A linac-based stereotactic irradiation technique of uveal melanoma

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Bogner, Joachim; Georg, Dietmar; Zehetmayer, Martin; Kren, Gerhard; Poetter, Richard

    2001-01-01

    Purpose: To describe a stereotactic irradiation technique for uveal melanomas performed at a linac, based on a non-invasive eye fixation and eye monitoring system. Methods: For eye immobilization a light source system is integrated in a standard stereotactic mask system in front of the healthy eye: During treatment preparation (computed tomography/magnetic resonance imaging) as well as for treatment delivery, patients are instructed to gaze at the fixation light source. A mini-video camera monitors the pupil center position of the diseased eye. For treatment planning and beam delivery standard stereotactic radiotherapy equipment is used. If the pupil center deviation from a predefined 'zero-position' exceeds 1 mm (for more than 2 s), treatment delivery is interrupted. Between 1996 and 1999 60 patients with uveal melanomas, where (i) tumor height exceeded 7 mm, or (ii) tumor height was more than 3 mm, and the central tumor distance to the optic disc and/or the macula was less than 3 mm, have been treated. A total dose of 60 or 70 Gy has been given in 5 fractions within 10 days. Results: The repositioning accuracy in the mask system is 0.47±0.36 mm in rostral-occipital direction, 0.75±0.52 mm laterally, and 1.12±0.96 mm in vertical direction. An eye movement analysis performed for 23 patients shows a pupil center deviation from the 'zero' position<1 mm in 91% of all cases investigated. In a theoretical analysis, pupil center deviations are correlated with GTV 'movements'. For a pupil center deviation of 1 mm (rotation of the globe of 5 degree sign ) the GTV is still encompassed by the 80% isodose in 94%. Conclusion: For treatments of uveal melanomas, linac-based stereotactic radiotherapy combined with a non-invasive eye immobilization and monitoring system represents a feasible, accurate and reproducible method. Besides considerable technical requirements, the complexity of the treatment technique demands an interdisciplinary team continuously dedicated to this

  14. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins

    International Nuclear Information System (INIS)

    Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus

    2009-01-01

    Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.

  15. Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland

    International Nuclear Information System (INIS)

    Milker-Zabel, Stefanie; Debus, Juergen; Thilmann, Christoph; Schlegel, Wolfgang; Wannenmacher, Michael

    2001-01-01

    Purpose: We evaluated survival rates and side effects after fractionated stereotactically guided radiotherapy (SCRT) and radiosurgery in patients with pituitary adenoma. Methods and Materials: Between 1989 and 1998, 68 patients were treated with FSRT (n=63) or radiosurgery (n=5) for pituitary adenomas. Twenty-six had functional and 42 had nonfunctional adenomas. Follow-up included CT/MRI, endocrinologic, and ophthalmologic examinations. Mean follow-up was 38.7 months. Seven patients received radiotherapy as primary treatment and 39 patients received it postoperatively for residual disease. Twenty-two patients were treated for recurrent disease after surgery. Mean total dose was 52.2 Gy for SCRT, and 15 Gy for radiosurgery. Results: Overall local tumor control was 93% (60/65 patients). Forty-three patients had stable disease based on CT/MRI, while 15 had a reduction of tumor volume. After FSRT, 26% with a functional adenoma had a complete remission and 19% had a reduction of hormonal overproduction after 34 months' mean. Two patients with STH-secreting adenomas had an endocrinologic recurrence, one with an ACTH-secreting adenoma radiologic recurrence, within 54 months. Reduction of visual acuity was seen in 4 patients and partial hypopituitarism in 3 patients. None of the patients developed brain radionecrosis or radiation-induced gliomas. Conclusion: Stereotactically guided radiotherapy is effective and safe in the treatment of pituitary adenomas to improve local control and reduce hormonal overproduction

  16. Dose delivery verification and accuracy assessment of stereotaxy in stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Pelagade, S.M.; Bopche, T.T.; Namitha, K.; Munshi, M.; Bhola, S.; Sharma, H.; Patel, B.K.; Vyas, R.K.

    2008-01-01

    The outcome of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) in both benign and malignant tumors within the cranial region highly depends on precision in dosimetry, dose delivery and the accuracy assessment of stereotaxy associated with the unit. The frames BRW (Brown-Roberts-Wells) and GTC (Gill- Thomas-Cosman) can facilitate accurate patient positioning as well as precise targeting of tumours. The implementation of this technique may result in a significant benefit as compared to conventional therapy. As the target localization accuracy is improved, the demand for treatment planning accuracy of a TPS is also increased. The accuracy of stereotactic X Knife treatment planning system has two components to verify: (i) the dose delivery verification and the accuracy assessment of stereotaxy; (ii) to ensure that the Cartesian coordinate system associated is well established within the TPS for accurate determination of a target position. Both dose delivery verification and target positional accuracy affect dose delivery accuracy to a defined target. Hence there is a need to verify these two components in quality assurance protocol. The main intention of this paper is to present our dose delivery verification procedure using cylindrical wax phantom and accuracy assessment (target position) of stereotaxy using Geometric Phantom on Elekta's Precise linear accelerator for stereotactic installation

  17. Stereotactic radiosurgery versus whole-brain radiotherapy after intracranial metastasis resection : A systematic review and meta-analysis

    NARCIS (Netherlands)

    Lamba, Nayan; Muskens, Ivo S; DiRisio, Aislyn C; Meijer, Louise; Briceno, Vanessa; Edrees, Heba; Aslam, Bilal; Minhas, Sadia; Verhoeff, Joost J.C.; Kleynen, Catharina E.; Smith, Timothy R; Mekary, Rania A; Broekman, Marike L.

    2017-01-01

    Background: In patients with one to three brain metastases who undergo resection, options for post-operative treatments include whole-brain radiotherapy (WBRT) or stereotactic radiosurgery (SRS) of the resection cavity. In this meta-analysis, we sought to compare the efficacy of each post-operative

  18. The history of stereotactic radiosurgery and radiotherapy.

    Science.gov (United States)

    Lasak, John M; Gorecki, John P

    2009-08-01

    Stereotactic neurosurgery originated from the pioneering work of Horsley and Clarke, who developed a stereotactic apparatus to study the monkey brain in 1908. Spiegel and Wycis applied this technology to the human brain in 1947, which ultimately lead to the development of multiple stereotactic neurosurgical devices during the 1950s. It was Lars Leksell of Sweden, however, who envisioned stereotactic radiosurgery. Leksell developed the gamma knife to treat intracranial lesions in a noninvasive fashion. His work stimulated worldwide interest and created the field of stereotactic radiosurgery.

  19. Hypofractionated stereotactic body radiotherapy (SBRT) for liver metastases. A retrospective analysis of 74 patients treated in the Klinikum rechts der Isar Munich; Die hypofraktionierte, stereotaktische Strahlentherapie von Lebermetastasen. Eine retrospektive Analyse von 74 Patienten des Klinikums rechts der Isar Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Heppt, Franz Johannes

    2013-06-12

    Purpose of this study was to evaluate the outcome of stereotactic body radiotherapy (SBRT) of liver metastases and prognostic factors for local control and overall survival. From 2000 to 2009 74 patients with 91 metastases were treated at the Department for Radiation Therapy and Oncology (TU Muenchen). With an observed local control rate of 75% after 1 year, SBRT proved as an effective local treatment option. Unfortunately, systemic tumor progression still dominates long term survival in many patients.

  20. Stereotactic radiotherapy using Novalis for skull base metastases developing with cranial nerve symptoms.

    Science.gov (United States)

    Mori, Yoshimasa; Hashizume, Chisa; Kobayashi, Tatsuya; Shibamoto, Yuta; Kosaki, Katsura; Nagai, Aiko

    2010-06-01

    Skull base metastases are challenging situations because they often involve critical structures such as cranial nerves. We evaluated the role of stereotactic radiotherapy (SRT) which can give high doses to the tumors sparing normal structures. We treated 11 cases of skull base metastases from other visceral carcinomas. They had neurological symptoms due to cranial nerve involvement including optic nerve (3 patients), oculomotor (3), trigeminal (6), abducens (1), facial (4), acoustic (1), and lower cranial nerves (1). The interval between the onset of cranial nerve symptoms and Novalis SRT was 1 week to 7 months. Eleven tumors of 8-112 ml in volume were treated by Novalis SRT with 30-50 Gy in 10-14 fractions. The tumors were covered by 90-95% isodose. Imaging and clinical follow-up has been obtained in all 11 patients for 5-36 months after SRT. Seven patients among 11 died from primary carcinoma or other visceral metastases 9-36 months after Novalis SRT. All 11 metastatic tumors were locally controlled until the end of the follow-up time or patient death, though retreatment for re-growth was done in 1 patient. In 10 of 11 patients, cranial nerve deficits were improved completely or partially. In some patients, the cranial nerve symptoms were relieved even during the period of fractionated SRT. Novalis SRT is thought to be safe and effective treatment for skull base metastases with involvement of cranial nerves and it may improve cranial nerve symptoms quickly.

  1. [Doses to organs at risk in conformational and stereotactic body radiation therapy: Liver].

    Science.gov (United States)

    Debbi, K; Janoray, G; Scher, N; Deutsch, É; Mornex, F

    2017-10-01

    The liver is an essential organ that ensures many vital functions such as metabolism of bilirubin, glucose, lipids, synthesis of coagulation factors, destruction of many toxins, etc. The hepatic parenchyma can be irradiated during the management of digestive tumors, right basithoracic, esophagus, abdomen in toto or TBI. In addition, radiotherapy of the hepatic area, which is mainly stereotactic, now occupies a central place in the management of primary or secondary hepatic tumors. Irradiation of the whole liver, or part of it, may be complicated by radiation-induced hepatitis. It is therefore necessary to respect strict dosimetric constraints both in stereotactic and in conformational irradiation in order to limit the undesired irradiation of the hepatic parenchyma which may vary according to the treatment techniques, the basic hepatic function or the lesion size. The liver is an organ with a parallel architecture, so the average tolerable dose in the whole liver should be considered rather than the maximum tolerable dose at one point. The purpose of this article is to propose a development of dose recommendations during conformation or stereotactic radiotherapy of the liver. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  3. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  4. Salvage surgery for local failures after stereotactic ablative radiotherapy for early stage non-small cell lung cancer

    NARCIS (Netherlands)

    N. Verstegen (Naomi); A.W.P.M. Maat (Alex); F.J. Lagerwaard (Frank); M.A. Paul (Marinus); M. Versteegh (Michel); J.J. Joosten (Joris); W. Lastdrager (Willem); E.F. Smit (Egbert); B.J. Slotman (Ben); J.J.M.E. Nuyttens (Joost); S. Senan (Suresh)

    2016-01-01

    markdownabstract__Introduction:__ The literature on surgical salvage, i.e. lung resections in patients who develop a local recurrence following stereotactic ablative radiotherapy (SABR), is limited. We describe our experience with salvage surgery in nine patients who developed a local recurrence

  5. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-01-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm 3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm 3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target

  6. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzler, Thomas [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Grezdo, Jozef [Department of Radiotherapy, St Elisabeth Institute of Oncology, Bratislava (Slovakia); Bogner, Joachim [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Birkfellner, Wolfgang [Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria)

    2007-04-21

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm{sup 3} tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm{sup 3} were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical

  7. SU-F-J-128: Dosimetric Impact of Esophagus Motion in Spine Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J; Wang, X; Zhao, Z; Yang, J; Zhang, Y; Court, L; Li, J; Brown, P; Ghia, A [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Acute esophageal toxicity is a common side effect in spine stereotactic body radiotherapy (SBRT). The respiratory motion may alter esophageal position from the planning scan resulting in excessive esophageal dose. Here we assessed the dosimetric impact resulting from the esophageal motion using 4DCT. Methods: Nine patients treated to their thoracic spines in one fraction of 24 Gy were identified for this study. The original plan on a free breathing CT was copied to each phase image of a 4DCT scan, recalculated, scaled, and accumulated to the free breathing CT using deformable image registration. A segment of esophagus was contoured in the vicinity of treatment target. Esophagus dose volume histogram (DVH) was generated for both the original planned dose and the accumulated 4D dose for comparison. In parallel, we performed a chained deformable registration of 4DCT phase images to estimate the motion magnitude of the esophagus in a breathing cycle. We examined the correlation between the motion magnitude and the dosimetric deviation. Results: The esophageal motion mostly exhibited in the superior-inferior direction. The cross-sectional motion was small. Esophagus motion at T1 vertebra level (0.7 mm) is much smaller than that at T11 vertebra level (6.5 mm). The difference of Dmax between the original and 4D dose distributions ranged from 9.1 cGy (esophagus motion: 5.6 mm) to 231.1 cGy (esophagus motion: 3.1 mm). The difference of D(5cc) ranged from 5 cGy (esophagus motion: 3.1 mm) to 85 cGy (esophagus motion: 3.3 mm). There was no correlation between the dosimetric deviation and the motion magnitude. The V(11.9Gy)<5cc constraint was met for each patient when examining the DVH calculated from the 4D dose. Conclusion: Respiratory motion did not result in substantial dose increase to esophagus in spine SBRT. 4DCT simulation may not be necessary with regards to esophageal dose assessment.

  8. Stereotactic body radiotherapy in oligometastatic prostate cancer patients with isolated lymph nodes involvement: a two-institution experience.

    Science.gov (United States)

    Ingrosso, Gianluca; Trippa, Fabio; Maranzano, Ernesto; Carosi, Alessandra; Ponti, Elisabetta; Arcidiacono, Fabio; Draghini, Lorena; Di Murro, Luana; Lancia, Andrea; Santoni, Riccardo

    2017-01-01

    Stereotactic body radiotherapy (SBRT) is emerging as a treatment option in oligometastatic cancer patients. This retrospective study aimed to analyze local control, biochemical progression-free survival (b-PFS), and toxicity in patients affected by isolated prostate cancer lymph node metastases. Finally, we evaluated androgen deprivation therapy-free survival (ADT-FS). Forty patients with 47 isolated lymph nodes of recurrent prostate cancer were treated with SBRT. Mostly, two different fractionation schemes were used: 5 × 7 Gy in 23 (48.9 %) lesions and 5 × 8 Gy in 13 (27.7 %) lesions. Response to treatment was assessed with periodical PSA evaluation. Toxicity was registered according to RTOG/EORTC criteria. With a mean follow-up of 30.18 months, local control was achieved in 98 % of the cases, with a median b-PFS of 24 months. We obtained a 2-year b-PFS of 44 % with 40 % of the patients ADT-free at last follow-up (mean value 26.18 months; range 3.96-59.46), whereas 12.5 % had a mean ADT-FS of 13.58 months (range 2.06-37.13). Late toxicity was observed in one (2.5 %) patient who manifested a grade 3 gastrointestinal toxicity 11.76 months after the end of SBRT. Our study demonstrates that SBRT is safe, effective, and minimally invasive in the eradication of limited nodal metastases, yielding an important delay in prescribing ADT.

  9. Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform

    Science.gov (United States)

    Cai, Jing; Wang, Ziheng; Yin, Fang-Fang

    2011-01-01

    The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304

  10. Guidelines for safe practice of stereotactic body (ablative) radiation therapy

    International Nuclear Information System (INIS)

    Foote, Matthew; Barry, Tamara; Bailey, Michael; Smith, Leigh; Seeley, Anna; Siva, Shankar; Hegi-Johnson, Fiona; Booth, Jeremy; Ball, David; Thwaites, David

    2015-01-01

    The uptake of stereotactic ablative body radiation therapy (SABR) / stereotactic body radiation therapy (SBRT) worldwide has been rapid. The Australian and New Zealand Faculty of Radiation Oncology (FRO) assembled an expert panel of radiation oncologists, radiation oncology medical physicists and radiation therapists to establish guidelines for safe practice of SABR. Draft guidelines were reviewed by a number of international experts in the field and then distributed through the membership of the FRO. Members of the Australian Institute of Radiography and the Australasian College of Physical Scientists and Engineers in Medicine were also asked to comment on the draft. Evidence-based recommendations (where applicable) address aspects of departmental staffing, procedures and equipment, quality assurance measures, as well as organisational considerations for delivery of SABR treatments. Central to the guidelines is a set of key recommendations for departments undertaking SABR. These guidelines were developed collaboratively to provide an educational guide and reference for radiation therapy service providers to ensure appropriate care of patients receiving SABR.

  11. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  12. Clinical Experiences With Onboard Imager KV Images for Linear Accelerator-Based Stereotactic Radiosurgery and Radiotherapy Setup

    International Nuclear Information System (INIS)

    Hong, Linda X.; Chen, Chin C.; Garg, Madhur; Yaparpalvi, Ravindra; Mah, Dennis

    2009-01-01

    Purpose: To report our clinical experiences with on-board imager (OBI) kV image verification for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) treatments. Methods and Materials: Between January 2007 and May 2008, 42 patients (57 lesions) were treated with SRS with head frame immobilization and 13 patients (14 lesions) were treated with SRT with face mask immobilization at our institution. No margin was added to the gross tumor for SRS patients, and a 3-mm three-dimensional margin was added to the gross tumor to create the planning target volume for SRT patients. After localizing the patient with stereotactic target positioner (TaPo), orthogonal kV images using OBI were taken and fused to planning digital reconstructed radiographs. Suggested couch shifts in vertical, longitudinal, and lateral directions were recorded. kV images were also taken immediately after treatment for 21 SRS patients and on a weekly basis for 6 SRT patients to assess any intrafraction changes. Results: For SRS patients, 57 pretreatment kV images were evaluated and the suggested shifts were all within 1 mm in any direction (i.e., within the accuracy of image fusion). For SRT patients, the suggested shifts were out of the 3-mm tolerance for 31 of 309 setups. Intrafraction motions were detected in 3 SRT patients. Conclusions: kV imaging provided a useful tool for SRS or SRT setups. For SRS setup with head frame, it provides radiographic confirmation of localization using the stereotactic target positioner. For SRT with mask, a 3-mm margin is adequate and feasible for routine setup when TaPo is combined with kV imaging

  13. A dose-response relationship for time to bone pain resolution after stereotactic body radiotherapy (SBRT) for renal cell carcinoma (RCC) bony metastases

    Energy Technology Data Exchange (ETDEWEB)

    Jhaveri, Pavan M. [Dept. of Radiology, Section of Radiation Oncology, Baylor College of Medicine, Houston (United States); Teh, Bin S.; Paulino, Arnold C.; Blanco, Angel I.; Butler, E. Brian [Dept. of Radiation Oncology, The Methodist Hospital/The Methodist Hospital Research Inst., Houston (United States)], email: bteh@tmhs.org; Lo, Simon S. [Dept. of Radiation Oncology, Univ. Hospitals Seidman Cancer Center, Case Western Reserve Univ., Cleveland (United States); Amato, Robert J. [Dept. of Internal Medicine, Div. of Oncology, Univ. of Texas Health Sciences Center, Houston (United States)

    2012-05-15

    Background. To investigate the utility of stereotactic body radiotherapy (SBRT) in the treatment of painful renal cell carcinoma (RCC) bone metastases, and for a possible dose effect on time to symptom relief. Material and methods. Eighteen patients with 24 painful osseous lesions from metastatic RCC were treated with SBRT. The most common treatment regimens were 24 Gy in 3 fractions and 40 Gy in 5 fractions. The times from treatment to first reported pain relief and time to symptom recurrence were evaluated. Median follow-up was 38 weeks (1-156 weeks). Results. Seventy-eight percent of all patients had pain relief. Patients treated with a BED > 85 Gy achieved faster and more durable pain relief compared to those treated with a BED < 85 Gy. There was decrease in time to pain relief after a change in treatment regimen to 8 Gy x 5 fractions (BED = 86). There was only one patient with grade 1 skin toxicity. No neurological or other toxicity was observed. Conclusions. SBRT can safely and effectively treat painful RCC bony metastases. There appears to be a relationship between radiation dose and time to stable pain relief.

  14. Stereotactic Ablative Radiotherapy for Oligometastatic Disease in Liver

    Directory of Open Access Journals (Sweden)

    Myungsoo Kim

    2014-01-01

    Full Text Available Liver metastasis in solid tumors, including colorectal cancer, is the most frequent and lethal complication. The development of systemic therapy has led to prolonged survival. However, in selected patients with a finite number of discrete lesions in liver, defined as oligometastatic state, additional local therapies such as surgical resection, radiofrequency ablation, cryotherapy, and radiotherapy can lead to permanent local disease control and improve survival. Among these, an advance in radiation therapy made it possible to deliver high dose radiation to the tumor more accurately, without impairing the liver function. In recent years, the introduction of stereotactic ablative radiotherapy (SABR has offered even more intensive tumor dose escalation in a few fractions with reduced dose to the adjacent normal liver. Many studies have shown that SABR for oligometastases is effective and safe, with local control rates widely ranging from 50% to 100% at one or two years. And actuarial survival at one and two years has been reported ranging from 72% to 94% and from 30% to 62%, respectively, without severe toxicities. In this paper, we described the definition and technical aspects of SABR, clinical outcomes including efficacy and toxicity, and related parameters after SABR in liver oligometastases from colorectal cancer.

  15. Radiotherapy management of brain metastases using conventional linear accelerator.

    Science.gov (United States)

    Matzenauer, Marcel; Vrana, David; Vlachova, Zuzana; Cwiertka, Karel; Kalita, Ondrej; Melichar, Bohuslav

    2016-09-01

    As treatments for primary cancers continue to improve life expectancy, unfortunately, brain metastases also appear to be constantly increasing and life expectancy for patients with brain metastases is low. Longer survival and improved quality of life may be achieved using localised radiological and surgical approaches in addition to low dose corticosteroids. Stereotactic brain radiotherapy is one rapidly evolving localized radiation treatment. This article describes our experience with stereotactic radiotherapy using a linear accelerator. We reviewed patients treated with stereotactic radiotherapy, from the time of its introduction into daily practice in our Department of Oncology in 2014. We collected the data on patient treatment and predicted survival based on prognostic indices and actual patient outcome. A total of 10 patients were treated by stereotactic radiotherapy, in one case in combination with whole brain radiotherapy and hippocampal sparing. There was no significant treatment related toxicity during the treatment or follow-up and due to the small number of fractions, the overall tolerance of the treatment was excellent. The patient intrafractional movement in all cases was under 1 mm suggesting that 1 mm margin around the CTV to create the PTV is sufficient and also that patient immobilization using the thermoplastic mask compared with invasive techniques, is feasible. We also found that prognostic indices such as the Graded Prognostic Assessment provide accurate predictions of patient survival. Based on our current evidence, patients with brain metastases fit enough, should be considered for stereotactic radiotherapy treatment.

