WorldWideScience

Sample records for radiopharmaceuticals imaging agents

  1. Radiopharmaceutical agents for skeletal scanning

    International Nuclear Information System (INIS)

    Jansen, S.E.; Van Aswegen, A.; Loetter, M.G.; Minnaar, P.C.; Otto, A.C.; Goedhals, L.; Dedekind, P.S.

    1987-01-01

    The quality of bone scan images obtained with a locally produced and with an imported radiopharmaceutical bone agent, methylene diphosphonate (MDP), was compared visually. Standard skeletal imaging was carried out on 10 patients using both agents, with a period of 2 to 7 days between studies with alternate agents. Equal amounts of activity were administered for both agents. All images were acquired on Polaroid film for subsequent evaluation. The acquisition time for standard amount of counts per study was recorded. Three physicians with applicable experience evaluated image quality (on a 4 point scale) and detectability of metastasis (on a 3 point scale). There was no statistically significant difference (p 0,05) between the two agents by paired t-test of Hotelling's T 2 analysis. It is concluded that the imaging properties of the locally produced and the imported MDP are similar

  2. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  3. Radiopharmaceuticals for neurotransmitter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin transporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmaceuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with [{sup 123}I] {beta} -CIT, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, [{sup 123}I]PE2I, [18F]FE-CNT, [{sup 123}I]FP-CIT and [{sup 18}F]FP-CIT were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. [{sup 11}C]McN 5652 was developed for serotonin transporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, [{sup 11}C]AFM and [{sup 11}C]DASB showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuticals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

  4. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    Loberg, M.D.; Callery, P.S.; Cooper, M.

    1977-01-01

    A chelate of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The invention also includes preparative methods therefor

  5. Radiopharmaceuticals in China. Current status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hong-Mei; Liu, Bo-Li [Beijing Normal Univ. (China). Key Laboratory of Radiopharmaceuticals

    2014-04-01

    The review provides an overview of the current status of radiopharmaceuticals in China for in vivo clinical use and also describes some important advances in the past three decades. Development of the diagnostic and therapeutic radiopharmaceuticals as well as basic research on radiopharmaceutical chemistry are being introduced. The radiotracers developed in China include: (1) Brain perfusion imaging agents and CNS radiotracers for β-amyloid plaques, σ{sub 1} receptors, and dopamine D{sub 2} or D{sub 4} receptors; (2) {sup 99m}Tc- and {sup 18}F-labeled myocardial perfusion imaging agents; (3) tumor imaging agents including integrin-targeting radiotracer, novel sentinel lymph node imaging agents, hypoxia imaging agents, {sup 99m}Tc-labeled glucose derivatives, σ{sub 2} receptor imaging agents, folate receptor imaging agents, and potential radiotracers for imaging of human telomerase reverse transcriptase expression; (4) Potential infection imaging agents; (5) Potential asialoglycoprotein receptor imaging agents; (6) Other imaging agents. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed. (orig.)

  6. A study on bacterial endotoxins test of radiopharmaceuticals with limulus agent

    Energy Technology Data Exchange (ETDEWEB)

    Suozhen, Bai; Kai, Luyu; Cheng, Luo [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy; Ruiting, Zhang; Zhenmin, Xia [National Inst. for the Control of Pharmaceutical and Biological Products (China)

    1989-08-01

    The feasibility of endotoxins test of radiopharmaceuticals with limulus agent and the approach to take off the inhibition/enhancement effect of radiopharmaceuticals on limulus agent have been studied. Results of the test for 8 radiopharmaceuticals have been given.

  7. Radiopharmaceutical development

    International Nuclear Information System (INIS)

    Zielinski, F.W.; Robinson, G.D. Jr.; MacDonald, N.S.

    1976-01-01

    Progress is reported in the following areas of research: compact cyclotron production of 123 I iodide for radiopharmaceutical synthesis; synthesis of 123 I-labeled compounds for myocardial imaging and evaluation of kidney and liver functions; 62 Cu: a short-lived, generator-produced, positron emitting radionuclide for radiopharmaceuticals; dry radioaerosols for lung airway imaging; and improved particulate agents for perfusion imaging

  8. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    1976-01-01

    The preparation of the following chemicals is described: chelates of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The compounds described are suitable for intravenous injection, have an excellent in vivo stability and are good organ seekers. Tin(II) choride or other tin(II) compounds are used as chelating agents

  9. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by characterization of radiopharmaceuticals. Final report, September 1, 1992--June 30, 1998

    International Nuclear Information System (INIS)

    Heineman, W.R.; Seliskar, C.J.

    1998-01-01

    The primary goals of this project were twofold: (1) Development of a microsensor that would demonstrate the capability for in vivo monitoring of a radiopharmaceutical after its injection into a test animal; and (2) Exploration of capillary electrophoresis (CE) as a separation technique for the analysis of radiopharmaceuticals that are mixtures of different compounds. The combination of in vivo sensors for real-time monitoring of specific chemical states of a radiopharmaceutical in individual organs and CE for analysis of radiopharmaceuticals prior to injection would provide valuable information regarding the fate of an imaging agent after administration. Such information should give insight into strategies for the development of more efficacious radiopharmaceuticals

  10. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1992-01-01

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for T c and Re imaging agents; (4) Characterization of stable T c - and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on T c -diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch's research group for heart and brain imaging

  11. Infection imaging with radiopharmaceuticals in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Das, Satya S.; Wareham, David W. [St. Bartholomew' s Hospital, London (United Kingdom). Dept. of Medical Microbiology; Britton, Keith E. [St. Bartholomew' s Hospital, London (United Kingdom). Dept. of Nuclear Medicine; Hall, Anne V. [Harefield Hospital, Middlesex (United Kingdom). Microbiology Dept.

    2002-09-01

    Infection continues to be a major cause of morbidity and mortality worldwide. Nuclear medicine has an important role in aiding the diagnosis of particularly deep-seated infections such as abscesses, osteomyelitis, septic arthritis, endocarditis, and infections of prosthetic devices. Established techniques such as radiolabelled leucocytes are sensitive and specific for inflammation but do not distinguish between infective and non-infective inflammation. The challenge for Nuclear Medicine in infection imaging in the 21st century is to build on the recent trend towards the development of more infection specific radiopharmaceuticals, such as radiolabelled anti-infectives (e.g. 99 m Tc ciprofloxacin). In addition to aiding early diagnosis of infection, through serial imaging these agents might prove very useful in monitoring the response to and determining the optimum duration of anti-infective therapy. This article reviews the current approach to infection imaging with radiopharmaceuticals nd the future direction it might take. (author)

  12. Infection imaging with radiopharmaceuticals in the 21st century

    International Nuclear Information System (INIS)

    Das, Satya S.; Wareham, David W.; Britton, Keith E.; Hall, Anne V.

    2002-01-01

    Infection continues to be a major cause of morbidity and mortality worldwide. Nuclear medicine has an important role in aiding the diagnosis of particularly deep-seated infections such as abscesses, osteomyelitis, septic arthritis, endocarditis, and infections of prosthetic devices. Established techniques such as radiolabelled leucocytes are sensitive and specific for inflammation but do not distinguish between infective and non-infective inflammation. The challenge for Nuclear Medicine in infection imaging in the 21st century is to build on the recent trend towards the development of more infection specific radiopharmaceuticals, such as radiolabelled anti-infectives (e.g. 99 m Tc ciprofloxacin). In addition to aiding early diagnosis of infection, through serial imaging these agents might prove very useful in monitoring the response to and determining the optimum duration of anti-infective therapy. This article reviews the current approach to infection imaging with radiopharmaceuticals nd the future direction it might take. (author)

  13. Radiopharmaceuticals for thyroid imaging: a review

    International Nuclear Information System (INIS)

    Nishiyama, H.

    1979-01-01

    A review of radiopharmaceuticals which have been used for thyroid imaging was made with special emphasis on palpable thyroid nodules. An attempt was made to evaluate cold nodules derived from imaging methods using radioiodine or Tc-99m pertechnetate, followed by a successive application of another radiopharmaceutical. An attempt was also made to understand the patho-physiology of various thyroid disorders. The latter was based on the accumulated cases with discordant images between radioiodine and Tc-99m pertechnetate, and also on the iodine content within the gland by means of fluorescent techniques. Better radiopharmaceuticals are anxiously awaited in order to realize the distinction between benign and malignant thyroid disorders at the preoperative decision-making stage

  14. Rationale and radiopharmaceuticals for myocardial imaging

    International Nuclear Information System (INIS)

    Poe, N.D.

    1976-01-01

    Static radionuclide imaging procedures are now available for evaluating regional myocardial perfusion and for detecting acute myocardial infarction. Thallium-201, a radiopharmaceutical which possesses many of the characteristics of potassium analogs, at present is receiving the greatest attention as a regional blood flow indicator. Ischemic lesions appear as areas of decreased tracer uptake. Unfortunately, this agent is expensive, is in limited supply and has a photopeak which is low for optimum imaging. Positive infarct images can be obtained with various technetium-99m chelates. Pyrophosphate appears to be the best of the technetium compounds studied to date although the mechanism of uptake of the chelates has not yet been fully elucidated. Therefore, quantitative measurements of infarct size are not justified. As perfusion imaging and infarct imaging provide useful, complementary data, a dual tracer approach to evaluating patients with suspected coronary artery disease and/or myocardial infarction is probably justifiable

  15. Tc-99m imaging agents

    International Nuclear Information System (INIS)

    Weininger, J.; Trumper, J.

    1984-01-01

    A wide range of pharmaceuticals for labeling with Tc-99m, developed by the Soreq Radiopharmaceuticals Department, is described. Details of the production and quality control of 13 kits are given, as well as the range of results required for consistently high quality imaging agents

  16. Recent developments in 99mTc and 123I-radiopharmaceuticals for SPECT imaging

    International Nuclear Information System (INIS)

    Kulkarni, P.V.

    1991-01-01

    Availability of 123 I of high radionuclidic purity has encouraged the development of 123 I-based radiopharmaceuticals for the assessment of myocardial fatty acid metabolism, myocardial neuronal activity, and for receptor and antibody imaging. Advances in the chemistry of technetium have resulted in the development of novel agents for myocardial and cerebral perfusion and renal function studies. Monoclonal antibodies labeled with 99m Tc show promise for imaging neoplastic lesions, myocardial infarcts, and thrombus localization. Recent developments in 123 I and 99m Tc agents for myocardial and brain imaging studies are discussed. (author)

  17. Radiopharmaceuticals for hepatobiliary imaging

    International Nuclear Information System (INIS)

    Chervu, L.R.; Nunn, A.D.; Loberg, M.D.

    1982-01-01

    Tests for liver function have by and large centered around clinical laboratory diagnostic procedures for a number of years. Besides these, radiographic imaging procedures, including oral cholecystography and intravenous cholangiography, serve a very useful purpose, but several of them are invasive and involve a certain degree of risk from the administered contrast media as well as discomfort to the patient. The cholescintigraphic procedures, though noninvasive, have not played a significant role in the evaluation of hepatobiliary disorders prior to the introduction of the currently available /sup 99m/Tc-labeled IDAs. These new hepatobiliary agents offer many advantages over the previously utilized radiopharmaceuticals ( 131 I-rose bengal in particular) in terms of the high degree of specificity for localization in the gallbladder with rapid extraction rates by the polygonal cells of the liver and very low excretion via the GU tract. A detailed understanding of the structure distribution relationship of the various groups in the complex enable the design of agents with an improvement in hepatobiliary specificity and other desirable characteristics. In many clinical situations, even in patients with high bilirubin levels, the /sup 99m/Tc-labeled IDAs offer far superior clinical information over the alternative diagnostic imaging modalities. Further, the absorbed radiation dose imparted to the critical organs is far lower than with the older agents. Thus, the introduction of the cholescintigraphic procedures with the /sup 99m/Tc-labeled IDAs have ushered in a new phase in the diagnostic workup of patients with impaired hepatocellular function and other biliary disorders

  18. Dispersion for the preparation of an injectable radiopharmaceutical scanning agent

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention deals with the preparation of a dispersion of a tin (II) sulphur colloid in an aqueous solution with additions of a stabilizing agent. Labelled with sup(99m)Tc, the dispersion can be used as an injectable radiopharmaceutical scanning agent. (VJ) [de

  19. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    International Nuclear Information System (INIS)

    Missailidis, Sotiris; Perkins, Alan; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario

    2008-01-01

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  20. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  1. Aptamers as radiopharmaceuticals for nuclear imaging and therapy

    International Nuclear Information System (INIS)

    Gijs, Marlies; Aerts, An; Impens, Nathalie; Baatout, Sarah; Luxen, André

    2016-01-01

    Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers.

  2. Development of 99mTc agents for imaging central neural system receptors

    International Nuclear Information System (INIS)

    2004-01-01

    Radiopharmaceuticals that bind to central neural system (CNS) receptors in vivo are potentially useful for understanding the pathophysiology of anumber of neurological and psychiatric disorders, their diagnosis and treatment. Carbon-11 labelled compounds and positron emission tomography(PET) imaging have played a vital role in establishing the usefulness of imaging the dopaminergic, cholinergic, serotonergic and benzodiazapine receptors, and relating the receptor density to disease status. Since the use of 11C agents is constrained due to their 20 min half-life, various radiohalogenated analogues based on the structure of 11C compounds have been successfully developed, providing comparable information. Iodine- 123 is the most widely employed of these radioisotopes; it has a longer, 13 h, half-life. Through the use of 123I, there has been a steady growth in CNS receptor imaging studies employing single photon emission computerized tomography (SPECT). SPECT, as compared with PET, has slightly inferior image resolution but has the advantage of being readily available worldwide. However, the 123I radiopharmaceutical is expensive and the distribution system outside of the major markets is not well developed for its supply on a routine basis. The ideal radioisotope for SPECT imaging is 99mTc, due to its low cost per dose, availability through commercially available generator systems and physical decay characteristics. Over 80% of all diagnostic nuclear medicine imaging studies worldwide are conducted using this radioisotope. Development of 99mTc radiopharmaceuticals for imaging CNS receptors is therefore of considerable importance. On the basis of the recommendations of a consultants meeting, the International Atomic Energy Agency (IAEA) initiated in 1996 a Co-ordinated Research Project (CRP) on Development of Agents for Imaging CNS Receptors based on 99mTc. At that time there were no 99mTc CNS receptor imaging radiopharmaceuticals available even though work on

  3. Design and Development of New Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jr., H. N.; Stern, H. S.; Rhodes, B. A.; Reba, R. C.; Hosain, F.; Zolle, I. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)

    1969-05-15

    The major factors in the design of a new radiopharmaceutical for radioisotope scintigraphy are the photon energy of the radionuclide, the ability to incorporate the radionuclide insuitable chemical and biological form, the radiation dose to the patient, and the cost of production of the radiopharmaceutical. In this laboratory, the radionuclides, indium-113m and ytterbium-169, and technetium-99m, have been incorporated into a variety of radiopharmaceuticals. These include particles suitable for lung and liver studies, chelates for brain and kidney studies, and ionic forms for blood pool imaging. Studies in experimental animals and man indicate that these agents offer certain advantages over previously available radiopharmaceuticals. By providing larger numbers of photons, they permit more precise temporal and spatial resolution. The longer half-life of the tin-113 parent radionuclide from which indium-113m can be eluted makes indium-113m readily available, even at sites distant from the source of production. The tin-indium generator system need be purchased only every five months rather than weekly as in the case of the widely used molybdenum-technetium system. The ytterbium-radionuclide in the chemical form of a chelate is particularly useful as an inexpensive agent that provides high photon yields for renal and brain imaging. The rapid and complete biological excretion results in low radiation dose while the longer physical half-life greatly extends the shelf-life. (author)

  4. Cerenkov Luminescence Tomography for In Vivo Radiopharmaceutical Imaging

    Directory of Open Access Journals (Sweden)

    Jianghong Zhong

    2011-01-01

    Full Text Available Cerenkov luminescence imaging (CLI is a cost-effective molecular imaging tool for biomedical applications of radiotracers. The introduction of Cerenkov luminescence tomography (CLT relative to planar CLI can be compared to the development of X-ray CT based on radiography. With CLT, quantitative and localized analysis of a radiopharmaceutical distribution becomes feasible. In this contribution, a feasibility study of in vivo radiopharmaceutical imaging in heterogeneous medium is presented. Coupled with a multimodal in vivo imaging system, this CLT reconstruction method allows precise anatomical registration of the positron probe in heterogeneous tissues and facilitates the more widespread application of radiotracers. Source distribution inside the small animal is obtained from CLT reconstruction. The experimental results demonstrated that CLT can be employed as an available in vivo tomographic imaging of charged particle emitters in a heterogeneous medium.

  5. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1991-04-01

    Capillary electrophoresis is being evaluated as a separation technique for analyzing Tc and Re diphosphonate radiopharmaceuticals. Advantages compared with currently used HPLC techniques include greater resolving power, smaller sample size and more rapid separations. Feasibility has been demonstrated with electropherograms obtained on a Re-HEDP sample. The Tc-PAA complexes in a radiopharmaceutical mixture were found to be unaffected by injection into a Sprague Dawley rat. This was determined by HPLC analysis of the rat's urine, which contained the same complexes as were in the injected sample. Proton NMR spectra have been obtained for samples of Tc-MDP and Re-MDP in order to provide structural information about these complexes. An in vivo sensor is being developed for a brain perfusion agent. Polymer coatings are being explored to extract the brain perfusion agent in order to enhance sensitivity for a microelectrode-based sensor. 4 refs., 2 figs

  6. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures: Progress report for period September 1, 1986-August 31, 1987

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1987-06-01

    The long-range objective of this research is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. The author developed analytical techniques that are capable of separating radiopharmaceutical mixtures into their component technetium complexes for subsequent evaluation. During this one-year period, a chromatographic procedure has been developed for the separation of technetium phosphonoacetic acid (PAA) complexes and five Tc-PAA complexes have been isolated from radiopharmaceutical preparations. The concentration of each complex in the preparation varies significantly depending on the pH of the preparation. Radiopharmaceutical preparations based on the ligand methylene diphosphonate (MDP) have been prepared by electrochemical reduction of TcO 4 - . The yields of different Tc-MDP complexes are affected by the potential applied to the electrochemical cell. The control of both potential and pH enables a specific Tc-MDP complex to be produced in purer form and higher yield than by chemical reduction. An EXAFS spectrum of a solution of chromatographically isolated Tc-HEDP (hydroxyethylidine diphosphonate) complex shows evidence for a Tc-Tc bond, which is supportive of the postulated oligomeric/polymeric nature of these complexes. 9 refs., 4 figs

  7. Present status and prospect of copper radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chen Huawei; Li Hongfeng; Liu Boli

    1996-01-01

    In the past decade most of the efforts of copper radiopharmaceuticals research has been focused on bis(thiosemicarbazonato) copper complexes for use in myocardial and brain imaging agents. In the present work, the analogs of bis(thiosemicarbazone) is studied in labeling antibodies and tumors. The retention mechanism of Cu-PTSM is investigated. Other kinds of ligands, BAT (N 2 S 2 ) for example, can be used to prepare neutral copper complexes in order to obtain brain radiopharmaceuticals in future. (60 refs.)

  8. Development of kits for 99mTc radiopharmaceuticals for infection imaging. Report of a co-ordinated research project 2000-2003

    International Nuclear Information System (INIS)

    2004-09-01

    Infectious diseases remain a major health problem and cause of death worldwide, particularly in developing countries. Nuclear medicine imaging, because of its sensitivity, offers an attractive option for diagnosis of focal infections. This needs a reliable radiopharmaceutical that can selectively concentrate in sites of infection. Over the years 67 Ga and other radiopharmaceuticals that localize in inflammation associated with infection sites, also known as 'non-specific agents' have been used for infection imaging. However, experience has shown that an 'infection specific agent' that concentrates selectively at sites of infection and not inflammation would have several advantages. The first such agent developed more than two decades ago was 111 In-leucocytes which is still considered a 'gold standard'. Considerations of cost, availability, and superior properties for imaging make 99 mTc a better label than 111 In. 99 mTc white blood cell (WBC) was developed subsequently and used for infection imaging. However, both 111 In and 99 mTc WBCs have a number of drawbacks, in particular: each patient's blood sample has to be collected and individually radiolabelled; well-trained staff and suitable facilities for separating and labelling the patient's blood are needed; the risk of infection and cross-contamination associated with potential blood-borne microorganisms; and cost of materials. Because of these, considerable efforts have been continuously made towards developing convenient replacements for 99 mTc WBCs with limited success, 99 mTc antigranulocyte antibody being a good example. However, these radiopharmaceuticals still have many disadvantages, related to either their cost and availability or their performance. In view of the large potential for applications in patients, the development of new and improved 99 mTc labelled infection specific imaging agents was considered as a very worthwhile aim for scientific research in general and, in particular, for the

  9. Development of more efficacious Tc-99, organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures: Progress report for period September 1, 1987-August 31, 1988

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1988-04-01

    The long-range objective of this research is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. These objectives are being met by the development of analytical techniques which are capable of separating radiopharmaceutical mixtures into their component technetium complexes for subsequent evaluation. Three areas have been investigated during the second year of this project. (1) A chromatographic procedure has been developed for the separation of technetium dicarboxypropane diphosphonate (DPD) complexes. Tc-DPD complexes have been isolated from radiopharmaceutical preparations. The concentration of each complex in the preparation varies significantly depending on the pH of the preparation, the concentration of technetium, the presence or absence of oxygen, and the time interval after preparation. A single Tc-DPD complex has been isolated which shows good skeletal uptake and rapid soft tissue clearance. (2) An HPLC procedure for analyzing urine for Tc-Diphosphonate complexes has been developed. A Tc-HEDP complexd injected into a dog was found to concentrate rapidly in the bladder in the same chemical form. (3) An HPLC technique for the determination of /sup 99m/TcO 4 - in disphosphonate radiopharmaceuticals and biological samples has been developed. 15 refs., 2 figs

  10. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  11. The Medical Imaging & Technology Alliance conference on research endpoints appropriate for Medicare coverage of new PET radiopharmaceuticals.

    Science.gov (United States)

    Hillman, Bruce J; Frank, Richard A; Abraham, Brian C

    2013-09-01

    The outcomes of a 2011 Medical Imaging & Technology Alliance (MITA) conference helped shape considerations about what might be the most appropriate pathways for the regulatory and payment considerations of new PET radiopharmaceuticals. As follow-up to that conference, MITA convened a second conference of stakeholders to advise payers on what might be acceptable endpoints for clinical trials to support the coverage of novel PET agents. The conference involved experts on imaging and clinical research, providers of PET services, as well as representatives of interested medical societies, the PET industry, and the regulatory and payer communities. The principal outcome of their deliberations was that it was unrealistic to expect trials of new PET radiopharmaceuticals to directly demonstrate a health benefit. Rather, intermediate outcomes, such as a positive change in patient management, would be more efficient and appropriate.

  12. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Today there are an estimated ten million nuclear imaging procedures, performed each year, in just the United States, and the number is still growing. More than 30,000 therapy procedures are performed in the USA each year using radiopharmaceuticals. Moreover, while the numbers continue to grow, so also do the variety of the procedures being employed. A weakness of nuclear medicine is related also to one of its strengths. Unlike other types of imaging where only an instrument and the patient are required (e.g., with ultrasonics); nuclear medicine requires a radiopharmaceutical. At the same time, the variety of radiopharmaceuticals offers the ability to trace one or more particular functions of the human body. This provides nuclear medicine with great variety in detecting specific pathologies. Various nuclear medicine studies are possible because of the localization of radiopharmaceuticals in different organs

  13. Harvard-MIT research program in short-lived radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J.

    1991-01-01

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  14. Profile of MIBI liquid phase radiopharmaceutical for myocardial imaging

    International Nuclear Information System (INIS)

    I Daruwati; ME Sriyani; NK Oekar; N Zainuddin; KA Hanafiah

    2016-01-01

    The 99m Tc-MIBI radiopharmaceutical has been used in nuclear medicine in Indonesia for myocardial imaging. BATAN researchers have mastered the technology to manufacture MIBI as a lyophilized kit. A reformulation of MIBI radiopharmaceutical has been conducted to improve the stability of the kit especially in the liquid-phase kit. Basically, radiopharmaceuticals in liquid form are not different from the dry kit. However in the manufacturing of liquid-phase kit, lyophilization process was not done. To improve the stability of liquid kit, a reformulation of the components was conducted by using two separate vials (Formulation 2) and the characteristics were compared with the one-vial formulation (Formulation 1). The MIBI Formulation 2 consists of two vials, vial A containing 0.06 mg of SnCl 2 2H 2 O and 2.6 mg Sodium Citrate 2H 2 O and vial B containing 0.5 mg of [Cu(MIBI) 4 ]BF 4 , 1 mg of cysteine hydrochloride, and 20 mg of mannitol. The purposes of this study were to determine the stability of two different formulations of MIBI as a liquid-phase kit, to compare their stability in different storage condition such as in refrigerator and freezer, and to compare the ratio of activities attained between target and nontarget organs after injection to animal model. As a diagnostic agent, MIBI was reconstituted with Technetium-99m as radionuclide tracer to 99m Tc-MIBI labeled compound. The radiochemical purity of 99m Tc-MIBI was determined by chromatography method using alumina thin-layer chromatography paper as the stationary phase and ethanol 95% as the mobile phase. The results showed MIBI Formulation 2 has a higher stability than Formulation 1. Formulation 2 also maintained a 96.68% radiochemical purity under 52-day storage and attained a target-to-nontarget activity ratio of 8.22. (author)

  15. Quality control protocols for radiodiagnosis agents and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Robles, A.; Condor, M.; Caballero, J.; Morote, M.; Garcia, C.; Benites, M.

    1997-01-01

    Based on the compilation of pharmacopoeia methods, literature, manuals and other information developed in our laboratory, protocols have been prepared to carry out quality controls for radiodiagnosis agents (RDA), better known as kits and RDA labelled with Tc99m. Quality control protocols cover physicochemical and biological controls. Physicochemical controls described for RDA include physical characteristics, particle size and number, pH, chemical identification, humidity, tin II; whereas biological controls include sterility, acute toxicity and bacterial endotoxin determination (LAL). Physicochemical controls described for radiopharmaceuticals labelled with Tc99m are pH and radiochemical purity; while biological distribution is described as a biological control

  16. Development of new radiopharmaceuticals

    International Nuclear Information System (INIS)

    1989-12-01

    The possibilities to design and prepare better and more organ-specific radiopharmaceuticals for diagnostic nuclear medicine has increased dramatically in the recent past with a deeper understanding of the relationships between chemical structure and biological activity. Whereas most of the research is performed in well-funded laboratories of industrialized countries, there are several developing countries with adequate resources and expertise as to undertake fruitful research in the field of radiopharmacy. With the aim of promoting advanced research in radiopharmacy by developing new radiodiagnostics agents, in particular, hepatobiliary imaging agents labelled with 99m Tc, and to facilitate exchange of information, the IAEA has established in 1983 the present Research Co-ordination Programme (CRP) with a duration of five years. The report includes detailed results obtained by all participants as well as novel preparation procedures for some of the newest and more promising radiopharmaceuticals developed under the auspices of the CRP. The extensive bibliographic reference listing is considered another important information of particular value for scientists in developing countries who do not always have access to updated scientific information sources. Refs, figs and tabs

  17. [Nuclear cardiology with new radiopharmaceuticals].

    Science.gov (United States)

    Bunko, H

    1994-08-01

    In the field of nuclear cardiology, 99mTc labeled myocardial perfusion agents such as MIBI, Tetrofosmin and Teboroxime, 111In-antimyosin for imaging of myocardial necrosis, 123I-betamethyl-iodophenylpentadecanoic acid (BMIPP) for imaging of myocardial fatty acid metabolism and 123I-metaiodobenzylguanidine (MIBG) for imaging of myocardial adrenergic function are introduced recently in Japan. Improved image quality and simultaneous evaluation of myocardial perfusion, function and wall motion can be obtained with use of 99mTc labeled myocardial perfusion agents. 111In-antimyosin enables specific imaging of myocardial necrosis which leads to the use for wide variety of heart diseases. Discrepancy of the myocardial perfusion and metabolism in case of stunned myocardium or cardiomyopathy can be evaluated by 123I-BMIPP in conjunction with perfusion agent. Recently wide variety of diseases which may have cardiac adrenergic abnormality are targeted for 123I-MIBG imaging. These new radiopharmaceuticals are expected to be powerful tool for evaluation of the pathophysiology including severity and prognosis and evaluation of the etiology of the various heart diseases.

  18. Positrons as imaging agents and probes in nanotechnology

    International Nuclear Information System (INIS)

    Smith, Suzanne V

    2009-01-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  19. Harvard-MIT research program in short-lived radiopharmaceuticals. Progress report, March 1, 1983-February 29, 1984

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Brownell, G.L.

    1984-02-01

    This report describes research efforts towards the achievement of a clearer understanding of the solution chemistry of technetium in order to facilitate the design of future clinical agents labeled with Tc-99m, the development of new receptor binding radiopharmaceuticals for the in vivo assessment of insulin receptors and for imaging the adrenal medulla and the brain, the examination of the utility of monoclonal antibodies and liposomes in the design of radiopharmaceuticals for diagnosis and therapy, and the synthesis of short-lived positron-emitting radiopharmaceuticals for transverse imaging of regional physiological processes

  20. First Human Use of a Radiopharmaceutical Prepared by Continuous-Flow Microfluidic Radiofluorination: Proof of Concept with the Tau Imaging Agent [18F]T807

    Directory of Open Access Journals (Sweden)

    Steven H. Liang

    2014-10-01

    Full Text Available Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl-5H-pyrido[4,3-b]indole ([18F]T807 and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95% were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% (n = 3, relative to starting [18F]fluoride (end of bombardment, with high radiochemical purity (≥ 99% and high specific activities (6 Ci/μmol in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.

  1. The development of cyclotron radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to developthe radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with {sup 12}'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism.

  2. The development of cyclotron radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to develop the radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with 12 '3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism

  3. Preparation of the radiopharmaceutical 99m Tc-HYNIC-cyclo-Lys-D-Phe-RGD for In vivo image of integrines

    International Nuclear Information System (INIS)

    Hernandez H, E.

    2007-01-01

    The diagnostic of some pathological processes by means of images constitutes one of the used methods in the determination of the origin, condition and/or evolution of one illness. The use of contrast agents in conjunction with other techniques help to the obtaining and visualization of complex systems, among these we can find to those radiopharmaceuticals used in nuclear medicine to visualize diverse organs and corporal systems. At the moment it is sought to develop a radiopharmaceutical of third generation that can be used for image In vivo of integrines with the purpose of detecting angio genesis processes, that which would allow to diagnose in way it specifies a wide range of primary tumors and their metastasis. Presently work it developed the radiopharmaceutical 99m Tc-HYNIC-cycle-Lys-D-Phe-RGD, likewise the good conditions were determined for the formation of this complex. The HYNIC was employee as chelating agent, using as co ligands EDDA and Tricine for to complete the sphere of coordination of the 99m Tc. The conjugated HYNIC-RGD was synthesized, purified, characterized and radiolabelled In situ with 99m Tc using High pressure liquid chromatography as analysis method in Reverse Phase (RP-HPLC). By this way it was developed the lyophilized formulation for its instantaneous labelled to which were carried out quality control tests. The one conjugated was obtained free of impurities, showing stability at same as their complex formed with 99m Tc. The analysis method was validated turning out to be necessary, exact, lineal and specific for the quantification of the analyte of interest. The lyophilized formulation showed a radiochemical purity bigger than 95%, besides being sterile and free of pyrogens. The biodistribution tests in athymic mice with induced tumors showed that the radiopharmaceutical was united mainly to the tumor and that this it was excreted mainly for renal via. (Author)

  4. New radiopharmaceuticals

    International Nuclear Information System (INIS)

    Payoux, P.; Esquerre, J.P.; Alonso, M.; Tafani, M.

    2008-01-01

    With the development of positron emission tomography, the significant increase in prescriptions of [ 18 F]F.D.G. has underlined the interest for molecular imaging in many pathologies. Facing the demand of 'new' radiopharmaceuticals (frequently clinically validated in the last century) for more and more specific diagnosis, the nuclear physician is confronted with a sparse offer of the radiopharmaceutical companies and a particularly complicated radiopharmaceutical legislation. This paper briefly reports on the radiopharmaceutical statutes encountered in France nowadays; it emphasizes that is essential to deeply modify the conditions to obtain a marketing authorization for radiopharmaceuticals if we want to propose to our patients the kind of right they have to expect from nuclear medicine. (authors)

  5. Comparative study of radiopharmaceuticals as radiodiagnostic agent of cardiac damage in rats

    International Nuclear Information System (INIS)

    Gallego Heise, R.

    1983-01-01

    Six radiopharmaceuticals were screened in a small-animal model as potential infarct-localizing agents. The model used was subcutaneous inyection of isoproterenol (30 mg/kg of body weight) - induced myocardial lesions in rats, similar to an infarct and ischemia in human beings, corroborated by histological findings. The uptake of each radiopharmaceuticals is measured at various times after lesion initiation. The results are expressed as % I.D./g and through the contrast relations between the activity of whole heart of treated rats and the others tissues. The relation damaged heart/normal heart (DH/NH) of the phosphorated radiopharmaceuticals (sup(99m) Tc-PPi, sup(99m) Tc-MDP, sup(113m) In-EDTMP), and 197 Hg-MPG are significatively greater in rats with heart damaged than in the controls animals (undamaged); these were followed by sup(99m) Tc-GH and sup(99m) Tc-DMSA. Sup(99m) Tc-PPi, was the tracer that showed the mot favorable concentration in the lesion and the best target-non target ratios in most of the time intervals. At early time intervals 197 Hg-MPG showed the best DH/NH relation. (Author)

  6. Current directions in radiopharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S J [Department of Nuclear Medicine, St. Bartholomew` s Hospital, London (United Kingdom)

    1998-08-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author) 36 refs

  7. Current directions in radiopharmaceutical research

    International Nuclear Information System (INIS)

    Mather, S.J.

    1998-01-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author)

  8. Radiopharmaceuticals generalities

    International Nuclear Information System (INIS)

    Leon Cabana, A.S.

    1994-01-01

    Many applications in nuclear medicine used as diagnostic techniques, images methods with direct and indirect labelled compounds in organs. A brief description about scintillator counters or gamma counters SPECT(single photon emission computed tomography) and PECT (positron emission computed tomography), as well as therapeutic proceedings,radiopharmaceutical classification, labell steps,administration form in the body,physical form and the best radiopharmaceutical ideal classification. Two tables was used contain radiopharmaceuticals more used in diagnostic and more used in therapic uses. Tabs

  9. Recent advances in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Smith, S.

    2000-01-01

    Full text: Radiopharmaceuticals in Nuclear Medicine may be divided into diagnostic and therapeutic agents. The diagnostic area is perceived to be mature, while the therapeutic side of nuclear medicine is still evolving. There are over 100 diagnostic radiopharmaceutical products available, the greatest number applied in cardiology followed by oncology and neurology. The greatest success in therapeutic nuclear medicine has been achieved in thyroid cancer, hyperthyroidism and bone pain palliation. Those in the field believe the future of nuclear medicine resides in the growth potential of the emerging therapeutic market, hence much of the recent research has been focussed in the development of therapeutic agents for targeting cancers. Radiopharmaceuticals under development or in clinical trials involve the use of radionuclides such as Y-90, Pd-103, Ir-192, Re-188, I-131, Sm-153, Sn-114, Sr-90, Cu-64 and In-111. Advances in cyclotron and camera technology as well as automation has enhanced and widened the potential use of positron emitting radiopharmaceuticals such as F-18 Fluorodeoxyglucose (FDG). However the relationship between FDG uptake and glucose consumption in normal and diseased tissue is still to be defined. Many challenges remain for the nuclear medicine community to apply new knowledge of human biochemistry in the development of new radiopharmaceuticals. A better understanding of effects of radiation and its role in the design of therapeutic agents is undoubtedly pivotal for advancing therapeutic Nuclear Medicine into the future

  10. Synthesis and biodistribution of lipophilic and monocationic gallium radiopharmaceuticals derived from N,N'-bis(3-aminopropyl)-N,N'-dimethylethylenediamine: potential agents for PET myocardial imaging with 68Ga

    International Nuclear Information System (INIS)

    Hsiao, Y.-M.; Mathias, Carla J.; Wey, S.-P.; Fanwick, Phillip E.; Green, Mark A.

    2009-01-01

    Introduction: In locations that lack nearby cyclotron facilities for radionuclide production, generator-based 68 Ga radiopharmaceuticals might have clinical utility for positron emission tomography (PET) studies of myocardial perfusion and other physiological processes. Methods: The lipophilic and monocationic 67 Ga-labeled gallium chelates of five novel hexadentate bis(salicylaldimine) ligands the bis(salicylaldimine), bis(3-methoxysalicylaldimine), bis(4-methoxysalicylaldimine), bis(6-meth,oxysalicylaldimine), and bis(4,6-dimethoxysalicylaldimine) of N,N'-bis(3-aminopropyl)-N,N'-dimethylethylenediamine (BAPDMEN), were prepared. The structure of the unlabeled [Ga(4-MeOsal) 2 BAPDMEN] + PF 6 - salt was determined by X-ray crystallography, and the biodistribution of each of the 67 Ga-labeled gallium chelates was determined in rats following intravenous administration and compared with the biodistribution of [ 86 Rb]rubidium chloride. Results: The [Ga(4-MeOsal) 2 BAPDMEN] + PF 6 - complex exhibited the expected pseudo-octahedral N 4 O 2 2- coordination sphere about the Ga 3+ center with a trans disposition of the phenolate oxygen atoms. All five 67 Ga radiopharmaceuticals were found to afford the desired myocardial retention of the radiogallium. The [ 67/68 Ga][Ga(3-MeOsal) 2 BAPDMEN] 1+ radiopharmaceutical appears to have the best properties for myocardial imaging, exhibiting 2% of the injected dose in the heart 1 min and 2 h postinjection and very high heart/nontarget ratios (heart/blood ratios of 7.6±1.0 and 54±10 at 1 and 120 min, respectively; heart/liver ratios of 1.8±0.4 and 39±3 at 1 and 120 min, respectively). Conclusions: Most of these new agents, particularly [ 67/68 Ga][Ga(3-MeOsal) 2 BAPDMEN] 1+ , would appear superior to previously reported bis(salicylaldimine) ligands of N,N'-bis(3-aminopropyl)ethylenediamine as candidates for PET imaging of the heart with 68 Ga

  11. Minimising activity and dose with enhanced image quality by radiopharmaceutical administrations

    International Nuclear Information System (INIS)

    Hoeschen, C.; Mattsson, S.; Cantone, M. C.; Mikuz, M.; Lacasta, C.; Ebel, G.; Clinthorne, N.; Giussani, A.

    2010-01-01

    Owing to the introduction of new diagnostic procedures, such as computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT), the individual dose caused by medical exposures has grown rapidly in the last years. This is especially a subject to radiation protection for nuclear medical diagnosis, since in this case radiopharmaceuticals are administered to the patient, meaning not only a radiation exposure to the diseased tissue but also to the healthy tissues of large parts of the body. 'Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations' (MADEIRA) is a project co-funded by the European Commission within the Seventh Euratom Framework Programme that aims to improve three-dimensional (3D) nuclear medical imaging technologies significantly. MADEIRA is aiming to improve the efficacy and safety of 3D PET and SPECT functional imaging by optimising the spatial resolution and the signal-to-noise ratio, improving the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumorous and healthy tissues, and evaluation of the corresponding patient dose. Using an optimised imaging procedure that improves the information gained per unit administered dose, MADEIRA aims especially to reduce the dose to healthy tissues of the patient. In this paper, an overall summary of the current achievements will be presented. (authors)

  12. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  13. Harvard-MIT research program in short-lived radiopharmaceuticals. Technical progress report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J.

    1991-12-31

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  14. Radiopharmaceuticals drug interactions: a critical review

    International Nuclear Information System (INIS)

    Santos-Oliveira, Ralph; Smith, Sheila W.; Carneiro-Leao, Ana Maria A.

    2008-01-01

    Radiopharmaceuticals play a critical role in modern medicine primarily for diagnostic purposes, but also for monitoring disease progression and response to treatment. As the use of image has been increased, so has the use of prescription medications. These trends increase the risk of interactions between medications and radiopharmaceuticals. These interactions which have an impact on image by competing with the radiopharmaceutical for binding sites for example can lead to false negative results. Drugs that accelerate the metabolism of the radiopharmaceutical can have a positive impact (i.e. speeding its clearance) or, if repeating image is needed, a negative impact. In some cases, for example in cardiac image among patients taking doxirubacin, these interactions may have a therapeutic benefit. The incidence of drug-radiopharmaceuticals adverse reactions is unknown, since they may not be reported or even recognized. Here, we compiled the medical literature, using the criteria of a systematic review established by the Cochrane Collaboration, on pharmaceutical-drug interactions to provide a summary of documented interactions by organ system and radiopharmaceuticals. The purpose is to provide a reference on drug interactions that could inform the nuclear medicine staff in their daily routine. Efforts to increase adverse event reporting, and ideally consolidate reports worldwide, can provide a critically needed resource for prevention of drug-radiopharmaceuticals interactions. (author)

  15. Factors and pharmaceuticals that affect the radiopharmaceuticals bio distributions

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    The pattern of biodistribution of radiopharmaceuticals may be affected by various agents and therapeutical procedures, chemotherapy agents, thyroid hormones, metals, radiotherapy, surgery, anesthetic agents, dialysis other radiopharmaceutical interactions. Recommendations for the detection of altered biodistribution in patients by causes not directly related with the pathology itself was given. pathology itself was given

  16. Synthesis and Biodistribution of Lipophilic Monocationic Gallium Radiopharmaceuticals Derived from N,N′-bis(3-aminopropyl)-N,N′-dimethylethylenediamine: Potential Agents for PET Myocardial Imaging with 68Ga

    Science.gov (United States)

    Hsiao, Yui-May; Mathias, Carla J.; Wey, Shiaw-Pyng; Fanwick, Phillip E.; Green, Mark A.

    2009-01-01

    Introduction In locations that lack nearby cyclotron facilities for radionuclide production, generator-based 68Ga-radiopharmaceuticals might have clinical utility for positron emission tomography (PET) studies of myocardial perfusion and other physiologic processes. Methods The lipophilic, monocationic 67Ga-labeled gallium chelates of five novel hexadentate bis(salicylaldimine) ligands, the bis(salicylaldimine), bis(3-methoxysalicylaldimine), bis(4-methoxysalicylaldimine), bis(6-methoxysalicylaldimine), and bis(4,6-dimethoxysalicylaldimine) of N,N′-bis(3-aminopropyl)-N,N′-dimethylethylenediamine (BAPDMEN), were prepared. The structure of the unlabeled [Ga(4-MeOsal)2BAPDMEN]+PF6− salt was determined by X-ray crystallography, and the biodistribution of each of the 67Ga-labeled gallium chelates determined in rats following i.v. administration and compared to the biodistribution of [86Rb]rubidium chloride. Results The [Ga(4-MeOsal)2BAPDMEN]+PF6− complex exhibits the expected pseudo-octahedral N4O22− coordination sphere about the Ga3+ center with a trans-disposition of the phenolate oxygen atoms. All five of the 67Ga-radiopharmaceuticals were found to afford the desired myocardial retention of the radiogallium. The [67/68Ga][Ga(3-MeOsal)2BAPDMEN]1+ radiopharmaceutical appears to have the best properties for myocardial imaging, exhibiting 2% of the injected dose in the heart at both 1-minute and 2-hours post-injection and very high heart/non-target ratios (heart/blood ratios of 7.6 ± 1.0 and 54 ± 10 at 1-min and 120-min, respectively; heart/liver ratios of 1.8 ± 0.4 and 39 ± 3 at 1-min and 120-min, respectively). Conclusions Most of these new agents, particularly [67/68Ga][Ga(3-MeOsal)2BAPDMEN]1+, would appear superior to previously reported bis(salicyaldimines) of N,N′-bis(3-aminopropyl)ethylenediamine as candidates for PET imaging of the heart with 68Ga. PMID:19181267

  17. 68Ga-Based Radiopharmaceuticals: Production and Application Relationship

    Directory of Open Access Journals (Sweden)

    Irina Velikyan

    2015-07-01

    Full Text Available The contribution of 68Ga to the promotion and expansion of clinical research and routine positron emission tomography (PET for earlier better diagnostics and individualized medicine is considerable. The potential applications of 68Ga-comprising imaging agents include targeted, pre-targeted and non-targeted imaging. This review discusses the key aspects of the production of 68Ga and 68Ga-based radiopharmaceuticals in the light of the impact of regulatory requirements and endpoint pre-clinical and clinical applications.

  18. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  20. Synthesis and biodistribution of nitrido technetium-99m radiopharmaceuticals with dithiophosphinate ligands: a class of brain imaging agents

    International Nuclear Information System (INIS)

    Bellande, Emmanuel; Comazzi, Veronique; Laine, Jacques; Lecayon, Michele; Pasqualini, Roberto; Duatti, Adriano; Hoffschir, Didier

    1995-01-01

    The symmetrical complexes [ 99m Tc][TcN(R 2 PS 2 ) 2 ] [R = CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH 2 (CH 3 ) 2 ], and the unsymmetrical complex [ 99m Tc][TcN(Me 2 PS 2 )(Et 2 PS 2 )] have been prepared, at tracer level, through a two-step procedure involving the preliminary formation of a prereduced technetium nitrido intermediate followed by substitution reaction onto this species by the appropriate dithiophosphinate ligand [R 2 PS 2 ]Na. The chemical identity of the resulting complexes have been established by comparison with the corresponding 99 Tc-analogs prepared, at macroscopic level, by reacting the complex [ 99 TcNCl 4 ] [n-Bu 4 N] (n-Bu = n-butyl) with an excess of ligand in methanol, and characterized by elemental analyses and spectroscopic techniques. The complexes are neutral and lipophilic, and possess a square pyramidal geometry, with an apical Tc N group and two dithiophosphinate ligands spanning the four positions on the basal plane through the four sulfur atoms of the >PS 2 group. In vitro studies showed that these radiopharmaceuticals are stable in solution and that their chemical identity was not altered after incubation with rat blood. Biodistribution studies have been carried out in rats and primates. The results demonstrate that these compounds are significantly retained into the brain of these animals for a prolonged time. Planar gamma camera images have been obtained in monkeys showing a good visualization of the cerebral region. However, the existence of persistent blood activity yields a brain/blood ratio lower than that observed with other 99m Tc-based brain perfusion imaging agents

  1. SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

    International Nuclear Information System (INIS)

    Fernandes, F; Silva, D da; Rodrigues, L

    2015-01-01

    Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: 18 F (109,7 min, 249,8 keV), 89 Zr (78,4 hs, 395,5 keV), 11 C (20,4 min, 385,7 keV) and 68 Ga (67,8 min, 836 keV). 68 Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ( 18 F-FDG), lipogenesis ( 11 C-Choline and 11 C-Acetate), amino acid transport (Anti- 18 F-FACBC), bone matrix ( 18 F-NaF), prostatespecific membrane antigen ( 68 Ga-PSMA and 89 Zr-J591), CXCR receptors ( 89 Ga-Pentixafor), adrenal receptors ( 18 F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti- 18 FFACBC (liver) and 18 F-FBDC (stomach wall) are the exception. Higher effective dose was seen 18 F-NaF (27 μSv/MBq) while the lowest was 11 CAcetate (3,5 μSv/MBq). Conclusion: Even though 18 F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when 18 F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider 11 C or 18 F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for 18 F labeling. Anti- 18 F-FACBC, 68 Ga-PSMA and 68 Ga-Pentixafor are demonstrating good results but more researches are needed. While PSMA imaging seems to be

  2. Harvard--MIT research program in short-lived radiopharmaceuticals. Progress report, September 1, 1977--April 30, 1978

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Brownell, G.L.

    1978-05-01

    Progress is reported on the following studies: chemistry studies designed to achieve a more complete understanding of the fundamental chemistry of technetium in order to facilitate the design of future radiopharmaceuticals incorporating the radionuclide /sup 99m/Tc; the development of new radiopharmaceuticals intended to improve image quality and lower radiation doses by the use of short-lived radionuclides and disease-specific agents; the development of short-lived positron-emitting radionuclides which offer advantages in transverse section imaging of regional physiological processes; and studies of the toxic effects of particulate radiation

  3. Radiopharmaceuticals for cerebral studies

    International Nuclear Information System (INIS)

    Leon Cabana, Alba

    1994-01-01

    For obtain good brain scintillation images in nuclear medicine must be used several radiopharmaceuticals. Cerebral studies give a tumors visual image as well as brain anomalities detection and are helpful in the diagnostic diseases . Are described in this work: a cerebrum radiopharmaceuticals classification,labelled compounds proceeding and Tc 99m good properties in for your fast caption, post administration and blood purification for renal way

  4. The current situation and future prospects of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Ando, Atsushi

    2001-01-01

    Radiopharmaceuticals play an important role in nuclear medicine. In this paper, nuclear medicine relating to radiopharmaceuticals was briefly described. And I would like to focus on the current situation and future prospects of radiopharmaceuticals. Nuclear medicine in this century should take the following directions. Firstly, cancer treatment by radionuclides will be one of the promising fields in oncology. Secondly, in order to achieve evidence-based medicine, sensitive, quantitative imaging using the nuclides will be necessary in nuclear medicine. Under these circumstances, it is important to develop radiopharmaceuticals for sensitive, quantitative imaging and therapeutic radiopharmaceuticals. (author)

  5. Synthesis and biodistribution of nitrido technetium-99m radiopharmaceuticals with dithiophosphinate ligands: a class of brain imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Bellande, Emmanuel; Comazzi, Veronique; Laine, Jacques; Lecayon, Michele; Pasqualini, Roberto; Duatti, Adriano; Hoffschir, Didier

    1995-04-01

    The symmetrical complexes [{sup 99m}Tc][TcN(R{sub 2}PS{sub 2}){sub 2}] [R = CH{sub 3}, CH{sub 2}CH{sub 3}, CH{sub 2}CH{sub 2}CH{sub 3}, CH{sub 2}(CH{sub 3}){sub 2}], and the unsymmetrical complex [{sup 99m}Tc][TcN(Me{sub 2}PS{sub 2})(Et{sub 2}PS{sub 2})] have been prepared, at tracer level, through a two-step procedure involving the preliminary formation of a prereduced technetium nitrido intermediate followed by substitution reaction onto this species by the appropriate dithiophosphinate ligand [R{sub 2}PS{sub 2}]Na. The chemical identity of the resulting complexes have been established by comparison with the corresponding {sup 99}Tc-analogs prepared, at macroscopic level, by reacting the complex [{sup 99}TcNCl{sub 4}] [n-Bu{sub 4}N] (n-Bu = n-butyl) with an excess of ligand in methanol, and characterized by elemental analyses and spectroscopic techniques. The complexes are neutral and lipophilic, and possess a square pyramidal geometry, with an apical Tc N group and two dithiophosphinate ligands spanning the four positions on the basal plane through the four sulfur atoms of the >PS{sub 2} group. In vitro studies showed that these radiopharmaceuticals are stable in solution and that their chemical identity was not altered after incubation with rat blood. Biodistribution studies have been carried out in rats and primates. The results demonstrate that these compounds are significantly retained into the brain of these animals for a prolonged time. Planar gamma camera images have been obtained in monkeys showing a good visualization of the cerebral region. However, the existence of persistent blood activity yields a brain/blood ratio lower than that observed with other {sup 99m}Tc-based brain perfusion imaging agents.

  6. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides. Final Report

    International Nuclear Information System (INIS)

    Welch, M.J.

    2012-01-01

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N 4 -methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the oxygen

  7. Radiopharmaceuticals for renal studies

    International Nuclear Information System (INIS)

    Verdera, Silvia

    1994-01-01

    Between the diagnostic techniques using radiopharmaceuticals in nuclear medicine it find renal studies.A brief description about renal glomerular filtration(GFR) and reliability renal plasma flux (ERPF),renal blood flux measurement agents (RBF),renal scintillation agents and radiation dose estimates by organ physiology was given in this study.tabs

  8. Trends in radiopharmaceutical dispensing in a regional nuclear pharmacy

    International Nuclear Information System (INIS)

    Basmadjian, G.P.; Barker, K.; Johnston, J.; Stinchcomb, R.; Tarman, B.; Ice, R.D.

