WorldWideScience

Sample records for radionuclide vadose zone

  1. Foam-Delivery of Remedial Amendments for Enhanced Vadose Zone Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Dresel, P.E.; Zhang, Z.F.; Qafoku, N.P.

    2009-01-01

    The remediation of metals and radionuclides contamination, such as Cr(VI), Tc-99, and Sr-90 in the U.S. DOE Hanford Site vadose zone is a critical need. Water-based remedial amendments delivery to the deep vadose zone is facing significant technical challenges. Water-based delivery will easily leach out the highly mobile pollutants therefore contaminate the underlying aquifer. Preferential flow of the amendment-laden solution in the vadose zone due to the formation heterogeneity is difficult to overcome, resulting in bypassing of the less permeable zones. Foam has unique transport properties in the vadose zone that enable mitigation on the mobilization of mobile contaminants and enhance the sweeping over heterogeneous systems. Calcium polysulfide (CPS) is a remedial amendment that can be used to reduce and immobilize hexavalent chromium [Cr(VI)] and other redox-sensitive radionuclides/metals in the vadose zone. The delivery of CPS to the vadose zone using foam and the immobilization of Cr(VI) via reduction by the foam-delivered CPS was investigated in this study. Batch tests were conducted to select the foam-generating CPS-surfactant solutions, to determine the solution foamability and the reducing potential of CPS-containing foams, and to study the influence of foam quality, surfactant concentration, and CPS concentration on foam stability. Column experiments were performed to test the foam delivery of CPS to sediments under conditions similar to field vadose zone, to study the foam transport and interaction with sediments, and to determine the extent of Cr(VI) immobilization using this novel delivery approach. CPS-containing foams with high reducing potential were prepared based on the batch tests. Sediment reduction by foam-delivered CPS was observed in the column studies. Significant mobilization of Cr(VI) from sediments occurred when CPS was delivered in aqueous solution. The Cr(VI) mobilization was minimized when CPS was delivered by foams, resulting in

  2. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  3. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  4. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z.F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-01

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, 'Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,' submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to (1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, (2) study the sediment air permeability influence on injection pressure, (3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, (4) test amendment distance (and mass) delivery by foam from the injection point, (5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and (6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  5. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  6. An Exact Solution for the Assessment of Nonequilibrium Sorption of Radionuclides in the Vadose Zone

    International Nuclear Information System (INIS)

    Drake, R. L.; Chen, J-S.

    2002-01-01

    In a report on model evaluation, the authors ran the HYDRUS Code, among other transport codes, to evaluate the impacts of nonequilibrium sorption sites on the time-evolution of 99Tc and 90Sr through the vadose zone. Since our evaluation was based on a rather low, annual recharge rate, many of the numerical results derived from HYDRUS indicated that the nonequilibrium sorption sites, in essence, acted as equilibrium sorption sites. To help explain these results, we considered a ''stripped-down'' version of the HYDRUS system. This ''stripped-down'' version possesses two dependent variables, one for the radionuclides in solution and the other for the radionuclides adsorbed to the nonequilibrium sites; and it possesses constant physical parameters. The resultant governing equation for the radionuclides in solution is a linear, advection-dispersion-reaction (i.e., radioactive decay) partial differential equation containing a history integral term accounting for the nonequilibrium sorption sites. It is this ''stripped-down'' version, which is the subject of this paper. We found an exact solution to this new version of the model. The exact solution is given in terms of a single definite integral of terms involving elementary functions of the independent variables and the system parameters. This integral possesses adequate convergence properties and is easy to evaluate, both in a quantitative matter and in a qualitative manner. The parameters that are considered in the system are as follows: the radionuclide's equilibrium partition coefficient between water and soil, the bulk density of the soil, the fractions of equilibrium/nonequilibrium sorption sites, the volumetric water content, the first order equilibrium adsorption rate constant, the first order radioactive decay rate constant, the liquid water soil tortuosity factor, the molecular diffusion coefficient in water, the longitudinal dispersivity factor, and the Darcian fluid flux density. In addition, the system

  7. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  8. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    Science.gov (United States)

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  9. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  10. Immobilization of Radionuclides in the Hanford Vadose Zone by Incorporation in Solid Phases

    International Nuclear Information System (INIS)

    Brown, Gordon E. Jr.; Catalano, Jeffrey G.; Warner, Jeffrey A.; Samual Shaw; Daniel Grolimund

    2005-01-01

    The Department of Energy's Hanford Nuclear Site located in Washington State has accumulated over 2 million curies of radioactive waste from activities related to the production of plutonium (Ahearne, 1997). Sixty-seven of the single-shelled tanks located at the site are thought to have leaked, allowing between 2 and 4 million liters of waste fluids into the underlying vadose zone. The chemical processes employed at the Hanford Site to extract plutonium, as well as the need to minimize corrosion of the high-carbon steel storage tanks, resulted in uncharacterized hyperalkaline waste streams rich in radionuclides as well as other species including significant amounts of sodium and aluminum

  11. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [CH2M Hill Plateau Remediation Co., Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Anderson L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-20

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zone treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.

  12. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    International Nuclear Information System (INIS)

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-01-01

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments

  13. Foam - novel delivery technology for remediation of vadose zone environments - 59019

    International Nuclear Information System (INIS)

    Jansik, Danielle; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Zhang, Fred; Foote, Martin; Wu, Yuxin; Hubbard, Susan

    2012-01-01

    readily penetrate low permeability zones. Although surfactant foams have been used for subsurface mobilization efforts in the oil and gas industry, thus far the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory-/ intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e., advanced geophysical techniques and advanced predictive bio-markers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments. (authors)

  14. Advanced Vadose Zone Simulations Using TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  15. Deficiencies in Vadose Zone Understanding at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas Ronald; Bates, Dona Louise; Bishop, Carolyn Wagoner; Heard, Robert Eugene; Hubbell, Joel Michael; Hull, Laurence Charles; Lehman, Richard Michael; Magnuson, Swen O; Mattson, Earl Douglas; Mccarthy, James Michael; Porro, Indrek; Ritter, Paul David; Roddy, Michael Scott; Singler, Robert Edward; Smith, Richard Paul

    2000-08-01

    Subsurface contamination in the vadose zone, that portion of the subsurface pathway between land surface and an underlying aquifer, poses environmental problems at the Idaho National Engineering and Environmental Laboratory (INEEL) in eastern Idaho and across the U.S. Department of Energy complex. Assessing potential adverse impacts from these contaminated sites requires an understanding of the mechanisms controlling contaminant transport. Currently, vadose zone experts at the INEEL cannot with confidence predict the movement of water and contaminants in the complex, heterogeneous, fractured subsurface at the INEEL, especially within the vadose zone. In the draft version (Revision 1) of the Vadose Zone Deficiencies document, deficiencies in scientific understanding of flow and transport processes in the vadose zone at the INEEL were identified and grouped into 13 categories and recommendations were provided to address each of the deficiencies. The draft document provided the basis for an INEEL Vadose Zone Workshop that was conducted October 20 and 21, 1999, in Idaho Falls, Idaho. The workshop was conducted to group and rank the previously identified deficiencies and for the subsequent development of science plans to address the deficiencies that limit reliable predictions of water and contaminant movement in the subsurface. The workshop participants, comprising INEEL and scientists and project managers and non-INEEL scientists knowledgeable about the vadose zone, developed science- and technology-based recommendations derived through a series of technical sessions at the workshop. In this document, the final version of the Vadose Zone Deficiencies document, the draft document has been incorporated, largely intact, as well as the results from the workshop. The workshop participants grouped the deficiencies in vadose zone understanding at the INEEL into seven categories. These seven categories will be the focus areas of five science plans that are being developed to

  16. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    Science.gov (United States)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were

  17. Vadose Zone Journal: The first ten years

    NARCIS (Netherlands)

    Vrugt, J.A.; Or, D.; Young, M.H.

    2013-01-01

    Celebrating ten years of publication, the authors introduce a special section commemorating the anniversary of Vadose Zone Journal and reviewing the journal’s role in an evolving understanding of vadose zone science.

  18. Optimization of remediation strategies using vadose zone monitoring systems

    Science.gov (United States)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  1. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    Science.gov (United States)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  2. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  3. A/M Area Vadose Zone Monitoring Plan (U)

    International Nuclear Information System (INIS)

    Kupar, J.; Jarosch, T.R.; Jackson, D.G. Jr.; Looney, B.B.; Jerome, K.M.; Riha, B.D.; Rossabi, J.; Van Pelt, R.S.

    1998-03-01

    Characterization and monitoring data from implementation and the first two and one half years of vadose zone remediation operations indicate that this activity has substantially improved the performance of the A/M Area Groundwater Corrective Action Program. During this period, vadose zone remediation removed approximately 225, 000 lbs (100,000 Kg) of chlorinated solvents (CVOCs) from the subsurface. Further, vadose zone remediation system operation increased the overall CVOC removal rate of the A/M Area Groundwater Corrective Action by 300% to 500% during this period versus the groundwater pump and treat system along. Various support activities have been performed to support operation and documentation of performance of the vadose zone remediation system. These activities address performance of existing systems (contaminant distributions, zone of influence, and process monitoring data), evaluation of suspect sources, evaluation of alternative/enhancement technologies, and initial development of remediation goals. In particular, the most recent A/M vadose zone remediation support activities (described in WSRC-RP-97-109) were completed and the results provide key documentation about system performance

  4. Trace Metals in Groundwater and the Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid West DOE

    International Nuclear Information System (INIS)

    Smith, Robert W.

    2004-01-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption)

  5. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    International Nuclear Information System (INIS)

    Chronister, G.B.; Truex, M.J.

    2009-01-01

    (sm b ullet) Treatability test plan published in 2008 (sm b ullet) Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) (sm b ullet) Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  6. VADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS

    OpenAIRE

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-01-01

    In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of informatio...

  7. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    International Nuclear Information System (INIS)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy's Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated 137 Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of 137 Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of 137 Cs, 99 Tc, and NO 3 through the vadose zone of WMA-S-SX, particularly beneath tank SX-109

  8. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-01-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  9. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well

  10. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  11. 1999 vadose zone monitoring plan and guidance for subsequent years

    International Nuclear Information System (INIS)

    Horton, D.G.; Reidel, S.P.; Last, G.V.

    1998-08-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive waste in the US. The majority of the liquid waste was disposed to the soil column where much of it remains today. This document provides the rationale and general framework for vadose zone monitoring at cribs, ditches, trenches and other disposal facilities to detect new sources of contamination and track the movement of existing contamination in the vadose zone for the protection of groundwater. The document provides guidance for subsequent site-specific vadose zone monitoring plans and includes a brief description of past vadose monitoring activities (Chapter 3); the results of the Data Quality Objective process used for this plan (Chapter 4); a prioritization of liquid waste disposal sites for vadose monitoring (Chapter 5 and Appendix B); a general Monitoring and Analysis Plan (Chapter 6); a general Quality Assurance Project Plan (Appendix A), and a description of vadose monitoring activities planned for FY 1999 (Appendix C)

  12. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  13. Vadose Zone Transport Field Study: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  14. Vadose zone drilling at the NTS

    International Nuclear Information System (INIS)

    Efurd, D.W.

    1994-01-01

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ''anthropogenic analogs'' of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling

  15. Installation and sampling of vadose zone monitoring devices

    International Nuclear Information System (INIS)

    Bergeron, S.M.; Strickland, D.J.; Pearson, R.

    1987-10-01

    A vadose zone monitoring system was installed in a sanitary landfill near the Y-12 facility on the Department of Energy's Oak Ridge, Tennessee Reservation. The work was completed as part of the LLWDDD program to develop, design, and demonstrate new low level radioactive waste disposal monitoring methods. The objective of the project was to evaluate the performance of three types of vadose zone samplers within a similar hydrogeologic environment for use as early detection monitoring devices. The three different types of samplers included the Soil Moisture Equipment Corporation Pressure-Vacuum samplers (Models 1920 and 1940), and the BAT Piezometer (Model MK II) manufactured by BAT Envitech, Inc. All three samplers are designed to remove soil moisture from the vadose (unsaturated) zone. Five clusters of three holes each were drilled to maximum depths of 45 ft around part of the periphery of the landfill. Three samplers, one of each type, were installed at each cluster location. Water samples were obtained from 13 of the 15 samplers and submitted to Martin Marietta for analysis. All three samplers performed satisfactorily when considering ease of installation, required in-hole development, and ability to collect water samples from the vadose zone. Advantages and disadvantages of each sampler type are discussed in the main report

  16. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    International Nuclear Information System (INIS)

    Celik, B.; Rowe, R.K.; Unlue, K.

    2009-01-01

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers

  17. Vadose zone monitoring at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, 1985--1989

    International Nuclear Information System (INIS)

    McElroy, D.L.

    1990-12-01

    Vadose zone monitoring at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL) was implemented under the Subsurface Investigation Program Plan. The objective of the Subsurface Investigation Program was to characterize the subsurface at the RWMC in order to measure and predict radionuclide transport. Soil moisture sensors were installed to characterize the uniformity of water entry to the surficial sediments and moisture flux in the surficial sediments and the deeper stratigraphic units. From 1985 to 1987, a network of vadose zone instruments was installed in sediments at the RWMC. The instruments included psychrometers, gypsum blocks, heat-dissipation sensors (HDSs), tensiometers, lysimeters, and neutron access tubes. These instruments were placed at depths up to 230 ft below land surface (BLS) in a heterogeneous geologic system comprised of sediments that overlie and are intercalated with basalt flows. After organic contaminants were detected in the subsurface at the RWMC in 1988, the vadose zone monitoring project was incorporated into a broader characterization effort. This report presents the analyses of the vadose zone monitoring data collected from FY-1985 to FY-1989. The performance of the instruments are compared. Matric potential ranges and trends in the surficial sediments and interbeds are discussed. Hydraulic gradients are calculated to determine the direction of moisture movement. Using the neutron logging data in conjunction with the matric potential and hydraulic gradient data, infiltration is examined with respect to seasonal nature and source. 14 refs., 19 figs., 4 tabs

  18. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  19. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  20. Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Sarah D.

    2018-03-27

    The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective of this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.

  1. Calibrating Vadose Zone Models with Time-Lapse Gravity Data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, A. B.; Looms, M. C.

    2009-01-01

    A change in soil water content is a change in mass stored in the subsurface. Given that the mass change is big enough, the change can be measured with a gravity meter. Attempts have been made with varying success over the last decades to use ground-based time-lapse gravity measurements to infer...... hydrogeological parameters. These studies focused on the saturated zone with specific yield as the most prominent target parameter. Any change in storage in the vadose zone has been considered as noise. Our modeling results show a measureable change in gravity from the vadose zone during a forced infiltration...... experiment on 10m by 10m grass land. Simulation studies show a potential for vadose zone model calibration using gravity data in conjunction with other geophysical data, e.g. cross-borehole georadar. We present early field data and calibration results from a forced infiltration experiment conducted over 30...

  2. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  3. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  4. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  5. Characterization of Direct Push Vadose Zone Sediments from the T and TY Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-06-08

    This report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 5 direct push characterization holes emplaced to investigate vadose zone contamination associated with leaks from tanks 241-TY-105 (UPR-200-W-152) and 241-TY-106 (UPR-200-W-153). Tank 241-TY-105 is estimated to have leaked 35,000 gal of tributyl phosphate (TBP) waste from the uranium recovery process to the vadose zone in 1960. Tank 241-TY-106 is estimated to have leaked 20,000 gal of TBP-uranium recovery waste to the vadose zone in 1959. Although several drywells in the vicinity of tank 241-TY-106 contain measurable quantities of cesium-137 and/or cobalt-60, their relatively low concentrations indicate that the contaminant inventory in the vadose zone around tank 241-TY-106 is quite small. Additionally, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 7 direct push characterization holes emplaced to investigate vadose zone contamination associated with an overfill event and leak from tank 241-T-101.

  6. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  7. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline

  8. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  9. HEAT AND MASS TRANSFER IN THE VADOSE ZONE WITH PLANT ROOTS. (R825414)

    Science.gov (United States)

    AbstractThe vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in envi...

  10. Vadose zone transport field study: Detailed test plan for simulated leak tests

    International Nuclear Information System (INIS)

    AL Ward; GW Gee

    2000-01-01

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  11. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  12. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  13. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  14. Understanding Fluid and Contaminant Movement in the Unsaturated Zone Using the INEEL Vadose Zone Monitoring System

    International Nuclear Information System (INIS)

    Hubbell, J. M.; Mattson, E. D.; Sisson, J. B.; Magnuson, S. O.

    2002-01-01

    DOE has hundreds of contaminated facilities and waste sites requiring cleanup and/or long-term monitoring. These contaminated sites reside in unsaturated soils (i.e. the vadose zone) above the water table. Some of these sites will require active remediation activities or removal while other sites will be placed under institutional controls. In either case, evaluating the effectiveness of the remediation strategy or institutional controls will require monitoring. Classical monitoring strategies implemented at RCRA/CERCLA sites require ground water sampling for 30 years following closure. The overall effectiveness of ground water sampling is diminished due to the fact that by the time you detect chemical transport from a waste site, a major contamination plume likely exists in the vadose zone and the aquifer. This paper suggests a more effective monitoring strategy through monitoring near the contaminant sites within the vadose zone. Vadose zone monitoring allows for quicker detection of potential contaminant transport. The INEEL Vadose Zone Monitoring System (VZMS) is becoming an accepted, cost effective monitoring technology for assessing contaminant transport at DOE facilities. This paper describes the technologies employed in the VZMS and describes how it was used at several DOE facilities. The INEEL VZMS has provided the information in developing and validating both conceptual and risk assessment models of contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge National Laboratory (ORNL), Savannah River Site (SRS) and the Hanford site. These DOE sites exhibit a broad range of meteorologic, hydrologic and geologic conditions representative of various common geologic environments. The VZMS is comprised of advanced tensiometers, water content sensors, temperature sensors and soil and gas samplers. These instruments are placed at multiple depths in boreholes and allows for the detection of water movement in the

  15. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  16. Transport and degradation of fuel compounds in the vadose zone

    DEFF Research Database (Denmark)

    Christophersen, Mette; Broholm, Mette Martina; Kjeldsen, Peter

    2002-01-01

    Fuel has been spilled in the vadose zone at many sites. An artificial jet fuel source has been installed in a vadose zone at Airbase Værløse. The field experiment is conducted to investigate the natural attenuation potential in order to obtain better evaluations of the risk for groundwater...... contamination. Field data and calculations of mass in the pore air indicate a large loss within a short period of time. Laboratory experiments and isotopic analysis proves that biodegradation is occurring. The results indicate that for most compounds degradation is significant reducing the concentrations...

  17. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    Simulation of vertical water flow representing the release of water from the vadose zone to the aquifer of surroundings ... ground water pollution from agricultural, industrial and municipal .... Peak Flow Characteristics of Wyoming. Streams: US ...

  18. Solute travel time in the vadose zone under RWMC at INEL

    International Nuclear Information System (INIS)

    Liou, J.C.P.; Tian, J.

    1995-01-01

    Solute transport in the vadose zone under the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) is considered. The objective is to assess the relative importance of variables involved in modeling the travel time of a conservative solute from ground surface to water table. The vadose zone under RWMC is composed of several layers of basalt flows interceded with sediment layers. The thickness of the layers varies with location. The hydraulic properties also vary. The extents of the variations are large, with standard deviations exceed mean in some instances. The vadose zone is idealized as composed of horizontal layers. Solute transport starts at the ground surface and moves vertically downwards to the water table. The perceived process is one-dimensional. This study used VS2DT, a computer code developed by the US Geological Survey, for simulating solute transport in variably saturated porous media

  19. Enhanced phytoremediation in the vadose zone: Modeling and column studies

    Science.gov (United States)

    Sung, K.; Chang, Y.; Corapcioglu, M.; Cho, C.

    2002-05-01

    Phytoremediation is a plant-based technique with potential for enhancing the remediation of vadoese zone soils contaminated by pollutants. The use of deep-rooted plants is an alternative to conventional methodologies. However, when the phytoremediation is applied to the vadose zone, it might have some restrictions since it uses solely naturally driven energy and mechanisms in addition to the complesxity of the vadose zone. As a more innovative technique than conventional phytoremediation methods, air injected phytoremediation technique is introduced to enhance the remediation efficiency or to apply at the former soil vapor extraction or bio venting sites. Effects of air injection, vegetation treatment, and air injection with vegetation treatments on the removal of hydrocarbon were investigated by column studies to simulate the field situation. Both the removal efficiency and the microbial activity were highest in air-injected and vegetated column soils. It was suggested that increased microorganisms activity stimulated by plant root exudates enhanced biodegradation of hydrocarbon compounds. Air injection provided sufficient opportunity for promoting the microbial activity at depths where the conditions are anaerobic. Air injection can enhance the physicochemical properties of the medium and contaminant and increase the bioavailability i.e., the plant and microbial accessibility to the contaminant. A mathematical model that can be applied to phytoremediation, especially to air injected phytoremediation, for simulating the fate and the transport of a diesel contaminant in the vadose zone is developed. The approach includes a two-phase model of water flow in vegetated and unplanted vadose zone soil. A time-specific root distribution model and a microbial growth model in the rhizosphere of vegetated soil were combined with an unsaturated soil water flow equation as well as with a contaminant transport equation. The proposed model showed a satisfactory representation of

  20. Vadose Zone Infiltration Rates from Sr isotope Measurements

    Science.gov (United States)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  1. Vadose zone investigations at the Lawrence Livermore National Laboratory Superfund Site: An overview

    International Nuclear Information System (INIS)

    Iovenitti, J.L.; Nitao, J.J.; Bishop, D.J.