  16. SU-E-T-282: Dose Measurements with An End-To-End Audit Phantom for Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R; Artschan, R [Calvary Mater Newcastle, Newcastle, NSW (Australia); Thwaites, D [University of Sydney, Sydney, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); University of Sydney, Sydney, NSW (Australia)

    2015-06-15

    Purpose: Report on dose measurements as part of an end-to-end test for stereotactic radiotherapy, using a new audit tool, which allows audits to be performed efficiently either by an onsite team or as a postal audit. Methods: Film measurements have been performed with a new Stereotactic Cube Phantom. The phantom has been designed to perform Winston Lutz type position verification measurements and dose measurements in one setup. It comprises a plastic cube with a high density ball in its centre (used for MV imaging with film or EPID) and low density markers in the periphery (used for Cone Beam Computed Tomography, CBCT imaging). It also features strategically placed gold markers near the posterior and right surfaces, which can be used to calculate phantom rotations on MV images. Slit-like openings allow insertion of film or other detectors.The phantom was scanned and small field treatment plans were created. The fields do not traverse any inhomogeneities of the phantom on their paths to the measurement location. The phantom was setup at the delivery system using CBCT imaging. The calculated treatment fields were delivered, each with a piece of radiochromic film (EBT3) placed in the anterior film holder of the phantom. MU had been selected in planning to achieve similar exposures on all films. Calibration films were exposed in solid water for dose levels around the expected doses. Films were scanned and analysed following established procedures. Results: Setup of the cube showed excellent suitability for CBCT 3D alignment. MV imaging with EPID allowed for clear identification of all markers. Film based dose measurements showed good agreement for MLC created fields down to 0.5 mm × 0.5 mm. Conclusion: An end-to-end audit phantom for stereotactic radiotherapy has been developed and tested.

  17. Stereotactic radiation therapy: a second gold standard in the treatment of early-stage lung cancer?

    International Nuclear Information System (INIS)

    Santini B, Alejandro; Valdez C, Cristian; Sepulveda A, Veronica; Baeza L, Ricardo; Bustos, Sergio

    2016-01-01

    Lung cancer is still the leading cause of cancer death in the world. Although in Chile this is not the case, the northern regions of the country show higher incidence and mortality rates than the other Chilean regions. In recent years screening guides for lung cancer with low-dose scanner have begun to be established, and most of the medical societies involved in this subject have already settled the selection criteria. At the same time new techniques of treatment for these patients have developed, with highly sophisticated radiotherapy such as SBRT (Stereotactic Body Radiotherapy) and SBART (Stereotactic ablative body radiation therapy) that are revealing extremely encouraging results and augur significant changes in the coming years. In the present review we analyze the current work, their results, and the future of this treatment modality

  18. Stereotactic body radiation therapy (SBRT) in the treatment of liver metastases: State of the art

    International Nuclear Information System (INIS)

    De Bari, B.; Guillet, M.; Mornex, F.

    2011-01-01

    Liver metastases are frequently found in oncologic patients. Chemotherapy is the standard treatment in pluri-metastatic patients, with the possibility to obtain a clear improvement of their prognosis. Local treatment (surgery, radiofrequency, cryo-therapy, radiotherapy, etc.) could be proposed for oligo-metastatic patients, particularly for those with a good prognosis. Historically, radiation therapy has had a limited role in the treatment of liver metastases because of its toxicity when whole liver irradiation was delivered. Improvements in the knowledge of liver radiobiology and radio-pathology as well as technical innovations in delivering radiation therapy are the basis of the modern partial liver irradiation concept. In this historical and therapeutic landscape, extracranial stereotactic radiation therapy is particularly interesting for the treatment of liver metastases. This review summarises published data on stereotactic radiotherapy for the treatment of liver metastases. (authors)

  19. Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy of liver metastases – clinical results

    Directory of Open Access Journals (Sweden)

    Boda-Heggemann Judit

    2012-06-01

    Full Text Available Abstract Purpose Stereotactic Ablative Body Radiotherapy (SABR is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold were analysed regarding overall-survival (OS, progression-free-survival (PFS, progression pattern, local control (LC, acute and late toxicity. Results PTV (planning target volume-size was 108 ± 109cm3 (median 67.4 cm3. BED2 (Biologically effective dose in 2 Gy fraction was 83.3 ± 26.2 Gy (median 78 Gy. Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months. Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999. Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08 when a volume cut-off of 67 cm3 was used. No local relapse was observed at PTV-sizes 3 and BED2 > 78 Gy. No acute clinical toxicity > °2 was observed. Late toxicity was also ≤ °2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C

  20. Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Mantel, Frederick; Gerszten, Peter C; Flickinger, John C; Sahgal, Arjun; Létourneau, Daniel; Grills, Inga S; Jawad, Maha; Fahim, Daniel K; Shin, John H; Winey, Brian; Sheehan, Jason; Kersh, Ron

    2014-01-01

    To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD2 10 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown

  1. Stereotactic Body Radiotherapy for Recurrent Squamous Cell Carcinoma of the Head and Neck: Results of a Phase I Dose-Escalation Trial

    International Nuclear Information System (INIS)

    Heron, Dwight E.; Ferris, Robert L.; Karamouzis, Michalis; Andrade, Regiane S.; Deeb, Erin L.; Burton, Steven; Gooding, William E.; Branstetter, Barton F.; Mountz, James M.; Johnson, Jonas T.; Argiris, Athanassios; Grandis, Jennifer R.; Lai, Stephen Y.

    2009-01-01

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) in previously irradiated patients with squamous cell carcinoma of the head and neck (SCCHN). Patients and Methods: In this Phase I dose-escalation clinical trial, 25 patients were treated in five dose tiers up to 44 Gy, administered in 5 fractions over a 2-week course. Response was assessed according to the Response Evaluation Criteria in Solid Tumors and [ 18 F]-fluorodeoxyglucose standardized uptake value change on positron emission tomography-computed tomography (PET-CT). Results: No Grade 3/4 or dose-limiting toxicities occurred. Four patients had Grade 1/2 acute toxicities. Four objective responses were observed, for a response rate of 17% (95% confidence interval 2%-33%). The maximum duration of response was 4 months. Twelve patients had stable disease. Median time to disease progression was 4 months, and median overall survival was 6 months. Self-reported quality of life was not significantly affected by treatment. Fluorodeoxyglucose PET was a more sensitive early-measure response to treatment than CT volume changes. Conclusion: Reirradiation up to 44 Gy using SBRT is well tolerated in the acute setting and warrants further evaluation in combination with conventional and targeted therapies.

  2. Comparative Analysis of Local Control Prediction Using Different Biophysical Models for Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy

    Directory of Open Access Journals (Sweden)

    Bao-Tian Huang

    2017-01-01

    Full Text Available Purpose. The consistency for predicting local control (LC data using biophysical models for stereotactic body radiotherapy (SBRT treatment of lung cancer is unclear. This study aims to compare the results calculated from different models using the treatment planning data. Materials and Methods. Treatment plans were designed for 17 patients diagnosed with primary non-small cell lung cancer (NSCLC using 5 different fraction schemes. The Martel model, Ohri model, and the Tai model were used to predict the 2-year LC value. The Gucken model, Santiago model, and the Tai model were employed to estimate the 3-year LC data. Results. We found that the employed models resulted in completely different LC prediction except for the Gucken and the Santiago models which exhibited quite similar 3-year LC data. The predicted 2-year and 3-year LC values in different models were not only associated with the dose normalization but also associated with the employed fraction schemes. The greatest difference predicted by different models was up to 15.0%. Conclusions. Our results show that different biophysical models influence the LC prediction and the difference is not only correlated to the dose normalization but also correlated to the employed fraction schemes.

  3. Stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer and other primary cancers in comparison with primary lung cancer

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Kunieda, Etsuo; Ohashi, Toshio; Aoki, Yousuke; Koike, Naoyoshi; Takeda, Toshiaki

    2011-01-01

    Purpose: To analyze local control of oligometastatic lung tumors (OLTs) compared with that of primary lung cancer after stereotactic body radiotherapy (SBRT). Materials and methods: Retrospective record review of patients with OLTs who received SBRT with 50 Gy in 5 fractions. Local control rates (LCRs), toxicities, and factors of prognostic significance were assessed. Results: Twenty-one colorectal OLTs, 23 OLTs from other origins, and 188 primary lung cancers were included. Multivariate analysis revealed only tumor origin was prognostically significant (p < 0.05). The 1-year/2-year LCRs in colorectal OLTs and OLTs from other origins were 80%/72% and 94%/94%, respectively. The LCR in colorectal OLTs was significantly worse than that in OLTs from the other origins and primary lung cancers with pathological and clinical diagnosis (p < 0.05, p < 0.0001 and p < 0.005). Among 44 OLT patients, Grades 2 and 3 radiation pneumonitis were identified in 2 and 1 patients, respectively. No other toxicities of more than Grade 3 occurred. Conclusion: SBRT for OLTs is tolerable. The LCR for OLTs from origins other than colorectal cancer is excellent. However, LCR for colorectal OLTs is worse than that from other origins. Therefore dose escalation should be considered to achieve good local control for colorectal OLTs.

  4. 3D quantitative assessment of response to fractionated stereotactic radiotherapy and single-session stereotactic radiosurgery of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States); University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Chapiro, J. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Lin, M. [Philips Research North America, Ultrasound Imaging and Interventions (UII), Briarcliff Manor, NY (United States); Geschwind, J.F. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Yale University School of Medicine, Department of Radiology and Imaging Science, New Haven, CT (United States); Kleinberg, L. [The Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (United States); Rigamonti, D.; Jusue-Torres, I.; Marciscano, A.E. [The Johns Hopkins University School of Medicine, Department of Neurological Surgery, Baltimore, MD (United States); Yousem, D.M. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States)

    2016-03-15

    To determine clinical outcome of patients with vestibular schwannoma (VS) after treatment with fractionated stereotactic radiotherapy (FSRT) and single-session stereotactic radiosurgery (SRS) by using 3D quantitative response assessment on MRI. This retrospective analysis included 162 patients who underwent radiation therapy for sporadic VS. Measurements on T1-weighted contrast-enhanced MRI (in 2-year post-therapy intervals: 0-2, 2-4, 4-6, 6-8, 8-10, 10-12 years) were taken for total tumour volume (TTV) and enhancing tumour volume (ETV) based on a semi-automated technique. Patients were considered non-responders (NRs) if they required subsequent microsurgical resection or developed radiological progression and tumour-related symptoms. Median follow-up was 4.1 years (range: 0.4-12.0). TTV and ETV decreased for both the FSRT and SRS groups. However, only the FSRT group achieved significant tumour shrinkage (p < 0.015 for TTV, p < 0.005 for ETV over time). The 11 NRs showed proportionally greater TTV (median TTV pre-treatment: 0.61 cm{sup 3}, 8-10 years after: 1.77 cm{sup 3}) and ETV despite radiation therapy compared to responders (median TTV pre-treatment: 1.06 cm{sup 3}; 10-12 years after: 0.81 cm{sup 3}; p = 0.001). 3D quantification of VS showed a significant decrease in TTV and ETV on FSRT-treated patients only. NR had significantly greater TTV and ETV over time. (orig.)

  5. SU-E-T-547: A Method to Correlate Treatment Planning Issue with Clinical Analysis for Prostate Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Li, K; Jung, E; Newton, J; Cornell, D; Able, A

    2014-01-01

    Purpose: In this study, the algorithms and calculation setting effect and contribution weighing on prostate Volumetric Modulated Arc Therapy (VMAT) based SBRT were evaluated for clinical analysis. Methods: A low risk prostate patient under SBRT was selected for the treatment planning evaluation. The treatment target was divided into low dose prescription target volume (PTV) and high Dose PTV. Normal tissue constraints include urethra and femur head, and rectum was separated into anterior, lateral and posterior parts. By varying the constraint limit of treatment plan calculation setting and algorithms, the effect on dose coverage and normal tissue dose constraint parameter carried effective comparison for the nominal prescription and constraint. For each setting, their percentage differences to the nominal value were calculated with geometric mean and harmonic mean. Results: In the arbitrary prostate SBRT case, 14 variables were selected for this evaluation by using nominal prescription and constraint. Six VMAT planning settings were anisotropic analytic algorithm stereotactic beam with and without couch structure in grid size of 1mm and 2mm, non stereotactic beam, Acuros algorithm . Their geometry means of the variable sets for these plans were 112.3%, 111.9%, 112.09%, 111.75%, 111.28%, and 112.05%. And the corresponding harmonic means were 2.02%, 2.16%, 3.15%, 4.74%, 5.47% and 5.55%. Conclusions: In this study, the algorithm difference shows relatively larger harmonic mean between prostate SBRT VMAT plans. This study provides a methodology to find sensitive combined variables related to clinical analysis, and similar approach could be applied to the whole treatment procedure from simulation to treatment in radiotherapy for big clinical data analysis

  6. SU-E-T-547: A Method to Correlate Treatment Planning Issue with Clinical Analysis for Prostate Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Jung, E; Newton, J [Associates In Medical Physics, Lanham, MD (United States); John R Marsh Cancer Center, Hagerstown, MD (United States); Cornell, D [John R Marsh Cancer Center, Hagerstown, MD (United States); Able, A [Associates In Medical Physics, Lanham, MD (United States)

    2014-06-01

    Purpose: In this study, the algorithms and calculation setting effect and contribution weighing on prostate Volumetric Modulated Arc Therapy (VMAT) based SBRT were evaluated for clinical analysis. Methods: A low risk prostate patient under SBRT was selected for the treatment planning evaluation. The treatment target was divided into low dose prescription target volume (PTV) and high Dose PTV. Normal tissue constraints include urethra and femur head, and rectum was separated into anterior, lateral and posterior parts. By varying the constraint limit of treatment plan calculation setting and algorithms, the effect on dose coverage and normal tissue dose constraint parameter carried effective comparison for the nominal prescription and constraint. For each setting, their percentage differences to the nominal value were calculated with geometric mean and harmonic mean. Results: In the arbitrary prostate SBRT case, 14 variables were selected for this evaluation by using nominal prescription and constraint. Six VMAT planning settings were anisotropic analytic algorithm stereotactic beam with and without couch structure in grid size of 1mm and 2mm, non stereotactic beam, Acuros algorithm . Their geometry means of the variable sets for these plans were 112.3%, 111.9%, 112.09%, 111.75%, 111.28%, and 112.05%. And the corresponding harmonic means were 2.02%, 2.16%, 3.15%, 4.74%, 5.47% and 5.55%. Conclusions: In this study, the algorithm difference shows relatively larger harmonic mean between prostate SBRT VMAT plans. This study provides a methodology to find sensitive combined variables related to clinical analysis, and similar approach could be applied to the whole treatment procedure from simulation to treatment in radiotherapy for big clinical data analysis.

  7. Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney

    International Nuclear Information System (INIS)

    Svedman, Christer; Sandstroem, P.; Wersaell, Peter; Karlsson, Kristin; Rutkowska, Eva; Lax, Ingmar; Blomgren, H.

    2008-01-01

    Background. About 2% of patients with a carcinoma in one kidney develop either metastases or a new primary tumor in the contralateral kidney. Often, renal cancers progress rapidly at peripheral sites and a metastasis to the second kidney may not be the patient's main problem. However, when an initial renal cancer is more indolent yet spreads to the formerly unaffected kidney or a new primary tumor forms there, local treatment may be needed. Stereotactic body radiotherapy (SBRT) has been demonstrated as a valuable treatment option for tumors that cause local symptoms. Presented here is a retrospective analysis of patients in whom SBRT was used to control primary or metastatic renal disease. Patients and methods. Seven patients with a mean age of 64 (44-76) were treated for metastases from a malignant kidney to its contralateral counterpart. Dose/fractionation schedules varied between 10 Gyx3 and 10 Gyx4 depending on target location and size, given within one week. Follow-up times for patients who remained alive were 12, 52 and 66 months and for those who subsequently died were 10, 16, 49 and 70 months. Results. Local control, defined as radiologically stable disease or partial/complete response, was obtained in six of these seven patients and regained after retreatment in the one patient whose lesion progressed. Side effects were generally mild, and in five of the seven patients, kidney function remained unaffected after treatment. In two patients, the creatinine levels remained moderately elevated at approximately 160 μmol/L post treatment. At no time was dialysis required. Conclusion. These results indicate that SBRT is a valuable alternative to surgery and other options for patients with metastases from a cancer-bearing kidney to the remaining kidney and provides local tumor control with satisfactory kidney function

  8. Stereotactic body radiotherapy (sbrt) in lung oligometastatic patients: role of local treatments

    International Nuclear Information System (INIS)

    Navarria, Pierina; Tozzi, Angelo; Reggiori, Giacomo; Fogliata, Antonella; Scorsetti, Marta; Ascolese, Anna Maria; Tomatis, Stefano; Cozzi, Luca; De Rose, Fiorenza; Mancosu, Pietro; Alongi, Filippo; Clerici, Elena; Lobefalo, Francesca

    2014-01-01

    Data in the literature suggest the existence of oligometastatic disease, a state in which metastases are limited in number and site. Different kinds of local therapies have been used for the treatment of limited metastases and in the recent years reports on the use of Stereotactic Ablative radiotherapy (SABR) are emerging and the early results on local control are promising. From October 2010 to February 2012, 76 consecutive patients for 118 lung lesions were treated. SABR was performed in case of controlled primary tumor, long-term of progression disease, exclusion of surgery, and number of metastatic sites ≤ 5. Different kinds of primary tumors were treated, the most common were lung and colon-rectal cancer. The total dose prescribed varied according to tumor site and maximum diameter. Dose prescription was 48 Gy in 4 fractions for peripheral lesions, 60 Gy in 8 fractions for central lesions and 60 Gy in 3 fractions for peripheral lesions with diameter ≤ 2 cm. Dosimetric planning objectives were met for the cohort of patients with in particular V98% = 98.1 ± 3.4% for the CTV and mean lung dose of 3.7 ± 3.8 Gy. Radiological response was obtained in the vast majority of patients. The local control at 1, 2 and 3 years was 95%, 89% and 89% respectively. No major pulmonary toxicity, chest pain or rib fracture occurred. The median follow up was 20 months (range 6–45 months). Overall Survival (OS) at 1, 2 and 3 years was 84.1%, 73% and 73% respectively. SABR is feasible with limited morbidity and promising results in terms of local contro, survival and toxicity

  9. A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm for lung tumors.

    Science.gov (United States)

    Iwata, Hiromitsu; Ishikura, Satoshi; Murai, Taro; Iwabuchi, Michio; Inoue, Mitsuhiro; Tatewaki, Koshi; Ohta, Seiji; Yokota, Naoki; Shibamoto, Yuta

    2017-08-01

    In this phase I/II study, we assessed the safety and initial efficacy of stereotactic body radiotherapy (SBRT) for lung tumors with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm. Study subjects had histologically confirmed primary non-small-cell lung cancer staged as T1a-T2aN0M0 and pulmonary oligometastasis. The primary endpoint was the incidence of Grade ≥3 radiation pneumonitis (RP) within 180 days of the start of SBRT. The secondary endpoint was local control and overall survival rates. Five patients were initially enrolled at level 1 [50 Gy/4 fractions (Fr)]; during the observation period, level 0 (45 Gy/4 Fr) was opened. The dose was escalated to the next level when grade ≥3 RP was observed in 0 out of 5 or 1 out of 10 patients. Virtual quality assurance planning was performed for 60 Gy/4 Fr; however, dose constraints for the organs at risk did not appear to be within acceptable ranges. Therefore, level 2 (55 Gy/4 Fr) was regarded as the upper limit. After the recommended dose (RD) was established, 15 additional patients were enrolled at the RD. The prescribed dose was normalized at the 95% volume border of the planning target volume based on the Monte Carlo algorithm. Between September 2011 and September 2015, 40 patients (primary 30; metastasis 10) were enrolled. Five patients were enrolled at level 0, 15 at level 1, and 20 at level 2. Only one grade 3 RP was observed at level 1. Two-year local control and overall survival rates were 98 and 81%, respectively. The RD was 55 Gy/4 Fr. SBRT with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm was tolerated well and appeared to be effective for solitary lung tumors.

  10. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  11. Clinical results of stereotactic body radiotherapy for Stage I small-cell lung cancer. A single institutional experience

    International Nuclear Information System (INIS)

    Shioyama, Yoshiyuki; Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Asai, Kaori; Terashima, Koutarou; Matsumoto, Keiji; Hirata, Hideki; Honda, Hiroshi

    2013-01-01

    The purpose of this study was to evaluate the treatment outcomes of stereotactic body radiotherapy (SBRT) for Stage I small-cell lung cancer (SCLC). From April 2003 to September 2009, a total of eight patients with Stage I SCLC were treated with SBRT in our institution. In all patients, the lung tumors were proven as SCLC pathologically. The patients' ages were 58-84 years (median: 74). The T-stage of the primary tumor was T1a in two, T1b in two and T2a in four patients. Six of the patients were inoperable because of poor cardiac and/or pulmonary function, and two patients refused surgery. SBRT was given using 7-8 non-coplanar beams with 48 Gy in four fractions. Six of the eight patients received 3-4 cycles of chemotherapy using carboplatin (CBDCA) + etoposide (VP-16) or cisplatin (CDDP) + irinotecan (CPT-11). The follow-up period for all patients was 6-60 months (median: 32). Six patients were still alive without any recurrence. One patient died from this disease and one died from another disease. The overall and disease-specific survival rate at three years was 72% and 86%, respectively. There were no patients with local progression of the lesion targeted by SBRT. Only one patient had nodal recurrence in the mediastinum at 12 months after treatment. The progression-free survival rate was 71%. No Grade 2 or higher SBRT-related toxicities were observed. SBRT plus chemotherapy could be an alternative to surgery with chemotherapy for inoperable patients with Stage I small-cell lung cancer. However, further investigation is needed using a large series of patients. (author)

  12. A phase-I trial of pre‐operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the ‘SPARC’ trial protocol

    International Nuclear Information System (INIS)

    Holyoake, Daniel L. P.; Ward, Elizabeth; Grose, Derek; McIntosh, David; Sebag-Montefiore, David; Radhakrishna, Ganesh; Patel, Neel; Silva, Michael; Mukherjee, Somnath; Strauss, Victoria Y.; Odondi, Lang’o; Fokas, Emmanouil; Melcher, Alan; Hawkins, Maria A.