    1983-01-01

    In the last five years, the practice of nuclear medicine has undergone changes due to the advent of new imaging technologies and radiopharmaceuticals. These changes have had an impact upon the number and the type of radiopharmaceuticals dispensed in centralized nuclear pharmacies. With the advent of Computerized Axial Tomography Scanners (CAT), sophistication and wider acceptance of the Ultrasound imaging modality, nuclear medicine has had to change directions from utilizing radiopharmaceuticals for static organ imaging to functional type imaging and to resort to the use of new radiopharmaceuticals or to find other uses for the existing radiopharmaceuticals. The following trends in radiopharmaceutical dispensing in a regional nuclear pharmacy are evident: Brain procedures have declined by about 67% while nuclear cardiology studies have increased by over 2000%. Bone scans have increased by 72% while liver, renal and lung studies have shown no significant increase. These changes will continue as the practice of nuclear medicine concentrates more on functional studies and relegates other studies to newer imaging modalities

  9. Systemic Radiopharmaceutical Agents (Sm-153) may be Dangerous in Hepatacellular Carcinoma

    Science.gov (United States)

    Keskin, Onur; Soydal, Cigdem; Deda, Xheni; Manti, Bengu; Tuzun, Ali

    2015-01-01

    Palliation of bone metastases in hepatocellular carcinoma (HCC) is sometimes difficult. Systemic pharmaceuticals have been successfully used for the palliation of bone metastasis for many years. Safety of these agents in HCC is not known completely. We presented a male patient with decompensated liver cirrhosis with HCC. Multifocal bone metastases developed in this patient and he had refractory bone pain. We treated this patient with Sm-153 (samarium) after obtaining patient's consent. Two days after treatment, he experienced dyspnea and we detected a massive hemorrhagic pericardial effusion. He died due to this unexpected bleeding. We should use this radiopharmaceutical treatment cautiously in these cytopenic cirrhotic patients. PMID:25709546

  10. SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F [Delfin Farmacos e Derivados Ltda, Lauro De Freitas, Bahia (Brazil); Escola Bahiana de Medicina e Saude Publica, Salvador, Bahia (Brazil); Silva, D da [Delfin Farmacos e Derivados Ltda, Lauro De Freitas, Bahia (Brazil); Rodrigues, L [Escola Bahiana de Medicina e Saude Publica, Salvador, Bahia (Brazil)

    2015-06-15

    Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transport (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup

  11. Drug-radiopharmaceutical interactions

    International Nuclear Information System (INIS)

    Hladik, W.B.; Ponto, J.A.; Stathis, V.J.

    1985-01-01

    Patients seen in the nuclear medicine department have a wide variety of disorders and, consequently, may be receiving any number of therapeutic drugs. For this reason, nuclear medicine professionals should be aware of the potential effects that these pharmacologic agents may have on the bio-distribution of subsequently administered radiopharmaceuticals, commonly referred to as ''drug-radiopharmaceutical interactions.'' Compared with the quantity of literature written about interactions between various therapeutic drugs, the information available on drug-radiopharmaceutical interactions is scarce. However, there has been increasing interest in this subject, particularly during the past five years. Some of the reported interactions are used intentionally to add a new dimension to the nuclear medicine study and increase its diagnostic capabilities, i.e., pharmacologic intervention. These beneficial ''interactions'' are discussed in detail in several other chapters of this book. Other interactions, however, cause changes in the normal distribution of radiopharmaceuticals, which may interfere with the diagnostic utility of various nuclear medicine procedures. The latter group of interactions is the focus of this chapter

  12. Radiopharmaceuticals used in nuclear cardiology

    International Nuclear Information System (INIS)

    Costa, H.

    1985-01-01

    During the last years, since short physical mean life radionuclides have started to be used, radionuclide scanning has been experienced with remarkable culmination. There are detector devices, which jointly with computation equipments, allow to obtain multiple images per second as properly rapid gammagraphic series, in order to obtain whole hemodynamic data or to generate functional images no representing an anatomical structure but reporting about cardiac dynamics at regional level. In these techniques, employed in Nuclear Cardiology, the following radionuclides and radiopharmaceuticals are used: radiolabeled albumin 99m Tc red blood cells, 113m In-transferrin, very short physical mean life radionuclides, such as 195m Au, 178 Ta, 191 Ir. In addition, 113 Xe for coronary flow measurements; radiolabeled microspheres and macroparticles for angiogammagraphy; 129 Cs, 43 K, 81 Rb, 82 Rb and 201 Ti, the most largerly used, for myocardial gammagraphy. It is pointed out that fatty acids are the newest, basically if are radioiodate, and some 99m Tc labeled long chain hydrocarbons. It is expressed that 99m Tc-Sn-pyrophosphate has been used for myocardial infarction. Working on the development of new radiopharmaceuticals, basically fatty acids and 99m Tc chelating agents, for the improvement of these techniques is carried out. (author)

  13. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  14. New radiopharmaceuticals currently used in clinical nuclear medicine

    International Nuclear Information System (INIS)

    Hladik, W.B. III

    1997-01-01

    During 1996 and 1997, six new radiopharmaceuticals have been approved by the U.S. Food and Drug Administration for use in the diagnosis and/or management of patients with various disease states. Four of these new agents are antibody-based diagnostic radiotracers, and one is a therapeutic agent. One radio-pharmaceutical that has been available for several years has been approved for a new, unique indication. Our discussion focuses on the physicochemical and pharmacokinetic properties of these recently released agents as well as their specific role in the management of patients

  15. Current status of PET imaging of differentiated thyroid cancer with second generation radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lauri, C.; Di Traglia, S.; Galli, F.; Pizzichini, P.; Signore, A.

    2015-01-01

    Although the prognosis of differentiated thyroid cancer (DTC) is favorable, some histotypes show worst clinical outcome and higher risk of recurrence. Serum thyroglobulin (Tg) levels and 131 I-whole-body-scan (WBS), together with neck ultrasound (US), represent the golden standard for DTC follow-up. Nevertheless, the relatively high frequency of patients with high Tg levels and negative WBS requires further investigations by using new imaging modalities. The availability of whole body positron emission tomography (PET) methods, in parallel with the advances in radiochemistry, offer a wide substrate for many solutions. To this day 18 F-fluoro-deoxy-glucose ( 18 F-FDG) PET/CT still represents the imaging of choice in follow-up of patients with high serum Tg and negative 131 I-WBS but in the last decades the research has focused on finding “second generation” radiopharmaceuticals for PET imaging, with both diagnostic and prognostic purposes, aiming to change the way to image thyroid cancer. Moreover, the use of various PET radiopharmaceuticals, that offer the possibility to explore different pathways involved in thyroid cancer, could find important applications in the near future for clinical decision making in order to program tailored treatments and follow-up. It would be desirable to use the same radiopharmaceutical for both imaging and dosimetric purpose to achieve a tailored therapy. Many efforts are focused in this direction and 124 I-PET/CT is now emerging as a valid tool in restaging and therapy management of DTC with promising results. Although the preliminary data available in literature require a confirmation in larger studies with longer follow-up, we think that in next future 124 -PET/CT could gain an important role for management of DTC. The aim of this review was to perform a systematic analysis of literature describing the state of art of “second generation” PET-radiopharmaceuticals for imaging DTC. Discussion is focused on the utility of 124 I

  16. Radiopharmaceuticals for bone scintillators

    International Nuclear Information System (INIS)

    Rey, A.M.

    1994-01-01

    One of the diagnostic techniques used in nuclear medicine is the bone scintiscanning with labelled compounds for obtain skeletal images. The main sections in this work are: (1) bone composition and anatomy;(2)skeletal radiopharmaceutical development;(3)physical properties of radionuclides;(4)biological behaviour and chemical structures;(5)radiopharmaceuticals production for skeletal scintillation;(6)kits;(7)dosimetry and toxicity.tabs

  17. Modern trends in radiopharmaceuticals for diagnosis and therapy. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA held an International Symposium on Modern Trends in Radiopharmaceuticals for Diagnosis and Therapy in Lisbon, Portugal, from 30 March to 3 April 1998. Two earlier symposia were organized on similar topics in Copenhagen, Denmark in 1973 and in Tokyo, Japan, in 1984. The proceedings of these symposia have been published and widely used as reference sources. To facilitate faster publication and more widespread availability, the IAEA has decided to publish the proceedings of this symposium as a cost-free TECDOC. The symposium was organized into 14 sessions consisting of five on 99m Tc radiopharmaceuticals, two each on therapeutic radiopharmaceuticals and radiohalogens/other isotopes and one each on bioevaluation, radiometric assay, medical isotope production, good radiopharmacy practice and technology transfer. In the proceedings the papers from multiple sessions on the same topic have been grouped together for the convenience of the reader. The papers presented in the symposium reflect current and future developments in diagnostic and therapeutic agents. The largest number of papers presented dealt with 99m Tc, highlighting its continuing importance to nuclear medicine and the role of imaging as an important tool. The emerging interest in therapeutic radiopharmaceuticals based on beta emitting short lived isotopes such as 186 Re and 153 Sm was evident from the papers presented in two sessions devoted to this topic. Also of steady interest was the development of agents labelled with other established isotopes, radioiodine in particular and also 111 In and 67 Ga. Regulation, training and good manufacturing practices are important for ensuring safety in regular use of radiopharmaceuticals and were discussed in a separate session. The production of radiopharmaceuticals has become a regular activity in many developing countries, often facilities were presented at the symposium

  18. Modern trends in radiopharmaceuticals for diagnosis and therapy. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The IAEA held an International Symposium on Modern Trends in Radiopharmaceuticals for Diagnosis and Therapy in Lisbon, Portugal, from 30 March to 3 April 1998. Two earlier symposia were organized on similar topics in Copenhagen, Denmark in 1973 and in Tokyo, Japan, in 1984. The proceedings of these symposia have been published and widely used as reference sources. To facilitate faster publication and more widespread availability, the IAEA has decided to publish the proceedings of this symposium as a cost-free TECDOC. The symposium was organized into 14 sessions consisting of five on {sup 99m}Tc radiopharmaceuticals, two each on therapeutic radiopharmaceuticals and radiohalogens/other isotopes and one each on bioevaluation, radiometric assay, medical isotope production, good radiopharmacy practice and technology transfer. In the proceedings the papers from multiple sessions on the same topic have been grouped together for the convenience of the reader. The papers presented in the symposium reflect current and future developments in diagnostic and therapeutic agents. The largest number of papers presented dealt with {sup 99m}Tc, highlighting its continuing importance to nuclear medicine and the role of imaging as an important tool. The emerging interest in therapeutic radiopharmaceuticals based on beta emitting short lived isotopes such as {sup 186}Re and {sup 153}Sm was evident from the papers presented in two sessions devoted to this topic. Also of steady interest was the development of agents labelled with other established isotopes, radioiodine in particular and also {sup 111}In and {sup 67}Ga. Regulation, training and good manufacturing practices are important for ensuring safety in regular use of radiopharmaceuticals and were discussed in a separate session. The production of radiopharmaceuticals has become a regular activity in many developing countries, often facilities were presented at the symposium Refs, figs, tabs

  19. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures. Progress report, May 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Heineman, W.R.; Deutsch, E.A.

    1981-12-01

    The objectives of this year's research were to develop a method for rapidly determining TcO 4 - in 99 Mo//sup 99m/Tc generator eluates, to improve the ability to chromatographically determine individual Tc-HEDP complexes in radiopharmaceuticals, and to investigate the effects of TcO 4 - concentration and electrochemical reduction on the types and relative amounts of Tc-HEDP complexes present in a radiopharmaceutical formulation. A rapid and sensitive high performance liquid chromatographic (HPLC) method for the quantitative determination of pertechnetate (TcO 4 - ) was developed. This HPLC-based analysis may be of considerable utility in assessing the history and function of 99 MO/sup 99m/Tc generators as well as in the routine analysis of reduced technetium radiopharmaceuticals for the presence of undesired TcO 4 - . Encouraging results were obtained on a dimethyl amine column using aqueous (NH 4 ) 2 SO 4 as the mobile phase. The preparation of Tc(NaBH 4 ) HEDP radiopharmaceutical analogues using varying concentrations of total TcO 4 - shows a dramatic effect in the number and distribution of Tc-HEDP complexes over a TcO 4 - concentration range of 10 -2 to 10 -8 M. These results suggest that total TcO 4 - concentration is an important parameter to be considered in the preparation of a specific Tc-HEDP complex to improve skeletal imaging. The preparation of Tc(electrode) HEDP radiopharmaceutical analogues by using electrochemical reduction was explored. The resulting solutions contain Tc-HEDP complexes that are tentatively identified as being the same complexes formed by NaBH 4 reduction, although the relative concentrations of these complexes are quite different with the two modes of reduction. Thus, electrochemical reduction shows promise as a viable route to the preparation of specific Tc-HEDP complexes for improved skeletal imaging

  20. Uptake of perfusion imaging agents by transplanted hearts: an experimental study in rats

    International Nuclear Information System (INIS)

    Bergsland, J.; Carr, E.A. Jr.; Carroll, M.; Feldman, M.J.; Kung, H.; Wright, J.R.

    1989-01-01

    There is a need for a reliable noninvasive marker of rejection in transplanted hearts. Endomyocardial biopsy is now the universally accepted diagnostic method of choice, but the invasiveness of the procedure and the limited size of the sample obtained makes this method far from ideal. As coronary blood flow may be expected to decrease during acute rejection, there has been interest in thallium-201 chloride (T1), a perfusion marker, as an imaging agent for diagnosing cardiac rejection. Hexakis(t-butylisonitrile)-technetium (Tc-TBI) is a representative of a new class of radiopharmaceuticals proposed as perfusion markers. We have compared the uptake of these imaging agents in a rat model of cardiac transplantation. Uptake of Tc-TBI as well as of T1 was significantly lower in rejecting than in nonrejecting hearts. This change was found in both left (LV) and right (RV) ventricles. Allografts in animals treated with cyclosporine (CyA) showed less severe rejection and higher uptakes of both imaging agents as compared to unmodified rejection. Our results suggest that perfusion imaging with these radionuclides is a potentially useful approach to the problem of detecting allograft rejection

  1. The WFNMB Survey on the Introduction of New Radiopharmaceuticals for Clinical Research: Snapshot of the international perspective

    International Nuclear Information System (INIS)

    Jeong, J.M.; Choe, Y.S.; Knapp, F.F. Jr.

    2007-01-01

    Development of new radiopharmaceuticals and their introduction into clinical trials ensures continuing improvement in the practice of nuclear medicine. Although it is crucial that safety and efficacy are established prior to use in humans, the characteristics of radiopharmaceuticals are quite different from other drugs since these agents are generally administered in trace, sub-pharmacological amounts. Diagnostic and therapeutic radiopharmaceutical agents are used only in restricted and controlled areas and are administered only by trained personnel. In many cases - as often for PET -- such diagnostic agents are often used in the same institution where they are prepared. Thus, regulations for the preparation and use of radiopharmaceuticals should be different from other drugs. To evaluate the current status of radiopharmaceutical regulations, we surveyed radiopharmaceutical experts and nuclear medicine societies on an international basis. A questionnaire was provided which focused on the regulations required for the in-house non-commercial preparation of new radiopharmaceutical for routine clinical use or for use in clinical trials. Responses were received from participants in 36 countries. Although both government and institutional approval are required for introduction of new radiopharmaceuticals in the majority of countries, some countries require only institutional approval. In the case of therapeutic radiopharmaceuticals, as may be expected, only physician responsibility is more often required compared with similar approval for use of diagnostic agent in these settings. The requirement of current Good Manufacturing Practice (cGMP) for PET agents was higher than with the other agents. This preponderance of cGMP requirements may be interpreted as much higher than may be expected, since many PET radiopharmaceuticals are used in-house and are prepared in the hospital by pharmaceutical compounding and not by manufacturing. Compounding is not regulated by c

  2. Clean room installations in a radiopharmaceutical facility

    International Nuclear Information System (INIS)

    2000-01-01

    The standards of radiopharmaceuticals on the facility, working environment and preparation control strategy are yet to be generated. In general, radiopharmaceuticals have short half-lives and emit gamma radiation. Due to its unique characteristics, its preparation has to be made in the fume hood and hot cell to avoid radiation exposure to workers. Considering radiation protection, the working environment has to be maintained under negative pressure so that dispersion of radiopharmaceuticals should be avoided. On the contrary, a positively pressurized working environment gives clean atmosphere and prevents contamination with harmful microorganisms during preparation. Hence, it is required to harmonize for mentioned contradictory conditions in preparation of radiopharmaceuticals for the safety of workers and its quality assurance as well. Therefore, it is reasonable that good manufacturing practice for radiopharmaceutical production facility should be constituted according to the standards for production of biological agents accompanied with a radiation shielding

  3. Advances in technetium chemistry towards 99mTc receptor imaging agents

    International Nuclear Information System (INIS)

    Johannsen, B.; Spies, H.

    1997-01-01

    The development of the chemistry of technetium and its non-radioactive surrogate rhenium has been prompted by the trends and needs of nuclear medicine, which predominantly uses 99m Tc radiopharmaceuticals for a broad range of diagnostics. Technetium-99m is the ideal radioisotope for tomographic single-photon emission tomography (SPECT) imaging due to its nuclear properties (6.2 h, E γ 140 keV) and ready availability through generator systems. Transition metals offer many opportunities for designing molecules by modifying the environment around the core, allowing certain biological properties to be imposed upon the molecule. Whereas research in the past was mainly concerned with biological properties that allow relatively unspecific functional imaging, as in brain or myocardium perfusion studies, nuclear medicine is now requiring more and more biochemical information on low capacity, high specificity targets. Many research groups have become involved in the search for new technetium-based compounds, called the third generation of 99m Tc radiopharmaceuticals, that employ the principles of modern pharmacology to achieve biochemical specificity. There has been considerable interest in imaging CNS and other receptors with 99m Tc receptor-binding ligands. Such a 99m Tc CNS receptor-imaging agent is currently not yet in use because of the significant hurdles to be overcome in attaining this ambitious goal. However, some Tc and Re complexes of remarkable affinity in vitro, and the first high-affinity 99m Tc probes able to label the dopamine transporter in the brain by SPECT imaging prove the feasibility of this approach. (Author)

  4. Pain palliative Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gonzalez, B. M.

    1994-01-01

    A pain relieving agents based on β emitters mainly and in some cases a complex preparation are being given for bone metastasis in relation with breast,prostate and lung carcinoma with good performance in clinical practice.Several radionuclides and radiopharmaceuticals are mentioned giving strength to those newly proposed, 153Sm and 186Re.Bibliography

  5. The influence of reducing agents on the composition of technetium-99 complexes: implications for technetium-99m radiopharmaceutical preparation

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Pojer, P.M.; Williams, G.A.

    1981-05-01

    The use of hydrazine or formamidine sulphinic acid as reducing agents in the presence of 99 Tc-pertechnetate anion and the diethyldithiocarbamate ligand has been found to yield complexes containing Tc triple bond N and Tc=CO bonds respectively. The nitrido nitrogen atom and the carbon monoxide incorporated in these complexes as ligands originate from the reducing agents themselves. It is apparent that when reducing agents such as hydrazine or formamidine sulphinic acid are used in the preparation of Tc-99m-radiopharmaceuticals, the possibility of the formation of complexes structurally different to those obtained by use of stannous chloride must be considered

  6. Harvard--MIT research program in short-lived radiopharmaceuticals. Progress report, September 1, 1977--April 30, 1978. [/sup 99m/Tc, positron-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J.; Brownell, G.L.

    1978-05-01

    Progress is reported on the following studies: chemistry studies designed to achieve a more complete understanding of the fundamental chemistry of technetium in order to facilitate the design of future radiopharmaceuticals incorporating the radionuclide /sup 99m/Tc; the development of new radiopharmaceuticals intended to improve image quality and lower radiation doses by the use of short-lived radionuclides and disease-specific agents; the development of short-lived positron-emitting radionuclides which offer advantages in transverse section imaging of regional physiological processes; and studies of the toxic effects of particulate radiation.

  7. Quality control protocols for radiodiagnosis agents and radiopharmaceuticals; Protocolos de control de calidad para agentes de radiodiagnostico y radiofarmacos

    Energy Technology Data Exchange (ETDEWEB)

    Robles, A; Condor, M; Caballero, J; Morote, M; Garcia, C; Benites, M

    1997-07-01

    Based on the compilation of pharmacopoeia methods, literature, manuals and other information developed in our laboratory, protocols have been prepared to carry out quality controls for radiodiagnosis agents (RDA), better known as kits and RDA labelled with Tc99m. Quality control protocols cover physicochemical and biological controls. Physicochemical controls described for RDA include physical characteristics, particle size and number, pH, chemical identification, humidity, tin II; whereas biological controls include sterility, acute toxicity and bacterial endotoxin determination (LAL). Physicochemical controls described for radiopharmaceuticals labelled with Tc99m are pH and radiochemical purity; while biological distribution is described as a biological control.

  8. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  9. Physical and Chemical Aspects of PET Radiopharmaceuticals

    International Nuclear Information System (INIS)

    2004-09-01

    On the Workshop 23 contributions were presented. This proceedings includes 21 presentations delivered at the workshop. The topics discussed included: Cyclotron and Target Constructions; Target Chemistry; Radiopharmaceuticals Synthesis; Quality Control of Radiopharmaceuticals; GLP-GMP Design; PET Imaging. Each presentation has been indexed separately

  10. Design, synthesis, and evaluation of new organomedicinal radiopharmaceuticals. Progress report, March 1, 1981-February 28, 1982

    International Nuclear Information System (INIS)

    Hanson, R.N.

    1982-01-01

    The goal of this project is the development of radiopharmaceuticals which localize selectively in the normal myocardium and which can be used to assess myocardial perfusion and function with external detection systems. The availability of T1-201 as a myocardial imaging agent makes it possible to visualize compromised myocardium as an area of decreased radionuclide uptake. However, the long physical and biologic half-lives of this nuclide, as well as the low energy of its gamma emission and its cost, suggest a need to develop radiodiagnostic agents which have a similar myocardial distribution but employ a less expensive radioisotope with better decay properties. An approach developed in this proposal involves the use of cardioselective sympatholytic agents into which a suitable radionuclide can be incorporated. The two types of compounds to be investigated are the beta adrenoceptor antagonists and the catecholamine depleting agents. The radiolabeled products will be evaluated in normal and in experimentally infarcted animals, and their pharmacokinetics compared with those of T1-201. The most promising radiopharmaceuticals will subsequently be tested in larger animals having myocardial pathology

  11. Nuclear medicine and imaging research: quantitative studies in radiopharmaceutical science. Comprehensive progress report, January 1, 1980-December 31, 1982

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1982-06-01

    This 3-y report cites progress in the following areas of radiopharmaceutical research: cyclotron operations; 51 Mn for myocardial localization; 82 Rb for heart imaging; 15 O-labelled H 2 O and molecular oxygen; studies on 11 C-2-deoxyglucose localization; 13 NH 3 measurements of myocardial perfusion; 130 Cs myocardial imaging; heart motion studies; labelled amino acids for pancreatic imaging; 11 C-hexamethonium for cartilage imaging; 11 C-cholic acid pharmacology; blood element labelling with /sup 115m/In; 75 Br studies; extrapolation of animal data to humans; in vivo quantification of radioactivity; fetal and neonatal radiation effects from radiopharmaceuticals administered to pregnant and lactating mice; and verification of MIRD absorbed dose calculations for some organ-incorporated radionuclides

  12. Radiopharmaceuticals for oncology: status and newer trends- an overview

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Prabhakar, G.

    1997-01-01

    Radiopharmaceuticals have provided a powerful means in the diagnosis and follow up of cancer patients. Radiopharmaceuticals for the treatment of metastatic thyroid cancer and palliation of metastatic bone pain are in extensive use. Newer agents are on the anvil for more efficacious diagnosis and therapy. This article gives an overview of the status and trends in this context. (author)

  13. Trends in radiopharmaceutical dispensing in a regional nuclear pharmacy

    International Nuclear Information System (INIS)

    Basmadjian, G.P.; Johnston, J.; Barker, K.; Ice, R.D.

    1982-01-01

    Dispensing trends for radiopharmaceuticals at a regional nuclear pharmacy over a 51-month period were studied. dispensing records of a regional nuclear pharmacy were analyzed with a forecasting procedure that uses univariate time data to produce time trends and autoregressive models. The overall number of prescriptions increased from 3500 to 5500 per quarter. Radiopharmaceuticals used in nuclear cardiology studies increased from less than 0.1% to 17.5% of total prescriptions dispensed, while radiopharmaceuticals used for brain imaging showed a steady decline from 29% to 11% of total prescriptions dispensed. The demand for other radiopharmaceuticals increased in areas such as renal studies, bone studies, lung studies, liver-function studies, and 67 Ga tumor-uptake studies, and declined slightly for static liver studies. Changes in dispensing trends for radiopharmaceuticals will continue as the practice of nuclear medicine concentrates more on functional studies and as newer imaging techniques become used for other purposes

  14. Evaluation of the quality of the radiopharmaceutical 99mTc-MIBI and its influence on image quality in myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Santos, Poliane Angelo de Lucena

    2013-01-01

    This study evaluated the quality of the 99m Tc-MIBI radiopharmaceutical from different manufacturers, used in three nuclear medicine services (NMS) in Recife-PE, through labeling procedure of each service. It was observed their biodistribution by quantifying the activity present in the organs of interest (heart / liver), the influence and interference in image quality and in myocardial scintigraphy diagnosis exam. In these NMS (A, B and C) were done quality controls in the eluates of 99 Mo/ 99m Tc generators (radionuclidic, chemical and radiochemical purity and pH) and of the 99m Tc-MIBI radiopharmaceutical (radiochemical purity and pH) used in myocardial scintigraphy exam. In the case of radiochemical purity (RCP), was used the thin layer chromatography technique; after the chromatographic ran on, the plates were analyzed both in the dose calibrator, and in scintillation camera of each NMS. The radiopharmaceutical biodistribution was evaluated through the activities present in the heart and liver images in 60 patients, using the technique of combined images counting. Five nuclear physicians analyzed 24 images through myocardial perfusion visual interpretation during stress, it was verified the agreement degree among them. The results of the quality control showed that all eluate samples were in agreement with the manufacturers in relation to radionuclidic purity and pH. In relation to chemical purity, 10% of the services samples B and C showed Al +3 values above 10 ppm. In the RCP, it was observed that using the scintillation camera, only 22% of the samples would be discarded, while with dose calibrator would be 78%, indicating that the scintillation camera is more sensitive in chromatographic pale analysis. For the labeled radiopharmaceutical, the services B and C presented respectively one and three samples with RCP percentage below 90%. However, C service presented the lowest medium to liver/heart proportions, showing that this factor does not depends on the

  15. Radiopharmaceuticals for cerebral studies; Radiofarmacos para Estudios Cerebrales

    Energy Technology Data Exchange (ETDEWEB)

    Leon Cabana, Alba [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    For obtain good brain scintillation images in nuclear medicine must be used several radiopharmaceuticals. Cerebral studies give a tumors visual image as well as brain anomalities detection and are helpful in the diagnostic diseases . Are described in this work: a cerebrum radiopharmaceuticals classification,labelled compounds proceeding and Tc 99m good properties in for your fast caption, post administration and blood purification for renal way.

  16. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  17. Uncertainty sources in radiopharmaceuticals clinical studies

    International Nuclear Information System (INIS)

    Degenhardt, Aemilie Louize; Oliveira, Silvia Maria Velasques de

    2014-01-01

    The radiopharmaceuticals should be approved for consumption by evaluating their quality, safety and efficacy. Clinical studies are designed to verify the pharmacodynamics, pharmacological and clinical effects in humans and are required for assuring safety and efficacy. The Bayesian analysis has been used for clinical studies effectiveness evaluation. This work aims to identify uncertainties associated with the process of production of the radionuclide and radiopharmaceutical labelling as well as the radiopharmaceutical administration and scintigraphy images acquisition and processing. For the development of clinical studies in the country, the metrological chain shall assure the traceability of the surveys performed in all phases. (author)

  18. Radiopharmaceuticals for diagnosis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    In the period 1969-1986, this project was directed to the evolution of target-specific labeled chemicals useful for nuclear medical imaging, especially radioactive indicators suited to tracing adrenal functions and localizing tumors in the neuroendocrine system. Since 1986, this project research has focused on the chemistry of positron emission tomography (PET) ligands. This project has involved the evaluation of methods for radiochemical syntheses with fluorine-18, as well as the development and preliminary evaluation of new radiopharmaceuticals for positron emission tomography. In the radiochemistry area, the ability to predict fluorine-18 labeling yields for aromatic substitution reactions through the use of carbon-13 NMR analysis was studied. Radiochemical yields can be predicted for some structurally analogous aromatic compounds, but this correlation could not be generally applied to aromatic substrates for this reaction, particularly with changes in ring substituents or leaving groups. Importantly, certain aryl ring substituents, particularly methyl groups, appeared to have a negative effect on fluorination reactions. These observations are important in the future design of syntheses of complicated organic radiopharmaceuticals. In the radiopharmaceutical area, this project has supported the development of a new class of radiopharmaceuticals based on the monoamine vesicular uptake systems. The new radioligands, based on the tetrabenazine structure, offer a new approach to the quantification of monoaminergic neurons in the brain. Preliminary primate imaging studies support further development of these radioligands for PET studies in humans. If successful, such radiopharmaceuticals will find application in studies of the causes and treatment of neurodegenerative disorders such as Parkinson`s disease.

  19. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Theobald, A.E.

    1989-01-01

    This book is a review of the latest developments in radiopharmaceuticals. It covers the development of radiopharmaceutical compounds, the theory and practice of their synthesis, and examples of their application. Also covers safe handling of radiopharmaceuticals, legislation affecting their use, radiation monitoring, radiochromatography, and computer techniques

  20. Radiochemical stability of radiopharmaceutical preparations

    International Nuclear Information System (INIS)

    Martins, Patricia de A.; Silva, Jose L. da; Ramos, Marcelo P.S.; Oliveira, Ideli M. de; Felgueiras, Carlos F.; Herrerias, Rosana; Zapparoli Junior, Carlos L.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2011-01-01

    The 'in vitro' stability studies of the radiopharmaceutical preparations are an essential requirement for routine practice in nuclear medicine and are an important parameter for evaluating the quality, safety and efficacy required for the sanitary registration of pharmaceutical products. Several countries have published guidelines for the evaluation of pharmaceutical stability. In Brazil, the stability studies should be conducted according to the Guide for Conducting Stability Studies published in the Resolution-RE n. 1, of 29th July 2005. There are also for radiopharmaceutical products, two specific resolutions: RDC-63 regulates the Good Manufacturing Practices for Radiopharmaceuticals and RDC-64 provides the Registration of Radiopharmaceuticals, both published on the 18th December 2009. The radiopharmaceutical stability is defined as the time during which the radioisotope can be safely used for the intended purpose. The radiochemical stability can be affected by a variety of factors, including storage temperature, amount of radioactivity, radioactive concentration, presence or absence of antioxidants or other stabilizing agents. The radiochemical stability studies must be established under controlled conditions determined by the effective use of the product. The aim of this work was to evaluate the radiochemical stability of labeled molecules with 131 I, 123 I, 153 Sm, 18 F, 51 Cr, 177 Lu and 111 In as well as 67 Ga and 201 Tl radiopharmaceuticals. Radiochemical purity was evaluated after production and in the validity period, with the maximum activity and in the recommended storage conditions. The analyses were carried out by thin-layer silica gel plate, paper chromatography and gel chromatography. The experimental results showed to be in accordance with the specified limits for all the analysed products. (author)

  1. Radiopharmaceuticals for diagnosis of ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, P; Chalabala, M [Institut pro Dalsi Vzdelavani Lekaru a Farmaceutu, Prague (Czechoslovakia)

    1982-01-01

    Radiopharmaceuticals used for diagnosing ischemic heart disease in the experimental and clinical practice are reviewed. The mechanism of their retention by the heart muscle is briefly described. The respective radiopharmaceuticals are divided into preparations imaging disorders in the blood supply of the cardiac muscle, diagnosing the myocardial infarction, and evaluating the contractility of the heart.

  2. Lung radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP

  3. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Saw, M.M.

    2007-01-01

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  4. Radiopharmaceuticals for imaging infection and inflammation. Report of the consultants' meeting

    International Nuclear Information System (INIS)

    1998-01-01

    Infection and inflammation remain widespread clinical problems throughout the world. Most infections can be effectively treated with antibiotics and will never require referral to an imaging department but certain types of infection are quite refractory to drug treatment and may require hospital intervention. Such conditions include deep-seated muscular or orthopaedic infections especially those resulting from previous surgery; acute life-threatening infections which require immediate effective treatment such as acute appendicitis; severe chronic infections arising from drug-resistance; and opportunistic infections in immune-compromised individuals. Recent years have seen some progress in the development of new radiopharmaceuticals for the detection of inflammation and, since infection remains a major clinical problem, it is recommended that the IAEA establish a new co-ordinated research programme in this field in order to further explore this new technology and to ensure its widest possible application. It is recommended that this CRP evaluate method for radiolabelling, analysis and preclinical assessment of a small number of radiopharmaceuticals which may be either 'specific' or 'non-specific' in their mode of action

  5. SPECT radiopharmaceuticals for imaging chronic inflammatory diseases in the last decade

    International Nuclear Information System (INIS)

    Anzola, L. K.; Galli, F.; Dierckx, R. A.

    2015-01-01

    In the recent years, many radiopharmaceuticals have been described for the diagnosis of inflammatory chronic diseases. Several peptides, receptor ligands and monoclonal antibodies have been radiolabelled, allowing in-vivo visualization of inflammatory processes at a cellular and molecular level. The labelling of cytokines such as interleukin-1, interleukin-2, interleukin-12 and MCP-1 has facilitated the identification of inflamed synovia in patients with rheumatoid arthritis, active Crohn’s disease, vulnerable atherosclerotic plaques and other targets. The possibility of using monoclonal antibodies against TNF-α, CD2, CD3, CD4 and anti-selectin has not only allowed the localization of inflamed sites but had also a significant impact in helping the selection of patients who can benefit from biological therapies. Regarding radiolabelled peptides, it is important to highlight the increasing use of somatostatin analogues targeting somatostatin receptors in inflammatory diseases, particularly for rheumatoid arthritis, Sjögren syndrome and autoimmune thyroid diseases. In the present review we describe the state of the art of SPECT radiopharmaceuticals to image chronic inflammatory diseases.

  6. Radiopharmaceuticals for thrombus detection

    International Nuclear Information System (INIS)

    Knight, L.C.

    1990-01-01

    Most of the components of the thrombotic and fibrinolytic systems have at some time been evaluated as a means of carrying a radiolabel specifically to thrombi, although very few have been promising enough to emerge from investigational status to routine clinical use. New approaches are being explored, including improved methods of labeling platelets, chemically modified forms of previously tested plasma proteins, and new biomolecules, including monoclonal antibodies specific for fibrin and platelets. The current goal is to find one or more radiotracers that bind specifically and rapidly to thrombi, and that also have a rapid blood disappearance rate, permitting a clear diagnosis within a few hours after injection. Because this test may be needed to assess the course of therapy in an anticoagulated patient, the ideal radiopharmaceutical should be able to locate thrombi without interference by anticoagulants. Until a suitable thrombus-specific radiopharmaceutical becomes generally available, many hospitals will continue to attempt to make a diagnosis with nonspecific radiopharmaceuticals that can at best provide blood pool images to indicate filling defects. Several of the new approaches seem likely to provide the radiopharmaceutical sought, although clinical trials are at an early stage.137 references

  7. Radiopharmaceuticals and applications; Preparacoes radiofarmaceuticas e suas aplicacoes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rita [Universidade Fernando Pessoa, Porto (Portugal). Fac. de Ciencias da Saude; Santos, Delfim; Ferreira, Domingos; Coelho, Pedro [Universidade do Porto (Portugal). Fac. da Farmacia; Veiga, Francisco, E-mail: fveiga@ci.uc.pt [Universidade de Coimbra (Portugal). Fac. de Farmacia

    2006-04-15

    Radiopharmaceuticals are substances without pharmacological activity that are used in Nuclear Medicine for diagnosis and therapy for several diseases. Diagnosis radiopharmaceuticals generally emit {gamma} radiation or positrons ({beta}+), because their decay originates penetrating electromagnetic radiation that can cross the tissues and be externally detected. Therapeutic radiopharmaceuticals must include in their composition ionized particles emission nucleus ({alpha}, {beta}{sup -} or Auger electrons), since their action is based in selective tissue destruction. There are two main methods for image acquisition: SPECT (Single Photon Emission Computerized Tomography) that uses {gamma} emission radionuclides ({sup 99m}Tc, {sup 123}I, {sup 67}Ga, {sup 201}Tl) and PET (Positron Emission Tomography) that uses positron emission radionuclides like {sup 11}C, {sup 13}N, {sup 15}O, {sup 18}F. Radiopharmaceuticals can be classified into perfusion radiopharmaceuticals (first generation) or specific radiopharmaceuticals (second generation). Perfusion radiopharmaceuticals are transported in the blood e reach the target organ in the direct proportion of the blood stream. Specific radiopharmaceuticals contain a biologically active molecule that binds to cellular receptors that must remain biospecific after binding to the radiopharmaceutical. For this type of radiopharmaceuticals, tissue or organ uptake is determined by the biomolecule capacity of recognizing receptors in those biological structures. Radiopharmaceuticals are produced ready to use, in cold kits or in autologal preparations. According to the preparation type there is a different quality control procedure. Most of the radiopharmaceuticals used nowadays are of the perfusion type. Research focus in the development of specific radiopharmaceuticals that can provide information, at the molecular level, of biochemical alterations associated to different pathologies. (author)

  8. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures. Progress report, May 1, 1982-April 30, 1983

    International Nuclear Information System (INIS)

    Heineman, W.R.; Deutsch, E.A.

    1982-11-01

    A procedure based on high performance liquid chromatography (HPLC) has been developed for separating individual Tc-diphosphonate complexes in skeletal-imaging radiopharmaceuticals prepared by reduction of TcO 4 - with NaBH 4 in the presence of methylene diphosphonate (MDP). Seven different Tc-MDP complexes have been detected and isolated in pure form. Significant differences in skeletal uptake and blood clearance are exhibited by the three complexes tested thus far by biodistribution studies in test animals. The relative quantities of these complexes present in a radiopharmaceutical preparation are dramatically influenced by the pH of the reaction mixture. Thus, control of pH is a simple means of forming in high yield the single, most efficacious Tc-MDP complex for skeletal imaginG. An HPLC method with electrochemical detection has been developed for the analytical determination of total TcO 4 - (/sup 99m/Tc + 99 Tc). Concentrations of TcO 4 - as low as 9 x 10 -9 M can be detected. The method is being evaluated for monitoring total TcO 4 - in 99 Mo//sup 99m/Tc generators

  9. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)

    2016-09-15

    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  10. Quality Assurance of technitium-labelled radiopharmaceuticals in the Radiation and Isotopes Centre of Khartoum (RICK)

    International Nuclear Information System (INIS)

    Adlan, A.A.

    2005-09-01

    This descriptive, exploratory study was conducted in the nuclear medicine department at the Radiation and Isotopes Center of Khartoum (RICK) during 2003-2005 the aim of the study was explore and define the dimensions of a problem which was regarded as urgent by the people working in the field of nuclear medicine in Sudan. The problem concerned the quality of technitium-labelled radiopharmaceuticals which are used in more than 90% of the nuclear medicine imaging studies performed in nuclear medicine. Impure 9 ''9''m Tc-labelled radiopharmaceuticals may create problems, and could lead to false diagnosis. These agents must be tested for determination of the levels of radionuclides, radiochemical and chemicals, before administration to patients. They should also be sterile and pyrogen-free. A number of data collection methods, were used by the researcher for adequate exploration of the dimensions of the problem including interviews, questionnaires and close observations to all activities related to the preparation of radiopharmaceuticals in the hot laboratory. Information concerning all the aspects of quality assurance were collected. These aspects were management and organisation of the work, equipment and tools, knowledge and practical experience of the staff members and methods of preparation and administration of the radioactive agents. Data from different sources were then compared with observation results for more validation and finally lead to the following results: All the quality control tests were not normally performed in the department, therefore the levels of impurities in these agents were not exactly determined, moreover these preparations were subject to contamination with microorganisms, due to low level of cleanliness at the work area. The study detected a number of defaults which were likely to be the causes behind these problems. These were, bad management and organisation, in availability of equipment, tools and materials necessary for testing

  11. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science). Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This report presents progress in the areas of cardiac nuclear medicine, other imaging studies, investigations with biomolecules, and assessment of risks associated with the clinical use of radiopharmaceuticals

  12. Formulation of MIBI Kit as a heart imaging agent

    International Nuclear Information System (INIS)

    Widyastuti; A, Hanafiah; Yunilda; A, Laksmi; Setyowati, Sri; Y Veronika

    1999-01-01

    9 9 m Tc labelled 2-methoxy-isobutyl-isonitrile(MIBI) has been known as an imaging agent for myocardial perfusion. This radiopharmaceutical preparation gives the same satisfactory result as Thallium- 2 10TI, and presumably could replace 2 01TI because of same advantages. MIBI kit was formulated from MIBI ligand produced by RPC-BATAN which has been characterized and tested for quality. The formula used in this research referred to the formula of imported product(Cardiolite, MIBI kit produced by Dupont), and the quality control testing was performed by comparing some parameters to the imported product. The parameters used for QC testing were radiochemical purity, biodistribution in nice and heart imaging in human volunteer using gamma camera. The result of the experiment showed that the radiochemical purity was 95 % in average, biodistribution in heart to liver gave the ratio of 0.67, 1.5, and 2.53 respectively at 10, 30 and 60 minutes after injection. The result of clinical testing in some volunteers gave contrast images as good as given by Cardiolite. The optimum condition of freeze drying has been found, and the kit can be used for more than 6 months

  13. F-18 Radiopharmaceuticals

    International Nuclear Information System (INIS)

    2001-12-01

    This document includes 8 presentations delivered at the symposium. The topics discussed include: optimization of accelerator production of 18 F- and 18 F 2 -fluorodeoxyglucose; radiopharmaceuticals synthesis, synthesis modules, pharmacopoeia and GLP; quality control; radiation safety of production and application; PET imaging in human medicine. Each presentation has been indexed separately

  14. Application of I-123 HIPDM as a lung imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W J; Coupal, J J; Dillon, M L; Kung, H F

    1988-04-01

    N,N,N'-Trimethyl-N'-(2-Hydroxyl-3-Methyl-5-/sup 123/I Iodobenzyl)-1,3-Propanediamine.Hcl (/sup 123/I-HIPDM) has been used for diagnosis of patients with strokes and demantias. Since this radiopharmaceutical is also accumulated in the lung, we routinely performed a lung image or images immediately prior to cerebral planar and SPECT images after a 3-5 mCi /sup 123/I-HIPDM injection. During the past 14 months, we obtained 78 (age from 41 to 92 years, average 66.7+-8.9 years; 64 males, 14 females) suspected stroke or dementia patients' lung images. All lung images were correlated to chest X-ray (CXR) or CT and other clinical data. Sixty five of 78 patients had normal lungs showing homogeneous distribution of activity throughout the lungs which correlated well to normal CXR and/or CT studies. Abnormal scintigraphic patterns of the 13 patients included lung defect (5 bronchogenic carcinoma with or without atelectasis) and decreased uptake in apices (8 chronic obstructive pulmonary disease). The findings of pulmonary intrathoracic pathologies on lung images with /sup 123/I-HIPDM suggests further evaluation of the agent for detection of localized pulmonary diseases and pulmonary physiological studies relating to amine metabolism.

  15. Stannous ion quantitation in sup(99m)Tc-radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Chervu, L.R.; Vallabhajosyula, B.; Mani, J.; Chun, S.B.; Blaufox, M.D.

    1982-01-01

    A simple and inexpensive method for the estimation of stannous ion, Sn(II), in radiopharmaceutical kits is described. The method used is a potentiometric titration of Sn(II) in 1 N HCl medium, using potassium iodate as the oxidizing agent in an atmosphere of nitrogen. The apparatus includes a pH meter, a platinum electrode, and a simple titration cell. Several commonly used radiopharmaceutical kits were analyzed for their Sn(II) content using this method. These studies indicate that the procedure can be used, as a routine quantitative test for the Sn(II) content of various sup(99m)Tc-labeled radiopharmaceuticals. (orig.)

  16. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  17. Hospitable radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gonzalez, M.B.

    1994-01-01

    Two types of hospitalary radiopharmaceutical was given in Nuclear Medicine: the centralized and hospitalary radiopharmaceuticals. The good practice in the use, instrumentation and quality control of radiopharmaceuticals are used in nuclear medicine for diagnostic and therapy diseases

  18. Application of lectins to tumor imaging radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kojima, Shuji; Jay, M.

    1986-01-01

    We investigated the in vitro binding of 125 I-lectins to Ehrlich ascites tumor (EAT) cells and in vivo uptake of 125 I-lectins in Ehrlich solid tumor (EST) bearing mice. In in vitro binding assays, phaseolus vulgaris agglutinin (PHA), pisum sativum agglutinin (PSA), and concanavalia agglutinin (Con A) showed a high affinity for EAT cells. The in vivo biodistribution of 125 I-lectins showed 125 I-PSA to be significantly taken up into EST tissues 24 h postinjection. After IV injection of 125 I-PSA, uptake of the radioactivity into the tumor tissues reached a maximum at 6 h, and thereafter decreased. Rapid disappearance of the radioactivity from blood and its excretion into kidney soon after injection of 125 I-PSA were observed. When compared with the biodistribution of 67 Ga-citrate in EST bearing mice 24 h postinjection, tumor to liver (T/B), tumor to muscle (T/M), and tumor to blood (T/B) ratios were superior for 125 I-PSA. At 6 h postinjection, the T/B-ratio of 125 I-PSA was 2.5, and this value may be sufficient to enable discernable diagnostic images. Our results suggest that PSA might be a useful tumor imaging radiopharmaceutical. (orig.)

  19. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  20. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  1. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  2. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  3. Radiopharmaceutical development and clinical needs

    International Nuclear Information System (INIS)

    Vieira, M.R.

    1998-01-01

    The use of radionuclides for medical applications has continued to grow at a very rapid pace. The use of radiotracers for nuclear medicine imaging and for radiotherapy of cancer as well as certain benign disorders is firmly established as an important clinical modality. Over the past ten years, nuclear medicine has experienced an evolution towards functional studies and novel therapeutic approaches. New radionuclides are required for these applications. In the developmental stages, each new isotope has to go through a phase of careful scrutiny and evaluation, and practical concerns related to the cost of production and availability must be addressed. The development of 18 F-labeled radiopharmaceuticals has opened a completely new area of investigation. Research on bioconjugates (this term includes radiolabeled antibodies, peptides, receptor-specific and other bioactive molecules) has experienced rapid growth because of the promise of a number of these ''bioactive molecules'' to serve as selective carriers of radionuclides for tumor-associated and other specific antigens/receptors ''in vivo''. The new concept of nuclear medicine, particularly when applied to the field of oncology is directed towards the physiological mechanisms and the study of molecular disfunctions. The search for new radiopharmaceuticals thus aims at studying tumors at a tissue and molecular level. Examples of this new approach are scans utilizing the following substances: -guanethidine and noradrenaline analogues such as meta-iodo-benzyl-guanidine labeled with iodine-131 or iodine-123 aimed at targeting neuroendocrine cells and their secretory granules; -various monoclonal antibodies directed at different tumor types, both for diagnostic and therapeutic purposes. Radioimmunotherapy is considered particularly suited for treatment of tumors not easily amenable to surgery and for the treatment of small disseminated lesions; -somatostatin analogs tagged with indium-111 or more recently with Yttrium

  4. Radiopharmaceuticals targeting melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T.Q.; Berghofer, P.; Liu, X.; Greguric, I.; Dikic, B.; Ballantyne, P.; Mattner, F.; Nguyen, V.; Loc' h, C.; Katsifis, A. [Radiopharmaceuticals Research Institute, Australian Nuclear Science and Technology Organisation, Menai, N.S.W., Sydney (Australia)

    2008-02-15

    Melanoma is one of the most aggressive cancers known with a high rate of mortality and increasing global incidence. So, the development of radiopharmaceuticals for either diagnostic or therapeutic purposes could make enormous contributions to melanoma patient health care. We have been studying melanoma tumours through several targeting mechanisms including melanin or specific receptor based radiopharmaceuticals Structure activity studies indicate that the substitution patterns on radioiodinated benzamides significantly influence the uptake mechanism from melanin to sigma-receptor binding. Furthermore, the position of the iodine as well as the presence of key functional groups and substituents has resulted in compounds with varying degrees of activity uptake and retention in tumours. From these results, a novel molecule 2-(2-(4-(4-iodo benzyl)piperazin-1-yl)-2-oxo-ethyl)isoindoline- 1,3-dione (M.E.L.037) was synthesized, labelled with iodine-123 and evaluated for application in melanoma tumour scintigraphy and radiotherapy. The tumour imaging potential of {sup 123}IM.E.L.037 was studied in vivo in C.57 B.L./ 6 J female mice bearing the B.16 F.0. murine melanoma tumour and in BALB/c nude mice bearing the A.375 human amelanotic melanoma tumour by biodistribution, competition studies and by SPECT imaging. {sup 123}I-M.E.L.037 exhibited high and rapid uptake in the B.16 F.0 melanoma tumour at 1 h (13 % I.D./g) increasing with time to reach 25 % I.D./g at 6 h. A significant uptake was also observed in the eyes (2% I.D., at 3-6 h p.i.) of black mice. No uptake was observed in the tumour or in the eyes of nude mice bearing the A.375 tumour. Due to high uptake and long retention in the tumour and rapid body clearance, standardized uptake values(S.U.V.) of {sup 123}I-M.E.L.037 were 30 and 60, at 24 and 48 h p.i.,respectively. SPECT imaging of mice bearing the B.16 melanoma indicated the radioactivity was predominately located in the tumour followed by the eyes, while no

  5. The progress on researching method and metabolism of positron radiopharmaceutical

    International Nuclear Information System (INIS)

    Gan Hongmei; Qiao Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Positron radiopharmaceuticals are mainly used for PET studies, which are used in the field of nuclear medicine as tracers in the diagnosis and treatment of many diseases. They have important position and function in the clinical diagnosis and treatment. Metabolism or biotransformation will happen when PET radio-pharmaceuticals enter into the body. Understanding the metabolic fate of radiopharmaceutical probes is essential for an accurate analysis and interpretation of positron emission tomography imaging. The recent research progress on PET radiopharmaceuticals metabolism was reviewed in this paper, including the metabolism characteristics, research methods, analytical techniques and so on. (authors)

  6. Radiopharmaceutical potential of I-131 labelled diazepam

    International Nuclear Information System (INIS)

    Yurt, F.; Unek, P.; Asikoglu, M.; Baggi, S.; Erener, G.; Ozkilic, H.; Uluc, F.; Tuglular, I.

    1998-01-01

    In this study, diazepam is a derivative of the 1.4 benzodiazepine family that the most widely used drug as anticonvulsant agent has been labeled with I-131, as a new radiopharmaceutical and its radiopharmaceutical potential has been determined. Labeling of diazepam has been performed by iodogen method and optimum labeling conditions have been determined. Optimum reaction conditions are 1 mg for iodogen amount; 1-5 mg for diazepam amount, 15-20 minutes for reaction time and room temperature for reaction temperature. Specific activity of labeled compound was 0,15 Ci/mmol level. N-octanol/water ratio was found 1.9 for 131 IDZ ( 131 I labeled diazepam). In vivo experiments have been carried out to determine radiopharmaceutical potentials of labeled compound. Biodistribution studies on rats showed that 131 IDZ have accumulated in kidneys, liver, lungs and brain tissues. Scintigraphic results taken with gamma camera on rabbits agree with biodistribution results of rats. (author)

  7. Preparation of sup(113m)In-labelled compounds of radiopharmaceutical interest. Part of a coordinated programme on radiopharmaceuticals

    International Nuclear Information System (INIS)

    Servian, J.; Robles, A.