    1992-09-01

    Lawrence Livermore National Laboratory (LLNL)is investigating the fate and transport of vadose zone contaminants at their Livermore site in Livermore, California. The principal objectives of this work are to identify potential source areas at the Livermore site which require remediation, to prioritize those areas, and finally, to optimize the remediation process. Primary contaminants of interest for this investigation are volatile organic compounds (VOCs) and tritium. A fully integrated, three-part program, consisting of quantitative modeling, field studies, and laboratory measurements, is in progress. To evaluate and predict vadose zone contaminant migration, quantitative modeling is used. Our modeling capabilities are being enhanced through the development of a multicomponent,three-dimensional,nonaqueous phase liquid-liquid-vapor,nonisothermal flow and transport computer code. This code will be also used to evaluate vadose zone remediation requirements. Field studies to acquire LLNL site-specific soil (sediment) characteristics for computer code calibration and validation include subsurf ace lithologic and contaminant profiling, in situ soil moisture content, ground surface emission flux of VOCs and tritium, transpiration of tritium, and ground surface evapotranspiration of water. Multilevel vadose zone monitoring devices are used to monitor the gaseous and aqueous transport of contaminants

  2. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  3. A modeling study of water flow in the vadose zone beneath the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.; Nguyen, H.D.; Martian, P.

    1992-01-01

    A modeling study was conducted for the purpose of gaining insight into the nature of water flow in the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The modeling study focused on three specific hydrologic aspects: (1) relationship between meteorologic conditions and net infiltration, (2) water movement associated with past flooding events, and (3) estimation of water travel-times through the vadose zone. This information is necessary for understanding how contaminants may be transported through the vadose zone. Evaluations of net infiltration at the RWMC were performed by modeling the processes of precipitation, evaporation, infiltration and soil-moisture redistribution. Water flow simulations were performed for two distinct time periods, namely 1955--1964 and 1984--1990. The patterns of infiltration were calculated for both the undisturbed (or natural sediments) and the pit/trench cover materials. Detailed simulations of the 1969 flooding of Pit 10 were performed to estimate the rate and extent of water movement through the vadose zone. Water travel-times through the vadose zone were estimated using a Monte Carlo simulation approach. The simulations accounted for variability of soil and rock hydraulic properties as well as variations in the infiltration rate

  4. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah Sd.

    2001-01-01

    The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from RCRA borehole bore samples and composite samples. Intact cores from two RCRA boreholes (299-W22-48 and 299-W22-50) near the SX Tank Farm and four, large-quantity grab samples from outcrop sediment on and off the Hanford Site were sampled to better understand the fate of contaminants in the vadose zone beneath underground storage tanks at the Hanford Site. Borehole and outcrop samples analyzed for this report are located outside the tank farms, and therefore may be considered standard or background samples from which to compare contaminated sediments within the tank farms themselves. This report presents our interpretation of the physical, chemical, and mineralogical properties of the uncontaminated vadose zone sediments, and variations in the vertical distribution of these properties. The information presented in this report is intended to support preparation of the S-SX Field Investigation Report to be prepared by CH2M Hill Hanford Group, Inc. as well as future remediation actions at the S-SX Tank Farm

  5. TWRS vadose zone contamination issue expert panel report

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.S.

    1997-05-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  6. Wildfire effects on vadose zone hydrology in forested boreal peatland microforms

    Science.gov (United States)

    Thompson, Dan K.; Waddington, James M.

    2013-04-01

    SummaryPeatland vulnerability to wildfire disturbance has been shown to vary as a function of hummock and hollow microforms and vadose zone hydrology, with low-lying hollow microforms most susceptible to deep combustion of peat. To better understand how this microform induced pattern of burning alters vadose water storage, pore-water pressure, and water table relationships, we examined a paired burned and unburned peatland in the boreal plain region of north central Alberta. Water table response to rain events increased significantly after wildfire, resulting in a more variable unsaturated zone thickness that was more responsive to smaller rain events. Water storage losses in the vadose zone occurred primarily at depths greater than 15 cm. Large peat surface water loss occurred in hummock microforms in the early spring due to the presence of unsaturated frozen peat at depth, likely a result of a vapour gradient from the unfrozen peat into the frozen peat underneath. During this period, the loss of water storage in the vadose zone satisfied up to 25% of daily evaporative demand, compared to only 3-5% during ice-free periods. A similar but less severe drying was observed late in summer, with burned hummocks the most vulnerable with high pore-water pressures. The enhanced surface drying observed is a precursor to high pore-water pressure conditions that inhibit Sphagnum regeneration. Our observations point to a paradox where the hummocks, being most resistant to combustion, are themselves most prone to high pore-water pressures following wildfire. The harsher hummock environment may contribute to the observed delay in post-fire Sphagnum regeneration in hummocks compared to hollows.

  7. High Frequency Electromagnetic Impedance Imaging for Vadose Zone and Groundwater Characterization

    International Nuclear Information System (INIS)

    Newman, Greory A.; Alumbaugh, David L.; Hoversten, Michael; Nichols, Edward

    2003-01-01

    A geophysical experiment is described for characterizing the clastic dike systems, which are ubiquitous within the vadose zone at the Hanford Nuclear Reservation. because the dikes possess a significant electrical contrast from the insulating host medium, we have applied controlled source audio magnetotelluric (CSAMT) measurements to map their geometric extent and to further clarify if the dike complex acts as a conduit for contaminant transport within the vadose zone. Because of cost and weak natural field signal levels, we employed controlled field sourcing using the STRATGEM acquisition system. Use of artificial fields often goes with the assumption that the data required in the far-field of the transmitter

  8. Deep Vadose Zone Characterization at the Hanford Site: Accomplishments from the Last Ten Years

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-01

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments collected within/adjacent to the twelve single-shell tank farms contained within Hanford's Central Plateau region. This work has been performed under the Resource Conservation and Recovery Act (RCRA) Corrective Action Program and is associated with the Hanford Federal Facility Agreement and Consent Order. While there are many facets to the laboratory studies employed by PNNL, the four primary objectives of this work are to: identify the type and quantity of contamination present, understand the physical processes that affect the transport of contaminants in the vadose zone sediments, when practical, identify the source(s) of the contamination found in the sediment samples, and when practical, determine if a link can be made between the vadose zone contamination observed and any known groundwater contaminants in the vicinity. Since its inception in 1997, PNNL's Vadose Zone Characterization Project has evolved to better meet these four key objectives. The single-largest adaptation of the Vadose Zone Characterization Project over its ten years of operation was the advent of a tiered sample analysis approach. Use of a tiered approach allows resources to be focused on those samples/tests that provide the largest amount of scientific information to best meet the four key project objectives within the budget available. Another significant, but more recent, adaptation has been the implementation of a rapid turnaround characterization process in which sediment samples are analyzed in near real-time to aid drilling activities within the tank farms. This paper highlights details of the characterization activities performed as well

  9. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  10. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  11. Transport and degradation of contaminants in the vadose zone

    NARCIS (Netherlands)

    Schotanus, D.

    2013-01-01

    Leaching of contaminants from the vadose zone to the groundwater depends on the soil properties and the infiltration rate. In this thesis, organic degradable contaminants were studied, such as de-icing chemicals (consisting of propylene glycol, PG) and pesticides. Heterogeneous soil properties

  12. Calibrating vadose zone models with time-lapse gravity data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan

    2011-01-01

    The vadose zone plays an important role in the hydrologic cycle. Various geophysical methods can determine soil water content variations in time and space in volumes ranging from a few cubic centimeters to several cubic meters. In contrast to the established methods, time-lapse gravity measurements...... of changes in soil water content do not rely on a petrophysical relationship between the measured quantity and the water content but give a direct measure of the mass change in the soil. Only recently has the vadose zone been systematically incorporated when ground-based gravity data are used to infer...... hydrologic information. In this study, changes in the soil water content gave rise to a measurable signal in a forced infiltration experiment on a 107-m2 grassland area. Time-lapse gravity data were able to constrain the van Genuchten soil hydraulic parameters in both a synthetic example and a field...

  13. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  14. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  15. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  16. Preface: Research advances in vadose zone hydrology through simulations with the TOUGH codes

    International Nuclear Information System (INIS)

    Finsterle, Stefan; Oldenburg, Curtis M.

    2004-01-01

    Numerical simulators are playing an increasingly important role in advancing our fundamental understanding of hydrological systems. They are indispensable tools for managing groundwater resources, analyzing proposed and actual remediation activities at contaminated sites, optimizing recovery of oil, gas, and geothermal energy, evaluating subsurface structures and mining activities, designing monitoring systems, assessing the long-term impacts of chemical and nuclear waste disposal, and devising improved irrigation and drainage practices in agricultural areas, among many other applications. The complexity of subsurface hydrology in the vadose zone calls for sophisticated modeling codes capable of handling the strong nonlinearities involved, the interactions of coupled physical, chemical and biological processes, and the multiscale heterogeneities inherent in such systems. The papers in this special section of ''Vadose Zone Journal'' are illustrative of the enormous potential of such numerical simulators as applied to the vadose zone. The papers describe recent developments and applications of one particular set of codes, the TOUGH family of codes, as applied to nonisothermal flow and transport in heterogeneous porous and fractured media (http://www-esd.lbl.gov/TOUGH2). The contributions were selected from presentations given at the TOUGH Symposium 2003, which brought together developers and users of the TOUGH codes at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, for three days of information exchange in May 2003 (http://www-esd.lbl.gov/TOUGHsymposium). The papers presented at the symposium covered a wide range of topics, including geothermal reservoir engineering, fracture flow and vadose zone hydrology, nuclear waste disposal, mining engineering, reactive chemical transport, environmental remediation, and gas transport. This Special Section of ''Vadose Zone Journal'' contains revised and expanded versions of selected papers from the

  17. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2001-09-24

    The purpose of this catalog is to integrate all available soil physics data and information from vadose zone characterization and performance assessments into one useable, scientifically defensible document.

  18. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    Science.gov (United States)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated

  19. TWRS vadose zone contamination issue expert panel status report

    International Nuclear Information System (INIS)

    Shafer, D.S.

    1997-01-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  20. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  1. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples

  2. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  3. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  4. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    Science.gov (United States)

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  5. Tank waste remediation system vadose zone program plan

    International Nuclear Information System (INIS)

    Fredenburg, E.A.

    1998-01-01

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities

  6. Tank waste remediation system vadose zone program plan

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  7. Spectroscopic and Microscopic Characterization of Contaminant Uptake and Retention by Carbonates in the Soil and Vadose Zone

    International Nuclear Information System (INIS)

    Reeder, Richard J.; Fisher, Nicholas S.; Hess, Wayne P.; Beck, Kenneth M.

    2003-01-01

    The research focus of this previous EMSP grant was assessment of the role that carbonate minerals play in the uptake and sequestration of metal and radionuclide contaminants in soils and the vadose zone for conditions relevant to the Hanford Site and other sites in the DOE Complex. The project was a collaboration among researchers at SUNY-Stony Brook and EMSL/PNNL. Carbonates, particularly calcite, are present in the Hanford subsurface as grain coatings, disseminated particles, and dense caliche layers. Calcite is also predicted to be forming beneath leaking tanks. A range of metal and radionuclide species that pose risks at Hanford and other DOE sites were considered, including U(VI), Cr(CV), Cs, Pb(II), and selected lanthanides (as models for trivalent actinides). Batch sorption and co-precipitation experiments of these metals with pre-equilibrated calcite and selected uptake experiments on natural caliche formed the basis to determine the mechanisms of metal/radionuclide binding and to assess the effect on the stability of the sorbed species and the potential for remobilization. Our results provide ne information that can benefit DOE clean-up methodology and potentially provide new approaches for uptake of selected heavy metals

  8. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  9. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  10. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Science.gov (United States)

    Dahan, Ofer; Katz, Idan; Avishai, Lior; Ronen, Zeev

    2017-08-01

    An in situ bioremediation experiment of a deep vadose zone ( ˜ 40 m) contaminated with a high concentration of perchlorate (> 25 000 mg L-1) was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS) was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC), and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m), perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  11. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  12. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    International Nuclear Information System (INIS)

    KHALEEL R

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10 6 pCi L -1 . The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the basecase(100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary

  13. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    International Nuclear Information System (INIS)

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L-1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the base case (100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  14. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  15. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  16. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole)

  17. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  18. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  19. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    Science.gov (United States)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste

  20. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Directory of Open Access Journals (Sweden)

    O. Dahan

    2017-08-01

    Full Text Available An in situ bioremediation experiment of a deep vadose zone ( ∼  40 m contaminated with a high concentration of perchlorate (> 25 000 mg L−1 was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC, and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m, perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  1. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  2. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  3. Vadose Zone Infiltration Rate at Hanford, Washington, Inferred from Sr Isotope Measurements

    International Nuclear Information System (INIS)

    Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Serne, R. Jeffrey

    2003-01-01

    Sr isotope ratios were measured in the pore water, acid extracts, and sediments of a 70-m vadose zone core to obtain estimates of the long-term infiltration flux for a site in the Hanford/DOE complex in eastern Washington State. The 87Sr/86Sr values of the pore waters decrease systematically with depth, from a high value of 0.721 near the surface toward the bulk sediment average value of 0.711. Estimates of the bulk weathering rate combined with Sr isotopic data were used to constrain the long-term (century to millenial scale) natural diffuse infiltration flux for the site given both steady state and nonsteady state conditions. The models suggest that the infiltration fluc for the site is 7+- 3 mm/yr. The method shows potential for providing long-term in situ estimates of infiltration rates for deep heterogeneous vadose zones

  4. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    International Nuclear Information System (INIS)

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-01-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site

  5. Modeling potential migration of petroleum hydrocarbons from a mixed-waste disposal site in the vadose zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Walton, J.C.; Baca, R.G.

    1989-01-01

    Environmental monitoring of a mixed-waste disposal site at the Idaho National Engineering Laboratory has confirmed release and migration into the vadose zone of: (1) chlorinated hydrocarbons in the vapor phase and (2) trace levels of certain transuranic elements. The finding has prompted an evaluation of the potential role of waste petroleum hydrocarbons in mediating or influencing contaminant migration from the disposal site. Disposal records indicate that a large volume of machine oil contaminated with transuranic isotopes was disposed at the site along with the chlorinated solvents and other radioactive wastes. A multiphase flow model was used to assess the possible extent of oil and vapor movement through the 177 m thick vadose zone. One dimensional simulations were performed to estimate the vertical distribution of the vapor phase, the aqueous phase, and immiscible free liquid as a function of time. The simulations indicate that the oil may migrate slowly through the vadose zone, to potentially significant depths. Calculated transport rates support the following ranking with regard to relative mobility: vapor phase > aqueous phase > free liquid. 21 refs., 7 figs., 2 tabs

  6. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  7. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  8. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.

    2011-01-01

    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  9. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  10. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    International Nuclear Information System (INIS)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm

  11. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    Energy Technology Data Exchange (ETDEWEB)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  12. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  13. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  14. Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jackson, D.G. Jr.

    2000-01-01

    This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area

  15. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  16. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  17. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Smith, Robert W.; Fujita, Yoshiko

    2007-01-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  18. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  19. Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Knutson, C.F.; Harrison, W.E.; Smith, R.P.

    1989-01-01

    We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

  20. Sampling and Hydrogeology of the Vadose Zone Beneath the 300 Area Process Ponds

    International Nuclear Information System (INIS)

    Bjornstad, Bruce N.

    2004-01-01

    Four open pits were dug with a backhoe into the vadose zone beneath the former 300 Area Process Ponds in April 2003. Samples were collected about every 2 feet for physical, chemical, and/or microbiological characterization. This reports presents a stratigraphic and geohydrologic summary of the four excavations

  1. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  2. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  3. Bayesian Markov-Chain-Monte-Carlo inversion of time-lapse crosshole GPR data to characterize the vadose zone at the Arrenaes Site, Denmark

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    2012-01-01

    We examined to what extent time-lapse crosshole ground-penetrating radar traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify vadose zone hydraulic properties and their corresponding uncertainties using a Bayesian Markov...... distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.......-chain-Monte-Carlo inversion approach with different priors. The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested...

  4. Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, Søren; Postma, D.

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination of exper......In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination...... of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the soil CO2 efflux to the atmosphere. In a series of mesocosm experiments, with barley (Hordeum vulgare L.......) grown on podzolic soil material, we have investigated inorganic carbon cycling through the gaseous and liquid phases and how it is affected by different soil amendments. The mesocosm amendments comprised the addition of 0, 9.6, or 21.2 kg m−2 of crushed concrete waste (CCW) or 1 kg lime m−2. The CCW...

  5. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  6. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    Science.gov (United States)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  7. LNAPL infiltration in the vadose zone: Comparisons of physical and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pantazidou, M. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-03-01

    The numerical model T2VOC was used to reproduce light, nonaqueous phase liquid (LNAPL) infiltration scenarios in the vadose zone. The numerical modeling results were compared to results from laboratory experiments simulating LNAPL spills in the vadose zone. Laboratory measurements included results from one-dimensional column and two-dimensional tank experiments using uniform sands of varying average grain sizes. The constitutive relationships for the sands were obtained from the one-dimensional experiments. The two-dimensional experiments simulated leakage of kerosene under constant head. The sensitivity of the numerical results to the constitutive relationships used and the specified boundary conditions was examined. For this purpose two different capillary pressure-saturation relationships were used for the same sand and both constant head and constant flux conditions were obtained for the two capillary pressure curves used. The constant flux boundary conditions produced a much better prediction. At the initial stages of infiltration the results for both capillary pressure curves were similar and in good agreement with the experimental results. However, as the LNAPL front approaches the capillary fringe the choice of the capillary pressure curve was found to influence the results.

  8. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  9. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John Jr.; Mann, Michael J.A.; Holt, Robert M..; Kriel, Kelly

    2007-01-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods

  10. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  11. Electrical Conductivity in the Vadose Zone beneath a Tamarisk Grove along the Virgin River in Nevada

    Science.gov (United States)

    Shillito, R.; Sueki, S.; Berli, M.; Healey, J. M.; Acharya, K.

    2013-12-01

    Thick tamarisk groves along river corridors of the Southwest can transpire vast quantities of water and, as an invasive species, compete with native plants for space and resources. It is hypothesized that tamarisk can outcompete other species by not only tolerating high soil salinity, but by increasing soil salinity due to transpiration of salt-rich near-surface groundwater. The goal of this study was to garner experimental evidence for salt accumulation around tamarisk trees in comparison with other species (mesquite) along the Virgin River near Riverside, NV. At the experimental site, electrical conductivity (EC), temperature (T), and volumetric water content (VWC) within the vadose zone were monitored using sensors at 20, 40, 60, 80 and 100 cm depth on 30-minute intervals within the tamarisk thicket where several mesquite trees are found. Nearby groundwater levels were monitored every 40 days. The 2012 - 2013 data reveal an unexpected EC profile between the surface and the groundwater table (average depth 100 cm). A crust was found within depressions on the surface with EC values as high as 18.8 mS/cm. In the vadose zone (0 to 80 cm depth), average EC values of 4.4 mS/cm were recorded. Most interestingly, in the capillary fringe immediately above the water table (80 to 100 cm depth) average EC values of only 1.25 mS/cm were found whereas the groundwater (>100 cm depth) showed considerably higher EC values averaging 8.8 mS/cm. Additionally, the surface beneath the tamarisk had double the EC as that beneath the mesquite. The contrast in the EC indicates an increase in the aquifer salinity, which may be due to leachate infiltration through the vadose zone concentrated by plant transpiration and direct deposition of saline tamarisk leaf litter and secretions onto the understory. Evapotranspiration and shedding of litter by the tamarisk accelerated the salinity concentrations in the uppermost part of the vadose zone. Ultimately, understanding the salinity regime as

  12. Vadose Zone Modeling Workshop proceedings, March 29--30, 1993

    International Nuclear Information System (INIS)

    Khaleel, R.

    1993-08-01

    At the Hanford Site, the record of decision for remediation of CERCLA sites is largely based on results of the baseline risk and performance assessment of the remedial action alternatives. These assessments require the ability to predict the fate and transport of contaminants along appropriate exposure pathways which, in case of the Hanford Site, includes the migration of contaminants through the vadose zone to the water table. Listed below are some of the requirements, as prescribed by the regulators, relative to CERCLA risk and performance assessment at Hanford. A workshop was organized by the Environmental Risk and Performance Assessment Group, Westinghouse Hanford Company on March 29--30, 1993 at the Richland Best Western Tower Inn. During the workshop, an assessment was made of the need for and scope of various tasks being conducted or planned as part of the Hanford Site waste isolation performance assessment/risk assessment activities. Three external, nationally-recognized experts served as part of a review panel for the workshop: (a) Professor Lynn Gelhar of MIT; (b) Professor Peter Wierenga of University of Arizona; and (c) Dr. Rien van Genuchten of US Salinity Laboratory, Riverside, California. The technical experts provided their perspectives on the current state-of-the-art in vadose zone flow and transport modeling. In addition, the technical experts provided an outside independent assessment of the work being performed or planned in support of various activities identified in TPA Milestone M-29-02. This document includes the following: Recommendations from the three peer reviewers; areas of expertise of the three peer reviewers; workshop agenda; copies of viewgraphs (where available) from presenters at the workshop; workshop minutes; and list of workshop attendees

  13. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    Energy Technology Data Exchange (ETDEWEB)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  14. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  15. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  16. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  17. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  18. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  19. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    Science.gov (United States)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  20. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  1. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  2. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc

  3. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  4. Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill.