    2016-01-01

    Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. SPARC is a “rolling-six” design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a ‘rolling-six’ design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5–6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory

  13. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  14. Treatment accuracy of fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Kumar, Shaleen; Burke, Kevin; Nalder, Colin; Jarrett, Paula; Mubata, Cephas; A'Hern, Roger; Humphreys, Mandy; Bidmead, Margaret; Brada, Michael

    2005-01-01

    Background and purpose: To assess the geometric accuracy of the delivery of fractionated stereotactic radiotherapy (FSRT) for brain tumours using the Gill-Thomas-Cosman (GTC) relocatable frame. Accuracy of treatment delivery was measured via portal images acquired with an amorphous silicon based electronic portal imager (EPI). Results were used to assess the existing verification process and to review the current margins used for the expansion of clinical target volume (CTV) to planning target volume (PTV). Patients and methods: Patients were immobilized in a GTC frame. Target volume definition was performed on localization CT and MRI scans and a CTV to PTV margin of 5 mm (based on initial experience) was introduced in 3D. A Brown-Roberts-Wells (BRW) fiducial system was used for stereotactic coordinate definition. The existing verification process consisted of an intercomparison of the coordinates of the isocentres and anatomy between the localization and verification CT scans. Treatment was delivered with 6 MV photons using four fixed non-coplanar conformal fields using a multi-leaf collimator. Portal imaging verification consisted of the acquisition of orthogonal images centred through the treatment isocentre. Digitally reconstructed radiographs (DRRs) created from the CT localization scans were used as reference images. Semi-automated matching software was used to quantify set up deviations (displacements and rotations) between reference and portal images. Results: One hundred and twenty six anterior and 123 lateral portal images were available for analysis for set up deviations. For displacements, the total errors in the cranial/caudal direction were shown to have the largest SD's of 1.2 mm, while systematic and random errors reached SD's of 1.0 and 0.7 mm, respectively, in the cranial/caudal direction. The corresponding data for rotational errors (the largest deviation was found in the sagittal plane) was 0.7 deg. SD (total error), 0.5 deg. (systematic) and 0

  15. Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Tarasova, Valentina D; Trepp-Carrasco, Alejandro G; Thompson, Robert; Recker, Robert R; Chong, William H; Collins, Michael T; Armas, Laura A G

    2013-11-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome, characterized by tumor secretion of fibroblast growth factor-23 (FGF23) causing hypophosphatemia due to renal phosphate wasting. TIO is usually caused by small, benign, difficult-to-localize, mesenchymal tumors. Although surgery with wide excision of tumor borders is considered the "gold standard" for definitive therapy, it can be associated with considerable morbidity depending on the location. To date, radiation therapy has not been considered as an effective treatment modality in TIO. A 67-year-old female presented with multiple nontraumatic fractures, progressive bone pain, and muscle weakness for 4 years. She was found to have biochemical evidence of urinary phosphate wasting with low serum phosphorus, low-normal serum calcium, normal 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and high serum FGF23 levels. TIO was diagnosed. Selective venous sampling for FGF23 confirmed that a 1.7-cm left frontal mass, radiographically similar to a meningioma, was the causative tumor. She declined surgery due to fear of complications and instead underwent fractionated stereotactic radiotherapy for 6 weeks. In less than 4 years after radiation therapy, she was successfully weaned off phosphorus and calcitriol, starting from 2 g of oral phosphorus daily and 1 μg of calcitriol daily. Her symptoms have resolved, and she has not had any new fractures. Stereotactic radiotherapy was an effective treatment modality for TIO in our patient. Fractionated stereotactic radiation therapy represents an alternative to surgery for patients with TIO who are not surgical candidates or who decline surgery.

  16. Successful Treatment of Tumor-Induced Osteomalacia due to an Intracranial Tumor by Fractionated Stereotactic Radiotherapy

    Science.gov (United States)

    Trepp-Carrasco, Alejandro G.; Thompson, Robert; Recker, Robert R.; Chong, William H.; Collins, Michael T.

    2013-01-01

    Context: Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome, characterized by tumor secretion of fibroblast growth factor-23 (FGF23) causing hypophosphatemia due to renal phosphate wasting. TIO is usually caused by small, benign, difficult-to-localize, mesenchymal tumors. Although surgery with wide excision of tumor borders is considered the “gold standard” for definitive therapy, it can be associated with considerable morbidity depending on the location. To date, radiation therapy has not been considered as an effective treatment modality in TIO. Objective: A 67-year-old female presented with multiple nontraumatic fractures, progressive bone pain, and muscle weakness for 4 years. She was found to have biochemical evidence of urinary phosphate wasting with low serum phosphorus, low-normal serum calcium, normal 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and high serum FGF23 levels. TIO was diagnosed. Selective venous sampling for FGF23 confirmed that a 1.7-cm left frontal mass, radiographically similar to a meningioma, was the causative tumor. She declined surgery due to fear of complications and instead underwent fractionated stereotactic radiotherapy for 6 weeks. Results: In less than 4 years after radiation therapy, she was successfully weaned off phosphorus and calcitriol, starting from 2 g of oral phosphorus daily and 1 μg of calcitriol daily. Her symptoms have resolved, and she has not had any new fractures. Conclusions: Stereotactic radiotherapy was an effective treatment modality for TIO in our patient. Fractionated stereotactic radiation therapy represents an alternative to surgery for patients with TIO who are not surgical candidates or who decline surgery. PMID:24014621

  17. Development of re-locatable head frame system using hydraulic arms for fractionated stereotactic radiotherapy and CT evaluation of repositioning accuracy

    International Nuclear Information System (INIS)

    Kitamura, Masayuki; Kunieda, Etsuo; Kawaguchi, Osamu; Ando, Yutaka; Shigematsu, Naoyuki; Shiba, Toshiyuki; Kubo, Atsushi

    2002-01-01

    The purpose of this study was to develop a novel re-locatable head frame system consisting of a dental cast and hydraulic arms as an immobilization device for fractionated stereotactic radiotherapy and to evaluate the repositioning accuracy by measurement of landmark coordinates in repeated computed tomography (CT) examinations. The acrylic dental casts were customized for each patient. First the dental cast was attached to the upper jaw of the patient, then the dental cast was connected to a Leksell stereotactic frame, which was finally secured by two hydraulic arms. Since this system is compatible with the Leksell frame, stereotactic indicators could be used to obtain coordinates of anatomical landmarks of the head. Seven patients treated by fractionated stereotactic radiotherapy underwent repeated quality-assurance CTs during their treatment courses. We evaluated the coordinates of the short process of incus and the top of crista galli as reference points for evaluation of variation in a total of 26 repeat CT data sets, and then x, y, and z fluctuations relative to their positions in the treatment-planning CTs. The distances among the reference points of both processes of incus and the top of crista galli were calculated to evaluate the feasibility of the method. The distances were less than 0.5 mm on averages and less than 1 mm in the standard deviations. The respective fluctuations in the x, y and z directions were less than 1 mm in mean values and less than 2 mm in standard deviations. The fluctuations in distance were less than 2 mm on average and in standard deviations. The fluctuation of the center of three reference points was 0.7 mm on average and the rotation of the cranium was 1.0 degree in average. We concluded that our evaluation method is feasible and the reproducibility of the fixation system is acceptable for its routine use in stereotactic radiotherapy. (author)

  18. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  19. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U.; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A.; Kupelian, Patrick; Steinberg, Michael L.; Lee, Percy, E-mail: percylee@mednet.ucla.edu

    2016-04-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculated as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while

  20. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    Science.gov (United States)

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further

  1. Stereotactic Body Radiation Therapy for Oligometastatic Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Muldermans, Jonathan L. [F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Romak, Lindsay B. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Kwon, Eugene D. [Department of Urology, Mayo Clinic, Rochester, Minnesota (United States); Department of Immunology, Mayo Clinic, Rochester, Minnesota (United States); Park, Sean S. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Olivier, Kenneth R., E-mail: olivier.kenneth@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2016-06-01

    Purpose: To review outcomes of patients with oligometastatic prostate cancer (PCa) treated with stereotactic body radiation therapy (SBRT) and to identify variables associated with local failure. Methods and Materials: We retrospectively reviewed records of patients treated with SBRT for oligometastatic PCa. Metastasis control (ie, control of the treated lesion, MC), biochemical progression-free survival, distant progression-free survival, and overall survival were estimated with the Kaplan-Meier method. Results: Sixty-six men with 81 metastatic PCa lesions, 50 of which were castrate-resistant, were included in the analysis. Lesions were in bone (n=74), lymph nodes (n=6), or liver (n=1). Stereotactic body radiation therapy was delivered in 1 fraction to 71 lesions (88%), at a median dose of 16 Gy (range, 16-24 Gy). The remaining lesions received 30 Gy in 3 fractions (n=6) or 50 Gy in 5 fractions (n=4). Median follow-up was 16 months (range, 3-49 months). Estimated MC at 2 years was 82%. Biochemical progression-free survival, distant progression-free survival, and overall survival were 54%, 45%, and 83%, respectively. On multivariate analysis, only the dose of SBRT was significantly associated with MC; lesions treated with 16 Gy had 58% MC, and those treated with ≥18 Gy had 95% MC at 2 years (P≤.001). At 2 years, MC for lesions treated with 18 Gy (n=21) was 88%. No patient treated with ≥18 Gy in a single fraction or with any multifraction regimen had local failure. Six patients (9%) had grade 1 pain flare, and 2 (3%) had grade 2 pain flare. No grade 2 or greater late toxicities were reported. Conclusions: Stereotactic body radiation therapy for patients with oligometastatic prostate cancer provided optimal metastasis control and acceptable toxicity with doses ≥18 Gy. Biochemical progression-free survival was 54% at 16 months with the inclusion of SBRT in the treatment regimen. Stereotactic body radiation therapy should be considered in

  2. Stereotactic Body Radiation Therapy for Oligometastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Muldermans, Jonathan L.; Romak, Lindsay B.; Kwon, Eugene D.; Park, Sean S.; Olivier, Kenneth R.

    2016-01-01

    Purpose: To review outcomes of patients with oligometastatic prostate cancer (PCa) treated with stereotactic body radiation therapy (SBRT) and to identify variables associated with local failure. Methods and Materials: We retrospectively reviewed records of patients treated with SBRT for oligometastatic PCa. Metastasis control (ie, control of the treated lesion, MC), biochemical progression-free survival, distant progression-free survival, and overall survival were estimated with the Kaplan-Meier method. Results: Sixty-six men with 81 metastatic PCa lesions, 50 of which were castrate-resistant, were included in the analysis. Lesions were in bone (n=74), lymph nodes (n=6), or liver (n=1). Stereotactic body radiation therapy was delivered in 1 fraction to 71 lesions (88%), at a median dose of 16 Gy (range, 16-24 Gy). The remaining lesions received 30 Gy in 3 fractions (n=6) or 50 Gy in 5 fractions (n=4). Median follow-up was 16 months (range, 3-49 months). Estimated MC at 2 years was 82%. Biochemical progression-free survival, distant progression-free survival, and overall survival were 54%, 45%, and 83%, respectively. On multivariate analysis, only the dose of SBRT was significantly associated with MC; lesions treated with 16 Gy had 58% MC, and those treated with ≥18 Gy had 95% MC at 2 years (P≤.001). At 2 years, MC for lesions treated with 18 Gy (n=21) was 88%. No patient treated with ≥18 Gy in a single fraction or with any multifraction regimen had local failure. Six patients (9%) had grade 1 pain flare, and 2 (3%) had grade 2 pain flare. No grade 2 or greater late toxicities were reported. Conclusions: Stereotactic body radiation therapy for patients with oligometastatic prostate cancer provided optimal metastasis control and acceptable toxicity with doses ≥18 Gy. Biochemical progression-free survival was 54% at 16 months with the inclusion of SBRT in the treatment regimen. Stereotactic body radiation therapy should be considered in

  3. Clinical and molecular markers of long-term survival after oligometastasis-directed stereotactic body radiotherapy (SBRT).

    Science.gov (United States)

    Wong, Anthony C; Watson, Sydeaka P; Pitroda, Sean P; Son, Christina H; Das, Lauren C; Stack, Melinda E; Uppal, Abhineet; Oshima, Go; Khodarev, Nikolai N; Salama, Joseph K; Weichselbaum, Ralph R; Chmura, Steven J

    2016-07-15

    The selection of patients for oligometastasis-directed ablative therapy remains a challenge. The authors report on clinical and molecular predictors of survival from a stereotactic body radiotherapy (SBRT) dose-escalation trial for oligometastases. Patients who had from 1 to 5 metastases, a life expectancy of >3 months, and a Karnofsky performance status of >60 received escalating SBRT doses to all known cancer sites. Time to progression, progression-free survival, and overall survival (OS) were calculated at the completion of SBRT, and clinical predictors of OS were modeled. Primary tumor microRNA expression was analyzed to identify molecular predictors of OS. Sixty-one evaluable patients were enrolled from 2004 to 2009. The median follow-up was 2.3 years for all patients (range, 0.2-9.3 years) and 6.8 years for survivors (range, 2.0-9.3 years). The median, 2-year, and 5-year estimated OS were 2.4 years, 57%, and 32%, respectively. The rate of progression after SBRT was associated with an increased risk of death (hazard ratio [HR], 1.44; 95% confidence interval [CI], 1.24-1.82). The time from initial cancer diagnosis to metastasis (HR, 0.98; 95% CI, 0.98-0.99), the time from metastasis to SBRT (HR, 0.98; 95% CI, 0.98-0.99), and breast cancer histology (HR, 0.12; 95% CI, 0.07-0.37) were significant predictors of OS. In an exploratory analysis, a candidate classifier using expression levels of 3 microRNAs (miR-23b, miR-449a, and miR-449b) predicted survival among 17 patients who had primary tumor microRNA expression data available. A subset of oligometastatic patients achieves long-term survival after metastasis-directed SBRT. Clinical features and primary tumor microRNA expression profiling, if validated in an independent dataset, may help select oligometastatic patients most likely to benefit from metastasis-directed therapy. Cancer 2016;122:2242-50. © 2016 American Cancer Society. © 2016 American Cancer Society.

  4. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    International Nuclear Information System (INIS)

    Ackerly, T.; Lancaster, C. M.; Geso, M.; Roxby, K. J.

    2011-01-01

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices' thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.

  5. Dosimetric Comparison of Real-Time MRI-Guided Tri-Cobalt-60 Versus Linear Accelerator-Based Stereotactic Body Radiation Therapy Lung Cancer Plans.

    Science.gov (United States)

    Wojcieszynski, Andrzej P; Hill, Patrick M; Rosenberg, Stephen A; Hullett, Craig R; Labby, Zacariah E; Paliwal, Bhudatt; Geurts, Mark W; Bayliss, R Adam; Bayouth, John E; Harari, Paul M; Bassetti, Michael F; Baschnagel, Andrew M

    2017-06-01

    Magnetic resonance imaging-guided radiation therapy has entered clinical practice at several major treatment centers. Treatment of early-stage non-small cell lung cancer with stereotactic body radiation therapy is one potential application of this modality, as some form of respiratory motion management is important to address. We hypothesize that magnetic resonance imaging-guided tri-cobalt-60 radiation therapy can be used to generate clinically acceptable stereotactic body radiation therapy treatment plans. Here, we report on a dosimetric comparison between magnetic resonance imaging-guided radiation therapy plans and internal target volume-based plans utilizing volumetric-modulated arc therapy. Ten patients with early-stage non-small cell lung cancer who underwent radiation therapy planning and treatment were studied. Following 4-dimensional computed tomography, patient images were used to generate clinically deliverable plans. For volumetric-modulated arc therapy plans, the planning tumor volume was defined as an internal target volume + 0.5 cm. For magnetic resonance imaging-guided plans, a single mid-inspiratory cycle was used to define a gross tumor volume, then expanded 0.3 cm to the planning tumor volume. Treatment plan parameters were compared. Planning tumor volumes trended larger for volumetric-modulated arc therapy-based plans, with a mean planning tumor volume of 47.4 mL versus 24.8 mL for magnetic resonance imaging-guided plans ( P = .08). Clinically acceptable plans were achievable via both methods, with bilateral lung V20, 3.9% versus 4.8% ( P = .62). The volume of chest wall receiving greater than 30 Gy was also similar, 22.1 versus 19.8 mL ( P = .78), as were all other parameters commonly used for lung stereotactic body radiation therapy. The ratio of the 50% isodose volume to planning tumor volume was lower in volumetric-modulated arc therapy plans, 4.19 versus 10.0 ( P guided tri-cobalt-60 radiation therapy is capable of delivering lung high

  6. A multi-institutional study to assess adherence to lung stereotactic body radiotherapy planning goals

    International Nuclear Information System (INIS)

    Woerner, Andrew; Roeske, John C.; Harkenrider, Matthew M.; Campana, Maria; Surucu, Murat; Fan, John; Aydogan, Bulent; Koshy, Matthew; Laureckas, Robert; Vali, Faisal

    2015-01-01

    Purpose: A multi-institutional planning study was performed to evaluate the frequency that current guidelines established by Radiation Therapy Oncology Group (RTOG) protocols and other literature for lung stereotactic body radiotherapy (SBRT) treatments are followed. Methods: A total of 300 patients receiving lung SBRT treatments in four different institutions were retrospectively reviewed. The treatments were delivered using Linac based SBRT (160 patients) or image guided robotic radiosurgery (140). Most tumors were located peripherally (250/300). Median fractional doses and ranges were 18 Gy (8–20 Gy), 12 Gy (6–15 Gy), and 10 Gy (5–12 Gy) for three, four, and five fraction treatments, respectively. The following planning criteria derived from RTOG trials and the literature were used to evaluate the treatment plans: planning target volumes, PTV_V _1_0_0 ≥ 95% and PTV_V _9_5 ≥ 99%; conformality indices, CI_1_0_0_% < 1.2 and CI_5_0_% range of 2.9–5.9 dependent on PTV; total lung-ITV: V_2_0_G_y < 10%, V_1_2_._5_G_y < 15%, and V_5_G_y < 37%; contralateral lung V_5_G_y < 26%; and maximum doses for spinal cord, esophagus, trachea/bronchus, and heart and great vessels. Populations were grouped by number of fractions, and dosimetric criteria satisfaction rates (CSRs) were reported. Results: Five fraction regimens were the most common lung SBRT fractionation (46%). The median PTV was 27.2 cm"3 (range: 3.8–419.5 cm"3). For all plans: mean PTV_V _1_0_0 was 94.5% (±5.6%, planning CSR: 69.8%), mean PTV_V _9_5 was 98.1% (±4.1%, CSR: 69.5%), mean CI_1_0_0_% was 1.14 (±0.21, CSR: 79.1%, and 16.5% within minor deviation), and mean CI_5_0_% was 5.63 (±2.8, CSR: 33.0%, and 28.0% within minor deviation). When comparing plans based on location, peripherally located tumors displayed higher PTV_V _1_0_0 and PTV_V _9_5 CSR (71.5% and 71.9%, respectively) than centrally located tumors (61.2% and 57.1%, respectively). Overall, the planning criteria were met for all the

  7. A multi-institutional study to assess adherence to lung stereotactic body radiotherapy planning goals

    Energy Technology Data Exchange (ETDEWEB)

    Woerner, Andrew; Roeske, John C.; Harkenrider, Matthew M.; Campana, Maria; Surucu, Murat, E-mail: msurucu@lumc.edu [Loyola University Medical Center, Maywood, Illinois 60153 (United States); Fan, John [Edward Cancer Center, Naperville, Illinois 60540 (United States); Aydogan, Bulent; Koshy, Matthew [Department of Radiation Oncology, University of Illinois at Chicago, Chicago, Illinois 60612 (United States); Laureckas, Robert; Vali, Faisal [Advocate Christ Medical Center, Oak Lawn, Illinois 60453 (United States)

    2015-08-15

    Purpose: A multi-institutional planning study was performed to evaluate the frequency that current guidelines established by Radiation Therapy Oncology Group (RTOG) protocols and other literature for lung stereotactic body radiotherapy (SBRT) treatments are followed. Methods: A total of 300 patients receiving lung SBRT treatments in four different institutions were retrospectively reviewed. The treatments were delivered using Linac based SBRT (160 patients) or image guided robotic radiosurgery (140). Most tumors were located peripherally (250/300). Median fractional doses and ranges were 18 Gy (8–20 Gy), 12 Gy (6–15 Gy), and 10 Gy (5–12 Gy) for three, four, and five fraction treatments, respectively. The following planning criteria derived from RTOG trials and the literature were used to evaluate the treatment plans: planning target volumes, PTV{sub V} {sub 100} ≥ 95% and PTV{sub V} {sub 95} ≥ 99%; conformality indices, CI{sub 100%} < 1.2 and CI{sub 50%} range of 2.9–5.9 dependent on PTV; total lung-ITV: V{sub 20Gy} < 10%, V{sub 12.5Gy} < 15%, and V{sub 5Gy} < 37%; contralateral lung V{sub 5Gy} < 26%; and maximum doses for spinal cord, esophagus, trachea/bronchus, and heart and great vessels. Populations were grouped by number of fractions, and dosimetric criteria satisfaction rates (CSRs) were reported. Results: Five fraction regimens were the most common lung SBRT fractionation (46%). The median PTV was 27.2 cm{sup 3} (range: 3.8–419.5 cm{sup 3}). For all plans: mean PTV{sub V} {sub 100} was 94.5% (±5.6%, planning CSR: 69.8%), mean PTV{sub V} {sub 95} was 98.1% (±4.1%, CSR: 69.5%), mean CI{sub 100%} was 1.14 (±0.21, CSR: 79.1%, and 16.5% within minor deviation), and mean CI{sub 50%} was 5.63 (±2.8, CSR: 33.0%, and 28.0% within minor deviation). When comparing plans based on location, peripherally located tumors displayed higher PTV{sub V} {sub 100} and PTV{sub V} {sub 95} CSR (71.5% and 71.9%, respectively) than centrally located tumors (61

  8. The progress in radiotherapy techniques and it's clinical implications

    International Nuclear Information System (INIS)

    Reinfuss, M.; Walasek, T.; Byrski, E.; Blecharz, P.