    1975-06-01

    Techniques for the preparation and control of already known and new sup(113m)In-radiopharmaceuticals were investigated. New rapid procedures for the control and preparation of a number of radiopharmaceuticals were developed and standardized. After biological distribution studies and clinical tests, new techniques for the preparation of the following indium-113 radiopharmaceuticals were adopted: a) Indium - labelled colloids of: S, Al(OH) 3 , Fe(OH) 3 and AlPO 4 for liver and spleen scintigraphy. b) Indium labelled chelates using the ligands EDTA, DTPA, TTHA (Triethylene-tetramine-hexaacetic acid) and DHPTA (Diamino-hydroxy-propane-tetraacetic acid) for brain scintigraphy. c) Indium labelled Fe(OH) 3 macroaggregates and microspheres for lung scintigraphy. d) Several complexes of sup(113m)In with different ligands (fluoride, tartrate, pyrophosphate, tripolyphosphate, trimetaphosphate, EHDP (or ethane-1-hydroxy-1, 1-diphosphonate), ethylendiamine-pyrophosphate were synthesized and its potential use as bone-scanning agents were evaluated. It was found that the complexes with tartrate, tripolyphosphate and EHDP show appreciable skeletal uptake (bone/muscle ratio are 9.0, 5.5, and 4.7 respectively), although they are inferior to the sup(99m)Tc bone-scanning agents. e) A new simple technique is proposed for the preparation of highly concentrated sup(113m)In solutions. The technique is based on the precipitation of In(OH) 3 , millipore filtration and redissolution in a small volume of 0.05 N HCl

  8. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    1981-01-01

    The catalogue offers a wide-spread product range which meets the requirements of the international trend of in vivo application of radiopharmaceuticals. It includes: (1) conditions of sale and delivery, (2) delivery schedule for radiopharmaceuticals, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  9. I-125 ellipticines as melanoma imaging radiopharmaceuticals

    International Nuclear Information System (INIS)

    Heindel, N.D.; Wilson, A.; Varkey, T.; Garnes, K.; Burns, H.D.

    1990-01-01

    Polycyclic nitrogen heterocyclics such as ellipticine are high affinity binders to melanin and DNA. In search of a melanoma imaging agent the authors developed syntheses for I-125 analogs within two new classes of this anti-tumor agent. One of these substances displayed marked anti-tumor activity, strong DNA binding, a 10/1 tumor/blood and a 25/1 eye/blood ratio at 48 hrs post-dosing

  10. Radiopharmaceuticals drug interactions: a critical review

    Directory of Open Access Journals (Sweden)

    Ralph Santos-Oliveira

    2008-12-01

    Full Text Available Radiopharmaceuticals play a critical role in modern medicine primarily for diagnostic purposes, but also for monitoring disease progression and response to treatment. As the use of image has been increased, so has the use of prescription medications. These trends increase the risk of interactions between medications and radiopharmaceuticals. These interactions which have an impact on image by competing with the radiopharmaceutical for binding sites for example can lead to false negative results. Drugs that accelerate the metabolism of the radiopharmaceutical can have a positive impact (i.e. speeding its clearance or, if repeating image is needed, a negative impact. In some cases, for example in cardiac image among patients taking doxirubacin, these interactions may have a therapeutic benefit. The incidence of drug-radiopharmaceuticals adverse reactions is unknown, since they may not be reported or even recognized. Here,we compiled the medical literature, using the criteria of a systematic review established by the Cochrane Collaboration, on pharmaceutical-drug interactions to provide a summary of documented interactions by organ system and radiopharmaceuticals. The purpose is to provide a reference on drug interactions that could inform the nuclear medicine staff in their daily routine. Efforts to increase adverse event reporting, and ideally consolidate reports worldwide, can provide a critically needed resource for prevention of drug-radiopharmaceuticals interactions.Os radiofármacos desempenham função crítica na medicina moderna, primariamente para fins diagnósticos, mas também no monitoramento da progressão de doenças assim como na avaliação de respostas ao tratamento. O uso da tecnologia por imagem tem crescido e conseqüentemente as prescrições de medicamentos (radiofármacos em especial com esse propósito. Este fato, aumenta o risco de interações entre medicamentos e radiofármacos. Interações que podem ter um impacto na

  11. Lung radiopharmaceuticals; Radioformacos pulmonares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B M [Instituto Nacional de Pediatroa (Mexico)

    1994-12-31

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP.

  12. Pain palliative Radiopharmaceuticals; Radiofarmacos paliativos del dolor

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B M [Instituto Nacional de Pediatria (Mexico)

    1994-12-31

    A pain relieving agents based on {beta} emitters mainly and in some cases a complex preparation are being given for bone metastasis in relation with breast,prostate and lung carcinoma with good performance in clinical practice.Several radionuclides and radiopharmaceuticals are mentioned giving strength to those newly proposed, 153Sm and 186Re.Bibliography.

  13. {sup 18}F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type

    Energy Technology Data Exchange (ETDEWEB)

    Balogova, Sona [Comenius University and St. Elisabeth Institute, Department of Nuclear Medicine, Bratislava (Slovakia); Hopital Tenon, AP-HP and Universite Pierre et Marie Curie, Department of Nuclear Medicine, Paris (France); Talbot, Jean-Noel; Michaud, Laure; Huchet, Virginie; Kerrou, Khaldoun; Montravers, Francoise [Hopital Tenon, AP-HP and Universite Pierre et Marie Curie, Department of Nuclear Medicine, Paris (France); Nataf, Valerie [Hopital Tenon, AP-HP, Department of Radiopharmacy, Paris (France)

    2013-06-15

    6-Fluoro-({sup 18}F)-L-3,4-dihydroxyphenylalanine (FDOPA) is an amino acid analogue for positron emission tomography (PET) imaging which has been registered since 2006 in several European Union (EU) countries and by several pharmaceutical firms. Neuroendocrine tumour (NET) imaging is part of its registered indications. NET functional imaging is a very competitive niche, competitors of FDOPA being two well-established radiopharmaceuticals for scintigraphy, {sup 123}I-metaiodobenzylguanidine (MIBG) and {sup 111}In-pentetreotide, and even more radiopharmaceuticals for PET, including fluorodeoxyglucose (FDG) and somatostatin analogues. Nevertheless, there is no universal single photon emission computed tomography (SPECT) or PET tracer for NET imaging, at least for the moment. FDOPA, as the other PET tracers, is superior in diagnostic performance in a limited number of precise NET types which are currently medullary thyroid cancer, catecholamine-producing tumours with a low aggressiveness and well-differentiated carcinoid tumours of the midgut, and in cases of congenital hyperinsulinism. This article reports on diagnostic performance and impact on management of FDOPA according to the NET type, emphasising the results of comparative studies with other radiopharmaceuticals. By pooling the results of the published studies with a defined standard of truth, patient-based sensitivity to detect recurrent medullary thyroid cancer was 70 % [95 % confidence interval (CI) 62.1-77.6] for FDOPA vs 44 % (95 % CI 35-53.4) for FDG; patient-based sensitivity to detect phaeochromocytoma/paraganglioma was 94 % (95 % CI 91.4-97.1) for FDOPA vs 69 % (95 % CI 60.2-77.1) for {sup 123}I-MIBG; and patient-based sensitivity to detect midgut NET was 89 % (95 % CI 80.3-95.3) for FDOPA vs 80 % (95 % CI 69.2-88.4) for somatostatin receptor scintigraphy with a larger gap in lesion-based sensitivity (97 vs 49 %). Previously unpublished FDOPA results from our team are reported in some rare NET, such as

  14. Radiopharmaceutical Stem Cell Tracking for Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Rosado-de-Castro

    2014-01-01

    Full Text Available Although neurological ailments continue to be some of the main causes of disease burden in the world, current therapies such as pharmacological agents have limited potential in the restoration of neural functions. Cell therapies, firstly applied to treat different hematological diseases, are now being investigated in preclinical and clinical studies for neurological illnesses. However, the potential applications and mechanisms for such treatments are still poorly comprehended and are the focus of permanent research. In this setting, noninvasive in vivo imaging allows better understanding of several aspects of stem cell therapies. Amongst the various methods available, radioisotope cell labeling has become one of the most promising since it permits tracking of cells after injection by different routes to investigate their biodistribution. A significant increase in the number of studies utilizing this method has occurred in the last years. Here, we review the different radiopharmaceuticals, imaging techniques, and findings of the preclinical and clinical reports published up to now. Moreover, we discuss the limitations and future applications of radioisotope cell labeling in the field of cell transplantation for neurological diseases.

  15. Application of a small molecule radiopharmaceutical concept to improve kinetics

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2016-01-01

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals

  16. Application of a small molecule radiopharmaceutical concept to improve kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals.

  17. I-123-labelled heptadecanoic acid as myocardial imaging agent: comparison with thallium-201 and first-pass nuclear ventriculography

    International Nuclear Information System (INIS)

    Abdullah, A.Z.; Hawkins, L.A.; Britton, K.E.; Elliott, A.T.; Stephens, J.D.

    1981-01-01

    Results of the use of 123 I-iodoheptadecanoic acid (HA) as a myocardial imaging agent in eight patients and six normals are presented. It was shown that 123 I-HA gave comparable results to the widely used radiopharmaceutical 201 Tl. However the advantages of using 123 I-HA are that the 159 KeV energy is better suited to the conventional gamma camera, it gives a lower radiation dose to the patient and has a lower cost per study. 123 I-HA also has an important advantage in its potential for studying regional myocardial metabolic activity; in one patient, a defect due to ischaemia was seen at rest with 123 I-HA but required stress to make it evident with 201 Tl imaging. (U.K.)

  18. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Pillai, Maroor Raghavan Ambikalmajan; Nanabala, Raviteja; Joy, Ajith; Sasikumar, Arun; Knapp, Furn F.

    2016-01-01

    Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-L-aspartyl-L-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68 Ga and 177 Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68 Ga for PET-CT imaging and 177 Lu for therapy. In particular, because of availability from the long-lived 68 Ge (T 1/2 = 270 days)/ 68 Ga (T 1/2 = 68 min) generator system and increasing availability of PET-CT, the 68 Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.

  19. Studies in rats on octreotide labelled with Ga-67: A potential radiopharmaceutical agent for the treatment of somatostatin receptor-positive tumours

    International Nuclear Information System (INIS)

    Lazniekova, A.; Laznieek, M.; Trejtnar, F.; Maecke, H.R.

    2001-01-01

    The paper presents the preparation, biodistribution and analysis of elimination mechanisms of 67 Ga-[DFO]-octreotide in rats. For labelling of the ligand with 67 Ga, desferrioxamine B (DFO) coupled to octreotide via the succinyl linker has been shown to form a stable chelating agent for binding of 67 Ga. The radiopharmaceutical was prepared by direct chelating of 67 Ga 3+ with [DFO]-octreotide in a slightly acidic reaction medium with high radiochemical purity. Pharmacokinetics of 67 Ga-[DFO]-octreotide of radioactivity in rats has shown relatively rapid elimination of the compound from the body with a long-term retention in the kidney and organs with high somatostatin receptor density. The agent was eliminated mostly by urine predominantly by the mechanism of glomerular filtration. (author)

  20. Dry Kit Development And Clinical Test Of 99mTc-L,L-ECD Radiopharmaceutical For Vrain Perfusion Imaging

    International Nuclear Information System (INIS)

    Kartini, Nani; Sofyan, Rohestri; Rukmini; Iswahyudi

    2000-01-01

    Technetium- 99m ethyl cysteinate dimer ( 99m Tc-L,L-ECD) has been synthesized and formulated based on ligand exchanged reaction with 99mTc-glucoheptonate. Considering the low stability of the dry kit produced, it was fairly necessary to develop the manufacture of L,L-ECD dry kit in order to obtain a more stable one that meet the requirements as brain perfusion imaging radiopharmaceutical. Experiment was done by modifying the packing of dry kit components of the previous formulation. Characteristics of 99m Tc-L,L-ECD produced from this formulation were studied by carrying out the sterility and toxicity test, then followed with clinical test to some volunteers. Evaluation of brain perfusion was done by tomography technique using gamma camera at Nuclear Medicine Installation, Hasan Sadikin Hospital. The modified formulation obtained consist of three components i.e. main ligand L,L-ECD; exchange ligand Ca-glucoheptonate and HaOH. Its stability could reach 8 months at-10 derajat C of storage. Effects of toxicity on mice did not appear. The result of clinical study shows that the radiopharmaceutical was distributed very rapidly in the blood brain circulations and retained in the brain for about one hour. The body scanning indicates that the substance was excreted in the brain for about one hour. The body scanning indicates that the substance was excreted though kidney, liver and spleen. Based on the results obtained the radiopharmaceutical could be promoted to be used for brain perfusion imaging

  1. Radiopharmaceutical regulation and Food and Drug Administration policy.

    Science.gov (United States)

    Rotman, M; Laven, D; Levine, G

    1996-04-01

    The regulatory policy of the Food and Drug Administration (FDA) on radiopharmaceuticals flows from a rigid, traditional, drug-like interpretation of the FDC Act on the licensing of radiopharmaceuticals. This contributes to significant delays in the drug-approval process for radiopharmaceuticals, which are very costly to the nuclear medicine community and the American public. It seems that radiopharmaceuticals would be better characterized as molecular devices. Good generic rule-making principles include: use of a risk/benefit/cost analysis; intent based on sound science; performance standards prepared by outside experts; a definite need shown by the regulatory agency; to live with the consequences of any erroneous cost estimates; and design individual credential requirements so that additional training results in enhanced professional responsibility. When these common elements are applied to current FDA policy, it seems that the agency is out of sync with the stated goals for revitalizing federal regulatory policies as deemed necessary by the Clinton administration. Recent FDA rulings on positron-emission tomography, Patient Package inserts, and on medical device service accentuate the degree of such asynchronization. Radiopharmaceutical review and licensing flexibility could be dramatically improved by excluding radiopharmaceuticals from the drug category and reviewing them as separate entities. This new category would take into account their excellent record of safety and their lack of pharmacological action. Additionally, their evaluation of efficacy should be based on their ability to provide useful scintiphotos, data, or responses of the physiological system it portends to image, quantitate, or describe. To accomplish the goal of transforming the FDA's rigid, prescriptive policy into a streamlined flexible performance-based policy, the Council on Radionuclides and Radiopharmaceuticals proposal has been presented. In addition, it is suggested that the United

  2. Preparation of the radiopharmaceutical {sup 99m} Tc-HYNIC-cyclo-Lys-D-Phe-RGD for In vivo image of integrines; Preparacion del radiofarmaco {sup 99m} Tc-HYNIC-ciclo-Lys-D-Phe-RGD para imagen In vivo de integrinas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, E [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The diagnostic of some pathological processes by means of images constitutes one of the used methods in the determination of the origin, condition and/or evolution of one illness. The use of contrast agents in conjunction with other techniques help to the obtaining and visualization of complex systems, among these we can find to those radiopharmaceuticals used in nuclear medicine to visualize diverse organs and corporal systems. At the moment it is sought to develop a radiopharmaceutical of third generation that can be used for image In vivo of integrines with the purpose of detecting angio genesis processes, that which would allow to diagnose in way it specifies a wide range of primary tumors and their metastasis. Presently work it developed the radiopharmaceutical {sup 99m}Tc-HYNIC-cycle-Lys-D-Phe-RGD, likewise the good conditions were determined for the formation of this complex. The HYNIC was employee as chelating agent, using as co ligands EDDA and Tricine for to complete the sphere of coordination of the {sup 99m}Tc. The conjugated HYNIC-RGD was synthesized, purified, characterized and radiolabelled In situ with {sup 99m}Tc using High pressure liquid chromatography as analysis method in Reverse Phase (RP-HPLC). By this way it was developed the lyophilized formulation for its instantaneous labelled to which were carried out quality control tests. The one conjugated was obtained free of impurities, showing stability at same as their complex formed with {sup 99m}Tc. The analysis method was validated turning out to be necessary, exact, lineal and specific for the quantification of the analyte of interest. The lyophilized formulation showed a radiochemical purity bigger than 95%, besides being sterile and free of pyrogens. The biodistribution tests in athymic mice with induced tumors showed that the radiopharmaceutical was united mainly to the tumor and that this it was excreted mainly for renal via. (Author)

  3. Development of Tc99m-Saccharic Acid for Heart Imaging

    International Nuclear Information System (INIS)

    Shafii Khamis; Mohd Azfar Adenan; Bohari Yaacob; Amir Fitri Shafii

    2014-01-01

    Cardiovascular disease especially the coronary heart disease (CHD) is the leading cause of death worldwide. Coronary heart disease is a common term for the buildup of plaque in the heart coronary arteries that could block the blood supply to the myocardial and this could lead to heart attack. An estimated 17 million people died from cardiovascular disease in 2008 representing 30% of all global death. In United Kingdom, coronary heart disease killed as much as 82,000 people each year. Hence, early detection of the coronary heart disease is very important in reducing the mortality among the world population. One of the most sensitive detection methods is by radioimaging using Technetium-99m radiopharmaceuticals. Several different radio imaging agents such as Tc99m radiopharmaceutical were developed as radiagnostic agent in determining the CHD especially in identifying the blockage of the coronary artery of the heart muscle. Despite the success of Tc99m-sestamibi and Tc99m-tetrofosmin as effective agents for myocardial perfusion study, the search for other Tc99m heart imaging agents has never been interrupted. This report described the formulation of the Tc99m-saccharic acid radiopharmaceutical kit, radiolabelling of the kit, radiochemical purity evaluation of the Tc99m labeled saccharaic acid, and animal study involving radio imaging using gamma camera. The animal are then sacrificed and the biological distribution of the Tc99m-saccharic acid in-vivo was determined. Comparative study was also conducted using commercially available Tc99m-tetrafosmin, a CHD radiopharmaceutical kit. The Tc99m-saccharic acid developed gave a very high labeling efficiency of >92% with Tc99m and good uptake in the heart muscle. The saccharic acid kit developed was also found to be comparable in quality to the commercially available Tc99-tetrafosmin kit. (author)

  4. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  5. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  6. Institute of Bioinorganic and Radiopharmaceutical Chemistry. Annual report 2000

    International Nuclear Information System (INIS)

    Johannsen, B.; Seifert, S.

    2001-01-01

    In 2000 the Rossendorf research centre continued and further developed its basic and application-oriented research. Research at the Institute of Bioinorganic and Radiopharmaceutical Chemistry, one of five institutes in the Research Centre, was focused on radiotracers as molecular probes to make the human body biochemically transparent with regard to individual molecular reactions. In this respect the potential for diagnostic application depends on the quality and versatility of radiopharmaceutical chemistry, which is the main discipline in our Institute. Areas in which the Institute was particularly active were the design of new radiotracers, both radiometal-based and natural organic molecules, the elaboration of radiolabelling concepts and procedures and the chemical and pharmacological evaluation of new tracers. This was complemented by more clinically oriented activities in the Positron Emission Tomography Centre Rossendorf. With numerous contributions in the fields of radiopharmaceutical chemistry, tumour agents, tumour diagnosis and brain biochemistry this Annual Report will document the scientific progress made in 2000. (orig.)

  7. DTPA: Bis benzimidazole as multi model imaging agent

    International Nuclear Information System (INIS)

    Srivastava, Vikas; Tiwari, A.K.; Sharma, H.; Sharma, R.; Mishra, A.K.

    2010-01-01

    Full text: The DTPA bis benzimidazole analogue has been tested for radiopharmaceutical efficacy. The radiolabelling was found more then 98% after 8 hrs and blood kinetics was fast. The compound was also tested for optical imaging agent. The Eu 3+ ion has an absorption band in the visible spectrum (578-582 nm) whose wavelength is very sensitive to even small changes in the coordination environment. Although the intensity of this 7F0 → 5D0 transition is low, the bands are relatively narrow, which allows distinguishing different coordination states of the metal. For Eu 3+ complexes which have two differently hydrated forms in aqueous solution, one observes two absorption bands belonging to the two species. High-resolution UV-visible spectra were recorded in aqueous solutions which show a temperature invariant absorption with two distinct, temperature-dependent absorption bands. The intensity ratio of these two bands changes with temperature: the band at shorter wavelengths is decreasing very slightly, while that at longer wavelengths is increasing with the temperature. The ratio of the integrals of the two bands is related to the equilibrium constant, and its temperature dependence yields the reaction enthalpy and entropy

  8. Cyclotron produced radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kopicka, K.; Fiser, M.; Hradilek, P.; Hanc, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides /compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed. (author)

  9. Radiopharmaceuticals - pattern and development and utilisation in India

    International Nuclear Information System (INIS)

    Iya, V.K.; Mani, R.S.

    1990-01-01

    The availability of research reactors at an early stage of India's Atomic Energy Programme led to developemental efforts in the field of radiopharmaceuticals. The use of several 125 I-labelled compounds like Rose-Bengal, hippuran, etc. for imaging has been replaced over the years by 99m Tc compounds; the final formulations are prepared at the hospital using generators and cold kits supplied by the Board of Radioisotope Technology. Parallel with the development of short-lived generators in radiopharmaceuticals came advances in imaging and instrumentation techniques, the scanners being replaced by sophisticated gamma cameras, with capabilities for tomography and computerisation. About 40 centres in India have the modern instrumentation and equipment needed for carrying out nuclear medicine procedures. Further growth of nuclear medicine centres in the country has, however, been limited by the need to import such advanced high cost instumentation not currently available from indigeneous sources. Regarding in-vitro radiopharmaceuticals, some RIA and IRMA kits and procedures have been developed. These include assay of T 3 , T 4 and TSH in the thyroid group of hormones. There are over a hundred and fifty medical laboratories carrying out RIA procedures. (author)

  10. Adherence of radiopharmaceuticals and labeled cells to intravenous tubing

    International Nuclear Information System (INIS)

    Segall, G.M.; Gurevich, N.; McDougall, I.R.

    1986-01-01

    A survey of 67 nuclear medicine departments revealed no agreement on which radiolabeled agents could be injected through intravenous lines (IVs) and which required direct venipuncture. Labeled cells and several common radiopharmaceuticals were tested for adherence to intravenous tubing. Residual activity remaining in the tubing after an adequate flush was less than 1% of the injected dose in each case. Administration of radiolabeled agents through existing IVs is an acceptable alternative to direct venipuncture in many cases

  11. Leading safety performance indicators for resilience assessment of radiopharmaceuticals production process

    International Nuclear Information System (INIS)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.

    2011-01-01

    Radiopharmaceuticals are radiation-emitting substances used in medicine for radiotherapy and imaging diagnosis. A Research Institute, located in Rio de Janeiro, produces three radiopharmaceuticals: the sodium iodate is used in the diagnosis of thyroid dysfunctions, the meta-iodo-benzyl guanidine is used in the diagnosis of cardiac diseases, and the fluorodeoxyglucose is used in diagnosis in cardiology, oncology, neurology and neuro psychiatry. This paper presents a leading safety performance indicators framework to assess the resilience of radiopharmaceuticals production processes. The organizations that use resilience indicators will be able to pro actively evaluate and manage safety. (author)

  12. Leading safety performance indicators for resilience assessment of radiopharmaceuticals production process

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R., E-mail: grecco@ien.gov.b, E-mail: luquetti@ien.gov.b, E-mail: paulov@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana; Vidal, Mario C.R., E-mail: mvidal@ergonomia.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEP/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia de Producao. Grupo de Ergonomia e Novas Tecnologias (GENTE)

    2011-07-01

    Radiopharmaceuticals are radiation-emitting substances used in medicine for radiotherapy and imaging diagnosis. A Research Institute, located in Rio de Janeiro, produces three radiopharmaceuticals: the sodium iodate is used in the diagnosis of thyroid dysfunctions, the meta-iodo-benzyl guanidine is used in the diagnosis of cardiac diseases, and the fluorodeoxyglucose is used in diagnosis in cardiology, oncology, neurology and neuro psychiatry. This paper presents a leading safety performance indicators framework to assess the resilience of radiopharmaceuticals production processes. The organizations that use resilience indicators will be able to pro actively evaluate and manage safety. (author)

  13. Technetium-99m-dimethylglyoxime ([sup 99m]Tc-DMG) as renal imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Adonaylo, V.N. (Buenos Aires Univ. (Argentina). Facultad de Ciencias Exactas y Naturales Buenos Aires Univ. (Argentina). Dept. de Ciencias Biologicas); Stahl, Adriana; Pomilio, A.B.; Vitale, A.A. (Buenos Aires Univ. (Argentina). Facultad de Ciencias Exactas y Naturales); Canellas, C.O. (Buenos Aires Univ. (Argentina). Facultad de Ciencias Exactas y Naturales Comision Nacional de Energia Atomica, Buenos Aires (Argentina))

    1993-06-01

    Dimethylglyoxime (DMG) labelled with [sup 99m]Tc is presented as a renal imaging agent. The behaviour of this complex was analysed at different pH by means of UV spectral data and using DMG-calcium chloride as a reference complex. Biokinetic data were evaluated in two biological models, Sprague-Dawley rats and Didelphis albiventris argentine opossum. Biodistribution in rats demonstrated fast and specific renal excretion. Time-activity values over both kidneys could be quantified for this complex. Renographic studies led to mean time-to maximum values on twelve assays of 2.0 [+-] 0.1 min and a mean relative function of 53.0 [+-] 2.3 and 47.0 [+-] 3.2 for right and left kidneys, respectively. [sup 99m]Tc-DMG showed specificity for the renal excretion pathway and therefore seems to be a very useful radiopharmaceutical for renal function studies. (Author).

  14. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  15. Adrenal imaging agents

    International Nuclear Information System (INIS)

    Davis, M.A.; Hanson, R.N.; Holman, B.L.

    1980-01-01

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  16. International symposium on trends in radiopharmaceuticals (ISTR-2005). Book of extended synopses

    International Nuclear Information System (INIS)

    2005-01-01

    Radiopharmaceuticals, along with imaging instrumentation, are the pillars that support the edifice of clinical nuclear medicine and the former is the major driver enabling investigations of molecular phenomena for better understanding of human disease and developing effective treatments. The growth of nuclear medicine has been intimately linked to availability of new radioisotopes and the discovery of new radiopharmaceuticals. The field of radiopharmaceuticals has witnessed continuous evolution thanks to the immense contributions of scientists from diverse disciplines such as radiochemistry, inorganic chemistry, organic chemistry, biochemistry, physiology and pharmacology. Several milestones can be cited in the trajectory of this growth, which include continuing development of a plethora of 99 mTc radiopharmaceuticals, automated synthesis of 18 F labelled compounds, labelled peptides for accurate mapping of metastasis and the advances in radionuclide therapy. The International Symposium on Trends in Radiopharmaceuticals, ISTR-2005, under the auspices of International Atomic Energy Agency, will provide scientists and professionals working in the field of radiopharmaceuticals and related sciences an opportunity to review the exciting developments in the field. The International Atomic Energy Agency has been organizing such Symposia on Radiopharmaceuticals since 1973 and the last one was held in Lisbon, Portugal, in 1998

  17. International symposium on trends in radiopharmaceuticals (ISTR-2005). Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Radiopharmaceuticals, along with imaging instrumentation, are the pillars that support the edifice of clinical nuclear medicine and the former is the major driver enabling investigations of molecular phenomena for better understanding of human disease and developing effective treatments. The growth of nuclear medicine has been intimately linked to availability of new radioisotopes and the discovery of new radiopharmaceuticals. The field of radiopharmaceuticals has witnessed continuous evolution thanks to the immense contributions of scientists from diverse disciplines such as radiochemistry, inorganic chemistry, organic chemistry, biochemistry, physiology and pharmacology. Several milestones can be cited in the trajectory of this growth, which include continuing development of a plethora of {sup 99}mTc radiopharmaceuticals, automated synthesis of {sup 18}F labelled compounds, labelled peptides for accurate mapping of metastasis and the advances in radionuclide therapy. The International Symposium on Trends in Radiopharmaceuticals, ISTR-2005, under the auspices of International Atomic Energy Agency, will provide scientists and professionals working in the field of radiopharmaceuticals and related sciences an opportunity to review the exciting developments in the field. The International Atomic Energy Agency has been organizing such Symposia on Radiopharmaceuticals since 1973 and the last one was held in Lisbon, Portugal, in 1998.

  18. Radiopharmaceutical licensing

    International Nuclear Information System (INIS)

    Mather, S.J.

    1992-01-01

    Recent health service legislation, and especially the loss of crown immunity has once again focussed attention on the arrangements for licensing of radiopharmaceuticals. The aim of the article is to describe in general terms the UK licensing system and in particular to provide guidance to those responsible for the supply of radiopharmaceuticals in hospitals. (author)

  19. WIPR 2013 - Radiopharmaceuticals: from research to industry - Book of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This workshop aims at presenting the latest progress in the field of radioimmunotherapy: radiopharmaceutical production, radiochemistry, radiolabelling, nuclear imaging and clinical applications. The presentations have been divided into 4 sessions: 1) alpha or beta radioimmunotherapy, 2) peptides or antibodies, 3) the benefits from nuclear imaging, and multimodal imaging

  20. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  1. Click synthesis of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Xu Mei; Kuang Chunxiang

    2009-01-01

    Increasing attention has been focused on synthesis radiopharmaceuticals for positron emission tomography (PET). The recent years witnessed applications of click chemistry to PET radiopharmaceutical synthesis,because of its distinctive advantages including high speed,yield and stereospecificity under mild conditions. Synthesis of 18 F-labeled and 11 C-labeled radiopharmaceuticals and intermediates via click chemistry are reviewed. The future trend of click chemistry for the synthesis of PET radiopharmaceutical is prospected. (authors)

  2. 64Cu radiolabeled nano-materials as bimodal contrast agent for optical imaging and Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Nonat, A.M.; Roux, A.; Yahia-Ammar, A.; Charbonniere, L.J.; Platas-Iglesias, C.; Camerle, F.

    2015-01-01

    Fluorescent nano-crystals made of semiconductor material, also called Quantum Dots, are ideal agents for long-term or real-time optical imaging. They have been found to outperform traditional organic fluorescent dyes in many ways (size-tunable optical properties, high quantum yields, high extinction coefficients, resistance to photo bleaching). We have developed a microwave method for the synthesis of highly luminescent water soluble CdTe x S 1-x nano-crystals (Φ= 53% at 600 nm). Their surface functionalization has been developed and controlled using a Nile-Red derivative as a fluorescent marker. The same coupling strategy will be used to incorporate 64 Cu-radiotracers for PET imaging at the surface of the Quantum Dots. A large variety of poly-aza-macrocyclic ligands, have been studied in order to optimize the in vivo stability of the 64 Cu-radiolabeled complexes and their efficiency as radiopharmaceuticals

  3. The new techniques of scintigraphic imaging

    International Nuclear Information System (INIS)

    Chatal, J.F.

    1990-01-01

    The purpose of scintigraphic imaging is not to explore the morphology of an organ (or its abnormalities) but rather its functional and metabolic characteristics. It is thus important that a molecular structure (e.g., a hormonal receptor or an antigen) closely linked to the functional activity of an organ or tissue be targeted on its cell surface. Such diagnostic targeting requires the synthesis and labeling of a radiopharmaceutical substance specific for the receptor or antigen in question. It also requires a detection system adapted to count rates and signal-to-background ratios (generally moderate). The synthesis of new radiopharmaceutical agents, a critical stage for the future of nuclear medicine, is a long and often risky process in which success is difficult to foresee. Radiolabeling must be stable in vitro and in vivo, and the radiopharmaceutical must subsequently retain its capability of recognizing the targeted molecule. In endocrinology, the exemplary achievement in this direction has been the synthesis of 131 I-6-iodomethylnorcholesterol and 131 I-metaiodobenzylguanidine for functional scintigraphy of the adrenal cortex and medulla. Progress in detection equipment has been marked by the development of monophotonic tomoscintigraphy, using gamma cameras with a revolving head to obtain slices in different spatial planes showing the distribution in the organism of the injected radiopharmaceutical agent [fr

  4. Synthesis and formulation of 99m Tc-ECD radiopharmaceutical

    International Nuclear Information System (INIS)

    Ocampo G, B.E.

    1998-01-01

    Nuclear medicine is a medical specialty which uses radioactive compounds (radionuclides) for diagnostic and therapeutic purposes. 99m Tc is the more common radionuclide used in many studies in nuclear medicine because its advantages: it has a photopeak of 140 KeV and a half-life of 6 hours; it can be eluted from a Molybdenum 99 generator, so radiopharmaceuticals can be prepared on site. Ethyl cysteine dimer (ECD) labelled with reduced Technetium 99m has been purposed recently as a promising radiopharmaceutical for brain perfusion imaging 99m Tc-ECD is a lipophilic neutral complex which cross the brain blood barrier and show high brain uptake. The objective of this work was synthesize and to design a freeze dried formulation for the instant preparation of 99m Tc-ECD complex useful for brain perfusion imaging. We obtained a freeze dried stable formulation for the preparation of 99m Tc-ECD kit with a radiochemical purity higher than 90 %, which fulfills with the quality control of radiopharmaceuticals. Furthermore, we developed analytic techniques for the determination of the different chemical compounds into the lyophilized kit. (Author)

  5. Active and passive vectorization of technetium99m and 188rhenium radiopharmaceuticals for medical imaging and radiotherapy

    International Nuclear Information System (INIS)

    Lepareur, N.

    2003-11-01

    Research for new molecules for nuclear medicine is a field in constant development. Over the past few years, development of new radiopharmaceuticals for radiotherapy has renewed interest for rhenium chemistry. Indeed, its two isotopes 186 Re and 188 Re, owing to their ideal properties and their similitude with 99m Tc, which is widely used as a radiotracer for diagnostic imaging, seem very promising for the preparation of radiopharmaceuticals. In the first part of this manuscript, the synthesis of rhenium and technetium-99 complexes, [M(RPhCS3)2(RPhCS2)] (M = Re, Tc), is described. The preparation of technetium 99m based radiopharmaceuticals, analogues to the pondered complexes, is also described. The stability/reactivity of these complexes has been studied by exchange reactions with potential ligands, specially dithiocarbamates, and also by UV-visible absorption spectroscopy and thermogravimetry. The reactivity of the complexes towards dithiocarbamates leads to the possibility to bind biomolecules to the metallic core, via the dithiocarbamate moiety. This method represents a potential alternative to current ones using the so-called bifunctional approach. In the second part of this manuscript, a new kit formulation for the 188 Re labeling of lipiodol is described, using a complex analogous to those described in the previous part. The labeled oil is a potential cure for hepatocellular carcinoma. The in vitro and in vivo stability of this 188 Re-SSS lipiodol and of its analogue 99m Tc-SSS lipiodol has been studied, and also their in vivo behavior in healthy pigs. This study has shown the quasi-exclusive hepatic fixation of the radiopharmaceutical, and has proven its good stability. Its selectivity for tumors remains to be shown before trying it on humans. (author)

  6. Regulatory aspects of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1985-01-01

    Regulatory systems in the field of radiopharmaceuticals have two main purposes: efficacy and safety. Efficacy expresses the quality of the diagnostic and therapeutic process for the patient. Safety involves the patient, the staff, and the environment. The world situation regarding regulations for radiopharmaceuticals is reviewed on the basis of a survey in WHO Member States. The main content of such regulations is discussed. The special properties of radiopharmaceuticals compared with ordinary drugs may call for modified regulations. Several countries are preparing such regulations. Close co-operation and good understanding among scientists working in hospital research, industry and regulatory bodies will be of great importance for the fast and safe introduction of new radiopharmaceuticals for the benefit of the patient. Before introducing new legislation in this field, a radiopharmaceutical expert should analyse the situation in the country and the relationship to the existing regulations. It is expected that the most important factor in promoting the fast introduction of new, safe and effective radiopharmaceuticals will be the training of people working within the regulatory bodies. It is foreseen that the IAEA and WHO will have an important role to play by providing expert advice and training in this area. (author)

  7. Nuclear medicine imaging of bone infections

    International Nuclear Information System (INIS)

    Love, C.; Palestro, C.J.

    2016-01-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ("9"9"mTc)-diphosphonate bone scintigraphy (bone), and gallium-67 ("6"7Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. "6"7Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1–3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. "1"1"1In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-["1"8F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75–99% have

  8. Manufacturing on the radiopharmaceuticals produced by cyclotron

    International Nuclear Information System (INIS)

    Ueda, Nobuo

    1994-01-01

    Radiopharmaceutical (RP) produced by cyclotrons are widely used for the in vivo diagnosis of various diseases such as cancer, cerebral vascular disorders and cardiac diseases. The nuclides used as RPs and their nuclear reactions, and the quantity of RPs supplied in Japan in the last five years are shown. These RPs are delivered to about 1,100 hospitals in Japan. Thallium-201 and iodine-123 showed very high growth rate. Recently, two new I-123 RPs, BMIPP and MIBG which are heart-imaging agents, have been supplied. It suggests that the quantity of I-123 will increase much more in future. The image diagnostic method using RPs is called in vivo nuclear medicine, and has become the indispensable means for medical institutions together with X-ray CT, nuclear magnetic resonance imaging and ultrasonic diagnosis. The RPs for in vivo diagnosis generally used at present are classified into those labeled with the RIs produced with cyclotrons and those labeled with Tc-99m formed by the decay of Mo-99. The quantity being used is overwhelmingly more in the latter, but the former shows the tendency of growth. The commercial production of cyclotron RIs for medical use, the chemical forms and the diagnostic purposes of the RPs using cyclotron RIs, and the state of use of the cyclotron-produced RPs are reported. (K.I.)

  9. Bromine-77-labeled estrogen receptor-binding radiopharmaceuticals for breast tumor imaging

    International Nuclear Information System (INIS)

    McElvany, K.D.

    1985-01-01

    Two derivatives of 16α-bromoestradiol, both with and without an 11β-methoxy substituent, have been labeled with bromine-77 and evaluated as potential breast tumor imaging agents. Extensive characterization of these radiotracers in animal models has demonstrated their effective concentration in estrogen target tissues. Preliminary clinical studies have demonstrated the potential of radiolabeled estrogens for breast tumor imaging; however, the suboptimal decay properties of bromine-77 limit the utility of these agents in imaging studies. These results with 77 -Br-labeled estrogens suggest that estrogen derivatives labeled with other radionuclides should provide enhanced image resolution with various imaging devices. Although the decay characteristics of bromine-77 are such that it is not ideally suited to imaging with conventional gamma cameras, it may be a useful radionuclide for therapeutic applications

  10. Which radiopharmaceuticals for to-morrow. Heart and brain investigations

    International Nuclear Information System (INIS)

    Maziere, B.

    1994-01-01

    This paper is a critical review of the various radiopharmaceuticals which have been or are presently designed for functional imaging of brain or heart using positron (PET) or single photon emission tomography. Currently used radiopharmaceuticals have been classified into two broad categories: 'passive' radiotracers intended to visualize the perfusion of the organ and 'active' or 'specific' radiotracers used to investigate metabolism or neurotransmission processes. Moreover, the potential interest of radioactive peptides or oligonucleotides which would be biologically stable in vivo and which could target proteins involved in inter or intra-cellular communications will be reviewed. (authors). 47 refs

  11. Innovative radiopharmaceuticals in oncology and neurology

    CERN Document Server

    Barbet, Jacques; Chérel, Michel; Guilloteau, Denis

    2017-01-01

    The aim of this Research Topic was to assemble a series of articles describing basic, preclinical and clinical research studies on radiopharmaceuticals and nuclear medicine. The articles were written by attendees of the third Nuclear Technologies for Health Symposium (NTHS, 10th-11th March 2015, Nantes, Frances) under the auspices of the IRON LabEx (Innovative Radiopharmaceuticals for Oncology and Neurology Laboratory of Excellence). This French network, gathering approximately 160 scientists from 12 academic research teams (Funded by “investissements d’Avenir”), fosters transdisciplinary projects between teams with expertise in chemistry, radiochemistry, radiopharmacy, formulation, biology, nuclear medicine and medical physics. The 12 articles within this resulting eBook present a series of comprehensive reviews and original research papers on multimodality imaging and targeted radionuclide therapy; illustrating the different facets of studies currently conducted in these domains.

  12. 18F based radiopharmaceuticals and automation of synthesis. New 18F radiopharmaceuticals

    International Nuclear Information System (INIS)

    Garg, P.K.; Garg, S.

    2007-01-01

    Fluorine-18 is one of the most commonly used positron emitting isotopes for clinical and research needs with a physical half-life of 110 min. PET isotopes deposit higher radiation absorbed dose than nuclear medicine isotopes. Because of their relatively short half-life, larger quantities of these isotopes are used at the start of synthesis. Therefore, increased shielding and remote automated synthesis are essential for their safe handling. Unlike other radiopharmaceuticals, it is not practical to produce PET radiopharmaceuticals at a central location for subsequent distribution to clinical and research facilities around the country. This limitation compels various academic and research facilities to manufacture their own PET radiopharmaceuticals for in-house use. For multiple reasons, 18 F fluorodeoxyglucose ([ 18 F]FDG) is one of the most commonly used radiopharmaceuticals. The synthesis of [ 18 F]FDG has been optimized and automated, thus allowing independent laboratories to produce this radiopharmaceutical safely. Nonetheless, these laboratories should acquire resources and expertise to fulfil ever increasing regulatory requirements for the safe production and usage of PET radiopharmaceuticals. In addition to [ 18 F]FDG, a wide array of new and novel radiotracers is being developed to explore various biological processes. This paper emphasizes the fact that it is possible to accomplish research and fulfil clinical needs within an academic setting with modest resources. A careful assessment of the need for due diligence in radiation safety issues is very important for the longevity of any PET research endeavour. (author)

  13. Results of quality control studies of technetium 99m labelled radiopharmaceuticals prepared from kits (1980-81)

    International Nuclear Information System (INIS)

    1983-01-01

    This report summarized the results of quality control studies of Tc 99m labelled human serum albumin, macroaggregated albumin, bone imaging and reticuloendothelial system imaging radiopharmaceuticals prepared from commercially available kits. It includes all analyses performed from January 1980 to December 1981 by the radiopharmaceutical quality control section of the Radiation Protection Bureau. These results were obtained by the application of various in vitro and animal (mouse) biodistribution studies

  14. Fluorine-18 nuclide and its PET imaging agent

    International Nuclear Information System (INIS)

    Wang Mingfang

    2003-01-01

    Fluorine-18 has predominant physical features with long half-life and the enough time for preparation of radiopharmaceuticals and PET imaging. Also, the chemical nature of fluorine-18 is similar to that of hydrogen, and the fluorine-18 labelled organic molecules can not change the non-labelled molecular character. Therefore, fluorine-18 is widely applied in the labelled glucose, amino acids, fatty acids, nucleotide, receptor-ligand and neurotransmitter molecular etc., with the propose of detecting the blood flow, metabolism, synthesis of the protein and the neurotransmitter function in brain by PET imaging. It is very important in the basic science and clinical research to understand and master the preparation of the fluorine-18 and its labelled compounds

  15. Specific GMP guidelines for radiopharmaceutical products

    International Nuclear Information System (INIS)

    2000-01-01

    These guidelines are intended to complement those provided in ''Good manufacturing practices for pharmaceutical products'', as well as the GMP for sterile pharmaceutical products. The regulatory procedures necessary to control radiopharmaceutical products are in large part determined by the sources of products and methods of manufacture. Manufacturing procedures within the scope of these guidelines include: preparation of radiopharmaceuticals in hospital radiopharmacies, preparation of radiopharmaceuticals in centralized radiopharmacies, production of radiopharmaceuticals in nuclear centres, institutes or industrial manufacturers, preparation and production of radiopharmaceuticals in Positron Emission Tomography (PET) centres

  16. Preparation of kits for 99Tcm radiopharmaceuticals

    International Nuclear Information System (INIS)

    1992-05-01

    This publication details preparation under Good Manufacturing Practices (GMP) of thirteen widely used 99 Tc m radiopharmaceuticals and their quality assurance practices. The objective of this document is to present to those who intend to launch a kit preparation programme a set of preparation procedures and other relevant information gathered during kit production over a period of more than a decade, to serve as a good starting point. The manuals and monographs included in the document are based on the experience gained in two major centres. The publication of this material is intended to give a typical example, and not the only possible procedure for preparing the kits. Following the essentials of these kit preparation procedures, it is always possible to make alterations to the composition of the kits. The kits described here concern widely used 99 Tc m radiopharmaceuticals which do not require a Single Photon Emission Computed Tomography (SPECT) camera. These examples of the ''first generation'' of kits are not very intricate to prepare. Although it is advisable to have only one agent for a given intended use, a few agents for each purpose, e.g. EHDP and MDP for bone imagining, have been included in the document so that the reader can have some flexibility in selecting a particular kit. 24 refs, 2 figs

  17. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    Science.gov (United States)

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  18. Radiopharmaceutical research: trends and novel concepts

    International Nuclear Information System (INIS)

    Wuest, F.

    2005-01-01

    The efficiency of nuclear medicine in diagnosis, therapy and medicinal research strongly depends on the progress to develop novel suitable radiopharmaceuticals. The selection, preparation, and preclinical evaluation of new radiopharmaceuticals is addressed by the field of radiopharmaceutical chemistry. The rapid developments in the field of biotechnology in the post-genome era combined with the recent advances in the instrumentation of SPECT and PET have directed radiopharmaceutical research into a complex chemical science. Current radiopharmaceutical research comprises novel developments of coordination chemistry with [ 99m Tc]technetium pharmaceuticals, the development of non-standard PET radionuclides and the synthesis of 11 C- and 18 F-labelled radiopharmaceuticals at high specific radioactivity. Further developments deal with an increasing alignment to radiotherapeutics and the implementation of PET into the process of drug development and evaluation. (orig.)

  19. Prostate Activated Prodrugs and Imaging Agents

    National Research Council Canada - National Science Library

    Jones, Graham B

    2004-01-01

    .... The substrate chosen was a 3 component system composed of a peptide sequence with affinity for PSA, an imaging agent and a deactivating bridge-linker, which electronically incapacitates the imaging agent...

  20. Characterization of electrochemically and chemically generated technetium diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Martin, J.L. Jr.

    1987-01-01

    Tc-Methylene diphosphonate, (MDP), the skeletal imaging ligand is most use in radiopharmacies, is the first metal-ligand complex prepared electrochemically in this work. A similar systematic evaluation of electrochemically reduced Tc-dimethylaminomethylene diphosphonate (DMAD) is presented. DMAD as well as MDP have been characterized by anion exchange HPLC following NaBH4 reduction. The goal is twofold. First, the effect of varying the applied potential on the resultant chromatographic distribution of complexes is investigated. Secondly, the combination(s) of applied potential and preparation pH which preferentially directs the formation of technetium diphosphonate complexes previously shown to be superior skeletal imaging agents is determined. EXAFS, extended x-ray absorption fine structure spectroscopy, is applied to the analysis of dilute solutions (10mM) of electrochemically and chemically reduced Tc-MDP complexes. Further characterizations of electrochemically and chemically generated complexes are performed using in-vitro and in-vivo physiological techniques of biodistribution and blood clearance studies on Sprague Dawley rats and beagle dogs respectively. Finally, in-vitro and in-vivo dilution studies were performed using water, human and dog urine, to determine the influence of the physiological environment on clinically prepared and injected radiopharmaceuticals

  1. Therapeutic applications of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Baker, W.J.; Datz, F.L.; Beightol, R.W.

    1987-01-01

    Whether a radiopharmaceutical has diagnostic or therapeutic application depends on both the isotope and pharmaceutical used. For diagnostic applications, the isotope should undergo only γ-decay, since usually only γ-radiation is detected by nuclear medicine cameras. The half-life should be just long enough to allow the procedure to be performed. In contrast, the isotope needed for therapeutic purposes should have particulate radiation, such as a β-particle (electron), since these are locally absorbed an increase the local radiation dose. γ-Radiation, which penetrates the tissues, produces less radiation dose than do Β-particles. Several references dealing with radioactive decay, particulate interactions, and diagnostic and therapeutic applications of radiopharmaceuticals are available. Radiopharmaceuticals can legally be used only by physicians who are qualified by specific training in the safe handling of radionuclides. The experience and training of these physicians must be approved by the Nuclear Regulatory Commission or Agreement State Agency authorized to license the use of radiopharmaceuticals. A list of all byproduct material and procedures is available in the Code of Federal Regulations. Of the many radiopharmaceuticals available for diagnostic and therapeutic use, only those commonly used are discussed in this chapter

  2. Quality control of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1981-01-01

    Quality assurance was introduced in the pharmaceutical field long before it was used in many other areas, and the term quality control has been used in a much broader sense than merely analytical quality control. The term Good Manufacturing Practice (GMP) has been used to describe the system used for producing safe and effective drugs of a uniform quality. GMP has also been used for the industrial production of radiopharmaceuticals. For the preparation and control of radiopharmaceuticals in hospitals a similar system has been named Good Radiopharmacy Practice (GRP). It contains the same elements as GMP but takes into account the special nature of this group of drugs. Data on the assessment of the quality of radiopharmaceuticals in relation to present standards are reviewed. The general conclusion is that the quality of radiopharmaceuticals appears comparable to that of other drugs. It seems possible to establish the production of radiopharmaceuticals, generators and preparation kits in such a way that analytical control of the final product at the hospital may be limited provided the final preparation work is carried out in accordance with GRP principles. The elements of GRP are reviewed. (author)

  3. 177Lu-Dendrimer Conjugated to Folate and Bombesin with Gold Nanoparticles in the Dendritic Cavity: A Potential Theranostic Radiopharmaceutical

    Directory of Open Access Journals (Sweden)

    Héctor Mendoza-Nava

    2016-01-01

    Full Text Available 177Lu-labeled nanoparticles conjugated to biomolecules have been proposed as a new class of theranostic radiopharmaceuticals. The aim of this research was to synthesize 177Lu-dendrimer(PAMAM-G4-folate-bombesin with gold nanoparticles (AuNPs in the dendritic cavity and to evaluate the radiopharmaceutical potential for targeted radiotherapy and the simultaneous detection of folate receptors (FRs and gastrin-releasing peptide receptors (GRPRs overexpressed in breast cancer cells. p-SCN-Benzyl-DOTA was conjugated in aqueous-basic medium to the dendrimer. The carboxylate groups of Lys1Lys3(DOTA-bombesin and folic acid were activated with HATU and also conjugated to the dendrimer. The conjugate was mixed with 1% HAuCl4 followed by the addition of NaBH4 and purified by ultrafiltration. Elemental analysis (EDS, particle size distribution (DLS, TEM analysis, UV-Vis, and infrared and fluorescence spectroscopies were performed. The conjugate was radiolabeled using 177LuCl3 or 68GaCl3 and analyzed by radio-HPLC. Studies confirmed the dendrimer functionalization with high radiochemical purity (>95%. Fluorescence results demonstrated that the presence of AuNPs in the dendritic cavity confers useful photophysical properties to the radiopharmaceutical for optical imaging. Preliminary binding studies in T47D breast cancer cells showed a specific cell uptake (41.15±2.72%. 177Lu-dendrimer(AuNP-folate-bombesin may be useful as an optical and nuclear imaging agent for breast tumors overexpressing GRPR and FRs, as well as for targeted radiotherapy.

  4. Radiopharmaceuticals 1994. Nil desperandum

    International Nuclear Information System (INIS)

    Cox, P.H.; Meyer, G.J.

    1995-01-01

    On the basis of the discussions at a symposium held in Duesseldorf and attended by representatives of various interested bodies, European legislation as it affects radiopharmaceuticals is reviewed. Due consideration is given to the new, centralised and decentralised, registration procedures, effective since 1 January 1995. The dossier required to support an application for marketing authorisation is discussed, separate consideration being given to single-photon emitters, therapeutic radio-nuclides and positron-emitting radiopharmaceuticals. The role of the European Pharmacopoiea is also considered. It is concluded that the new, modified procedures for the registration of medicinal products in the European Union may actually inhibit free availability of radiopharmaceuticals within the Community, and that there is a strong case for modification of the European Directives so that radiopharmaceuticals are placed in a separate category to therapeutic drugs, with less stringent registration requirements. (orig.)