    Science.gov (United States)

    Aharoni, Imri; Siebner, Hagar; Dahan, Ofer

    2017-09-01

    Leachates from solid-waste landfills are considered a severe threat to groundwater quality. The fate of pollutants in the waste and underlying unsaturated zone is crucial for evaluating environmental risks and selecting a restoration strategy. In this study, a vadose-zone monitoring system (VMS) installed in a municipal landfill was used, for the first time, to continuously track leachates percolation dynamics and assess their chemical transformation across the entire thickness of the waste body (15m) and underlying unsaturated zone (16m) to the water table. Winter rains were found to quickly infiltrate through the waste and underlying vadose zone despite a clay cover that was implemented as part of a restoration and leachate-prevention strategy. Within the waste body, the flow pattern was controlled by preferential flow paths, which changed frequently. It is hypothesized that ongoing decomposition of the waste creates dynamic variations in the waste's physical structure and flow pattern. Water samples collected from the waste layer indicated the formation of highly polluted leachates. The chemical composition in the waste body showed extreme variability between sampling points with respect to DOC (407-31,464mg/L), BOD/COD ratios (0.07-0.55), Fe 2+ (6.8-1154mg/L), ammonium (68-2924mg/L) and heavy metal concentrations. Environmental hot spots creating concentrated, aggressive, "acid-phase" leachates still exist in the waste more than 13years after closing the landfill. However, continuous changes in the flow pattern and moisture distribution affected the creation and decay of such environments. In the underlying sandy vadose zone, some sections repeatedly exhibited stronger and faster flow characteristics than others. These local fluxes of concentrated leachates rapidly transported heavy contaminant loads toward the groundwater. However results showed evidence of continual attenuation processes in the deep vadose zone, with the anaerobic digestion of organic matter

  5. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Ward, Anderson L.; Ritter, Jason C.; Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-01-01

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001)

  6. In-situ bioaugmentation of vadose zone restoration

    International Nuclear Information System (INIS)

    Myers, J.M.; Minkel, K.A.; Schepart, B.S.

    1992-01-01

    Leakage from an underground gasoline storage tank caused evacuation from a restaurant and an insurance company. An engineering consultant was engaged to correct the problem. Upon remedy of the habitability situation, a groundwater recovery system was designed to recover whatever open-quotes free productclose quotes gasoline could be collected. Since traditional open-quotes Pump and treatclose quotes remedial technologies are successful only to the extent that the contaminant is mobile, an alternative is necessary to effectively remediate that contamination which is recalcitrant. At this point, Waste Stream Technology was enlisted to propose an in-situ remedial action plan. Approximately five injection wells were installed around the perimeter and in the zone of influence of each of eight recovery wells. The injection wells were designed to distribute the bacteria at various depths in the vadose zone. Bacteria were cultured on site in Waste Stream's proprietary bioreactor. Bacterial and nutrient applications were injected on a weekly basis. Bacterial population dynamics and BETX levels were monitored throughout the course of the remediation. Although the remediation is currently in progress, disappearance of open-quotes free productclose quotes on the water table and elimination of benzene in the groundwater over a reasonable time period marked the success of this project

  7. DOE capabilities for in-situ characterization and monitoring of formation properties in the vadose zone

    International Nuclear Information System (INIS)

    Hearst, J.R.; Brodeur, J.R.; Koizumi, C.J.; Conaway, J.G.; Mikesell, J.L.; Nelson, P.H.; Stromswold, D.C.; Wilson, R.D.

    1993-09-01

    The DOE Environmental Restoration (ER) Program faces the difficult task of characterizing the properties of the subsurface and identifying and mapping a large number of contaminants at landfills, surface disposal areas, spill sites, nuclear waste tanks, and subsurface contaminant plumes throughout the complex of DOE facilities. Geophysical borehole logs can measure formation properties such as bulk density, water content, and lithology, and can quantitatively analyze for radionuclides and such elements as chlorine and heavy metals. Since these measurements can be replaced as desired, they can be used for both initial characterization and monitoring of changes in contaminant concentration and water content (sometimes linked to contaminant migration), at a fraction of the cost of conventional sampling. The techniques develop at several DOE laboratories, and the experience that the authors have gained in making in-situ measurements in the vadose zone, are applicable to problems at many other DOE sites. Moreover, they can capitalize on existing inventories of boreholes. By building on this experience workers involved in ER projects at those sites should be able to obtain high-quality data at substantial reductions in cost and time

  8. Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area

    International Nuclear Information System (INIS)

    Jackson, D.G.

    2000-01-01

    The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL

  9. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; mccain, r. G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutynakov, I. V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).

  10. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  11. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    International Nuclear Information System (INIS)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O'Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-01-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement

  12. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  13. DNAPL Surface Chemistry: Its Impact on DNAPL Distribution in the Vadose Zone and its Manipulation to Enhance Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Suan Power; Stefan Grimberg; Miles Denham

    2003-06-16

    The remediation of DNAPLs in subsurface environments is often limited by the heterogeneous distribution of the organic fluid. The fraction of DNAPL that is in the high conductivity regions of the subsurface can often be recovered relatively easily, although DNAPL in lower conductivity regions is much more difficult to extract, either through direct pumping or remediation measures based on interface mass transfer. The distribution of DNAPL within the vadose zone is affected by a complex interplay of heterogeneities in the porous matrix and the interfacial properties defining the interactions among all fluid and solid phases. Decreasing the interfacial tension between a DNAPL and water in the vadose zone could change the spreading of the DNAPL, thereby increase the surface area for mass transfer and the effectiveness of soil vapor extraction remediation.

  14. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  15. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  16. Simplified analytical model to simulate radionuclide release from radioactive waste trenches

    International Nuclear Information System (INIS)

    Sa, Bernardete Lemes Vieira de

    2001-01-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  17. Parallel inversion of a massive ERT data set to characterize deep vadose zone contamination beneath former nuclear waste infiltration galleries at the Hanford Site B-Complex (Invited)

    Science.gov (United States)

    Johnson, T.; Rucker, D. F.; Wellman, D.

    2013-12-01

    The Hanford Site, located in south-central Washington, USA, originated in the early 1940's as part of the Manhattan Project and produced plutonium used to build the United States nuclear weapons stockpile. In accordance with accepted industrial practice of that time, a substantial portion of relatively low-activity liquid radioactive waste was disposed of by direct discharge to either surface soil or into near-surface infiltration galleries such as cribs and trenches. This practice was supported by early investigations beginning in the 1940s, including studies by Geological Survey (USGS) experts, whose investigations found vadose zone soils at the site suitable for retaining radionuclides to the extent necessary to protect workers and members of the general public based on the standards of that time. That general disposal practice has long since been discontinued, and the US Department of Energy (USDOE) is now investigating residual contamination at former infiltration galleries as part of its overall environmental management and remediation program. Most of the liquid wastes released into the subsurface were highly ionic and electrically conductive, and therefore present an excellent target for imaging by Electrical Resistivity Tomography (ERT) within the low-conductivity sands and gravels comprising Hanford's vadose zone. In 2006, USDOE commissioned a large scale surface ERT survey to characterize vadose zone contamination beneath the Hanford Site B-Complex, which contained 8 infiltration trenches, 12 cribs, and one tile field. The ERT data were collected in a pole-pole configuration with 18 north-south trending lines, and 18 east-west trending lines ranging from 417m to 816m in length. The final data set consisted of 208,411 measurements collected on 4859 electrodes, covering an area of 600m x 600m. Given the computational demands of inverting this massive data set as a whole, the data were initially inverted in parts with a shared memory inversion code, which

  18. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  19. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near Tank B-110 in the B-BX-BY Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Mccain, Richard G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2002-01-01

    WMA may have added significant amounts of spatially confined infiltration. Borehole soil characterization has identified strontium-90 and technetium-99 as the two main radionuclides underneath tank B-110. The Sr-90 data indicate limited future mobility unless abnormally high amounts of infiltration occur. Neither technetium-99 nor strontium-90 is expected to significantly impact groundwater in the current moisture and geochemical environment below the B Tank Farm. At borehole 299-E33-46 (near tank B-110), strontium 90 was found down to 26 m (85 ft) bgs with strontium 90 values up to 11,250 pCi/g of sediment. Other tank wastes contaminants (e.g., nitrate) were found down to 69 m (200 ft) bgs. The strontium-90 was immobile under the current ionic regime in the pore water. Technetium-99 releases into the vadose zone near tank B-110 from a transfer line leak appear to be inconsequential. Technetium-99 does not occur above detection limits in the upper parts of the vadose zone where other tank waste constituents (e.g., strontium-90, fluoride, carbonate, and nitrate) are present. Technetium-99 is present in a few soil samples in the PlioPleistocene unit. This unit appears to be an effective conduit for lateral migration and the presence of technetium-99 is postulated to have another source

  20. Calibrating vadose zone models with time-lapse gravity data: a forced infiltration experiment

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, Allan Bo; Zibar, Majken Caroline Looms

    A change in soil water content is a change in mass stored in the subsurface, and when large enough, can be measured with a gravity meter. Over the last few decades there has been increased use of ground-based time-lapse gravity measurements to infer hydrogeological parameters. These studies have...... focused on the saturated zone, with specific yield as the most prominent target parameter and with few exceptions, changes in storage in the vadose zone have been considered as noise. Here modeling results are presented suggesting that gravity changes will be measureable when soil moisture changes occur...... in the unsaturated zone. These results are confirmed by field measurements of gravity and georadar data at a forced infiltration experiment conducted over 14 days on a grassland area of 10 m by 10 m. An unsaturated zone infiltration model can be calibrated using the gravity data with good agreement to the field data...

  1. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  2. Preliminary study of radioactive waste disposal in the vadose zone

    International Nuclear Information System (INIS)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment

  3. Preliminary study of radioactive waste disposal in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment.

  4. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    International Nuclear Information System (INIS)

    Scott Fendorf; Phil Jardine

    2006-01-01

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the vadose zone beneath the Hanford Tank Farms

  5. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Powell, B. [Clemson Univ., SC (United States); Barber, K. [Clemson Univ., SC (United States); Devol, T. [Clemson Univ., SC (United States); Dixon, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Erdmann, B. [Clemson Univ., SC (United States); Maloubier, M. [Clemson Univ., SC (United States); Martinez, N. [Clemson Univ., SC (United States); Montgomery, D. [Clemson Univ., SC (United States); Peruski, K. [Clemson Univ., SC (United States); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Witmer, M. [Clemson Univ., SC (United States)

    2017-12-12

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2) to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.

  6. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    International Nuclear Information System (INIS)

    HAASS, C.C.

    1999-01-01

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included

  7. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  8. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  9. Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-01-01

    The goal of the Tank Farm Vadose Zone Project is to define risks from past and future single-shell tank farm activities. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed northeast of tank BX-102 (borehole 299-E33-45). This report also presents data on the sediment lithologies, the vertical extent of contamination, their migration potential, and the source of the contamination in the vadose zone and perched water east of the BX Tank Farm. The near horizontally bedded, northeasterly dipping sediment likely caused horizontal flow of the migrating contaminants. At borehole 299-E33-45, there are several fine-grained lens within the H2 unit that cause horizontally spreading of percolating fluids. The 21-ft thick Plio-pleistocene fine grained silt/clay unit is also an important horizontal flow conduit as evidenced by the perched water between 227-232 ft bgs. Based on comparing the depth of penetration of contaminants and comparing the percentages that are water leachable, uranium migrates slower than technetium-99 and nitrate. The technetium-99 desorption data are consistently near zero, meaning that the technetium-99 is not interacting with the sediment. In summary, the moisture content, pH, electrical conductivity, sodium, tritium, and uranium profiles do not suggest that plume has penetrated below 170 ft bgs. In general, the majority of the ratios of constituents found in the porewater in the Hanford formation sediments are closer to being from the 1951 metals waste solution that escaped tank BX-102 during a cascading accident. There may be a source of water, containing nitrate but not technetium, that is feeding the perched water zone. The deep vadose, perched and groundwater data do not present a clear picture on what might be occurring in the Pliopleistocene units

  10. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    Science.gov (United States)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed

  11. Site characterization for the in situ bioremediation of the vadose zone

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Leo, A.; Craig, J.

    1993-01-01

    Studies were conducted to determine whether bioremediation can be used to treat a diesel fuel spill in the deep vadose zone (>30 m). After laboratory studies confirmed the ability of the natural population of organisms to degrade the diesel fuel, the technological issue of transporting the required mass of nutrients to the contaminated soils was addressed. Laboratory studies demonstrated that nutrient and oxygen transport can be enhanced by the addition of divalent cations to injected waters. This addition of minerals caused the observed hydraulic conductivity to be maintained at elevated levels that allowed the macronutrient nitrogen, provided as ammonium ion, to be more uniformly distributed to target soil domains

  12. Bayesian Markov chain Monte Carlo Inversion of Time-Lapse Geophysical Data To Characterize the Vadose Zone

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic...... parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site...

  13. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    Science.gov (United States)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the

  14. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy's Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  15. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  16. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  17. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    Science.gov (United States)

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  18. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  19. A vadose zone water fluxmeter with divergence control

    Science.gov (United States)

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.

    2002-01-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  20. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  1. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  2. Hydrologic properties of the vadose zone at B292

    International Nuclear Information System (INIS)

    Shinn, J.; Mallon, B.; Martins, S.

    1992-09-01

    A formula for the unsaturated hydraulic conductivity was derived for the vadose zone down to the 45-foot depth by analysis of data from 5 wells near B292. The formula gives the median hydraulic conductivity as a function of depth and soil-water content, and was obtained by parameterization of saturated hydraulic conductivity and the water-retention characteristics to the median particle diameter of soil samples. It was noted that the variation of median particle diameter among soil samples at the same depth, taken from 5 wells in close proximity to B292, would have a great effect on saturated hydraulic conductivity. The coefficient of variation of median particle diameter was estimated to be 1.23 at any depth, based on apparent log-normal frequency distribution. The coefficient of variation of measured and predicted saturated hydraulic conductivity was estimated to be 7.9; large values are found in the literature as well

  3. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  4. Managed aquifer recharge of treated wastewater: water quality changes resulting from infiltration through the vadose zone.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Higginson, Simon

    2011-11-01

    Secondary treated wastewater was infiltrated through a 9 m-thick calcareous vadose zone during a 39 month managed aquifer recharge (MAR) field trial to determine potential improvements in the recycled water quality. The water quality improvements of the recycled water were based on changes in the chemistry and microbiology of (i) the recycled water prior to infiltration relative to (ii) groundwater immediately down-gradient from the infiltration gallery. Changes in the average concentrations of several constituents in the recycled water were identified with reductions of 30% for phosphorous, 66% for fluoride, 62% for iron and 51% for total organic carbon when the secondary treated wastewater was infiltrated at an applied rate of 17.5 L per minute with a residence time of approximately four days in the vadose zone and less than two days in the aquifer. Reductions were also noted for oxazepam and temazepam among the pharmaceuticals tested and for a range of microbial pathogens, but reductions were harder to quantify as their magnitudes varied over time. Total nitrogen and carbamazepine persisted in groundwater down-gradient from the infiltration galleries. Infiltration does potentially offer a range of water quality improvements over direct injection to the water table without passage through the unsaturated zone; however, additional treatment options for the non-potable water may still need to be considered, depending on the receiving environment or the end use of the recovered water. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  6. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  7. Radionuclide migration in the unsaturated zone with a variable hydrology

    International Nuclear Information System (INIS)

    Elert, M.; Collin, M.; Andersson, Birgitta; Lindgren, M.

    1990-01-01

    Radionuclide transport from contaminated ground water to the root zone of a soil has been modelled considering a variable hydrology. Hydrological calculations have been coupled with radionuclide transport calculations in order to study the influence of variations in flow rate and saturation, dispersion, and sorption. For non-sorbing radionuclides important seasonal variations in the root zone concentration were found. The dispersivity parameter proved to be very important for both sorbing and non-sorbing nuclides. In addition, some comparison calculations were made with a simple steady-state compartment model. (au)

  8. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  9. 3D vadose zone modeling using geostatistical inferences

    International Nuclear Information System (INIS)

    Knutson, C.F.; Lee, C.B.

    1991-01-01

    In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an ''expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab

  10. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  11. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    Energy Technology Data Exchange (ETDEWEB)

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  12. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    International Nuclear Information System (INIS)

    Goodell, P.; Walton, J.; Rodriguez, P.J.

    2005-01-01

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration

  13. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  14. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  15. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  16. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain

    Science.gov (United States)

    Min, Leilei; Shen, Yanjun; Pei, Hongwei; Wang, Ping

    2018-04-01

    Groundwater-fed agriculture has caused water table declines and groundwater quality degradation in the North China Plain. Based on sediment sampling in deep vadose zone (with a maximum depth of 11.0 m), groundwater recharge, seepage velocity, solute inventory and transport under four typical irrigated agricultural land-use types (winter wheat and summer maize, WM; pear orchards, PO; outdoor vegetables, VE; and cotton, CO) were investigated in this study. The results reveal that there are many solutes stored in the vadose zone. Nitrate storage per unit depth in the vadose zone is highest under PO (1703 kg/ha), followed by VE (970 kg/ha), WM (736 kg/ha) and CO (727 kg/ha). However, the amount of annual leached nitrate under the four land-use types results in a different order (VE, 404 kg/ha; WM, 108 kg/ha; PO, 23 kg/ha; CO, 13 kg/ha). The estimated average recharge rates are 180 mm/yr for WM, 27 mm/yr for CO, 320 mm/yr for VE and 49 mm/yr for PO. The seepage velocity under VE (2.22 m/yr) exceeds the values under the other three land-use types (WM, 0.85 m/yr; PO, 0.49 m/yr; CO, 0.09 m/yr). The highest seepage velocity under VE caused significant nitrate contamination in groundwater, whereas the other two land-use types (WM and PO) had no direct influence on groundwater quality. The results of this work could be used for groundwater resources management.

  17. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    Science.gov (United States)

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights

  18. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  19. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  20. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.

    2009-01-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  1. Radionuclide distributions in phytocenoses elements of the Chernobyl' NPP 30-km zone

    International Nuclear Information System (INIS)

    Fedotov, I.S.; Mishenkov, N.N.; Arkhipov, N.P.

    1989-01-01

    In order to estimate the radioecological situation in phytocenoses of the 30-km zone consisting in the main of conifer and conifer-foliage forests, the studies, which give, an opportunity to divide the pine forests into five zones according to degrees of radiation injury character revealing, are made. These zones are characterized by total death, strong injury, intermediate injury, weak injury and stimulation. Radionuclides redistribution in the system including wood fier, forest litter and soil, their accumulation in organs and elements if each cenosis component are studied. The characteristics of experimental sections are given. The data on radionuclide distributions in soil profile of forest tracts, radionuclide concentrations in pine organs, radionuclide contents in mushrooms (conifers), contamination distribution (%) in pines under different levels of soil contamination are given. 6 tabs

  2. Vadose zone monitoring at the radioactive waste management complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McElroy, D.L.; Hubbell, J.M.

    1989-01-01

    A network of vadose zone instruments was installed in surficial sediments and sedimentary interbeds beneath the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The network of instruments monitor moisture movement in a heterogeneous geologic system comprised of sediments which overlie and are intercalated with basalt flows. The general range of matric potentials in the surficial sediments (0 to 9.1 m) was from saturation to -3 bars. The basalt layer beneath the surficial sediments impedes downward water movement. The general range of matric potentials in the 9-, 34- and 73-m interbeds was from -0.3 to 1.7 bars. Preliminary results indicated downward moisture movement through the interbeds. 8 refs., 9 figs., 1 tab

  3. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    International Nuclear Information System (INIS)

    HILL, J.S.