    2011-01-01

    Three modem radiotherapy techniques were introduced into clinical practice at the onset of the 21 st century - stereotactic radiation therapy (SRT), proton therapy and carbon-ion radiotherapy. Our paper summarizes the basic principles of physics, as well as the technical reqirements and clinical indications for those techniques. SRT is applied for intracranial diseases (arteriovenous malformations, acoustic nerve neuromas, brain metastases, skull base tumors) and in such cases it is referred to as stereotactic radiosurgery (SRS). Techniques used during SRS include GammaKnife, CyberKnife and dedicated linacs. SRT can also be applied for extracranial disease (non-small cell lung cancer, lung metastases, spinal and perispinal tumors, primary liver tumors, breast cancer, pancreatic tumors, prostate cancer, head and neck tumors) and in such cases it is referred to as stereotactic body radiation therapy (SBRT). Eye melanomas, skull base and cervical spine chordomas and chordosarcomas, as well as childhood neoplasms, are considered to be the classic indications for proton therapy. Clinical trials are currently conducted to investigate the usefulness of proton beam in therapy of non-small cell lung cancer, prostate cancer, head and neck tumors, primary liver and oesophageal cancer Carbon-ion radiotherapy is presumed to be more advantageous than proton therapy because of its higher relative biological effectiveness (RBE) and possibility of real-time control of the irradiated volume under PET visualization. The basic indications for carbon-ion therapy are salivary glands neoplasms, selected types of soft tissue and bone sarcomas, skull base chordomas and chordosarcomas, paranasal sinus neoplasms, primary liver cancers and inoperable rectal adenocarcinoma recurrences. (authors)

  9. Image-Guided Robotic Stereotactic Body Radiation Therapy for Liver Metastases: Is There a Dose Response Relationship?

    International Nuclear Information System (INIS)

    Vautravers-Dewas, Claire; Dewas, Sylvain; Bonodeau, Francois; Adenis, Antoine; Lacornerie, Thomas; Penel, Nicolas; Lartigau, Eric; Mirabel, Xavier

    2011-01-01

    Purpose: To evaluate the outcome, tolerance, and toxicity of stereotactic body radiotherapy, using image-guided robotic radiation delivery, for the treatment of patients with unresectable liver metastases. Methods and Material: Patients were treated with real-time respiratory tracking between July 2007 and April 2009. Their records were retrospectively reviewed. Metastases from colorectal carcinoma and other primaries were not necessarily confined to liver. Toxicity was evaluated using National Cancer Institute Common Criteria for Adverse Events version 3.0. Results: Forty-two patients with 62 metastases were treated with two dose levels of 40 Gy in four Dose per Fraction (23) and 45 Gy in three Dose per Fraction (13). Median follow-up was 14.3 months (range, 3-23 months). Actuarial local control for 1 and 2 years was 90% and 86%, respectively. At last follow-up, 41 (66%) complete responses and eight (13%) partial responses were observed. Five lesions were stable. Nine lesions (13%) were locally progressed. Overall survival was 94% at 1 year and 48% at 2 years. The most common toxicity was Grade 1 or 2 nausea. One patient experienced Grade 3 epidermitis. The dose level did not significantly contribute to the outcome, toxicity, or survival. Conclusion: Image-guided robotic stereotactic body radiation therapy is feasible, safe, and effective, with encouraging local control. It provides a strong alternative for patients who cannot undergo surgery.

  10. A Retrospective Comparison of Robotic Stereotactic Body Radiotherapy and Three-Dimensional Conformal Radiotherapy for the Reirradiation of Locally Recurrent Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Ozyigit, Gokhan; Cengiz, Mustafa; Yazici, Gozde; Yildiz, Ferah; Gurkaynak, Murat; Zorlu, Faruk; Yildiz, Demet; Hosal, Sefik; Gullu, Ibrahim; Akyol, Fadil

    2011-01-01

    Purpose: We assessed therapeutic outcomes of reirradiation with robotic stereotactic radiotherapy (SBRT) for locally recurrent nasopharyngeal carcinoma (LRNPC) patients and compared those results with three-dimensional conformal radiotherapy (CRT) with or without brachytherapy (BRT). Methods and Materials: Treatment outcomes were evaluated retrospectively in 51 LRNPC patients receiving either robotic SBRT (24 patients) or CRT with or without BRT (27 patients) in our department. CRT was delivered with a 6-MV linear accelerator, and a median total reirradiation dose of 57 Gy in 2 Gy/day was given. Robotic SBRT was delivered with CyberKnife (Accuray, Sunnyvale, CA). Patients in the SBRT arm received 30 Gy over 5 consecutive days. We calculated actuarial local control and cancer-specific survival rates for the comparison of treatment outcomes in SBRT and CRT arms. The Common Terminology Criteria for Adverse Events v3.0 was used for toxicity evaluation. Results: The median follow-up was 24 months for all patients. Two-year actuarial local control rates were 82% and 80% for SBRT and CRT arms, respectively (p = 0.6). Two-year cancer-specific survival rates were 64% and 47% for the SBRT and CRT arms, respectively (p = 0.4). Serious late toxicities (Grade 3 and above) were observed in 21% of patients in the SBRT arm, whereas 48% of patients had serious toxicity in the CRT arm (p = 0.04). Fatal complications occurred in three patients (12.5%) of the SBRT arm, and four patients (14.8%) of the CRT arm (p = 0.8). T stage at recurrence was the only independent predictor for local control and survival. Conclusion: Our robotic SBRT protocol seems to be feasible and less toxic in terms of late effects compared with CRT arm for the reirradiation of LRNPC patients.

  11. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    International Nuclear Information System (INIS)

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C.

    2011-01-01

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  12. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C. [Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 (United States); Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 and Department of Radiation Oncology, Temple University Hospital, Philadelphia, Pennsylvania 19104 (United States); Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 (United States)

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  13. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  14. Initial clinical results of linac stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) for pituitary adenomas

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Shrieve, Dennis C.; Alexander, Eben; Kaiser, Ursula B.; Richardson, Gary E.; McL Black, Peter; Loeffler, Jay S.

    1997-01-01

    Purpose: To evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor control and toxicity of the treatment, thus evaluate the feasibility of these technique for the treatment of pituitary adenomas. Subjects and Methods: 48 patients with either inoperable, recurrent or residual pituitary adenoma who underwent either SRS or SRT at the Brigham and Women's Hospital between 9/89 and 9/95 were analyzed. Of these, 18 received treatment with SRS, and 30 received SRT. SRS was contraindicated for the patients in whom the minimal distance of the target and optic chiasm or optic nerve was less than 5 mm. Patient characteristics were similar in the two groups, with the exception of tumor volume and previous irradiation. Median tumor volumes were 1.8 cm 3 and 7.7 cm 3 for SRS and SRT, respectively. Three of the SRS and none of the SRT patients had a history of previous external radiation therapy. Both SRS and SRT were performed by the use of dedicated stereotactic 6-MV linear accelerator with a treatment plan designed using a dedicated software. Doses were prescribed to the isodose distribution that covered the identified target. Dose and normalization used for SRS varied from 1000 cGy at 85 % isodose line to 1800 cGy at 80 % isodose line. For SRT patients, total dose of 4500 cGy was normalized at 90 or 95 % isodose line and this was delivered in 25 fractions of 180 cGy daily dose. Results: Local control: There was 1 case of local failure in each of SRS and SRT series (median follow up 42.5 months and 22 month, respectively). CNS adverse effects: There were 3 SRS cases in whom a ring enhancement in the temporal lobe was observed in follow-up MRI. (median follow up 32 months). Of these, one resolved spontaneously, whereas the other 2 lesion persisted and considered to be radiation necrosis. None of them required surgical intervention to date. These were observed in the

  15. Cine Computed Tomography Without Respiratory Surrogate in Planning Stereotactic Radiotherapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Riegel, Adam C. B.A.; Chang, Joe Y.; Vedam, Sastry S.; Johnson, Valen; Chi, Pai-Chun Melinda; Pan, Tinsu

    2009-01-01

    Purpose: To determine whether cine computed tomography (CT) can serve as an alternative to four-dimensional (4D)-CT by providing tumor motion information and producing equivalent target volumes when used to contour in radiotherapy planning without a respiratory surrogate. Methods and Materials: Cine CT images from a commercial CT scanner were used to form maximum intensity projection and respiratory-averaged CT image sets. These image sets then were used together to define the targets for radiotherapy. Phantoms oscillating under irregular motion were used to assess the differences between contouring using cine CT and 4D-CT. We also retrospectively reviewed the image sets for 26 patients (27 lesions) at our institution who had undergone stereotactic radiotherapy for Stage I non-small-cell lung cancer. The patients were included if the tumor motion was >1 cm. The lesions were first contoured using maximum intensity projection and respiratory-averaged CT image sets processed from cine CT and then with 4D-CT maximum intensity projection and 10-phase image sets. The mean ratios of the volume magnitude were compared with intraobserver variation, the mean centroid shifts were calculated, and the volume overlap was assessed with the normalized Dice similarity coefficient index. Results: The phantom studies demonstrated that cine CT captured a greater extent of irregular tumor motion than did 4D-CT, producing a larger tumor volume. The patient studies demonstrated that the gross tumor defined using cine CT imaging was similar to, or slightly larger than, that defined using 4D-CT. Conclusion: The results of our study have shown that cine CT is a promising alternative to 4D-CT for stereotactic radiotherapy planning

  16. Stereotactic Radiotherapy of Primary Lung Cancer and Other Targets: Results of Consultant Meeting of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Wulf, Joern; Lax, Ingmar; Timmerman, Robert; Zimmermann, Frank; Stojkovski, Igor; Jeremic, Branislav

    2011-01-01

    To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity.

  17. Outcome of four-dimensional stereotactic radiotherapy for centrally located lung tumors

    International Nuclear Information System (INIS)

    Nuyttens, Joost J.; Voort van Zyp, Noelle C. van der; Praag, John; Aluwini, Shafak; Klaveren, Rob J. van; Verhoef, Cornelis; Pattynama, Peter M.; Hoogeman, Mischa S.

    2012-01-01

    Purpose: To assess local control, overall survival, and toxicity of four-dimensional, risk-adapted stereotactic body radiotherapy (SBRT) delivered while tracking respiratory motion in patients with primary and metastatic lung cancer located in the central chest. Methods: Fifty-eight central lesions of 56 patients (39 with primary, 17 with metastatic tumors) were treated. Fifteen tumors located near the esophagus were treated with 6 fractions of 8 Gy. Other tumors were treated according to the following dose escalation scheme: 5 fractions of 9 Gy (n = 6), then 5 fractions of 10 Gy (n = 15), and finally 5 fractions of 12 Gy (n = 22). Results: Dose constraints for critical structures were generally achieved; in 21 patients the coverage of the PTV was reduced below 95% to protect adjacent organs at risk. At a median follow-up of 23 months, the actuarial 2-years local tumor control was 85% for tumors treated with a BED >100 Gy compared to 60% for tumors treated with a BED ⩽100 Gy. No grade 4 or 5 toxicity was observed. Acute grade 1–2 esophagitis was observed in 11% of patients. Conclusion: SBRT of central lung lesions can be safely delivered, with promising early tumor control in patients many of whom have severe comorbid conditions.

  18. Clinical evaluation of an endorectal immobilization system for use in prostate hypofractionated Stereotactic Ablative Body Radiotherapy (SABR)

    International Nuclear Information System (INIS)

    Nicolae, Alexandru; Davidson, Melanie; Easton, Harry; Helou, Joelle; Musunuru, Hima; Loblaw, Andrew; Ravi, Ananth

    2015-01-01

    The objective of this study was to evaluate a novel prostate endorectal immobilization system (EIS) for improving the delivery of hypofractionated Stereotactic Ablative Body Radiotherapy (SABR) for prostate cancer. Twenty patients (n = 20) with low- or intermediate-risk prostate cancer (T1-T2b, Gleason Score < 7, PSA ≤ 20 ng/mL), were treated with an EIS in place using Volumetric Modulated Arc Therapy (VMAT), to a prescription dose of 26 Gy delivered in 2 fractions once per week; the intent of the institutional clinical trial was an attempt to replicate brachytherapy-like dosimetry using SABR. EBT3 radiochromic film embedded within the EIS was used as a quality assurance measure of the delivered dose; additionally, prostate intrafraction motion captured using pre- and post-treatment conebeam computed tomography (CBCT) scans was evaluated. Treatment plans were generated for patients with- and without the EIS to evaluate its effects on target and rectal dosimetry. None of the observed 3-dimensional prostate displacements were ≥ 3 mm over the elapsed treatment time. A Gamma passing rate of 95.64 ± 4.28 % was observed between planned and delivered dose profiles on EBT3 film analysis in the low-dose region. No statistically significant differences between treatment plans with- and without-EIS were observed for rectal, bladder, clinical target volume (CTV), and PTV contours (p = 0.477, 0.484, 0.487, and 0.487, respectively). A mean rectal V80% of 1.07 cc was achieved for plans using the EIS. The EIS enables the safe delivery of brachytherapy-like SABR plans to the prostate while having minimal impact on treatment planning and rectal dosimetry. Consistent and reproducible immobilization of the prostate is possible throughout the duration of these treatments using such a device

  19. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters

    International Nuclear Information System (INIS)

    Jung, Jinhong; Choi, Eun Kyung; Kim, Jong Hoon; Yoon, Sang Min; Kim, So Yeon; Cho, Byungchul; Park, Jin-hong; Kim, Su Ssan; Song, Si Yeol; Lee, Sang-wook; Ahn, Seung Do

    2013-01-01

    To investigate the clinical and dose–volumetric parameters that predict the risk of radiation-induced liver disease (RILD) for patients with small, unresectable hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT). Between March 2007 and December 2009, 92 patients with HCC treated with SBRT were reviewed for RILD within 3 months of completing treatment. RILD was evaluated according to the Common Terminology Criteria for Adverse Events, version 3.0. A dose of 10–20 Gy (median, 15 Gy) per fraction was given over 3–4 consecutive days for a total dose of 30–60 Gy (median, 45 Gy). The following clinical and dose–volumetric parameters were examined: age, gender, Child-Pugh class, presence of hepatitis B virus, gross tumor volume, normal liver volume, radiation dose, fraction size, mean dose to the normal liver, and normal liver volumes receiving from < 5 Gy to < 60 Gy (in increments of 5 Gy). Seventeen (18.5%) of the 92 patients developed grade 2 or worse RILD after SBRT (49 patients in grade 1, 11 in grade 2, and 6 in ≥ grade 3). On univariate analysis, Child-Pugh class was identified as a significant clinical parameter, while normal liver volume and normal liver volumes receiving from < 15 Gy to < 60 Gy were the significant dose–volumetric parameters. Upon multivariate analysis, only Child-Pugh class was a significant parameter for predicting grade 2 or worse RILD. The Child-Pugh B cirrhosis was found to have a significantly greater susceptibility to the development of grade 2 or worse RILD after SBRT in patients with small, unresectable HCC. Additional efforts aimed at testing other models to predict the risk of RILD in a large series of HCC patients treated with SBRT are needed

  20. A new non-invasive and relocatable immobilization frame for fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Theodorou, K.; Kappas, C.; Tsokas, C.

    1998-01-01

    Purpose: A newly developed non-invasive immobilization frame for stereotactic radiotherapy is presented, which is intended to be used for both imaging (computed tomography (CT) and angiography) and radiotherapeutic procedures. Materials and methods: The frame is made of duraluminium so as to be stable and light and it has an elliptical shape. The immobilization is achieved using three stable locations on the patient's head, i.e. the upper dentition, the nose and the back of the neck. The fixation on the three locations ensures complete immobilization in all directions. Results: The immobilization frame can be fitted as many times as is needed to most heads. In order to assess the accuracy of relocation, repeated fittings on two volunteers and on 22 patients undergoing stereotactic treatment were performed (more than 200 mountings in total), which showed maximum anterior-posterior, inferior-superior and lateral reproducibility in positioning of less than 1 mm in all cases. Conclusions and discussion: The in-house-constructed stereotactic frame is simple to use, easily made, non-invasive, relocatable and well tolerated by the patients, providing the possibility of multiple fractions. The major advantage of using such a non-invasive stereotactic frame is the flexibility in timing the different diagnostic procedures (CT and angiography) as well as providing the possibility to extend the use to large brain lesions (treatment without an additional collimator) where a high precision is also required. It also offers significant labour and cost saving over the invasive frames and the majority of the non-invasive frames. To date, 22 patients with ages varying between 12 and 70 years have been treated using this method. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT)

    International Nuclear Information System (INIS)

    Stieler, F.; Wenz, F.; Abo-Madyan, Y.; Schweizer, B.; Polednik, M.; Herskind, C.; Giordano, F.A.; Mai, S.

    2016-01-01

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49 /0.18 ± 0.20 /0.05 ± 0.36 and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT. (orig.) [de

  2. The situation of radiotherapy in 2011

    International Nuclear Information System (INIS)

    2012-06-01

    Published within the frame of the French 2009-2013 cancer plan, this report proposes an analysis of the situation of radiotherapy in France. More particularly, it analyses the French offer in terms of radiotherapy treatments and the French position in Europe. A second part analyses equipment (accelerators and other equipment) and techniques aimed at radiotherapy treatment preparation and delivery. The following techniques are addressed: three-dimensional conformational, intensity modulation, intracranial and extracranial stereotactic, image-guided, total body irradiation, hadron-therapy, and peri-operative radiotherapy. The last parts analyse the activity of radiotherapy centres in terms of treated patients, of patient age structure, of sessions and preparations, and of treated pathologies, the medical and paramedical personnel in charge of radiotherapy, and financial and cost aspects

  3. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Robotic Image-Guided Stereotactic Radiotherapy, for Isolated Recurrent Primary, Lymph Node or Metastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Jereczek-Fossa, Barbara Alicja; Beltramo, Giancarlo; Fariselli, Laura; Fodor, Cristiana; Santoro, Luigi; Vavassori, Andrea; Zerini, Dario; Gherardi, Federica; Ascione, Carmen; Bossi-Zanetti, Isa; Mauro, Roberta; Bregantin, Achille; Bianchi, Livia Corinna; De Cobelli, Ottavio; Orecchia, Roberto

    2012-01-01

    Purpose: To evaluate the outcome of robotic CyberKnife (Accuray, Sunnyvale, CA)–based stereotactic radiotherapy (CBK-SRT) for isolated recurrent primary, lymph node, or metastatic prostate cancer. Methods and Materials: Between May 2007 and December 2009, 34 consecutive patients/38 lesions were treated (15 patients reirradiated for local recurrence [P], 4 patients reirradiated for anastomosis recurrence [A], 16 patients treated for single lymph node recurrence [LN], and 3 patients treated for single metastasis [M]). In all but 4 patients, [ 11 C]choline positron emission tomography/computed tomography was performed. CBK-SRT consisted of reirradiation and first radiotherapy in 27 and 11 lesions, respectively. The median CBK-SRT dose was 30 Gy in 4.5 fractions (P, 30 Gy in 5 fractions; A, 30 Gy in 5 fractions; LN, 33 Gy in 3 fractions; and M, 36 Gy in 3 fractions). In 18 patients (21 lesions) androgen deprivation was added to CBK-SRT (median duration, 16.6 months). Results: The median follow-up was 16.9 months. Acute toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event). Late toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event and 1 Grade 2 event). Biochemical response was observed in 32 of 38 evaluable lesions. Prostate-specific antigen stabilization was seen for 4 lesions, and in 2 cases prostate-specific antigen progression was reported. The 30-month progression-free survival rate was 42.6%. Disease progression was observed for 14 lesions (5, 2, 5, and 2 in Groups P, A, LN, and M respectively). In only 3 cases, in-field progression was seen. At the time of analysis (May 2010), 19 patients are alive with no evidence of disease and 15 are alive with disease. Conclusions: CyberKnife-based stereotactic radiotherapy is a feasible approach for isolated recurrent primary, lymph node, or metastatic prostate cancer, offering excellent in-field tumor

  5. Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Pyo; Lee, Jeong Shim; Cho, Yeona; Chung, Seung Yeun; Lee, Jason Joon Bock; Lee, Chang Geol; Cho, Jae Ho [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Although stereotactic ablative body radiotherapy (SABR) is widely used therapeutic technique, predictive factors of radiation pneumonitis (RP) after SABR remain undefined. We aimed to investigate the predictive factors affecting RP in patients with primary or metastatic lung tumors who received SABR. From 2012 to 2015, we reviewed 59 patients with 72 primary or metastatic lung tumors treated with SABR, and performed analyses of clinical and dosimetric variables related to symptomatic RP. SABR was delivered as 45–60 Gy in 3–4 fractions, which were over 100 Gy in BED when the α/β value was assumed to be 10. Tumor volume and other various dose volume factors were analyzed using median value as a cutoff value. RP was graded per the Common Terminology Criteria for Adverse Events v4.03. At the median follow-up period of 11 months, symptomatic RP was observed in 13 lesions (12 patients, 18.1%), including grade 2 RP in 11 lesions and grade 3 in 2 lesions. Patients with planning target volume (PTV) of ≤14.35 mL had significantly lower rates of symptomatic RP when compared to others (8.6% vs. 27%; p = 0.048). Rates of symptomatic RP in patients with internal gross tumor volume (iGTV) >4.21 mL were higher than with ≤4.21 mL (29.7% vs. 6.1%; p = 0.017). The incidence of symptomatic RP following treatment with SABR was acceptable with grade 2 RP being observed in most patients. iGTV over 4.21 mL and PTV of over 14.35 mL were significant predictive factors related to symptomatic RP.

  6. Quality assurance in fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Warrington, A.P.; Laing, R.W.; Brada, M.

    1994-01-01

    The recent development of fractionated stereotactic radiotherapy (SRT), which utilises the relocatable Gill-Thomas-Cosman frame (GTC 'repeat localiser'), requires comprehensive quality assurance (QA). This paper focuses on those QA procedures particularly relevant to fractionated SRT treatments, and which have been derived from the technique used at the Royal Marsden Hospital. They primarily relate to the following: (i) GTC frame fitting, initially in the mould room, and then at each imaging session and treatment fraction; (ii) checking of the linear accelerator beam geometry and alignment lasers; and (iii) setting up of the patient for each fraction of treatment. The precision of the fractionated technique therefore depends on monitoring the GTC frame relocation at each fitting, checking the accuracy of the radiation isocentre of the treatment unit, its coincidence with the patient alignment lasers and the adjustments required to set the patient up accurately. The results of our quality control checks show that setting up to a mean radiation isocentre using precisely set-up alignment lasers can be achievable to within 1 mm accuracy. When this is combined with a mean GTC frame relocatability of 1 mm on the patient, a 2-mm allowance between the prescribed isodose surface and the defined target volume is a realistic safety margin for this technique

  7. Radiotherapy for Vestibular Schwannomas: A Critical Review

    International Nuclear Information System (INIS)

    Murphy, Erin S.; Suh, John H.