  5. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Silveira, Marina B.; Santos, Raquel G. dos; Dias, Consuelo L. Fortes; Cassali, Geovanni D.

    2009-01-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  6. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Santos, Raquel G. dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Consuelo L. Fortes [Fundacao Ezequiel Dias (FUNED), Belo Horizonte, MG (Brazil)], e-mail: consuelo@pq.cnpq.br; Cassali, Geovanni D. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Patologia Comparada], e-mail: cassalig@icb.ufmg.br

    2009-07-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  7. Radiation risk in pediatric patients: the need for criteria using radiopharmaceuticals activities

    International Nuclear Information System (INIS)

    Simas, Felipe; Instituto de Radioprotecao e Dosimetria; Velasques, Silvia M.

    2009-01-01

    The administration of radionuclides to children for diagnostic procedures should be carried out only if there is a strong clinical indication. The amount of activity administered may be reduced according to body weight, body surface area or other appropriate criteria. In Brazil, activities used for pediatric patients were evaluated (2003-2005) in sixteen selected public and private institutions in Northeast, Southeast and South geographical regions. The present work presents radiopharmaceuticals activities used in Brazil compared with international surveys performed in USA in 2005 and in the European Union in 2007. The activities per patient weight and minimum and maximum activities used per Brazilian installations were compared with those used in USA installations. Per patients, it was calculated the ideal minimum administered activity for each type of radiopharmaceutical by body weight according the Pediatric Dosage Card (PDC) criteria. It was not possible to compare activities for all radiopharmaceuticals used in Brazil because some are not more used outside, e.g. 131 I-NaI, which is replaced by 123 I-NaI for thyroid imaging. The discrepancy between activities used in Brazil compared with those used in USA and Europe may be attributed to the heterogeneity of Brazilian imaging equipment and lack for specific children protocols. The disadvantages for using fractions of adult activities are: necessity of minimum statistical counting for assurance of image quality and dependence upon equipment calibration. It was concluded that is necessary to establish standard criteria for radiopharmaceuticals activities applied to pediatric patients in Brazil and the risks due to additional activities should be estimated individually. (author)

  8. Radiopharmaceuticals for therapy

    International Nuclear Information System (INIS)

    Lazarus, C.R.; Maisey, M.N.

    1985-01-01

    Several factors influencing the choice of radiopharmaceutical used in the treatment of benign and malignant disease are discussed. A brief review is given of the routine clinical uses of radiopharmaceuticals including treatments for hyperthyroidism, thyroid cancer, polycythaemia rubra vera and intracavitary therapy. Finally clinical situations using radionuclides under evaluation including the treatment of bone disease, adrenal tumours and monoclonal antibodies are discussed. (UK)

  9. Uncertainty sources in radiopharmaceuticals clinical studies; Fontes de incertezas em estudos clinicos com radiofarmacos

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, Aemilie Louize; Oliveira, Silvia Maria Velasques de, E-mail: silvia@cnen.gov.br, E-mail: amilie@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The radiopharmaceuticals should be approved for consumption by evaluating their quality, safety and efficacy. Clinical studies are designed to verify the pharmacodynamics, pharmacological and clinical effects in humans and are required for assuring safety and efficacy. The Bayesian analysis has been used for clinical studies effectiveness evaluation. This work aims to identify uncertainties associated with the process of production of the radionuclide and radiopharmaceutical labelling as well as the radiopharmaceutical administration and scintigraphy images acquisition and processing. For the development of clinical studies in the country, the metrological chain shall assure the traceability of the surveys performed in all phases. (author)

  10. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1980-December 31, 1981

    International Nuclear Information System (INIS)

    Welch, M.J.

    1981-06-01

    Although the germanium-68 → gallium-68 generator is probably the only source of positron-emitting radionuclides that could enable the widespread application of positron tomography, the commercially available 68 Ga/ 68 Ge generator system suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, which forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than 68 Ga-EDTA, it is first necessary to break the stable EDTA complex and remove all traces of EDTA. This procedure adds several steps and a significant amount of time to procedures for preparing 68 Ga-radiopharmaceuticals. Several years ago, we developed a new generator using a solvent extraction system which produces 68 Ga-oxine (8-hydroxyquinoline), a weak chelate. We have also carried out studies to compare generator systems which produce 68 Ga in an ionic form. Using the gallium-68 eluted from these various generator systems, several 68 Ga-labeled radiopharmaceuticals have been synthesized and tested in vitro and in vivo. In addition, attempts have been made to design and synthesize a lipophilic ligand for gallium-68. The stability of radiogallium complexed with a series of potentially lipophilic complexing agents has been studied using chromatographic techniques and in vivo distribution data. The potential of these complexing agents for altering the biodistribution of gallium radiopharmaceuticals has also been investigated

  11. Sm-153 EDTMP (ethylene diamine tetramethylene phosphonic acid) radiotherapeutic radiopharmaceutical

    International Nuclear Information System (INIS)

    Rehir Dahalan; Wan Anuar Wan Awang

    1999-01-01

    This work has utilized the technology used in the design of the diagnostic radiopharmaceuticals, which enabled optimum delivery of, the gamma emitting radionuclide to the target organs, enhancing the image of organ of interest. Optimal delivery of radiotherapeutic agents, minimizes the dose to the non target organs, whilst delivering destructive beta emitting radionuclide to target cancerous tissues with the hope of slowing down or completely ablating its growth. This work had been in establishing the parameters in the optimal production of Sm-153 using the MINT Research Reactor (MINTRR). This radionuclide, was then labeled to the ethylene diamine tetramethylene phosphoric acid (EDTMP) ligand, a bone-seeking complex. The results of this work have established the most suitable target form, the optimum labeling conditions and the necessary parameters to enhance the biodistribution of the Sm-153 EDTMP complex in the bone of the animal model, thus similarly in human. (author)

  12. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  13. A clinical compariosn of sup(99m)Tc-DPD and two sup(99m)Tc-MDP agents

    International Nuclear Information System (INIS)

    Vorne, M.; Vaehaetalo, S.; Lantto, T.

    1983-01-01

    Two hundred and fifty-seven patients were studied with bone-seeking radiopharmaceuticals. They were randomly divided into three groups. Two groups were injected with two different sup(99m)Tc-methylene diphosphonates from two manufactures (MDP 1 and MDP 2) and the third group with sup(99m)Tc-dicarboxypropane diphosphonate (DPD). DPD was found to be superior with respect to blood clearance, femur to soft tissue ratio and subjectivly assessed image quality. There seemed to be no marked differences between the bone-seeking agents in the visualisation of pathological foci. The image quality seemed to be better in the MDP 2 group than in the MDP 1 group but they were similar in other respects. The femur to soft tissue ratio decreased with increasing age in the DPD group but not in the MDP groups. With all agents worsening of scan quality with increasing age was noted and the image quality was better with men than with women. When short incubation times of radiopharmaceuticals were used before injection, the bone to soft tissue ratio was lower and the scan quality was poorer than with incubation times longer than 20 min. (orig.)

  14. Synthesis of radiopharmaceuticals containing short-lived radionuclides: Progress report, March 1, 1987-February 28, 1988

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1987-09-01

    The objective is the creation of new methods for introducing short-lived isotopes into agents for use in diagnostic nuclear medicine. Focus is on the design of new molecular architecture as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals. The new technology is utilized in nuclear medicine research at the University of Tennessee Medical Imaging Center and in collaboration with colleagues at other DOE facilities. The program provides training for students in the scientific aspects of nuclear medicine. The academic nature of the program facilitates collaborative interactions with other DOE nuclear medicine programs and helps to insure the continued availability of skilled scientists dedicated to the advancement of nuclear medicine. 70 refs., 9 figs

  15. Supply of radiopharmaceuticals in Japan

    International Nuclear Information System (INIS)

    Genka, Tsuguo

    2006-01-01

    Detailed statistics of the application of radiopharmaceuticals in nuclear medicine in Japan are summarized. They are the amount of supply in terms of monetary value and radioactivity, categorized usages of in vivo and in vitro, number of facilities using the radiopharmaceuticals for the time span of 5 years (1998-2002). Obvious tendency of decrease for in vitro use can be seen while the total amount of radiopharmaceuticals is almost unchanged. (author)

  16. Teaching and research in radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I [Noujaim Institute for Pharmaceutical Oncology Research, University of Alberta, Edmonton (Canada)

    1998-08-01

    Radiopharmaceuticals comprise a critical element of diagnostic and therapeutic clinical nuclear medicine. As well they contribute to more basic pre-clinical and clinical diagnostic studies such as the evaluation of new drugs and new drug formulations. Their development and utilization is based on the complex interaction of a number of disciplines including medicine, pharmacy, biochemistry, pharmacology, chemistry, physics and engineering. This technically-complex multidisciplinary base has impeded the development of a uniform curriculum of training for basic scientists and professionals who work with radiopharmaceuticals. the range of technical knowledge required is very broad; it ranges from chemical synthesis and radiolabelling, through a maze of biochemistry, pharmacology and now molecular biology, to GMP manufacture, dispensing and clinical consultation concerning use and interpretation of data. Clearly, no single discipline can (nor should) be expected to undertake in-depth training of radiopharmaceutical scientists, but equally clearly, there is need for the development of curricula that will develop specific components of the essential knowledge base. The `radiopharmaceutical` or `product` orientation of both teaching and research can be used to provide a focus for academic and professional organizations to develop `radiopharmacy` curricula that effectively train radiopharmaceutical practitioners for specific roles within the clinical, academic, government and industrial interests of radiopharmaceutical scientists. Currently, there is a plethora of segmented training programs, many of which are inadequately positioned to be of great value to the field or its practitioners. Efforts to re-focus radiopharmacy programs and to build professional recognition for them are bringing about harmonization of performance objectives, and leading to didactic and experiential curricula. The impact and evolution of regulatory processes will demand new and better

  17. Teaching and research in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wiebe, L.I.

    1998-01-01

    Radiopharmaceuticals comprise a critical element of diagnostic and therapeutic clinical nuclear medicine. As well they contribute to more basic pre-clinical and clinical diagnostic studies such as the evaluation of new drugs and new drug formulations. Their development and utilization is based on the complex interaction of a number of disciplines including medicine, pharmacy, biochemistry, pharmacology, chemistry, physics and engineering. This technically-complex multidisciplinary base has impeded the development of a uniform curriculum of training for basic scientists and professionals who work with radiopharmaceuticals. the range of technical knowledge required is very broad; it ranges from chemical synthesis and radiolabelling, through a maze of biochemistry, pharmacology and now molecular biology, to GMP manufacture, dispensing and clinical consultation concerning use and interpretation of data. Clearly, no single discipline can (nor should) be expected to undertake in-depth training of radiopharmaceutical scientists, but equally clearly, there is need for the development of curricula that will develop specific components of the essential knowledge base. The 'radiopharmaceutical' or 'product' orientation of both teaching and research can be used to provide a focus for academic and professional organizations to develop 'radiopharmacy' curricula that effectively train radiopharmaceutical practitioners for specific roles within the clinical, academic, government and industrial interests of radiopharmaceutical scientists. Currently, there is a plethora of segmented training programs, many of which are inadequately positioned to be of great value to the field or its practitioners. Efforts to re-focus radiopharmacy programs and to build professional recognition for them are bringing about harmonization of performance objectives, and leading to didactic and experiential curricula. The impact and evolution of regulatory processes will demand new and better

  18. 68Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling.

    Science.gov (United States)

    Young, Jennifer D; Abbate, Vincenzo; Imberti, Cinzia; Meszaros, Levente K; Ma, Michelle T; Terry, Samantha Y A; Hider, Robert C; Mullen, Greg E; Blower, Philip J

    2017-08-01

    The clinical impact and accessibility of 68 Ga tracers for the prostate-specific membrane antigen (PSMA) and other targets would be greatly enhanced by the availability of a simple, 1-step kit-based labeling process. Radiopharmacy staff are accustomed to such procedures in the daily preparation of 99m Tc radiopharmaceuticals. Currently, chelating agents used in 68 Ga radiopharmaceuticals do not meet this ideal. The aim of this study was to develop and evaluate preclinically a 68 Ga radiotracer for imaging PSMA expression that could be radiolabeled simply by addition of 68 Ga generator eluate to a cold kit. Methods: A conjugate of a tris(hydroxypyridinone) (THP) chelator with the established urea-based PSMA inhibitor was synthesized and radiolabeled with 68 Ga by adding generator eluate directly to a vial containing the cold precursors THP-PSMA and sodium bicarbonate, with no further manipulation. It was analyzed after 5 min by instant thin-layer chromatography and high-performance liquid chromatography. The product was subjected to in vitro studies to determine PSMA affinity using PSMA-expressing DU145-PSMA cells, with their nonexpressing analog DU145 as a control. In vivo PET imaging and ex vivo biodistribution studies were performed in mice bearing xenografts of the same cell lines, comparing 68 Ga-THP-PSMA with 68 Ga-HBED-CC-PSMA. Results: Radiolabeling was complete (>95%) within 5 min at room temperature, showing a single radioactive species by high-performance liquid chromatography that was stable in human serum for more than 6 h and showed specific binding to PSMA-expressing cells (concentration giving 50% inhibition of 361 ± 60 nM). In vivo PET imaging showed specific uptake in PSMA-expressing tumors, reaching 5.6 ± 1.2 percentage injected dose per cubic centimeter at 40-60 min and rapid clearance from blood to kidney and bladder. The tumor uptake, biodistribution, and pharmacokinetics were not significantly different from those of 68 Ga

  19. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  20. Radioiodination and Biological Evaluation of some Drugs for Inflammatory Foci Imaging

    International Nuclear Information System (INIS)

    El Refaie, M.S.A.

    2011-01-01

    A radiopharmaceutical is defined as a chemical or pharmaceutical preparation labeled with a radionuclide in tracer or therapeutic concentration, used as a diagnostic or therapeutic agent. A radiopharmaceutical agent is usually administrated into a vein. Depending on which type of scan is being performed, the imaging will be done either immediately, a few hours later, or even several days after the injection. Imaging time varies, generally ranging from 20 to 45 minutes.In this thesis, we are more interested in the drugs that can be used for the treatment of all kinds of inflammation whether septic or aseptic. The inflammation by itself can be a controllable disease, but as the inflammation, specially the chronic type, can be the reason and the beginning of many more serious diseases as autoimmune disease, pulmonary disease, cardiovascular disease, neurological disease and cancer, the study and the early diagnosis of the inflammation can prevent many future problems for the patient. The study of the inflammation has been discussed before by labeling drugs with Iodine-125 for the imaging of inflammatory foci like etodolac, meloxicam, piroxicam and other drugs.

  1. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  2. Positron emitting radiopharmaceuticals for cancer

    International Nuclear Information System (INIS)

    Krohn, K.A.; Graham, M.M.

    1989-01-01

    Cancer is principally a biochemical disease involving abnormal enzymology, gene expression and/or membrane composition. Cytotoxic chemical treatments, including radiation products, are important in controlling cancer. It therefore follows that imaging of the biochemical differences between tumor and normal tissues should lead to more effective therapy. Metabolic imaging should identify the best new treatment protocol for an individual patient and may identify specific causes of resistance to therapy. Methods have been developed for imaging the metabolism of energy substrates (glucose and O 2 ), and DNA precursors (thymidine) and for specifically identifying hormone-dependent tumors (estrogen or testosterone) and hypoxic tissues (bioreductive alkylators). Together these new radiopharmaceuticals are leading to better cancer therapy, not just improving diagnosis, but more by following the different responses of tumor and surrounding normal tissues to cytotoxic therapy

  3. Radiopharmaceuticals good practices handbook: ARCAL XV radiopharmaceuticals control and production

    International Nuclear Information System (INIS)

    Verdera Presto, Silvia

    1998-01-01

    A safety practice of the therapeutics diagnostic proceeding in nuclear medicine require a permanent provide high quality radiopharmaceuticals manufacture. This work treat to give a guide for all radio pharmacies laboratories that produce,control, fraction and or dispense radiopharmaceuticals products, with attention hospitable radiopharmacy laboratory. Three chapters with recommendations in manufacture good practice in Hospital radiopharmacy, industrial centralized, bibliography and three annexe's about clean area classification,standards work in laminar flux bell, and guarantee and cleaning areas

  4. Role of a radiopharmacist in the development of a tumor-localizing radiopharmaceutical

    International Nuclear Information System (INIS)

    Briner, W.H.

    1974-01-01

    The development of a new radiopharmaceutical involves heavy responsibility relating to the safety of human lives. Although in past years the primary concern manifested by regulatory agencies was directed toward the radiation characteristics of these agents, more recent attention has been directed to the pharmaceutical quality of radioactive drugs. The technology of radiopharmaceutical design and formulation includes both aspects. Thus radiopharmacists have an exceedingly important role to play in this research and development area, for their training and experience in both the physical and biological sciences, their expertise in pharmaceutical formulation and quality control techniques, and their knowledge of laws and regulations that apply to all drugs can be invaluable. (U.S.)

  5. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  6. 'Serial review on clinical PET tracers'. Manufacturing and quality control of positron emitting radiopharmaceuticals produced by in-house cyclotron

    International Nuclear Information System (INIS)

    Saji, Hideo

    2009-01-01

    In order to establish PET diagnosis as a routine clinical tool, manufacture's compliance with regulations under the Good Manufacturing Practice (GMP) principle for PET radiopharmaceuticals is necessary. For this purpose, the Sub-committee on Medical Application of Positron Emitting Radionuclides, Medical Science and Pharmaceutical Committee of Japan Radioisotopes Association has proposed 'Standards for Compounds Labeled with Emitting Radionuclides Approved as Established Techniques for Medical Use'. This guideline includes the general notices, general rules for preparations, general tests for the quality control, quality of each PET agents, guideline for manufacturing environment and manufacturing process at manufacturing facilities of PET agents. Each facility should have a committee and establish an internal system to account for manufacturing compounds labeled with positron emitting radionuclides produced in the facility, and compile standards by referring to the 'Established Standard Techniques of Labeling Compounds with Emitting Radionuclides for use as Radiopharmaceuticals: approved by the Subcommittee on Medical Application of Cyclotron-Produced Radionuclides (revised in 2009)', in order to maintain the quality of radiopharmaceuticals. (author)

  7. The radiopharmaceutical industry and European Union regulations

    International Nuclear Information System (INIS)

    Fallais, C.J.; Sivewright, S.; Ogle, J.R.

    1997-01-01

    After a brief historical introduction to Council Directives relating to the manufacture of radiopharmaceuticals the work of the Association of Radiopharmaceuticals Producers - Europe (ARPE) is discussed. ARPE has played a significant role as an officially recognized interlocutor with the EEC, influencing decisions on the registration of radiopharmaceuticals and labelling; this role is reviewed and difficulties identified. The future of radiopharmaceuticals is then considered; it is emphasized that harmonization of national laws by the European Council would represent a first step to enabling radiopharmaceutical manufacturers to access the largest possible market for their products. (orig.)

  8. Drugs that alter biodistribution and kinetics of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shani, J.

    1986-01-01

    Target localization and organ biodistribution of radiopharmaceuticals (RPs) may be altered by non-radioactive drugs whose pharmacological mechanisms compete with the RPs for the same retention processes. Originally referred to as side effects or incompatibilities, such interactions became a major concern in evaluating Nuclear Medicine procedures, as they might cause interpretation of the latter to be without value or misleading. With accumulated experience, some interactions were intentionally included in Nuclear Medicine procedures and became an additional tool in differential diagnosis. Moreover, due to the ability of some RPs to compete with therapeutic agents, Nuclear Medicine studies shifted from anatomical-physiological to more pharmacologically-pathologically-based procedures that can also monitor the stage of disease, and follow its treatment. The aim of this review, therefore, is not only to illustrate some crucial pharmacological issues in Nuclear Medicine imaging, but to emphasize the possible input that alterations of RP biodistribution by drugs may have in achieving better and safer diagnosis, disease staging and monitoring of the patient's response to therapy. 166 references

  9. Preparation, chromatographic evaluation and biodistribution of "9"9"mTc-procainamide as a radiopharmaceutical for heart imaging

    International Nuclear Information System (INIS)

    Motaleb, M.A.; Ibrahim, I.T.; Abo Rizq, R.S.; Elzanfaly, E.S.

    2017-01-01

    Procainamide (4-amino-N-[2-(diethylamino) ethyl] benzamide) is a sodium channel blocker, which acts as an effective antiarrhythmic agent used in the treatment of a variety of atrial and ventricular arrhythmias. The aim of this study was to prepare "9"9"mTc-procainamide complex, apply different chromatographic techniques for the assay of radiolabeling yield and study its biodistribution as a novel radiopharmaceutical for heart imaging. "9"9"mTc-procainamide was obtained with a maximum labeling yield of 95.76±0.20% via direct labeling method under optimum conditions of 200 μg of procainamide, 300 μL of buffer (carbonate) at pH 11, 30 μg SnCl_2 . 2H_2O at room temperature (25 C) for 15 min. In terms of in vitro stability, the complex was stable for 3 h. Chromatographic evaluation using paper chromatography, thin layer chromatography, gel chromatography, and high performance liquid chromatography showed reliable results for measuring the radiochemical yield. Biodistribution study of "9"9"mTc-procainamide showed ratios of heart/lung and heart/liver (6.38±1.50, 2.06±0.31, respectively at 30 min post injection) which was comparable to that of "9"9"mTc-sestamibi (7.4±2.00, 0.97±0.10, respectively at 60 min, P<0.05).

  10. Preparation, chromatographic evaluation and biodistribution of {sup 99m}Tc-procainamide as a radiopharmaceutical for heart imaging

    Energy Technology Data Exchange (ETDEWEB)

    Motaleb, M.A.; Ibrahim, I.T.; Abo Rizq, R.S. [Atomic Energy Authority, Cairo (Egypt). Labeled Compound Dept.; Elzanfaly, E.S. [Cairo Univ. (Egypt). Analytical Dept.

    2017-06-01

    Procainamide (4-amino-N-[2-(diethylamino) ethyl] benzamide) is a sodium channel blocker, which acts as an effective antiarrhythmic agent used in the treatment of a variety of atrial and ventricular arrhythmias. The aim of this study was to prepare {sup 99m}Tc-procainamide complex, apply different chromatographic techniques for the assay of radiolabeling yield and study its biodistribution as a novel radiopharmaceutical for heart imaging. {sup 99m}Tc-procainamide was obtained with a maximum labeling yield of 95.76±0.20% via direct labeling method under optimum conditions of 200 μg of procainamide, 300 μL of buffer (carbonate) at pH 11, 30 μg SnCl{sub 2} . 2H{sub 2}O at room temperature (25 C) for 15 min. In terms of in vitro stability, the complex was stable for 3 h. Chromatographic evaluation using paper chromatography, thin layer chromatography, gel chromatography, and high performance liquid chromatography showed reliable results for measuring the radiochemical yield. Biodistribution study of {sup 99m}Tc-procainamide showed ratios of heart/lung and heart/liver (6.38±1.50, 2.06±0.31, respectively at 30 min post injection) which was comparable to that of {sup 99m}Tc-sestamibi (7.4±2.00, 0.97±0.10, respectively at 60 min, P<0.05).

  11. Radiopharmaceuticals for nuclear cardiology

    International Nuclear Information System (INIS)

    Leon Cabana, Alba

    1994-01-01

    One of the diagnostic technique periodically used in Nuclear Medicine is the angiographic studi e, employee for detect cardiovascular diseases. The radiopharmaceutical more used in the angiographic ones is 99mTc. Between thetopics described in the present work it find: myocardial infarction, radiopharmaceuticals classification for cardiac studies, labelled proceedings, cardiovascular diseases

  12. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    International Nuclear Information System (INIS)

    Wiebe, L. I.

    1997-01-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  13. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  14. Development of European regulations on radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1990-01-01

    Separate regulatory systems are being developed on the use of radiopharmaceuticals including radiation protection of patients and personnel and on the quality including safety and efficacy of radiopharmaceuticals. Radiation protection legislation has been introduced in most western European Economic Community (EEC). Within the drug field radiopharmaceuticals have been excepted up till now. However, new EEC directive on radiopharmaceuticals will soon come into force. The work done on the preparation of regulations and guidelines will be discussed. This discussion will focus on the problems faced when radiation protection aspects shall be balanced to traditional requirements of pharmaceutical aspects

  15. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  16. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1988-01-01

    Different forms of radiopharmaceuticals such as radioactive gases, aerosols and colloids used for diagnostic techniques and radiotherapy and methods of labelling them are discussed. Some reference is made to their documentation, handling and quality control. (U.K.)

  17. Production of PET radiopharmaceutical 18F-FDG using synthesizer automatic module

    International Nuclear Information System (INIS)

    Purwoko; Chairuman; Adang Hardi Gunawan; Yayan Tahyan; Eny Lestari; Sri Aguswarini Lestiyowati; Karyadi; Sri Bagiawati

    2010-01-01

    Radiopharmaceutical 2-( 18 F)Fluoro-2-Deoxy-D-Glucose or 18 F(FDG) is an important PET (Positron Emission Tomography) radiopharmaceutical for tumour imaging. In the PET technique glucose metabolism in tumour tissues can be determined quantitatively and used for diagnosis staging and monitoring of treatment tumour or cancer disease in medical oncology. The production of 2-( 18 F)Fluoro-2-Deoxy-D-Glucose 18 F-FDG using compact automated system module TRACERlab MX has been carried out. The modular setup of the apparatus permits reliable for routine synthesis of radiopharmaceuticals 18 F-FDG based on kriptofix mediated nucleophilic fluorination to mannose triflate precursor. Radiochemical yield of 18 F-FDG was 53.895 % (decay time uncorrected) in 40 minutes. The product showed that the colorless and clear solution at pH:6, sterile and pirogen free, kriptofix impurities was low and radiochemical purity was 99.595%. (author)

  18. Design of site specific radiopharmaceuticals for tumor imaging. (Parts I and II)

    International Nuclear Information System (INIS)

    Van Dort, M.E.

    1983-01-01

    Part I. Synthetic methods were developed for the preparation of several iodinated benzoic acid hydrazides as labeling moieties for indirect tagging of carbonyl-containing bio-molecules and potential tumor-imaging agents. Biodistribution studies conducted in mice on the derivatives having the I-125 label ortho to a phenolic OH demonstrated a rapid in vivo deiodination. Part II. The reported high melanin binding affinity of quinoline and other heterocyclic antimalarial drugs led to the development of many analogues of such molecules as potential melanoma-imaging agents. Once such analogue iodochloroquine does exhibit high melanin binding, but has found limited clinical use due to appreciable accumulation in non-target tissues such as the adrenal cortex and inner ear. This project developed a new series of candidate melanoma imaging agents which would be easier to radio-label, could yield higher specific activity product, and which might demonstrate more favorable pharmacokinetic and dosimetric characteristics compared to iodochloroquine

  19. Radiopharmacy and radiopharmaceutical products

    International Nuclear Information System (INIS)

    Galy, Gerard; Fraysse, Marc; Hammadi, Akli; Tafani, Mathieu

    2012-01-01

    Written by two radio-pharmacist doctors, this book presents all the theoretical and practical knowledge necessary to radio-pharmacists in charge of the management, the preparation, the control and the delivery of radiopharmaceutical medicines. It presents the scientific, regulatory and technical foundations for the implementation and operation of radiopharmacy in hospitals, addressing themes such as the fundamentals and theories about nuclear physics and radioactivity (production of artificial radionuclides, detectors and measuring instruments, radio-chemistry), radio-biology and radiation protection (biological effects of ionizing radiations, radioprotection, regulations concerning the use of radiopharmaceutical products by medical personnel), the application domains of radiopharmaceutical medicines and products (diagnosis, therapy, biological assessment), and the management of radiopharmacy in a hospital (design, implementation, organizing, operation)

  20. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  1. Radiopharmaceuticals. 40 years is nothing

    International Nuclear Information System (INIS)

    Hager, Alfredo A.

    2006-01-01

    The nuclear medicine is today a medical speciality recognized and practised in the whole world. The birth was in the middle of the 20th century in the use of molecules or drugs marked with a radionuclide (radiopharmaceutical), for the diagnostic studies in vivo or in vitro, to obtain a therapeutic effect. Early in the decade of 70, its development and evolution was accentuated thanks to electronics, the contribution of new instruments for detection of diagnosis by images (gamma camera) and to the emergence of new radionuclide (in particular, 99m Tc). (author) [es

  2. Preparation and evaluation of (131I)AgI particles: potential lungs perfusion imaging agent

    International Nuclear Information System (INIS)

    Chattopadhyay, Sankha; Das, Sujata Saha; Sinha, Samarendu; Sarkar, Bharat Ranjan; Ganguly, Shantanu; Chandra, Susmita; De, Kakali; Mishra, Mridula

    2010-01-01

    Since the discovery of iodine-131 (t 1/2 : 8 d) by Livingood and Seaborg (1938), this, and other radioisotopes of iodine, have found widespread use in nuclear medicine. The purpose of the present work was to formulate Ag 131 I particles and bio-evaluate the same. The Ag 131 I particles were prepared in acidic condition having 100% R.C. Purity. The biological evaluation of Ag 131 1 particles was made by injecting about 111-185 MBq of Ag 131 I particles preparations in female albino rabbits (2-2.5 kg weight) intravenously by femoral vein under urethane anesthesia. Imaging studies were performed under Gamma Camera. The entire amount of the Ag 131 I particles were found to deposit in the lungs and remained there almost unchanged for a certain period of time after the intervenous administration. The images showed excellent, uniform lung uptake with no interference from liver and spleen to the lower regions of right and left lobes. It showed a high accumulation in the rabbits lungs (>99%) and remained constant for at least for 20 min. It is also worthy to study with 123 I/ 124 I labelled AgI for lung imaging study. In conclusion, the synthetic radiopharmaceutical ( 131 I)-Silver iodide colloid can be prepared with a large particle size, in a simple and practical manner, and it has good potential for use as a perfusion imaging agent in lung scans

  3. 6. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Schiller, P.; Havranek, E.; Majer, J.

    1981-01-01

    Radionuclides commonly used in medicine are surveyed and their nuclear characteristics are presented. The methods are given of their preparation, most frequent use and detection. The list is given of radiopharmaceuticals included in the Czechoslovak Pharmacopoeia CsL 3 , ie., sodium chromate( 51 Cr), sodium iodide( 131 I), hippuran( 131 I), sodium phosphate( 32 P), colloidal gold( 198 Au), rose bengal sodium salt( 131 I), and sodium pertechnetate(sup(99m)Tc) injections. Characteristics, chemical preparation, identification tests, packaging, storage, application and dosage are shown for each preparation. Also listed are important unofficial radiopharmaceuticals, their main characteristics and data on their preparation and application. (B.S.)

  4. 99mTc renal tubular function agents: Current status

    International Nuclear Information System (INIS)

    Eshima, D.; Fritzberg, A.R.; Taylor, A. Jr.

    1990-01-01

    Orthoiodohippuric (OIH) acid labeled with 131I is a widely used renal radiopharmaceutical agent and has been the standard radiopharmaceutical agent for the measurement of effective renal plasma flow (EPRF). Limitations to the routine clinical use of 131I OIH are related to the suboptimal imaging properties of the 131I radionuclide and its relatively high radiation dose. 123I has been substituted for 131I; however, its high cost and short shelf-life have limited its widespread use. Recent work has centered on the development of a new 99mTc renal tubular function agent, which would use the optimal radionuclidic properties and availability of 99mTc and combine the clinical information provided by OIH. The search for a suitable 99mTc renal tubular function agent has focused on the diamide dithiolate (N2S2), the paraaminohippuric iminodiacetic acid (PAHIDA), and the triamide mercaptide (N3S) donor ligand systems. To date, the most promising 99mTc tubular function agent is the N3S complex: 99mTc mercaptoacetyltriglycine (99mTc MAG3). Studies in animal models in diuresis, dehydration, acid or base imbalance, ischemia, and renal artery stenosis demonstrate that 99mTc MAG3 behaves similarly to 131I OIH. A simple kit formulation is available that yields the 99mTc MAG3 complex in high radiochemical purity. Studies in normal subjects and patients indicate that 99mTc MAG3 is an excellent 99mTc renal tubular agent, but its plasma clearance is only 50% to 60% that of OIH. In an effort to develop an improved 99mTc renal tubular function agent, changes have been made in the core N3S donor ligand system, but to date no agent has been synthesized that is clinically superior to 99mTc MAG3. 61 references

  5. Determination of Sn in 99mTc Radiopharmaceutical Kits by Polarographic Methods

    International Nuclear Information System (INIS)

    Castro, M.; Cruz, J.; Sanchez, M.

    2009-01-01

    Kits of 99 m Tc radiopharmaceuticals are used in nuclear medicine for diagnosis of different diseases. Sn (II) is one of the essential components in their formulations, which is used for reduction 99 m Tc-pertechnetate in cold kits for on-site preparation 99 m Tc-pertechnetate radiopharmaceuticals. Usually, these cold kits contain different additives (complexing agents, antioxidants, buffers, etc.) and the amount of Sn (II) varies from kit to kit. The determination of Sn in these products is essential in assessing their quality. We report here the development of a new polarographic method for the determination of Sn (II) and total Sn in representative radiopharmaceuticals kits (for the content of Sn and chemical composition) produced at the Center of Isotopes of Cuba (CENTIS). These methods were validated by analysis of variance and recovery techniques. From the results of the validation, the characteristic functions of uncertainties and fits are considered for the established methods, which give the necessary evidences to demonstrate the usefulness of these methods according to the current trends in Analytical Chemistry. This work provides practical results of great importance for CENTIS. After the speciation of Sn in the MAG3 radiopharmaceuticals kit is inferred that the production process is affected by uncontrolled factors that influence in the product stability, which demonstrates the necessity for analytical tools for the characterization of products and processes. (Author) 57 refs.

  6. Radioisotope requirements and usage in the radiopharmaceutical industry

    International Nuclear Information System (INIS)

    Langton, M.A.

    1995-01-01

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world's largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a open-quotes cold kit,close quotes which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product

  7. Bone-seeking radiopharmaceuticals in skeletal malignancy: evolution, not revolution

    International Nuclear Information System (INIS)

    MacFarlane, D.

    2003-01-01

    Many advanced malignancies are complicated by skeletal metastases, with attendant pain and disability. External beam radiotherapy is still the most effective treatment for isolated lesions. Bone-seeking radiopharmaceuticals were perceived as a means of delivering radiation to multiple lesions simultaneously. A wide variety of radioisotopes have been used in this endeavor, with myelosuppression being the most significant potential adverse effect. Benefits of treatment are modest, including a transient improvement in pain control and perhaps prolongation of the treatment-free period. This is best demonstrated in prostate cancer with lower responses by skeletal metastases from breast and lung cancers. However, the treatment is yet to produce any improvement in patient survival. Experimental approaches to improve treatment efficacy include combination with cytotoxic therapy, and administration earlier in the course of the disease. Bone seeking radiopharmaceuticals have been used in treatment of advanced osteosarcoma in humans and canines and achieved effective palliation. The myelosuppressive effects of these agents have been exploited in patients with multiple myeloma to assist in attaining myeloablation prior to stem cell transplantation. Development of more potent non-radiolabelled bisphosphonates and recognition of their antitumour effect against several tumours has sparked a recrudescence of interest in their use for bone metastases. Set against these developments, the role of bone-seeking radiopharmaceuticals in skeletal metastases may need to be redefined

  8. Radiopharmaceuticals in breast milk

    International Nuclear Information System (INIS)

    Mountford, P.J.; Coakley, A.J.

    1986-01-01

    As assessment has been made of the radiological hazards to an infant following the administration of a radiopharmaceutical to a breast feeding mother. Feeding should be discontinued after administration of most I-131 and I-125 compounds, Ga-67 citrate or Se-78 methionine, and for iodinated compounds where it was possible to resume feeding, a thyroid-blocking agent should be administered. For Tc-99m compounds, pertechnetate had the greatest excretion in milk and interruptions of 12hr and 4hr were considered appropriate for pertechnetate and MAA respectively. Other Tc-99m compounds, Cr-51 EDTA and In-111 leucocytes did not justify an interruption just on the grounds of their associated excretion in milk. The ingestion hazard could be minimized by reducing the administered activity, and in some cases, by the substitution of a radiopharmaceutical with lower breast milk excretion. For Tc-99m lung and brain scans, the absorbed dose due to radiation emitted by the mother (i.e. when cuddling) was less than the ingested dose, but for a Tc-99m bone scan the emitted dose was greater. In all three cases, the emitted dose did not exceed 0 x 5 mGy for the infant in close contact to the mother for one-third of the time. For In-111 leucocytes, the emitted dose was about 2mGy, and it was concluded that close contact should be restricted to feeding times during the first 3 days after injection. 36 references, 2 figures, 5 tables

  9. Audits of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.

    1992-01-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team

  10. Multimodal nanoparticle imaging agents: design and applications

    Science.gov (United States)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  11. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1980-06-01

    Although the germanium-68 ..-->.. gallium-68 generator is probably the only source of positron-emitting radionuclides that could enable the widespread application of positron tomography, the commercially available /sup 68/Ga//sup 68/Ge generator system suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, which forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than /sup 68/Ga-EDTA, it is first necessary to break the stable EDTA complex and remove all traces of EDTA. This procedure adds several steps and a significant amount of time to procedures for preparing /sup 68/Ga-radiopharmaceuticals. We have developed a new generator using a solvent extraction system which will produce /sup 68/Ga-oxine (8-hydroxyquinoline), a weak chelate. Using this agent we have synthesized several /sup 68/Ga-radiopharmaceuticals and tested them in vitro and in vivo. We have also carried out some preliminary studies to compare generator systems which produce /sup 68/Ga in an ionic form. Attempts have been made using polarographic and chromatographic techniques, and in vivo distribution data to investigate the stability of radiogallium complexes with a series of potentially lipophilic complexing agents.

  12. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  13. The search for consistency in the manufacture of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Finn, R.D.

    1999-01-01

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts in this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. Various oncology applications have utilized specific PET and SPECT radiopharmaceuticals, which have allowed an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. One of the most widely recognized advantages of positron emission tomography (PET) is its use of the attractive, positron-emitting biologic radiotracers that mimic natural substrates. However, a major disadvantage is that these substances are relatively short-lived and unable to be transported great distances. At this time, economic considerations and regulatory guidelines associated with the creation of a PET facility, as well as the operational costs of maintaining both the facility and the necessary procedural documentation, continue to create interesting strategic dilemmas. This commentary will focus on the current approach and anticipated impact of pending regulations, which relate to the manufacture and formulation of a variety of PET radiopharmaceuticals used in clinical research and patient management at Memorial Hospital. (author)

  14. Liposomes as carriers of imaging agents

    International Nuclear Information System (INIS)

    Caride, V.J.

    1985-01-01

    This review discusses the utilization of liposomes as imaging agents or as vehicles for contrast materials. The initial approach was the use of radiolabeled liposomes for scintigraphy. To this end liposomes were either labeled in the lipid membrane or aqueous radiotracers were incorporated inside the lipid vesicles. The lipid labeling provides a more stable association of the radioactive tracer and the lipid vesicles, while the use of water-soluble radiotracers provides a wider selection of compounds. Early attempts at selective tumor imaging using radiolabeled liposomes were unsuccessful. The use of monoclonal antibodies attached to liposomes offers new hopes. Several strategies have been proposed in this respect and several others can be envisioned. The use of liposomes permits the use of several administration routes for imaging agents. Of particular interest is the subcutaneous administration for lymph node visualization. Liposomes offer clear advantages over most radiocontrast agents for prolonged hepatosplenic contrast enhancement. This is particularly relevant in the diagnostic evaluation of the abdomen with computed tomography. Important research efforts are being conducted in this area. Two different approaches have been advanced: the incorporation of contrast agents into liposomes and the preparation of radiopaque liposomes from radiodense lipids. Nuclear magnetic resonance imaging can also benefit from contrast agents. Several centers are investigating this exciting field using liposomes loaded with paramagnetic elements.152 references

  15. Radiopharmaceuticals - current state and trends

    International Nuclear Information System (INIS)

    Muenze, R.

    1981-07-01

    The current state as well as the tendencies of modern radiopharmaceutical development and application is reviewed. After an evaluation of the fundamental preconditions of decay characteristics and pharmaceutical properties the problems concerning sup(99m)Tc-radiopharmaceuticals, metabolizable compounds and the use of specific biological interactions are discussed. (author)

  16. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  17. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  18. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  19. Considerations and controversies in the selection of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chilton, H.M.; Cowan, R.J.

    1987-01-01

    When a radiopharmaceutical is selected for a specific study, multiple factors must be considered to ensure that optimum clinical information will be provided with minimum radiation exposure to the patient and laboratory personnel. In this endeavor, certain questions must be considered. What are the nuclear properties of the available radiopharmaceuticals? For the organ to be studied, are there multiple radiopharmaceutical localization pathways? If so, which is best suited to provide the desired diagnostic information? Does the presence of certain clinical factors preclude the use of some radiopharmaceuticals and require the use of others? Do certain radiopharmaceuticals have overriding radiopharmacologic properties which limit their usefulness for the evaluation of certain clinical situations? Finally, how significant are non-clinical properties such as cost, availability, and product formulation? In this chapter, some of these areas and several situations which illustrate the radiopharmaceutical selection process are discussed

  20. Non-carrier-added 186,188Re labeled 17α-ethynylestradiol: a potential breast cancer imaging and therapy agent

    International Nuclear Information System (INIS)

    Fassbender, M.E.; Phillips, Dennis R.; Peterson, E.J.; Ott, K.C.; Arterburn, J.B.

    2001-01-01

    Receptor-targeted radiopharmaceuticals constitute potential agents for the diagnosis and therapy of cancer. Breast cancer is the most prevalent form of diagnosed cancer in women in the United States, and it accounts for the second highest number of cases of cancer fatalities (1). In Approximately two-thirds of the breast tumors, estrogen and progesterone steroid hormone receptors can be found. Such tumors can often be treated successfully with anti-estrogen hormone therapy (2). Hence, the ability to determine the estrogen receptor (ER) contend of the breast tumor is essential for making the most appropriate choice of treatment for the patient. Along with this diagnostic aspect, steroid-based radiopharmaceuticals with high specific activity offer an encouraging prospect for therapeutic applications: 186,188 Re labeled steroids binding to receptors expressed by cancer cells appear to be potential agents for the irradiation of small to medium-sized tumors. 186 Re has been regarded as an ideal radionuclide for radiotherapy due to its appropriate half-live of 90 h and β-energy of 1.07 MeV. Moreover, the γ-emission of 137 keV that allows in vivo imaging while in therapy is an additional bonus. 188 Re is obtained from a 188 W/ 188 Re radionuclide generator system, representing an advantage for availability at radiopharmacy laboratory by daily elution. In addition, 188 Re emits high energy beta particles with an average energy of 769 keV, and the emission of the 155 keV allows simultaneous imaging for biodistribution evaluation in vivo. In order to avoid competitive saturation of the binding sites of the ligand receptor, Re labeled steroids with high specific activity are required, and the removal of all excess unlabeled ligands is mandatory. 188 Re is eluted from a 188 W/ 188 Re generator produced and provided by Oak Ridge National Laboratory (3). This paper outlines the solid phase-supported preparation of an n.c.a. ( 188 Re)Re-imido estradiol compound. The

  1. Short-lived radiopharmaceuticals for the diagnosis of ocular melanoma

    International Nuclear Information System (INIS)

    Packer, S.; Lambrecht, R.; Atkins, H.L.; Wolf, A.P.

    1974-01-01

    An experimental procedure has been established to evaluate radiopharmaceuticals for the specific purpose of melanoma detection by scintiscanning. By using the Greene melanoma in the hamster several labeled compounds were compared. Specifically the tumor uptake along with detailed analyses of uptake by various parts of the eye and body were determined in a hamster model. Of those short-lived radionuclides investigated 203 Pb-tris was the most promising as a non-invasive localizing agent for ocular melanoma and it should prove effective for ocular scintigraphy. (U.S.)

  2. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto

    2012-01-01

    In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes...... that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...

  3. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    International Nuclear Information System (INIS)

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors' 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy

  4. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Office of Sponsored Programs

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  5. Placental transfer of selected radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wegst, A.V.

    1992-01-01

    This paper reviews animal experiments carried out to determine the transfer of radiopharmaceuticals from mother to fetus. Animal data are compared to any human data available. The radiopharmaceuticals included in the discussion are Tc-99m pertechnetate, Tc-99m DTPA, Ga-67 citrate and Tl-201 chloride. (6 tab., 5 refs.)

  6. Discovery of Radioiodinated Monomeric Anthraquinones as a Novel Class of Necrosis Avid Agents for Early Imaging of Necrotic Myocardium.

    Science.gov (United States)

    Wang, Qin; Yang, Shengwei; Jiang, Cuihua; Li, Jindian; Wang, Cong; Chen, Linwei; Jin, Qiaomei; Song, Shaoli; Feng, Yuanbo; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2016-02-16

    Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early imaging after administration to assess myocardial viability. Since dianthraquinones can be composed by coupling two molecules of monomeric anthraquinone and the active center can be found by splitting chemical structure, we propose that monomeric anthraquinones may be effective functional groups for necrosis targetability. In this study, eight radioiodinated monomeric anthraquinones were evaluated as novel necrosis avid agents (NAAs) for imaging of necrotic myocardium. All (131)I-anthraquinones showed high affinity to necrotic tissues and (131)I-rhein emerged as the most promising compound. Infarcts were visualized on SPECT/CT images at 6 h after injection of (131)I-rhein, which was earlier than that with (131)I-Hyp. Moreover, (131)I-rhein showed satisfactory heart-to-blood, heart-to-liver and heart-to-lung ratios for obtaining images of good diagnostic quality. (131)I-rhein was a more promising "hot spot imaging" tracer for earlier visualization of necrotic myocardium than (131)I-Hyp, which supported further development of radiopharmaceuticals based on rhein for SPECT/CT ((123)I and (99m)Tc) or PET/CT imaging ((18)F and (124)I) of myocardial necrosis.

  7. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de, E-mail: tsbaptista@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  8. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    International Nuclear Information System (INIS)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de

    2013-01-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  9. Preparações radiofarmacêuticas e suas aplicações Radiopharmaceuticals and applications

    Directory of Open Access Journals (Sweden)

    Rita Oliveira

    2006-06-01

    ármacos em uso clínico corresponde a agentes de perfusão. Atualmente, o esforço de investigação na área da química radiofarmacêutica centra-se no desenvolvimento de radiofármacos específicos que possam fornecer informação, ao nível molecular, relativa às alterações bioquímicas associadas às diferentes patologias.Radiopharmaceuticals are substances without pharmacological activity that are used in Nuclear Medicine for diagnosis and therapy for several diseases. Diagnosis radiopharmaceuticals generally emit gamma radiation or positrons (beta+, because their decay originates penetrating electromagnetic radiation that can cross the tissues and be externally detected. Therapeutic radiopharmaceuticals must include in their composition ionized particles emission nucleus (a, b- or Auger electrons, since their action is based in selective tissue destruction. There are two main methods for image acquisition: SPECT (Single Photon Emission Computerized Tomography that uses g emission radionuclides (99mTc, 123I, 67Ga, 201Tl and PET (Positron Emission Tomography that uses positron emission radionuclides like 11C, 13N, 15O, 18F. Radiopharmaceuticals can be classified into perfusion radiopharmaceuticals (first generation or specific radiopharmaceuticals (second generation. Perfusion radiopharmaceuticals are transported in the blood e reach the target organ in the direct proportion of the blood stream. Specific radiopharmaceuticals contain a biologically active molecule that binds to cellular receptors that must remain biospecific after binding to the radiopharmaceutical. For this type of radiopharmaceuticals, tissue or organ uptake is determined by the biomolecule capacity of recognizing receptors in those biological structures. Radiopharmaceuticals are produced ready to use, in cold kits or in autologal preparations. According to the preparation type there is a different quality control procedure. Most of the radiopharmaceuticals used nowadays are of the perfusion type

  10. Preparation of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Simon, J.; Garlich, J.R.; Frank, R.K.; McMillan, K.

    1998-01-01

    Radiopharmaceutical formulations for complexes comprising at least one radionuclide complexed with a ligand, or its physiologically-acceptable salts thereof, especially 153 samarium-ethylenediaminetetramethylenephosphonic acid, which optionally contains a divalent metal ion, e.g. calcium, and is frozen, thawed, and then administered by injection. Alternatively, the radiopharmaceutical formulations must contain the divalent metal and are frozen only if the time before administration is sufficiently long to cause concern for radiolysis of the ligand. 2 figs., 9 tabs

  11. Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, F C; Wilson, J G

    1980-03-13

    The claim describes a reducing metal complex of a compound in a suitable form for labelling with technetium-99m for radiopharmaceutical purposes, the compound being a complex derived from an indene heterocycle structure. The indene heterocycle structure is selected from the group consisting of iminodiacetic acid derivates of benzimidazole, benzthiazole and benzoxazole.

  12. Compartmental analysis to predict biodistribution in radiopharmaceutical design studies

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina F.; Pujatti, Priscilla B.; Araujo, Elaine B.; Mesquita, Carlos H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mflima@ipen.br

    2009-07-01

    The use of compartmental analysis allows the mathematical separation of tissues and organs to determinate the concentration of activity in each fraction of interest. Although the radiochemical purity must observe Pharmacopoeia specification (values upper 95%), very lower contains of free radionuclides could contribute significantly as dose in the neighborhood organs and make tumor up take studies not viable in case of radiopharmaceutical on the basis of labeled peptides. Animal studies with a product of Lutetium-177 labeled Bombesin derivative ({sup 177}Lu-BBNP) developed in IPEN-CNEN/SP and free Lutetium-177 developed in CNEA/EZEIZA was used to show how subtract free {sup 177}Lu contribution over {sup 177}Lu-BBNP to estimate the radiopharmaceutical potential as diagnosis or therapy agent. The first approach of the studies included the knowledge of chemical kinetics and mimetism of the Lutetium and the possible targets of the diagnosis/therapy to choose the possible models to apply over the sampling standard methods used in experimental works. A model with only one physical compartment (whole body) and one chemical compartment ({sup 177}Lu-BBNP) generated with the compartmental analysis protocol ANACOMP showed high differences between experimental and theoretical values over 2.5 hours, in spite of the concentration of activity had been in a good statistics rang of measurement. The values used in this work were residence time from three different kinds of study with free {sup 177}Lu: whole body, average excretion and maximum excretion as a chemical compartment. Activity concentration values as time function in measurements of total whole body and activity measurement in samples of blood with projection to total circulating blood volume with {sup 177}Lu-BBNP. Considering the two sources of data in the same modeling a better consistence was obtained. The next step was the statistic treatment of biodistribution and dosimetry in mice (Balb C) considering three chemical

  13. Radiopharmaceuticals labelled with positron-emitting radioisotopes

    International Nuclear Information System (INIS)

    Comar, D.; Berridge, M.; Maziere, B.; Crouzel, C.

    1982-01-01

    This chapter reviews the preparation of radioisotopes for biochemical and physiological studies and the principal methods for their incorporation into radiopharmaceuticals, while pointing out the problems encountered with their use and considering their medical interest in the following areas: distribution and flow of fluids, metabolic and pharmacokinetic studies. Inorganic and organic radiopharmaceuticals presently in use and most probable to be used in the future are reviewed. It is anticipated that three types of products labelled with 15 O, 13 N, 11 C and 18 F will be developed in the future. The first type includes products which trace general phenomena such as fluid movement or metabolism of sugars, fats and proteins. The compromise between physiological accuracy and imaging technology is discussed in relation to the use of 11 C and 18 F. The second type of product is one to measure more specific parameters such as those of molecular transport kinetics, membrane permeability, cellular pH and receptor-ligand interactions, again with particular reference to 11 C and 18 F. The third type of product discussed is that intended for pharmacology studies, particular reference being made to 68 Ga, 82 Rb. Extensive bibliography. (U.K.)

  14. Radiopharmaceuticals For Detection Of Inflammation And Infection

    International Nuclear Information System (INIS)

    Nurlaila, Z.