    2000-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  4. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  5. Study of test methods for radionuclide migration in aerated zone

    International Nuclear Information System (INIS)

    Li Shushen; Guo Zede; Wang Zhiming

    1993-01-01

    Aerated zone is an important natural barrier against transport of radionuclides released from disposal facilities of LLRW. This paper introduces study methods for radionuclide migration in aerated zone, including determination of water movement, laboratory simulation test, and field tracing test. For one purpose, results obtained with different methods are compared. These methods have been used in a five-year cooperative research project between CIRP and JAERI for an establishment of methodology for safety assessment on shallow land disposal of LLRW

  6. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  7. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  8. Hydrology and Radionuclide Migration Program, 1985--1986 progress report

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1988-09-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (formerly the Radionuclide Migration Project) at the Nevada Test Site (NTS) during fiscal years 1985 and 1986. The report discusses studies of the partitioning and movement of dissolved and colloidal radionuclides at the Cheshire (U20n) site; tracer studies of shallow recharge and of plant-water uptake at the Cambric-site ditch carrying the effluent water pumped from well RNM-2; development of a rapid and sensitive assay for 99 Tc in groundwater and its application to a survey of technetium activities at a variety of test wells; and a series of methodological studies directed toward calibration, understanding, and improving our low-level radionuclide determinations. Groundwater sampled from the Cheshire cavity and from adjacent aquifers contains substantial concentrations (mg/L) of colloids that appear to consist primarily of natural minerals. These colloids were found to contain detectable amounts of strongly sorbed radionuclides, leading to the hypothesis that radionuclides are being transported by the groundwater in colloidal form. The RNM ditch at the Cambric site has provided a unique tritium-labeled, irrigated test plot in the desert. One study at this site continued earlier investigations of water and tritium migration in the shallow vadose (unsaturated-soil) zone adjacent to the ditch and extended that study to include using a tracer to determine the velocity of vertical water flow in the recharge zone directly below the ditch. 57 refs., 15 figs., 23 tabs

  9. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    International Nuclear Information System (INIS)

    Adler Flitton, M.K; Mizia, R.E.; Bishop, C.W.

    2001-01-01

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure

  10. Peculiarities of radionuclide contamination of different Semipalatinsk nuclear test site (SNTS) zones

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Khazhekber, S.; Lukashenko, S.N.; Solodukhin, V.P.; Kazachevskij, I.V.; Poznyak, V.L.; Knyazev, B.B.; Rofer, Ch.

    2002-01-01

    The Semipalatinsk Nuclear Test Site occupies about 18500 km 2 . There are 3 basic test zones in this territory including various test platforms where different character nuclear explosions were carried out. On the test platforms of the 'Opytnoe Pole' zone air and ground tests were performed, including nuclear and hydronuclear (without nuclear reaction) explosions. On the other zones (the Degelen mountains and Balapan valley) the underground tests including camouflaged and excavation nuclear explosions were carried out. Each kind of these tests can be characterised by the quantity and composition of radionuclides which were formed during the nuclear explosion, by the area of their distribution, localisation of the radionuclides at various sites, radionuclide species in soil. Transfer of the products of the air and the ground nuclear explosions by air flows and their sedimentation on the ground surfaces have caused broadband radioactive plumes extending over hundreds of kilometres. As a result of hydronuclear experiments, plenty of alpha-active radionuclides, consisting of a nuclear device is thrown locally out. Besides the ground and the air explosions, radiation conditions of the territory of the SNTS were influenced by excavation explosions with ground throwing out. Such tests resulted in an intensive local pollution. Other zone of an original pollution is the Degelen mountains. Although an basic mass of the nuclear explosion products is obviously concentrated in basin cavities of the tunnels, the radionuclides are taken out on a day time surface together with waters acting in the basin cavity of the tunnels. The results of investigation of radionuclide pollution on the various platforms of the SNTS territory are presented. The results characterise the radionuclide pollution by specificity of spent tests

  11. Simplified analytical model to simulate radionuclide release from radioactive waste trenches; Modelo simplificado para simulacao da liberacao de radionuclideos de repositorios de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Bernardete Lemes Vieira de

    2001-07-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  12. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  14. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-03-08

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the

  15. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-04-20

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOm-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 milliredyear total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial start-up in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200

  16. Interpretation of vadose zone monitoring system data near Engineered Trench 1

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Whiteside, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    The E-Area Vadose Zone Monitoring System (VZMS) includes lysimeter sampling points at many locations alongside and angling beneath the Engineered Trench #1 (ET1) disposal unit footprint. The sampling points for ET1 were selected for this study because collectively they showed consistently higher tritium (H-3) concentrations than lysimeters associated with other trench units. The VZMS tritium dataset for ET1 from 2001 through 2015 comprises concentrations at or near background levels at approximately half of locations through time, concentrations up to about 600 pCi/mL at a few locations, and concentrations at two locations that have exceeded 1000 pCi/mL. The highest three values through 2015 were 6472 pCi/mL in 2014 and 4533 pCi/mL in 2013 at location VL-17, and 3152 pCi/mL in 2007 at location VL-15. As a point of reference, the drinking water standard for tritium and a DOE Order 435.1 performance objective in the saturated zone at the distant 100-meter facility perimeter is 20 pCi/mL. The purpose of this study is to assess whether these elevated concentrations are indicative of a general trend that could challenge 2008 E-Area Performance Assessment (PA) conclusions, or are isolated perturbations that when considered in the context of an entire disposal unit would support PA conclusions.

  17. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  18. Nuclear-waste isolation in the unsaturated zone of arid regions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1982-05-01

    The vadose zone in arid regions is considered as a possible environment for geologic isolation of nuclear waste. There are several topographic and lithologic combinations in the vadose zone of arid regions that may lend themselves to waste isolation considerations. In some cases, topographic highs such as mesas and interbasin ranges - comprised of several rock types, may contain essentially dry or partially saturated conditions favorable for isolation. The adjacent basins, especially in the far western and southwestern US, may have no surface or subsurface hydrologic connections with systems ultimately leading to the ocean. Some rock types may have the favorable characteristics of very low permeability and contain appropriate minerals for the strong chemical retardation of radionuclides. Environments exhibiting these hydrologic and geochemical attributes are the areas underlain by tuffaceous rocks, relatively common in the Basin and Range geomorphic province. Adjacent valley areas, where tuffaceous debris makes up a significant component of valley fill alluvium, may also contain thick zones of unsaturated material, and as such also lend themselves to strong consideration as respository environments. This paper summarizes the aspects of nuclear waste isolation in unsaturated regimes in alluvial-filled valleys and tuffaceous rocks of the Basin and Range province

  19. Soil Desiccation Techniques Strategies For Immobilization Of Deep Vadose Contaminants At The Hanford Central Plateau

    International Nuclear Information System (INIS)

    Benecke, M.W.; Chronister, G.B.; Truex, M.J.

    2012-01-01

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  20. The influence of the unsaturated zone on the upward transport of radionuclides in soils

    International Nuclear Information System (INIS)

    Elert, M.; Lindgren, M.

    1993-07-01

    The transport of radionuclides from the deep soil to the surface soil is an important part of biosphere modelling. In this study the effect of transient hydrological conditions on the upward transport of radionuclides through soils has been studied. The effect of varying soil properties, climate conditions have been considered as well as the effect of a fluctuating groundwater level. It was shown that the soil characteristics influences the radionuclide concentration; an increased hydraulic conductivity leads to increase in the concentration in the root zone. The climate conditions were shown to be of major importance. A dispersion dependent on both velocity and saturation leads to a more effective upward transport of radionuclides to the root zone than if dispersion is assumed to be dependent only on the saturation. The boundary condition used in the case with varying groundwater level may be more realistic than the boundary condition applied for the case with a constant groundwater level. All calculations with varying groundwater level gave lower radionuclide concentration in the root zone. Sorption is redox sensitive for many radionuclides and the redox potential in the soil will be affected by the degree of water saturation. The performed calculations did, however, not result in any significant change in the radionuclide concentration in the root zone due to variation in sorption. A comparison between the results of the two models show that the compartment model in all studied cases predicts a higher annual average radionuclide concentration in the root zone than the numerical model. Annual variation in soil water flow were not included in the compartment model. During the summer the concentration in the root zone may be several times higher than the annual average. This may be important for plant uptake, since this increased concentrations coincides with the plant growing season. The calculations made with the simple compartment model also show that these

  1. Geochemical Characterization of Chromate Contamination in the 100 Area Vadose Zone at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Qafoku, Nikolla; McKinley, James P.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Liu, Chongxuan; Ilton, Eugene S.; Phillips, J. L.

    2008-07-16

    The major objectives of the proposed study were to: 1.) determine the leaching characteristics of hexavalent chromium [Cr(VI)] from contaminated sediments collected from 100 Area spill sites; 2.) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford Site 100 Areas through the use of i.) macroscopic leaching studies and ii.) microscale characterization of contaminated sediments; and 3.) provide information to construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 Area vadose zone. In addressing these objectives, additional benefits accrued were: (1) a fuller understanding of Cr(VI) entrained in the vadose zone that will that can be utilized in modeling potential Cr(VI) source terms, and (2) accelerating the Columbia River 100 Area corridor cleanup by providing valuable information to develop remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry. A series of macroscopic column experiments were conducted with contaminated and uncontaminated sediments to study Cr(VI) desorption patterns in aged and freshly contaminated sediments, evaluate the transport characteristics of dichromate liquid retrieved from old pipelines of the 100 Area; and estimate the effect of strongly reducing liquid on the reduction and transport of Cr(VI). Column experiments used the < 2 mm fraction of the sediment samples and simulated Hanford groundwater solution. Periodic stop-flow events were applied to evaluate the change in elemental concentration during time periods of no flow and greater fluid residence time. The results were fit using a two-site, one dimensional reactive transport model. Sediments were characterized for the spatial and mineralogical associations of the contamination using an array of microscale techniques such as XRD, SEM, EDS, XPS, XMP, and XANES. The following are important conclusions and implications. Results from column experiments indicated that most

  2. Description of work vadose drilling at the 1301-N and 1325-N facilities, 100-NR-1 operable unit

    International Nuclear Information System (INIS)

    1994-08-01

    This description of work (DOW) details the field activities associated with the sampling of the vadose zone soils beneath the 1301-N and 1325-N cribs and trenches and will serve as a field guide for those performing the work. These activities are undertaken pursuant to the Hanford Federal Facility Agreement and Consent Order (Ecology et al., 1994a) Milestone M-16-94-01H-Tl and the June 30, 1994 Milestone Change Request M-16-94-02 (Ecology et al., 1994b). Three vadose zone borings, 1301-N-1, 1301-N-2, and 1325-N-1, will be constructed to investigate the vertical and horizontal distribution of radionuclide contamination in sediments beneath the cribs and trenches. The boreholes are also intended to intersect subsurface areas that may have been contaminated by dangerous wastes, i.e., metals, in effluent disposed during past operation of the facilities. This limited field investigation will provide data for the evaluation of remedial alternatives. Data from the investigation are expected to confirm that the cribs and trenches are high priority sites in the 100-NR-1 operable unit. Data, from the investigation will be used to evaluate alternatives for closure of the 1301-N and 1325-N sites. The contaminants of potential concern (COPCs) for the 1301-N/1325-N limited field investigation are presented in Table 1

  3. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  4. Migration of heavy natural radionuclides in a humid climatic zone

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Alexakhin, R.M.; Taskaev, A.I.; Maslov, V.I.

    1980-01-01

    Regularities and biochemical peculiarities of the migrations of heavy natural radionuclides in the environment are examined, with special reference to two regions in a humid climatic zone representing natural patterns of radionuclide distribution and to four plots artificially contaminated with high levels of natural radioactivity more than 20 years previously. It was determined that the migration of thorium, uranium, and radium isotopes through the rock-water-soil-plant system is dependent on many physiochemical properties of these radionuclides, their compounds, and the local environment. Isotopic activity ratios provide a useful tool for studying the direction of radionuclide migration and its influence on observed distribution patterns

  5. A National Roadmap for Vadose Zone Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kowall, Stephen Jacob

    2001-08-01

    This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

  6. Water and Solute Transport in Arid Vadose Zones: Innovations in Measurement and Analysis

    International Nuclear Information System (INIS)

    Tyler, S W.; Scanlon, Bridget R.; Gee, Glendon W.; Allison, G B.; Parlange, M. B.; Hopmans, J. W.

    1999-01-01

    Understanding the physics of flow and transport through the vadose zone has advanced significantly in the last three decades. These advances have been made primarily in humid regions or in irrigated agricultural settings. While some of the techniques are useful, many are not suited to arid regions. The fluxes of water and solutes typically found in arid regions are often orders of magnitude smaller than those found in agricultural settings, while the time scales for transport can be orders of magnitude larger. The depth over which transport must be characterized is also often much greater than in humid regions. Rather than relying on advances in applied tracers, arid-zone researchers have developed natural tracer techniques that are capable of quantifying transport over tens to thousands of years. Techniques have been developed to measure the hydraulic properties of sediments at all water contents, including the very dry range and at far greater depths. As arid and semiarid regions come under increased development pressures for such activities as hazardous- and radioactive-waste disposal, the development of techniques and the understanding of water and solute transport have become crucial components in defining the environmental impacts of activities at the landsurface

  7. Concentration peculiarities of radionuclides by freshwater molluscs of Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Kuz'menko, M.I.; Nazarov, A.B.; Derevets, V.V.

    2001-01-01

    The results of radionuclides 90 Sr and 137 Cs content in molluscs tissue of water objects within Chernobyl NPP exclusion zone has been analysed. The age dynamics of radionuclides content in some species of Gastropoda was studied

  8. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  9. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  10. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    Science.gov (United States)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  11. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  12. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  13. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  14. Radionuclide migration in soil within the estrangement zone of ChNPP

    International Nuclear Information System (INIS)

    Mikhalkin, G.S.; Arkhipov, A.N.; Arkhipov, N.P.; Sukhoruchkin, A.K.

    1992-01-01

    The problems of the radionuclide migration and redistribution in soil within the estrangement zone of ChNPP have been discussed. It has been demonstrated that the surface radioactive contamination of soil that has been represented principally by the particles of the waste nuclear fuel eventually migrates into soil depth. In this case the radionuclides remain principally the fuel matrix components, the fuel matrix decomposing gradually and releasing the radionuclides. The mechanisms of the radionuclide migration can be described with the quasi-diffusion migration model in most cases. On the 5th year since the accident the major portion of the radionuclides (95-99%) is still kept within 0-5 cm layer of soil. 3 figs.; 7 tabs

  15. Accurate measurements of vadose zone fluxes using automated equilibrium tension plate lysimeters: A synopsis of results from the Spydia research facility, New Zealand.

    Science.gov (United States)

    Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet

    2014-05-01

    Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009

  16. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  17. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement.

    Science.gov (United States)

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia

    2018-01-01

    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  19. Electrical Resistance Tomography to monitor vadose water movement

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; LaBrecque, D.

    1991-01-01

    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time--2.5 hours. This pulsed source introduced a open-quote slug close-quote of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside

  20. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  1. On the behaviour of artificial radionuclides at the Baltic sea coastal zone

    International Nuclear Information System (INIS)

    Styro, D.B.; Astrauskene, N.P.; Kadzhene, G.I.; Lukinskene, M.V.

    1988-01-01

    The measured results of the 137 Cs, 90 Sr and 144 Ce radionuclide concentrations near the settlement of Juodkrante at the Baltic Sea coast have been considered. The instability of the mean values of the radionuclide concentrations, especially that of strontium-90, has been determined. A certain increase of the radionuclide concentration near the sea coast as compared to that in the open sea has been noted, as well as the influence of the stormy weather on the absolute values of the radionuclide concentration at the coastal zone. 5 refs.; 3 figs.; 1 tab

  2. Pedotransfer functions for isoproturon sorption on soils and vadose zone materials.

    Science.gov (United States)

    Moeys, Julien; Bergheaud, Valérie; Coquet, Yves

    2011-10-01

    Sorption coefficients (the linear K(D) or the non-linear K(F) and N(F)) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 K(D) and 55 K(F)) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon K(D) . The pedotransfer function is K(D) = 1.7822 + 0.0162 OC(1.5) - 0.1958 pH (K(D) in L kg(-1) and OC in g kg(-1)). For low-OC soils (OC isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site- or soil-specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) K(OC) values calculated on a large dataset or (d) K(OC) values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry.

  3. Estimation of percolating water dynamics through the vadose zone of the Postojna cave on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janja Kogovšek

    2007-12-01

    Full Text Available Within the scope of monitoring water percolation through the 100-m thick vadose zone in the area of Postojnska jama continuous measurements of precipitation were carried out on the surface, and continuous measurements of water flowandphysicalandchemicalparametersof selected water trickles were performed under the surface. Occasional samples of percolating waters were taken for the analysis of water oxygen isotope composition. An exponential model of groundwater flowwaselaborated,bymeansofwhichtheretentiontime of water in individual trickles was estimated. Modelled retention times of groundwater range from 2.5 months to over one year.

  4. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks

    Science.gov (United States)

    Mills, Christopher T.; Goldhaber, Martin B.

    2012-01-01

    Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol N kg− 1) concentrations of applied (NH4)2SO4. Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH4+, Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg− 1) and high (128 meq kg− 1) amounts of NH4Cl, KCl, and CaCl2 were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba2 + (mean 38 μmol kg− 1) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol N kg− 1) and high (35 mmol N kg− 1) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg− 1 (5 × control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more

  5. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    Science.gov (United States)

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  6. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  7. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1997 annual progress report

    International Nuclear Information System (INIS)

    Alumbaugh, D.L.

    1997-01-01

    'It is the objective of this proposed study to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This fundamentally new approach to site characterization and monitoring will provide detailed knowledge about hydrological properties, geological heterogeneity and the extent and movement of contamination. HHGIT combines electrical resistivity tomography (ERT) to geophysically sense a 3D volume, statistical information about fabric of geological formations, and sparse data on moisture and contaminant distributions. Combining these three types of information into a single inversion process will provide much better estimates of spatially varied hydraulic properties and three-dimensional contaminant distributions than could be obtained from interpreting the data types individually. Furthermore, HHGIT will be a geostatistically based estimation technique; the estimates represent conditional mean hydraulic property fields and contaminant distributions. Thus, this method will also quantify the uncertainty of the estimates as well as the estimates themselves. The knowledge of this uncertainty is necessary to determine the likelihood of success of remediation efforts and the risk posed by hazardous materials. Controlled field experiments will be conducted to provide critical data sets for evaluation of these methodologies, for better understanding of mechanisms controlling contaminant movement in the vadose zone, and for evaluation of the HHGIT method as a long term monitoring strategy.'

  8. Computer code selection criteria for flow and transport code(s) to be used in undisturbed vadose zone calculations for TWRS environmental analyses

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) is responsible for the safe storage, retrieval, and disposal of waste currently being held in 177 underground tanks at the Hanford Site. In order to successfully carry out its mission, TWRS must perform environmental analyses describing the consequences of tank contents leaking from tanks and associated facilities during the storage, retrieval, or closure periods and immobilized low-activity tank waste contaminants leaving disposal facilities. Because of the large size of the facilities and the great depth of the dry zone (known as the vadose zone) underneath the facilities, sophisticated computer codes are needed to model the transport of the tank contents or contaminants. This document presents the code selection criteria for those vadose zone analyses (a subset of the above analyses) where the hydraulic properties of the vadose zone are constant in time the geochemical behavior of the contaminant-soil interaction can be described by simple models, and the geologic or engineered structures are complicated enough to require a two-or three dimensional model. Thus, simple analyses would not need to use the fairly sophisticated codes which would meet the selection criteria in this document. Similarly, those analyses which involve complex chemical modeling (such as those analyses involving large tank leaks or those analyses involving the modeling of contaminant release from glass waste forms) are excluded. The analyses covered here are those where the movement of contaminants can be relatively simply calculated from the moisture flow. These code selection criteria are based on the information from the low-level waste programs of the US Department of Energy (DOE) and of the US Nuclear Regulatory Commission as well as experience gained in the DOE Complex in applying these criteria. Appendix table A-1 provides a comparison between the criteria in these documents and those used here. This document does not define the models (that

  9. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    Science.gov (United States)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008

  10. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  11. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  12. An analytical model for predicting transport in a coupled vadose/phreatic system

    International Nuclear Information System (INIS)

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations

  13. VAMOS: The verification and monitoring options study: Current research options for in-situ monitoring and verification of contaminant remediation and containment within the vadose zone

    International Nuclear Information System (INIS)

    Betsill, J.D.; Gruebel, R.D.

    1995-09-01

    The Verification and Monitoring Options Study Project (VAMOS) was established to identify high-priority options for future vadose-zone environmental research in the areas of in-situ remediation monitoring, post-closure monitoring, and containment emplacement and verification monitoring. VAMOS examined projected needs not currently being met with applied technology in order to develop viable monitoring and verification research options. The study emphasized a compatible systems approach to reinforce the need for utilizing compatible components to provide user friendly site monitoring systems. To identify the needs and research options related to vadose-zone environmental monitoring and verification, a literature search and expert panel forums were conducted. The search included present drivers for environmental monitoring technology, technology applications, and research efforts. The forums included scientific, academic, industry, and regulatory environmental professionals as well as end users of environmental technology. The experts evaluated current and future monitoring and verification needs, methods for meeting these needs, and viable research options and directions. A variety of high-priority technology development, user facility, and technology guidance research options were developed and presented as an outcome of the literature search and expert panel forums

  14. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  15. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    Science.gov (United States)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to

  16. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Peter Martian

    2009-05-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone.

  17. Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide

    Science.gov (United States)

    2016-08-30

    estimation process when applying the tool. The tool described here is focused on vapor-phase diffusion from the current vadose zone source , and is not...from the current defined vadose zone source ). The estimated soil gas contaminant concentration obtained from the pre-modeled scenarios for a building...need a full site-specific numerical model to assess the impacts beyond the current vadose zone source . 35 5.0 References Brennan, R.A., N

  18. Experimental Plan: 300 Area Treatability Test: In Situ Treatment of the Vadose Zone and Smear Zone Uranium Contamination by Polyphosphate Infiltration

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Pierce, Eric M.; Oostrom, Mart; Fruchter, Jonathan S.