    2011-01-01

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  8. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  9. Results of fractionated stereotactic radiotherapy with linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Masahiko; Watanabe, Sadao [Aomori Prefectural Central Hospital (Japan); Mariya, Yasushi [and others

    1997-03-01

    A lot of clinical data about stereotactic radiotherapy (SRT) were reported, however, standard fractionated schedules were not shown. In this paper, our clinical results of SRT, 3 fractions of 10 Gy, are reported. Between February 1992 and March 1995, we treated 41 patients with 7 arteriovenous malformations and 41 intracranial tumors using a stereotactic technique implemented by a standard 10MV X-ray linear accelerator. Average age was 47.4 years (range 3-80 years) and average follow-up time was 16.7 months (range 3.5-46.1 months). The patients received 3 fractions of 10 Gy for 3 days delivered by multiple arc narrow beams under 3 cm in width and length. A three-pieces handmade shell was used for head fixation without any anesthetic procedures. Three-dimensional treatment planning system (Focus) was applied for the dose calculation. All patients have received at least one follow-up radiographic study and one clinical examination. In four of the 7 patients with AVM the nidus has become smaller, 9 of the 21 patients with benign intracranial tumors and 9 of the 13 patients with intracranial malignant tumors have shown complete or partial response to the therapy. In 14 patients, diseases were stable or unevaluable due to the short follow-up time. In 5 patients (3 with astrocytoma, 1 each with meningioma and craniopharyngioma), diseases were progressive. Only 1 patient with falx meningioma had minor complication due to the symptomatic brain edema around the tumor. Although, further evaluation of target control (i.e. tumor and nidus) and late normal tissue damage is needed, preliminary clinical results indicate that SRT with our methods is safe and effective. (author)

  10. Benefits of Using Stereotactic Body Radiotherapy in Patients With Metachronous Oligometastases of Hormone-Sensitive Prostate Cancer Detected by [18F]fluoromethylcholine PET/CT

    NARCIS (Netherlands)

    Bouman-Wammes, Esther W.; van Dodewaard-de Jong, Joyce M.; Dahele, Max; Cysouw, Matthijs C. F.; Hoekstra, Otto S.; van Moorselaar, R. Jeroen A.; Piet, Maartje A. H.; Verberne, Hein J.; Bins, Adriaan D.; Verheul, Henk M. W.; Slotman, Ben J.; Oprea-Lager, Daniela E.; van den Eertwegh, Alfons J. M.

    2017-01-01

    Stereotactic body radiation therapy (SBRT) might postpone the start of androgen deprivation therapy (ADT) in patients with oligometastatic recurrence of hormone-sensitive prostate cancer. We included 43 SBRT-treated patients, and a control cohort of 20 noneSBRT-treated patients, in this

  11. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    Energy Technology Data Exchange (ETDEWEB)

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D' Souza, Warren D.; Regine, William F.; Feigenberg, Steven J. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Zhang Jin [Xcision Medical Systems, Columbia, Maryland 21045 (United States); Yu, Cedric X. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and Xcision Medical Systems, Columbia, Maryland 21045 (United States)

    2013-04-15

    uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.

  12. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration

    International Nuclear Information System (INIS)

    Touboul, Emmanuel; Al Halabi, Assem; Buffat, Laurent; Merienne, Louis; Huart, Judith; Schlienger, Michel; Lefkopoulos, Dimitrios; Mammar, Hamid; Missir, Odile; Meder, Jean-Francois; Laurent, Alex; Housset, Martin

    1998-01-01

    Purpose: Stereotactic radiotherapy delivered in a high-dose single fraction is an effective technique to obliterate intracranial arteriovenous malformations (AVM). To attempt to analyze the relationships between dose, volume, and obliteration rates, we studied a group of patients treated using single-isocenter treatment plans. Methods and Materials: From May 1986 to December 1989, 100 consecutive patients with angiographically proven AVM had stereotactic radiotherapy delivered as a high-dose single fraction using a single-isocenter technique. Distribution according to Spetzler-Martin grade was as follows: 79 grade 1-3, three grade 4, 0 grade 5, and 18 grade 6. The target volume was spheroid in 74 cases, ellipsoid in 11, and large and irregular in 15. The targeted volume of the nidus was estimated using two-dimensional stereotactic angiographic data and, calculated as an ovoid-shaped lesion, was 1900 ± 230 mm 3 (median 968 mm 3 ; range 62-11, 250 mm 3 ). The mean minimum target dose (D min ) was 19 ± 0.6 Gy (median 20 Gy; range: 3-31.5). The mean volume within the isodose which corresponded to the minimum target dose was 2500 ± 300 mm 3 (median 1200 mm 3 ; range 75-14 900 mm 3 ). The mean maximum dose (D max ) was 34.5 ± 0.5 Gy (median 35 Gy; range 15-45). The mean angiographic follow-up was 42 ± 2.3 months (median 37.5; range 7-117). Results: The absolute obliteration rate was 51%. The 5-year actuarial obliteration rate was 62.5 ± 7%. After univariate analysis, AVM obliteration was influenced by previous surgery (p = 0.0007), D min by steps of 5 Gy (p = 0.005), targeted volume of the nidus (≤968 mm 3 vs. >968 mm 3 ; p = 0.015), and grade according to Spetzler-Martin (grade 1-3 vs. grade 4-6; p = 0.011). After multivariate analysis, the independent factors influencing AVM obliteration were the D min [relative risk (RR) 1.9; 95% confidence interval (CI) 1.4-2.5; p min but does not seem to be influenced by D max and the targeted volume of the nidus

  13. The utility of FDG-PET for assessing outcomes in oligometastatic cancer patients treated with stereotactic body radiotherapy: a cohort study

    Directory of Open Access Journals (Sweden)

    Solanki Abhishek A

    2012-12-01

    Full Text Available Abstract Background Studies suggest that patients with metastases limited in number and destination organ benefit from metastasis-directed therapy. Stereotactic body radiotherapy (SBRT is commonly used for metastasis directed therapy in this group. However, the characterization of PET response following SBRT is unknown in this population. We analyzed our cohort of patients to describe the PET response following SBRT. Methods Patients enrolled on a prospective dose escalation trial of SBRT to all known sites of metastatic disease were reviewed to select patients with pre- and post-therapy PET scans. Response to SBRT was characterized on PET imaging based on standard PET response criteria and compared to CT based RECIST criteria for each treated lesion. Results 31 patients had PET and CT data available before and after treatment for analysis in this study. In total, 58 lesions were treated (19 lung, 11 osseous, 11 nodal, 9 liver, 6 adrenal and 2 soft tissue metastases. Median follow-up was 14 months (range: 3–41. Median time to first post-therapy PET was 1.2 months (range; 0.5-4.1. On initial post-therapy PET evaluation, 96% (56/58 of treated metastases responded to therapy. 60% (35/58 had a complete response (CR on PET and 36% (21/58 had a partial response (PR. Of 22 patients with stable disease (SD on initial CT scan, 13 had CR on PET, 8 had PR, and one had SD. Of 21 metastases with PET PR, 38% became CR, 52% remained PR, and 10% had progressive disease on follow-up PET. 10/35 lesions (29% with an initial PET CR progressed on follow-up PET scan with median time to progression of 4.11 months (range: 2.75-9.56. Higher radiation dose correlated with long-term PET response. Conclusions PET response to SBRT enables characterization of metastatic response in tumors non-measurable by CT. Increasing radiation dose is associated with prolonged complete response on PET.

  14. A computer-controlled high resolution micro-multi-leaf collimator for stereotactic conformal radio-therapy

    International Nuclear Information System (INIS)

    Schlegel, Wolfgang; Pastyr, Otto; Kubesch, Rudolf; Diemer, Torsten; Kuester, Gunnilla; Rhein, Bernhard; Hoever, Karl-Heinz

    1997-01-01

    Purpose/Objective In stereotactic conformal radiotherapy of irregularly shaped lesions, either multi-isocentric convergent beam treatment techniques with circular collimators or irregular shaped beams are being used. While the treatment technique with multiple isocenters has the disadvantage of producing inhomogeneous dose distributions, the use of irregular shaped fields is not yet satisfying from a technical point of view: Cerrobend blocking or the use of static micro MLCs need a long preparation time and only allow static treatment techniques, MLC collimators which are commercially available in connection with modern LINACs have leaf-thickness of at least 1 cm which is too coarse for stereotactic radiotherapy of lesions in the brain and head and neck area. For this reason, we developed a computer controlled micro-MLC with technical specifications matched to the needs of stereotactic radiotherapy and radiosurgery. Materials and Methods The mechanical specifications of the computer controlled micro-MLC were derived from our experience with stereotactic treatment techniques, from the requirement that the MLC has to be attachable as an external device to the accessory holders of standard LINACs, including cost considerations, dosimetric measurements as well as Monte Carlo calculations. The Micro-MLC is controlled by an electronic equipment consisting of a standard PC under Windows 95, an interface board, 14 Micro-controller boards, a verification system and 80 driving units equipped with DC motors and potentiometers. The control program has calibrating, operating, visualizing and test options. Irregular field data are transferred from the treatment planning computer to the control PC and distributed to the micro-controllers, which in parallel are driving three leaves each. Beside the special control unit, we are currently investigating whether the electronics of commercially available integrated large field MLCs can also be used for operating the Micro-MLC. Results

  15. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  16. Stereotactic Radiotherapy in the Treatment of Lung Metastases from Bone and Soft-tissue Sarcomas.

    Science.gov (United States)

    Frakulli, Rezarta; Salvi, Fabrizio; Balestrini, Damiano; Parisi, Alessandro; Palombarini, Marcella; Cammelli, Silvia; Rocca, Michele; Salone, Mariacristina; Longhi, Alessandra; Ferrari, Stefano; Morganti, Alessio G; Frezza, Giovanni

    2015-10-01

    The purpose of this study was to evaluate local control and toxicity in a group of patients treated with stereotactic body radiotherapy (SBRT) for lung metastases (LM) from bone and soft tissue sarcomas. From October 2010 to July 2014, patients with LM from sarcomas not suitable for surgery were treated with daily cone-beam computed tomography-guided SBRT. The dose administered ranged from 30 to 60 Gy in 3-8 fractions. Acute and late toxicity were scored according to Common Terminology Criteria for Adverse Events version 4.0. A total of 24 patients with 68 LM from sarcomas were treated with SBRT. The median follow-up after SBRT was 17 months (range=11-51 months). Two-year actuarial lesion local control and overall survival were 85.9% and 66.4%, respectively. No G3 or greater acute and late toxicities were observed. SBRT is a safe and effective treatment for LM from sarcoma and might be used as an alternative option in patients unfit for surgery. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  18. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  19. SU-F-P-05: Initial Experience with an Independent Certification Program for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Solberg, T; Robar, J; Gevaert, T; Todorovic, M; Howe, J

    2016-01-01

    Purpose: The ASTRO document “Safety is no accident: A FRAMEWORK FOR QUALITY RADIATION ONCOLOGY AND CARE” recommends external reviews of specialized modalities. The purpose of this presentation is to describe the implementation of such a program for Stereotactic Radiosurgery (SRS) and Stereotactic Body radiation Therapy (SBRT). Methods: The margin of error for SRS and SBRT delivery is significantly smaller than that of conventional radiotherapy and therefore requires special attention and diligence. The Novalis Certified program was created to fill an unmet need for specialized SRS / SBRT credentialing. A standards document was drafted by a panel of experts from several disciplines, including medical physics, radiation oncology and neurosurgery. The document, based on national and international standards, covers requirements in program structure, personnel, training, clinical application, technology, quality management, and patient and equipment QA. The credentialing process was modeled after existing certification programs and includes an institution-generated self-study, extensive document review and an onsite audit. Reviewers generate a descriptive report, which is reviewed by a multidisciplinary expert panel. Outcomes of the review may include mandatory requirements and optional recommendations. Results: 15 institutions have received Novalis Certification, including 3 in the US, 7 in Europe, 4 in Australia and 1 in Asia. 87 other centers are at various stages of the process. Nine reviews have resulted in mandatory requirements, however all of these were addressed within three months of the audit report. All reviews have produced specific recommendations ranging from programmatic to technical in nature. Institutions felt that the credentialing process addressed a critical need and was highly valuable to the institution. Conclusion: Novalis Certification is a unique peer review program assessing safety and quality in SRS and SBRT, while recognizing

  20. SU-F-P-05: Initial Experience with an Independent Certification Program for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, T [University of Pennsylvania, Philadelphia, PA (United States); Robar, J [Capital District Health Authority, Halifax, NS (Canada); Gevaert, T [University Hospital Brussels, Brussels (Belgium); Todorovic, M [Universitats-Klinikum Hamburg-Eppendorf, Hamburg (Germany); Howe, J [Associates In Medical Physics, Louisville, KY (United States)

    2016-06-15

    Purpose: The ASTRO document “Safety is no accident: A FRAMEWORK FOR QUALITY RADIATION ONCOLOGY AND CARE” recommends external reviews of specialized modalities. The purpose of this presentation is to describe the implementation of such a program for Stereotactic Radiosurgery (SRS) and Stereotactic Body radiation Therapy (SBRT). Methods: The margin of error for SRS and SBRT delivery is significantly smaller than that of conventional radiotherapy and therefore requires special attention and diligence. The Novalis Certified program was created to fill an unmet need for specialized SRS / SBRT credentialing. A standards document was drafted by a panel of experts from several disciplines, including medical physics, radiation oncology and neurosurgery. The document, based on national and international standards, covers requirements in program structure, personnel, training, clinical application, technology, quality management, and patient and equipment QA. The credentialing process was modeled after existing certification programs and includes an institution-generated self-study, extensive document review and an onsite audit. Reviewers generate a descriptive report, which is reviewed by a multidisciplinary expert panel. Outcomes of the review may include mandatory requirements and optional recommendations. Results: 15 institutions have received Novalis Certification, including 3 in the US, 7 in Europe, 4 in Australia and 1 in Asia. 87 other centers are at various stages of the process. Nine reviews have resulted in mandatory requirements, however all of these were addressed within three months of the audit report. All reviews have produced specific recommendations ranging from programmatic to technical in nature. Institutions felt that the credentialing process addressed a critical need and was highly valuable to the institution. Conclusion: Novalis Certification is a unique peer review program assessing safety and quality in SRS and SBRT, while recognizing

  1. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    Science.gov (United States)

    Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-08

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine

  2. A Bayesian network meta-analysis of whole brain radiotherapy and stereotactic radiotherapy for brain metastasis.

    Science.gov (United States)

    Yuan, Xi; Liu, Wen-Jie; Li, Bing; Shen, Ze-Tian; Shen, Jun-Shu; Zhu, Xi-Xu

    2017-08-01

    This study was conducted to compare the effects of whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRS) in treatment of brain metastasis.A systematical retrieval in PubMed and Embase databases was performed for relative literatures on the effects of WBRT and SRS in treatment of brain metastasis. A Bayesian network meta-analysis was performed by using the ADDIS software. The effect sizes included odds ratio (OR) and 95% confidence interval (CI). A random effects model was used for the pooled analysis for all the outcome measures, including 1-year distant control rate, 1-year local control rate, 1-year survival rate, and complication. The consistency was tested by using node-splitting analysis and inconsistency standard deviation. The convergence was estimated according to the Brooks-Gelman-Rubin method.A total of 12 literatures were included in this meta-analysis. WBRT + SRS showed higher 1-year distant control rate than SRS. WBRT + SRS was better for the 1-year local control rate than WBRT. SRS and WBRT + SRS had higher 1-year survival rate than the WBRT. In addition, there was no difference in complication among the three therapies.Comprehensively, WBRT + SRS might be the choice of treatment for brain metastasis.

  3. Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.

    Science.gov (United States)

    Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René

    2018-06-01

    Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.

  4. Fractionated stereotactic conformal radiotherapy following conservative surgery in the control of craniopharyngiomas

    International Nuclear Information System (INIS)

    Minniti, Giuseppe; Saran, Frank; Traish, Daphne; Soomal, Rubin; Sardell, Susan; Gonsalves, Adam; Ashley, Susan; Warrington, Jim; Burke, Kevin; Mosleh-Shirazi, Amin; Brada, Michael

    2007-01-01

    Purpose: To describe the technique and results of stereotactically guided conformal radiotherapy (SCRT) in patients with craniopharyngioma after conservative surgery. Methods and materials: Thirty-nine patients with craniopharyngioma aged 3-68 years (median age 18 years) were treated with SCRT between June 1994 and January 2003. All patients were referred for radiotherapy after undergoing one or more surgical procedures. Treatment was delivered in 30-33 daily fractions over 6-6.5 weeks to a total dose of 50 Gy using 6 MV photons. Outcome was assessed prospectively. Results: At a median follow-up of 40 months (range 3-88 months) the 3- and 5-year progression-free survival (PFS) was 97% and 92%, and 3- and 5-year survival 100%. Two patients required further debulking surgery for progressive disease 8 and 41 months after radiotherapy. Twelve patients (30%) had acute clinical deterioration due to cystic enlargement of craniopharyngioma following SCRT and required cyst aspiration. One patient with severe visual impairment prior to radiotherapy had visual deterioration following SCRT. Seven out of 10 patients with a normal pituitary function before SCRT had no endocrine deficits following treatment. Conclusion: SCRT as a high-precision technique of localized RT is suitable for the treatment of incompletely excised craniopharyngioma. The local control, toxicity and survival outcomes are comparable to results reported following conventional external beam RT. Longer follow-up is required to assess long-term efficacy and toxicity, particularly in terms of potential reduction in treatment related late toxicity

  5. Situation of radiotherapy in 2010 - context and methods, data for 2003/2010, synthesis

    International Nuclear Information System (INIS)

    2011-03-01

    Illustrated by data tables and figures, this report first gives an overview of the status and situation of European and French radiotherapy centres, and of care activity authorizations regarding external radiotherapy. It gives an overview of equipment used for treatments and for treatment preparation and delivery, and of the different treatment techniques (three dimensional conformational, intensity-modulated conformational, stereotactic, whole body radiotherapy, proton-therapy). It comments the activity of radiotherapy centres: patients (age, sessions, and treated pathologies), comments data regarding medical and paramedical personnel involved in radiotherapy, and financial data regarding radiotherapy in 2009

  6. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer : a pooled analysis of two randomised trials

    NARCIS (Netherlands)

    Chang, Joe Y.; Senan, Suresh; Paul, Marinus A.; Mehran, Reza J.; Louie, Alexander V.; Balter, Peter; Groen, Harry; McRae, Stephen E.; Widder, Joachim; Feng, Lei; van den Borne, Ben E. E. M.; Munsell, Mark F.; Hurkmans, Coen; Berry, Donald A.; van Werkhoven, Erik; Kresl, John J.; Dingemans, Anne-Marie; Dawood, Omar; Haasbeek, Cornelis J. A.; Carpenter, Larry S.; De Jaeger, Katrien; Komaki, Ritsuko; Slotman, Ben J.; Smit, Egbert F.; Roth, Jack A.

    Background The standard of care for operable, stage I, non-small-cell lung cancer (NSCLC) is lobectomy with mediastinal lymph node dissection or sampling. Stereotactic ablative radiotherapy (SABR) for inoperable stage I NSCLC has shown promising results, but two independent, randomised, phase 3

  7. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results

    Directory of Open Access Journals (Sweden)

    Ayakawa Shiho

    2009-05-01

    Full Text Available Abstract Background In stereotactic body radiotherapy (SBRT for lung tumors, reducing tumor movement is necessary. In this study, we evaluated changes in tumor movement and percutaneous oxygen saturation (SpO2 levels, and preliminary clinical results of SBRT using the BodyFIX immobilization system. Methods Between 2004 and 2006, 53 consecutive patients were treated for 55 lesions; 42 were stage I non-small cell lung cancer (NSCLC, 10 were metastatic lung cancers, and 3 were local recurrences of NSCLC. Tumor movement was measured with fluoroscopy under breath holding, free breathing on a couch, and free breathing in the BodyFIX system. SpO2 levels were measured with a finger pulseoximeter under each condition. The delivered dose was 44, 48 or 52 Gy, depending on tumor diameter, in 4 fractions over 10 or 11 days. Results By using the BodyFIX system, respiratory tumor movements were significantly reduced compared with the free-breathing condition in both craniocaudal and lateral directions, although the amplitude of reduction in the craniocaudal direction was 3 mm or more in only 27% of the patients. The average SpO2 did not decrease by using the system. At 3 years, the local control rate was 80% for all lesions. Overall survival was 76%, cause-specific survival was 92%, and local progression-free survival was 76% at 3 years in primary NSCLC patients. Grade 2 radiation pneumonitis developed in 7 patients. Conclusion Respiratory tumor movement was modestly suppressed by the BodyFIX system, while the SpO2 level did not decrease. It was considered a simple and effective method for SBRT of lung tumors. Preliminary results were encouraging.

  8. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  9. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Hamilton, Russell J.; Kuchnir, Franca T.; Sweeney, Patrick; Rubin, Steven J.; Dujovny, Manuel; Pelizzari, Charles A.; Chen, George T. Y.

    1995-01-01

    Purpose: Compare the use of static conformal fields with the use of multiple noncoplanar arcs for stereotactic radiosurgery or stereotactic radiotherapy treatment of intracranial lesions. Evaluate the efficacy of these treatment techniques to deliver dose distributions comparable to those considered acceptable in current radiotherapy practice. Methods and Materials: A previously treated radiosurgery case of a patient presenting with an irregularly shaped intracranial lesion was selected. Using a three-dimensional (3D) treatment-planning system, treatment plans using a single isocenter multiple noncoplanar arc technique and multiple noncoplanar conformal static fields were generated. Isodose distributions and dose volume histograms (DVHs) were computed for each treatment plan. We required that the 80% (of maximum dose) isodose surface enclose the target volume for all treatment plans. The prescription isodose was set equal to the minimum target isodose. The DVHs were analyzed to evaluate and compare the different treatment plans. Results: The dose distribution in the target volume becomes more uniform as the number of conformal fields increases. The volume of normal tissue receiving low doses (> 10% of prescription isodose) increases as the number of static fields increases. The single isocenter multiple arc plan treats the greatest volume of normal tissue to low doses, approximately 1.6 times more volume than that treated by four static fields. The volume of normal tissue receiving high (> 90% of prescription isodose) and intermediate (> 50% of prescription isodose) doses decreases by 29 and 22%, respectively, as the number of static fields is increased from four to eight. Increasing the number of static fields to 12 only further reduces the high and intermediate dose volumes by 10 and 6%, respectively. The volume receiving the prescription dose is more than 3.5 times larger than the target volume for all treatment plans. Conclusions: Use of a multiple noncoplanar

  10. Lung stereotactic body radiotherapy using a coplanar versus a non-coplanar beam technique: a comparison of clinical outcomes

    Science.gov (United States)

    Stauder, Michael C.; Miller, Robert C.; Garces, Yolanda I.; Foote, Robert L.; Sarkaria, Jann N.; Bauer, Heather J.; Mayo, Charles S.; Olivier, Kenneth R.