    2002-01-01

    Feeling of pain in the body could be caused by reaction of inflantation and infection as well. One of the methods could be used to detect the reaction is nuclear technique using radiopharmaceutical as radiotracer. Some radiopharmaceuticals having specific accunulation mechanism to diagnose the presence of inflamations and infections with satisfactory results. Among those radiophannaceuticals are technetium-99m-hexamethylpropileneamine-white blood cell ( 99m Tc-HMPAO-WBC), indium-111-oxine-white blood cell ( 111 In-oksin-WBC). technetium-99m-immunoglobuline G ( 99m Tc-lgG) and technetium-99m-infecton ( 99m Tc-infecton). In visualization using this method. the information of a serial previous medical treatment of the patient should be known, because cer1ain medicament, could influence the biological characteristic of radiopharmaceuticals and hence. a missed diagnosis could be resulted. This review discusses several radiopharmaceuticals for inflamation and infection, diagnoses their accumulation, mechanism in the body. Besides, the radiopharmaceuticals interaction with several drugs are also reviewed

  15. Development of radiopharmaceutical for radiosinovectomy

    International Nuclear Information System (INIS)

    Couto, Renata Martinussi

    2009-01-01

    chromatographic systems. Particles size was determined by membrane with using filters of different porous sizes. The biological behavior of 90 Y-HA and 177 Lu-HA was studied by intra-articular administration of 18,5 22,2 MBq /0,1 mL of the labeled particles (knee). Scintigraphic images were obtained in gamma-camera at different times after the administration, to determine the intra-articular retention and leakage of the activity from the joint. The methodology applied in the production of 90 Y-Cit resulted in low radiochemical yield (about 20%), with low percentage of the activity related to the particles with appropriated size to RSV application. Despite low radiochemical yield, labeled particles, when purified by centrifugation, presented relative stability of about 70% after 5 days. The labeling of 90 Y-HA resulted in excellent radiochemical yield (> 95%). The reaction was optimized to routine production with the reduction of the reaction time to 15 minutes and using only one step of centrifugation and washing. The labeling of HA with 177 Lu also resulted in excellent radiochemical yield (> 95%) and the percent of the activity incorporated to the particles >12 m was optimized, with best results obtained when lutetium oxide was not used. The HA labeled with 90 Y and 177 Lu showed high in vitro stability when stored at room temperature for 5 and 7 days, respectively. Paper chromatography and thin layer chromatography were defined as chromatographic systems applied in the radiochemical purity determination of the preparations. Biodistribution studies using HA labeled with 90 Y and 177 Lu showed great in vivo stability of the labeled compounds, with no joint leakage of the radiopharmaceutical or free radionuclide in the blood system, confirming the potential of both radiopharmaceuticals for RSV application. (author)

  16. Radiopharmaceutical drug review process

    International Nuclear Information System (INIS)

    Frankel, R.

    1985-01-01

    To ensure proper radioactive drug use (such as quality, diagnostic improvement, and minimal radioactive exposure), the Food and Drug Administration evaluates new drugs with respect to safety, effectiveness, and accuracy and adequacy of the labeling. The IND or NDA process is used for this purpose. A brief description of the process, including the Chemical Classification System and the therapeutic potential classification, is presented as it applies to radiopharmaceuticals. Also, the status of the IND or NDA review of radiopharmaceuticals is given

  17. The hospital preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    The subject is covered in sections: introduction; preparation ((general - sterilization), production areas (laboratories), working methods for injections, working methods for oral preparations and iodination procedures); analytical testing (general, standards common to injections and oral preparations, standards for injections, standards for oral preparations); reliable methods of preparing sup(99m)Tc-radiopharmaceuticals and 51 Cr-red cells; commercial radiopharmaceutical kits. (U.K.)

  18. Quantitative studies in radiopharmaceutical science: Progress report, September 1, 1986 through August 31, 1987

    International Nuclear Information System (INIS)

    Cooper, M.

    1987-09-01

    The reports in the study were processed separately for the data bases. Research involved attempts to improve PET imaging and diagnostic techniques in man. The primary radiopharmaceutical used was a form of fluorodeoxyglucose

  19. Database setup insuring radiopharmaceuticals traceability

    International Nuclear Information System (INIS)

    Robert, N.; Salmon, F.; Clermont-Gallerande, H. de; Celerier, C.

    2002-01-01

    Having to organize radiopharmacy and to insure proper traceability of radiopharmaceutical medicines brings numerous problems, especially for the departments which are not assisted with global management network systems. Our work has been to find a solution enabling to use high street software to cover those needs. We have set up a PC database run by the Microsoft software ACCESS 97. Its use consists in: saving data related to generators, isotopes and kits reception and deletion, as well as the results of quality control; transferring data collected from the software that is connected to the activimeter (elutions and preparations registers, prescription book). By relating all the saved data, ACCESS enables to mix all information in order to proceed requests. At this stage, it is possible to edit all regular registers (prescription book, generator and radionuclides follow-up, blood derived medicines traceability) and to quickly retrieve patients who have received a particular radiopharmaceutical, or the radiopharmaceutical that has been given to a particular patient. This user-friendly database provides a considerable support to nuclear medicine department that don't possess any network management for their radiopharmaceutical activity. (author)

  20. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  1. Comparison of PSMA-HBED and PSMA-I and T as diagnostic agents in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Michael; Langton, Tiffany; Kumar, Divesh [Fiona Stanley Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Campbell, Andrew [Fiona Stanley Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Medical Engineering and Physics, Perth (Australia)

    2017-08-15

    Gallium(68)-labelled prostate-specific membrane antigen (PSMA) radiopharmaceuticals can be used to detect prostate cancer (PCa) cells due the their over expression of PSMA. The {sup 68}Ga HBED-PSMA (PSMA-HBED) ligand has been most widely used and can be considered the current gold standard agent. Further PSMA ligands based on the DOTAGA and DOTA conjugates have more recently been developed. These agents (PSMA-I and T and PSMA-617) have potential theranostic capabilities as they can be conjugated with therapeutic radioisotopes. In this study, we examine whether PSMA-I and T has comparative efficacy, such that it could replace PSMA-HBED as a diagnostic agent in prostate carcinoma. 19 patients with PCa referred for {sup 68}Ga-PSMA imaging were imaged with PSMA-HBED and PSMA-I and T PET-CT imaging within a 2-week period. The two pharmaceuticals were synthesised using click chemistry. Imaging was performed using the same standardised methodology on a Siemens Biograph mCT. All sites of PSMA binding thought to represent PCa (probable or definite) were included in a lesion analysis that examined lesion concordance and lesional binding efficiency (SUV{sub peak}) between the two radiopharmaceuticals. For each patient, SUV{sub mean} of the LV cavity blood pool, bone, muscle and liver were determined as image background measures. Across all patients, PSMA uptake was observed in 47 lesions (10 bone lesions, 19 nodal lesions, 18 high-grade intraprostatic binding). Lesions were concordant between the agents in all except for two small (<4 mm) nodal lesions which were not visualised with PSMA-I and T. SUV{sub peak} assessment showed significantly greater overall lesion binding with HBED (paired t test, p = 0.0001). LV blood pool and bone marrow SUV{sub mean} were significantly higher for I and T than HBED (paired t test, blood pool p < 1 x 10-5, bone marrow p < 0.005). Intra-patient comparative imaging demonstrates higher lesional PSMA-HBED binding than PSMA-I and T and that the

  2. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  3. Radioiodinated tracers for myocardial imaging

    International Nuclear Information System (INIS)

    Kulkarni, P.V.; Corbett, J.R.

    1990-01-01

    Recent advances in the efficient production of high purity radioiodine (123I) and new efficient radiolabeling techniques have allowed the development of new classes of cardiovascular radiopharmaceuticals. These include 123I-labeled fatty acids to assess myocardial metabolism, 123I-metaiodobenzylguanidine (MIBG) for myocardial neuronal activity, labeled monoclonal antibodies for myocardial necrosis, and labeled lipoproteins for receptor concentration. 123I-labeled fatty acids and MIBG are under clinical investigation with encouraging results. 123I- and 111In-labeled fragments of monoclonal antibodies to myosin have been used for imaging myocardial necrosis in humans. The development of radiotracers for imaging of cholinergic and adrenergic receptors is still in the experimental stage. Recent advances in imaging instrumentation and radiopharmaceuticals have resulted in cardiac imaging applications beyond blood pool ventriculography, perfusion, and infarct-avid imaging. Developments of radioiodine (123I)-labeled agents promise to play an important role in the assessment of myocardial metabolism, neuronal activity, and receptor concentration. The chemistry of iodine is well defined compared with that of 99mTc; therefore, iodine isotopes are well suited for labeling biologically important molecules. Among the iodine isotopes, 123I has nearly ideal nuclear properties for nuclear medical applications with a 13.3-hour half-life (T1/2) and 159 keV gamma emission (83%). Despite the nearly ideal chemical and nuclear properties of 123I, the widespread application of 123I-based radiopharmaceuticals in clinical practice has been limited by high production costs (123I is produced in a cyclotron), relatively limited availability, and the presence of undesirable radionuclidic impurities (124I, T1/2 = 4.2 days; 125I, T1/2 = 60 days; 126I, T1/2 = 13.1 days). 77 references

  4. Synthesis of the radiopharmaceuticals for positron emission tomography

    International Nuclear Information System (INIS)

    Biricova, V.; Kuruc, J.

    2007-01-01

    In this paper is shown a short overview of the biogenic positron radiopharmaceuticals production and a brief summary of some PET preparation synthesis. At the end the overview of some forward-looking positron radionuclides, which can be used for a preparation of the PET radiopharmaceuticals is said. A short review of diagnostic use of PET radiopharmaceuticals is presented (authors)

  5. Evaluation of the quality of the radiopharmaceutical 99mTc-MIBI and its influence on image quality in myocardial perfusion scintigraphy; Avaliacao da qualidade do radiofarmaco {sup 99m}Tc-MIBI e sua influencia na qualidade da imagem em cintilografia de perfusao do miocardio

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Poliane Angelo de Lucena

    2013-07-01

    This study evaluated the quality of the {sup 99m}Tc-MIBI radiopharmaceutical from different manufacturers, used in three nuclear medicine services (NMS) in Recife-PE, through labeling procedure of each service. It was observed their biodistribution by quantifying the activity present in the organs of interest (heart / liver), the influence and interference in image quality and in myocardial scintigraphy diagnosis exam. In these NMS (A, B and C) were done quality controls in the eluates of {sup 99}Mo/{sup 99m}Tc generators (radionuclidic, chemical and radiochemical purity and pH) and of the {sup 99m}Tc-MIBI radiopharmaceutical (radiochemical purity and pH) used in myocardial scintigraphy exam. In the case of radiochemical purity (RCP), was used the thin layer chromatography technique; after the chromatographic ran on, the plates were analyzed both in the dose calibrator, and in scintillation camera of each NMS. The radiopharmaceutical biodistribution was evaluated through the activities present in the heart and liver images in 60 patients, using the technique of combined images counting. Five nuclear physicians analyzed 24 images through myocardial perfusion visual interpretation during stress, it was verified the agreement degree among them. The results of the quality control showed that all eluate samples were in agreement with the manufacturers in relation to radionuclidic purity and pH. In relation to chemical purity, 10% of the services samples B and C showed Al{sup +3} values above 10 ppm. In the RCP, it was observed that using the scintillation camera, only 22% of the samples would be discarded, while with dose calibrator would be 78%, indicating that the scintillation camera is more sensitive in chromatographic pale analysis. For the labeled radiopharmaceutical, the services B and C presented respectively one and three samples with RCP percentage below 90%. However, C service presented the lowest medium to liver/heart proportions, showing that this factor

  6. Radiopharmaceuticals in Czechoslovakia

    International Nuclear Information System (INIS)

    Hron, M.; Kronrad, L.; Svoboda, K.; Melichar, F.

    1986-01-01

    The history is briefly described of the production of radiopharmaceuticals in Czechoslovakia for nuclear medicine purposes. 131 I-labelled orthoiodohippurate and rose Bengal were first produced. Currently, 99m Tc is the most frequently requested radionuclide for radiopharmaceutical labelling. The preparation of 99m Tc is described in detail, a flow chart is shown and the network of 99m Tc distribution to hospitals outlined. In addition of 99m Tc and 131 I, UJV Rez produces other radionuclides for nuclear medicine, such as 113m In, 67 Ga, 35 S, 32 P, 203 Hg, 85 Sr. The methods are being developed of the production of 201 Tl, 125 I and 131 I-labelled bromosulfophthalein. (E.S.)

  7. Quality assurance of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Frier, M.; Hesslewood, S.R.

    1980-01-01

    A practical guide has been composed for all persons involved in the preparation and use of radiopharmaceuticals on methods used in quality assurance and their applications. These methods include the calibration of ionization chamber assay calibrators, the determination of radionuclide purity, radiochemical purity and chemical purity, particle size analysis and the measurement of pH. Quality assurance procedures are described for products not described in Compendial Monographs, or where the monograph exists, additional useful information is provided; such radiopharmaceuticals include technetium, indium-labelled and iodine-labelled products. (U.K.)

  8. Exposure of croatian population to radiopharmaceuticals

    International Nuclear Information System (INIS)

    Prlic, I.; Suric Mihic, M.; Marovic, G.; Mestrovic, T.; Mrcela, I.; Cerovac, Z.; Golubovic, D.; Hajdinjak, M.

    2010-01-01

    The aim of this paper is to call attention to the exposure of Croatian population to open sources of ionising radiation used in medical diagnostics, radiopharmaceuticals in particular, whose initial activity is very high. Without proper exposure monitoring, it is not possible to establish the effective dose per capita, but we have estimated it to be between 6.8 μSv and 7.0 μSv for this type of internal exposure, based on a very loose assumption that about 35,000 diagnostic procedures with radiopharmaceuticals are performed in Croatia every year. This calls for further research that would eventually lead to limiting the doses received through exposure to radiopharmaceuticals. (authors)

  9. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    Science.gov (United States)

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on

  10. Basic evaluation of 67Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    International Nuclear Information System (INIS)

    Fujibayashi, Yasuhisa; Konishi, Junji; Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira.

    1993-01-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na + , K + -ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with 67 Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The 67 Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na + , K + -ATPase. The 67 Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na + , K + -ATPase imaging. (author)

  11. Recent Progress toward Microfluidic Quality Control Testing of Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Noel S. Ha

    2017-11-01

    Full Text Available Radiopharmaceuticals labeled with short-lived positron-emitting or gamma-emitting isotopes are injected into patients just prior to performing positron emission tomography (PET or single photon emission tomography (SPECT scans, respectively. These imaging modalities are widely used in clinical care, as well as in the development and evaluation of new therapies in clinical research. Prior to injection, these radiopharmaceuticals (tracers must undergo quality control (QC testing to ensure product purity, identity, and safety for human use. Quality tests can be broadly categorized as (i pharmaceutical tests, needed to ensure molecular identity, physiological compatibility and that no microbiological, pyrogenic, chemical, or particulate contamination is present in the final preparation; and (ii radioactive tests, needed to ensure proper dosing and that there are no radiochemical and radionuclidic impurities that could interfere with the biodistribution or imaging. Performing the required QC tests is cumbersome and time-consuming, and requires an array of expensive analytical chemistry equipment and significant dedicated lab space. Calibrations, day of use tests, and documentation create an additional burden. Furthermore, in contrast to ordinary pharmaceuticals, each batch of short-lived radiopharmaceuticals must be manufactured and tested within a short period of time to avoid significant losses due to radioactive decay. To meet these challenges, several efforts are underway to develop integrated QC testing instruments that automatically perform and document all of the required tests. More recently, microfluidic quality control systems have been gaining increasing attention due to vastly reduced sample and reagent consumption, shorter analysis times, higher detection sensitivity, increased multiplexing, and reduced instrumentation size. In this review, we describe each of the required QC tests and conventional testing methods, followed by a

  12. Preparation and stability of the 99m Tc-HNE2 radiopharmaceutical

    International Nuclear Information System (INIS)

    Estrada T, J.

    2002-01-01

    A radiopharmaceutical is all substance containing a radioactive atom inside of its structure and what because of its pharmaceutical form, quantity and quality of radiation can be administered in the human beings with diagnostic or therapeutic aims. With the purpose to developing effective radiopharmaceuticals it is necessary to pick carefully the appropriate radionuclide in combination with the In vivo localization and the pharmacon kinetic properties of the carrier molecule. The peptides are designed by the nature to stimulate, regulate or inhibit numerous life functions, they act mainly as information transmitters and activity coordinators of several tissues in the body; it has been found that such substances are present in cells and in the body fluids in quantities extremely small, therefore the peptides have been considered as ideal agents for therapeutic applications. Elastase of human neutrophylls is a 29 kDa protease which is produced in high levels inside the neutrophyll and it is released as response for an inflammatory stimulus in infection/inflammation places. Once it liberated is quickly inhibited by the anti elastase α tripsine (HNE-2) peptide. Therefore, the neutrophylls elastase is considered as a target to obtain In vivo images of inflammatory/infectious processes by the intravenous application of 99m Tc-HNE-2. The objective of this work was to develop a labelling method with 99m Tc for the inhibitor peptide of the human neutrophyll elastase (HNE-2). Likewise, for evaluating its In vivo and In vitro stabilities. The methodology which was followed as first step to conjugate the (HNE-2) peptide with the bi chelating agents HYNIC and DTPA capable to chelate the 99m Tc metal. Therefore the attachment reactions to the peptide were realized starting from the NHS and HYNIC and the DTPA anhydride in buffer of 0.1 M, pH= 9.0/DMF (10:1) bicarbonates with a molar relation peptide/bi chelating agent 1:5. For the purification of the conjugate the solid phase

  13. Preparation of rhenium-186 tin colloid as radio synovectomy agent

    International Nuclear Information System (INIS)

    Cecep T Rustendi; Martalena Ramli; M Subur

    2010-01-01

    Radio synovectomy is an alternative therapy besides surgery whereby a beta-emitting radiopharmaceutical is delivered into the affected synovial compartment in order to threat rheumatoid arthritis. One of radiopharmaceuticals that could be applied as radio synovectomy agent is 186 Re-Sn colloid. Preparation of 186 Re-Sn colloid has been carried out by searching the best condition of the reaction to obtain a high labeling efficiency (>95%), appropriate particle size and stable at room temperature. Preparation of 186 Re-Sn colloid has been done successfully using a mol ratio of Sn to Re with value 1000:1 (~50 mg SnCl 2 .2H 2 O) by heating for 90 minutes and resulting >95% labeling efficiency. Stability of 186 Re-Sn colloid was found to be good enough when it was stored at room temperature for 24 hours. The 186 Re-Sn colloid was also found to have an appropriate particle size for radiopharmaceutical agent for radio synovectomy. (author)

  14. Radiolabelled Interleukin-12, a new radiopharmaceutical for imaging chronic TH1-mediated inflammation

    International Nuclear Information System (INIS)

    Annovazzi, A.; Cornelissen, B.; Slegers, G.; D'Alessandria, C.; Bonanno, E.; Signore, A.

    2003-01-01

    Full text: Cytokines have been extensively used to image inflammatory processes (IL1, IL2, IL6, IL8 and others). In particular, for chronic inflammation, labelled IL2 has been successfully used although it binds to both T helper-1 (Th1) and T helper-2 (Th2) cells. In order to increase the specificity for the detection of Th1-mediated inflammation (i.e. organ specific autoimmune diseases), we considered the possibility to label the interleukin-12 (IL12), an heterodimeric cytokine which play a key role in the development of Th1 cells. Objectives: Aim of the present study was to label the Interleukin-12 with 123I and to test its potential as radiopharmaceutical to image chronic inflammatory disorders. Methods: IL12 was labelled with 123I using the IODOGEN method and purified by gel-filtration chromatography on PD10 columns. 123I-IL12 biodistribution was studied in normal NMRI mice at 1,2 and 4h after injection. A mouse model of autoimmune chronic colitis induced by intrarectal instillation of Trinitrobenzen sulfonic acid (TNBS) has been used for imaging purposes and, as controls, mice receiving 50% ethanol in phosphate buffer saline. Results: 123I-IL12 labelling efficiency ranged between 52-65%. Results of biodistribution studies showed a rapid plasma clearance and a main renal excretion route. No significant 123I-IL12 accumulation in major organs and tissues was observed. 123I-IL12 accumulated in areas of chronic inflamed colon as assessed by histological examination. No significant 123I-IL12 uptake is detectable in mice with acute colitis, confirming the specificity of 123IIL12 binding on its receptors expressed on T-lymphocytes. Conclusions: We conclude that this cytokine could be used for the in vivo imaging of Th1 mediated inflammatory processes. (author)

  15. Rational development of radiopharmaceuticals for HIV-1

    International Nuclear Information System (INIS)

    Lau, Chuen-Yen; Maldarelli, Frank; Eckelman, William C.; Neumann, Ronald D.

    2014-01-01

    The global battle against HIV-1 would benefit from a sensitive and specific radiopharmaceutical to localize HIV-infected cells. Ideally, this probe would be able to identify latently infected host cells containing replication competent HIV sequences. Clinical and research applications would include assessment of reservoirs, informing clinical management by facilitating assessment of burden of infection in different compartments, monitoring disease progression and monitoring response to therapy. A “rational” development approach could facilitate efficient identification of an appropriate targeted radiopharmaceutical. Rational development starts with understanding characteristics of the disease that can be effectively targeted and then engineering radiopharmaceuticals to hone in on an appropriate target, which in the case of HIV-1 (HIV) might be an HIV-specific product on or in the host cell, a differentially expressed gene product, an integrated DNA sequence specific enzymatic activity, part of the inflammatory response, or a combination of these. This is different from the current approach that starts with a radiopharmaceutical for a target associated with a disease, mostly from autopsy studies, without a strong rationale for the potential to impact patient care. At present, no targeted therapies are available for HIV latency, although a number of approaches are under study. Here we discuss requirements for a radiopharmaceutical useful in strategies targeting persistently infected cells. The radiopharmaceutical for HIV should be developed based on HIV biology, studied in an animal model and then in humans, and ultimately used in clinical and research settings

  16. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    Science.gov (United States)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  17. Radiopharmaceuticals for diagnosis and therapy of cancer

    International Nuclear Information System (INIS)

    Wiebe, L.I.

    1998-01-01

    This paper addresses the utilization of three very distinct enzyme systems for imaging in oncology. The first of these is an enzyme encoded by a viral gene that is not present in non-infected mammalian cells. This enzyme is a nucleoside kinase that converts selected unnatural nucleosides to nucleotides in virus-infected or gene-transfected cells, but not in normal cells. The most commonly used viral kinase in gene therapy today is Herpes simplex virus type-1 thymidine kinase (HSV tk). The imaging applications of this gene therapy system are demonstrated using data from a murine tumour gene therapy model, with 123 IVFRU as the diagnostic radiopharmaceutical. The second enzyme system is endogenous to mammalian cells, but is found in highest concentrations in tissues of neutral crest derivation. The overall biochemical pathway of interest involves the conversion of tyrosine to either dopamine (neurotransmitter pathway), or to melanin (pigmentation pathway). In this system tyrosinase is the 'branching' enzyme, converting dopa to dopaquinone, thereby averting its conversion to dopamine. With selective agents, the tracer can be trapped in this 'melanin pathway', which is particularly active in melanomas. Data on the development of radioiodinated tyrosinase substrates, based on S-cysteaminyl phenol (SCAP), a highly specific tyrosinase substrate, are presented to illustrate this concept. The final example is that of endogenous enzymes that are virtually ubiquitous in biodistribution. One class of enzymes, the reductases, are particularly active in the liver and their activity is amplified in tissues that are hypoxic. They are important in radiotherapy, where they can be utilized to bioreductively activate compounds that can restore the radiosensitivity of hypoxic cells. The 2-nitroimidazoles are of special interest because they are easily reducible by a number of reductases, a process that is made selective by the reversibility of reduction in the presence of cellular

  18. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  19. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    International Nuclear Information System (INIS)

    Ferro F, G.; Torres G, E.; Gonzalez V, A.; Murphy, C.A. de

    2006-01-01

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99m Tc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for 99m Tc-HYNlC-TOC and 188 Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after 99m Tc-HYNlC-TOC or 188 Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99m Tc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 ± 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of 188 Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  20. Biodistribution dosimetric study of radiopharmaceutical 99mTc Ixolaris in mice for melanoma diagnosis by molecular image and translational model for human beings

    International Nuclear Information System (INIS)

    Soriano, Sarah Canuto Silva

    2015-01-01

    The labeling of Ixolaris with 99m Tc was developed by Barboza et.al. (2013) aiming its use primarily in glioblastoma and after in melanoma diagnosis, a less common but very aggressive cancer and with high mortality rate. Preliminary tests on animals have proven its effectiveness of labeling but a dosimetric study to human clinical trials should be performed. This study aimed to: (1) determine the biokinetic model for the radiotracer 99m Tc-Ixolaris in mice by imaging dosimetry method; and (2) estimate the absorbed and effective dose resulting from the use of a new radiopharmaceutical for melanoma and metastases diagnosis in human beings, since a dosimetric study of new radiopharmaceuticals in animals is necessary to test them subsequently in humans and apply for registration in ANVISA. According to SPECT images, was found a latency period of 15 to 21 days for the development of lung metastasis in mice. Three C57BL6 mice, one control animal, and two animals with induced cell line B16-F10 murine melanoma were tested. The 99m Tc-Ixolaris radiopharmaceutical was administered intravenously in a caudal vein, and SPECT images were acquired 0.5 h, 1.5 h, 2.5 h, 3.5 h and 24 h post-administration for analysis and biodistribution quantification. The biokinetic model was determined and thus, obtained cumulative activity in order to estimate the absorbed dose in each organ. The mass and metabolic differences between mice and humans were considered and used to extrapolate the data acquired at different scales. Based on dose factors provided by the software MIRDOSE and Olinda (S factor), absorbed doses in irradiated target organs were calculated for the source organs, and finally the effective dose was estimated. The results indicate that for diagnostic exams conducted in human melanoma patients by administering approximately 25.7 MBq the estimated effective dose was 4.3 mSv. Comparing with effective doses obtained in other diagnostic techniques with 99m Tc, a range of effective

  1. Imaging B lymphocytes in autoimmune inflammatory diseases

    International Nuclear Information System (INIS)

    Iodice, V.; Lauri, C.; Capriotti, G.; Lagana', B.; Germano, V.; D’Amelio, R.; Picchianti Diamanti, A.

    2014-01-01

    B cells arise from stem cells precursor and develop through a tightly regulated and selective process that lead to the generation of different B cell populations such as transitional, mature, memory and plasma cells. These B cell subsets can be identified using flow cytometry by the expression of specific surface antigens. The growing knowledge of the pivotal role played by B cells in the development and progression of autoimmune diseases combined with the advances in monoclonal antibody technology, led in the last years to the generation of different biological agents targeting B cells. In this context, nuclear medicine can offer the possibility to use a panel of biologic radiopharmaceuticals for molecular imaging of inflammatory diseases. Radiopharmaceuticals bind to their targets with high affinity and specificity and have an excellent imaging diagnostic potential for the evaluation of disease activity, selection and monitoring of immune therapies. Several molecules have been radiolabelled for the imaging of T lymphocytes whereas, by now, the anti CD20 rituximab is the only biological therapy targeting B cells that demonstrated to be efficiently radiolabelled and used to detect inflammation in autoimmune patients

  2. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  3. Formulation, radiopharmaceutical kinetics and dosimetry of the 188Re(V)-DMSA complex

    International Nuclear Information System (INIS)

    Garcia S, L.; Ferro F, G.; Murphy, C.A. de; Pedraza L, M.; Azorin N, J.

    1999-01-01

    It was developed through experimental design (ANOVA), a formulation to prepare the 188 Re(V)-Dmsa complex. Likewise, there were realized studies of radiopharmaceutical kinetics and internal dosimetry in animals, its normal and with induced tumors, considering an open bi compartmental model using the MIRD methodology. The 188 Re(V)-Dmsa complex was obtained with a radiochemical purity greater than 95% incubating 30 min at 90 Centigrade under the following formulation: [SnCl 2 ] = 1.4 mg/ml, [ascorbic acid] = 0.5 mg/ml, p H = 2.0 - 3.0. The stability test of the formulation, shows that after 48 h of its preparation, does not produce radiolytic degradation neither chemical decomposition. The radiopharmaceutical kinetics data show an average residence time 7.2h, velocity constant α = 0.6508h -1 and β = 0.1046 h -1 with an apparent distribution volume 6.9 l. The main elimination via was renal and it was observed osseous caption with an accumulated activity 522.049 ± 62 MBq h (residence time 14.1094 ± 1.69h). In according with the dosimetric calculations, by each 37 MBq injected, the equivalent dose at the tumor was 9.67± 0.33 Sv/g, for an effective dose 0.292 ± 0.0017 mSv/MBq. The images obtained in the gamma camera of the mice with induced tumors, show that do not have significant accumulation in the metabolic organs. The caption in bone and in tumors induced of the 188 Re(V)-Dmsa complex, show its potential for be used as a palliative agent for pain in patients with osseous metastasis and in the treatment of tumors of soft tissue. (Author)

  4. Radiopharmaceutical substances and nuclear pharmacy; Les medicaments radiopharmaceutiques et la radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Guilloteau, D [Hopital Bretonneau, 37 - Tours (France)

    1994-12-31

    Nuclear medicine needs more and more specific radiolabelled agents which are injected in humans for diagnosis or therapy: as such, they are pharmaceutical substances. Therefore, these radiopharmaceuticals must be prepared and distributed according to the rules applied to other pharmaceutical drugs. Such rules allow to warrant a good quality in diagnosis and therapy applications with a high security for the patient. In this article, we describe the role of the nuclear pharmacist in the field of development, preparation, quality control and dispensation. (author). 16 refs.

  5. Evaluation of radiochemistry purity and p H of radiopharmaceuticals in nuclear medicine services at Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Andrade, Wellington; Lima, Fabiana Farias de; Santos, Poliane A.L.; Lima, Fernando Roberto de Andrade; Lima, Fabiana Farias de

    2011-01-01

    Radiopharmaceuticals are cellular or molecular structures that have a radionuclide in its composition and they are used for diagnosing or treating diseases. The evaluation of the radiochemical purity of radiopharmaceuticals is essential to produce images with artifacts free, as well as avoid unnecessary absorbed dose to the patient. Since they are administered in humans is important and necessary that they undergo rigorous quality control. Due to this fact, the norm in ANVISA RDC 38/2008 declaring the mandatory completion of a minimum of tests in routine nuclear medicine services before human administration. (author)

  6. Meeting Report: High-Throughput Technologies for In Vivo Imaging Agents

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2005-04-01

    Full Text Available Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.

  7. Chirality plays important roles in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shen Yumei

    2006-01-01

    The paper introduces the basic concept of chirality, target specific selectivity and their relationship in radiopharmaceuticals. If the ligands labeled by radionuclides have chiral center, the enantiomers must be separated, or the target specific selectivity will not be good. Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals. (authors)

  8. Applications and development trend of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kim, J.R.

    1978-01-01

    Present status of radiopharmaceuticals applications and the trend of the development are extensively reviewed and discussed. The followings are manifested: a) Among the various radionuclides, those of short lived, accelerator produced, and having moderate radiation energies are becoming popular. b) Diagnosis using various labelled molecules are considered to be the most active field in nuclear medicine. c) Development of radiopharmaceuticals for tumor localization studies is one of the trends. d) The use of various convenient kits of both in-vitro radioligand assay, and in-vivo instant labelling is now an enormous domain in nuclear medicine. A great stride is also made in the development of automation technique. Upon it, an urgent development of some new radiopharmaceuticals having local characteristics is proposed. (author)

  9. Quality control in 99m technetium radiopharmaceuticals

    International Nuclear Information System (INIS)

    Leon Cabana, Alba

    1994-01-01

    This work means about the quality control in Tc radiopharmaceuticals preparation at hospitalary levels. Several steps must be used in a Nuclear Medicine Laboratory, such as proceeding,radiopharmaceuticals kits preparation, and dispensation materials,glasses,stopper,physical aspects,identification,ph control,storage,and reactif kits

  10. Preparation and control of radiopharmaceuticals in hospitals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1979-01-01

    This guidebook covers the work commonly organized as part of the work in the hospital. It does not cover the manufacture of radiopharmaceuticals on an industrial scale. The work is characterized by the small scale on which manufacture and preparation of radiopharmaceuticals take place

  11. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  12. Development of an injectable formulation for the preparation of radiopharmaceutical 68Ga-DOTA-Sar gastrin

    International Nuclear Information System (INIS)

    Castillo P, M.

    2015-01-01

    The CCK2 receptor (cholecystokinin) is located in areas of the central and peripheral nervous system and is over expressed in several types of human cancer, as medullar thyroid, lung and ovarian carcinomas. One of the endogenous ligands for the CCK2 receptor is the gastrin, so that radiolabeled peptides analogues to gastrin as Sar gastrin (Gln-Gly-Pro-Trp-Leu-Glu-Glu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH 2 ) have been proposed as potential diagnostic radiopharmaceuticals for obtaining tumors images with CCK2 receptors over expressed. The 68 Ga is an ideal candidate for the peptides radiolabelled and has favorable characteristics to be used for diagnostic purposes by imaging with Positron emission tomography (PET). This work aimed to verify the technical documentation of the production process of radiopharmaceutical 68 Ga-DOTA-Sar gastrin for its sanitary registration before the Comision Federal contra Riesgos Sanitarios (COFEPRIS) in Mexico. For optimization of the production process was assessed a factorial design of two variables with mixed levels (27 combinations), where the dependent variable was the radiochemical purity. The analytical method used for evaluating the content of Sar gastrin peptide in the injectable formulation was also validated by High-performance liquid chromatography. Subsequently the validation of the production process was carried out by manufacturing of lots in single-dose of the optimized injectable formulation of the radiopharmaceutical 68 Ga-DOTA-Sar gastrin and the stability study was conducted at different times to determine the useful life time. The following was established as the optimal pharmaceutical formulation: 185 MBq of 68 Ga, 50 μg de DOTA-Sar gastrin, 14 mg of sodium acetate and 0.5 m L of buffer acetates, 1.0 M, ph 4.22 in 2.5 m L of the vehicle. The analytical method used to determine the radiochemical purity of the formulation satisfied the requirements for the intended analytical application. The lots in

  13. Production of radiopharmaceuticals by cyclotrons

    International Nuclear Information System (INIS)

    Schmitz, F.; Van Naemen, J.; Monclus, M.; Van Gansbeke, B.; Kadiata, M.; Ekelmans, D.; Moray, M.; Penninckx, R.; Goldman, S.

    2004-01-01

    Companies specialized in the development and installation of accelerator-based systems dedicated to the medical applications brought on the market cyclotrons well fitted to the requests of the industrial community or universities and so covering every segment of the market. These machines are fully automatic, and need reduced maintenance; they are highly specialized for defined tasks. They can produce high beam intensity and realize dual beam irradiation. Also the prices are reducing considerably. The targets and the automatic system follow the same trend. Unfortunately, the flexibility of these devices for new area of research and development has been dramatically reduced. The growing number of PET cameras has increased the popularity of PET tracers used for nuclear imaging. Consequently, there is a growing demand for these radiopharmaceuticals compounds labeled with short-lived radioisotopes for clinical applications. From a research and development tool in the eighties, PET has now grown up to a clinical tool. Moreover, depending of the social welfare, reimbursement of some PET examinations is granted, which accelerates the trend for an extended use of PET tracers. Regulatory affairs try to establish and standardize the control on these radiopharmaceutical compounds produced in a growing number of local radio pharmacies owning a baby cyclotron. On the other hand, the attention of equipment suppliers was brought in the setting up of a total quality control follow up. These efforts were successively achieved by getting for instance the ISO 9001 certificate

  14. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  15. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on 177Lu for radionuclide therapy'

    International Nuclear Information System (INIS)

    2006-01-01

    Radionuclide therapy (RNT) employing radiopharmaceuticals labelled with emitting radionuclides is fast emerging as an important part of nuclear medicine. Radionuclide therapy is effectively utilized for bone pain palliation, thus providing significant improvement in quality of life of patients suffering from pain resulting from bone metastasis. Targeting primary diseases by using specific carrier molecules labelled with radionuclides is also widely investigated and efficacious products have been emerging for the treatment of Lymphoma and Neuroendocrine tumours. In order to ensure the wider use of radiopharmaceuticals, it is essential to carefully consider the choice of radionuclides that together with the carrier molecules will give suitable pharmacokinetic properties and therapeutic efficacy. The criteria for the selection of a radionuclide for radiotherapy are suitable decay characteristics and amenable chemistry. However, the practical considerations in selecting a radionuclide for targeted therapy are availability in high radionuclidic purity as well as high specific activity and low production cost and comfortable delivery logistics. 177 Lu is one of the isotopes emerging as a clear choice for therapy. Worldwide, the isotope is under investigation for approximately 30 different clinical applications, including treatment of colon cancer, metastatic bone cancer, non-Hodgkin's lymphoma, and lung cancer. 177 Lu decays with a half-life of 6.71 d by emission of particles with E max of 497 keV (78.6%), 384 keV (9.1%) and 176 keV (12.2%). It also emits photons of 113 keV (6.4%) and 208 keV (11%), that are ideally suited for imaging the in-vivo localization and dosimetric calculations applying a gamma camera. The physical half-life of 177 Lu is comparable to that of 131 I, the most widely used therapeutic radionuclide. The long halflife of 177 Lu provides logistic advantage for production, QA/QC of the products as well as feasibility to supply the products to places

  16. New blood flow radiopharmaceutical

    International Nuclear Information System (INIS)

    Sargent, T. III; Shulgin, A.T.; Mathis, C.A.; Budinger, T.F.

    1983-01-01

    Our program for research into the causes of mental disorders such as schizophrenia, manic depressive illness and senile dementia has led us to the development of a new radiopharmaceutical agent, IDNNA (4-iodo-2,5-dimethoxy-N,N-dimethylamphetamine). A series of some 15 different 131 I labeled molecules with various substitutions on the amine were synthesized and tested, and the uptake of the 131 I labeled conpounds in rats was measured. The dimethyl amine (IDNNA) had the best brain uptake and brain/blood ratio. When injected into a dog and scanned with a whole-body scanner, the uptake in the brain could be clearly seen and quantified. Plasma sampling at the same time showed that the maximum brain/blood ratio of 8.7 occurred at 8 min after injection, and the concentration in brain remained high for at least 15 min. Labeling is achieved by reacting 131 ICl and the precursor, 2,5-dimethoxy-N,N-dimethyl amphetamine, in glacial acetic acid; the reaction is complete in less than one minute

  17. New agents for scintigraphy in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Bois, M.H.W. de; Pauwels, E.K.J.; Breedveld, F.C.

    1995-01-01

    Radiopharmaceuticals have been used as investigative tools for the detection and treatment of arthritis activity in rheumatoid arthritis (RA) since the 1950s. Against the background of the pathophysiology of RA, the current status of joint scintigraphy and possible future developments are reviewed. Both non-specific (radiolabelled leucocytes and technetium-99m labelled human immunoglobulin) and specific targeting radiopharmaceuticals (including radiolabelled antibodies) are considered. The use of radiopharmaceuticals in the detection of arthritis activity has the advantages of allowing direct imaging of joints by means of whole-body scintigraphy and of joints that are difficult to assess clinically or radiographically. Promising results have been obtained with radiolabelled anti-CD4 and anti-E-selectin antibodies and with somatostatin receptor imaging, but more data are available regarding 99m Tc-IgG scintigraphy, which differentiates between the various degrees of arthritis activity and thus facilitates the choice of antirheumatic drug. Newer promising approaches to the imaging of RA include the use of radiolabelled J001 and cytokines, though studies on these are limited at present. (orig.)

  18. Preparation of carbon 11-labelled radiopharmaceuticals by the use of HPLC method

    International Nuclear Information System (INIS)

    Berget, G.; Maziere, M.; Godot, J.M.; Sastre, J.; Prenant, C.; Comar, D.

    1982-06-01

    Various medical examinations and metabolic studies are carried out with carbon 11-labelled radiopharmaceuticals. This radioelement offers a number of advantages: it can be introduced into an organic molecule without changing its properties; the radiation dose delivered to the patient is low (T = 20 mn); since the specific activity obtained is high (0.5 to 2 Ci/μ mole) the injected masses are very small; finally, tomographic images of the distribution of the product in the body may be obtained by the use of positron cameras. However in view of the radioactivities handled on a routine basis the preparations must be carried out without manual intervention, in closed shielded hoods. Synthesis methods and special equipment have been developed. In all cases the reaction mixtures are purified by HPLC, a method chosen for its speed, efficiency, ease of automation and adaptation to any product with a suitable choice of column and eluant. The radiopharmaceuticals are obtained in injectable solution (ethanol-physiological serum, buffered physiological serum) or in a mixture of volatile solvents which are evaporated by nitrogen bubbling and finally sterilised by passage over millipore filter. About ten different radiopharmaceuticals are prepared in this way in the laboratory [fr

  19. Quality evaluation of radiopharmaceuticals in nuclear medicine services in the states of Alagoas and Sergipe - Brazil

    International Nuclear Information System (INIS)

    Santos, Poliane Angelo de Lucena; Andrade, Wellington Gomes de; Lima, Fernando Roberto de Andrade; Lima, Fabiana Farias de

    2011-01-01

    Radiopharmaceuticals are compounds associated with a radionuclide. They can be considered as vectors that have some specificity for an organ or a physiological or pathophysiological function. Assessing the radiopharmaceutical's quality is essential to obtain adequate images, avoiding repetition of examinations and unnecessary absorbed dose to the patient. Resolution no. 8 (RCD 38) of 06/04/2008 by Agencia Nacional de Vigilancia Sanitaria (ANVISA) states the obligation of performing a minimum of tests in the routines of nuclear medicine services (NMS). The aim of this work was to evaluate the radiochemical purity and pH of radiopharmaceuticals used in NMS in states of Alagoas and Sergipe - Brazil. Radiochemical purity was determined by thin layer chromatography where a paper Whatman and TLC were used as steady state and the solvents were used related to the appropriate radiopharmaceutical, both as recommended by the manufacturer's directions. The chromatographic strips were placed in closed containers to avoid contact with the walls. After, the strips were cut in 1cm pieces and the activity was determined in each NMS's activity calibrators. The radiopharmaceuticals pH was evaluated by using universal pH paper (Merck) and the obtained color was compared with its range of colors. It was observed that 33.34% and 2.3% of the tested radiopharmaceuticals showed PRQ (radiochemical purity) and pH values, respectively, are outside of the limits described by the manufacturers. The results show that the radiochemical purity assessment in the NMS's routine can indicate problems with a radioisotope tagging, allowing their exclusion before administration. (author)

  20. Radiopharmaceuticals for palliative therapy pain

    International Nuclear Information System (INIS)

    Gaudiano, Javier

    1994-01-01

    Dissemination to bone of various neoplasms is cause of pain with poor response by major analgesics.Indications. Radiopharmaceuticals,description of main characteristics of various β emitter radionuclides.Choose of patients for worm indication of pain palliative therapy with β emitter radiopharmaceuticals is adequate must be careful . Contraindications are recognized.Pre and post treatment controls as clinical examination and complete serology are described.It is essential to subscribe protocols,keep patient well informed,included the physician in charge of the patient as part of the team.Bibliography

  1. Studies of quality control procedures for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zivanovic, M.; Trott, N.G.

    1983-01-01

    In this paper, a short description is given of a radiopharmaceutical preparation suite set up at the Royal Marsden Hospital and an account is presented of methods used for quality control of radiopharmaceuticals and of the results obtained over a period of about two and a half years

  2. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1989-10-01

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in PET and SPECT. A small, but significant portion of our effort is directed toward the design of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals, the new technology is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Oak Ridge Associated Universities)

  3. Potential pitfalls in the nuclear medicine imaging: Experimental models to evaluate the effect of natural products on the radiolabeling of blood constituents, bioavailability of radiopharmaceutical and on the survival of Escherichia coli strains submitted to the treatment with stannous ion

    International Nuclear Information System (INIS)

    Soares, Scheila F.; Brito, Lavinia C.; Souza, Deise E.; Bernardo, Luciana C.; Oliveira, Joelma F.; Bernardo-Filho, Mario

    2006-01-01

    Single photon emission computed tomography (SPECT) allows studies of physiological or pathological processes. Red blood cells labeled with technetium-99m ( 99m Tc-RBC) are used as a radiopharmaceutical in several evaluations. The radiolabeling efficiency and bioavailability of radiopharmaceuticals can be altered by natural/synthetic drugs and may induce pitfalls in the analysis of the nuclear medicine imaging. The labeling with 99m Tc requires a reducing agent and stannous chloride (SnCl 2 ) is widely utilized. However, SnCl 2 presents a citotoxic and/or genotoxic potential in Escherichia coli (E. coli) strains. The aim of this work was to evaluate the influence of aqueous extracts of Baccharis genistelloides (BG), Terminalia chebula (TC), Maytenus ilicifolia (MI), Cassia angustifolia (CA) and Equisetum arvense (EA) on (i) radiolabeling of blood constituents (ii) bioavailability of sodium pertechnetate(Na 99m TcO 4 ) radiopharmaceutical (iii) survival of E. coli. In vitro labeling of RBC was performed with blood (Wistar rats) incubated with each extract, SnCl 2 and Na 99m TcO 4 . Plasma (P) and blood cells (BC) were isolated, another aliquots precipitated and soluble (SF) and insoluble (IF) fractions isolated and counted. In the bioavailability of Na 99m TcO 4 , Wistar rats were treated (7 days) with aqueous extract or with 0.9%NaCl, the radiopharmaceutical was administered, the animals sacrificed, the organs isolated, weighted and radioactivity counted. To evaluate the effect on the bacterial survival, E. coli was treated with: (a) SnCl 2 ; (b) 0.9% NaCl; (c) vegetal extract; or (d) SnCl 2 and vegetal extract. Radiolabeling efficiency showed a significantly decrease (ANOVA/Tukey post-test, p 99m TcO 4 was altered significantly (unpaired t-student test, p 2 action and this fact can be related to the free radical scavenging properties of the chemical compounds of the extracts. In conclusion these findings could be worthwhile to try to understand and to avoid some

  4. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  5. Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Ayan, Arif Kursad [Department of Nuclear Medicine, Ataturk University, 25240 Erzurum (Turkey); Yenilmez, Ayse, E-mail: yenilmez2014@gmail.com [Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum (Turkey); Department of Molecular Biology and Genetics, Erzurum Technical University, 25240 Erzurum (Turkey); Eroglu, Hayrettin [Department of Biomedical Engineering, Ataturk University, 25240 Erzurum (Turkey)

    2017-06-01

    Curcumin-loaded solid lipid nanoparticles (C-SLNs) were prepared using micro emulsion and ultrasonication methods in the first stage of this study to determine the role of C-SLN on liver-spleen scintigraphy. It was concluded that the curcumin that was encapsulated in solid lipid nanoparticles had a β′ polymorph structure according to the X-ray diffraction (XRD) analysis. İt was concluded that these particles were at nano scale according to the laser diffraction (LD) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis suggested an interaction between the curcumin and the solid lipid matrix, and the curcumin was loaded on the solid lipid nanoparticles. Moreover, the particles were concluded to be spherical and at nanoscale according to the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. On the other hand, thermogravimetric analysis (TGA) suggested that the curcumin loaded solid nanoparticles were stable against the temperature. C-SLNs were labeled with Technetium-99 m ({sup 99m}Tc) radioisotope in the second stage of the study, then using scintigraphic methods in-vivo studies were performed on New Zealand rabbit and made a comparison with Phytate colloid, routinely used in liver-spleen scintigraphy. After analyzing the images and the biological distributions obtained from the experiments, uptake was observed in the liver and the spleen. Following from the experiment results, {sup 99m}Tc-labeled C-SLNs was concluded to be a possible imaging agent. In particular, it could be a new radiopharmaceutical alternative to {sup 99m}Tc-labeled compounds that are used in liver and spleen imaging in colloid scintigraphy. - Graphıcal abstract: Display Omitted - Hıghlıghts: • Curcumin-loaded solid lipid nanoparticles (C-SLNs) were prepared and examined characterization studies. • The C-SLNs were labeled with {sup 99m}Tc and made a comparison with Phytate colloid, routinely used in liver-spleen scintigraphy. • In vivo

  6. Determination of radiochemistry purity and pH of radiopharmaceutical in Northeast nuclear medicine services

    International Nuclear Information System (INIS)

    Andrade, Wellington; Santos, Poliane; Lima, Fernando de Andrade; Lima, Fabiana Farias de

    2013-01-01

    The radiopharmaceutical is a chemical compound associated with a radionuclide, which is selected so that meets the need cf diagnosis and capable of producing quality images. Drugs labeled with 99m Tc radionuclide kits consist of lyophilized, and be handled by the nuclear medicine services (NMS) must pass tests as the resolution of ANVISA (RDC 38) published in 2008. Among these tests are those of radiochemical purity and pH determination. This study evaluated the radiochemical purity of radiopharmaceuticals and pH SMN manipulated in the Northeast. The radiochemical purity (RCP) was determined by thin layer chromatography, which were used Whatman ® and silica gel, with dimensions of 1 x 10 cm, as stationary phase, and solvents indicated in the inserts of manufacturers. The chromatographic strips were placed in sealed containers so as not to touch the walls thereof. After the chromatographic run, the tape was cut every centimeter and the activities determined in doses of each calibrator NMS. The pH of the radiopharmaceutical was assessed through the use of universal pH paper (Merck®) and obtained staining compared with its color scale. The results showed (hat 82.6% and 100% of the radiopharmaceuticals of the samples were within the limits recommended by international pharmacopoeias for radiochemical purity and pl-l, respectively. There is then the need to include in routine tests indicated SMN by ANVISA. Well, they can detect possible problems in the marking of radiopharmaceuticals administered to the patient and avoid inappropriate material. (author)

  7. Nuclear medicine and quantitative imaging research (quantitative studies in radiopharmaceutical science): Comprehensive progress report, April 1, 1986-December 31, 1988

    International Nuclear Information System (INIS)

    Cooper, M.D.; Beck, R.N.

    1988-06-01

    This document describes several years research to improve PET imaging and diagnostic techniques in man. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. The reports in the study were processed separately for the data bases

  8. Gastric visualization and image quality in radionuclide bone scanning: concise communication

    International Nuclear Information System (INIS)

    Wilson, M.A.; Pollack, M.J.

    1981-01-01

    In a 12-mo study period, there were 14 days identified when the stomach was visualized in routine bone imaging. On these days, 44% of the 110 patients imaged demonstrated this effect. There was a significant linear correlation between the presence and degree of gastric visualization and the radiopharmaceutical incubation and quality control parameters. The study suggests a sporadic phenomenon that appears to result from partial oxidation of the agent during incubation, producing (a) different species of labeled diphosphonate that display altered affinity for bone (scan quality) and (b) free pertechnetate

  9. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  10. Complete Biological Evaluation of Therapeutical Radiopharmaceuticals in Rodents, Laboratory Beagles and Veterinary Patients - Preclinical Distribution-, Kinetic-, Excretion-, Internal Dosimetry-, Radiotoxicological-, Radiation Safety- and Efficacy Data

    International Nuclear Information System (INIS)

    Balogh, L.; Domokos, M.; Polyak, A.; Thuroczy, J.; Janoki, G.

    2009-01-01

    The research and development of various novel therapeutical radiopharmaceuticals is a huge demand in many laboratories world-wide. Beside of multiple bone metastases pain-palliation and radiosynovectomy agents a number of specific radiopharmaceutical applicants mainly for oncological applications are in the pipeline. Numerous in vitro methods are available in the first line to test the radiolabelling efficiency, the possible radioactive and non-labelled impurities, the stability of the label at different conditions and mediums, and some specific characteristics of radiopharmaceutical applicants eg.: receptor binding assays, antigen-antibody assays. But, still before human clinical trials there are several questions to be solved in regards of toxicology, radiotoxicology, radiation safety and maybe most importantly the efficacy tasks. All these issues cannot be answered without animal tests. Several decades back animal tests in radiopharmacy meant only standard bioassays in a large number of healthy rodents. Later on pathological models eg.: human tumor xenografts in immunodeficient animals came-out and through them radiopharmaceutical tumor-uptake by the targets were available to evaluate in vivo as well. Xenografts are still popular and widely used models in the field but instead of wide-scaled bioassays nowadays repeated scintiscans or hybrid images (SPECT/CT, PET/CT) are more and more often used to answer kinetic-, excretion-, tumor uptake, internal dosimetry (Minimum Effective Dose, Maximum Tolerable Dose, critical organ doses, tumor doses) questions. Greater animals like laboratory Beagles are more closely in size, clinical and metabolic parameters to the human objects so playing a more perfect role of human medical doctor and especially veterinary patients. Easy to understand that many of the spontaneously occurring companion animal diseases are a good model of human pathological diseases. The need of a better diagnosis and treatment of that animals meets with

  11. Technetium-99m-Labeled Sulfadiazine: a Targeting Radiopharmaceutical for Scintigraphic Imaging of Infectious Foci Due To Escherichia coli in Mouse and Rabbit Models.