    2007-01-01

    The overall objectives of the treatability test is to evaluate and optimize polyphosphate remediation technology for infiltration either from ground surface, or some depth of excavation, providing direct stabilization of uranium within the deep vadose and capillary fringe above the 300 Area aquifer. Expected result from this experimental plan is a data package that includes: (1) quantification of the retardation of polyphosphate, (2) the rate of degradation and the retardation of degradation products as a function of water content, (3) an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, (4) an understanding of the transformation mechanism, identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and silicate minerals with the polyphosphate remedy under solubility-limiting conditions, (5) quantification of the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and capillary fringe, and (6) quantification of reliable equilibrium solubility values for autunite under hydraulically unsaturated conditions allowing accurate prediction of the long-term stability of autunite. Moreover, results of intermediate scale testing will quantify the transport of polyphosphate and degradation products, and yield degradation rates, at a scale that is bridging the gap between the small-scale UFA studies and the field scale. These results will be used to test and verify a site-specific, variable saturation, reactive transport model and to aid in the design of a pilot-scale field test of this technology. In particular, the infiltration approach and monitoring strategy of the pilot test would be primarily based on results from intermediate-scale testing. Results from this

  19. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  20. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-01-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  1. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  2. In-Situ Assay Of Transuranic Radionuclides In The Vadose Zone Using High-Resolution Spectral Gamma Logging - A Hanford Case Study

    International Nuclear Information System (INIS)

    Rohay, V.J.; Henwood, P.; McCain, R.

    2009-01-01

    High-resolution spectral gamma logging in steel-cased boreholes is used to detect and quantify transuranic radionuclides in the subsurface. Pu-239, Pu-241, Am-241, and Np-237 are identified based on characteristic decay gammas. Typical minimum detectable levels are on the order of 20 to 40 nCi/g. In intervals of high transuranic concentrations, gamma rays from other sources may complicate analysis and interpretation. Gamma rays detected in the borehole may originate from three sources: decay of the parent transuranic radionuclide or a daughter; alpha interactions; and interactions with neutrons resulting from either spontaneous fission or alpha particle interactions.

  3. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F; Serne, R JEFFREY; Bjornstad, Bruce N; Valenta, Michelle M; Lanigan, David C; Vickerman, Tanya S; Clayton, Ray E; Geiszler, Keith N; Iovin, Cristian; Clayton, Eric T; Kutynakov, I V; Baum, Steven R; Lindberg, Michael J; Orr, Robert D

    2007-02-05

    A geologic/geochemical investigation in the vicinity of UPR-200-E-82 was performed using pairs of cone-penetrometer probe holes. A total of 41 direct-push cone-penetrometer borings (19 pairs to investigate different high moisture zones in the same sampling location and 3 individual) were advanced to characterize vadose zone moisture and the distribution of contaminants. A total of twenty sample sets, containing up to two split-spoon liners and one grab sample, were delivered to the laboratory for characterization and analysis. The samples were collected around the documented location of the C-152 pipeline leak, and created an approximately 120-ft diameter circle around the waste site. UPR-200-E-82 was a loss of approximately 2,600 gallons of Cs-137 Recovery Process feed solution containing an estimated 11,300 Ci of cesium-137 and 5 Ci of technetium-99. Several key parameters that are used to identify subsurface contamination were measured, including: water extract pH, electrical conductivity, nitrate, technetium-99, sodium, and uranium concentrations and technetium-99 and uranium concentrations in acid extracts. All of the parameters, with the exception of electrical conductivity, were elevated in at least some of the samples analyzed as part of this study. Specifically, soil pH was elevated (from 8.69 to 9.99) in five samples collected northeast and southwest of the C-152 pipeline leak. Similarly, samples collected from these same cone-pentrometer holes contained significantly more water-extractable sodium (more than 50 g/g of dry sediment), uranium (as much as 7.66E-01 g/g of dry sediment), nitrate (up to 30 g/g of dry sediment), and technetium-99 (up to 3.34 pCi/g of dry sediment). Most of the samples containing elevated concentrations of water-extractable sodium also had decreased levels of water extractable calcium and or magnesium, indicating that tank-related fluids that were high in sodium did seep into the vadose zone near these probe holes. Several of the

  4. Current challenges in quantifying preferential flow through the vadose zone

    Science.gov (United States)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  5. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  6. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  7. A strategy for validation a concept model for radionuclide migration in the saturated zone beneath Yucca Mountain

    International Nuclear Information System (INIS)

    Robinson, B.A.

    1994-01-01

    A conceptual model for radionuclide migration in the saturated zone beneath Yucca Mountain is presented. The available hydrologic data from the site is compiled to present a qualitative picture of transport of radionuclides horizontally within the first 100-200 m of the saturated zone. The transport model consists of flow within fractures and interchange of dissolved species between the fractures and surrounding matrix blocks via molecular diffusion. A parametric study illustrates that at the groundwater conditions expected to exist in the saturated zone, radionuclide will have ample time to diffuse fully within the matrix blocks. The result is a predicted solute transport time several orders of magnitude greater than the groundwater travel time (GWTT). To validate this model, a suite of interwell tracer tests are proposed at various flow rates and with conservative and sorbing species. Numerical simulations show that these tests will allow us to discriminate between a matrix diffusion model and a more conventional continuum transport model. (author) 8 figs., tabs., 35 refs

  8. [The main radionuclides and dose formation in fish of the Chernobyl NPP exclusion zone].

    Science.gov (United States)

    Gudkov, D I; Kaglian, A E; Kireev, S I; Nazarov, A B; Klenus, V G

    2008-01-01

    The results of the researches of spices-specificity, accumulation dynamics and distribution of 90Sr, of 137Cs and of transuranic elements in fish of the Chernobyl NPP exclusion zone are analysed. The data of estimations of absorbed doze rate from incorporated radionuclides for pray fish and predatory species are given. For the fish from the lake of the left-bank floodplain of the Pripyat River the increase of 90Sr specific activity is registered which is presumably connected with the dynamics of the physical-chemical forms of the radionuclide in soils and their wash out in water bodies from the catchment basin. Now about 90% of internal dose rate of fish from closed aquatic ecosystems within the Chernobyl NPP exclusion zone is caused by 90Sr incorporation.

  9. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  10. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100 0 C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites

  11. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

  12. Studies of radionuclides behavior on heavily contaminated 5-km zone of СhNPP

    Directory of Open Access Journals (Sweden)

    D. M. Bondarkov

    2016-12-01

    Full Text Available Studies of the radionuclides behavior in the soils of “Red Forest” landfill in the nearest 5-km ChNPP zone were carried out during 2014 - 2015. The parameters of vertical migration and halftimes of upper 5-cm soil layer decontamination were obtained. Forms of occurrence of 90Sr and 137Cs, as well as the disperse composition of the Chernobyl origin fuel particles were evaluated. Behavior of radionuclides described in conditions of the convection-diffusion model and the parameters of the model slightly changed over the past decade.

  13. Radionuclides distribution in internal organs of wild animals in alienation zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Gorbatova, T.A.; Kudryashov, V.P.; Mironov, V.P.

    2002-01-01

    Activities of caesium 137, strontium 90, plutonium isotopes and americium 241 are experimentally defined in the internal organs of bearer and wolf alienation zone of Chernobyl NPP. Radionuclides distribution in the internal organs of wild animals is defined by destruction of nuclear fuel particles

  14. Assessing toxic levels of hydrocarbons on microbial degrader communities in vadose zone fill soils

    International Nuclear Information System (INIS)

    Schoenberg, T.H.; Long, S.C.

    1995-01-01

    Authentic fill samples were collected from the vadose zone at a highway travel plaza. The contamination at the site is a combination of gasoline, diesel, and waste oil resulting from leaking underground storage tanks. Microbial assessments including plate counts and specific-degrader enumerations were performed to establish the presence of degrader microbial communities, and thus bioremediation potential. Contaminant levels were estimated in samples by quantifying headspace VOCs in collection jars. Physical soil characteristics including soil grain size distribution and moisture content were measured to evaluate the potential ecological variables that would affect implementation of a bioremediation technology. Toxicity screening using the Microtox trademark acute toxicity assay was used to compare the level of toxicity present among samples. These analyses were used to assess the potential for using in situ bioventing remediation to clean-up the leaking underground storage tank spill study site. High contaminant levels appear to have exerted a toxic effect and resulted in smaller total microbial community sizes in highly contaminated areas (thousands of ppmv) of the site. Microtox trademark EC50 results generally corroborated with the trends of the enumeration experiments. Microbial characterization results indicate that in situ bioremediation would be possible at the study site. Soil heterogeneity appears to pose the greatest challenges to the design and implementation of bioremediation at this site

  15. Vadose-zone instrumentation in coarse alluvial deposits of the Amargosa Desert near Beatty, Nevada

    International Nuclear Information System (INIS)

    Morgan, D.S.; Fischer, J.M.

    1984-01-01

    A vadose-zone monitoring shaft near Beatty, NV, is 1.52 m in diameter and penetrates nearly 14 m of unsaturated fluvial sediments. These sediments are comprised of silty sand, coarse sandy gravel, and poorly cemented sand, with gravel and occasional cobbles and boulders. Thirty-three lateral ports at 11 levels between 3 and 13 m deep allow access to undisturbed sediments outside the vertical shaft. The prefabricated metal shaft was emplaced in a 2.44-m-diameter hole excavated by using a crane drill with bucket and flight augers. Laboratory-calibrated thermocouple-psychrometers are being used to measure soil-matrix potential. A method of installing the phychrometers was developed which will allow their retrieval, after extended periods in the soil, for cleaning, recalibration, and reinstallation. Primary access holes 2.5 cm in diameter are drilled laterally outward from the monitoring shaft to a distance of approximately 4 m. The psychrometer is then inserted into the primary access hole and sealed into a smaller diameter boring in the undisturbed material at the outer end of the primary access hole. Data are collected and stored by a programmable measurement-control and data-logger system powered by photovoltaic cells. Magnetic-tape data storage is used to back up daily data retrieval via telecommunication with the project headquarters in Carson City, Nev., 520 km north of the study

  16. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm-13235

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit

  17. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R. [Washington River Protection Solutions, P.O. Box 850, Richland, WA, 99352 (United States)

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  18. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  19. Characterization of contaminant transport by gravity, capilliarity and barometric pumping in heterogeneous vadose regimes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.

    1997-01-01

    'Vadose regimes can be the sites of complex interactions between the atmosphere and groundwater. When a volatile contaminant exists as free product or in dissolved form in the vadose environment, upward transport can occur with the contaminant ultimately being vented as a vapor into the atmosphere. This transport happens naturally and can be enhanced by anisotropy resulting from heterogenities in the vadose regime. Several stages in the transport process are involved in going from a volatile, liquid state contaminant to a contaminant vapor vented at the surface. In a three-year effort, called the Vadose Zone Transport Study, the authors are investigating, with the aid of existing data, new field studies involving dissolved tracer gases and 3-D diagnostic computer simulations that provide a framework to interpret the observations, the detailed nature of each of these stages of transport in several different kinds of vadose regimes. They are emphasizing the impact of features specific to a site, that is, the local geology and hydrology, on each stage of the transport process. In particular they want to better understand how the time scales for (1) partitioning contaminants from the liquid to the vapor states and then (2) transporting the vapor out of the vadose regime are dependent on the specific character of a site. Such time-scale information will be important for evaluating the potential of contaminant sources as well as remediation strategies including natural remediation approaches.'

  20. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3-4, 1997

    International Nuclear Information System (INIS)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report

  1. Characterization of Vadose Zone Sediment: Borehole 299-W23-19[SX -115] in the S-SX Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Schaef, Herbert T.; Bjornstad, Bruce N.; Lanigan, David C.; Gee, Glendon W.; Lindenmeier, Clark W.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; O'Hara, Matthew J.; Brown, Christopher F.; Last, George V.; Kutnyakov, Igor V.; Burke, Deborah Sd; Wilson, Teresa C.; Williams, Bruce A.

    2001-01-01

    The Tank Farm Vadose Zone Project is led by CH2M HILL Hanford Group, Inc. Their goals include defining risks from past and future single-shell tank farm activities, identifying and evaluating the efficacy of interim measures, and collecting geo-technical information and data. The purpose of these activities is to support future decisions made by the U.S. Department of Energy regarding near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas. To help in this effort, CH2M HILL contracted with scientists at Pacific Northwest National Laboratory to analyze sediment samples collected from borehole 299-W23-19. The conclusions reached from this study support specific mechanisms influencing subsurface migration of contaminants. The mechanisms are supported by the distributions of contaminants beneath tank farms. These observations will help DOE and CH2M HILL identify and implement viable remediation and closure activities

  2. Characterization of Vadose Zone Sediment: Borehole 299-W23-19 [SX-115] in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Gee, Glendon W.; Lindenmeier, Clark W.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Last, George V.; Kutnyakov, Igor V.; Burke, Deborah S.; Wilson, Teresa C.; Williams, Bruce A.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.15 and 4.19. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The Tank Farm Vadose Zone Project is led by CH2M HILL Hanford Group, Inc. Their goals include defining risks from past and future single-shell tank farm activities, identifying and evaluating the efficacy of interim measures, and collecting geotechnical information and data. The purpose of these activities is to support future decisions made by the U.S. Department of Energy (DOE) regarding near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas. To help in this effort, CH2M HILL Hanford Group, Inc. contracted with scientists at Pacific Northwest National Laboratory to analyze sediment samples collected from borehole 299-W23-19.

  3. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  4. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  5. Generalization of some results of a vertical radionuclide migration study in soils of 30-km zone

    International Nuclear Information System (INIS)

    Ziborov, A.M.; Sadol'ko, I.V.; Sushchik, Yu.Ya.; Tikhanov, Eh.K.; Proskuryakov, A.G.; Kuz'michev, V.N.; Shcheglov, A.I.

    1992-01-01

    Results of radionuclide distribution study in a vertical profile of soils are presented under different landscape geochemical conditions in 1989-1991. It is ascertained that radionuclide migration process in geochemical profile of soils of 30-km zone is in early stage of development. More than 90% of radioactivity concentrates in the upper 5-10 cm layer whereas measurable radioactivity fixes at a depth up to 1 m. The process of deepening of radioactivity reserve center takes place in the surface soil layer. Now it equals 1,5-3 cm. Peculiarities of the vertical radionuclide distribution haven't brightly pronounced character depending on soil types and are at the formation stage. 12 figs.; 2 tabs

  6. Zone peculiarities of natural conditions, affecting ran food stuffs and drinking water contamination with radionuclides

    International Nuclear Information System (INIS)

    Marej, A.N.

    1980-01-01

    The effect of natural conditions on the USSR territory connected with peculiar types of soil on the behaviour of radionuclides fallen from stratosphere is considered. Characteristics of tundra, taiga partially-wooded steppe, step.oe, mountain and semi-desert zones are presented. Peculiarities of soils in different geographical zones of the USSR conditioned by various properties and compositions have a significant effect on 90 Sr and especially 137 Cs migration intensity from the soil into plants and organisms of animals through biological chains. The administration of radionuclides in the ration with food stuffs obtained on the surface of reservoirs where zonality low is also rightful, is studied. It is established that indexes of 90 Sr and 137 Cs buildup in tissues of hydrobionts are in reverse dependence on calcium and potassium content in water. Therefore, maximum levels of 90 Sr and 137 Cs buildup in fish is characteristic of zones with the low content of these elements. The degree of water mineralization in ponds has a clear zonality which increases in the direction from the North to the South. The degree of pond well-drained nature is of great importance

  7. Characterization of contaminant transport by gravity, capillarity and barometric pumping in heterogeneous vadose regimes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.; Hudson, G.B.

    1998-01-01

    'The intent of this research program is to obtain an improved understanding of vadose zone transport processes and to develop field and modeling techniques required to characterize contaminant transport in the unsaturated zone at DOE sites. For surface spills and near-surface leaks of chemicals, the vadose zone may well become a long-term source of contamination for the underlying water table. Transport of contaminants can occur in both the liquid and gas phases of the unsaturated zone. This transport occurs naturally as a result of diffusion, buoyancy forces (gravity), capillarity and barometric pressure variations. In some cases transport can be enhanced by anisotropies present in hydrologic regimes. This is particularly true for gas-phase transport which may be subject to vertical pumping resulting from atmospheric pressure changes. For liquid-phase flows, heterogeneity may enhance the downward transport of contaminants to the water table depending on soil properties and the scale of the surface spill or near-surface leak. Characterization techniques based upon the dynamics of transport processes are likely to yield a better understanding of the potential for contaminant transport at a specific site than methods depending solely on hydrologic properties derived from a borehole. Such dynamic-characterization techniques can be useful for evaluating sites where contamination presently exists as well as for providing an objective basis to evaluate the efficacy of proposed as well as implemented clean-up technologies. The real-time monitoring of processes that may occur during clean-up of tank waste and the mobility of contaminants beneath the Hanford storage tanks during sluicing operations is one example of how techniques developed in this effort can be applied to current remediation problems. In the future, such dynamic-characterization methods might also be used as part of the site-characterization process for determining suitable locations of new DOE facilities

  8. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-03-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than

  9. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-06-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the

  10. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  11. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone

    Science.gov (United States)

    Kashparov, Valery; Levchuk, Sviatoslav; Zhurba, Marina; Protsak, Valentyn; Khomutinin, Yuri; Beresford, Nicholas A.; Chaplow, Jacqueline S.

    2018-02-01

    The dataset Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone was developed to enable data collected between May 1986 (immediately after Chernobyl) and 2014 by the Ukrainian Institute of Agricultural Radiology (UIAR) after the Chernobyl accident to be made publicly available. The dataset includes results from comprehensive soil sampling across the Chernobyl Exclusion Zone (CEZ). Analyses include radiocaesium (134Cs and 134Cs) 90Sr, 154Eu and soil property data; plutonium isotope activity concentrations in soil (including distribution in the soil profile); analyses of hot (or fuel) particles from the CEZ (data from Poland and across Europe are also included); and results of monitoring in the Ivankov district, a region adjacent to the exclusion zone. The purpose of this paper is to describe the available data and methodology used to obtain them. The data will be valuable to those conducting studies within the CEZ in a number of ways, for instance (i) for helping to perform robust exposure estimates to wildlife, (ii) for predicting comparative activity concentrations of different key radionuclides, (iii) for providing a baseline against which future surveys in the CEZ can be compared, (iv) as a source of information on the behaviour of fuel particles (FPs), (v) for performing retrospective dose assessments and (vi) for assessing natural background dose rates in the CEZ. The CEZ has been proposed as a radioecological observatory (i.e. a radioactively contaminated site that will provide a focus for long-term, radioecological collaborative international research). Key to the future success of this concept is open access to data for the CEZ. The data presented here are a first step in this process. The data and supporting documentation are freely available from the Environmental Information Data Centre (EIDC) under the terms and conditions of the Open Government Licence: https://doi.org/10.5285/782ec845-2135-4698-8881-b38823e533bf.

  12. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone

    Directory of Open Access Journals (Sweden)

    V. Kashparov

    2018-02-01

    Full Text Available The dataset Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone was developed to enable data collected between May 1986 (immediately after Chernobyl and 2014 by the Ukrainian Institute of Agricultural Radiology (UIAR after the Chernobyl accident to be made publicly available. The dataset includes results from comprehensive soil sampling across the Chernobyl Exclusion Zone (CEZ. Analyses include radiocaesium (134Cs and 134Cs 90Sr, 154Eu and soil property data; plutonium isotope activity concentrations in soil (including distribution in the soil profile; analyses of hot (or fuel particles from the CEZ (data from Poland and across Europe are also included; and results of monitoring in the Ivankov district, a region adjacent to the exclusion zone. The purpose of this paper is to describe the available data and methodology used to obtain them. The data will be valuable to those conducting studies within the CEZ in a number of ways, for instance (i for helping to perform robust exposure estimates to wildlife, (ii for predicting comparative activity concentrations of different key radionuclides, (iii for providing a baseline against which future surveys in the CEZ can be compared, (iv as a source of information on the behaviour of fuel particles (FPs, (v for performing retrospective dose assessments and (vi for assessing natural background dose rates in the CEZ. The CEZ has been proposed as a radioecological observatory (i.e. a radioactively contaminated site that will provide a focus for long-term, radioecological collaborative international research. Key to the future success of this concept is open access to data for the CEZ. The data presented here are a first step in this process. The data and supporting documentation are freely available from the Environmental Information Data Centre (EIDC under the terms and conditions of the Open Government Licence: https://doi.org/10.5285/782ec845-2135-4698-8881-b

  13. Role of Competitive Cation Exchange on Chromatographic Displacement of Cesium in the Vadose Zone beneath the Hanford S/SX Tank Farm

    International Nuclear Information System (INIS)

    Lichtner, Peter C.; Yabusaki, Steven B.; Pruess, Karsten; Steefel, Carl

    2004-01-01

    believed to have been released from the SX-108/SX-109 tanks. The calculations indicate that during the initial period of the tank leak when Cs + is associated with high Na + concentrations, there is little retardation of the Cs + plume. However, as time increases the Na + and Cs + profiles become chromatographically separated due to differences in their selectivity coefficients and dilution of the tank leak plume with infiltrating rainwater. Eventually the two species become separated spatially, and Cs + becomes highly retarded and remains essentially fixed in the sediments by cation exchange. For the 20 m Na + simulated tank leak, the sorbed Cs + profile is in close agreement with data obtained from the slant borehole and consistent with the estimated tank supernatant concentration. The simulations suggest that natural attenuation processes should result in strong fixation of Cs + in the vadose zone in spite of the release of high Na + concentrations during a tank leak event

  14. Unsaturated zone waters from the Nopal I natural analog, Chihuahua, Mexico -- Implications for radionuclide mobility at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, D.A.; Murphy, W.M.