    2013-01-01

    Objectives To determine if lung stereotactic body radiotherapy (SBRT) using a coplanar beam technique was associated with similar outcomes as lung SBRT using a non-coplanar beam technique. Methods A retrospective review was performed of patients undergoing lung SBRT between January 2008 and April 2011. SBRT was initially delivered with multiple non-coplanar, non-overlapping beams; however, starting in December 2009, SBRT was delivered predominantly with all coplanar beams in order to reduce treatment time and complexity. Results This analysis included 149 patients; the median follow-up was 21 months. SBRT was delivered for primary (n = 90) or recurrent (n = 17) non-small cell lung cancer, or lung oligometastasis (n = 42). The most common dose (Gy)/fraction (fx) regimens were 48 Gy/4 fx (39%), 54 Gy/3 fx (37%), and 50 Gy/5 fx (17%). The beam arrangement was coplanar in 61 patients (41%) and non-coplanar in 88 patients (59%). In patients treated with 54 Gy/3 fx, the mean treatment times per fraction for the coplanar and non-coplanar cohorts were 10 and 14 minutes (p < 0.0001). Kaplan-Meier 2-year estimates of overall survival (OS), progression-free survival, and local control (LC) for the coplanar and non-coplanar cohorts were 65% vs. 56% (p = 0.30), 47% vs. 39% (p = 0.71), and 92% and 92% (p = 0.94), respectively. The 1-year estimates of grade 2-5 pulmonary toxicity for the coplanar and non-coplanar cohorts were 11% and 17%, respectively (p = 0.30). On multivariate analysis, beam arrangement was not significantly associated with OS, LC or pulmonary toxicity. Conclusions Patients treated with lung SBRT using a coplanar technique had similar outcomes as those treated with a non-coplanar technique. PMID:29296365

  11. Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch: Intrafraction Motion Analysis Accounting for all Six Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Derek [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); British Columbia Cancer Agency, The Sindi Hawkins Cancer Centre for the Southern Interior, Kelowna (Canada); Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Sahgal, Arjun, E-mail: Arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto (Canada)

    2012-03-01

    Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion

  12. Stereotactic radiotherapy of the prostate: fractionation and utilization in the United States

    International Nuclear Information System (INIS)

    Weiner, Josph P.; Schwartz, David; Shao, Meng; Osborn, Virginia; Schreiber, David; Choi, Kwang

    2017-01-01

    To analyze the utilization and fractionation of extreme hypofractionation via stereotactic body radiotherapy (SBRT) in the treatment of prostate cancer. Data was analyzed on men diagnosed with localized prostate cancer between 2004–2012 and treated with definitive-intent radiation therapy, as captured in the National Cancer Database. This database is a hospital-based registry that collects an estimated 70% of all diagnosed malignancies in the United States. There were 299,186 patients identified, of which 4,962 (1.7%) were identified as receiving SBRT as primary treatment. Of those men, 2,082 had low risk disease (42.0%), 2,201 had intermediate risk disease (44.4%), and 679 had high risk disease (13.7%). The relative utilization of SBRT increased from 0.1% in 2004 to 4.0% in 2012. Initially SBRT was more commonly used in academic programs, though as time progressed there was a shift to favor an increased absolute number of men treated in the community setting. Delivery of five separate treatments was the most commonly utilized fractionation pattern, with 4,635 patients (91.3%) receiving this number of treatments. The most common dosing pattern was 725 cGy × 5 fractions (49.6%) followed by 700 cGy × 5 fractions (21.3%). Extreme hypofractionation via SBRT is slowly increasing acceptance. Currently 700-725 cGy × 5 fractions appears to be the most commonly employed scheme. As further long-term data regarding the safety and efficacy emerges, the relative utilization of this modality is expected to continue to increase

  13. Stereotactic radiotherapy of the prostate: fractionation and utilization in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Josph P.; Schwartz, David; Shao, Meng; Osborn, Virginia; Schreiber, David [Dept. of Radiation Oncology, Veterans Affairs New York Harbor Healthcare System, Brooklyn (United States); Choi, Kwang [Dept. of Radiation Oncology, SUNY Downstate Medical Center, Brooklyn (United States)

    2017-06-15

    To analyze the utilization and fractionation of extreme hypofractionation via stereotactic body radiotherapy (SBRT) in the treatment of prostate cancer. Data was analyzed on men diagnosed with localized prostate cancer between 2004–2012 and treated with definitive-intent radiation therapy, as captured in the National Cancer Database. This database is a hospital-based registry that collects an estimated 70% of all diagnosed malignancies in the United States. There were 299,186 patients identified, of which 4,962 (1.7%) were identified as receiving SBRT as primary treatment. Of those men, 2,082 had low risk disease (42.0%), 2,201 had intermediate risk disease (44.4%), and 679 had high risk disease (13.7%). The relative utilization of SBRT increased from 0.1% in 2004 to 4.0% in 2012. Initially SBRT was more commonly used in academic programs, though as time progressed there was a shift to favor an increased absolute number of men treated in the community setting. Delivery of five separate treatments was the most commonly utilized fractionation pattern, with 4,635 patients (91.3%) receiving this number of treatments. The most common dosing pattern was 725 cGy × 5 fractions (49.6%) followed by 700 cGy × 5 fractions (21.3%). Extreme hypofractionation via SBRT is slowly increasing acceptance. Currently 700-725 cGy × 5 fractions appears to be the most commonly employed scheme. As further long-term data regarding the safety and efficacy emerges, the relative utilization of this modality is expected to continue to increase.

  14. Once-weekly versus every-other-day stereotactic body radiotherapy in patients with prostate cancer (PATRIOT): A phase 2 randomized trial.

    Science.gov (United States)

    Quon, Harvey C; Ong, Aldrich; Cheung, Patrick; Chu, William; Chung, Hans T; Vesprini, Danny; Chowdhury, Amit; Panjwani, Dilip; Pang, Geordi; Korol, Renee; Davidson, Melanie; Ravi, Ananth; McCurdy, Boyd; Zhang, Liying; Mamedov, Alexandre; Deabreu, Andrea; Loblaw, Andrew

    2018-05-01

    Prostate stereotactic body radiotherapy (SBRT) regimens differ in time, dose, and fractionation. We completed a multicentre, randomized phase II study to investigate the impact of overall treatment time on quality of life (QOL). Men with low and intermediate-risk prostate cancer were randomly assigned to 40 Gy in 5 fractions delivered once per week (QW) vs. every other day (EOD). QOL was assessed using the Expanded Prostate Cancer Index Composite. The primary endpoint was the proportion with a minimum clinically important change (MCIC) in bowel QOL during the acute (≤12 week) period, and analysis was by intention-to-treat. ClinicalTrials.gov NCT01423474. 152 men from 3 centres were randomized with median follow-up of 47 months. Patients treated QW had superior acute bowel QOL with 47/69 (68%) reporting a MCIC compared to 63/70 (90%) treated EOD (p = 0.002). Fewer patients treated QW reported moderate-severe problems with bowel QOL during the acute period compared with EOD (14/70 [20%] vs. 40/70 [57%], p < 0.001). Acute urinary QOL was also better in the QW arm, with 52/67 (78%) vs 65/69 (94%) experiencing a MCIC (p = 0.006). There were no significant differences in late urinary or bowel QOL at 2 years or last follow-up. Prostate SBRT delivered QW improved acute bowel and urinary QOL compared to EOD. Patients should be counselled regarding the potential for reduced short-term toxicity and improved QOL with QW prostate SBRT. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects.

    Science.gov (United States)

    Harrabi, Semi B; Adeberg, Sebastian; Welzel, Thomas; Rieken, Stefan; Habermehl, Daniel; Debus, Jürgen; Combs, Stephanie E

    2014-09-16

    There are already numerous reports about high local control rates in patients with craniopharyngioma but there are only few studies with follow up times of more than 10 years. This study is an analysis of long term control, tumor response and side effects after fractionated stereotactic radiotherapy (FSRT) for patients with craniopharyngioma. 55 patients who were treated with FSRT for craniopharyngioma were analyzed. Median age was 37 years (range 6-70 years), among them eight children craniopharyngioma. Overall treatment was tolerated well with almost no severe acute or chronic side effects. One patient developed complete anosmia, another one's initially impaired vision deteriorated further. In 83.6% of the cases with radiological follow up a regression of irradiated tumor residues was monitored, in 7 cases complete response was achieved. 44 patients presented themselves initially with endocrinologic dysfunction none of them showed signs of further deterioration during follow up. No secondary malignancies were observed. Long term results for patients with craniopharyngioma after stereotactic radiotherapy are with respect to low treatment related side effects as well as to local control and overall survival excellent.

  16. Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit

    International Nuclear Information System (INIS)

    Das, Indra J.; Downes, M. Beverly; Corn, Benjamin W.; Curran, Walter J.; Werner-Wasik, M.; Andrews, David W.

    1996-01-01

    A stereotactic radiosurgery and radiotherapy (SRS/SRT) system on a dedicated Varian Clinac-600SR linear accelerator with Brown-Roberts-Wells and Gill-Thomas-Cosman relocatable frames along with the Radionics (RSA) planning system is evaluated. The Clinac-600SR has a single 6-MV beam with the same beam characteristics as that of the mother unit, the Clinac-600C. The primary collimator is a fixed cone projecting to a 10-cm diameter at isocenter. The secondary collimator is a heavily shielded cylindrical collimator attached to the face plate of the primary collimator. The tertiary collimation consists of the actual treatment cones. The cone sizes vary from 12.5 to 40.0 mm diameter. The mechanical stability of the entire system was verified. The variations in isocenter position with table, gantry, and collimator rotation were found to be <0.5 mm with a compounded accuracy of ≤ 1.0 mm. The radiation leakage under the cones was < 1% measured at a depth of 5 cm in a phantom. The beam profiles of all cones in the x and y directions were within ±0.5 mm and match with the physical size of the cone. The dosimetric data such as tissue maximum ratio, off-axis ratio, and cone factor were taken using film, diamond detector, and ion chambers. The mechanical and dosimetric characteristics including dose linearity of this unit are presented and found to be suitable for SRS/SRT. The difficulty in absolute dose measurement for small cone is discussed

  17. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  18. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT).

    Science.gov (United States)

    Stieler, F; Wenz, F; Abo-Madyan, Y; Schweizer, B; Polednik, M; Herskind, C; Giordano, F A; Mai, S

    2016-11-01

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49°/0.18 ± 0.20°/0.05 ± 0.36° and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT.

  19. Role of Radiotherapy in Metastatic Non-small Cell Lung Cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Sergio L. Faria

    2014-10-01

    Full Text Available Radiotherapy has had important role in the palliation of NSCLC. Randomized trials tend to suggest that, in general, short regimens give similar palliation and toxicity compared to longer regimens. The benefit of combining chemotherapy to radiosensitize the palliative radiation treatment is an open question, but so far it has not been proved to be very useful in NSCLC. The addition of molecular targeted drugs to radiotherapy outside of approved regimens or clinical trials warrants careful consideration for every single case and probably should not be used as a routine management.Stereotactic radiosurgery (SRS and stereotactic body radiation therapy (SBRT are modern techniques being used each time more frequently in the treatment of single or oligometastases. In general, they offer good tumour control with little toxicity (with a more expensive cost compared to the traditionally fractionated radiotherapy regimens.

  20. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kan, M W K; Cheung, J Y C; Leung, L H T; Lau, B M F; Yu, P K N

    2011-01-01

    Nasopharyngeal tumors are commonly treated with intensity-modulated radiotherapy techniques. For photon dose calculations, problems related to loss of lateral electronic equilibrium exist when small fields are used. The anisotropic analytical algorithm (AAA) implemented in Varian Eclipse was developed to replace the pencil beam convolution (PBC) algorithm for more accurate dose prediction in an inhomogeneous medium. The purpose of this study was to investigate the accuracy of the AAA for predicting interface doses for intensity-modulated stereotactic radiotherapy boost of nasopharyngeal tumors. The central axis depth dose data and dose profiles of phantoms with rectangular air cavities for small fields were measured using a 6 MV beam. In addition, the air-tissue interface doses from six different intensity-modulated stereotactic radiotherapy plans were measured in an anthropomorphic phantom. The nasopharyngeal region of the phantom was especially modified to simulate the air cavities of a typical patient. The measured data were compared to the data calculated by both the AAA and the PBC algorithm. When using single small fields in rectangular air cavity phantoms, both AAA and PBC overestimated the central axis dose at and beyond the first few millimeters of the air-water interface. Although the AAA performs better than the PBC algorithm, its calculated interface dose could still be more than three times that of the measured dose when a 2 x 2 cm 2 field was used. Testing of the algorithms using the anthropomorphic phantom showed that the maximum overestimation by the PBC algorithm was 20.7%, while that by the AAA was 8.3%. When multiple fields were used in a patient geometry, the dose prediction errors of the AAA would be substantially reduced compared with those from a single field. However, overestimation of more than 3% could still be found at some points at the air-tissue interface.

  1. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules?

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Miyakawa, Akifumi; Otsuka, Shinya; Iwata, Hiromitsu

    2016-01-01

    In hypofractionated stereotactic radiotherapy (SRT), high doses per fraction are usually used and the dose delivery pattern is different from that of conventional radiation. The daily dose is usually given intermittently over a longer time compared with conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. In in vivo tumors, however, this decrease in effect may be counterbalanced by rapid reoxygenation. Another issue related to hypofractionated SRT is the mathematical model for dose evaluation and conversion. The linear–quadratic (LQ) model and biologically effective dose (BED) have been suggested to be incorrect when used for hypofractionation. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when used for tumor responses in vivo, since it does not take reoxygenation into account. Correction of the errors, estimated at 5–20%, associated with the use of BED is necessary when it is used for SRT. High fractional doses have been reported to exhibit effects against tumor vasculature and enhance host immunity, leading to increased antitumor effects. This may be an interesting topic that should be further investigated. Radioresistance of hypoxic tumor cells is more problematic in hypofractionated SRT, so trials of hypoxia-targeted agents are encouraged in the future. In this review, the radiobiological characteristics of hypofractionated SRT are summarized, and based on the considerations, we would like to recommend 60 Gy in eight fractions delivered three times a week for lung tumors larger than 2 cm in diameter

  2. WE-H-BRC-03: Failure Mode and Effects Analysis in the First Clinical Implementation of a Novel Stereotactic Breast Radiotherapy Device: GammaPod™

    Energy Technology Data Exchange (ETDEWEB)

    Mossahebi, S; Feigenberg, S; Nichols, E; Becker, S; Prado, K; Yi, B; Mutaf, Y [University of Maryland School of Medicine, Baltimore, MD (United States); Niu, Y [Xcision Medical Systems, Rockville, MD (United States); Yu, C [University of Maryland School of Medicine, Baltimore, MD (United States); Xcision Medical Systems, Rockville, MD (United States)

    2016-06-15

    Purpose: GammaPod™, the first stereotactic radiotherapy device for early stage breast cancer treatment, has been recently installed and commissioned at our institution. A multidisciplinary working group applied the failure mode and effects analysis (FMEA) approach to perform a risk analysis. Methods: FMEA was applied to the GammaPod™ treatment process by: 1) generating process maps for each stage of treatment; 2) identifying potential failure modes and outlining their causes and effects; 3) scoring the potential failure modes using the risk priority number (RPN) system based on the product of severity, frequency of occurrence, and detectability (ranging 1–10). An RPN of higher than 150 was set as the threshold for minimal concern of risk. For these high-risk failure modes, potential quality assurance procedures and risk control techniques have been proposed. A new set of severity, occurrence, and detectability values were re-assessed in presence of the suggested mitigation strategies. Results: In the single-day image-and-treat workflow, 19, 22, and 27 sub-processes were identified for the stages of simulation, treatment planning, and delivery processes, respectively. During the simulation stage, 38 potential failure modes were found and scored, in terms of RPN, in the range of 9-392. 34 potential failure modes were analyzed in treatment planning with a score range of 16-200. For the treatment delivery stage, 47 potential failure modes were found with an RPN score range of 16-392. The most critical failure modes consisted of breast-cup pressure loss and incorrect target localization due to patient upper-body alignment inaccuracies. The final RPN score of these failure modes based on recommended actions were assessed to be below 150. Conclusion: FMEA risk analysis technique was applied to the treatment process of GammaPod™, a new stereotactic radiotherapy technology. Application of systematic risk analysis methods is projected to lead to improved quality of

  3. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors.

    Science.gov (United States)

    Luke, Jason J; Lemons, Jeffrey M; Karrison, Theodore G; Pitroda, Sean P; Melotek, James M; Zha, Yuanyuan; Al-Hallaq, Hania A; Arina, Ainhoa; Khodarev, Nikolai N; Janisch, Linda; Chang, Paul; Patel, Jyoti D; Fleming, Gini F; Moroney, John; Sharma, Manish R; White, Julia R; Ratain, Mark J; Gajewski, Thomas F; Weichselbaum, Ralph R; Chmura, Steven J

    2018-02-13

    Purpose Stereotactic body radiotherapy (SBRT) may stimulate innate and adaptive immunity to augment immunotherapy response. Multisite SBRT is an emerging paradigm for treating metastatic disease. Anti-PD-1-treatment outcomes may be improved with lower disease burden. In this context, we conducted a phase I study to evaluate the safety of pembrolizumab with multisite SBRT in patients with metastatic solid tumors. Patients and Methods Patients progressing on standard treatment received SBRT to two to four metastases. Not all metastases were targeted, and metastases > 65 mL were partially irradiated. SBRT dosing varied by site and ranged from 30 to 50 Gy in three to five fractions with predefined dose de-escalation if excess dose-limiting toxicities were observed. Pembrolizumab was initiated within 7 days after completion of SBRT. Pre- and post-SBRT biopsy specimens were analyzed in a subset of patients to quantify interferon-γ-induced gene expression. Results A total of 79 patients were enrolled; three patients did not receive any treatment and three patients only received SBRT. Patients included in the analysis were treated with SBRT and at least one cycle of pembrolizumab. Most (94.5%) of patients received SBRT to two metastases. Median follow-up for toxicity was 5.5 months (interquartile range, 3.3 to 8.1 months). Six patients experienced dose-limiting toxicities with no radiation dose reductions. In the 68 patients with imaging follow-up, the overall objective response rate was 13.2%. Median overall survival was 9.6 months (95% CI, 6.5 months to undetermined) and median progression-free survival was 3.1 months (95% CI, 2.9 to 3.4 months). Expression of interferon-γ-associated genes from post-SBRT tumor biopsy specimens significantly correlated with nonirradiated tumor response. Conclusion Multisite SBRT followed by pembrolizumab was well tolerated with acceptable toxicity. Additional studies exploring the clinical benefit and predictive biomarkers of combined

  4. Image-guided stereotactic radiotherapy for patients with vestibular schwannoma. A clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Badakhshi, H.; Muellner, S.; Budach, V. [Charite School of Medicine and University Hospital of Berlin, Departments for Radiation Oncology, Berlin (Germany); Wiener, E. [School of Medicine and University Hospital of Berlin, Institute for Neuroradiology, Berlin (Germany)

    2014-06-15

    Local tumor control and functional outcome after linac-based stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) for vestibular schwannoma (VS) were assessed. In all, 250 patients with VS were treated: 190 patients with tumors < 2 cm diameter underwent SRS and 60 patients with tumors >2 to 3.5 cm underwent FSRT. Dose prescription for all cases with SRS (n = 190, 76 %) was 13.5 Gy. For FSRT, mainly two hypofractionated schedules (n = 60, 24 %) with either 7 fractions of 5 Gy (total dose: 35 Gy; n = 35) or 11 fractions of 3.8 Gy (total dose: 41.8 Gy; n = 16) were used. The primary endpoint was local tumor control. Secondary endpoints were symptomatic control and morbidity. The median follow-up was 33.8 months. The 3-year local tumor control was 88.9 %. Local control for SRS and FSRT was 88 and 92 %, respectively. For FSRT with 35 and 41.8 Gy, local control was 90 and 100 %, respectively. There were no acute reactions exceeding grade I. In 61 cases (24.4 % of the entire cohort), trigeminal neuralgia was reported prior to treatment. At last follow-up, 16.3 % (10/61) of those patients reported relief of pain. Regarding facial nerve dysfunction, 45 patients (18 %) presented with symptoms prior to RT. At the last follow-up, 13.3% (6/45) of those patients reported a relief of dysesthesia. Using SRS to treat small VS results in good local control rates. FSRT for larger lesions also seems effective. Severe treatment-related complications are not frequent. Therefore, image-guided stereotactic radiotherapy is an appropriate alternative to microsurgery for patients with VS. (orig.) [German] Wir analysierten die lokale Kontrolle und die funktionellen Verlaeufe bei Patienten mit einem Vestibularisschwannom (VS), die sich einer linacbasierten stereotaktischen Radiochirurgie (SRS) oder einer fraktionierten stereotaktischen Radiotherapie (FSRT) unterzogen. Zwischen 1998 und 2008 wurden 250 Patienten mit einem VS behandelt. In dieser Kohorte wurden 190

  5. Long-Term Outcomes of Vestibular Schwannomas Treated With Fractionated Stereotactic Radiotherapy: An Institutional Experience

    International Nuclear Information System (INIS)

    Kapoor, Sumit; Batra, Sachin; Carson, Kathryn; Shuck, John; Kharkar, Siddharth; Gandhi, Rahul; Jackson, Juan; Wemmer, Jan; Terezakis, Stephanie; Shokek, Ori; Kleinberg, Lawrence; Rigamonti, Daniele

    2011-01-01

    Purpose: We assessed clinical outcome and long-term tumor control after fractionated stereotactic radiotherapy (FSRT) for unilateral schwannoma. Methods and Materials: Between 1995 and 2007, 496 patients were treated with fractionated stereotactic radiotherapy at Johns Hopkins Hospital (Baltimore, MD); 385 patients had radiologic follow-up that met the inclusion criteria. The primary endpoint was treatment failure. Secondary endpoints were radiologic progression and clinical outcome. Logistic regression analysis assessed the association of age, race, tumor side, sex, and pretreatment symptoms. Results: In 11 patients (3%) treatment failed, and they required salvage (microsurgical) treatment. Radiologic progression was observed in 116 patients (30.0%), including 35 patients (9%) in whom the treatment volume more than doubled during the follow-up period, although none required surgical resection. Tumors with baseline volumes of less than 1 cm 3 were 18.02 times more likely to progress than those with tumor volumes of 1 cm 3 or greater (odds ratio, 18.02; 95% confidence interval, 4.25-76.32). Treatment-induced neurologic morbidity included 8 patients (1.6%) with new facial weakness, 12 patients (2.8%) with new trigeminal paresthesias, 4 patients (0.9%) with hydrocephalus (1 communicating and 3 obstructive), and 2 patients (0.5%) with possibly radiation-induced neoplasia. Conclusions: Although the rate of treatment failure is low (3%), careful follow-up shows that radiologic progression occurs frequently. When reporting outcome, the 'no salvage surgery needed' and 'no additional treatment needed' criteria for treatment success need to be complemented by the radiologic data.