    Science.gov (United States)

    Ahmed, Muhammad Tauqeer; Naqvi, Syed Ali Raza; Rasheed, Rashid; Zahoor, Ameer Fawad; Usman, Muhammad; Hussain, Zaib

    2017-09-01

    Bacterial infection is one of the vital reasons of morbidity and mortality, especially in developing countries. It appears silently without bothering the geological borders and imposes a grave threat to humanity. Nuclear medicine technique has an important role in helping early diagnosis of deep-seated infections. The aim of this study was to develop a new radiopharmaceutical 99m Tc-labeling sulfadiazine as an infection imaging agent. Radiolabeling of sulfadiazine with technetium-99m ( 99m Tc) was carried out using stannous tartrate as a reducing agent in the presence of gentistic acid at pH = 5. The quality control tests revealed ~98% labeling efficiency. Paper chromatographic (PC) and instant thin-layer chromatographic (ITLC) techniques were used to analyze radiochemical yield. Biodistribution and infection specificity of the radiotracer were performed with Escherichia coli (E. coli) infection-induced rats. Scintigraphy and glomerular filtration rate (GFR) study was performed in E. coli-infected rabbits. Scintigraphy indicated E. coli infection targeting potential of 99m Tc-SDZ, while biodistribution study showed minimal uptake of 99m Tc-SDZ in non-targeted tissues. The uptake in the kidneys was found 2.56 ± 0.06, 2.09 ± 0.10, and 1.68 ± 0.09% at 30 min, 1 h, and 4 h, respectively. The infected muscle (target) to non-infected muscle (non-target) ratio (T/NT) was found 4.49 ± 0.04, 6.78 ± 0.07, and 5.59 ± 0.08 at 30 min, 1 h, and 4 h, respectively.

  12. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Watson, E.E.; Stabin, M.G.

    1986-01-01

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  13. Precursors to radiopharmaceutical agents for tissue imaging

    International Nuclear Information System (INIS)

    Srivastava, P.C.; Knapp, F.F. Jr.

    1988-01-01

    A compound is described comprising: a heterocyclic moiety wherein the hetero member of the heterocyclic moiety is nitrogen; the heterocyclic moiety being quaternary and capable of being reduced to a dihydrogenated form; the heterocyclic moiety having a carbonyl group attached to a carbon of the ring of the heterocyclic moiety; the heterocyclic moiety being coupled at the carbonyl carbon with the amino nitrogen of an aromatic or aromatic alkyl amine; the aromatic or aromatic alkyl amine having attached to a carbon of the aromatic ring a moiety that is readily replaced by a radiohalide selected from the group a substituted triazene, mercuric acetate and a boron moiety

  14. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  15. Basic evaluation of [sup 67]Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Yasuhisa; Konishi, Junji (Kyoto Univ. (Japan). Faculty of Medicine); Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira

    1993-11-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with [sup 67]Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The [sup 67]Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase. The [sup 67]Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na[sup +], K[sup +]-ATPase imaging. (author).

  16. Quality controls of radiopharmaceuticals used in nuclear medicine

    International Nuclear Information System (INIS)

    Gomez de Castiglia, S.I.; Fraga de Suarez, A.H.; Mitta, A.E.A.

    1981-01-01

    Chromatographic quality controls for Tc-99m; In-113m; I-131; Tl-201 and Ga-67 radiopharmaceuticals are described. Moreover, a chromatographic system which allows to separate different radiopharmaceuticals from In-113m is pointed out. (author) [es

  17. Study of the production of the radiopharmaceutical 18F-FLT in automated system: contribution for process validation

    International Nuclear Information System (INIS)

    Zanette, Camila

    2013-01-01

    Radiopharmaceutical 18 F-FLT is a thymidine nucleoside analogue and a promising tumor proliferation marker for PET images. The synthesis of this radiopharmaceutical is not simple, and often has low yields. This radiopharmaceutical has already been studied for some years; however, there is no production, nor are there clinical studies in Brazil. The study of the production process and its compliance with the guidelines of Good Manufacturing Practices (ANVISA) are of extreme importance. This study aimed to investigate the synthesis of this radiopharmaceutical, evaluate methods of quality control that will be used in future production routines, perform cytotoxicity studies, biodistribution studies and PET imaging in animals, thereby contributing to the development and elaboration of the process validation protocol and to the establishment of analytical methods to be used during production routines. Initially, we studied the synthesis and production of 18 F-FLT, with the evaluation of three different temperatures of radiolabeling to check the behavior of the radiochemical yield and stability of the nal product. Studies of analytical methodology comprised the analysis of radionuclide identification, determination of chromatographic profiles, radiochemical purity, residual solvents, and pH. In vitro studies of internalization and cytotoxicity were also carried out. In in vivo studies, we evaluated the pharmacokinetics, biodistribution in healthy animals and in animals with tumor models, in addition to PET/CT images in animals with melanomas. The final product had high radiochemical purity and was stable for up to 10 hours after the synthesis, but got a relatively low radiochemical yield, as described in the literature. The tested analytical methods proved suitable for use in the quality control of 18 F-FLT. In in vitro studies, 18 F-FLT showed a significant percentage of binding to tumor cells, and the nonradiolabeled molecule was not considered toxic for these studied

  18. Detection of sentinel nodes with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yokoyama, Kunihiko; Michigishi, Takatoshi; Kinuya, Seigo; Konishi, Shota; Nakajima, Kenichi; Tonami, Norihisa

    2000-01-01

    Sentinel lymph nodes have been found to be an indicator of lymph node metastasis in breast cancer. In Japan, the theory and concept of sentinel lymph nodes in breast cancer have begun to be applied to carcinomas of the digestive system. Based on clinical experience in the detection of sentinel lymph nodes with radiopharmaceuticals, differences and similarities between the radiopharmaceuticals, methods, and techniques used to detect sentinel lymph nodes have been assessed in relation to breast cancer and carcinomas of the digestive system (including carcinomas of the esophagus and large intestine). The greatest difference between the methods used for breast and digestive cancers is the site of administration of the radiopharmaceutical. In breast cancer, the radiopharmaceutical is administered into a superficial organ (i.e., the mammary gland), whereas in carcinomas of the digestive system, it is administered into a deep organ (i.e., digestive tract). Another obvious difference is in lymph flow, i.e., the flow of the mammary glands is subcutaneous whereas lymph flow in the digestive tract is submucosal. Two radionuclide diagnostic methods are available to detect sentinel lymph nodes: sentinel lymphoscintigraphy with a gamma camera and a method that involves the use of a gamma probe intraoperatively. Radiopharmaceuticals used to detect sentinel lymph nodes must be smoothly transferred from the site of administration into the lymph, and uptake by the sentinel lymph node must continue for a long time without excessive flowing to lower reaches. The optimal particle size remains a matter of controversy, and no radiopharmaceuticals appropriate for lymphoscintigraphy have ever been approved in Japan. The authors compared the pharmacokinetics of three different radiopharmaceuticals used for sentinel lymphoscintigraphy in breast cancer ( 99m Tc-labeled albumin, 99m Tc-labeled tin colloid, and 99m Tc-labeled phytic acid) and founded that the detection rate was lowest with

  19. Kinetic model for the dosimetry of radiopharmaceuticals contaminated by Mo-99

    International Nuclear Information System (INIS)

    Shearer, D.R.; Pezzullo, J.C.

    1986-01-01

    Radiopharmaceuticals tagged with Tc-99m may become contaminated with breakthrough products from the Mo-99/Tc-99m generator. If a fraction of the contaminant becomes bound to the radiopharmaceutical, the dose to the radiopharmaceutical target organ from the contaminant must be considered. The dose to the contaminant target organ may then be calculated as the sum of the doses from a) the initially unbound contaminant, and b) the contaminant later released by degradation of the radiopharmaceutical. This paper presents a model which takes the above processes into account. The model is illustrated with clinical data derived from Mo-99 contaminated radiopharmaceuticals. 5 references, 2 figures, 6 tables

  20. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  1. Drug interaction with radiopharmaceuticals: a review

    International Nuclear Information System (INIS)

    Bernardo-Filho, Mario; Santos-Filho, Sebastiao David; Moura, Egberto Gaspar de; Maiworm, Adalgisa Ieda; Bernardo, Luciana Camargo; Brito, Lavinia de Carvalho; Orlando, Margarida Maria de Camoes; Penas, Maria Exposito; Cardoso, Valbert Nascimento

    2005-01-01

    Clinical images are worthwhile in Health Sciences and their analysis and correct interpretation aid the professionals,such as physicians, physiotherapists and occupational therapists, to make decisions and take subsequent therapeutic and/or rehabilitation measures. Other factors, besides the state of the disease, may interfere and affect the bioavailability of the radiopharmaceuticals (radiobiocomplexes) and the quality of the SPECT and PET images. Furthermore, the labeling of some of these radiobiocomplexes, such as plasma proteins, white blood cells and red blood cells, with 99m T, can also be modified. These factors include drugs (synthetic and natural) and dietary conditions, as well as some medical procedures (invasive or non-invasive), such as radiation therapy, surgical procedures, prostheses, cardioversion, intubation, chemo perfusion, external massage, immunotherapy, blood transfusion and hemodialysis. In conclusion, the knowledge about these factors capable of interfering with the bioavailability of the radiobiocomplexes is worthwhile for secure diagnosis. Moreover, the development of biological models to study these phenomena is highly relevant and desirable.(author)

  2. Consequences of radiopharmaceutical extravasation and therapeutic interventions: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Jochem van der; Voeoe, Stefan [Maastricht University Medical Centre (MUMC+), Department of Radiology and Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Bucerius, Jan; Mottaghy, Felix M. [Maastricht University Medical Centre (MUMC+), Department of Radiology and Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany)

    2017-07-15

    Radiopharmaceutical extravasation can potentially lead to severe soft tissue damage, but little is known about incidence, medical consequences, possible interventions, and effectiveness of these. The aims of this study are to estimate the incidence of extravasation of diagnostic and therapeutic radiopharmaceuticals, to evaluate medical consequences, and to evaluate medical treatment applied subsequently to those incidents. A sensitive and elaborate literature search was performed in Embase and PubMed using the keywords ''misadministration'', ''extravasation'', ''paravascular infiltration'', combined with ''tracer'', ''radionuclide'', ''radiopharmaceutical'', and a list of keywords referring to clinically used tracers (i.e. ''Technetium-99m'', ''Yttrium-90''). Reported data on radiopharmaceutical extravasation and applied interventions was extracted and summarised. Thirty-seven publications reported 3016 cases of diagnostic radiopharmaceutical extravasation, of which three cases reported symptoms after extravasation. Eight publications reported 10 cases of therapeutic tracer extravasation. The most severe symptom was ulceration. Thirty-four different intervention and prevention strategies were performed or proposed in literature. Extravasation of diagnostic radiopharmaceuticals is common. {sup 99m}Tc, {sup 123}I, {sup 18}F, and {sup 68}Ga labelled tracers do not require specific intervention. Extravasation of therapeutic radiopharmaceuticals can give severe soft tissue lesions. Although not evidence based, surgical intervention should be considered. Furthermore, dispersive intervention, dosimetry and follow up is advised. Pharmaceutical intervention has no place yet in the immediate care of radiopharmaceutical extravasation. (orig.)

  3. Melanin-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Packer, S.; Fairchild, R.G.; Watts, K.P.; Greenberg, D.; Hannon, S.J.

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed

  4. Development of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Park, Kyung Bae; Kim, J. R.; Shin, B. C.; Kim, Y. M.; Cho, U. K.; Han, K. H.; Chung, Y. J.; Shin, H. Y.; Hong, S. B.

    1997-09-01

    To overcome many problems caused by external radiation therapy, we have developed a new agent for internal radiation therapy, which is administered directly to the lesions and irradiate β-rays resulting in maximized therapeutic effect and minimized radiation damage to normal tissues or organs to nearby. In the same reasons, we have also developed a new radioactive patch for the treatment of skin cancer using β-emitting radionuclide. We prepared for 166 Ho-chitosan complex ( 166 Ho-CHICO) which is potential radiopharmaceuticals for the treatment of liver cancer, peritoneal cancer metastasized from stomach cancer, ovarian cancer, and rheumatoid arthritis in knee joints. We carried out various experiments such as evaluation of absorbed dosimetry, studies on absorption, distribution, metabolism, and excretion (ADME) and clinical trials with 166 Ho-CHICO. For commercialization of 166 Ho-CHICO, we evaluated its toxicity, efficacy and safety, and then prepared documents for submission to the Mininstry of Health and Welfare to get license as an investigational new drug. 166 Ho-Patch for skin cancer treatment was prepared by neutron irradiation of pre-made non-radioactive 165 Ho-Patch. We evaluated the efficacy and safety of 166 Ho-Patch in the treatment of skin cancer using an animal model and in clinical cases. (author). 49 refs., 15 tabs., 36 figs

  5. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  6. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  7. Tc: chemistry and radiopharmaceuticals: a prospectus

    International Nuclear Information System (INIS)

    Tulip, T.H.

    1987-01-01

    The recent explosion in technetium chemistry evident in this symposium promises to continue unabated. As in the past, radiopharmaceutical applications will lead to new Tc chemistry. In this lecture the author will discuss those areas which appear most fertile based on chemical and radiopharmaceutical criteria. Among these will be new organometallic Tc chemistry (e.g., Tc(CNR) 6 cations), Tc complexes as metabolic tracers (e.g., Tc-analogs to FDG), and peptide-based Tc chelators (e.g., Tc-metallothionein)

  8. Nanoparticles as image enhancing agents for ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jun [Biomedical Engineering Department, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210 (United States); Levine, Andrea L [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Mattoon, John S [Department of Veterinary Clinical Sciences, Ohio State University, 1151 Veterinary Hospital, 601 Vernon Tharp St., Columbus, OH 43210 (United States); Yamaguchi, Mamoru [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Lee, Robert J [Division of Pharmaceutics, College of Pharmacy, NCI Comprehensive Cancer Center, and NSF Nanoscale Science and Engineering Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210 (United States); Pan Xueliang [Department of Statistics, Ohio State University, 1958 Neil Avenue, Columbus, OH 43210 (United States); Rosol, Thomas J [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States)

    2006-05-07

    Nanoparticles have drawn great attention as targeted imaging and/or therapeutic agents. The small size of the nanoparticles allows them to target cells that are beyond capillary vasculature, such as cancer cells. We investigated the effect of solid nanoparticles for enhancing ultrasonic grey scale images in tissue phantoms and mouse livers in vivo. Silica nanospheres (100 nm) were dispersed in agarose at 1-2.5% mass concentration and imaged by a high-resolution ultrasound imaging system (transducer centre frequency: 30 MHz). Polystyrene particles of different sizes (500-3000 nm) and concentrations (0.13-0.75% mass) were similarly dispersed in agarose and imaged. Mice were injected intravenously with nanoparticle suspensions in saline. B-mode images of the livers were acquired at different time points after particle injection. An automated computer program was used to quantify the grey scale changes. Ultrasonic reflections were observed from nanoparticle suspensions in agarose gels. The image brightness, i.e., mean grey scale level, increased with particle size and concentration. The mean grey scale of mouse livers also increased following particle administration. These results indicated that it is feasible to use solid nanoparticles as contrast enhancing agents for ultrasonic imagin000.

  9. Radioisotopes and radiopharmaceuticals catalogue

    International Nuclear Information System (INIS)

    2002-01-01

    The Chilean Nuclear Energy Commission (CCHEN) presents its radioisotopes and radiopharmaceuticals 2002 catalogue. In it we found physical characteristics of 9 different reactor produced radioisotopes ( Tc-99m, I-131, Sm-153, Ir-192, P-32, Na-24, K-42, Cu-64, Rb-86 ), 7 radiopharmaceuticals ( MDP, DTPA, DMSA, Disida, Phitate, S-Coloid, Red Blood Cells In-Vivo, Red Blood Cells In-Vitro) and 4 labelled compounds ( DMSA-Tc99m, DTPA-Tc99m, MIBG-I131, EDTMP-Sm153 ). In the near future the number of items will be increased with new reactor and cyclotron products. Our production system will be certified by ISO 9000 on March 2003. CCHEN is interested in being a national and an international supplier of these products (RS)

  10. Multi-disciplinary collaboration in radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Nozaki, Tadashi

    1989-01-01

    Various possibilities often exist in each step of radiopharmaceutical preparation, and multi-disciplinary knowledge and collaboration are necessary for improved choice of the preparation conditions. In the radionuclide production step, proton bombardment of a separated nuclide target usually exceeds other bombardments of natural targets. Isotope separation by laser-chemical method is expected to soon offer several enriched nuclides useful as the target in enough amount and moderate price. The design and preparation of radiopharmaceuticals will be directly influenced by further progress of enzymology and immunology. Nondestructive, continuous observation of chemical changes in vivo is a longing of radiochemists, and may be realized gradually through elaborate examination of chemical effects in Mossbauer absorption, γ-γ angular correlation, EC X-ray properties, and positron annihilation. Present knowledge and techniques in radiopharmaceutical chemistry, on the other hand, can be utilized effectively in other fields of life sciences

  11. A comparison of positron-emitting blood pool imaging agents

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Kulprathipanja, S.; Evans, G.; Elmaleh, D.

    1979-01-01

    The three agents, 11 C-carboxyhaemoglobin, 68 Ga-transferrin and 68 Ga-labelled red cells have been compared in dogs to assess their relative merits for blood-pool imaging. For 1 h following administration of each agent, periodic blood samples were withdrawn for counting in a NaI (Tl) well counter while conventional two-dimensional images were obtained simultaneously on the Massachusetts General Hospital positron camera. Count rates in regions about the heart, liver and spleen were obtained for each image. The disappearance of blood activity as shown from the results of counting the blood samples and from the counting rates in regions about the heart was found to be identical within experimental error for the three agents. In the liver and spleen regions, the highest count rates were obtained with 68 Ga-transferrin and the lowest with 68 Ga-labelled red cells; count rates in these regions with labelled red cells were virtually constant throughout the 1 h study. It may be concluded that with the exceptions noted above, the three agents are approximately equivalent for blood-pool imaging. (author)

  12. Evaluation of quality control of radiopharmaceuticals in Nuclear Medicine service

    International Nuclear Information System (INIS)

    Tavares, Jamille A. Lopes; Lira, Renata F. de; Santos, Marcus Aurelio P. dos

    2014-01-01

    Radiopharmaceuticals are a type of pharmaceutical preparation associated with radionuclides with purpose of diagnosis and therapy. Nuclear Medicine Services (NMS) should perform quality control of radiopharmaceuticals according to the recommendations of the manufacturer and scientific evidences accepted by the National Agency Sanitary Surveillance ( Brazilian ANVISA). This study evaluated the quality of the main radiopharmaceuticals in a NMS of the state of Pernambuco in relation to pH and radiochemical purity. The results showed that 96.8% of the radiopharmaceuticals showed radiochemical purity and all pH values were within the range recommended by the American pharmacopoeia. The study found that the quality control when inserted into the NMS, provides important data that allows exclusion of radiopharmaceuticals with low radiochemistry purity, favoring a reliable diagnosis and ensuring good radiation protection practices and biosecurity for patient and occupationally exposed individuals

  13. Analytics of radiochmical impurities in radiopharmaceutics. Pt. 4

    International Nuclear Information System (INIS)

    Heide, L.; Stamm, A.; Boegl, W.

    1981-01-01

    The radiopharmaceutics have been compiled in the present volume in the form of a medicament encyclopaedia. The term radiopharmaceutic has been very broadly covered so that one can find pharmaceutics which are applied in clinical routine as well as for veterinary tests or are being or have been tested. Preparates for radio-immuno assays are also recorded. All analysis methods are considered even if these only slightly differ from one another. Methods described in the literature are given which have resulted in a bad or no separation of the radiopharmaceutics from the impurities. (orig./MG) [de

  14. The application of the 'ten-day rule' in radiopharmaceutical investigations

    International Nuclear Information System (INIS)

    Ellis, R.E.; Nordin, B.E.C.; Tothill, P.; Veall, N.

    1977-01-01

    The working party first classified subjects who are investigated using radiopharmaceuticals into three groups, being (a) patients and other subjects who are asked to volunteer as controls for research studies, (b) patients on whom research investigations are being conducted which are relevant to their clinical condition but which are not strictly necessary for their management, and (c) patients on whom investigations are required for their proper management. The application of the 'ten-day rule' in relation to the use of radiopharmaceuticals is complicated by the fact that the total radiation dose is received over a time given by the effective life of the radiopharmaceutical in the organ, which may be a substantial part or even longer of the menstrual cycle. The activities of the radiopharmaceuticals normally administered are tabulted together with their effective half-lives and resulting gonad doses, and those radiopharmaceuticals requiring consideration of the implementation of the 'ten-day rule' for patients in groups (b) and (c) are identified. When the administration of therapeutic quantities of radiopharmaceuticals is being contemplated it is particularly important to take into account the applicability or otherwise of the 'ten-day rule'. It is recommended that the 'ten-day rule' should be strictly applied to all radiopharmaceutical administrations to women of child-bearing age who are volunteers for research purposes (group(a)). (U.K.)

  15. Labelling of m-trimethyl silylphenyl-ethylidene-1, i-bisphosphonate with /sup 99m/Tc and its evaluation as an imaging agent

    International Nuclear Information System (INIS)

    Sajid, K.M.; Mahmood, R.

    2012-01-01

    hours. Comparison of bone scans with those obtained with /sup 99m/Tc-MDP and /sup 99m/Tc-PYP showed that the compound can not compete with these bone agents as for as the quality of bone scans is concerned. (/sup 99m/Tc-MDP still remains the superior bone scanning agent. However, the retention of relatively higher quantities of radiopharmaceutical in blood for long period showed that the compound could serve as a good blood pool-imaging agent. Purification of HPLC (high pressure liquid chromatography) could also improve the distribution properties of the compound. This needs further studies. (author)

  16. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  17. Radiosynthesis of [{sup 18}F]fluoromethyldeoxyspergualin for molecular imaging of heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradip; Li, King C. [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States); Lee, Daniel Y., E-mail: dlee@tmhs.or [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States)

    2011-03-15

    To probe the in vivo role of stress response factors in normal physiology and in solid tumors we have designed a stable {sup 18}F-labeled molecular imaging agent based on a ligand for heat shock protein 70 (HSP70). We describe the synthesis of [{sup 18}F] fluorodeoxymethylspergualin ([{sup 18}F]MeDSG) as a new radiopharmaceutical probe using a prosthetic group, [{sup 18}F]SFB, for efficient and rapid radiolabeling. Ongoing molecular imaging studies are under way to detect HSP70 expression in tumors by positron emission tomography.

  18. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Welch, M.J.

    1978-06-01

    Although the germanium-gallium generator is probably the only source of positron-emitting radionuclides that would enable the wide application of positron tomography, the generator system in use suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, and EDTA forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than gallium-68 EDTA it is necessary to break the stable EDTA complex and remove all the EDTA. A new generator system using a solvent extraction system which will produce gallium-68 8-hydroxyquinoline, a weak chelate has been developed. Using this agent, several gallium-68 radiopharmaceuticals have been synthesized and tested in vitro and in vivo. Attempts have been made using polarographic and chromatographic techniques to investigate the stability of gallium-68 complexes with a series of cryptates

  19. 99mTc labelled peptides for imaging of peripheral receptors. Final report of a co-ordinated research project. 1995-1999

    International Nuclear Information System (INIS)

    2001-04-01

    99m Tc radiopharmaceuticals have remained the workhorse of diagnostic nuclear medicine over the last three decades ever since the introduction of the gamma camera as the main imaging instrument. Due to the near ideal nuclear properties such as gamma energy, half-life, lack of beta radiation and easy availability as a convenient generator system at an affordable cost of 99m Tc, it can be reasonably anticipated that 99m Tc will continue to retain this position in the foreseeable future. To a large extent this has been possible because of the successful development, over the years, of 99m Tc radiopharmaceuticals as substitutes for other clinically well established agents. Examples of these success stories are 99m Tc substitutes for 131 I hippuran and rose bengal 201 Tl and 123 I brain perfusion agents, which have come to be known collectively as 'second generation 99m Tc radiopharmaceuticals'. It should be acknowledged that each one of these developments was a result of innovative and sustained research and development efforts by scientists from different parts of the world. Concurrently these research efforts have made significant contributions to better understanding of the radiochemistry and co-ordination chemistry of 99m Tc. The radiopharmaceutical scientists are now in a much better position to design, prepare and evaluate 99m Tc complexes for specific applications. Building on this capability, the next step is development of 99m Tc substitutes for receptor specific radiopharmaceuticals, which have established clinical potential. Efforts in this direction are already ongoing and the work during the last decade on 99m Tc labelling of monoclonal antibodies can be considered the beginning of these 'third generation 99m Tc radiopharmaceuticals'. The International Atomic Energy Agency (IAEA) had organized two co-ordinated research projects (CRPs) in the past covering 99m Tc second generation agents and 99m Tc monoclonal antibodies, and the results were published in

  20. Legal aspects of the production and application of radiopharmaceuticals in Germany

    International Nuclear Information System (INIS)

    Kuwert, T.; Prante, O.; Meyer, G.

    2009-01-01

    This article deals with the regulation of the production and use of radiopharmaceuticals in Germany. As in other countries, radiopharmaceuticals may be used when licensed by the German equivalent of the Federal Drug Agency or in clinical trials. Furthermore, non-licensed radiopharmaceuticals can be administered to patients for diagnosis when they are produced in the same institution and not more than 20 doses per week and radiopharmaceutical are given. A prerequisite for these three ways of use is the production of the radiopharmaceutical in question according to the guidelines of the good manufacturing practice (GMP) which creates considerable problems for the usually small PET centers installed in the German university hospitals. German law offers a further possibility to apply non-licensed radiopharmaceuticals for clinical purposes: their administration to patients is not forbidden when performed by a physician who produces the substance himself or is at least responsible for its synthesis. This regulation has, however, been met with criticism by government agencies. (orig.)

  1. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hunt, F.C.

    1984-01-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67 Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67 Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the sup(99m)Tc agents. Excretion of 67 Ga-Br-HBED was similar but with delayed transit from the liver. 67 Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67 Ga or 68 Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates. (orig.) [de

  2. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    Science.gov (United States)

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  3. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  4. Synthesis and evaluation of radioiodinated (S,S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Kanegawa, Naoki; Kimura, Hiroyuki; Sugita, Taku; Kajiyama, Satomi; Kuge, Yuji; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto (Japan); Kiyono, Yasushi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Sakyo-ku, Kyoto (Japan); Kawashima, Hidekazu [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Ueda, Masashi [Kyoto Prefectural University of Medicine, Radioisotope Laboratory, Sakyo-ku, Kyoto (Japan)

    2006-06-15

    Abnormality of the brain norepinephrine transporter (NET) has been reported in several psychiatric and neuronal disorders. Since NET is an important target for the diagnosis of these diseases, the development of radiopharmaceuticals for imaging of brain NET has been eagerly awaited. In this study, we synthesized (S,S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine [(S,S)-IPBM], a derivative of reboxetine iodinated at position 2 of the phenoxy ring, and evaluated its potential as a radiopharmaceutical for imaging brain NET using SPECT. (S,S)-{sup 123/125}I-IPBM was synthesized in a halogen exchange reaction. The affinity and selectivity of (S,S)-IPBM for NET was measured by assaying the displacement of {sup 3}H-nisoxetine and (S,S)-{sup 125}I-IPBM from the binding site in rat brain membrane, respectively. The biodistribution of (S,S)-{sup 125}I-IPBM was also determined in rats. Furthermore, SPECT studies with (S,S)-{sup 123}I-IPBM were carried out in the common marmoset. (S,S)-{sup 125}I-IPBM was prepared with high radiochemical yields (65%) and high radiochemical purity (>98%). (S,S)-IPBM showed high affinity and selectivity for NET in the binding assay experiments. In biodistribution experiments, (S,S)-{sup 125}I-IPBM showed rapid uptake in the brain, and the regional cerebral distribution was consistent with the density of NET. The administration of nisoxetine, a selective NET-binding agent, decreased the accumulation of (S,S)-{sup 125}I-IPBM in the brain, but the administration of selective serotonin transporter and dopamine transporter binding agents caused no significant changes in the accumulation. Moreover, (S,S)-{sup 123}I-IPBM allowed brain NET imaging in the common marmoset with SPECT. These results suggest that (S,S)-{sup 123}I-IPBM is a potential SPECT radiopharmaceutical for imaging brain NET. (orig.)

  5. The influence of stereoisomerism on the pharmacokinetics of Tc radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.; Taylor, A. [Atlanta, Emory Univ. School of Medicine, GA (United States). Dept. of Chemistry; Marzilli, L.G. [Atlanta, Emory Univ. School of Medicine, GA (United States). Dept. of Radiology

    1998-12-01

    The influence of stereoisomerism on the pharmacokinetics of Tc mono-oxo complexes is reviewed. Tc(V) mono-oxo complexes formed with N/S ligands have four donor groups from the ligands in an equatorial plane; the oxo ligand coordinates in an axial position. Stereoisomerism in Tc(V) mono-oxo complexes can be centered within the ligand (carbon atom in the chelate ring of ligating nitrogen of amine donors) or at the Tc. The metal center becomes chiral when an equatorial ligand has a head and a tail (i.e. the two ends of the ligand differ). All types of stereocenter can produce significantly different pharmacokinetic profiles for individual isomers. Thus, biological evaluation of separated stereoisomers is necessary to identify the optimal stereochemical configuration, particularly for radiopharmaceuticals targeted to receptor molecules with low specificity. Because of inter species variation, there is ultimately no substitute for human testing. Although it is possible that the increase in nonspecific binding of agents incorporating L- vs D-amino acids may more than offset any increased receptor binding, much more information is needed. Stereochemical factors can also lead to unpredictable differences in coordination geometry and thermodynamic preference of a single isomer; thus chemical characterization of stereo-isomers continues to be an important component of radiopharmaceutical development.

  6. Radiopharmaceutical development of a freeze-dried kit formulation for the preparation of [99mTc-EDDA-HYNIC-D-Phe1, Tyr3]-octreotide, a somatostatin analog for tumor diagnosis.

    Science.gov (United States)

    Guggenberg, Elisabeth Von; Mikolajczak, Renata; Janota, Barbara; Riccabona, Georg; Decristoforo, Clemens

    2004-10-01

    [(99m)Tc-EDDA-HYNIC-D-Phe(1),Tyr(3)]-Octreotide ((99m)Tc-EDDA/HYNIC-TOC) is a promising new radiopharmaceutical with the potential to replace [(111)In-DTPA-D-Phe(1)]-Octreotide ((111)In-DTPA-OCT) as the radiopharmaceutical for somatostatin receptor scintigraphy due to the advantage of improved image quality, lower radiation dose for the patient, and daily availability. Here we describe the development of a freeze-dried kit formulation based on the Tricine/EDDA exchange labeling approach for the preparation of this radiopharmaceutical in a clinical setting. Three parameters were of major importance to achieve a suitable formulation with a radiochemical purity (RCP) >90%: addition of bulking agent, the pH of the freeze-drying solution, and the content of stannous chloride. The final formulation consisted of 20 mg Tricine, 10 mg EDDA, 50 mg Mannitol, 20 microg SnCl(2). 2H(2)O, and 20 microg [HYNIC-D-Phe(1), Tyr(3)]-Octreotide (HYNIC-TOC). Radiolabeling was performed by addition of 0.2 M Na(2)HPO(4) to adjust the pH to 6-7, followed by 0.5-2 GBq (99m)Tc sodium pertechnetate, in a total volume of 2 mL and incubation for 10 min in a boiling water bath. Mean RCP values of 10 batches showed values >90% over a storage period of up to 1 year, a high stability up to 24 h of the final preparation, and retained biological activity. The developed kit formulation forms the basis for further clinical evaluation of this promising new radiopharmaceutical. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  7. Good Practice for Introducing Radiopharmaceuticals for Clinical Use

    International Nuclear Information System (INIS)

    2016-02-01

    The use of new radiopharmaceuticals can provide extremely valuable information in the evaluation of cancer, as well as heart and brain diseases. Information that often times cannot be obtained by other means. However, there is a perceived need in many Member States for a useful reference to facilitate and expedite the introduction of radiopharmaceuticals already in clinical use in other countries. This publication intends to provide practical support for the introduction of new radiotracers, including recommendations on the necessary steps needed to facilitate and expedite the introduction of radiopharmaceuticals in clinical use, while ensuring that a safe and high quality product is administered to the patient at all times

  8. The safe and effective use of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Trott, N.G.

    1982-01-01

    In the medical applications of radionuclides, we have to arrange effective radiation protection of patients, staff and general public, maintain high standards of pharmaceutical safety and ensure that the radiopharmaceuticals are effective in use. The influence of the 1976 Council of the European Communities Euratom Directive in producing legislation in the United Kingdom controlling medical work with radioactivity is discussed. Attention is drawn to current studies in the dosimetry of radiopharmaceuticals, and some of the problems that continue to arise in evaluating the dosimetry and possible hazards of isotopes of iodine are discussed. Developments in facilities for preparing radiopharmaceuticals in hospital laboratories are considered and a short report is given of an extensive study of quality control procedures which showed that it was difficult to justify their use as a routine on established products. (Author)

  9. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M.

    1997-01-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient's body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t, 1/2 =2min), nitrogen-13 (t 1/2 = 10 min), carbon-11 (t 1/2 =20 min) and fluorine-18 (t 1/2 = 110 min). These radiopharmaceuticals include [ 15 O]oxygen, [ 15 O]carbon monoxide, [ 15 O]carbon dioxide, [ 15 O]water, [ 13 N]ammonia, [ 11 C]flumazenil, [ 11 C]SCH23390, [ 18 F]fluoromisonidazole and [ 18 F]fluoro-deoxy-glucose ([ 18 F]FDG). In addition, since the half life of [ 18 F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [ 18 F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [ 18 F]thymidine analog to measure cell proliferation and a [ 11 C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors)

  10. Fetal absorbed doses by radiopharmaceutical administration

    International Nuclear Information System (INIS)

    Rojo, Ana M; Gomez Parada, Ines M.; Di Trano, Jose L.

    2000-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  11. Radiopharmaceuticals for nuclear cardiology; Radiofarmacos para cardiologica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Leon Cabana, Alba [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    One of the diagnostic technique periodically used in Nuclear Medicine is the angiographic studi e, employee for detect cardiovascular diseases. The radiopharmaceutical more used in the angiographic ones is 99mTc. Between thetopics described in the present work it find: myocardial infarction, radiopharmaceuticals classification for cardiac studies, labelled proceedings, cardiovascular diseases.

  12. Modular strategies for PET imaging agents

    International Nuclear Information System (INIS)

    Hooker, J.M.

    2010-01-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  13. Tc-99m labeled Sparfloxacin: A specific infection imaging agent

    International Nuclear Information System (INIS)

    Singh, A.K.; Verma, J.; Bhatnagar, A.; Ali, A.

    2003-01-01

    Radiolabeled antibiotics are being used for the specific diagnosis of infection by exploiting their specific binding properties to the bacterial component, thereby making it possible to differentiate infection from sterile lesions. A new radiopharmaceutical, Tc-99m Sparfloxacin has been developed for infection imaging. Sparfloxacin is a quinolone based broad-spectrum antibiotic, which is more potent than Ciprofloxacin. Radiolabeling of Sparfloxacin with Tc-99m was standardized using direct labeling protocol. Labeling efficiency, in-vitro and in-vivo stability, blood kinetics and organ distribution studies (in balb/c mice and New Zealand White Rabbits at different time interval up to 24hrs) were carried out. Biological activity of Sparfloxacin after its labeling with Tc-99m was evaluated with S.aureus using Peptone water (DIFCO) as media. Turpentine oil (100 μl) in left thigh and S.aureus (100μl of 3x10 7 cells) in right thigh were injected intramuscularly to create sterile and infective inflammation respectively in six New Zealand white rabbits. The localization kinetics of the radiolabeled complex were studied in the animal model by injecting 70-75MBq of Tc-99m Sparfloxacin intravenously in the ear of rabbit and the images were taken with a Gamma-camera (ECIL) at different post-injection time intervals. Standardized protocol produced >95% labeled complex. About 8% of tracer leached out at 24 hrs when incubated in serum at 37 0 C, confirming high stability of the complex. Blood clearance in rabbit revealed biphasic pattern and 50% of the complex clears from the blood within 5 min. Biodistribution studies in balb/c mice showed hepatobiliary route of excretion. Presence of insignificant amount of tracer at 24 hrs in the stomach confirmed high in vivo stability of the complex. Imaging in rabbits showed significant concentration of tracer in lesions with infection. Typical imaging patterns revealed initial accumulation of radiotracer in both sterile inflammatory

  14. Positron Tomographic Imaging Of The Liver With Ga-68 Iron Hydroxide Colloid

    Science.gov (United States)

    Kumar, Bharath; Miller, Tom R.; Siegel, Barry A.; Mathias, Carla J.; Markham, Joanne; Ehrhardt, Gary J.; Welch, Michael J.

    1980-08-01

    ,8-11). In the present study, we have prepared and characterized a new radiopharmaceutical for liver imaging, 68Ga iron hydroxide colloid, and have evaluated this agent in patients with hepatic tumors by imaging with a positron tomographic scanner.

  15. Molecular design of 99Tcm labelled radiopharmaceuticals. Pt.2

    International Nuclear Information System (INIS)

    Wang Xuebin; Chu Jinfeng

    2003-01-01

    The structure-activity relationship of 99 Tc m labelled radiopharmaceuticals and the correlative contents of computer aided drug design are introduced. Of them, quantitative structure-activity relationship and its application to design 99 Tc m labelled radiopharmaceuticals are narrated on emphases

  16. 99mTc-ceftriaxone, as a targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Staphylococcus aureus in mouse model

    International Nuclear Information System (INIS)

    Akram Fazli; Mojtaba Salouti; Mohammad Mazidi

    2013-01-01

    99m Tc-labeled antibiotics have opened an exciting field of research in infectious diseases diagnosis. Direct labeling of ceftriaxone with 99mTc was carried out using the various amounts of ceftriaxone and SnCl 2 ·2H 2 O at different pH and incubation time intervals to find the highest radiochemistry efficiency with high stability at room temperature and human blood serum. ITLC-SG and HPLC were performed to measure the radiochemical purity of the conjugate. The binding study showed 45 % specific binding to Staphylococcus aureus. The biodistribution study and scintigraphic imaging showed the localization of 99m Tc-ceftriaxone at the site of infection in comparison with normal and inflamed muscles with high sensitivity and specificity in mouse model. The results showed that 99m Tc-ceftriaxone is a promising candidate as a targeting radiopharmaceutical for Staphylococcal infection imaging in humans which needs further investigations. (author)

  17. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    International Nuclear Information System (INIS)

    Green, Mark A.; Mathias, Carla J.; Willis, Lynn R.; Handa, Rajash K.; Lacy, Jeffrey L.; Miller, Michael A.; Hutchins, Gary D.

    2007-01-01

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-μm microspheres was confirmed in four immature farm pigs using co-injected 46 Sc- and 57 Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [ 64 Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [ 64 Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [ 64 Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [ 64 Cu]Cu-ETS. Results: The co-injected 11- and 15-μm microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [ 64 Cu]Cu-ETS and regional renal perfusion measured using microspheres. [ 64 Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37 o C, the [ 64 Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min -1 g -1 ) with [ 60,61,62,64 Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol extraction of blood samples appears suitable as an approach

  18. Radiation Protection, double-blind studies with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Pujadas, M. C.; Camacho, C.; Guasp, M.; Villaescusa, J. I.

    2009-01-01

    In a double-blind randomized controlled clinical trial (RCT) subjects and researchers do not know the assignment to treatment groups to ovoid the appearance of subjective biases of information. The employment of radiopharmaceuticals in double-blind RCTs raises a dilemma from the point ov view of the radiological protection. On the one hand, the obligation to act in cases of contamination and/or risk of irradiation exists, but on the other hand the duty of keeping the blind study also exists. In this paper some of the possible problems that arise when conducting a double-blind RCT with radiopharmaceuticals from the point of view of the radiological protection are presented. We comment our experience with the radiopharmaceutical Alpharadin and, in addition, we propose useful recommendations based on the randomness of the decontamination process. (Author) 7 refs.

  19. Short-lived radionuclides program at the University of Michigan

    International Nuclear Information System (INIS)

    Wieland, D.M.

    1985-01-01

    The University of Michigan Nuclear Medicine Research Program, from instrumentation design through radiopharmaceutical development to clinical evaluation, is heavily dependent on the availability and use of iodine-123. Research activities at the University of Michigan can be divided into four major areas: instrumentation, radiochemistry, radiopharmaceutical development, and clinical evaluation. In the first category a new single-photon ring tomograph (SPRINT) has been built and is undergoing performance testing. SPRINT has been designed specifically for brain imaging with 123 I-labeled agents. In the area of radiochemistry, a simple radioiodide exchange technique has been developed for the rapid synthesis of 123 I-labeled aromatic compounds. In the radiopharmaceutical arena, a new agent, 123 I-meta-iodobenzyl-guanidine (MIBG), has been developed - the result of an extensive structure-distribution-relationship study. This radiopharmaceutical, a storage analog of norepinephrine, images organs with rich sympathetic innervation such as the heart and spleen. In the Nuclear Medicine Clinic three 123 I-labeled radiopharmaceuticals are undergoing evaluation

  20. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents.

    Science.gov (United States)

    Brink, Alice; Helliwell, John R

    2017-05-01

    Multiple possibilities for the coordination of fac -[Re(CO) 3 (H 2 O) 3 ] + to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value ( f '' of 12.1 electrons) at its L I absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu  K α X-ray wavelength (1.5418 Å) the f '' for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f '' was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.

  1. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents

    Directory of Open Access Journals (Sweden)

    Alice Brink

    2017-05-01

    Full Text Available Multiple possibilities for the coordination of fac-[Re(CO3(H2O3]+ to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value (f′′ of 12.1 electrons at its LI absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu Kα X-ray wavelength (1.5418 Å the f′′ for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f′′ was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.

  2. Maximizing precision and accuracy in quantitative autoradiographic determination of radiopharmaceutical distribution for dosimetry calculation

    International Nuclear Information System (INIS)

    Lear, J.L.; Mido, K.; Plotnick, J.; Muth, R.

    1986-01-01

    The authors developed operational equations which relate ranges of film darkening or optical density produced by exposures from autoradiograms to the ranges of radiopharmaceutical concentration contained in the autoradiograms. The equations were solved and used to define ranges of optical density which were optimal for precise determination of radiopharmaceutical concentration. The solutions indicated that in order to maximize precision in determination of tracer concentration, autoradiograms should be produced with images that are less dark than are typically considered pleasing to the eye. Based upon these observations, a solid state image analyzer was designed and developed for high spatial resolution, quantitative analysis of autoradiograms. The analyzer uses a linear array of charge-coupled devices (CCD's) which mechanically scans the autoradiograms. The images are digitalized into 512 x 512 or 1024 x 1024 pixels with 256 gray levels and directly mapped into memory. The system is therefore called a memory mapped, charge-coupled device scanner (MM-CCD). The images can be directly converted to represent tracer concentration or functional parameters and rapid region of interest analysis can be performed in single or multiple tracer studies. The performance of the system was compared to that of other commercially available image analyzers, rotating drum densitometers and video camera digitizers. Values of tracer concentration using the MM-CCD scanner were generally greater than twice as precise and accurate as from the other systems. 3 references, 4 figures, 3 tables

  3. Report of the Task Force on radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lacker, D.K.; Porter, B.J.; Watkins, G.

    1975-01-01

    The procedures for evaluation of IND and NDA applications were reviewed by FDA and the state members of the Task Force believe that there is significant progress being made toward expeditious handling of these items. Progress toward publication of the final rule on radiopharmaceuticals has reduced the need for state regulatory activity in investigational aspects of radiopharmaceutical research to the point that the original concept for the training is no longer valid

  4. 188Re radiopharmaceuticals for radiosynovectomy: evaluation and comparison of tin colloid, hydroxyapatite and tin-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Savio, Eduardo; Ures, María Cristina; Zeledón, Patricia; Trindade, Victoria; Paolino, Andrea; Mockford, Virginia; Malanga, Antonio; Fernández, Marcelo; Gaudiano, Javier

    2004-01-01

    Radiosynovectomy is a therapy used to relieve pain and inflammation from rheumatoid arthritis and related diseases. In this study three 188 Re particulate compounds were characterized according to their physico-chemical properties and their biological behavior in rabbits. The results were compared in order to establish which was the radiopharmaceutical that better fits the requirements of this kind of radiotherapy. Three radiopharmaceutical formulations, tin colloid, hydroxyapatite particles (HA) and ferric hydroxide macroaggregates coated with tin colloid (FHMA), were physically characterized (number, volume and surface of the particles). For this purpose laser diffraction methodology was used. To evaluate cavity leakage of activity the following studies in New Zealand rabbits were performed: scintigraphic images for 48 hr after intraarticular injection of each radiopharmaceutical, biodistribution at 48 hr and urine samples collection during the first 24 hr post-radiopharmaceutical administration. Labeling procedures for 188 Re-HA and 188 Re-Sn-FHMA were labour intensive while 188 Re-Sn was easily prepared. Furthermore, 188 Re-Sn colloid offered the greatest surface area in the 2–10 microm range and was obtained with a radiochemical purity over 95%, while percentage of bound activity for 188 Re-HA and 188 Re-Sn-FHMA were 55% and 92% respectively. Stability was verified for the three radiopharmaceuticals for 24 hr. Scintigraphic studies and biodistribution in rabbits after intraarticular administration of the radiopharmaceuticals showed relevant activity only in the knee, this being over 90% of the residual activity in the whole body at 48 hr in every case. Renal elimination of 188 Re-Sn colloid and 188 Re-Sn-FHMA was detected by activity measurements in urine samples, during the first 12 hr post-radiopharmaceutical injection. The percentage of activity retained in the knee was 69.1% for 188 Re-Sn colloid, 55.1% for 188 Re-Sn-FHMA and 33.6% for 188 Re-HA. The 188

  5. The role of mathematical models in the optimization of radiopharmaceutical therapy

    International Nuclear Information System (INIS)

    Divgi, C.

    2001-01-01

    Mathematical models have been used in radiopharmaceutical therapy for over five decades. These have served to determine the amount of radioactivity required to treat disease, as in the therapy of hyperthyroidism with iodine-131, or, more frequently, to determine the largest amount of radioactivity that can be safely administered. Mathematical models are especially useful in the determination of fractionated radiopharmaceutical therapy. This review will briefly outline the historical development and current utility of mathematical models in radiopharmaceutical therapy, including thyroid disorders and radioimmunotherapy; and describe the potential of modeling in fractionated therapy. The extended application of such models to currently used radiopharmaceutical therapy based on indices of body mass or surface area, to alleviate toxicity and increase radiation dose to tumour, will be proposed. Finally, future applications of mathematical models in radiopharmaceutical therapy will be outlined. (author)

  6. Radiochemical syntheses further radiopharmaceuticals for positron emission tomography and new strategies for their production

    CERN Document Server

    Kilbourn, Michael R; Kilbourn, Michael R

    2015-01-01

    This book describes methods and procedures for preparing PET radiopharmaceuticals, and highlights new methods for conducting radiochemical reactions with carbon-11 (C11) and fluorine-18 (F18), which are two of the most commonly used radionuclides in positron emission tomography (PET) imaging.     Provides reliable methods for radiochemical syntheses and reactions, including all essential information to duplicate the procedure     Eliminates the time-consuming process of searching journal articles and extracting pertinent details from lengthy experimental sections or supporting information     Focuses on an emerging and important area for pharmaceutical and medical applications     Encompasses technical, regulatory, and application aspects     Includes solid-phase radiochemistry, transition-metal catalyzed radiochemistry, microfluidics, click chemistry, green radiochemistry and new strategies for radiopharmaceutical quality control.

  7. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  8. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  9. Synthesis of radiopharmaceuticals containing short-lived radionuclides: Comprehensive progress report, March 1, 1986-February 28, 1989

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1988-06-01

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for intoducing short-lived isotopes into agents for use in PET and SPECT. A portion of our effort is directed toward the design and in vivo quantitation of boron-containing neutron therapy agents. The uniqueness of the program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals. The following topics are outlined in this paper: new isotope incorporation reactions utilizing nitrogen 13, oxygen 15, and carbon 11; technetium-boron complexes; boron-neutron-capture

  10. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  11. Development of radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Kim, J R; Shin, B C; Kim, Y M; Cho, U K; Han, K H; Chung, Y J; Shin, H Y; Hong, S B

    1997-09-01

    To overcome many problems caused by external radiation therapy, we have developed a new agent for internal radiation therapy, which is administered directly to the lesions and irradiate {beta}-rays resulting in maximized therapeutic effect and minimized radiation damage to normal tissues or organs to nearby. In the same reasons, we have also developed a new radioactive patch for the treatment of skin cancer using {beta}-emitting radionuclide. We prepared for {sup 166}Ho-chitosan complex ({sup 166}Ho-CHICO) which is potential radiopharmaceuticals for the treatment of liver cancer, peritoneal cancer metastasized from stomach cancer, ovarian cancer, and rheumatoid arthritis in knee joints. We carried out various experiments such as evaluation of absorbed dosimetry, studies on absorption, distribution, metabolism, and excretion (ADME) and clinical trials with {sup 166}Ho-CHICO. For commercialization of {sup 166}Ho-CHICO, we evaluated its toxicity, efficacy and safety, and then prepared documents for submission to the Mininstry of Health and Welfare to get license as an investigational new drug. {sup 166}Ho-Patch for skin cancer treatment was prepared by neutron irradiation of pre-made non-radioactive {sup 165}Ho-Patch. We evaluated the efficacy and safety of {sup 166}Ho-Patch in the treatment of skin cancer using an animal model and in clinical cases. (author). 49 refs., 15 tabs., 36 figs.

  12. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, F.C.

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di (o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis (2-hydroxybenzyl) ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. /sup 67/Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of /sup 67/Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the sup(99m)Tc agents. Excretion of /sup 67/Ga-Br-HBED was similar but with delayed transit from the liver. /sup 67/Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new /sup 67/Ga or /sup 68/Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  13. Quality control of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Verdera, E.S.

    1994-01-01

    The quality control of radiopharmaceuticals is based in physics, physics-chemical and biological controls. Between the different controls can be enumerated the following: visual aspect,side, number of particle beams,activity,purity,ph,isotonicity,sterility,radioinmunoessay,toxicity,stability and clinical essay

  14. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  15. Breast feeding's interruption following radiopharmaceutical administration to nursing mothers

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Dubner, D.; Gisone, P.; Perez de Serrano, M.

    1995-01-01

    The radiopharmaceutical administration to lactating women for therapeutic or diagnostic purpose can achieve a radiological risk to the breast feeding child due to levels of radioactivity in the breast milk. International recommendations regarding safe assumption of nursing mother after radiopharmaceutical administration were analysed. We examined the formula proposed by Rommey et al. to establish objective guidelines in case of the administration of radiopharmaceutical to nursing mothers. The ICRP 54 metabolic model for iodine was modified in order to calculate the suppression breast feeding's period according to the radioactivity measured in the breast milk. (author). 6 refs., 1 fig., 1 tab

  16. Imaging the primate adrenal medulla with [123I] and [131I] metaiodobenzylguanidine: concise communication

    International Nuclear Information System (INIS)

    Wieland, D.M.; Brown, L.E.; Tobes, M.C.; Rogers, W.L.; Marsh, D.D.; Mangner, T.J.; Swanson, D.P.; Beierwaltes, W.H.