    1999-07-01

    Chemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone.

  15. Unsaturated zone waters from the Nopal I natural analog, Chihuahua, Mexico -- Implications for radionuclide mobility at Yucca Mountain

    International Nuclear Information System (INIS)

    Pickett, D.A.; Murphy, W.M.

    1999-01-01

    Chemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone

  16. Technique for radionuclide composition analysis of snow cover in the Chernobyl' NPP 30-km zone using fiber sorbents

    International Nuclear Information System (INIS)

    Kham'yanov, L.P.; Rau, D.F.; Amosov, M.M.; Strel'nikova, A.E.; Tereshchenko, V.I.; Veber, T.S.

    1989-01-01

    The high-sensitivity, simple and fast technique for analysis of large-dispersive and ionic components of snow cover radioactivity is suggested. It is based on separation of a sample by fractions, concentration of the dispersive fraction on mechanical filters and the dissolved one on ion-exchange sorbents and separated fraction spectrometry. The minimum measured contamination level is 3.7 Bq/dm 3 for each radionuclide analyzed. The conclusion is made that the technique suggested is the reliable method for radionuclide content analysis is snow cover samples of the Chernobyl' NPP zone. 1 tab

  17. The RRP Project: investigating radionuclide retardation in the host rock

    International Nuclear Information System (INIS)

    Alexander, W.R.; Frieg, B.; Ota, K.; Bossart, P.

    1996-01-01

    The Radionuclide Retardation Project (RRP), which is a joint Nagra/PNC (Power Reactor and Nuclear Fuel Development Corp.) project, has two components: the first (the Excavation Project, EP) looks at the behaviour of radionuclides which are so strongly retarded in the experimental shear zone that they cannot pass through the zones in experimentally reasonable times. In order to determine where radionuclide retardation has occurred in the pore space, as well as the flowpath geometry in the shear zone, the entire injection zone has to be excavated and taken back to the laboratory for analysis of the sites of retardation of the radionuclides. This approach has the advantage of allowing a detailed 3D description of the experimental shear zone. The aim of the second component of the project (Connected Porosities, CP) is to examine the fate of those radionuclides which diffuse out of the main water-conducting features in the shear zone and into the pore spaces of the rock matrix, where they become trapped. This represents a potentially significant retardation mechanism in a repository host rock. (author) 8 figs., refs

  18. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    g kg -1 , representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO 3 - concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg -1 a -1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H + -amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  19. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Christopher T., E-mail: cmills@usgs.gov [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States); Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States)

    2011-08-15

    from 0 to 42 {mu}g kg{sup -1}, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO{sub 3}{sup -} concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 {mu}g kg{sup -1} a{sup -1} suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H{sup +}-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  20. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Stephen R.

    2003-06-01

    Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones Stephen Brown, Gregory Boitnott, and Martin Smith New England Research In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. With the exception of the acoustic velocity, we are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been

  1. Vertical Migration of Radionuclides in Soils on the Chernobyl Nuclear Power Plant (ChNPP) Exclusion Zone (1987-2007)

    Science.gov (United States)

    Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained

  2. Yucca Mountain Project: A summary of technical support activities, January 1987--June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The activities in the Geochemistry and Mineralogy section of our program support three independent and interrelated subject areas which are: Geochemical retardation/transport of radionuclides to the accessible environment, site-specific mineralogy and geophysical studies to establish the hydrogeology of the vadose zone, and past climate and related genesis of authigenic desert carbonates and silicates

  3. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  4. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-01-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: (a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), (b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, (c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and (d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation. Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  5. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  6. Advective Removal of Intraparticle Uranium from Contaminated Vadose Zone Sediments, Hanford, USA

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Qafoku, Nikolla; Liu, Chongxuan; Moore, D. A.; Zachara, John M.

    2008-01-01

    A column study on U contaminated vadose zone sediments from the Hanford Site, WA, was performed in order to aid the development of a model for predicting U(VI) release rates under a dynamic flow regime and for variable geochemical conditions. The sediments of interest are adjacent to and below tank BX-102, part of the BX tank farm that contained high level liquid radioactive waste. Two sediments, with different U(VI) loadings and intraparticle large fracture vs. smaller fracture ratios, were reacted with three different solutions. The primary reservoir for U(VI) appears to be a micron-sized nanocrystalline Na-U-Si phase, possibly Na-boltwoodite, that nucleated and grew on plagioclase grains that line fractures within sand-sized granitic clasts. The solutions were all calcite saturated and in equilibrium with atmospheric CO2, where one solution was simply DI-water, the second was a synthetic ground water (SGW) with elevated Na, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by a plateau of low U(VI) concentration. U(VI) effluent concentration increased during subsequent stop flow (SF) events. The electrolytes with elevated Na and Si appreciably depressed U(VI) concentrations relative to DI water. The effluent data for both sediments and all three electrolytes was simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution rates, intraparticle U(VI) diffusion, and interparticle advective transport of U(VI); where key transport and dissolution processes had been parameterized in previous batch studies. For the calcite-saturated DI-water, U(VI) concentrations in the effluent remained far below saturation with respect to Na-boltwoodite and release of U(VI) to

  7. Radionuclide contaminated micromycetes in the soil the thirty kilometer zone

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Vasilevskaya, A.I.; Redchits, T.I.; Gavrilov, V.I.; Lashko, T.N.; Luchkov, P.N.; Shcherbachenko, A.M.; AN Ukrainskoj SSR, Kiev

    1992-01-01

    From 1986 year the ecological monitoring of the soil microscopic fungi exist under conditions of the radioactive contamination in the thirty kilometer zone of the Chernobyl' NPP is conducted. As mycological isotope soil analysis the limiting factor in the ecological situation need consider the radionuclide contamination of the soils. It is shown, that the amount of fungus germs decreased by 200 times in 1986 year and increased sharp to 1989-90 years. During the first years after the accident, in the most contaminated soils dark-pigmented fungi predominated. It is due to a deep reorganization of the soil micromycete associations. Correlations is revealed in the interrelations among various species of fungi, isolated from the soils, differed in the radioactivity. Among 12 species of fungi (from 6 genuses of micromycetes) isotope accumulation is noted. There are Sr-90 and Cs-137, most widespread in the soil after the accident. 18 refs.; 8 figs

  8. Unclassified Sources Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peter Martian

    2009-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone. The purpose of this report is to develop and document conceptual models of the Yucca Flat/Climax Mine HST for use in implementing source terms for the Yucca Flat/Climax Mine models. This document presents future plans to incorporate the radionuclide attenuation mechanisms due to unsaturated/multiphase flow and transport within the Yucca Flat CAU scale modeling. The important processes that influence radionuclide migration for the unsaturated and saturated tests in alluvial, volcanic, and carbonate settings are identified. Many different flow and transport models developed by Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), including original

  9. TECHNICAL EVALUATION OF ELECTRICAL RESISTIVITY METHODS AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    PETERSEN SW

    2008-01-01

    There is a continuing need for cost-effective subsurface characterization within the vadose zone and groundwater at the U.S. Department of Energy (DOE) Hanford Site, Richland, Washington. With more than 1600 liquid and solid waste sites and 200 burial sites, contaminants have migrated to and through the vadose zone. In addition, future groundwater plumes may be generated from contaminants presently in the vadose zone. Relatively low-cost geophysical techniques can provide spatially extensive data that may provide information about the presence and extent of some contaminants. Recent electrical resistivity surveys at Hanford have provided encouraging results for mapping of some contaminants, such as nitrate, in the vadose zone. Because mobile radionuclides and trace elements may have been transported with nitrate through the vadose zone, the method may be used to map some mobile contaminants of concern, such as technetium-99 (99Tc). Validation of these recent electrical resistivity survey results remains to be completed. Electrical resistivity surveys have been conducted at various waste sites in the 200 Area of the Hanford Site: BC Cribs and Trenches (BCCT), T, S, U, C, B Tank Farms and the Purex Plant. Surveys have been completed using surface and well-to-well (WTW) array configurations. The goals of the surveys, as described by Fluor Hanford and CH2MHill Hanford staff, were to test the applicability of resistivity methods in identifying the presence of and mapping approximate extent of contaminant plumes within the vadose zone. The overall goal of the project was to evaluate the utility of electrical resistivity methods for characterizing contaminants of potential concern in the vadose zone in the 200 Area of the Hanford Site. The panel was asked to perform the following activities: (1) Evaluate recently completed and ongoing electrical resistivity projects at Hanford in terms of methodology used, results obtained, and lessons learned, with specific focus on (a

  10. Effects of radionuclide contamination on forest trees in the exclusion zone around the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Yoshida, Satoshi; Ichikawa, San'ei; Kubota, Masahide; Takano, Toshiyuki; Mizoguchi, Masahiko

    2012-01-01

    A preliminary survey was performed for forest areas within the exclusion zone around the Fukushima Daiichi Nuclear Power Plant, for radionuclide contamination levels and radiation effects on trees during the first year after the March 2011 accident. Even in the most contaminated forest, approximately 3 km west of the power plant, no externally visible symptoms of radiation damage—including yellowing, malformation, and early withering of leaves—were observed in trees, indicating that massive radiation damage did not occur in the surrounding forests after the accident. Radiosensitive coniferous plants were, however, heavily contaminated by the deposition of radionuclides in reproductive organs such as cones, which could cause the exposure of developing seeds. The level of radionuclides in the cones of Japanese cedar trees changed, depending on the contamination level of the forest, which was approximately given by an ambient dose rate. The dose rate of internal exposure in the cones of the most contaminated forest, which was calculated to include exposure from the radionuclides deposited in the organs, was found to be within the criteria dose rate of 4-40 μGy/h selected for pine trees by the ICRP in Publication 108. This raises the necessity of performing more detailed analyses of the cytogenetic and reproductive damage to forest trees in the area. (author)

  11. Effects of radionuclide contamination on forest trees in the exclusion zone around the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Yoshida, Satoshi; Ichikawa, San'ei; Kubota, Masahide; Takano, Toshiyuki; Mizoguchi, Masahiko

    2013-01-01

    A preliminary survey was performed for forest areas within the exclusion zone around the Fukushima Daiichi Nuclear Power Plant, for radionuclide contamination levels and radiation effects on trees during the first year after the March 2011 accident. Even in the most contaminated forest, approximately 3 km west of the power plant, no externally visible symptoms of radiation damage—including yellowing, malformation, and early withering of leaves—were observed in trees, indicating that massive radiation damage did not occur in the surrounding forests after the accident. Radiosensitive coniferous plants were, however, heavily contaminated by the deposition of radionuclides in reproductive organs such as cones, which could cause the exposure of developing seeds. The level of radionuclides in the cones of Japanese cedar trees changed, depending on the contamination level of the forest, which was approximately given by an ambient dose rate. The dose rate of internal exposure in the cones of the most contaminated forest, which was calculated to include exposure from the radionuclides deposited in the organs, was found to be within the criteria dose rate of 4-40 μGy/h selected for pine trees by the ICRP in Publication 108. This raises the necessity of performing more detailed analyses of the cytogenetic and reproductive damage to forest trees in the area. (author)

  12. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting

  13. Water and vapor transfer in vadose zone of Gobi desert and riparian in the hyper arid environment of Ejina, China

    Science.gov (United States)

    Du, C.; Yu, J.; Sun, F.; Liu, X.

    2015-12-01

    To reveal how water and vapor transfer in vadose zone affect evapotranspiration in Gobi desert and riparian in hyper arid region is important for understanding eco-hydrological process. Field studies and numerical simulations were imported to evaluate the water and vapor movement processes under non isothermal and lower water content conditions. The soil profiles (12 layers) in Gobi desert and riparian sites of Ejina were installed with sensors to monitor soil moisture and temperature for 1 year. The meteorological conditions and water table were measured by micro weather stations and mini-Divers respectively in the two sites. Soil properties, including particles composition, moisture, bulk density, water retention curve, and saturated hydraulic conductivity of two site soil profiles, was measured. The observations showed that soil temperatures for the two sites displayed large diurnal and seasonal fluctuations. Temperature gradients with depth resulted in a downward in summer and upward in winter and became driving force for thermal vapor movement. Soil moistures in Gobi desert site were very low and varied slowly with time. While the soil moistures in riparian site were complicated due to root distribution but water potentials remained uniform with time. The hydrus-1D was employed to simulate evapotranspiration processes. The simulation results showed the significant difference of evaporation rate in the Gobi desert and riparian sites.

  14. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    Science.gov (United States)

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gordeev, S.K.; Kvasnikova, E.V.

    2004-01-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ( 3 H, 90 Sr, 137 Cs, 239+240 Pu, 241 Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  16. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    Science.gov (United States)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at

  17. Bioavailability of radionuclides and dose rate in aquatic ecosystems within the Chernobyl accident exclusion zone

    International Nuclear Information System (INIS)

    Gudkov, Dmitri; Nazarov, Alexandr

    2008-01-01

    Full text: Our studies were carried out during 1997-2007 within Krasnensky flood-lands on the left bank of the Pripyat River, which is the most contaminated region of the Ukrainian part of the Chernobyl accident exclusion zone. During 1991-1993 the complex of hydraulic engineering structures as flood protection dams was constructed within the Krasnensky flood-lands, which preventing washing away of radioactive substances from soils and changing a hydrological mode of flood plain flows during a high water. In its turn it was by the reason of strengthening of over-moistening and swamping processes within embankment territories. As a result - on a background of the common tendencies of increase of the mobile forms of 90 Sr in soils of catchment territories and bottom sediments of the exclusion zone, there is an increase of humic acids concentrations in waterlogged soils of Krasnensky flood-lands. It is also raises the content of the water-soluble forms of 90 Sr forming with acids the soluble complexes. Thus the increase of concentrations of the mobile radionuclide forms and their inclusion into biotic circulation of aquatic ecosystems is observed. It confirms also an increase of 90 Sr specific activity in water of lakes within Krasnensky flood-lands, against a background of stabilisation of this parameter for 137 Cs last years. Such dynamics of 90 Sr and 137 Cs contents is significantly reflected on dose rate for hydrobionts due to incorporated radionuclides. However if in running water bodies the decrease of radionuclide contents defines, accordingly, and the decrease of dose rates, in lakes of the left-bank flood-lands of the Pripyat River the situation has an absolutely other character. At rather stable internal absorbed dose rate, caused by 137 Cs during 1993-2007, the dose, caused by the 90 Sr content, has grown more than in 20 times for some species of higher aquatic plants and fish in comparison with the beginning of 1990-s. As a result the total internal dose

  18. Arbuscular Mycorrhizal fungi from the Chernobyl exclusion zone and their possible influence to the accumulation of radionuclides byplants

    International Nuclear Information System (INIS)

    Kripka, A.V.; Kuchma, A.N.; Sorochinskij, B.V.

    2002-01-01

    More then 30 plants species from the Chernobyl exclusion zone have been analyzed and plant samples with high level of arbuscular mycorrhizal fungi (AM) colonization were selected. Spores of AM fungi have isolated from the rhizosphere of those plants, which had high accumulation abilities related to the radionuclides and were high AM colonized as well. These AM spores are used to produce inocula in order of it's forthcoming application in the phytoremediation activity

  19. Hydrologic and geochemical controls on the transport of radionuclides in natural undisturbed arid environments as determined by accelerator mass spectrometry measurements. 1997 annual progress report

    International Nuclear Information System (INIS)

    Caffee, M.W.; Finkel, R.C.; McAninch, J.E.; Nimz, G.J.

    1997-01-01

    'During FY97 this study has developed unique accelerator mass spectrometry (AMS) analytical techniques for measurement of 99 Tc and 129 I, which compliments an improved capability for measurement of 36 Cl. The ability to measure these nuclides in natural soil samples has been demonstrated through analytical results obtained during FY97. Methods to determine the distribution of these nuclides in their natural setting, which will vary depending on site-specific chemical conditions, have also been developed. Spatially well-characterized soil samples have been collected from the vadose zone to a depth of -5 meters at the Nevada Test Site. To do this, a deep trench has been excavated and the geological setting for the soils has been well documented. Physical, chemical, and isotopic analysis of these soil samples during the course of this research project will result in a numerical computer model for moisture and radionuclide migration in arid soils that is valuable to nuclear waste storage, site remediation, and groundwater recharge concerns.'

  20. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  1. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Hättenschwiler, Stephan [Centre d' Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 Montpellier (France); Lecomte-Pradines, Catherine [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Chauvet, Eric [EcoLab, Université de Toulouse, CNRS, UPS, INPT, 118 Route de Narbonne, 31062 Toulouse cedex (France); Gaschak, Sergey [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Maksimenko, Andrey [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); and others

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22–15 μGy h{sup −1}) and (ii) along a short distance gradient of radioactive contamination (1.2–29 μGy h{sup −1}) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150 μGy h{sup −1}. This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. - Highlights: • The effects of radioactivity on

  2. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey

    2016-01-01

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22–15 μGy h −1 ) and (ii) along a short distance gradient of radioactive contamination (1.2–29 μGy h −1 ) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150 μGy h −1 . This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. - Highlights: • The effects of radioactivity on ecosystem processes

  3. Assessment of vulnerability zones for ground water pollution using ...

    Indian Academy of Sciences (India)

    D Anantha Rao

    2018-05-22

    May 22, 2018 ... and should always be free from contamination. But, the .... net Recharge, Aquifer media, Soil media, Topo- graphy, Impact of vadose zone .... The Yamuna River flows along this strike-slip ..... of factors such as inter-granular porosity, fractur- ing and ... from the basin boundary in the south-western part (figure ...

  4. The results of artificial radionuclides monitoring in the Baltic sea

    International Nuclear Information System (INIS)

    Astrauskiene, N.; Lukinskiene, M; Zemaitiene, G.

    1994-01-01

    Long-term radionuclides volume activity (v.a.) monitoring (1976-1990) data showed that measurement results obtained in steady observation station give reliable information of the coastal area of the Baltic sea radioactive equilibrium between atmosphere and surface water was observed in the coastal zone. Chernobyl Power Plant accident influenced upon the Baltic sea coastal water by radionuclides 137 Cs and 144 Ce. Radionuclide 90 Sr volume activity was practically unchangerable. The mechanism of radionuclides fallout from atmosphere are various. lt can be illustrated by 137 Cs and 144 Ce a.v. structure field variations in open sea and coastal zone near Juodkrante. The Baltic sea inhomogeneous contamination by radionuclide 137 Cs in 1988-1990 leads to equalization of 137 Cs v.a. in the surface waters and it causes v.a. increase in coastal waters. (author)

  5. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  6. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    2004-07-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  7. Problems of Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Kholosha, V.Yi.

    2014-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone, aimed at the development of technologies, equipment and devices for radioactive waste management and ChNPP accident clean-up, at studying the composition and structure of the Exclusion zone soil activity solid bearers, form transformation of the fission products of fuel fallout radionuclide composition in the ChNPP near zone, the spatial distribution of radionuclides and other radioecological issues.. Much attention is paid to medical and biological aspects of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the workers of the Exclusion zone

  8. Secondary contamination of 30-km zone of the Chernobyl atomic electric plant and adjacent territory due to radionuclides carried by ascending wind

    International Nuclear Information System (INIS)

    Garger, E.K.; Gavrilov, V.P.

    1992-01-01

    The territory contaminated with radionuclides as a result of the accident at the Chernobyl atomic electric plant is a surface source of radioactive aerosols carried into the atmosphere by ascending winds. In this connection, a number of problems arise whose solution is important for assessment of the radiation conditions in the atmosphere near the Earth's surface: (1) calculation of the volume concentration of radionuclides and their fallout on the contaminated and neighboring territory and on this basis determine the potentially dangerous contaminated regions; (2) assessment of the secondary contamination of deactivated territories due to ascending winds and transfer of radionuclides; and (3) determination of the size of the protective (buffer) zones around or near populated areas to ensure low volume concentrations of radionuclides during strong winds. In order to calculate the transfer of radionuclides from a surface source, it is necessary to know its dust intensity, which is the vertical turbulent flux of the radionuclides in the atmosphere layer near the ground Q (Ci · m -2 sec -1 ). A quantity frequently used in practice is Q referred to the contamination density of the surface layer c (Ci/m 2 ) and called the wind ascent intensity α = Q/c. As a rule, the radionuclide wind ascent intensity for a plane source with a nonuniform surface and contamination density may depend on the physical characteristics of the surface as well as on those of the radionuclides and also on the space coordinates x, y and on time. In the present study, the wind ascent intensity was determined by gradient measurements of the mean radionuclide concentration, the wind velocity and air temperature; the conditions during the measurements were assumed to correspond to the case of a plane homogeneous, stationary source of a nondepositing admixture

  9. T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D.; Sydnor, Harold A.

    2008-01-01

    CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight decrease. Soil-moisture contents at the depths of 1.3 m and

  10. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    Science.gov (United States)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was

  11. Analysis of historical gross gamma logging data from BX tank farm

    International Nuclear Information System (INIS)

    MYERS, D.A.