  6. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A 1 ) was set in the range of 0.0–12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of γ index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within ± 0.7%. From the dose area histograms on the film, the mean ± standard deviation of the dose covering 100% of the cross section of the target was 102.32 ± 1.20% (range, 100.59–103.49%). By contrast, the irradiated areas receiving more than 95% dose for A 1 = 12 mm were 1.46 and 1.33 times larger than those for A 1 = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  7. Prognostic indices in stereotactic radiotherapy of brain metastases of non-small cell lung cancer.

    Science.gov (United States)

    Kaul, David; Angelidis, Alexander; Budach, Volker; Ghadjar, Pirus; Kufeld, Markus; Badakhshi, Harun

    2015-11-26

    Our purpose was to analyze the long-term clinical outcome and to identify prognostic factors after Linac-based stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) on patients with brain metastases (BM) from non-small cell lung cancer (NSCLC). We performed a retrospective analysis of survival on 90 patients who underwent SRS or FSRT of intracranial NSCLC metastases between 04/2004 and 05/2014 that had not undergone prior surgery or whole brain radiotherapy (WBRT) for BM. Follow-up data was analyzed until May 2015. Potential prognostic factors were examined in univariable and multivariable analyses. The Golden Grading System (GGS), the disease-specific graded prognostic assessment (DS-GPA), the RADES II prognostic index as well as the NSCLC-specific index proposed by Rades et al. in 2013 (NSCLC-RADES) were calculated and their predictive values were tested in univariable analysis. The median follow-up time of the surviving patients was 14 months. The overall survival (OS) rate was 51 % after 6 months and 29.9 % after 12 months. Statistically significant factors of better OS after univariable analysis were lower International Union Against Cancer (UICC) stage at first diagnosis, histology of adenocarcinoma, prior surgery of the primary tumor and lower total BM volume. After multivariable analysis adenocarcinoma histology remained a significant factor; higher Karnofsky Performance Score (KPS) and the presence of extracranial metastases (ECM) were also significant. The RADES II and the NSCLC-RADES indices were significant predictors of OS. However, the NSCLC-RADES failed to differentiate between intermediate- and low-risk patients. The DS-GPA and GGS were not statistically significant predictors of survival in univariable analysis. The ideal prognostic index has not been defined yet. We believe that more specific indices will be developed in the future. Our results indicate that the histologic subtype of NSCLC could add to the prognostic

  8. A verification methodology for in vivo dosimetry in stereotactic radiotherapy; Uma metodologia para verificacao dosimetrica in vivo em radioterapia estereotaxica

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Leonardo L.; Oliveira, Harley F.; Fairbanks, Leandro R., E-mail: leonardo.fis@usp.br [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Nicolucci, Patricia; Netto, Thomaz G. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Departamento de Fisica

    2012-12-15

    Radiotherapy of brain lesions near critical structures requires a high accuracy in the location and dose. The high precision is achieved by the location of the stereotactic apparatus. The accuracy in dose delivery should be accompanied by an accurate quality control in devices that involve the practice, however, still does not guarantee the dose at the time of therapy. The large number of fields and the small size of these conventional methods difficult dosimetry during treatment. The objective of this work was to develop a verification methodology in vivo dosimetry in stereotactic radiotherapy with the aid of the film radiochromic Linear Accelerator with multi leaf collimators Moduleaf. The technique uses film segments radiochromic Gafchromic EBT2, with dimensions of 1x1 cm{sup 2} in area outside the coupled micro-multileaf Moduleaf Siemens. These films were inserted in the region of the central axis of the beam. The films were irradiated and calibrated to obtain the factors that determine the size dependence of the dosimetric field. With these data, we designed a computer program which calculates the density of a film must acquire when subjected to an exposure in this setting. This study evaluated five non-coplanar plans, the first with 15 fields and the other with 25 fields. Before starting the procedure, the film segment is coupled to the device, and after the treatment, the relative density is evaluated and compared with the calculated. The average value of the verification at the time of radiation dosimetry compared with the calculated by the sheet was 1.5%. The data collected in this study showed a satisfactory agreement between measured and calculated by the program in the densitometer. Thus, a methodology was developed to verify in vivo dosimetry in radiotherapy and stereotactic linear accelerator collimators Moduleaf. (author)

  9. Volume Modulated Arc Therapy (VMAT for pulmonary Stereotactic Body Radiotherapy (SBRT in patients with lesions in close approximation to the chest wall

    Directory of Open Access Journals (Sweden)

    Thomas J. FitzGerald

    2013-02-01

    Full Text Available Chest wall pain and discomfort has been recognized as a significant late effect of radiation therapy in historical and modern treatment models. Stereotactic Body Radiotherapy (SBRT is becoming an important treatment tool in oncology care for patients with intrathoracic lesions. For lesions in close approximation to the chest wall including lesions requiring motion management, SBRT techniques can deliver high dose to the chest wall. As an unintended target of consequence, there is possibility of generating significant chest wall pain and discomfort as a late effect of therapy. The purpose of this paper is to evaluate the potential role of Volume Modulated Arc Therapy (VMAT technologies in decreasing chest wall dose in SBRT treatment of pulmonary lesions in close approximation to the chest wall.Ten patients with pulmonary lesions of various sizes and topography in close approximation to the chest wall were selected for retrospective review. All volumes including target, chest wall, ribs, and lung were contoured with maximal intensity projection maps and four-dimensional computer tomography planning. Radiation therapy planning consisted of static techniques including Intensity Modulated Radiation Therapy compared to VMAT therapy to a dose of 60Gy in 12Gy fractions. Dose volume histogram to rib, chest wall, and lung were compared between plans with statistical analysis.In all patients dose and volume were improved to ribs and chest wall using VMAT technologies compared to static field techniques. On average, volume receiving 30Gy to the chest wall was improved by 72%;the ribs by 60%. In only one patient did the VMAT treatment technique increase pulmonary volume receiving 20Gy (V20.VMAT technology has potential of limiting radiation dose to sensitive chest wall regions in patients with lesions in close approximation to this structure. This would also have potential value to lesions treated with SBRT in other body regions where targets abut critical

  10. The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa

    2016-01-01

    The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the

  11. Analysis of the impact of chest wall constraints on eligibility for a randomized trial of stereotactic body radiotherapy of peripheral stage 1 non-small cell lung cancer

    International Nuclear Information System (INIS)

    Siva, Shankar; Shaw, Mark; Gill, Suki; David, Ball; Chesson, Brent

    2012-01-01

    Chest wall toxicities are recognized complications of stereotactic radiotherapy (SBRT) in non-small cell lung cancer. To minimize toxicity, the Trans-Tasman Radiation Oncology Group (TROG) 09.02 ‘CHISEL’ study protocol excluded patients with tumours within 1cm of the chest wall. The purpose of this study is to evaluate the implication of chest wall proximity constraints on patient eligibility, toxicity and potential accrual. Exclusion zones of 1cm beyond the mediastinum and 2cm beyond the bifurcation of the lobar bronchi were incorporated into the CHISEL credentialing CT dataset. Volumes of lung within which tumours varying from 1cm to 5cm in diameter may occupy and remain eligible for the CHISEL study were calculated. These volumes were compared to a hypothetical model in which the 1cm chest wall proximity restriction was removed. The percentage of lung area in which a tumour mass can occupy and be suitable for CHISEL in the left and right lung were 54% and 60% respectively. Removing the constraint increased the percentage of available lung to 83% and 87% respectively. Considering a 2cm spherical tumour, only 21% and 31% of tumours in the left and right lung would be eligible with the chest wall constraint, whilst 39% and 50% respectively would be eligible without the constraint. The exclusion of tumours less than 1cm to chest wall significantly reduces the proportion of patients eligible for the CHISEL protocol. A review of the literature pertaining to chest wall toxicity after stereotactic radiotherapy supports a change in chest wall exclusion criteria for the CHISEL study.

  12. [Transient enlargement of craniopharyngioma cysts after stereotactic radiotherapy and radiosurgery].

    Science.gov (United States)

    Mazerkina, N A; Savateev, A N; Gorelyshev, S K; Konovalov, A N; Trunin, Yu Yu; Golanov, A V; Medvedeva, O A; Kalinin, P L; Kutin, M A; Astafieva, L I; Krasnova, T S; Ozerova, V I; Serova, N K; Butenko, E I; Strunina, Yu V

    Stereotactic radiotherapy/radiosurgery (RT/ES) is an effective technique for treating craniopharyngiomas (CPs). However, enlargement of the cystic part of the tumor occurs in some cases after irradiation. The enlargement may be transient and not require treatment or be a true relapse requiring treatment. In this study, we performed a retrospective analysis of 79 pediatric patients who underwent stereotactic RT or RS after resection of craniopharyngioma. Five-year relapse-free survival after complex treatment of CP was 86%. In the early period after irradiation, 3.5 months (2.7-9.4) on average, enlargement of the cystic component of the tumor was detected in 10 (12.7%) patients; in 9 (11.4%) of them, the enlargement was transient and did not require treatment; in one case, the patient underwent surgery due to reduced visual acuity. In 8 (10.1%) patients, an increase in the residual tumor (a solid component of the tumor in 2 cases and a cystic component of the tumor in 6 cases) occurred in the long-term period after irradiation - after 26.3 months (16.6-48.9) and did not decrease during follow-up in none of the cases, i.e. continued growth of the tumor was diagnosed. A statistical analysis revealed that differences in the terms of transient enlargement and true continued growth were statistically significant (pcraniopharyngioma cyst in the early period (up to 1 year) after RT/RS is usually transient and does not require surgical treatment (except cases where worsening of neurological symptoms occurs, or occlusive hydrocephalus develops).

  13. Stereotactic body radiotherapy for centrally located early-stage non-small cell lung cancer or lung metastases from the RSSearch® patient registry

    International Nuclear Information System (INIS)

    Davis, Joanne N.; Medbery, Clinton; Sharma, Sanjeev; Pablo, John; Kimsey, Frank; Perry, David; Muacevic, Alexander; Mahadevan, Anand

    2015-01-01

    The purpose of this study was to evaluate treatment patterns and outcomes of stereotactic body radiotherapy (SBRT) for centrally located primary non-small cell lung cancer (NSCLC) or lung metastases from the RSSearch ® Patient Registry, an international, multi-center patient registry dedicated to radiosurgery and SBRT. Eligible patients included those with centrally located lung tumors clinically staged T1-T2 N0, M0, biopsy-confirmed NSCLC or lung metastases treated with SBRT between November 2004 and January 2014. Descriptive analysis was used to report patient demographics and treatment patterns. Overall survival (OS) and local control (LC) were determined using Kaplan-Meier method. Toxicity was reported using the Common Terminology Criteria for Adverse Events version 3.0. In total, 111 patients with 114 centrally located lung tumors (48 T1-T2,N0,M0 NSCLC and 66 lung metastases) were treated with SBRT at 19 academic and community-based radiotherapy centers in the US and Germany. Median follow-up was 17 months (range, 1–72). Median age was 74 years for primary NSCLC patients and 65 years for lung metastases patients (p < 0.001). SBRT dose varied from 16 – 60 Gy (median 48 Gy) delivered in 1–5 fractions (median 4 fractions). Median dose to centrally located primary NSCLC was 48 Gy compared to 37.5 Gy for lung metastases (p = 0.0001) and median BED 10 was 105.6 Gy for primary NSCLC and 93.6 Gy for lung metastases (p = 0.0005). Two-year OS for T1N0M0 and T2N0M0 NSCLC was 79 and 32.1 %, respectively (p = 0.009) and 2-year OS for lung metastases was 49.6 %. Two-year LC was 76.4 and 69.8 % for primary NSCLC and lung metastases, respectively. Toxicity was low with no Grade 3 or higher acute or late toxicities. Overall, patients with centrally located primary NSCLC were older and received higher doses of SBRT than those with lung metastases. Despite these differences, LC and OS was favorable for patients with central lung tumors treated with SBRT. Reported toxicity

  14. A simple method for 3D lesion reconstruction from two projected angiographic images: implementation to a stereotactic radiotherapy treatment planning system

    International Nuclear Information System (INIS)

    Theodorou, K.; Kappas, C.; Gaboriaud, G.; Mazal, A.D.; Petrascu, O.; Rosenwald, J.C.

    1997-01-01

    Introduction: The most used imaging modality for diagnosis and localisation of arteriovenous malformations (AVMs) treated with stereotactic radiotherapy is angiography. The fact that the angiographic images are projected images imposes the need of the 3D reconstruction of the lesion. This, together with the 3D head anatomy from CT images could provide all the necessary information for stereotactic treatment planning. We have developed a method to combine the complementary information provided by angiography and 2D computerized tomography, matching the reconstructed AVM structure with the reconstructed head of the patient. Materials and methods: The ISIS treatment planning system, developed at Institute Curie, has been used for image acquisition, stereotactic localisation and 3D visualisation. A series of CT slices are introduced in the system as well as two orthogonal angiographic projected images of the lesion. A simple computer program has been developed for the 3D reconstruction of the lesion and for the superposition of the target contour on the CT slices of the head. Results and conclusions: In our approach we consider that the reconstruction can be made if the AVM is approximated with a number of adjacent ellipses. We assessed the method comparing the values of the reconstructed and the actual volumes of the target using linear regression analysis. For treatment planning purposes we overlapped the reconstructed AVM on the CT slices of the head. The above feature is to our knowledge a feature that the majority of the commercial stereotactic radiotherapy treatment planning system could not provide. The implementation of the method into ISIS TPS shows that we can reliably approximate and visualize the target volume

  15. Hypofractionated stereotactic irradiation. Basic and clinical researches

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Miyakawa, Akifumi; Iwata, Hiromitsu; Otsuka, Shinya; Ogino, Hiroyuki; Ayakawa, Shiho

    2011-01-01

    Hypofractionated stereotactic radiotherapy (SRT) has a number of biological advantages over single-session radiosurgery. An apparent trend is seen in the clinic towards shift from the latter to the former; however, there is no adequate model to convert single doses to hypofractionated doses. The linear-quadratic model overestimates the effect of single-fraction radiation. This should be kept in mind in evaluating the doses of stereotactic irradiation. ''Biological effective dose'' should not be used in radiosurgery and hypofractionated SRT. Clinically, we have used 3- to 10-fraction SRT for acoustic neuroma and benign skull base tumors using cyberknife and tomotherapy. Preliminary results are encouraging. (author)

  16. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rune, E-mail: rune333@gmail.com [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Claesson, Magnus [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Stangerup, Sven-Eric [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Roed, Henrik [Department of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark); Christensen, Ib Jarle [Finsen Laboratory, Rigshospitalet, Copenhagen (Denmark); Caye-Thomasen, Per [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Juhler, Marianne [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark)

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  17. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    International Nuclear Information System (INIS)

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric; Roed, Henrik; Christensen, Ib Jarle; Cayé-Thomasen, Per; Juhler, Marianne

    2012-01-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a “wait-and-scan” group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  18. Effects of fractionated stereotactic radiotherapy for primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Choi, Byeong Ock; Jang, Hong Seok; Kang, Young Nam; Choi, Ihl Bhong; Kang, Ki Mun; Chai, Gyu Young; Lee, Sang Wook

    2005-01-01

    Reports on the outcome of curative radiotherapy for the primary hepatocellular carcinoma (HCC) are rarely encountered in the literature. In this study, we report our experience of a clinical trial where fractionated stereotactic radiotherapy (SRT) was used in treating a primary HCC. A retrospective analysis was performed on 20 patients who had been histologically diagnosed as HCC and treated by fractionated SRT. The long diameter of tumor measured by CT was 2 ∼ 6.5 cm (average: 3.8 cm). A single dose of radiation used in fractionated SRT was 5 or 10 Gy; each dose was prescribed based on the planning target volume and normalized to 85 ∼ 99% isocenter dose. Patients were treated 3 ∼ 5 times per week for 2 weeks, with each receiving a total dose of 50 Gy (the median dose: 50 Gy). The follow up period was 3 ∼ 55 months (the median follow up period: 23 months). The response rate was 60% (12 patients), with 4 patients showing complete response (20%), 8 patients showing partial response (40%), and 8 patients showing stable disease (40%). The 1-year and 2-year survival rates were 70.0% and 43.1%, respectively,and the median survival time was 20 months. The 1-year and 2-year disease free survival rates were 65% and 32.5%, respectively, and the median disease-free survival rate was 19 months. Some acute complications of the treatment were noted as follows: dyspepsia in 12 patients (60%), nausea/emesis in 8 patients (40%), and transient liver function impairment in 6 patients (30%). However, there was no treatment related death. The study indicates that fractionated SRT is a relatively safe and effective method for treating primary HCC. Thus, fractionated SRT may be suggested as a local treatment for HCC of small lesion and containing a single lesion, when the patients are inoperable or operation is refused by the patients. We thought that fractionated SRT is a challenging treatment modality for the HCC

  19. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  20. Residual F-18-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    NARCIS (Netherlands)

    Bollineni, Vikram Rao; Widder, Joachim; Pruim, Jan; Langendijk, Johannes A.; Wiegman, Erwin M.

    2012-01-01

    Purpose: To investigate the prognostic value of [F-18]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically

  1. Differences in Clinical Results After LINAC-Based Single-Dose Radiosurgery Versus Fractionated Stereotactic Radiotherapy for Patients With Vestibular Schwannomas

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Welzel, Thomas; Schulz-Ertner, Daniela; Huber, Peter E.; Debus, Juergen

    2010-01-01

    Purpose: To evaluate the outcomes of patients with vestibular schwannoma (VS) treated with fractionated stereotactic radiotherapy (FSRT) vs. those treated with stereotactic radiosurgery (SRS). Methods and Materials: This study is based on an analysis of 200 patients with 202 VSs treated with FSRT (n = 172) or SRS (n = 30). Patients with tumor progression and/or progression of clinical symptoms were selected for treatment. In 165 out of 202 VSs (82%), RT was performed as the primary treatment for VS, and for 37 VSs (18%), RT was conducted for tumor progression after neurosurgical intervention. For patients receiving FSRT, a median total dose of 57.6 Gy was prescribed, with a median fractionation of 5 x 1.8 Gy per week. For patients who underwent SRS, a median single dose of 13 Gy was prescribed to the 80% isodose. Results: FSRT and SRS were well tolerated. Median follow-up time was 75 months. Local control was not statistically different for both groups. The probability of maintaining the pretreatment hearing level after SRS with doses of ≤13 Gy was comparable to that of FSRT. The radiation dose for the SRS group (≤13 Gy vs. >13 Gy) significantly influenced hearing preservation rates (p = 0.03). In the group of patients treated with SRS doses of ≤13 Gy, cranial nerve toxicity was comparable to that of the FSRT group. Conclusions: FSRT and SRS are both safe and effective alternatives for the treatment of VS. Local control rates are comparable in both groups. SRS with doses of ≤13 Gy is a safe alternative to FSRT. While FSRT can be applied safely for the treatment of VSs of all sizes, SRS should be reserved for smaller lesions.

  2. Long-term safety and efficacy of fractionated stereotactic body radiation therapy for spinal metastases

    Energy Technology Data Exchange (ETDEWEB)

    Mantel, Frederick; Glatz, Stefan; Toussaint, Andre; Flentje, Michael; Guckenberger, Matthias [University Hospital Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany)

    2014-12-15

    Patients with long life expectancy despite metastatic status might benefit from long-term local control of spinal metastases. Dose-intensified radiotherapy (RT) is believed to control tumor growth better and thus offers longer pain relief. This single-institution study reports on fractionated stereotactic body radiation therapy (SBRT) for spinal metastases in patients with good life expectancy based on performance status, extent of metastases, histology, and time to metastasis. Between 2004 and 2010, 36 treatment sites in 32 patients (median age 55 years; male 61 %; median Karnofsky performance score 85) were treated with fractionated SBRT. The median treatment dose was 60 Gy (range, 48.5-65 Gy) given in a median of 20 fractions (range, 17-33); the median maximum dose to the planning risk volume for the spinal cord (PRV-SC) was 46.6 Gy. All patients suffering from pain prior to RT reported pain relief after treatment; after a median follow-up of 20.3 months, 61 % of treatment sites were pain-free, another 25 % associated with mild pain. In 86 % of treatments, patients were free from neurological symptoms at the time of the last clinical follow-up. Acute grade 1 toxicities (CTCAE 3.0) were observed in 11 patients. Myelopathy did not occur in any patient. Radiologically controlled freedom from local progression was 92 and 84 % after 12 and 24 months, respectively. Median overall survival (OS) was 19.6 months. Patient selection resulted in long OS despite metastatic disease, and dose-intensified fractionated SBRT for spinal metastases was safe and achieved long-term local tumor control and palliation of pain. (orig.) [German] Patienten mit guter Lebenserwartung trotz metastasierter Erkrankung koennten von einer lang andauernden lokalen Kontrolle von Wirbelsaeulenmetastasen profitieren. Eine dosisintensivierte Radiotherapie (RT) kann vermutlich eine bessere Tumorkontrolle und daher eine laengere Schmerzpalliation erreichen. Ausgewertet wurden die monozentrischen

  3. Early Tissue Effects of Stereotactic Body Radiation Therapy for Spinal Metastases

    NARCIS (Netherlands)

    Steverink, Jasper G.; Willems, Stefan M.; Philippens, Marielle E.P.; Kasperts, Nicolien; Eppinga, Wietse S.C.; Versteeg, Anne L.; van der Velden, Joanne M.; Faruqi, Salman; Sahgal, Arjun; Verlaan, Jorrit Jan

    2018-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) is a highly effective and potentially ablative treatment for complex spinal metastases. Recent data have suggested radiobiologic effects of SBRT that expand beyond the traditional concept of DNA damage. Antitumor immunity, vascular damage leading

  4. Improved patient repositioning accuracy by integrating an additional jaw fixation into a high precision face mask system in stereotactic radiotherapy of the head

    International Nuclear Information System (INIS)

    Lopatta, E.; Liesenfeld, S.M.; Bank, P.; Guenther, R.; Wiezorek, T.; Wendt, T.G.; Wurm, R.

    2003-01-01

    Background: For high precision radiotherapy of the neurocranium a precise, reproducible positioning technique is the basic pre-requisite. The aim of this study was to assess the influence of a modification of the commercially available stereotactical BrainLab trademark -head mask system on accuracy in patient positioning during fractionated radiotherapy. Material and Methods: 29 patients were treated with stereotactic radiotherapy of the head. Immobilization was provided by a two layer thermoplastic mask system (BrainLab trademark). 18 of these patients received an additional custom made fixation either of the upper jaw (OKF) or of the mandibula (UKF). The positioning accuracy was assessed by measurements of the shifting of anatomical landmarks in relation to therigid mask system on biplanar simulator films using a digital imaging system. Before each measurement a fine adjustment of the simulator to an optical ring system was performed. The reference radiographs were done just before CT-planning. During a 2-7 weeks lasting course of radiotherapy displacement measurements in relation to the reference images for all three dimensions (z, y and x) were done once a week. In 29 patients 844 measurements were analyzed. Results: An additional jaw fixation improves the reproducibility of patient positioning significantly in all three spatial dimensions. The standard deviation in lateral direction (x) was 0.6 mm with jaw fixation vs. 0.7 mm without jaw fixation (p [de

  5. SU-E-J-24: Image-Guidance Using Cone-Beam CT for Stereotactic Body Radiotherapy (SBRT) of Lung Cancer Patients: Bony Alignment or Soft Tissue Alignment?