    1981-01-01

    An evaluation of radioiodinated meta-iodobenzylguanidine (m-IBG) as an adrenomedullary imaging agent is reported in 15 rhesus monkeys. Scintiscans of the monkey adrenal medulla have been obtained with [ 123 I]- and [m- 131 ]IBG at 2 to 6 days after injection. The imaging superiority of m-IBG over its positional isomer, para-iodobenzylguanidine (p-IBG), is documented in both dogs and monkeys. Administration of reserpine, a depletor of catecholamine stores, markedly lowers the [m- 131 I]-IBG content of the dog adrenal medulla, but the adrenergic blocking agents phenoxybenzamine and propanolol have no effect. Subcellular fractionation of the dog's adrenal medullae reveals that m-IBG is sequestered mainly in the chromaffin storage granules. The results of this study suggest that radioiodinated m-IBG, previously reported to image the primate myocardium, also merits evaluation as a clinical radiopharmaceutical for the adrenal medulla

  17. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    S.-Stelson, A.T. [ed.] [comp.; Stabin, M.G.; Sparks, R.B. [eds.; Smith, F.B. [comp.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  18. Use of radiopharmaceuticals for treating bone metastases

    International Nuclear Information System (INIS)

    Alberti Ramírez, Alejandro; Morín Zorrilla, José; Cruz Arencibia, Jorge

    2016-01-01

    Cancer prevalence is estimated at around 2% of the population and on average between 64-80% of patients with solid tumors develop bone metastases, being breast tumors, lung and prostate those who do more frequency. In this paper an estimate of the prevalence of bone pain from metastases, with reference to the data reported in the literature is presented. the different treatment techniques are summarized for pain management with special emphasis on Radionuclidic therapy, analyzing the different factors to consider for the selection of suitable radiopharmaceutical. cost data and cost-benefit of some radiopharmaceuticals for the purpose to take into account during their selection are provided. It is concluded that although the treatment of metastatic bone disease requires multidisciplinary therapies, Radionuclidic therapy is not sufficiently used, particularly by inadequate perception of risks and costs of radiopharmaceuticals, despite the undeniable support of its efficacy and tolerability. (author)

  19. Quality assurance of radiopharmaceuticals - specifications and test procedures

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Colmanet, S.F.; Ivanov, Z.; Lauder, R.A.

    1990-10-01

    The authors report on a Radiopharmaceutical Quality Assurance Test Programme carried out by the Australian Radiation Laboratory in which radiopharmaceuticals used in nuclear medicine in Australia are tested for compliance with specifications. Where the radiopharmaceutical is the subject of a monograph in the British Pharmacopoeia or the European Pharmacopoeia, then the specifications given in the Pharmacopoeia are adopted. In other cases the specifications given have been adopted by this Laboratory and have no legal status. In some cases test procedures described have been taken from various Pharmacopoeias or methods published in the literature. In other cases test methods described have been developed at this Laboratory. It should be noted that, unless stated otherwise, specifications listed apply at all times up until product expire

  20. Radiopharmaceutical management in Brazil: the case of fluorodeoxyglucose production

    International Nuclear Information System (INIS)

    Pereira, Vitor da Silva

    2016-01-01

    Nowadays, the combination of fluorodeoxyglucose tracer (FDG) and PET/CT equipment is the best technological condition for medical diagnosis, allowing the generation of images that associate anatomy and metabolic functions of tissues or organs. Constitutional Amendment (CA) No 49 of 2006, relaxed the state monopoly on the production of radioactive substances, allowing private investment in radioisotope area with half-life of less than or equal to two hours, as a way to increase the supply of these materials to national health sector. In order to reflect on the Brazilian production of radiopharmaceuticals, especially FDG was performed a theoretical study with a qualitative approach, substantiated by documentary research and data collection through a questionnaire sent to the producing private companies of this radiopharmaceutical. Initially, it sought to identify in the federal level the legal and regulatory parameters for the activity; then the existing competitive environment was observed, and, finally, were prospected the business perspectives on the behavior of domestic demand of this product. The results showed the growth of production and its largest geographical distribution in the country, beyond what would be possible only considering public investment; but short of expectations surrounding the enactment of Constitutional Amendment. Private entrepreneurs believe in market growth; since, most of the population has no access to the benefits that the medical imaging diagnostic with the use of FDG may allow. It was also noted that there is a need to improve the regulatory framework in relation to licensing procedures; as well as implementation of common marketing parameters. (author)

  1. Experimental nuclear medicine radiopharmaceutical development

    International Nuclear Information System (INIS)

    Harper, P.; Lathrop, K.

    1980-01-01

    This report summarizes progress that has been made on the preparation and biological accumulation of various radiopharmaceuticals including C-hexamethonium, C-cholic acid, Mn-51 and labeled amino acids

  2. Report of the consultants' meeting on comparative laboratory evaluation of therapeutic radionuclides and radiopharmaceuticals

    International Nuclear Information System (INIS)

    1999-12-01

    Therapeutic radiopharmaceuticals consist of two components - the radionuclide and the biological carrier. With regard to the radionuclide, an advantage of targeted radiotherapy is that there are a wide variety of radionuclides with different physical half-lives and radiation qualities that can be applied for this purpose. An important task is to select a radionuclide that is compatible with the needs of a particular clinical application. The identification of the ideal targeted radiotherapeutic for each potential clinical application is a difficult task because of the multitude of variables that must be considered, some relating to the radioisotope, and others to the biological carrier. Hence it is recommended that a Co-ordinated Research Programme be established by the Agency to enable participants to acquire and intercompare the methodological expertise to evaluate the relative merit of therapeutic radiopharmaceuticals. These studies will be performed using a model system selected either from those described in this report or a promising agent that has emerged in the time since this meeting. The molecular carrier will be labelled with 131 I, 125 I as well as other therapeutic radionuclides available to the participant (for example, 90 Y, 186 Re, 188 Re, 153 Sm, 166 Ho, 165 Dy). The potential radiopharmaceuticals will then be compared in a progression of studies evaluating biological integrity after labelling, internalisation and residualization of radioactivity in the tumour cell, in vitro cytotoxicity, tissue distribution, normal organ toxicity (determination of the maximum tolerated dose) and finally, therapeutic efficacy

  3. Synthesis and formulation of {sup 99m} Tc-ECD radiopharmaceutical; Sintesis y formulacion del radiofarmaco {sup 99m} Tc-ECD

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo G, B E

    1998-06-01

    Nuclear medicine is a medical specialty which uses radioactive compounds (radionuclides) for diagnostic and therapeutic purposes. {sup 99m} Tc is the more common radionuclide used in many studies in nuclear medicine because its advantages: it has a photopeak of 140 KeV and a half-life of 6 hours; it can be eluted from a Molybdenum 99 generator, so radiopharmaceuticals can be prepared on site. Ethyl cysteine dimer (ECD) labelled with reduced Technetium 99m has been purposed recently as a promising radiopharmaceutical for brain perfusion imaging {sup 99m} Tc-ECD is a lipophilic neutral complex which cross the brain blood barrier and show high brain uptake. The objective of this work was synthesize and to design a freeze dried formulation for the instant preparation of {sup 99m} Tc-ECD complex useful for brain perfusion imaging. We obtained a freeze dried stable formulation for the preparation of {sup 99m} Tc-ECD kit with a radiochemical purity higher than 90 %, which fulfills with the quality control of radiopharmaceuticals. Furthermore, we developed analytic techniques for the determination of the different chemical compounds into the lyophilized kit. (Author).

  4. Synthesis of Fluorine-18 Labeled Glucose-Lys-Arg-Gly-Asp-D-Phe as a Potential Tumor Imaging Agent

    International Nuclear Information System (INIS)

    Lee, Kyo Chul; Kim, Ji Sun; Sung, Hyun Ju; Jung, Jae Ho; An, Gwang Il; Chi, Dae Yoon; Lee, Byung Chul; Moon, Byung Seok; Choi, Tae Hyun; Chuna, Kwon Soo

    2005-01-01

    The α v β 3 integrin is an important receptor affecting tumor growth, metastatic potential on proliferating endothelial cells as well as on tumor cells of various origin, tumor-induced angiogenesis could be blocked by antagonizing the α v β 3 integrin with RGD. Therefore, α v β 3 integrin is a target for angiogenesis imaging that might be useful in assessing tumor-induced angiogenesis and identifying tumor metastasis. To design potent radiotracer for imaging angiogenesis containing a cRGD moiety should include low hepatic uptake in vivo. Tripeptide Arg-Gly-Asp (RGD), naturally existed in extracellular matrix proteins, is known to be the primary binding site of the α v β 3 integrin. The imaging of α v β 3 receptor expression will give the information of the metastatic ability of the tumor which is not available by [ 18 F]FDG. Our interest in developing new radiopharmaceuticals for in vivo visualization of angiogenesis has led us to synthesize derivatives of cRGD (cyclic arginineglycine-aspartic acid) that contains glucose moiety. Because sugar-protein interaction is a key step in metastasis and angiogenesis, it has also been proposed to play an intriguing role in imaging of tumor. We designed and synthesized two fluorine-18 labeled RGD glycopeptides . N-fluorobenzyl-diaminobutane-N'-glucose-Lys-Arg-Gly-Asp-D-Phe ([ 18 F]fluorobenzyl-glucose-KRGDf, and Nfluorobenzoyl- diaminobutane-N'-glucose-Lys-Arg-Gly-Asp-D-Phe ([ 18 F]fluorobenzoyl-glucose-KRGDf, from same precursor as a diagnostic tumor imaging agent for positron emission tomography (PET). Fluorine-18 labeled cRGD glycopeptides were prepared using two different simple labeling methods: one is reductive alkylation of an amine with [ 18 F]fluorobenzaldehyde and the other is amide condensation with [ 18 F]fluorobenzoic acid

  5. Quality assessment of radiopharmaceuticals in nuclear medicine services at Northeast states, Brazil

    International Nuclear Information System (INIS)

    Andrade, Wellington Gomes de

    2012-01-01

    The radiopharmaceuticals are used in the field nuclear medicine services (NMS) as tracer in the diagnoses and treatment of many diseases. Radiopharmaceuticals used in nuclear medicine and usually have a minimum of pharmacological effect. The procedures for labelling Radiopharmaceuticals should be observed in order to minimize risks to patients, employees and individuals from the public, and to be administered in humans, must be sterile and free of pyrogens and possess elements all measures of quality controls required a conventional drug. The 'Agencia Nacional de Vigilancia Sanitaria (ANVISA)' in its 'Resolucao de Diretoria Colegiada' (RDC) No. 38 of June 4 th 2008, decided that the NMS must perform quality control in the generators eluate and radiopharmaceuticals according to recommendations of manufacturers and scientific evidence accepted by ANVISA. Thus, this study proposes to evaluate the quality of the generator 99M o- 99m Tc eluate and radiopharmaceuticals labeled with 99m Tc used in most NMS of some states in the Northeast, in relation to radionuclide, chemical, radiochemical purity and pH and promote the inclusion of procedure for quality control of radiopharmaceuticals in routine NMS. The results show that 90% radionuclidic purity, 98.2% purity chemical and radiochemical purity of 46% and 100% of the eluates are in agreement with international pharmacopoeias; already radiopharmaceuticals showed 82.6% purity and all radiochemical pH values are also in accordance with international pharmacopoeias. Even with so many positive results, staff the majority of MNS was not able to perform the quality control of the eluates and radiopharmaceuticals. Showing the importance of implementing of quality control programs of the eluates and radiopharmaceuticals in nuclear medicine. (author)

  6. Development of PET and SPECT radiopharmaceuticals to study multi-drug resistance (MDR)

    International Nuclear Information System (INIS)

    Katsififs, A.; Dikic, B.; Greguric, I.; Knott, R.; Mattner, F.

    2002-01-01

    Full text: Cellular resistance or Multidrug Resistance (MDR) to cytotoxic agents is the major cause of treatment failure in many human cancers. P-glycoprotein (Pgp), a Mr 17,0000 transmembrane protein and Multi Resistance Protein (MRP) are two proteins that are over expressed and confer resistance to a large number of chemotherapeutic agents by enhancing their extracellular transport. P-glycoprotein is expressed at a relative high level in treated and untreated human malignant tumours, including renal, colonic, adrenal, hepatocellular carcinoma and a considerable percentage of breast carcinomas. 99m Tc-Sestamibi, a lipophilic cationic complex is a transport substrate for Pgp. In clinical studies of human neoplasms it was found that tumour uptake and clearance of this tracer correlate with Pgp expression and may be used for the phenotypic assessment of MDR. However, new tracers with better substrate specificity for Pgp and other drug transporters would greatly assist in optimising chemotherapeutic treatment and improving patient management by predicting tumour response to therapy and to assist in the development of antagonists, which may reverse or halt MDR. The aim of this project is therefore to develop PET and SPECT radiopharmaceuticals with improved affinity and selectivity for Pgp and MRP for the clinical evaluation of MDR in cancer patients. To optimise cellular transport characteristics, a number of chemical families that have been found to be substrates of Pgp and other drug efflux pumps, will be investigated. In the first instance, a series of drugs based on the flavonol natural product, Quercetin will be developed, screened for MDR and radiolabelled with PET and SPECT isotopes. Quercetin and related flavonol derivatives have been selected for this project because of their moderate to good affinity for Pgp. With the assistance of molecular modeling and in vitro studies, structural modification will be undertaken to improve the specificity and affinity for

  7. Production And Quality Control Of Radiopharmaceutical 18F-FDG

    International Nuclear Information System (INIS)

    Dinh Thi Bich Lieu; Nguyen Van Si; Vu Van Tien

    2011-01-01

    18 F-FDG is a radiopharmaceutical for imaging diagnosis with PET/CT in Nuclear Medicine. Criteria of injection pharmaceuticals are the highest standards. So, quality assurance and quality control must be followed very strictly. The selection of the procedure for 18 F-FDG has based on several criteria: high chemical efficiency, short synthesis time, toxic component free and etc. The quality control of 18 F-FDG consist many fields such as: nuclear physic (nuclear purity), radiochemistry (radionuclear purity, radiochemical purity), chemistry (chemical purity), radiation measurement (half life), microbiology (pyrogen, endotoxin), etc. which is following USP, BP or EP. (author)

  8. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  9. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on {sup 177}Lu for radionuclide therapy'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Radionuclide therapy (RNT) employing radiopharmaceuticals labelled with emitting radionuclides is fast emerging as an important part of nuclear medicine. Radionuclide therapy is effectively utilized for bone pain palliation, thus providing significant improvement in quality of life of patients suffering from pain resulting from bone metastasis. Targeting primary diseases by using specific carrier molecules labelled with radionuclides is also widely investigated and efficacious products have been emerging for the treatment of Lymphoma and Neuroendocrine tumours. In order to ensure the wider use of radiopharmaceuticals, it is essential to carefully consider the choice of radionuclides that together with the carrier molecules will give suitable pharmacokinetic properties and therapeutic efficacy. The criteria for the selection of a radionuclide for radiotherapy are suitable decay characteristics and amenable chemistry. However, the practical considerations in selecting a radionuclide for targeted therapy are availability in high radionuclidic purity as well as high specific activity and low production cost and comfortable delivery logistics. {sup 177}Lu is one of the isotopes emerging as a clear choice for therapy. Worldwide, the isotope is under investigation for approximately 30 different clinical applications, including treatment of colon cancer, metastatic bone cancer, non-Hodgkin's lymphoma, and lung cancer. {sup 177}Lu decays with a half-life of 6.71 d by emission of particles with E{sub max} of 497 keV (78.6%), 384 keV (9.1%) and 176 keV (12.2%). It also emits photons of 113 keV (6.4%) and 208 keV (11%), that are ideally suited for imaging the in-vivo localization and dosimetric calculations applying a gamma camera. The physical half-life of {sup 177}Lu is comparable to that of {sup 131}I, the most widely used therapeutic radionuclide. The long halflife of {sup 177}Lu provides logistic advantage for production, QA/QC of the products as well as feasibility to

  10. Determination of stannous tin in radiopharmaceutical cold kits

    International Nuclear Information System (INIS)

    Farrant, A.J.

    1979-01-01

    Two methods for determining stannous tin in 'cold kits', used for the preparation of Tc-99m labelled radiopharmaceuticals, have been developed. Both are based on the direct titration of the Sn2 in solution. In the first method titration is with N-bromosuccinimide. Of the materials commonly used as cold kits only albumin has been found to interfere with the determination. The second method is a standard iodometric titration in which starch is used as indicator. None of the materials tested interfere with this procedure. The N-bromosuccinimide method is the method of choice as the re-agent, a solid, can be used without prior standardization. Iodine solution must be standardized daily. The paper describes in detail the methods used and gives examples of kits in which the Sn2 levels have been determined using the described procedures

  11. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  12. Radiation decomposition of technetium-99m radiopharmaceuticals

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Rempel, S.; Westendorf, B.A.

    1979-01-01

    Technetium-99m radiopharmaceuticals are shown to be subject to autoradiation-induced decomposition, which results in increasing abundance of pertechnetate in the preparation. This autodecomposition is catalyzed by the presence of oxygen, although the removal of oxygen does not prevent its occurrence. The initial appearance of pertechnetate in the radiopharmaceutical is shown to be a function of the amount of radioactivity, the quantity of stannous ion used, and the ratio of /sup 99m/Tc to total technetium in the preparation

  13. Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals.

    Science.gov (United States)

    Uccelli, Licia; Boschi, Alessandra; Martini, Petra; Cittanti, Corrado; Bertelli, Stefania; Bortolotti, Doretta; Govoni, Elena; Lodi, Luca; Romani, Simona; Zaccaria, Samanta; Zappaterra, Elisa; Farina, Donatella; Rizzo, Carlotta; Giganti, Melchiore; Bartolomei, Mirco

    2018-03-15

    The influence of effective room temperature on the radiochemical purity of 99m Tc-radiopharmaceuticals was reported. This study was born from the observation that in the isolators used for the preparation of the 99m Tc-radiopharmaceuticals the temperatures can be higher than those reported in the commercial illustrative leaflets of the kits. This is due, in particular, to the small size of the work area, the presence of instruments for heating, the continuous activation of air filtration, in addition to the fact that the environment of the isolator used for the 99m Tc-radiopharmaceuticals preparation and storage is completely isolated and not conditioned. A total of 244 99m Tc-radiopharmaceutical preparations (seven different types) have been tested and the radiochemical purity was checked at the end of preparation and until the expiry time. Moreover, we found that the mean temperature into the isolator was significantly higher than 25 °C, the temperature, in general, required for the preparation and storage of 99m Tc-radiopharmaceuticals. Results confirmed the radiochemical stability of radiopharmaceutical products. However, as required in the field of quality assurance, the impact that different conditions than those required by the manufacturer on the radiopharmaceuticals quality have to be verified before human administration.

  14. Guidelines on current good radiopharmacy practice (cGRPP) in the preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Dumas, Cecile

    2010-07-01

    Preparation of radiopharmaceuticals for injection involves adherence to regulations on radiation protection as well as to appropriate rules of working under aseptic conditions, which are covered by these guidelines on Good Radiopharmacy Practice (GRPP). The handling of radiopharmaceuticals is potentially hazardous. The level of risk depends in particular upon the types of radiation emitted and the half-lives of the radioactive isotopes. Particular attention must be paid to the prevention of cross-contamination, and to waste disposal. A continuous assessment of the effectiveness of the Quality Assurance system is essential to prove that the procedures applied in the Radiopharmacy Department lead to the expected quality. Clinical trials with new radiopharmaceuticals should follow these regulations on cGRPP as well as the Guideline on Good Clinical Practice. As there is a considerable difference in complexity in preparing 'classical' radiopharmaceuticals in 'kit' procedures and producing radiopharmaceuticals by distinct chemical procedures (Positron Emission Tomography (PET) Radiopharmaceuticals, in house prepared radiopharmaceuticals including in house prepared kits) these guidelines have been divided in two parts (A and B) respecting these differences

  15. Examining multi-component DNA-templated nanostructures as imaging agents

    Science.gov (United States)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  16. [New Radiopharmaceuticals Based on Prostate-Specific Inhibitors of Membrane Antigen for Diagnostics and Therapy of Metastatic Prostate Cancer].

    Science.gov (United States)

    Vlasova, O P; German, K E; Krilov, V V; Petriev, V M; Epstein, N B

    2015-01-01

    About 10.7% cases of prostate cancer were registered in Russia in 2011 (40,000 patients). More than half of cancer cases were revealed in advanced (III-IV) stages when metastases inevitably developed quickly. Clinical problem of early diagnostics and treatment of metastatic prostate cancer is still not solved. Anatomical imaging techniques have low sensitivity and specificity for the detection of this disease. Metabolic visualization methods which use prostate specific antigen (PSA) as a marker are also ineffective. This article describes prostate-specific membrane antigens (PSMA) that are proposed as a marker for diagnostics and therapy of prostate cancer. The most promising PSMA-based radiopharmaceutical agent for diagnostics has been developed and clinically tested in the European countries. These pharmaceuticals are based on small peptide molecules modified with urea, and have the highest affinity to PSMA. Favorable phannacokinetics, rapid accumulation in the tumor and rapid excretion from the body are beneficial features of these pharmaceuticals.

  17. Molecular target in oncology. Opportunity for radiopharmaceuticals development

    International Nuclear Information System (INIS)

    Navarro Marques, Fabio Luiz

    2016-01-01

    Cancer is a cellular multifactorial disease, regulated by changes in phenotype characteristics, such as adhesion, invasion, migration, and tumorigenesis; genotypic status of commonly altered genes (KRAS and p53); microenvironmental conditions, such pH, oxygen and nutrient supply. All these features provide opportunities for radiopharmaceuticals development, both for diagnostic and therapy. For both applications, radiopharmaceuticals molecules can be divided in small synthetic molecules, small peptides (natural or modified), large molecules such as antibody or nanoparticles. The characteristics of those molecules and use will guide the choice of the radionuclide to be used for labeling it. In the presentation, data from literature and research ongoing in the Faculty of Medicine of the University of São Paulo/Brazil will be used for demonstrate the potential for radiopharmaceuticals development. (author)

  18. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  19. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Haji-Saeid, M.; Zaknun, J.; Ramamoorthy, N.

    2009-01-01

    technologies for therapeutic radionulclides' is the development of a novel technology generator for 90 Sr/ 90 Y, an electrochemical generator system (named by the developers as 'Kamadhenu', a mythological Indian cow that provides perennial milk supply) for the preparation of 90 Y of high purity for therapy. The further development of the system into an automated module has been done by a collaborating commercial entity, Isotope Technologies Dresden (ITD), Germany, and the prototype module will be installed shortly in Cuba under an IAEA technical cooperation project. The development of 'extraction paper chromatography (EPC)' for estimation of ppm levels of 90 Sr in 90 Y is another significant achievement under the same CRP. EPC is a novel analytical technique with potential for application in other fields. All such research outputs of the CRP are published as IAEA documents and can be freely downloaded. Currently there are two other ongoing CRPs: (i) Development of 177 Lu radiopharmaceuticals for radionuclide therapy (2006-2009) and (ii) Development of therapeutic radiopharmaceuticals using 90 Y and 188 Re (2008-2011). Thirty one research groups from across the world are participating in these CRPs, which are investigating the development of therapeutic radiopharmaceuticals for bone pain palliation, solid tumours including hepatocarcinoma as well as agents for radiosynoviorthesis. Major outcomes of the CRP on 177 Lu are the commencement of the production of 177 Lu in over a dozen reactors in the participating countries and translation of 177 Lu-EDTMP into a cost effective therapeutic radiopharmaceutical, following extensive pre-clinical evaluation studies, and through a joint CRP with the IAEA Nuclear Medicine Section that is focussing on the multicentric Phase I/II clinical trial of 177 Lu-EDTMP in metastatic prostate and breast cancer. The IAEA supports currently 14 technical cooperation projects in MS dealing with implementation of therapeutic radiopharmaceuticals including

  20. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, M R.A.; Haji-Saeid, M; Zaknun, J; Ramamoorthy, N [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria)

    2009-07-01

    on 'Development of generator technologies for therapeutic radionulclides' is the development of a novel technology generator for {sup 90}Sr/{sup 90}Y, an electrochemical generator system (named by the developers as 'Kamadhenu', a mythological Indian cow that provides perennial milk supply) for the preparation of {sup 90}Y of high purity for therapy. The further development of the system into an automated module has been done by a collaborating commercial entity, Isotope Technologies Dresden (ITD), Germany, and the prototype module will be installed shortly in Cuba under an IAEA technical cooperation project. The development of 'extraction paper chromatography (EPC)' for estimation of ppm levels of {sup 90}Sr in {sup 90}Y is another significant achievement under the same CRP. EPC is a novel analytical technique with potential for application in other fields. All such research outputs of the CRP are published as IAEA documents and can be freely downloaded. Currently there are two other ongoing CRPs: (i) Development of {sup 177}Lu radiopharmaceuticals for radionuclide therapy (2006-2009) and (ii) Development of therapeutic radiopharmaceuticals using {sup 90}Y and {sup 188}Re (2008-2011). Thirty one research groups from across the world are participating in these CRPs, which are investigating the development of therapeutic radiopharmaceuticals for bone pain palliation, solid tumours including hepatocarcinoma as well as agents for radiosynoviorthesis. Major outcomes of the CRP on {sup 177}Lu are the commencement of the production of {sup 177}Lu in over a dozen reactors in the participating countries and translation of {sup 177}Lu-EDTMP into a cost effective therapeutic radiopharmaceutical, following extensive pre-clinical evaluation studies, and through a joint CRP with the IAEA Nuclear Medicine Section that is focussing on the multicentric Phase I/II clinical trial of {sup 177}Lu-EDTMP in metastatic prostate and breast cancer. The IAEA supports currently 14 technical

  1. Determination of residual Kryptofix 2.2.2 levels in [18F]-labeled radiopharmaceuticals for human use

    International Nuclear Information System (INIS)

    Scott, Peter J.H.; Kilbourn, Michael R.

    2007-01-01

    4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix 2.2.2) is used in the routine preparation of [ 18 F]-labeled tracers employed in positron emission tomography (PET) imaging. Confirming the absence of Kryptofix in radiopharmaceuticals is a quality control criterion required before they can be released for human use. Analysis of Kryptofix levels using the iodoplatinate spot-test can be complicated by false-positive results due to nitrogen containing tracers and/or false-negative results caused by added stabilizers. To overcome this issue, we have developed a universal TLC method for the rapid and reliable determination of Kryptofix levels in the wide range of fluorine-18 radiopharmaceuticals we prepare, including complex multi-component formulations

  2. Innovative complexation strategies for the introduction of short-lived PET isotopes into radiopharmaceuticals

    International Nuclear Information System (INIS)

    Simecek, Jakub

    2013-01-01

    A number of TRAP (Triazacyclononane-triphosphinate) chelators were evaluated for labelling with Gallium-68. Based on the obtained data, a novel bifunctional chelator NOPO was designed, synthesised and employed for preparation of Ga-68 radiopharmaceuticals. Several 68 Ga-labelled NOPO peptidic conjugates showed promising results in preclinical positron emission tomography (PET) imaging studies using the mice models. Moreover, NOPO was found also suitable for labelling with Copper-64.

  3. Regulatory requirements for radiopharmaceutical radiochemistry and radiation dosimetry

    International Nuclear Information System (INIS)

    Bonnyman, J.

    1985-01-01

    The Australian Department of Health is responsible for ensuring that radiopharmaceuticals are safe and effective and that their use does not result in unnecessary radiation exposure. Section B1 requirements of New Drug Form 4 (NDF4) fall into the following sections - manufacture, product specifications, quality assurance testing, stability studies and expiry dating. It covers ready to inject pharmaceuticals, radioactive formulations used to prepare a radiopharmaceutical, generators and cold kits

  4. Dosimetric evaluation of 99mTc IgG as infection diagnostic agent for HIV positive patients

    International Nuclear Information System (INIS)

    Teran, Mariella; Paolino, Andrea; Vilar, Javier; Kapitan, Miguel; Andruskevicius, Patricia; Hermida, Juan C.; Gaudiano, Javier; Perez Sartori, Graciela; Savio Larriera, Eduardo

    2008-01-01

    A wide variety of radiopharmaceuticals are used as diagnostic or therapeutic agents. In this case 99m Tc-IgG was used to determine infection-inflammation processes in HIV patients, who sometimes are difficult to diagnose because of the presence of non specific signs and symptoms. The aim of this work was to estimate the hazard associated with the use of radiopharmaceuticals in nuclear medicine. In order to establish a proper design of kinetic studies and determine the radiation doses to individual human organs internal dosimetry methods were used. HIV positive patients with suspect of infection focus were administered via iv injection with 740 MBq (20 mCi) of 99m Tc-IgG. Anterior and posterior whole body images were acquired at 4 and 24 hours post injection in a gamma camera Mediso Medical Imaging, 1024 x 512 matrix. Geometric mean was calculated for different regions of interest taking into account decay, scattering and attenuation corrections. Blood and urine samples were collected at 1, 4, 8, 12 and 24 hours post injection. They were measured in a dose calibrator Capintec CR 5, corrections for geometry and decay were performed. For each patient, percentage of injected dose was calculated both for biological and image samples. The number of disintegrations was developed for those organs where higher concentration of activity was observed (liver, kidneys and spleen), the organs involved in the excretion (urinary bladder and intestines), red marrow and the reminder of the body. Total doses were estimated using OLINDA/EXM software. The code calculations showed that chosen organs as more compromised during the diagnostic procedure received very low effective doses. Correlation studies with calculations performed both for image and biological samples data were done. Despite the risk population under study the dosimetric estimations showed that 99m Tc-IgG is a safe radiopharmaceutical to be used in routine diagnostic procedures without hazardous effects. (author)

  5. Final Report Summary: Radiation dosimetry of Cu-64-labeled radiotherapy agents using PET [Positron Emission Tomography

    International Nuclear Information System (INIS)

    Anderson, Carolyn J.; Cutler, P.D.

    2002-01-01

    This project began in 1996, and was completed in July 2001. The overall goals were to compare various methods of dosimetry of PET imaging agents, as well as develop more optimal methods. One of the major accomplishments of this grant was the human PET imaging studies of a positron-emitting radiopharmaceutical for somatostatin-receptor imaging, and subsequent dosimetry calculations resulting from this study. In addition, we collaborated with Darrell Fisher and Edmund Hui to develop a MIRD-hamster program for calculating hamster organ and tumor dosimetry in hamster models. Progress was made towards a point kernel approach to more accurately determining absorbed doses to normal organs, as well as towards co-registration of PET and MRI images. This report focuses on the progress made in the last 15 months of the grant, which in general is a summary of the progress over the 5 years the project was ongoing

  6. Low-cost indigenous radiopharmaceutical kits manufacturing capability: a successful work accomplished in Ethiopia

    International Nuclear Information System (INIS)

    Jorge, Y.; Noronha, O.P.D.

    1998-01-01

    Nuclear Medicine Unit at Black Lion Hospital is the only Nuclear Medicine service giving center in the country. We have been importing Radiopharmaceutical-kits for 10 subsequent years costly, with frequent irregularities, only limited Numbers of kits mainly for Liver, Brain, Thyroid and Kidney imagings. Most of the Nuclear Medicine (NM) diagnostic procedures were not undertaken at our unit, because of unavailability of vital Radiopharmaceutical-kits (Rp-kits) in the country since they were not manufactured in the country. In order to solve this long stranding problem of the country persistent efforts were made. The success in Rp-kits manufacturing indigenously has the advantage of disseminating the NM Technology with in the country also. With the continuous efforts made 7 Aqueous-Rp-kits were manufactured successfully in our unit viza-viz: 1) 99m Tc-s-colloid-for Liver imaging. 2) 99m Tc-DTPA-for Brain + Renal imaging. 3) 99m Tc-MDP-for Bone imaging, 4) 99m Tc-Tin (11) pyrophosphate for in-vivo R,B,C, labelling: (For the study of Blood-Pool and Myocardial Infarction), 5) 99m Tc-Tin(11) Gluconate for Brain + Kidney Static imaging. 6) 99m Tc-Tin(11) Phytate for Liver imaging. 7) 99m Tc-TBI for Myocardial perfusion study. Their physico-chemical behaving patterns were studied and the chemical and biological quality control procedures were conducted upon the indigenously produced kits at the National Drug Quality Control center and they were found to be sterile, apyrogenic and non-toxic. The efficiency of the kits was tested in many patients in our unit and found to be effective and reliable. Aqueous kits produced were observed to be as effective and reliable as their lyophilized counterparts with respect to their physico-chemical properties and biospecificity (organ specificity) but possessing short shelf lives unlike lyophilized kits. (author)

  7. Guidance for nuclear medicine staff on radiopharmaceuticals drug interaction

    International Nuclear Information System (INIS)

    Santos-Oliveira, Ralph

    2009-01-01

    Numerous drug interactions related to radiopharmaceuticals take place every day in hospitals many of which are not reported or detected. Information concerning this kind of reaction is not abundant, and nuclear medicine staff are usually overwhelmed by this information. To better understand this type of reaction, and to help nuclear medicine staff deal with it, a review of the literature was conducted. The results show that almost all of radiopharmaceuticals marketed around the world present drug interactions with a large variety of compounds. This suggests that a logical framework to make decisions based on reviews incorporating adverse reactions must be created. The review also showed that researchers undertaking a review of literature, or even a systematic review that incorporates drug interactions, must understand the rationale for the suggested methods and be able to implement them in their review. Additionally, a global effort should be made to report as many cases of drug interaction with radiopharmaceuticals as possible. With this, a complete picture of drug interactions with radiopharmaceuticals can be drawn. (author)

  8. Good radiopharmaceuticals practices

    International Nuclear Information System (INIS)

    Verdera E, Silvia

    1994-01-01

    A careful security must be used in the nuclear medicine laboratory concerning to the proceedings, preparation and dispensation of radiopharmaceuticals. Each control laboratory must look after the radiation protection patients,workers and people in general. Between another routinary activities in the present work it find : equipment prearrangement,installations,handling and support of electronic instruments,proceedings,methodology, results and interpretation of analysis , as well as registry maintenance

  9. Quality control of radiopharmaceuticals with HPLC using aqueous size exclusion spherogel column

    International Nuclear Information System (INIS)

    Vallabhajosula, S.; Goldsmith, S.J.; Lipszyc, H.

    1982-01-01

    The application of HPLC for the analysis and quality control of 99 Tc-radiopharmaceuticals, using a weakly basic anion exchange column, has been reported. This HPLC method for the separation of the components is based on molecular size. 99 Tc-MDP, 99 Tc-HDP and 99 Tc-DTPA were analysed and UV absorption studies carried out on the components. Components of the 99 Tc-MDP separation were injected into rabbits and renal excretion and serial images studied. (U.K.)

  10. Radiopharmaceutical therapy in Dominican Republic. Present and future

    International Nuclear Information System (INIS)

    Johny Osvaldo de los Santos

    2005-01-01

    Full text: In this paper we present experience in Dominican Republic on Radiopharmaceutical Therapy. In our country, there are 8 Center with Nuclear Medicine Department. Only, 7 centers are working with Radiopharmaceutical Therapy. Radioiodine treatment with I-131 in Thyroid diseases(Thyroid Cancer and Hyperthyroidism). This is only Nuclear Medicine therapy available in Dominican Republic. The objectives of this paper are to analyze and assess the difficulties and facilities for the development of Radiopharmaceutical Therapy in Dominican Republic. We made surveys with the help of Nuclear Medicine Physicians of different Nuclear Medicine departments. 8 Nuclear Physicians accepted the interview. Two of these Nuclear Medicine Centers are Department of a Cancer Center and they have many patients for therapies. In the majority opinion of Physicians, Cost of Radiopharmaceuticals is principal problem to use Therapy in Dominican Republic. In addition the following problems were identified: Lack of awareness about new therapy in Nuclear Medicine among Physicians of other specialties, lack of adequate training in the current trends of radionuclide therapy and finally lack of basic infrastructure, equipment and finances to buy radiopharmaceuticals and introduce radionuclide therapy. For this reason, Nuclear Medicine Centers prefer to work with only I-131 Therapy and they do not have new programs to start other therapies. In the near future, our department of Nuclear Medicine will work with I-131, pain palliation, treatment of metastatic disease and Treatment of benign diseases. We have interest in offering other therapies in the department and we hope that other departments with more resources, have the same interest, to enhance practice of radionuclide therapy in our country. (author)

  11. Short-lived radiopharmaceutical development at E.R. Squibb and Sons, Inc

    International Nuclear Information System (INIS)

    Loberg, M.D.

    1985-01-01

    This paper describes the present status and future plans of E.R. Squibb and Sons, Inc. as they relate to the development of short-lived radiopharmaceuticals. The advantages of short-lived radiopharmaceuticals are summarized as are the problems inherent in their manufacture, quality control, and distribution. The nuclear generator is advocated as the best means of distributing short-lived radiopharmaceuticals. The E.R. Squibb and Sons work with the 82 Sr → 82 Rb generator is summarized

  12. Production, control and utilization of radioisotopes including radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.

    1985-05-01

    From April 29th to May 5th, 1984 27 participants from 21 developing countries stayed within an IAEA Study Tour ('Production, Control and Utilization of Radioisotopes including Radiopharmaceuticals') in the GDR. In the CINR, Rossendorf the reactor, the cyclotron, the technological centre as well as the animal test laboratory were visited. The participants were made familiar by 10 papers with the development, production and control of radiopharmaceuticals in the CINR, Rossendorf. (author)

  13. Traceability in the pharmaceutical industry: application to radiopharmaceutical production

    International Nuclear Information System (INIS)

    Zanette, Camila; Melero, Laura T.U.H.; Araujo, Elaine B. de; Mengatti, Jair; Silva, Katia S. de S.

    2011-01-01

    The development of tools to promote the traceability of the drugs in the pharmaceutical industry during all the production chain is a necessary requisite. The traceability system is applied to enable the identification of the origin, destination and exact location of the drug. Traceability optimizes the process chain, reduces errors, is a requirement for quality process, promotes safety for the user and assists in pharmacovigilance. The health regulatory agency in Brazil (ANVISA) will implement a tracking system for medicaments with RDC no. 59 of 2009, to control distribution since the producer until the patients in order to prevent the traffic and adulteration of drugs. Thus, this study discusses the importance and impact of the new traceability system proposed by ANVISA in the production and distribution of radiopharmaceuticals from the Nuclear and Energy Research Institute (IPEN-CNEN). The radiopharmaceuticals have a difference track when compared with another drug classes. In this context, this RDC would increase the price of the medicines by up to 10%, since it provides deployment of a single stamp supplied by the Mint. Considering that radiopharmaceuticals are not sold to the final consumer (patients), but only for accredited medical clinics and nuclear medicine physicians, and the transport of radiopharmaceuticals is performed by specialized companies licensed by CNEN (National Nuclear Energy Commission), the use of the stamp to ensure authenticity and prevent falsification should not be appropriated and represents and additional cost for the radiopharmaceuticals. (author)

  14. Results of quality control studies of technetium 99m labelled radiopharmaceuticals prepared from kits (1978-79)

    International Nuclear Information System (INIS)

    McLean, J.R.; Rockwell, L.J.; Welsh, W.J.

    1982-01-01

    This report summarizes the results of quality control studies of Tc 99m-labelled normal albumin, macroaggregated albumin, and bone imaging radiopharmaceuticals prepared from commercially available kits. It includes all analyses performed from January 1978 to December 1979. The results presented were obtained through the application of various in vitro and animal (mouse) biodistribution studies

  15. Improved dose–volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    International Nuclear Information System (INIS)

    Cheng Lishui; Hobbs, Robert F; Sgouros, George; Frey, Eric C; Segars, Paul W

    2013-01-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose–volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator–detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  16. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  17. Process for preparing radiopharmaceuticals

    International Nuclear Information System (INIS)

    Barak, M.; Winchell, H.S.

    1977-01-01

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical

  18. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  19. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mark A. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: magreen@purdue.edu; Mathias, Carla J. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Willis, Lynn R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Handa, Rajash K. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX 77054 (United States); Miller, Michael A. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Hutchins, Gary D. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2007-04-15

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-{mu}m microspheres was confirmed in four immature farm pigs using co-injected {sup 46}Sc- and {sup 57}Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [{sup 64}Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [{sup 64}Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [{sup 64}Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [{sup 64}Cu]Cu-ETS. Results: The co-injected 11- and 15-{mu}m microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [{sup 64}Cu]Cu-ETS and regional renal perfusion measured using microspheres. [{sup 64}Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37{sup o}C, the [{sup 64}Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min{sup -1} g{sup -1}) with [{sup 60,61,62,64}Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol

  20. A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours

    International Nuclear Information System (INIS)

    Garcia-Garayoa, Elisa; Blaeuenstein, Peter; Blanc, Alain; Maes, Veronique; Tourwe, Dirk; Schubiger, P.A.

    2009-01-01

    Neurotensin (NT) and its high affinity receptor (NTR1) are involved in several neoplastic processes. Thus, NT-based radiopharmaceuticals are potential tracers for targeted diagnosis and therapy of NTR-positive tumours. A new analogue based on NT(8-13), NT-XIX, with the three enzymatic cleavage sites stabilised, was synthesised and tested. The synthesis was performed by Boc strategy. Labelling with 99m Tc/ 188 Re was performed using the tricarbonyl technique. Metabolic stability was tested in vitro and in vivo. NT-XIX was further characterised in vitro in HT-29 cells and in vivo in nude mice with HT-29 xenografts. NT-XIX showed much longer half-lives than non-stabilised analogues. Binding to NTR1 was highly specific, although the affinity was lower than that of natural NT. Bound activity rapidly internalised into HT-29 cells and 50% remained trapped after 24 h. In the time-course biodistribution, the highest uptake was found in the tumour at all p.i. times. In vivo uptake was specific, and accumulation of activity in the kidneys was low. Radioactivity clearance from healthy organs was faster than that from the tumour, resulting in improved tumour-to-tissue ratios and good SPECT/CT imaging. Treatment with 188 Re-NT-XIX (30 MBq, in three or four fractions) decreased tumour growth by 50% after 3 weeks. The high in vivo stability and the favourable in vivo behaviour makes NT-XIX an excellent candidate for the imaging and therapy of NTR1-positive tumours. (orig.)

  1. Optimization of the production process of a lyophilized formulation for radiopharmaceutical obtaining 99mTc-EDDA/HYNIC-E-[c(RGDfK)]2

    International Nuclear Information System (INIS)

    Sanchez R, S.

    2013-01-01

    In this work was optimized the production process of a lyophilized pharmaceutical formulation for the preparation of radiopharmaceutical 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 , the union specifies to the integrin s α v β 3 was demonstrated to be used in the nuclear medicine cabinets in the obtaining of scan images for the opportune detection of breast cancer. The good lyophilized pharmaceutical formulation for the preparation of radiopharmaceutical 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 was established like: HYNIC-E-[c(RGDfK)] 2 - 25 μg; Stannous chloride (SnCl 2 ) 20 μg; Ethylenediamine diacetic acid (EDDA) 10 mg; N-tris(hydroxymethyl)methyl glycin (Tricine) 20 mg; Mannitol 50 mg. The results of radiochemical purity of the sterile formulation and free of bacterial endotoxins for the three validation lots prepared under protocols of good manufacturing practices were 97.62 ± 1.48%, 96.54 ± 1.89%, and 97.66 ± 0.57%, for what the production procedure complies the predefined specifications. The radiopharmaceutical 99m Tc-EDDA/HYNIC-E-[c(RGDfK)]2 prepared from the lyophilized pharmaceutical formulation showed to be stable during a period 24 hours, for what can be used in the centers of molecular nuclear medicine. Images in vivo were obtained of the integrin s over-expression α v β 3 from the radiopharmaceutical 99m Tc-EDDA/HYNIC-E-[c(RGDfK)]2 obtained of the lyophilized and optimized pharmaceutical formulation. The lyophilized pharmaceutical formulation (HYNIC-RGD-Sn) showed stability during 12 months, due to this factor, is requested before the COFEPRIS the radiopharmaceutical expiration for this same period (accession number 123300401A0155). (Author)

  2. A remotely operated, automated system for the infusion of shielded therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Macfarlane, D.J.; Bartlett, M.; Bellen, J.; Peters, J.; Domagala, M.; Allison, R.

    1999-01-01

    Full text: A number of radiopharmaceuticals may soon emerge into mainstream clinical oncology for palliative and therapeutic treatment for a variety of malignancies. These agents are characterized by high linear energy transfer particulate emissions. Dispensing and administration of these therapies on a regular basis pose a substantial radiation burden to staff, from direct g-emissions and from Bremsstrahlung (braking) radiations. In an effort to implement the ALARA principle, a multidisciplinary team was given the brief to design a system which permitted: (1) safe, sterile transfer of a nominated quantity of radiopharmaceutical into a shielded reservoir compatible with the infusion pump; (2) remote variation of volume and administration rate upon command; (3) purging of delivery system following administration of dose; (4) monitoring of and communication with patient during infusion; (5) use of TGA-approved delivery system. The final design centred around an Abbott 'Lifecare 5000' volumetric dual-channel intravenous infusion pump and featured: microprocessor control with mutiline LCD prompting display; remote operation of keypad by pneumatic actuator; CCTV monitoring of patient, pump and physiological data; delivery of therapy dose from a shielded vial; flushing of therapy vial by 'back-priming'; and full array of safety alarms (air in line, occlusion, empty vial, etc). Further developments include audio communication with patient and remote physiological monitoring

  3. Tumour imaging with non specific substances

    International Nuclear Information System (INIS)

    Pompe, W.B. van der.

    1978-01-01

    A short introduction concerning tumour imaging in nuclear medicine is given as well as the formulation of the problem treated in this thesis. In a literature review the most important tumour imaging radiopharmaceuticals used until now are described together with their clinical significance in the diagnosis of malignancy. The mechanism of uptake and subcellular distribution of most of the radiopharmaceuticals reviewed are discussed in chapter three with special reference to gallium-citrate. An ionic model to explain the distribution patterns of a number of these tumour imaging radiopharmaceuticals in normal and pathological tissues has been proposed. Evidence for the validity of this model is presented with specific reference to the ionic state of the reagents concerned. EXperimental evidence to support the proposed model is presented, with reference to the biologic behaviour of the radiopharmaceuticals in normal and pathological tissues. A limited number of selected case reports demonstrate how the results of the earlier described investigations can be applied to explain phenomena observed in clinical studies with ionic substances. The results obtained are discussed and the validity of the data with respect to the proposed model has been investigated. (Auth.)

  4. Evaluation of Deoxyribonucleic Acid Toxicity Induced by the Radiopharmaceutical 99mTechnetium-Methylenediphosphonic Acid and by Stannous Chloride in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Adriano Caldeira-de-Araujo

    2012-11-01

    Full Text Available Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl2 being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT and SnCl2 were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control, cyclophosphamide 50 mg/kg b.w. (positive control, SnCl2 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay and 36 h after, for micronucleus test. The data showed that both SnCl2 and 99mTc-MDP-induced deoxyribonucleic acid (DNA strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl2 in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine.

  5. The Chemistry of Re-188 Radiopharmaceuticals: Could Re-188 Play the Same Role in Therapy as Tc-99m in Diagnostics?

    International Nuclear Information System (INIS)

    Duatti, A.

    2009-01-01

    Radiopharmaceuticals incorporating the β-emitting radionuclide Re-188 are still attracting much interest for their potential application in nuclear medicine as therapeutic agents. There are many advantages of employing this class of radioactive compounds as briefly summarized in the following. (1) Re-188 emits a high-energy β- particle (2.1 MeV) that can be efficiently used to deliver high-dose radiation to the target. (2) Re-188 concomitantly emits a 155-keV γ photon that can be conveniently employed to obtain good-quality SPECT images of the biodistribution of Re-188 radiopharmaceuticals and, ultimately, following in vivo the course of the therapy. (3) Re-188 has a relatively short half-life (17 hours) that may allow multiple treatments of the same patient's disease. (4) Re-188 is a radiometal belonging to the same group of Tc-99m in the transition metal series of the Periodic Table, and shares with its cogener similar (though not identical) chemical properties that could be useful for designing a broad class of Re-188 radiopharmaceuticals having the same biodistribution properties of the corresponding Tc-99m analogues. (5) Similarly to Tc-99m, the radionuclide Re-188 is produced in high-specific activity through the 188 W/ 188 Re transportable generator system. A first challenge encountered in the attempt to develop efficient labeling procedures for Re-188 was related to the low radiochemical yield usually observed in tracer-level preparations of Re-188 radiopharmaceuticals starting from generator-produced [ 188 ReO 4 ]-. This drawback is commonly associated with the low value of the standard reduction potential of the tetraoxo anion as compared to the corresponding Tc-99m pertechnetate anion. In recent years, we reported a simple and efficient procedure for overcoming this problem based on a general chemical principle called 'expansion of the coordination sphere' and involving the addition to the reaction vial of an ancillary ligand (usually, chelating hard

  6. The ARPANSA quality assurance program for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Baldas, J.; Ivanov, Z.

    2003-01-01

    Full text: The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) conducts a radiopharmaceutical quality assurance test program in which radiopharmaceuticals used in nuclear medicine in Australia are tested for compliance with specifications. Where the radiopharmaceutical is the subject of a monograph in the British Pharmacopoeia or the European Pharmacopoeia, then the specifications given in these Pharmacopoeias are adopted. Where a monograph is only available in the US Pharmacopoeia, then this specification is generally adopted. In other cases the specifications quoted have been adopted by this Agency. Animal biodistribution testing was discontinued in 1997 due to resource limitation. Samples for testing were obtained through commercial channels. All technetium-99m cold kits were reconstituted according to the directions in the package insert using Sodium Pertechnetate [ 99m Tc] injection. The results of testing conducted by the ARPANSA during 1984-1999 are summarised. A significant cause of failure to meet full specifications has been due to non-compliance of the vial/package labels. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Novel MR imaging contrast agents for cancer detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2009-05-01

    Full Text Available

    • BACKGROUND: Novel potential MR imaging contrast agents Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP, Gd-hematoporphyrin (Gd-H, Gd-DTPA-9.2.27 against melanoma, Gd-DTPA-WM53 against leukemia and Gd-DTPAC595 against breast cancer cells were synthesized and applied to mice with different human cancer cells (melanoma MM-138, leukemia HL-60, breast MCF-7. The relaxivity, the biodistribution, T1 relaxation times, and signal enhancement of the contrast agents are presented and the results are compared.
    • METHODS: After preparation of contrast agents, the animal studies were performed. The cells (2×106 cells were injected subcutaneously in the both flanks of mice. Two to three weeks after tumor plantation, when the tumor diameter was 2-4 mm, mice were injected with the different contrast agents. The animals were sacrificed at 24 hr post IP injection followed by removal of critical organs. The T1 relaxation times and signal intensities of samples were measured using 11.4 T magnetic field and Gd concentration were measured using UV-spectrophotometer.
    • RESULTS: For Gd-H, the percent of Gd localized to the tumors measured by UV-spect was 28, 23 and 21 in leukemia, melanoma and breast cells, respectively. For Gd-TCP this amount was 21%, 18% and 15%, respectively. For Gd-DTPA-9.2.27, Gd-DTPA-WM53 and Gd-DTPA-C595 approximately 35%, 32% and 27% of gadolinium localized to their specific tumor, respectively.
    • CONCLUSION: The specific studied conjugates showed good tumor uptake in the relevant cell lines and low levels of Gd in the liver, kidney and spleen. The studied agents have considerable promise for further diagnosis applications of MR imaging.
    • KEYWORDS: Magnetic Resonance, Imaging, Monoclonal Antibody, Contrast Agents, Gadolinium, Early Detection of Cancer.

  8. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  9. Radionuclide production and radiopharmaceutical chemistry with BNL cyclotrons

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wolf, A.P.

    1985-01-01

    The Brookhaven National Laboratory (BNL) radiopharmaceutical chemistry program focuses on production and utilization of radionuclides having a half-life of > 2 hr. However, a major portion of the BNL program is devoted to short-lived radionuclides, such as 11 C and 18 F. Activities encompassed in the program are classified into seven areas: cyclotron parameters, radiochemistry, design and rapid synthesis of radiopharmaceuticals and labeled compounds, radiotracer evaluation in animals, studies in humans, technology transfer, and several other areas

  10. Intelligent portal monitor for fast suppression of false positives due to radiopharmaceuticals

    International Nuclear Information System (INIS)

    Johnson, M.W.; Butterfield, K.B.