    1999-01-01

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BX tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BX tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanism

  12. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  13. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    We investigate radionuclide transport from a high-level nuclear waste repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. Several radioactive solutes (that cover the range of sorption behavior) and colloids of various sizes are studied. The results of the study indicate the importance of the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The effects of the climatic conditions, diffusion, and sorption (for solutes) or infiltration (for colloids) onto the matrix are discussed. The influence of the colloid size on transport is also investigated

  14. The computer model development for radionuclide migration analysis in geosphere

    International Nuclear Information System (INIS)

    Mulyanto

    1998-01-01

    1-D numerical model for safety assessment of spent fuel disposal have been developed. The numerical solution with planar geometric was developed in order to solve mass transport in heterogenous geological media. In this paper, Crank-Nicolson method was discussed for solving of radionuclide migration equation. Demonstration was done for calculation of concentration distribution of several radionuclides in the exclusion zone. It was concluded that the exclusion zone was an important concept should be adopted in determination of disposal site. Site should be selected as far as possible from fracture or as long as possible exclusion zone. (author)

  15. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  16. Radiation danger of exclusion zone objects

    International Nuclear Information System (INIS)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Kazakov, S.V.; Arkhipov, A.N.

    2001-01-01

    The analysis of radiation danger of the Exclusion Zone objects was made. Here, the Zone is defined as the territory from which the population has been evacuated in 1986 owing to the Chernobyl accident and possible outflow of the contaminated substances out of the borders is potentially dangerous to the Ukraine. In the present work were analyzed such problems as sources of radiation danger in the Zone, ways of radionuclide migration out of the borders of the Zone in normal and emergency situations, the non-radiation (ecological) danger factors of the Zone objects, doses (individual and collective) from various sources and on separate ways of their formation, and the characteristics of radiation danger of the Zone objects. The conclusions are: (1) Radionuclide flows both from technologic and natural sources exceed those from Shelter objects, (2) Under emergency conditions, radionuclide flows and doze loading remain comparable with those from emergency sources, (3) To solve some management tasks in radiation situation, the basic works on the Shelter objects should be oriented to decrease probability of emergency occurrence and to reduce radiation influence (prevention wash-outs during high waters, fire-prevention measures in forests and strengthening of the control behind non-authorized use of objects in the Zone). (S. Ohno)

  17. RANGE AND DISTRIBUTION OF TECHNETIUM KD VALUES IN THE SRS SUBSURFACE ENVIRONMENT

    International Nuclear Information System (INIS)

    Kaplan, D.

    2008-01-01

    layers: Upper Vadose Zone (11 to 30 ft depth), Lower Vadose Zone (30 to 51 ft depth), and aquifer (51 to 95 ft depth). The Upper Vadose Zone generally contains more clay than the Lower Vadose Zone, and the Aquifer tends to be made up of mostly sand layers with clay strata. The mean K d values of each of these zones did not differ significantly and the K d values from each zone were not from the Normal distribution. The ranges of values were greatest in the Upper Vadose Zone and least in the Lower Vadose Zone. Previous Best Estimate Tc K d values for Sandy Sediment and Clayey Sediment were 0.1 and 0.2 mL/g, respectively (Kaplan 2007a). A more thorough review indicates that the Best Estimates for Sandy Sediment is 0.1 mL/g and for Clayey Sediment is 0.8 mL/g (Kaplan 2007b). This current dataset greatly increases the number of Tc K d values measured with SRS sediments, but perhaps more importantly, provides a better estimate for E-Area sediments, and provides a measure of Tc K d distributions. Based on this dataset, the best overall Tc K d value for E-Area is the mean, 3.4 mL/g, with a log-normal distribution between the 95 percentile values of 2.4 to 4.4 mL/g. This document version differs from the earlier version, SRNS-STI-2008-00286, in that it includes some editorial corrections. This version does not contain any technical changes or changes to the conclusions presented in the earlier version

  18. Radionuclide transfer to wildlife at a 'Reference site' in the Chernobyl Exclusion Zone and resultant radiation exposures.

    Science.gov (United States)

    Beresford, N A; Barnett, C L; Gashchak, S; Maksimenko, A; Guliaichenko, E; Wood, M D; Izquierdo, M

    2018-02-27

    This study addresses a significant data deficiency in the developing environmental protection framework of the International Commission on Radiological Protection, namely a lack of radionuclide transfer data for some of the Reference Animals and Plants (RAPs). It is also the first study that has sampled such a wide range of species (invertebrates, plants, amphibians and small mammals) from a single terrestrial site in the Chernobyl Exclusion Zone (CEZ). Samples were collected in 2014 from the 0.4 km 2 sampling site, located 5 km west of the Chernobyl Nuclear Power complex. We report radionuclide ( 137 Cs, 90 Sr, 241 Am and Pu-isotopes) and stable element concentrations in wildlife and soil samples and use these to determine whole organism-soil concentration ratios and absorbed dose rates. Increasingly, stable element analyses are used to provide transfer parameters for radiological models. The study described here found that for both Cs and Sr the transfer of the stable element tended to be lower than that of the radionuclide; this is the first time that this has been demonstrated for Sr, though it is in agreement with limited evidence previously reported for Cs. Studies reporting radiation effects on wildlife in the CEZ generally relate observations to ambient dose rates determined using handheld dose meters. For the first time, we demonstrate that ambient dose rates may underestimate the actual dose rate for some organisms by more than an order of magnitude. When reporting effects studies from the CEZ, it has previously been suggested that the area has comparatively low natural background dose rates. However, on the basis of data reported here, dose rates to wildlife from natural background radionuclides within the CEZ are similar to those in many areas of Europe. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  20. Design improvements on shallow-land burial trenches for disposing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Takamura, E.S.; Salsman, J.M.

    1984-01-01

    The lack of success of closed low-level radioactive waste disposal sites has prompted the federal government to increase regulation of these facilities. In order to meet these increased requirements, several waste trench improvements are necessary. These improvements to the trench include sandy-clay caps, compacted sandy-clay bottoms, in-place geophysical instruments and vadose zone sampling equipment, and concrete sidewalls. These design improvements presented in this paper should increase the containment of the radionuclides by decreasing the waste contact with infiltrating groundwater. The design improves on the monitoring and sampling methods for detecting radionuclides transported through the leachate or gas effluent streams. 13 references, 4 figures

  1. State of radionuclides in seawater. Comparison of natural stable and artificial radioactive isotope s of mercury and zinc in natural waters of the arid zone of the USSR

    International Nuclear Information System (INIS)

    Rakhmatov, U; Khikmatov, K; Kist, A.A.; Kulmatov, R.A.; Teshabaev, S.T.; Volkov, A.A.

    1986-01-01

    This paper studies the state of stable and artificial radioactive isotopes of merury and zinc in natural waters of the arid zone of the USSR by radioactivity and radiochemical methods. Convergent results have been obtained for the dissolved forms of mercury and zinc in natural waters of the arid zone in a comparison of the results of radioactivation analysis and laboratory simulation using the radionuclides mercury-203 and zinc-65

  2. Evaluation of the field-scale cation exchange capacity of Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.I.

    2003-02-01

    Three-dimensional simulations of unsaturated flow, transport, and multi-component, multi-site cation exchange in the vadose zone were used to analyze the migration of a plume resulting from a leak of the SX-115 tank at the Hanford site, USA. The match within about 0.5 meters of the positions of retarded sodium and potassium fronts suggests that the laboratory-derived parameters may be used in field-scale simulations of radionuclide migration at the Hanford site.

  3. Analysis and Summary Report of Historical Dry Well Gamma Logs for the 241-B Tank Farm - 200 East

    International Nuclear Information System (INIS)

    SYDNOR, H.A.

    2000-01-01

    This report provides a summary of the gross gamma ray data for the 241-B Tank Farm and is intended to identify changes in the gamma activity of gamma-emitting radionuclide contaminants around each accessible borehole, and is not intended to provide interpretation of the data relative to vadose zone mechanics. Trends in data, as well as areas where additional information would be helpful in evaluating the unusual nature of some of the data, are discussed

  4. Characteristics of radionuclide contamination of different zones of Semipalatinsk Nuclear Test Site ``Opytnoe pole''

    Science.gov (United States)

    Kadyrzhanov, K. K.; Khazhekber, S.; Lukashenko, S. N.; Solodukhin, V. P.; Kazachevskiy, I. V.; Poznyak, V. L.; Knyazev, B. B.; Rofer, Ch.

    2003-01-01

    Data on the spatial distribution of radionuclides (241Am, 239Pu, 137Cs and 152Eu) formed during nuclear explosions of different types near P2 SNTS test site are presented. Radionuclide contamination induced by the explosions varies in the concentrations of individual radionuclides, their proportions and species. Examination of the variations is a crucial task to plan remediation activities as well as those aimed at decrease of radiation risk for population and prevention of repeated contamination. Concentrations of 241Am and 239+240Pu that are the most toxic radionuclides in the area lie in hundred thousands of Bqkg-1. The most contaminated areas are classified by the radionuclide concentration, ratio and form present in soil.

  5. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    Science.gov (United States)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve

  6. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Burillo Montúfar, Juan Carlos; Reyes Cortés, Manuel; Reyes Cortés, Ignacio Alfonso; Espino Valdez, Ma. Socorro; Hinojosa de la Garza, Octavio Raúl; Nevárez Ronquillo, Diana Pamela; Herrera Peraza, Eduardo; Rentería Villalobos, Marusia; Montero Cabrera, María Elena

    2012-01-01

    In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238 U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are R f238 ≈ 250–14,000 for the unsaturated zone and ≈110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

  7. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

    Science.gov (United States)

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of Clastic Dikes on Vertical Migration of Contaminants in the Vadose Zonde at Hanford

    International Nuclear Information System (INIS)

    Murray, Christopher J.; Ward, Anderson L.; Wilson, John L.

    2004-01-01

    The purpose of this study was to examine the hypothesis that clastic dikes could form a preferential flow path through the vadose zone to the water table at the Hanford Site. Clastic dikes are subvertical structures that form within sedimentary sequences after deposition and cut across the original sedimentary layers. They are common throughout the Hanford Site, often occurring in organized polygonal networks. In the initial phase of the project, we analyzed the large-scale geometry of the clastic dikes and developed an algorithm for simulating their spatial distribution. This result will be useful in providing maps of the potential distribution of clastic dikes in areas where they are not exposed at the surface (e.g., where covered by windblown sand or construction of facilities like tank farms at the surface). In addition to the study of the large-scale distribution of the dikes, a major focus of the project was on field, laboratory, and modeling studies of the hydrogeological properties of the clastic dikes and the effect that they have on transport of water through the vadose zone. These studies were performed at two field locations at the Hanford Site. We performed an extensive series of field and laboratory measurements of a large number of samples from the clastic dikes, linked with infrared (IR) and visual imagery of the clastic dikes and surrounding matrix. We developed a series of correlations from the sample data that allowed us to estimate the unsaturated hydraulic conductivity of the dike and matrix at an extremely high resolution (approximately 1 mm). The resulting grids, each of which measured several meters on a side and included nearly four million grid nodes, were used to study the distribution of moisture between the clastic dike and surrounding matrix, as well as the relative velocities that moisture would have through the clastic dike and matrix for a number of different recharge scenarios. Results show the development of complex flow networks

  9. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Apel, William A. [Idaho National Lab., Idaho Falls, ID (United States)

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  10. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    International Nuclear Information System (INIS)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-01

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  11. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  12. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process

    International Nuclear Information System (INIS)

    Yoschenko, V.I.; Kashparov, V.A.; Levchuk, S.E.; Glukhovskiy, A.S.; Khomutinin, Yu.V.; Protsak, V.P.; Lundin, S.M.; Tschiersch, J.

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per mille from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of 137 Cs and 9 Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories

  13. Role of the unsaturated zone in radioactive and hazardous waste disposal

    International Nuclear Information System (INIS)

    Mercer, J.W.; Marine, I.W.; Rao, P.S.C.

    1983-01-01

    The problems of hazardous and low-level radioactive waste disposal caused by the physical and chemical processes active in the unsaturated zone are explored in this book. The focus is on the use of laboratory analyses, field observations, and numerical and analytical calculations to create a clear picture of both problems and potential solutions. Topics include policy modeling, statistical techniques, liners, and field applications. Contents include: Modeling of Moisture Movement through Layered Trench Covers; Role of Partially Saturated Soil in Liner Design for Hazardous Waste Disposal Sites; Field Experiments to Determine Saturated Hydraulic Conductivity in the Vadose Zone; Role of Desaturation on Transport through Fractured Rock; Nuclear Waste Isolation in the Unsaturated Zone of Arid Regions

  14. Immobilization of Radionuclides in The Hanford Vadose Zone by Incorporation in Solid Phases

    International Nuclear Information System (INIS)

    Mullins, Gary; Traina, Samuel

    2004-01-01

    The objective of this study was to examine the homogeneous and heterogeneous reduction of Cr(VI) by dissolved Fe(II) and Fe(II)-containing minerals under conditions thought to be indicative of HLW fluids (high pH, high ionic strength and high temperature). Many investigators have reported the homogeneous reduction of Cr(VI) by dissolved FE(ii), but less information is available for Ph values > 8. The first part of this effort evaluated the ability of dissolved Fe(II) to reduce dissolved Cr(VI) in hyperalkaline solutions

  15. Assessment of vadose zone radionuclide contamination around Single Shell Tank 241-C-103

    International Nuclear Information System (INIS)

    Kos, S.E.

    1995-12-01

    Five drywells surrounding single shell tank 241-C-103 were logged with the high-purity germanium logging system to investigate possible leakage of radioactive contamination from the tank. The investigation included integration of the drywell survey results with several other data sources. There is no conclusive evidence showing indications that the 241-C-103 tank has leaked

  16. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  17. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  18. The behaviour of radionuclides in soil

    International Nuclear Information System (INIS)

    Bunzl, K.

    1987-01-01

    Radionuclides in soil are of natural as well as of artificial origin. Their migration in the soil and their availability for ecological processes depend considerably on the extent at which they are sorbed. The methods for the determination of the vertical rate of migration are described. For most radionuclides this transport is very slow (a few cm per year). Cs-137 is of especial interest. It is sorbed strongly by most soils and, as a consequence, its root uptake is small. However, as a result of the sorption, this radionuclide is eluted from the root zone only very slowly and its thus available for the root uptake for many years. The Cs-137 concentrations in plants to be expected in the coming years as a result of the fallout from Chernobyl are small. (orig.) [de

  19. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    Science.gov (United States)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our

  20. Ways of investigating radionuclide migration processes in the lithosphere and hydrosphere

    International Nuclear Information System (INIS)

    Belousova, A.P.; Shmakov, A.I.; Galaktionova, O.V.

    1994-01-01

    In Russia, until recently, it was considered that groundwater was protected from surface radioactive contamination by soil and rocks in the zone aeration. Groundwater was not a subject of radiation control. The accident at the Chernobyl Nuclear Power Plant showed, however, that groundwater is vulnerable to radioactive contamination. In this connection, the vulnerability of groundwater to and the problems of protecting groundwater from radioactive contamination became urgent. The assessment of natural protection of groundwater from radioactive contamination is now considered a top priority. The zone of aeration is generally considered to be the zone separating groundwater from surface contamination. In respect to radioactive contamination, soils that may fix a large quantity of radionuclides serve as a protection zone of a higher order. The mapping of protectibility was done for each radionuclide taking into consideration the specific structure of the flow medium and migration properties of a radionuclide. 90 Sr and 137 Cs have different mechanisms of transport; convective transport is characteristic of the former and diffusive transfer of the latter. This is conditioned by different physico-chemical properties of the radionuclides and principally by their sorption capacities. The coefficient of distribution of 90 Sr is in many times less than the coefficient of distribution of 137 Cs. The environmental protection problem in regions with nuclear power plants and in areas subjected to radioactive contamination may be solved using a monitoring, system including interrelated systems of observation and prediction of the lithosphere and the hydrosphere. The problem of mathematical modeling of migration processes is related to the complexities of modeling the processes of flow, mass transfer, and the accompanying physicochemical processes in zones of full and partial saturation, as well as difficulties in mathematical calculations. 4 refs

  1. Monitoring Plan for Fiscal Year 1999 Borehole Logging at 200 East Area Specific Retention Facilities

    International Nuclear Information System (INIS)

    Horton, D.G.

    1999-01-01

    The Hanford Groundwater Monitoring Project's vadose zone monitoring effort for fiscal year (FY) 1999 involves monitoring 30 boreholes for moisture content and gamma-ray emitting radionuclides. The boreholes are associated with specific retention trenches and cribs in the 200 East Area of the Hanford Site. The facilities to be monitored are the 216-A-2, -4, and -7 cribs, the 216-A-18 trench, the 216-B-14 through -19 cribs, the 216-B-20 through -34, -53A, and -58 trenches, the 216-B-35 through -42 trenches, and the 216-C-5 crib. This monitoring plan describes the facilities and the vadose zone at the cribs and trenches to be monitored; the field activities to be accomplished; the constituents of interest and the monitoring methods, including calibration issues; and the quality assurance and quality control requirements governing the monitoring effort. The results from the FY 1999 monitoring will show the current configuration of subsurface contamination and will be compared with past monitoring results to determine whether changes in contaminant distribution have occurred since the last monitoring effort

  2. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  3. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or open-quotes REDOXclose quotes process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as open-quotes assumed leakersclose quotes and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report

  4. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  5. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  6. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  7. Radionuclide retardation project at GTS - An overview of lessons learned and ongoing experiments

    International Nuclear Information System (INIS)

    Moeri, A.

    2001-01-01

    The joint Nagra/JNC Radionuclide Migration Programme has now been ongoing for more than 15 years in Nagra's Grimsel Test Site (GTS). The main aim of the programme has been the direct testing of radionuclide transport models in as realistic a manner as possible. The understanding and modelling of both the processes and the structures influencing radionuclide transport/retardation in fractured granitic host rocks have matured as has the experimental technology, which has contributed to develop confidence in the applicability of the underlying research models in a repository performance assessment. In this paper, three in situ experiments which were carried out in a discrete granitic shear zone are briefly presented: The Migration Experiment (MI), the Excavation Experiment (EP) and the ongoing Colloid and Radionuclide Retardation Experiment (CRR). Each project expanded on the experimental experience and research results from the preceding experiment. MI provided a sound data base of in situ tracer breakthrough curves which was used to derive relevant transport parameters by inverse modelling in order to enhance the capability for predictive modelling of tracer transport in a granitic shear zone. The Excavation Project (EP) then focussed on the excavation of the dipole flow field in order to describe the flow paths within the shear zone dipole and the retardation behaviour of sorbing radionuclides that are relevant to post-closure safety. The ongoing CRR experiment actually investigates the influence of bentonite colloids on the radionuclide transport behaviour through a fractured granitic host rock. Again, the experience in planning and handling of complex tracer field experiments gained in the proceeding experiments will be availed. The methodology adopted for the geological and hydrological characterisation of water-conducting features and the simplification of this characterisation for modelling purposes proved to be indeed effective on the modelling of

  8. Distribution of radionuclides by organs of wild animals

    International Nuclear Information System (INIS)

    Kudryashov, V.P.; Korol', R.A.; Bykovskij, V.V.; Bazhanov, V.A.

    2008-01-01

    The distribution of radionuclides by organs of wild animals, are studied, for evacuation zone of Chernobyl NPP. The distribution of Cs 137 have a total character, Sr 90 are distributed on critical organs, us a rule. (authors)

  9. Vegetation fires, smoke emissions, and dispersion of radionuclides in the chernobyl exclusion zone

    Science.gov (United States)

    Wei Min Hao; Oleg O. Bondarenko; Sergiy Zibtsev; Diane Hutton

    2009-01-01

    The accident of the Chernobyl nuclear power plant (ChNPP) in 1986 was probably the worst environmental disaster in the past 30 years. The fallout and accumulation of radionuclides in the soil and vegetation could have long-term impacts on the environment. Radionuclides released during large, catastrophic vegetation fires could spread to continental Europe, Scandinavia...

  10. The biotic factors role in radionuclide migration of natural-vegetable complexes

    International Nuclear Information System (INIS)

    Yakushev, B.I.; Kazej, A.I.; Sak, M.M.; Kuz'mich, O.T.; Golushko, R.M.

    1992-01-01

    In Byelorussiyn from first months after the Chernobyl' accident investigation are conducting on the radionuclide de dynamics in the soil-plant-soil system. The isotope composition of soil contamination density and specific plants radioactivity are studying, the radionuclide migration dynamic through the soil profile is investigating. The data are shown on considerable reduction of the plants radioactivity (1986-91 years) in connection with the reduction in the soil contamination density with gamma-spectrum radionuclides, accounting for Ce-144, Pr-144, Ru-106, Cs-134 decay; information is done on gamma-spectrum radionuclides of organs in natural pine and meadows system. It is shown, that the radionuclides are actively absorbed by roots in a zone of the highest radionuclide concentration and are delivered into the overground plant parts, then actively are removed into environment in the breathing process. 11 refs.; 4 tabs

  11. Biodegradation of organic compounds in vadose zone and aquifer sediments

    International Nuclear Information System (INIS)

    Konopka, A.; Turco, R.