    Science.gov (United States)

    Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C

    2012-06-01

    To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.

  6. Fractionated stereotactically guided radiotherapy for pharmacoresistant epilepsy; Fraktionierte, stereotaktisch gefuehrte Radiotherapie der pharmakoresistenten Epilepsie

    Energy Technology Data Exchange (ETDEWEB)

    Grabenbauer, G.G.; Reinhold, C.; Lambrecht, U.; Sauer, R. [Klinik und Poliklinik fuer Strahlentherapie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Kerling, F.; Pauli, E.; Stefan, H. [Neurologische Klinik, Abt. Epileptologie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Mueller, R.G. [Inst. fuer Medizinische Physik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Ganslandt, O. [Neurochirurgische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany)

    2003-01-01

    Aim: This prospective study evaluated the efficiency of fractionated stereotactically guided radiotherapy as a treatment of pharmacoresistant temporal lobe epilepsy. Patients and Methods: Inclusion criteria were patients aged between 17 and 65 years with one-sided temporally located focus, without sufficient epilepsy control by, antiepileptic drugs or neurosurgery. Between 1997 and 1999, two groups of six patients each were treated with 21 Gy (7 times 3 Gy) and 30 Gy (15 times 2 Gy). Study end points were seizure frequency, intensity, seizure length and neuropsychological parameters. Results: All patients experienced a marked reduction in seizure frequency. The mean reduction of seizures was 37% (range 9-77%, i.e. seizures reduced from a monthly mean number of 11.75 to 7.52) at 18 months following radiation treatment and 46% (23-94%, i.e. 0.2-23 seizures per month) during the whole follow-up time. Seizure length was reduced in five out of eleven patients and intensity of seizures in seven out of eleven patients. Conclusion: Radiotherapy was identified as safe and effective for pharmacoresistant epilepsy since a very good reduction of seizure frequency was observed. It is no substitute for regular use of antiepileptic drugs, but means an appropriate alternative for patients with contraindication against neurosurgery or insufficient seizure reduction after neurosurgery. (orig.) [German] Ziel: Diese prospektive Studie untersuchte die Effizienz einer fraktionierten stereotaktischen Radiotherapie (RT) bei therapieresistenter Temporallappenepilepsie. Patienten und Methoden: Einschlusskriterien waren Patienten im Alter von 17 bis 65 Jahren, die weder medikamentoes noch epilepsiechirurgisch anfallsfrei wurden und einen einseitigen Fokus aufwiesen. Zwei Patientenkohorten zu je sechs Patienten wurden zwischen 1997 und 1999 einer fraktionierten, stereotaktisch gefuehrten Radiotherapie mit 21 Gy (7 x 3 Gy) bzw. 30 Gy (15 x 2 Gy) unterzogen. Endpunkte der Untersuchung waren

  7. SU-E-T-591: Optimizing the Flattening Filter Free Beam Selection in RapidArc-Based Stereotactic Body Radiotherapy for Stage I Lung Cancer

    International Nuclear Information System (INIS)

    Huang, B-T; Lu, J-Y

    2015-01-01

    Purpose: To optimize the flattening filter free (FFF) beam energy selection in stereotactic body radiotherapy (SBRT) treatment for stage I lung cancer with different fraction schemes. Methods: Twelve patients suffering from stage I lung cancer were enrolled in this study. Plans were designed using 6XFFF and 10XFFF beams with the most widely used fraction schemes of 4*12 Gy, 3*18 Gy and 1*34 Gy, respectively. The plan quality was appraised in terms of planning target volume (PTV) coverage, conformity of the prescribed dose (CI100%), intermediate dose spillage (R50% and D2cm), organs at risk (OARs) sparing and beam-on time. Results: The 10XFFF beam predicted 1% higher maximum, mean dose to the PTV and 4–5% higher R50% compared with the 6XFFF beam in the three fraction schemes, whereas the CI100% and D2cm was similar. Most importantly, the 6XFFF beam exhibited 3–10% lower dose to all the OARs. However, the 10XFFF beam reduced the beam-on time by 31.9±7.2%, 38.7±2.8% and 43.6±4.0% compared with the 6XFFF beam in the 4*12 Gy, 3*18 Gy and 1*34 Gy schemes, respectively. Beam-on time was 2.2±0.2 vs 1.5±0.1, 3.3±0.9 vs 2.0±0.5 and 6.3±0.9 vs 3.5±0.4 minutes for the 6XFFF and 10XFFF one in the three fraction schemes. Conclusion: The 6XFFF beam obtains better OARs sparing in SBRT treatment for stage I lung cancer, but the 10XFFF one provides improved treatment efficiency. To balance the OARs sparing and intrafractional variation as a function of prolonged treatment time, the authors recommend to use the 6XFFF beam in the 4*12 Gy and 3*18 Gy schemes for better OARs sparing. However, for the 1*34 Gy scheme, the 10XFFF beam is recommended to achieve improved treatment efficiency

  8. A high-precision system for conformal intracranial radiotherapy

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Li Zuofeng

    2000-01-01

    Purpose: Currently, optimally precise delivery of intracranial radiotherapy is possible with stereotactic radiosurgery and fractionated stereotactic radiotherapy. We report on an optimally precise optically guided system for three-dimensional (3D) conformal radiotherapy using multiple noncoplanar fixed fields. Methods and Materials: The optically guided system detects infrared light emitting diodes (IRLEDs) attached to a custom bite plate linked to the patient's maxillary dentition. The IRLEDs are monitored by a commercially available stereo camera system, which is interfaced to a personal computer. An IRLED reference is established with the patient at the selected stereotactic isocenter, and the computer reports the patient's current position based on the location of the IRLEDs relative to this reference position. Using this readout from the computer, the patient may be dialed directly to the desired position in stereotactic space. The patient is localized on the first day and a reference file is established for 5 different couch positions. The patient's image data are then imported into a commercial convolution-based 3D radiotherapy planning system. The previously established isocenter and couch positions are then used as a template upon which to design a conformal 3D plan with maximum beam separation. Results: The use of the optically guided system in conjunction with noncoplanar radiotherapy treatment planning using fixed fields allows the generation of highly conformal treatment plans that exhibit a high degree of dose homogeneity and a steep dose gradient. To date, this approach has been used to treat 28 patients. Conclusion: Because IRLED technology improves the accuracy of patient localization relative to the linac isocenter and allows real-time monitoring of patient position, one can choose treatment-field margins that only account for beam penumbra and image resolution without adding margin to account for larger and poorly defined setup uncertainty. This

  9. Reirradiation of recurrent node-positive non-small cell lung cancer after previous stereotactic radiotherapy for stage I disease. A multi-institutional treatment recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, Carsten [Nordland Hospital, Department of Oncology and Palliative Medicine, Bodoe (Norway); University of Tromsoe, Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Ruysscher, Dirk de [MAASTRO Clinic, Department of Radiation Oncology, Maastricht (Netherlands); Gaspar, Laurie E. [University of Colorado School of Medicine, Department of Radiation Oncology, Aurora, CO (United States); Guckenberger, Matthias [University Hospital Zurich, Department of Radiation Oncology, Zurich (Switzerland); Mehta, Minesh P. [Miami Cancer Institute, Department of Radiation Oncology, Miami, FL (United States); Cheung, Patrick; Sahgal, Arjun [Sunnybrook Health Sciences Centre and University of Toronto, Department of Radiation Oncology, Toronto (Canada)

    2017-07-15

    Practice guidelines have been developed for early-stage and locally advanced non-small cell lung cancer (NSCLC). However, many common clinical scenarios still require individualized decision making. This is true for locoregional relapse after initial stereotactic radiotherapy (stereotactic body radiation therapy or stereotactic ablative radiotherapy; SBRT or SABR), an increasingly utilized curative treatment option for stage I NSCLC. A consortium of expert radiation oncologists was established with the aim of providing treatment recommendations. In this scenario, a case was distributed to six radiation oncologists who provided their institutions' treatment recommendations. In this case, a patient developed local and mediastinal relapse after SABR (45 Gy, 3 fractions), comparable to the tumor burden in de novo stage IIIA NSCLC. Treatment recommendations were tabulated and a consensus conclusion was developed. Three institutions recommended evaluation for surgery. If the patient was not a surgical candidate, and/or refused surgery, definitive chemoradiation was recommended, including retreating the primary to full dose. European participants were more in favor of a non-surgical approach. None of the participants were reluctant to prescribe reirradiation, but two institutions prescribed doses lower than 60 Gy. Platinum-based doublets together with intensity-modulated radiotherapy were preferred. The institutional recommendations reflect the questions and uncertainties discussed in current stage III guidelines. All institutions agreed that previous SABR is not a contraindication for salvage chemoradiation. In the absence of high-quality prospective trials for recurrent NSCLC, all treatment options recommended in current guidelines for stage III disease can be considered in clinical scenarios such as this. (orig.) [German] Fuer fruehe und lokal fortgeschrittene Stadien des nicht-kleinzelligen Bronchialkarzinoms (NSCLC) wurden Behandlungsleitlinien publiziert

  10. Review of potential improvements using MRI in the radiotherapy workflow

    International Nuclear Information System (INIS)

    Torresin, Alberto; Brambilla, Maria Grazia; Monti, Angelo F.; Moscato, Alessio; Brockmann, Marc A.; University Medical Center Mannheim; Schad, Lothar; Attenberger, Ulrike I.; Lohr, Frank

    2015-01-01

    The goal of modern radiotherapy is to deliver a lethal amount of dose to tissue volumes that contain a significant amount of tumour cells while sparing surrounding unaffected or healthy tissue. Online image guided radiotherapy with stereotactic ultrasound, fiducial-based planar X-ray imaging or helical/conebeam CT has dramatically improved the precision of radiotherapy, with moving targets still posing some methodical problems regarding positioning. Therefore, requirements for precise target delineation and identification of functional body structures to be spared by high doses become more evident. The identification of areas of relatively radioresistant cells or areas of high tumor cell density is currently under development. This review outlines the state of the art of MRI integration into treatment planning and its importance in follow up and the quantification of biological effects. Finally the current state of the art of online imaging for patient positioning will be outlined and indications will be given what the potential of integrated radiotherapy/online MRI systems is.

  11. Dosimetric evaluation of the feasibility of stereotactic body radiotherapy for primary lung cancer with lobe-specific selective elective nodal irradiation.

    Science.gov (United States)

    Komatsu, Tetsuya; Kunieda, Etsuo; Kitahara, Tadashi; Akiba, Takeshi; Nagao, Ryuta; Fukuzawa, Tsuyoshi

    2016-01-01

    More than 10% of all patients treated with stereotactic body radiotherapy (SBRT) for primary lung cancer develop regional lymph node recurrence. We evaluated the dosimetric feasibility of SBRT with lobe-specific selective elective nodal irradiation (ENI) on dose-volume histograms. A total of 21 patients were treated with SBRT for Stage I primary lung cancer between January 2010 and June 2012 at our institution. The extents of lobe-specific selective ENI fields were determined with reference to prior surgical reports. The ENI fields included lymph node stations (LNS) 3 + 4 + 11 for the right upper lobe tumors, LNS 7 + 11 for the right middle or lower lobe tumors, LNS 5 + 11 for the left upper lobe tumors, and LNS 7 + 11 for the left lower lobe tumors. A composite plan was generated by combining the ENI plan and the SBRT plan and recalculating for biologically equivalent doses of 2 Gy per fraction, using a linear quadratic model. The V20 of the lung, D(1cm3) of the spinal cord, D(1cm3) and D(10cm3) of the esophagus and D(10cm3) of the tracheobronchial wall were evaluated. Of the 21 patients, nine patients (43%) could not fulfill the dose constraints. In all these patients, the distance between the planning target volume (PTV) of ENI (PTVeni) and the PTV of SBRT (PTVsrt) was ≤2.0 cm. Of the three patients who developed regional metastasis, two patients had isolated lymph node failure, and the lymph node metastasis was included within the ENI field. When the distance between the PTVeni and PTVsrt is >2.0 cm, SBRT with selective ENI may therefore dosimetrically feasible. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Stereotactic Body Radiotherapy: A Promising Treatment Option for the Boost of Oropharyngeal Cancers Not Suitable for Brachytherapy: A Single-Institutional Experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mamgani, Abrahim, E-mail: a.al-mamgani@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Tans, Lisa; Teguh, David N. [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Rooij, Peter van [Department of Biostatistics, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Zwijnenburg, Ellen M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands)

    2012-03-15

    Purpose: To prospectively assess the outcome and toxicity of frameless stereotactic body radiotherapy (SBRT) as a treatment option for boosting primary oropharyngeal cancers (OPC) in patients who not suitable for the standard brachytherapy boost (BTB). Methods and Materials: Between 2005 and 2010, 51 patients with Stage I to IV biopsy-proven OPC who were not suitable for BTB received boosts by means of SBRT (3 times 5.5 Gy, prescribed to the 80% isodose line), after 46 Gy of IMRT to the primary tumor and neck (when indicated). Endpoints of the study were local control (LC), disease-free survival (DFS), overall survival (OS), and acute and late toxicity. Results: After a median follow-up of 18 months (range, 6-65 months), the 2-year actuarial rates of LC, DFS, and OS were 86%, 80%, and 82%, respectively, and the 3-year rates were 70%, 66%, and 54%, respectively. The treatment was well tolerated, as there were no treatment breaks and no Grade 4 or 5 toxicity reported, either acute or chronic. The overall 2-year cumulative incidence of Grade {>=}2 late toxicity was 28%. Of the patients with 2 years with no evidence of disease (n = 20), only 1 patient was still feeding tube dependent and 2 patients had Grade 3 xerostomia. Conclusions: According to our knowledge, this study is the first report of patients with primary OPC who received boosts by means of SBRT. Patients with OPC who are not suitable for the standard BTB can safely and effectively receive boosts by SBRT. With this radiation technique, an excellent outcome was achieved. Furthermore, the SBRT boost did not have a negative impact regarding acute and late side effects.

  13. Small-field fractionated radiotherapy with or without stereotactic boost for vestibular schwannoma

    International Nuclear Information System (INIS)

    Kagei, K.; Shirato, H.; Suzuki, K.; Isu, T.; Sawamura, Y.; Sakamoto, T.; Fukuda, S.; Nishioka, T.; Hashimoto, S.; Miyasaka, K.

    1999-01-01

    Purpose: To assess the efficacy and toxicity of small-field fractionated radiotherapy with or without stereotactic boost (SB) for vestibular schwannomas.Methods and materials: Thirty-nine patients with vestibular schwannoma were treated with irradiation between March 1991 and February 1996. Extra-meatal tumor diameters were under 30 mm. Thirty-three patients received small-field fractionated radiotherapy followed by SB. Basic dose schedule was 44 Gy in 22 fractions over 5 1/2 weeks plus 4 Gy in one session. Six patients received small-field fractionated radiotherapy only (40-44 Gy in 20-22 fractions over 5-5 1/2 weeks or 36 Gy in 20 fractions over 5 weeks).< Results: Follow-up ranged from 6 to 69 months (median, 24 months). Tumors decreased in size in 13 cases (33%), were unchanged in 25 (64%), and increased in one (3%). The actuarial 2-year tumor control rate was 97%. Fifteen patients had useful hearing (Gardner-Robertson class 1-2) and 25 patients had testable hearing (class 1-4) before irradiation. The 2-year actuarial rates of useful hearing preservation (free of deterioration from class 1-2 to class 3-5) were 78%. The 2-year actuarial rates of any testable hearing preservation (free of deterioration from class 1-4 to class 5) were 96%. No permanent facial and trigeminal neuropathy developed after irradiation. The 2-year actuarial incidences of facial and trigeminal neuropathies were 8% and 16%, respectively.Conclusions: Small-field fractionated radiotherapy with or without SB provides excellent short-term local control and a relatively low incidence of complications for vestibular schwannoma, although further follow-up is necessary to evaluate the long-term results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Reirradiation of head and neck cancer focusing on hypofractionated stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Ogita Mikio

    2011-08-01

    Full Text Available Abstract Reirradiation is a feasible option for patients who do not otherwise have treatment options available. Depending on the location and extent of the tumor, reirradiation may be accomplished with external beam radiotherapy, brachytherapy, radiosurgery, or intensity modulated radiation therapy (IMRT. Although there has been limited experience with hypofractionated stereotactic radiotherapy (hSRT, it may have the potential for curative or palliative treatment due to its advanced precision technology, particularly for limited small lesion. On the other hand, severe late adverse reactions are anticipated with reirradiation than with initial radiation therapy. The risk of severe late complications has been reported to be 20- 40% and is related to prior radiotherapy dose, primary site, retreatment radiotherapy dose, treatment volume, and technique. Early researchers have observed lethal bleeding in such patients up to a rate of 14%. Recently, similar rate of 10-15% was observed for fatal bleeding with use of modern hSRT like in case of carotid blowout syndrome. To determine the feasibility and efficacy of reirradiation using modern technology, we reviewed the pertinent literature. The potentially lethal side effects should be kept in mind when reirradiation by hSRT is considered for treatment, and efforts should be made to minimize the risk in any future investigations.

  15. Reirradiation of head and neck cancer focusing on hypofractionated stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Kodani, Naohiro; Ogita, Mikio; Sato, Kengo; Himei, Kengo

    2011-01-01

    Reirradiation is a feasible option for patients who do not otherwise have treatment options available. Depending on the location and extent of the tumor, reirradiation may be accomplished with external beam radiotherapy, brachytherapy, radiosurgery, or intensity modulated radiation therapy (IMRT). Although there has been limited experience with hypofractionated stereotactic radiotherapy (hSRT), it may have the potential for curative or palliative treatment due to its advanced precision technology, particularly for limited small lesion. On the other hand, severe late adverse reactions are anticipated with reirradiation than with initial radiation therapy. The risk of severe late complications has been reported to be 20- 40% and is related to prior radiotherapy dose, primary site, retreatment radiotherapy dose, treatment volume, and technique. Early researchers have observed lethal bleeding in such patients up to a rate of 14%. Recently, similar rate of 10-15% was observed for fatal bleeding with use of modern hSRT like in case of carotid blowout syndrome. To determine the feasibility and efficacy of reirradiation using modern technology, we reviewed the pertinent literature. The potentially lethal side effects should be kept in mind when reirradiation by hSRT is considered for treatment, and efforts should be made to minimize the risk in any future investigations

  16. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: Experience with the ESTRO FALCON programme and EduCase™ training tool.

    Science.gov (United States)

    De Bari, Berardino; Dahele, Max; Palmu, Miika; Kaylor, Scott; Schiappacasse, Luis; Guckenberger, Matthias

    2017-11-20

    We report the results of 4, 2-h contouring workshops on target volume definition for spinal stereotactic radiotherapy. They combined traditional teaching methods with a web-based contouring/contour-analysis platform and led to a significant reduction in delineation variability. Short, interactive workshops can reduce interobserver variability in spine SBRT target volume delineation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of the factors affecting the safety of robotic stereotactic body radiation therapy for hepatocellular carcinoma patients

    Directory of Open Access Journals (Sweden)

    Liu XJ

    2017-11-01

    Full Text Available Xiaojie Liu,1,* Yongchun Song,1,* Ping Liang,2 Tingshi Su,2 Huojun Zhang,3 Xianzhi Zhao,3 Zhiyong Yuan,1 Ping Wang1 1Department of Radiotherapy,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 2Cyberknife Center, Ruikang Hospital, Guangxi Traditional Chinese Medical University, Nanning, 3Department of Radiotherapy, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Objective: The objective of this study was to investigate the safety of robotic stereotactic body radiation therapy (SBRT for hepatocellular carcinoma (HCC patients and its related factors.Methods: A total of 74 HCC patients with Child–Turcotte–Pugh (CTP Class A were included in a multi-institutional, single-arm Phase II trial (NCT 02363218 between February 2013 and August 2016. All patients received SBRT treatment at a dose of 45 Gy/3f. The liver function was compared before and after SBRT treatment by the analysis of adverse hepatic reactions and changes in CTP classification.Results: After SBRT treatment, eight patients presented with decreases in CTP classification and 13 patients presented with ≥ grade 2 hepatic adverse reactions. For patients presenting with ≥ grade 2 hepatic adverse reactions, the total liver volume of ≤1,162 mL and a normal liver volume (total liver volume – gross tumor volume [GTV] of ≤1,148 mL were found to be independent risk factors and statistically significant (P<0.05.Conclusion: The total liver volume and normal liver volume are associated with the occurrence of ≥ grade 2 hepatic adverse reactions after SBRT treatment on HCC patients. Therefore, if the fractionated scheme of 45 Gy/3f is applied in SBRT for HCC patients, a total liver volume >1,162 mL and a normal liver

  18. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Maxim, P; Wheeler, M; Loo, B [Stanford University, Stanford, CA (United States); Maguire, P [Cyberheart, Inc., Sunnyvale, CA (United States)

    2014-06-15

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformal arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach holds great

  19. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    International Nuclear Information System (INIS)

    Maxim, P; Wheeler, M; Loo, B; Maguire, P

    2014-01-01

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformal arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach holds great

  20. The variability of tumor motion and respiration pattern in Stereotactic Body RadioTherapy(SBRT) for Lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Joon; Bae, Sun Myeong; Baek, Geum Mun; Kang, Tae Young; Seo, Dong Rin [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2016-06-15

    The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction. Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.

  1. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    International Nuclear Information System (INIS)

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-01-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as “no additional intervention group, ” absence of radiological growth was defined as “radiological control group. ” Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% ± 0.03; the 4-year radiological control probability was 85.4% ± 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  2. Multi-dimensional dosimetric verification of stereotactic radiotherapy for uveal melanoma using radiochromic EBT film

    International Nuclear Information System (INIS)

    Sturtewagen, E.; Fuss, M.; Georg, D.; Paelinck, L.; Wagter, C. de

    2008-01-01

    Since 1997, linac based stereotactic radiotherapy (SRT) of uveal melanoma has been continuously developed at the Department of Radiotherapy, Medical University Vienna. The aim of the present study was (i) to test a new type of radiochromic film (Gafchromic EBT) for dosimetric verification of class solutions for these treatments and (ii) to verify treatment plan acceptance criteria, which are based on gamma values statisi