    1985-01-01

    Monitoring the movement of radioactive material through secure or sensitive areas may be complicated by the existence of unanticipated sources of radiation carried by individuals passing through the area. Typical of such sources are radiopharmaceuticals prescribed for a medical procedure. We report here on an apparatus designed to quickly discriminate between in-vivo radiopharmaceuticals and other nuclear materials, based on a pattern-recognition algorithm and a microcomputer. Principles of operation are discussed, and the data base for the pattern-recognition algorithm is displayed. Operating experience with the apparatus in a trial location is also discussed. Our apparatus correctly identifies in-vivo radiopharmaceuticals in over 80% of all trials; challenges with radioisotopes other than radiopharmaceuticals have led the apparatus, without exception, to reject the challenge isotope as incompatible with medical practice. The apparatus thus rapidly discriminates between individuals bearing radiopharmaceuticals and those bearing illicit sources, such as special nuclear materials. Examples of applications are presented. 7 refs., 4 figs., 1 tab

  11. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zumrut Biber Muftuler, F.; Ayfer Yurt Kilcar; Perihan Unak

    2015-01-01

    Plant origin products having anticancer properties come into prominence due to widespread of cancer. There is significant increase on the usage of plant origin products and their purification to investigate the potential use at the treatment and diagnosis. Plant origin radiolabeled compounds have been attracting more scientific attention since the achievement of earlier researches. Furthermore, plant extracts are consumed quite a lot with unknown side effects of their contents. Researchers focus on investigation of their interactions with radiopharmaceuticals. Current review is carried out to evaluate the contribution of plant extracts for the development of new plant origin radiolabeled ( 125 / 131 I, 99m Tc) compounds for imaging and/or therapy and to investigate the interaction of plant extracts with radiopharmaceuticals. (author)

  12. Radiopharmaceutical labeling research

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The objective of this research is to develop methods of attaching radionuclides to monoclonal antibodies and antibody fragments for use in tumor imaging and internal radiation therapy. Monoclonal antibodies and their fragments are of interest because they enable the selective targeting of tumors. The labeled antibodies could be employed as carriers to transport radioisotopes to tumors, thus minimizing total-body radiation dose and radiation damage to normal tissue. Because the time required for labeled antibodies to find the tumor antigen and deliver the dose to the tumor is estimated to be about 1-3 days, radionuclides with a l- to 3-day half-life would be optimum for this purpose. Two of the radionuclides produced at LAMPF, 67 Cu and 77 Br, have the suitable half-life and nuclear-decay properties for use in tumor imaging or therapy with radiolabeled antibodies. These radionuclides and the efforts to prepare radiolabeled antibodies with them are described. We have used three different approaches to meet this objective of labeling antibodies: (1) labeling chelating agents with metal radionuclides, then conjugating the labeled chelating agents to antibodies; (2) conjugating activated chelating agents to antibodies, followed by metalation with metal radionuclides; and (3) radiobrominating small molecules that can be conjugated to antibodies

  13. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    OpenAIRE

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-01-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register ...

  14. Towards a harmonized radiopharmaceutical regulatory framework in Europe

    International Nuclear Information System (INIS)

    Decristoforo, A.; Penuelas, I.

    2009-01-01

    Despite European unification regarding a common legal framework for many aspects of pharmaceutical production including industrial manufacture of pharmaceuticals, the practice of pharmacy in general, and of radiopharmacy in particular, differs substantially and are mainly regulated at the national level. Herein the authors discuss major European documents relevant for radiopharmacy practice in Europe and recent developments on the national level especially regarding the small-scale preparation of radiopharmaceuticals (R P). Issues related to marketing authorization (and exemptions from it), standards of preparation, quality requirements, regulations of clinical trials and education will be outlined. Standards for the industrial preparation of pharmaceuticals are defined in Good Manufacturing Practice (GMP), not taking into account specific requirements for the small scale, extemporaneous preparation of R P. The European Association of Nuclear Medicine EANM has published several documents based on GMP and called Good Radiopharmaceutical Practice (cGRPP) to specifically address this in an attempt to harmonize R P preparation across Europe. Clinical trials have been hampered by the introduction of directive 2001/20/E C again aimed at the marketing track of industrial production and currently a number of activities are ongoing to counterbalance this problem in radiopharmaceutical research. Additionally, the role of the European Pharmacopoeia in regulating quality requirements and the need for specific education and training in the small scale radiopharmaceutical preparation are also discussed.

  15. Radiation hygiene problems of radiopharmaceutical preparation at nuclear medicine units

    International Nuclear Information System (INIS)

    Pekarek, J.; Kukacka, R.

    1977-01-01

    The problems of magistral radiopharmaceuticals preparation are indicated and the layout of a unit for the magistral preparation of radiopharmaceuticals is described. The results are briefly reported of a study of radiation load of laboratory personnel preparing radiopharmaceuticals as against doctors actually applying them. It was found that the exposure of hands to ionizing radiation represents the highest hazard for the laboratory personnel. The most important radiation protection principles are pointed out, such as the use of protective clothing, regular preventive medical examinations, appropriately shielded radionuclides and radionuclide generators to be supplied by manufacturers, and a more frequent rotation of personnel working with active and nonactive preparations. (L.O.)

  16. The radiopharmaceuticals labelled with technetium-99m and the radiopharmacy

    International Nuclear Information System (INIS)

    Bodenant, V.

    1998-01-01

    In less than fifty years, the place of nuclear medicine is become primordial. Among all the radiopharmaceuticals used in nuclear medicine, the technetium-99m is the most used because of its physico-chemical properties and its great availability with the molybdenum-99m - technetium-99m generator. Since 1992, the radiopharmaceuticals, the packages, the generators are included in the pharmaceutic monopole. They are now under the reliability of the radio-pharmacist. This thesis has for object to introduce these different radiopharmaceuticals labelled with technetium-99m and to show the primordial place of the radio-pharmacist in a service of nuclear medicine. (N.C.)

  17. In vitro test for pyrogenes in radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, V; Zmbova, B; Bzenic, J [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Berkes, J [Institut za Biohemije, Belgrade (Yugoslavia)

    1978-05-01

    Procedure and results of determination of pyrogenic substances in radiopharmaceutical preparations by an in vitro method based on the reaction between bacterial endotoxine and Limulus Amebocyte Lysate are presented. The advantage of this method as compared to the test in experimental animals performed so far has also been analyzed and proved by the fact that it enables avoidance of introduction of radioactive materials in experimental animals and of radiation effects on the results obtained in efficiency studies. The in vitro method is a quick one and requires only small quantities of the radiopharmaceutical preparation to be examined.

  18. 18F-Labelled catecholamine type radiopharmaceuticals in the diagnosis of neurodegenerative diseases and neuroendocrine tumours: approaches to synthesis and development prospects

    Science.gov (United States)

    Vatsadze, S. Z.; Eremina, O. E.; Veselova, I. A.; Kalmykov, S. N.; Nenajdenko, V. G.

    2018-04-01

    The pathogenesis of many socially significant diseases such as neurodegenerative dementias and neuroendocrine tumours involves imbalance of neurotransmitters. Among the known neuroimaging methods, positron emission tomography (PET) is the most perfect and informative technique for diagnosing these diseases. The potential of PET is largely determined by the inventory of available radiopharmaceuticals, that is, biologically active molecules containing short-lived nuclides with positron decay. This review gives a systematic account of the application of fluorine-18-labelled catecholamine type radiopharmaceuticals in clinical investigations of the sympathetic and central nervous systems. The methods for the synthesis of these agents and existing problems are considered. The material is arranged according to the mechanisms of reactions that underlie the synthetic approaches: electrophilic, nucleophilic and metal-catalyzed reactions. The bibliography includes 198 references.

  19. labelling and quality control of some 99m Tc-radiopharmaceuticals of expected biological activity

    International Nuclear Information System (INIS)

    Abdallah, A.B.I.

    2009-01-01

    this thesis addresses the labelling and quality control of some 99m Tc-radiopharmaceuticals which could be used for infection imaging. this study focuses on the labelling of sarafloxation, gatifloxation and cefepine with technetium-99m and biological evaluation of these labeled complexes and biodistribution in both normal and inflamed mice. the thesis is organized into two chapters: chapter I :labelling of some antibiotics chapter II :biological evaluation.

  20. In vitro study of tumor seeking radiopharmaceutical uptake by human breast cancer cell line MCF-7 after paclitaxel treatment

    International Nuclear Information System (INIS)

    Choi, Joon Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2007-01-01

    This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. F-18-fluorodeoxyglucose, C-11-methionine. TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h

  1. Survey or quality for radiopharmaceuticals and activimeters available in services of nuclear medicine from Recife, Pernambuco State, Brazil

    International Nuclear Information System (INIS)

    Nogueira, Fernanda Maria Dornellas Camara

    2001-08-01

    The radiopharmaceutical used in Nuclear Medicine must present high chemical and radiochemical purities in order to obtain images with contrast and clearness adequate for the diagnosis. Test should be made by the Nuclear Medicine institutes to evaluate the presence of molybdenum, aluminium and the free Tc O 4 - /TC-HR in the radiopharmaceutical before they use it. On the other hand, the activity to be administered to the patient is determined by the activimeters available in the Nuclear Medicine institutions. So it is necessary to perform tests to verify operating conditions of the activimeter to guarantee that the dose received by patient is the prescribed by the physician. In Brazil, few clinics of Nuclear Medicine are implanting the tests of the radiopharmaceutical and of the activimeters. The objective of this work is to establish the procedures for the radiopharmaceutical tests and to evaluate the quality of the radiopharmaceutical used at the clinics of Recife, as well as the operation conditions of the activemeters in these institutions. The results show that all the activimeters analyzed present a good performance and that the equipment with Geiger-Muller detectors present larger instability than the ones that use ionization chamber. Concerning the Mo/Tc generators, it was observed that only one presented Mo in the generator eluate with concentration over the acceptable limits and that the concentration of Al found in the samples analyzed were below the limits. On the other hand, in 73% of the MIBI analyzed samples were observed problems with its preparation that were caused by the procedures adopted at the clinics, which do not follow the manufacturers recommendations. (author)

  2. Development in the Preparation and the Quality Assurance of Radiopharmaceuticals for Clinical Uses

    International Nuclear Information System (INIS)

    Sangsuriyan, Jatupol; Paramatikul, Nipawan; Daengprasert, Moleepan; Pumkem, Sudkaneung; Sriwiang, Wiranee; Minsakorn, Naparat

    2011-06-01

    Full text: Radiopharmaceutical preparation technologies and a specific quality assurance system were developed. The kit formulation and the processing of a MDP kit, were developed as a model. NaCl was added as a bulking agent and the kit was filled with N 2 -gas at a slightly negative pressure before stoppering. The product quality tests met all quality control requirements and at least 1 year shelf life was reported. An EC kit and an ECD kit were also developed from the synthesis of starting materials with successful results. 99m T c-Hynic TOC, a neuroendocrine diagnostic agent, was developed both in the form of kit formulation and unit dose preparation for patients. The quality assurance systems for the Hynic-TOC kit and the unit dose preparation were set up and the technologies were taken into implementation by Radioisotope Center, TINT, as routine services

  3. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  4. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy.

    Science.gov (United States)

    Boschi, Alessandra; Martini, Petra; Uccelli, Licia

    2017-01-19

    The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188 Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188 Re is readily available from an 188 W/ 188 Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188 Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications.

  5. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy

    Science.gov (United States)

    Boschi, Alessandra; Martini, Petra; Uccelli, Licia

    2017-01-01

    The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188Re is readily available from an 188W/188Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications. PMID:28106830

  6. Advances in infectious foci imaging using 99mTc radiolabelled antibiotics

    International Nuclear Information System (INIS)

    Seyedeh Fatemeh Mirshojaei

    2015-01-01

    Conventional methods of infection diagnosis, relying on experimental tests and culture of organisms from infected foci have continued to developing new technologies and automation. Nuclear medicine is a reliable diagnostic technique capable to detect infectious foci in human disease. A wide range of radiolabeled agents have been evaluated for demonstrating their ability to distinguish microbial infectious lesions. New researches continue to be made on the use of radiolabeled antibiotics which as well as being highly specific in the diagnosis of infection would be useful in monitoring of disease treatment. Here, the new approaches of infection scintigraphic imaging by radiolabeled antibiotics are thoroughly discussed in order to assess and compare their diagnostic value as targeting imaging radiopharmaceuticals. (author)

  7. Development of a specific radiopharmaceutical based on gold nanoparticles functionalized with HYNIC-peptide/mannose for the sentinel lymph node detection in breast cancer

    International Nuclear Information System (INIS)

    Ocampo G, B. E.

    2012-01-01

    The aim of this research was to prepare a multifunctional system of 99m Tc-labelled gold nanoparticles conjugated to HYNIC-G GC/mannose and to evaluate its biological behaviour as a potential radiopharmaceutical for sentinel lymph node detection. Hydrazino nicotinyl-Gly-Gly-Cys-NH 2 (HYNIC-G GC) peptide and a thiol-triazole-mannose derivative were synthesized, characterized and conjugated to gold nanoparticles (Au-Np, 20 nm) to prepare a multifunctional system of HYNIC-G GC-Au-Np-mannose by means of spontaneous reaction of the thiol (Cys) present in HYNIC-G GC sequence and in the thiol-mannose derivative. The nano conjugate was characterized by transmission electron microscopy (Tem), IR, UV-Vis, Raman, Fluorescence and X-ray photoelectron spectroscopy (XP S). 99m Tc labelling was carried out using EDDA/tricine as co ligands and SnCl 2 as reducing agent with further size-exclusion chromatography purification. Radiochemical purity was determined by size-exclusion HPLC and I TLC-Sg analyses. In vitro binding studies were carried out in rat liver homogenized tissue (mannose-receptor positive tissue). Biodistribution studies were accomplished in Wistar rats and images obtained using a micro-SPECT/CT system. Tem and the spectroscopic techniques demonstrated that Au-Np were functionalized with HYNIC-G GC and thiol-mannose through interactions with thiol groups of cysteine. Radio-chromatograms showed radiochemical purity higher than 95%. 99m Tc-EDDA/HYNIC-G GC-Au-Np-mannose ( 99m Tc-Au-Np-mannose) showed specific recognition for mannose receptors in rat liver tissue. After subcutaneous administration of 99m Tc-Au-Np-mannose in rats (foot pad), radioactivity levels in the popliteal and inguinal lymph nodes revealed that 99% of the activity was extracted by the first lymph node (popliteal extraction). Biodistribution studies and in vivo micro-SPECT/CT images in Wistar rats showed an evident lymph node uptake (11.58 ± 1.98% Id at 1 h) which was retained during 24 h with

  8. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  9. 99mTc-hexoprenaline and 131I-dapoxetine. Preparation, in silico modeling and biological evaluation as promising lung scintigraphy radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rashed, H.M.; Ibrahim, I.T.; Motaleb, M.A.

    2017-01-01

    Hexoprenaline and dapoxetine (two lung selective pharmaceutical compounds) were radiolabeled to produce lung imaging radiopharmaceuticals using 99m Tc and 131 I, respectively. Different factors affecting labeling process were examined and optimum radiochemical purities of 91.3 ± 0.294 and 96.5 ± 0.342% were obtained, respectively. In silico molecular modeling studies for 99m Tc-hexoprenaline and 131 I-dapoxetine were done. Molecular modeling studies of the radiolabeled compounds examined the effect of radiolabeling on structure activity relationship for hexoprenaline and dapoxetine. Biodistribution studies in Swiss albino mice showed poor lung uptake of 99m Tc-hexoprenaline and high uptake for 131 I-dapoxetine (15.26 ± 0.11 and 55.82 ± 0.201%ID/g, respectively) matching the molecular modeling expectations. Consequently, 131 I-dapoxetine could be a hopeful radiopharmaceutical for lung scintigraphic imaging and further studies to radiolabel hexoprenaline with 131 I are recommended. (author)

  10. Design of radiopharmaceuticals for monitoring gene transfer therapy

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Staehler, P.; Kley, J.; Spiegel, M.; Gross, C.; Graepler, F.T.C.; Gregor, M.; Lauer, U.; Oberdorfer, F.

    1998-01-01

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123 I for SPET and 124 I for PET studies. (author)

  11. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  12. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  13. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1991-09-01

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in computerized tomography. A portion of the research effort is directed toward the development of new synthetic methods for the preparation of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals. The versatile organic boron reagents are utilized in most of the new chemistry. This new technology is then used in nuclear medicine research at the UT Biomedical Imaging Center and in collaborative research programs with colleagues at other DOE facilities. An important goal of the DOE Nuclear Medicine Program at UT is to provide training for students (predoctoral and postdoctoral) in the scientific aspects of nuclear medicine. 83 refs., 12 figs

  14. An intelligent portal monitor for fast suppression of false positives due to radiopharmaceuticals

    International Nuclear Information System (INIS)

    Johnson, M.W.; Butterfield, K.B.

    1985-01-01

    Monitoring the movement of radioactive material through secure or sensitive areas may be complicated by the existence of unanticipated sources of radiation carried by individuals passing through the area. Typical of such sources are radiopharmaceuticals prescribed for a medical procedure. The authors report here on an apparatus designed to quickly discriminate between in-vivo radiopharmaceuticals and other nuclear materials, based on a pattern-recognition algorithm and microcomputer. Principles of operation are discussed, and the data base for the pattern-recognition algorithms is displayed. Operating experience with the apparatus in a trial location is also discussed. The apparatus correctly identifies in-vivo radiopharmaceuticals in over 80% of all trials; challenges with radioisotopes other than radiopharmaceuticals have led the apparatus, without exception, to reject the challenge isotope as incompatible with medical practice. The apparatus thus rapidly discriminates between individuals bearing radiopharmaceuticals and those bearing illicit sources, such as special nuclear materials

  15. Study to master "1"8F-FDG radiopharmaceutical production process by Korean Cyclotron KOTRONS 13 MeV at Hanoi Irradiation Center

    International Nuclear Information System (INIS)

    Nguyen Quang Anh; Tran Manh Thang; Dam Thi Tam; Mai Van Vinh

    2016-01-01

    A PET Cyclotron center is built in Hanoi Irradiation Center (HIC), VINATOM and expectation put in operation in the middle of 2016. Three main processes in "1"8F-FDG synthesis general process of Samyoung Unitech synthesizer module were studied as: effect of time to water removal process, effect of time to nucleophilic substitution reaction, and effect of temperature and time to hydrolysis process. The optimum parameters are collected and re-installed for "1"8F-FDG synthesizer module to achieve highest yield. The human resource was trained basic to advanced theoretical and practical training programs of 18F-FDG Radiopharmaceutical Production by Vietnamese and Korean senior experts in HICs facility for this project. After training courses, the human resource is able to produce and quality control "1"8F-FDG Radiopharmaceutical in different modules and quality control systems such as GE-MX (GE), Synthera (IBA), and Samyoung Unitech (SYU). "1"8F-FDG Radiopharmaceutical was produced in HIC achieves British Pharmacopeia (BP) standards and tested in animals. Animal PET/CT scanner images show clearly distribution of FDG according to physiological characters. Besides, this project were establishing "1"8F-FDG Radiopharmaceutical Production Process by cyclotron KOTRONS13 and Samyoung Unitech synthesizer module and Quality Assurance, Quality Control Process attain BP standards at Hanoi Irradiation Center; and establishing the training documents for practical production human resource training, "1"8F-FDG radiopharmaceutical Quality Assurance Process, Quality Control Process which attain BP standards. (author)

  16. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  17. Radiopharmaceuticals good practices handbook: ARCAL XV radiopharmaceuticals control and production; Manual de buenas practicas radiofarmaceuticas: ARCAL XV produccion y control de radiofarmacos

    Energy Technology Data Exchange (ETDEWEB)

    Verdera Presto, Silvia [comp.; Universidad de la Republica, Facultad de ciencias, Centro de Investigaciones Nucleares, Montevideo (Uruguay)

    1999-12-31

    A safety practice of the therapeutics diagnostic proceeding in nuclear medicine require a permanent provide high quality radiopharmaceuticals manufacture. This work treat to give a guide for all radio pharmacies laboratories that produce,control, fraction and or dispense radiopharmaceuticals products, with attention hospitable radiopharmacy laboratory. Three chapters with recommendations in manufacture good practice in Hospital radiopharmacy, industrial centralized, bibliography and three annexe`s about clean area classification,standards work in laminar flux bell, and guarantee and cleaning areas

  18. Country report: Syria. Development of 90Y/90Sr Generator and 90Y Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yassine, Taufik; Mukhallalati, Ch. Heyam

    2010-01-01

    The aim of this project is to develop a technique for preparation of 90 Sr- 90 Y generator, we have developed a separation technique for isolation of 90 Y from 90 Sr based on using Sr – Spec resin packed in three columns for separation and purification of 90 Sr- 90 Y .The resulting Y90 is used for therapeutic applications. The first part of this project describe a prototype design for the 90 Sr- 90 Y generator in order to get a very accurate method to obtain the minimum possible 90 Sr Breakthrough. 25 mci of 90 Sr was used in the generator 90 Sr- 90 Y and we obtained the elution yield of 90 Y higher than 88%, Also the eluate was used for preparation of several 90 Y radiopharmaceuticals such as 90 YEDTMP and 90 Y-DOTA-HR 3 . And the work is continues to investigate more radiopharmaceuticals applications in the second part of this project such as 90 Y– FHMA. In this part of the co-coordination research programmer, A protocol based on results of this studies was developed to prepare and operate a higher activity generator (50-100mci), the resulting elution yield was approximately 94% of 90 Y . The elute was used in preparation of new 90 Y radiopharmaceuticals. The monoclonal antibodies is still evolving by conjugate Rituximab to The macrocyclic bifunctional chelating agent,(p-SCN-Bn-DOTA)S-2-(4-Isothiocyanatobenzyle)-1,4,7,10- tetraazacyclododecane-tetraaceticacid to obtain the inmunoconjugate DOTA-Rituximub in simple way and then investigating the radio labeling conditions with 90 Y. (author)

  19. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  20. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  1. 99mTc-O2S4: a new generation hepatobiliary imaging agent

    International Nuclear Information System (INIS)

    Babbar, A.K.; Mathur, R.; Katiyar, N.; Dutta, M.; Flora; Mishra, A.K.; Yadav, A.

    2010-01-01

    Full text: Hepatobiliary imaging radionuclide - 99m Tc-Mebrofenin is indicated as a hepatobiliary imaging agent for the evaluation of hepatobiliary tract patency to differentiate jaundice resulting from hepatocellular causes from jaundice resulting from partial or complete biliary obstruction; to differentiate extrahepatic biliary atresia from neonatal hepatitis; to detect cystic duct obstruction associated with acute cholecystitis; and to detect bile leaks. Also, 99m Tc-Mebrofenin may be useful to detect intrahepatic cholestasis and to distinguish it from other hepatobiliary diseases, which involve hepatocyte damage. However, the Mebrofenin kit has to be obtained at an exorbitant cost and there was need to develop an indigenous kit that was readily available and could give similar results. For the first time in India, a derivative of DMSA developed by DRDE, Gwalior and modified at INMAS, Delhi to adopt early transition metals, was successfully labelled with 99m Tc (LE>99%). The reaction conditions were optimized after studying the effects of amount of SnCl 2 , pH of the reaction and effect of incubation time. The labelled product 99m Tc-O 2 S 4 , was characterized by ITLC-SG using acetone and saline. The complex was found to be fairly stable at room temperature and showed>95% plasma protein binding. The biodistribution studies showed that after intravenous administration, there was immediate accumulation of radioactivity in liver, the activity kept on increasing in gall bladder with time and thereafter the radioactivity moved to common bile duct (CBD) and small intestines. No significant radioactivity was found in kidneys and blood. Clear visualization of the gallbladder and intestines, within 15 to 45 minutes of administration of 99m Tc-O 2 S 4 in normal rabbit, demonstrates hepatobiliary tract patency of the newly developed radiotracer. The dynamic and static images showed that the newly developed radiopharmaceutical 99m Tc-O 2 S 4 has full potential in studying

  2. Drug interactions with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hesslewood, S.; Leung, E.

    1994-01-01

    Considerable information on documented drug and radiopharmaceutical interactions has been assembled in a tabular form, classified by the type of nuclear medicine study. The aim is to provide a rapid reference for nuclear medicine staff to look for such interactions. The initiation of drug chart monitoring or drug history taking of nuclear medicine patients and the reporting of such events are encouraged. (orig.)

  3. The transport of radiopharmaceuticals in the United States

    International Nuclear Information System (INIS)

    Ferate, F.D.

    2004-01-01

    Among all the various uses of radioactive materials for peaceful purposes, the creation and use of radiopharmaceuticals to diagnose and treat medical ailments has probably brought the greatest benefit to humanity. The use of radionuclides in medicine has mushroomed over the past 20 years, as has the number of nuclides and procedures which are now routinely used in hospitals and clinics around the globe. Parallel to the growth in the use of radiopharmaceuticals has been the growth in shipments of these nuclides and their compounds to the locations where they are used

  4. The transport of radiopharmaceuticals in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ferate, F.D. [U. S. Dept. of Transportation, Washington, DC (United States)

    2004-07-01

    Among all the various uses of radioactive materials for peaceful purposes, the creation and use of radiopharmaceuticals to diagnose and treat medical ailments has probably brought the greatest benefit to humanity. The use of radionuclides in medicine has mushroomed over the past 20 years, as has the number of nuclides and procedures which are now routinely used in hospitals and clinics around the globe. Parallel to the growth in the use of radiopharmaceuticals has been the growth in shipments of these nuclides and their compounds to the locations where they are used.

  5. Bimodal MR-PET agent for quantitative pH imaging

    Science.gov (United States)

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  6. Use of the microwave oven in the radiopharmaceutical preparations in nuclear medicine

    International Nuclear Information System (INIS)

    Soroa Gfeller, Victoria E.; Cabrejas, Raul C.; Mc Elfresh, H.

    2000-01-01

    Several of the 99mTc radiopharmaceuticals require heating in water bath for 30 minutes before successfully completing the labelling process and thus produce optimal diagnostic images with low background and no free 99mTc. Sulphur colloid 99mTc (99mTc-Sc) enables visualization of liver, spleen, bone marrow reticuloendothelial system, lymphoscintigraphy and sentinel node detection. Sestamibi (99mTc-MIBI) is used for identifying myocardium ischemia and tissue metabolically active. Both compounds were the aim of our work, as the objective was to shorten the preparation time while maintaining experimental animal and clinical biodistribution. 99mTc-Sc assays were the most difficult to perform. The best results were achieved through a combination of water heated boiling bath (5 minutes), microwave oven during 18-20 seconds and cooling the preparation previous to intravenous injection, although still the optimal technical parameters have to be achieved. Sestamibi-Tc99m assays showed repeatable results with high labelling efficiency (90-96%) oven energy 40-50% during 14-17 seconds. We conclude that we successfully have reduced the time of both preparations. Sc-99mTc should still to be perfected, the radiopharmaceutical can be used in lymphoscintigraphy scans but it is not recommended for liver and spleen images results. Sestamibi-Tc99m successfully shorten time consumed in the preparation and it is cost effective, results are repeatable and the compound shows a 6 h stability. (author)

  7. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  8. Development of radiopharmaceutical for radiosinovectomy; Desenvolvimento de radiofarmaco para radiosinovectomia

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Renata Martinussi

    2009-07-01

    determined by ascending chromatography using different chromatographic systems. Particles size was determined by membrane with using filters of different porous sizes. The biological behavior of {sup 90}Y-HA and {sup 177}Lu-HA was studied by intra-articular administration of 18,5 22,2 MBq /0,1 mL of the labeled particles (knee). Scintigraphic images were obtained in gamma-camera at different times after the administration, to determine the intra-articular retention and leakage of the activity from the joint. The methodology applied in the production of {sup 90}Y-Cit resulted in low radiochemical yield (about 20%), with low percentage of the activity related to the particles with appropriated size to RSV application. Despite low radiochemical yield, labeled particles, when purified by centrifugation, presented relative stability of about 70% after 5 days. The labeling of {sup 90}Y-HA resulted in excellent radiochemical yield (> 95%). The reaction was optimized to routine production with the reduction of the reaction time to 15 minutes and using only one step of centrifugation and washing. The labeling of HA with {sup 177}Lu also resulted in excellent radiochemical yield (> 95%) and the percent of the activity incorporated to the particles >12 m was optimized, with best results obtained when lutetium oxide was not used. The HA labeled with {sup 90}Y and {sup 177}Lu showed high in vitro stability when stored at room temperature for 5 and 7 days, respectively. Paper chromatography and thin layer chromatography were defined as chromatographic systems applied in the radiochemical purity determination of the preparations. Biodistribution studies using HA labeled with {sup 90}Y and {sup 177}Lu showed great in vivo stability of the labeled compounds, with no joint leakage of the radiopharmaceutical or free radionuclide in the blood system, confirming the potential of both radiopharmaceuticals for RSV application. (author)

  9. Development of peptide and protein based radiopharmaceuticals.

    Science.gov (United States)

    Wynendaele, Evelien; Bracke, Nathalie; Stalmans, Sofie; De Spiegeleer, Bart

    2014-01-01

    Radiolabelled peptides and proteins have recently gained great interest as theranostics, due to their numerous and considerable advantages over small (organic) molecules. Developmental procedures of these radiolabelled biomolecules start with the radiolabelling process, greatly defined by the amino acid composition of the molecule and the radionuclide used. Depending on the radionuclide selection, radiolabelling starting materials are whether or not essential for efficient radiolabelling, resulting in direct or indirect radioiodination, radiometal-chelate coupling, indirect radiofluorination or (3)H/(14)C-labelling. Before preclinical investigations are performed, quality control analyses of the synthesized radiopharmaceutical are recommended to eliminate false positive or negative functionality results, e.g. changed receptor binding properties due to (radiolabelled) impurities. Therefore, radionuclidic, radiochemical and chemical purity are investigated, next to the general peptide attributes as described in the European and the United States Pharmacopeia. Moreover, in vitro and in vivo stability characteristics of the peptides and proteins also need to be explored, seen their strong sensitivity to proteinases and peptidases, together with radiolysis and trans-chelation phenomena of the radiopharmaceuticals. In vitro biomedical characterization of the radiolabelled peptides and proteins is performed by saturation, kinetic and competition binding assays, analyzing KD, Bmax, kon, koff and internalization properties, taking into account the chemical and metabolic stability and adsorption events inherent to peptides and proteins. In vivo biodistribution can be adapted by linker, chelate or radionuclide modifications, minimizing normal tissue (e.g. kidney and liver) radiation, and resulting in favorable dosimetry analyses. Finally, clinical trials are initiated, eventually leading to the marketing of radiolabelled peptides and proteins for PET/SPECT-imaging and therapy

  10. Evaluation of agents to detect inflammatory foci using an experimental animal model

    International Nuclear Information System (INIS)

    Shimpi, H.H.; Noronha, O.P.D.; Samuel, A.M.

    1997-01-01

    We have evaluated the propensities of four agents- two metal complexes and two protein species, viz. 67 Ga-citrate, 99m Tc-citrate, 99m Tc-human immunoglobulin ( 99m Tc-HIG); and 99m Tc-human serum albumin ( 99m Tc-HSA), for localization of (turpentine- induced) inflammatory lesions in a rat and rabbit animal model systems. All these radiopharmaceuticals showed fairly good uptake in inflammatory lesions. 99m Tc-HIG, 99m Tc-HSA and 67 Ga-citrate showed slower blood clearance and higher liver uptakes. On the other hand 99m Tc-citrate demonstrated faster blood clearance and negligible liver and gut accumulation. The respective inflamed/normal muscle (IM/NM) ratios obtained with these agents in this animal model were in the following order: 99m Tc-HIG> 99m Tc-HSA> 67 Ga-citrate> 99m Tc-citrate at 5 h post injection. Although the IM/NM was relatively low in the case of 99m Tc-citrate as compared with other radiopharmaceuticals the inflammation could be detected within 1-3 h. post injection because of the higher activities that could be injected with this radiopharmaceutical. Since 99m Tc-citrate is predominantly excreted via renal pathway it is rapidly cleared from blood and shows fairly good accumulation in infection/inflammatory lesions at early time periods along with low uptakes in liver and adjacent organs. This agent can therefore be beneficially used to detect the abdominal abscess(es)/inflammation(s) within 1-3 h post injection. Because of its favourable characteristics, physical, biological, clinical, and even cost-effectiveness, it is suggested that 99m Tc-citrate could be tried out as an agent for detection of inflammation including abdominal and vertebral abscess(es). (author)

  11. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  12. Ensuring quality while going local: IAEA helps Cuba produce radiopharmaceuticals

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2015-01-01

    Cancer and cardiovascular disease are health conditions Cuba will now be able to more readily diagnose and treat thanks to its newly built facility for producing key radiopharmaceuticals. Nuclear medicine requires a constant and reliable supply of these radioactive drugs, prepared according to what the industry calls good manufacturing practices (GMP), and there have so far been limitations in getting them to the island nation. “Through our work with the IAEA, we now have a dedicated GMP compliant facility and the expertise to meet most of our national needs for diagnostic and therapeutic radiopharmaceuticals for helping patients,” said René Leyva Montaña, Director of Production at the Isotope Centre (CENTIS), Cuba’s centre dedicated to radiopharmaceutical production.

  13. Design and Optimization of Gadolinium Based Contrast Agents for Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pereira, G.A.; Geraldes, C.F.G.C.; University of Coimbra

    2007-01-01

    The role of Gd 3+ chelates as contrast agents in Magnetic Resonance Imaging is discussed. The theory describing the different contributions to paramagnetic relaxation relevant to the understanding of the molecular parameters determining the relativity of those Gd 3+ chelates, is presented. The experimental techniques used to obtain those parameters are also described. Then, the various approaches taken to optimize those parameters, leading to maximum relativity (efficiency) of the contrast agents, are also illustrated with relevant examples taken from the literature. The various types of Gd 3+ -based agents, besides non-specific and hepatobiliary agents, are also discussed, namely blood pool, targeting, responsive and paramagnetic chemical shift saturation transfer (PARACEST) agents. Finally, a perspective is presented of some of the challenges lying ahead in the optimization of MRI contrast agents to be useful in Molecular Imaging. (author)

  14. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  15. Radiopharmaceuticals for diagnosis

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1990-06-01

    During this grant period 1 January 1988--31 December 1990, we have successfully developed a number of new approaches to fluorine-18 labeled compounds, prepared several new radiotracers for both animal studies and eventual clinical trials, and explored the utility of a high-quality industrial robot in radiopharmaceutical applications. The progress during the last grant period is summarized briefly in the following sections. Publications arising from this research are listed below and can be found in Appendix I. 1 fig

  16. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  17. Preparation of radiopharmaceutical formulations; Fremstilling av radioaktive farmasoeytiske blandinger

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Garlich, J.R.; Frank, R.K.; McMillan, K

    1998-03-16

    Radiopharmaceutical formulations for complexes comprising at least one radionuclide complexed with a ligand, or its physiologically-acceptable salts thereof, especially {sup 153}samarium-ethylenediaminetetramethylenephosphonic acid, which optionally contains a divalent metal ion, e.g. calcium, and is frozen, thawed, and then administered by injection. Alternatively, the radiopharmaceutical formulations must contain the divalent metal and are frozen only if the time before administration is sufficiently long to cause concern for radiolysis of the ligand. 2 figs., 9 tabs.

  18. Recent radiopharmaceutical research at the AAEC Research Establishment

    International Nuclear Information System (INIS)

    Wilson, J.G.; Boyd, R.E.

    1985-12-01

    During the past few years a large part of the radiochemical research carried out at Lucas Heights has been devoted to the synthesis of ligands capable of forming chelate complexes with technetium-99m, as part of a search for tumour-localising radiopharmaceuticals. An account is given of the synthesis and biological evaluation of a range of these compounds and of the investigation of certain biochemical and biological properties affecting the clinical application of both ligands and radiopharmaceuticals. In addition to the search for novel Tc-99m radiopharmaceuticals, major research programs on the development of Tc-99m generating systems have been in progress at Lucas Heights for several years. Work on the AAEC's Mark III Tc-99m technetium generator has been brought to a successful conclusion. A new type of Tc-99m generator, which uses an insoluble zirconium molybdate gel and provides high yields of pertechnetate by a simple elution technique, has also been developed. Studies are in progress on the osmium-iridium generator

  19. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  20. World Radiopharmaceutical Therapy Council: A report on the 5th International Radiopharmaceutical Therapy Colloquium and the Final Planning Meeting of the World Radiopharmaceutical Therapy Council held at Santiago, Chile, 29 September, 2002

    International Nuclear Information System (INIS)

    Turner, J.V.

    2003-01-01

    Full text: The 5th International Radiopharmaceutical Therapy Colloquium was held on 29th October 2002 as a pre-congress meeting of the World Federation of Nuclear Medicine and Biology Congress in Santiago, Chile. Work-in-Progress research papers were presented by leaders in the field of therapeutic nuclear oncology. Speakers gave untitled presentations without abstracts and reported data from studies performed only days or weeks before the meeting. Such cutting edge research presentations stimulated lively discussion which also addressed the problems encountered and ways in which they may be circumvented. Radioimmunotherapy of haematological malignancy was discussed by Greg Wiseman of the Mayo Clinic, and Thomas Behr of the University of Marburg. Radiopeptide therapy of neuroendocrine tumours was presented by Larry Kvols from the University of Florida, and locoregional therapy of glioma was presented by John Buscombe of the Royal Free Hospital, London. All speakers reported encouraging clinical results with objective tumour responses, increased survival and improved quality of life, which encourages wider clinical application of these novel radiopharmaceutical therapies. The Round Table Discussion on clinical applications of Rhenium-188 radiopharmaceuticals was chaired by Russ Knapp from Oak Ridge National Laboratory and Hans Biersack of the University of Bonn. Following an outline of current developments by Russ Knapp preliminary results of clinical trials were presented for discussion. Hans Biersack, Javier Gaudiano from Montevideo and Achim Kropp from Dresden reported effective palliation of painful skeletal metastases with 188Re-HEDP. Ajit Padhy gave an update of the IAEA multicentre trial of intrahepatic arterial 188Re-Lipiodol therapy of hepatocellular carcinoma and Harvey Turner reported preliminary results in hepatoma patients using an alternative kit formulation of 188Re-Lipiodol in Fremantle. Early experience with Rhenium 188 in the prevention of re

  1. /sup 99m/Tc dextran: a new blood-pool-labeling agent for radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Henze, E.; Robinson, G.D.; Kuhl, D.E.; Schelbert, H.R.

    1982-01-01

    We have explored the possibility of imaging the cardiac blood pool with dextran (Dx) labeled with /sup 99m/Tc (Tc) after Sn2+ reduction. Stannous dextran (SnDx) kits were prepared in advance and labeling was performed by adding /sup 99m/Tc. The labeling efficiency was greater than 95%. /sup 99m/Tc dextran (TcDx) was highly stable both in vivo and in vitro. In seven dogs we compared the quality of blood-pool images obtained with TcDx of different molecular weights (4 X 10(4) . Dx-40; 5 X 10(5) . Dx-500; 2 X 10(6) . Dx-2000) and with /sup 99m/Tc red blood cells (TcRBC) labeled in vitro, and determined the organ distribution of this new agent by whole-body scanning and blood sampling. TcDx provided high-quality cardiac blood-pool images up to 60 min after injection. The heart-to-lung ratios averaged 3.7 for TcDx-40, 3.9 for TcDx-500, and 5.4 for TcRBC at 60 min. Whereas TcDx-40 showed a relatively rapid initial urinary excretion and TcDx-2000 was degraded rapidly, TcDx-500 demonstrated the best kinetics for blood-pool imaging. Thus, TcDx is a new radiopharmaceutical with high labeling efficiency and stability. It overcomes a number of the limitations of currently used blood-labeling agents and may become useful for blood-pool imaging in man

  2. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  3. In vivo imaging agents: an international market report

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this study is to provide a global perspective of the in vivo imaging agents business to market planning executives who are working for companies that develop, produce and distribute various types of in vivo imaging agents. Others that could find this study useful include investment bankers, regulatory and governmental authorities and purchasers of these products. The study attempts to diligently provide market data by type for important geographic markets - Western Europe, the U.S.A., and Japan. A competitive intelligence section which discusses companies involved in these markets constitutes the last part of this study. These profiles are not intended to extensively evaluate each company's marketing strengths or strategies but to provide a general idea of the market presence and prospects. A combination of primary and secondary research is used for all findings. (author)

  4. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  5. Computational chemistry and metal-based radiopharmaceuticals

    International Nuclear Information System (INIS)

    Neves, M.; Fausto, R.

    1998-01-01

    Computer-assisted techniques have found extensive use in the design of organic pharmaceuticals but have not been widely applied on metal complexes, particularly on radiopharmaceuticals. Some examples of computer generated structures of complexes of In, Ga and Tc with N, S, O and P donor ligands are referred. Besides parameters directly related with molecular geometries, molecular properties of the predicted structures, as ionic charges or dipole moments, are considered to be related with biodistribution studies. The structure of a series of oxo neutral Tc-biguanide complexes are predicted by molecular mechanics calculations, and their interactions with water molecules or peptide chains correlated with experimental data of partition coefficients and percentage of human protein binding. The results stress the interest of using molecular modelling to predict molecular properties of metal-based radiopharmaceuticals, which can be successfully correlated with results of in vitro studies. (author)

  6. Synthesis, labeling with 99mTc and biokinetics of brains scintigraphy diaminodithiol perfusion radiopharmaceuticals

    International Nuclear Information System (INIS)

    Goncalves, Marcos Moises

    1999-01-01

    QSAR: DADT-PR, DADT-DIPA, DADT-DIB. In terms of absolute values, expressed as % dose/organ, the DADT-DIPA showed the biggest brain uptake, because it has got the partition coefficient closest to the ideal and a high effective polarizability value. DADT - DIPA proved that the partition coefficient is the most important molecular descriptor in the optimization of the DADT derivatives because in the case of DADT-DIB, even possessing the most effective polarizability, but a non-ideal partition coefficient value , it was showed a significantly smaller brain uptake. The DADT -DIPA derivative is potentially a brain perfusion radiopharmaceutical to be explored in details. The DADT - BUT , developed by QSPR despite the fact of having a low brain uptake expressed in terms of % dose/organ, presented pro-drug behaviour, because even 30 minutes after its administration, the radiopharmaceutical strikingly still retained 62% of the 5 minutes brain uptake. This DADT derivative has proved to possess low cerebral clearance, creating the possibility of becoming a good brain perfusion agent, once its structure assumes the closest to ideal partition coefficient value by adequate molecular modification. (author)

  7. EEC directives and guidelines applicable to radiopharmaceuticals - 1993

    International Nuclear Information System (INIS)

    Cox, P.H.

    1993-01-01

    The manufacture, scale and supply of radiopharmaceuticals in the EEC is regulated by directives that are incorporated into the national laws of the member states. The situation as of 1 January 1993 was not too optimistic, however, as the processing of licensing applications had been completely misjudged. Not one product had been registered as of 1 January. The costs involved are also high and since the European market for radiopharmaceuticals is relatively small, the market cannot afford this. It would appear that the EEC directives are inadquate and too non-specific, so revision is indicated. (orig.)

  8. Radiolabeling of Ceftriaxone with 99mTc as a Targeting Radiopharmaceutical for Staphylococcus Aureus Detection in Mouse Model

    International Nuclear Information System (INIS)

    Fazli, A.; Saluti, M.; Ahmadi, Gh.; Mirshojaei, F.; Mazidi, M.; Heydari, Z.

    2012-01-01

    Bacterial infection is one of the major causes of morbidity and mortality especially in developing countries. Nuclear medicine has an important role in helping the diagnosis of deep-seated infections by developing more specific radiopharmaceuticals. The aim of this study was to evaluate 99mTc-labeling ceftriaxone as a new radiopharmaceutical for Staphylococcus aureus infection imaging in nuclear medicine. Radiolabeling of ceftriaxone was carried out by adding 370 MBq of 99mTc to 10 mg of ceftriaxone in the presence of 50 μg of SnCl 2 .2H 2 O at pH=5. The radiochemical purity and stability tests at room temperature and human blood serum were evaluated with ITLC. Intramuscular infection was induced by injection of Staphylococcus aureus into the left thigh muscle of the mice. The biodistribution of 99mTc-ceftriaxone was studied in normal and infected mice at various times post-injection. Radiochemical purity of the product was 94.5±5.4% with a good stability at room temperature and human serum, 80.6% and 71.2% after 24 h, respectively. The biodistribution studies showed the localization of 99mTc-ceftriaxone at the site of infection with high sensitivity without any significant accumulation in vital organs. Due to the ease of 99mTc-ceftriaxone conjugation method, high labeling efficiency, and high uptake in the infected muscle, it may provide a promising candidate as a targeting radiopharmaceutical for imaging infectious foci due to Staphylococcus aureus in nuclear medicine.

  9. Synthesis and stability test of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer

    Directory of Open Access Journals (Sweden)

    Hardiani Rahmania

    2015-01-01

    Full Text Available Nonivasive diagnosis of cancer can be provided by molecular imaging using hybrid modality to obtain better sensitivity, specificity and depiction localization of the disease. In this study, we developed a new molecular imaging agent, radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab in the form of 147Gd-DOTA-PAMAM G3.0-trastuzumab, that can be both target-specific radiopharmaceutical in SPECT as well as targeted contrast agent in MRI for the purpose of diagnosis of HER-2 positive breast cancer. 147Gd radionuclide emits γ-rays that can be used in SPECT modality, but because of technical constraint, 147Gd radionuclide was simulated by its radioisotope, 153Gd. Gd-DOTA complex has also been known as good MRI contrast agent. PAMAM G3.0 is useful to concentrate Gd-DOTA compelexes in large quantities, thus minimizing the number of trastuzumab molecules used. Trastuzumab is human monoclonal antibody that can spesifically interact with HER-2. Synthesis of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab was initiated by conjugating DOTA NHS ester ligand with PAMAM G3.0 dendrimer. The DOTA-PAMAM G3.0 produced was conjugated to trastuzumab molecule and labeled with 153Gd. Characterization DOTA-PAMAM G3.0-trastuzumab immunoconjugate was performed using HPLC system equipped with SEC. The formation of immunoconjugate was indicated by the shorter retention time (6.82 min compared to that of trastuzumab (7.06 min. Radiochemical purity of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab was >99% after purification process by PD-10 desalting column. Radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab compound was stable at room temperature and at 2–8 0C as indicated by its radiochemical purity 97.6 ± 0.5%–99.1 ± 0.5% after 144 h storage.

  10. Development of 99mTc-ethyl cysteinate dimer (Neurolite) for imaging brain blood flow in stroke and other disorders

    International Nuclear Information System (INIS)

    Liteplo, M.P.

    1992-01-01

    Compounds labeled with 99m Tc are widely used for imaging in diagnostic medicine to provide information on physiological functions of the body not obtainable with other imaging techniques that give primarily anatomical information, such as X-ray and magnetic resonance imaging. These radiopharmaceuticals are typically injected intravenously and allowed to distribute in the body; the patient is then imaged using a scintillation gamma camera. For example, in patients suspected of coronary artery disease, 99m Tc-Sestamibi (Cardiolite reg-sign) is injected into the blood stream during a stress test and is rapidly extracted by the heart muscle in proportion to its regional blood supply. The resulting images of the heart clearly distinguish areas of normal heart muscle form areas where the blood supply is compromised by coronary artery disease. In recent years, there has been considerable interest in the application of 99m Tc compounds to the diagnosis of brain diseases and disorders. This paper describes the development of 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD, Neurolite reg-sign) as a radiopharmaceutical for imaging the blood supply to the brain in patients with stroke or head trauma. In research, this agent is also useful in studying the effect of sensory stimuli, therapeutic drugs, and drugs of abuse on brain blood flow

  11. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Cerebral uptake and retention of 99Tcsup(m)-hexamethylpropyleneamine oxime (99Tcsup(m)-HM-PAO)

    International Nuclear Information System (INIS)

    Holmes, R.A.; Chaplin, S.B.; Royston, K.G.; Missouri Univ., Columbia

    1985-01-01

    A new radiopharmaceutical, 99 Tcsup(m)-hexamethylpropyleneamine oxime ( 99 Tcsup(m)-HM-PAO) is described. This agent displays considerable promise for imaging cerebral blood flow. In studies in rats and one human volunteer, 99 Tcsup(m)-HM-PAO demonstrates good brain uptake, prolonged retention of activity in the brain, and slow regional redistribution. These properties suggest that this new radiopharmaceutical is ideal for single photon emission tomographic (SPECT) imaging of cerebral blood flow. (author)

  13. The role of high performance liquid chromatography in radiochemical/radiopharmaceutical synthesis and quality assurance

    International Nuclear Information System (INIS)

    Boothe, T.E.; Emran, A.M.

    1990-01-01

    The usefulness of HPLC in all areas of radiopharmaceutics has been demonstrated in numerous laboratories, particularly in the development of in-house radiopharmaceuticals for SPECT and PET. HPLC continues to be a powerful tool in preparation and quality assurance (QA) as illustrated in such areas as chemical and radiochemical identification; product separation and isolation; preparative scale purification; and specific activity determination. A review of established HPLC techniques in radiopharmaceutics will be presented. Examples from the literature as well as newer applications will be used in an attempt to assess and define the present-day role of HPLC in the preparation of radiochemicals and radiopharmaceuticals with emphasis on QA

  14. Scintigraphic imaging of endocrine organs

    International Nuclear Information System (INIS)

    Gross, M.D.; Shapiro, B.; Thrall, J.H.; Freitas, J.E.; Beierwaltes, W.H.

    1984-01-01

    The nuclear medicine approach to the portrayal of endocrine organs is unique; the scintigraphic images provide not only anatomic and localization information, but in many instances allow a quantitative assessment of organ function. The ability to image endocrine glands is based upon the design of radionuclides and radiopharmaceuticals with characteristics to take advantage of many unique and specific biochemical and advantage of many unique and specific biochemical and metabolic functions of these tissues. The recent introduction of new radiopharmaceutical and tracers has provided the consulting endocrinologist with imaging procedures that allow localization and functional characterization not available by other single, noninvasive diagnostic modalities. This review will serve as an update of the available techniques to image and quantitate the function of the endocrine glands using the nuclear medicine approach

  15. Chelate chase of radiopharmaceuticals reversibly bound to monoclonal antibodies improves dosimetry

    International Nuclear Information System (INIS)

    Goodwin, D.A.; Smith, S.I.; Meares, C.F.; David, G.S.; McTigue, M.; Finston, R.A.

    1986-01-01

    One hundred micrograms of monoclonal antibody (MoAb) CHA 255 with a binding constant Kb of 4 x 10 9 was complexed with indium-111 labeled BLEDTA II, GLEDTA IV, benzyl EDTA, and an EDTA conjugate of Fab. The 24-hour tumor and organ distribution in BALB/c mice bearing KHJJ tumors was studied for each compound alone, the antibody complex, and 3 hours following a chelate chase of the antibody complex. Whole-body biological half-life was measured for 7 days with and without a chelate chase for each antibody complex. The 24-hour whole-body counts dropped 20-60% within 3 hours of administering the chelate chase. Blood concentration fell over 89% within 3 hours of administering the chase and there was a decrease in concentration in all organs, except the kidneys, of 10 to 85%. Theoretical equivalent human doses were calculated from the 24-hour organ concentrations, effective half-life, and MIRD 11 S values (absorbed dose per cumulated activity). Liver and spleen were the target organs, with the dose ranging from 0.50 to 3.91 rads per millicurie. The reduction in organ radiation dose varied up to 95% following the chelate chase. Rapid selective renal clearance of chelate labeled radiopharmaceuticals by competitive inhibition (chelate chase) of their reversible binding to monoclonal antibodies, greatly improves the radiation dosimetry of tumor imaging agents. 28 references, 5 figures, 5 tables

  16. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  17. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)