    1991-01-01

    The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N,P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile

  12. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    Science.gov (United States)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects

  13. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-01-01

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  14. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  15. VOCs in Arid soils: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE's Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40

  16. Stocks of 90Sr and 137Cs in biomass of birds in the territory of Chernobyl zone and size of radionuclide export with birds outside

    International Nuclear Information System (INIS)

    Gashchak, S.P.; Bondar'kov, M.D.; Maklyuk, Yu.A.; Maksimenko, A.M.; Martynenko, V.I.; Chizhevskij, I.V.

    2009-01-01

    The contamination of birds varies in wide range, with an activity concentration of 90 Sr and 137 Cs differed by 2-4 orders, and on the whole the Chernobyl zone - to 5 orders of magnitude. The maximum values contamination of birds amounted to hundreds of Bq/g in the central plots of the zone. It is noted that by reducing the biological availability of radionuclides from soil transfer factor 90 Sr decreased 4,05 times, and 137 Cs - in 11,0 times compared with the results of evaluations of the first years. The activity concentration of 90 Sr and 137 Cs in the body of birds decreased in 1,6 - 7,0 and 7,9 - 29,2 times respectively.

  17. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Smith, D.K.

    1997-01-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids

  18. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.K.

    1997-04-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids.

  19. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  20. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  1. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    transport through the material interface which differs between the stationary (unilateral) and dynamic cases (bilateral). This qualitative observation is confirmed by breakthrough curves for dynamic experiments which generally show the trend of faster initial breakthrough and increased tailing when compared to stationary infiltration results. Literature Cremer, C.J.M., I. Neuweiler, M. Bechtold, J. Vanderborght (2016): Solute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions, Vadose Zone Journal 15 (6) DOI: 10.2136/vzj2015.11.0144

  2. Migration of radionuclide chains in subseabed disposal

    International Nuclear Information System (INIS)

    Ray, A.K.; Nuttall, H.E.

    1982-01-01

    In this study of subseabed disposal, the two dimensional (axial and radial) migration of radionuclide chains released from a canister located in a sedimentary layer bounded at the top by the ocean and at the bottom by an impermeable basalt zone is analyzed to determine the escape rate of radionuclides into the seawater. Analytical solutions have been derived to represent the transient concentration profiles within the sediment, flux and discharge rates to the water column of each member present in a decay chain. Using the properties of chain members present in actinide decay systems, the effects of half-life, adsorption equilibrium and other relevant parameters are elucidated. 4 figures, 1 table

  3. Technogenic radionuclides of Chernobyl NPP accidental release and their physical and chemical forms

    Directory of Open Access Journals (Sweden)

    A. I. Lypska

    2015-10-01

    Full Text Available Distribution of radionuclides in the vertical soil profile on the nearest Chernobyl NPP zone of alienation was investigated. It is showed experimentally that the main activity of radionuclides is concentrated in the topsoil (10 сm. Coefficients of accumulation of 137Cs and 90Sr radionuclides by plants are estimated. The physico-chemical forms of radionuclides in soil and plants were defined using the method of sequential chemical extraction. It was established that the main contents of 137Cs and 90Sr in soils are represented in non-exchange and fixed forms, in plants - mainly in exchange-adsorption and organic forms.

  4. Ways for forestry management in radioactive contamination zone

    International Nuclear Information System (INIS)

    Kaletnik, N.N.; Pasternak, P.S.; Kiselevskij, R.G.; Molotkov, P.I.; Kuchma, N.D.; Landin, V.P.; Matukhno, Yu.D.; Shlonchak, G.L.; Podkur, P.P.; Khudolej, V.I.

    1989-01-01

    The necessity of realization of forestry protection measures in the radioactive contamination zone is determined by the forest ecological part and the problems of elimination of the territory secondary contamination in the process of radionuclide migration. The damage of forest tracts in the zone is analyzed. The data on pine surface contamination levels, needles appearance in forests with different degree of damage and crown phytomass, growth for pines 20 years old in forests with different damage degrees are considered. The index of pine forest state is obtained. The data discussed reveal the complicated situation, which takes place in the 30-km zone forests. It is shown that the depth of radionuclide migration into soil for forest areas is twice lower as compared with that for open places. 6 tabs

  5. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  6. Comparative estimation of radioecological significance of natural and technogenic objects of exclusion zone

    International Nuclear Information System (INIS)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Arkhipov, A.N.; Kazakov, S.V.

    2002-01-01

    Stocks of radionuclides in natural and technogenic objects of a Zone (forests, meadows, former agricultural lands, water objects etc., object 'Shelter', Sites of Radioactive Waste Disposal (SRAWD) and Sites of Temporary Localization of Radioactive Waste (STLRAW)) are estimated. The estimations of fluxes of radionuclides both inside a Zone and out of its borders in normal conditions as well as in case of different natural and technogenic cataclysms (floods, fires, emergencies etc.) with account of probabilities of such events are discussed. The significance of the main fluxes of radionuclide migration beyond the Zone borders is estimated: a surface water flux (river Pripyat), air (wind) transfer, biogenic flux, technogenic migration. The significance of the non-radiological factors influenced on the ecological situation in a Zone (phyto-and zoosanitary, sanitary-epidemiological conditions) is discussed. The problems of irradiation of vegetation and animal organisms in terrestrial and water ecosystems, of personnel and people living on a Zone territory without permission (so called 'self-settlers') are considered. The priority directions of activities for control over the radiological and ecological situation on the territory and in objects of a Zone are formulated. (author)

  7. Problems of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    1996-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health labour conditions and incidence of the people involved

  8. Problems of Chornobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Kashparov, V.A.

    2009-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the people involved.

  9. Preliminary investigation on determination of radionuclide distribution in field tracing test site

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Takebe, Shinichi; Guo Zede; Li Shushen; Kamiyama, Hideo.

    1993-12-01

    Field tracing tests for radionuclide migration have been conducted by using 3 H, 60 Co, 85 Sr and 134 Cs, in the natural unsaturated loess zone at field test site of China Institute for Radiation Protection. It is necessary to obtain confidable distribution data of the radionuclides in the test site, in order to evaluate exactly the migration behavior of the radionuclides in situ. An available method to determine the distribution was proposed on the basis of preliminary discussing results on sampling method of soils from the test site and analytical method of radioactivity in the soils. (author)

  10. Radionuclide content of soils from Barrio Islote, Arecibo, Puerto Rico

    International Nuclear Information System (INIS)

    Block, A.McB.; Clements, R.G.

    1976-06-01

    The purpose of this report is to present and interpret gamma ray energy spectra from natural radioactivity and fallout radionuclides measured on soil samples collected in the projected thermonuclear power plant exclusion zone in Barrio Islote, Puerto Rico

  11. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    Science.gov (United States)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  12. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  13. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  14. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  15. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradatio...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  16. Radionuclides accumulation in milk and its products

    International Nuclear Information System (INIS)

    Marmuleva, N.I.; Barinov, E.Y.; Petukhov, V.L.

    2003-01-01

    The problem of radioactive pollution is extremely urgent in Russia in connection with presence of territories polluted by radionuclides on places of nuclear tests, in zones around the enterprises on production, processing and storage of radioactive materials, and also in areas of emergency pollution (Barakhtin, 2001). The aim of our investigation was a determination of the levels of the main radioactive elements - 137 Cs and 90 Sr in diary products. 363 samples of milk, dry milk, butter, cheese and yogurt from Novosibirsk region were examined. 137 Cs level was 3.7 to 9.2 times higher than 90 Sr one in milk, cheese and yogurt. At the same time the level of these radio-nuclides in butter was identical (8.03 Bk/kg). (authors)

  17. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2002-08-17

    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  18. SITE-SCALE SATURATED ZONE TRANSPORT

    International Nuclear Information System (INIS)

    S. KELLER

    2004-01-01

    This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086

  19. Analysis of radionuclide dispersion at normal condition for AEC 1000 MW reactor power

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis for radionuclide dispersion for the Atomic Energy Agency (AEC) 3,568 MWth Power Reactor, equal to the 1,000 MWe at normal condition has been done. Analysis was done for two piles that is separated by 500 m distance and angle of 90° one to other. Initial pace in doing the analysis is to determine reactors source term using ORIGEN2 and EMERALD NORMAL. computer code program. ORIGEN2 applied to determine radionuclide inventory emerged in the reactor. Hereinafter, by using Emerald Normal Computer code is calculated source term reaching the reactor stack. To analyze dose received by population is done by using PC-CREAM computer code. Calculation done for one and two PLTN attached in site candidate of plants. The result showed is that the highest radionuclide release for one PLTN is at 1 km distance and to 9 th zone toward ( 19.25° ) and for two PLTN is at 1 km distance and to 10 th zone toward (21.75° ). Radionuclide which up to population through two pathways that are foodstuff and inhalation. To foodstuff comes from radionuclide I 131 , and the biggest passed from milk product with 53.40 % for one and also two PLTN For inhalation pathway the highest radionuclide contribution come from Kr 85m is about 53.80 %. The highest total dose received by population is at 1 Km distance received by baby that is 4.10 µSi and 11.26 µSi for one and two PLTN respectively. Those result are very small compared to the maximum permission dose to population issued by regulatory body that is equal to 1 mSi. (author)

  20. Distribution of technogenic radionuclides in alluvial deposits and fractions of soils in neighboring zone of Krasnoyarsk GKhK

    International Nuclear Information System (INIS)

    Linnik, V.G.; Volosov, A.G.; Korobova, E.M.; Borisov, A.P.; Potapov, V.N.; Surkov, V.V.; Borguis, A.P.; Braun, Dzh.; Alekseeva, T.A.

    2004-01-01

    Distribution of synthetic radionuclides using landscape-radiation profile of Berezovyj island. Difference in density of contamination deals with heterogeneous lithological composition of soil-forming rocks and so with different duration of flooding. Radionuclide distribution in alluvial deposits and soil fractions near Balchug village is considered, the role of thin fraction in radionuclides accumulation is determined [ru

  1. Radiological impact of drinks intakes of naturally occurring radionuclides on adults of central zone of Malaysia

    International Nuclear Information System (INIS)

    Tawalbeh, A.A.; Samat, S.B.; Muhammad Samudi Yasir; Muhamat Omar

    2012-01-01

    Fifty three samples of different types of imported and locally produced drinks consumed in central zone of Malaysia were analyzed using gamma-ray spectrometry system. The measurement was conducted for 12 hours using a Canberra p-type high purity germanium (HPGe) gamma spectrometer with 30 % relative efficiency resolution of 1.8 keV at 1.33 MeV. The detector was connected to a computer with MCA card (Accuspec B) and Genie-2000 Analysis software of Canberra Industries, USA. The geometric means of daily intakes of 238 U, 232 Th and 40 K were 0.05, 0.08 and 27.23 respectively. Also the values give annual committed effective doses of 0.8, 6.5 and 61.53 μSv yr -1 for 238 U, 232 Th and 40 K, respectively for population in central zone of Malaysia. The net radiological impact of these radionuclides is 68.83 μSv yr -1 . This value gives cancer risk factor of 1.72 x 10 -7 . Also the value of net radiological impact gives loss of life expectancy of 0.43 days only. Whereas ICRP cancer risk factor for general public is 2.5 x 10 -3 and total risk involve from the all natural radiation sources based on global average annual radiation dose of 2.4 mSv yr -1 is 6.0 x 10 -3 . The estimated cancer risk shows that probability of increase of cancer risk from daily Malaysian drinks is only a minor fraction of ICRP values. Therefore the drink samples investigated here does not pose any significant health hazard and is considered radiologically safe for human consumption. (author)

  2. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    International Nuclear Information System (INIS)

    Walton, J.; Goodell, P.; Brashears, C.; French, D.; Kelts, A.

    2005-01-01

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms

  3. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    J. Walton; P. Goodell; C. Brashears; D. French; A. Kelts

    2005-07-11

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms.

  4. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  5. Radionuclides contamination of fungi after accident on the Chernobyl NPP

    Energy Technology Data Exchange (ETDEWEB)

    Zarubina, Nataliia E.; Zarubin, Oleg L. [Institute for Nuclear Research of National Academy of Sciense, 03680, pr-t Nauki, 47, Kiev (Ukraine)

    2014-07-01

    Accumulation of radionuclides by the higher fungi (macromycetes) after the accident on the Chernobyl atomic power plant in 1986 has been studied. Researches were spent in territory of the Chernobyl alienation zone and the Kiev region. Our research has shown that macromycetes accumulate almost all types of radionuclides originating from the accident ({sup 131}I, {sup 140}Ba /{sup 140}La, {sup 103}Ru, {sup 106}Ru, {sup 141}Ce, {sup 144}Ce, {sup 95}Nb, {sup 95}Zr, {sup 137}Cs and {sup 134}Cs). They accumulate the long-living {sup 90}Sr in much smaller (to 3 - 4 orders) quantities than {sup 137}Cs. We have established existence of two stages in accumulation of {sup 137}Cs by higher fungi after the accident on the Chernobyl NPP: the first stage resides in the growth of the concentration, the second - in gradual decrease of levels of specific activity of this radionuclide. Despite reduction of {sup 137}Cs specific activity level, the content of this radionuclide at testing areas of the 5-km zone around the Chernobyl NPP reaches 1,100,000 Bq/kg of fresh weight in 2013. We investigated dynamics of accumulation of Cs-137 in higher fungi of different ecological groups. One of the major factors that influence levels of accumulation of {sup 137}Cs by fungi is their nutritional type (ecological group). Fungi that belong to ecological groups of saprotrophes and xylotrophes accumulate this radionuclide in much smaller quantities than symbio-trophic fungi. As a result of the conducted research it has been established that symbio-trophic fungi store more {sup 137}Cs than any other biological objects in forest ecosystems. Among the symbio-trophic fungi species, species showing the highest level of {sup 137}Cs contamination vary in different periods of time after the deposition. It is connected with variability of quantities of these radio nuclides accessible for absorption at the depth of localization of the main part of mycelium of each species in a soil profile. Soil contamination

  6. Radionuclides accumulation in milk and its products

    Energy Technology Data Exchange (ETDEWEB)

    Marmuleva, N.I.; Barinov, E.Y.; Petukhov, V.L. [Novosibirsk State Agrarian University (Russian Federation)

    2003-05-01

    The problem of radioactive pollution is extremely urgent in Russia in connection with presence of territories polluted by radionuclides on places of nuclear tests, in zones around the enterprises on production, processing and storage of radioactive materials, and also in areas of emergency pollution (Barakhtin, 2001). The aim of our investigation was a determination of the levels of the main radioactive elements - {sup 137}Cs and {sup 90}Sr in diary products. 363 samples of milk, dry milk, butter, cheese and yogurt from Novosibirsk region were examined. {sup 137}Cs level was 3.7 to 9.2 times higher than {sup 90}Sr one in milk, cheese and yogurt. At the same time the level of these radio-nuclides in butter was identical (8.03 Bk/kg). (authors)

  7. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-12-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  8. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  9. Radionuclide transfer to meadow vegetation

    International Nuclear Information System (INIS)

    Goncharova, N.; Matsko, N.; Zhebrakova, I.; Montik, T.

    1999-01-01

    In the paper results of radioecological monitoring of natural plant populations in the 30 km zone of the Chernobyl Nuclear Power Plant (Polesky State Radioecological Reserve) during the period from 1987 to 1998 are presented. The level of radiation background in experimental areas varied from 0.1 to 30 mR/h that correspond to the total soil activity of 300-24000 kBq/m 2 (for May 1997). Monitoring was carried out including the radionuclide migration in natural plant complexes and transfer of 137 Cs between some plant organs. Refs. 3 (author)

  10. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  11. Radionuclide migration in the Chernobyl contamination zone

    International Nuclear Information System (INIS)

    Golosov, V.N.; Panin, A.V.; Ivanova, N.N.

    1998-01-01

    It is well known that fallout of 137 Cs reaching the land soils with precipitation was rapidly and tightly sorbed to the fine fraction of sediment or soils. The majority of the 137 Cs is retained in the top few centimetres of the soil or sediment profiles (Loughran et al, 1993, Owens et al, 1996). In the absence of strong variations in precipitation over a relatively small area the total bomb-derived 137 Cs fallout can assumed to be spatial uniform. The Chernobyl 137 Cs fallout was mostly connected with one or two rains. So the spatial variability of this 137 Cs can be higher. Furthermore because the explosion on the Chernobyl nuclear plant happen together with fire, a lot of ashes particles with radionuclide were distributed within vast areas. So even microvariability of Chernobyl 137 Cs can be very high in some places. The horizontal migration of 137 Cs connects with soil erosion processes that dominate on the agricultural lands of the Central Russia. The main goal of this investigation is to evaluate the caesium-137 horizontal and vertical migration within typical landscape of the Central Russia 11 years after the Chernobyl accident

  12. Improvements to measuring water flux in the vadose zone.

    Science.gov (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  13. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  14. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  15. Problems of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    1996-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the people involved. The collection comprises the information for scientists, experts, postgraduates and students in gaged in ecology, radioecology, nuclear engineering, radiology, radiochemistry and radiobiology

  16. State of the hydrologic source term

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, A.

    1996-12-01

    The Underground Test Area (UGTA) Operable Unit was defined by the U.S. Department of energy, Nevada operations Office to characterize and potentially remediate groundwaters impacted by nuclear testing at the Nevada Test Site (NTS). Between 1955 and 1992, 828 nuclear devices were detonated underground at the NTS (DOE), 1994. Approximately one third of the nuclear tests were detonated at or below the standing water table and the remainder were located above the water table in the vadose zone. As a result, the distribution of radionuclides in the subsurface and, in particular, the availability of radionuclides for transport away from individual test cavities are major concerns at the NTS. The approach taken is to carry out field-based studies of both groundwaters and host rocks within the near-field in order to develop a detailed understanding of the present-day concentration and spatial distribution of constituent radionuclides. Understanding the current distribution of contamination within the near-field and the conditions under and processes by which the radionuclides were transported make it possible to predict future transport behavior. The results of these studies will be integrated with archival research, experiments and geochemical modeling for complete characterization.

  17. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    Science.gov (United States)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D

  18. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    Energy Technology Data Exchange (ETDEWEB)

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  19. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    International Nuclear Information System (INIS)

    NYMAN, MAY D.; KRUMHANSL, JAMES L.; ZHANG, PENGCHU; ANDERSON, HOWARD L.; NENOFF, TINA M.

    2000-01-01

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0 2 or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as 133 Cs, 79 Se, 99 Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0 2 . The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO 2 uptake by the solution results in precipitation of Al(OH) 3 (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite, however, will retain significant

  20. Sediment Properties: E-Area Completion Project

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.; Bagwell, L.; Amidon, M.; Dixon, K.

    2011-04-29

    Characterization and Analysis Penetrometer System (SCAPS) cone penetrometer test (CPT) truck at ECP plots 6, 7, 8 and 9 to collect inferred lithology data for the vadose zone. Results from this study are used to make recommendations for future modeling efforts involving the ECP plots. The conceptual model of the ECP hydrogeology differs from the conceptual model of the current ELLWF disposal area in that for the ECP plots, the topography (ground surface) is generally lower in elevation; The Upland and top of Tobacco Road lithostratigraphic units are missing (eroded); The water table occurs lower in elevation (i.e., it occurs in lower stratigraphic units); and the Tan Clay Confining Zone (TCCZ) often occurs within the vadose zone (rather than in the saturated zone). Due to the difference in the hydrogeology between the current ELLWF location and the ECP plots, different vadose zone properties are recommended for the ECP plots versus the properties recommended by Phifer et al. (2006) for the current disposal units. Results from this study do not invalidate or conflict with the current PA's use of the Upper and Lower Vadose Zone properties as described by Phifer et al. (2006) for the current ELLWF disposal units. The following modeling recommendations are made for future modeling of the ECP plots where vadose zone properties are required: (1) If a single vadose zone property is preferred, the properties described by Phifer et al. (2006) for the Upper Vadose Zone encompass the general physical properties of the combined sands and clays in the ECP vadose zone sediments despite the differences in hydrostratigraphic units. (2) If a dual zone system is preferred, a combination of the Lower Zone properties and the Clay properties described by Phifer et al. (2006) are appropriate for modeling the physical properties of the ECP vadose zone. The Clay properties would be assigned to the Tan Clay Confining Zone (TCCZ) and any other significant clay layers, while the Lower Zone properties

  1. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    addition modules are included for human intrusion scenarios. Inputs and parameters for the hydrogeologic model are developed from a more detailed, numerical, vadose zone model (implemented in HYDRUS 2D). The Vadose zone model calculates fluxes through the waste under various climatic and cover-degradation scenarios. Uncertainty related to model parameters and boundary/initial conditions is also incorporated in the flux distribution through sensitivity analyses in the vadose zone model. Doses are calculated for onsite and offsite receptors through ingestion, inhalation, and external exposure, for comparison with regulatory dose standards. This modeling is part of an ongoing licensing effort to demonstrate compliance with low-level waste site performance objectives.

  2. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  3. Three-Dimensional Radionuclide Transport Through the Unsaturated Zone of the Yucca Mountain Site 3 Colloids

    International Nuclear Information System (INIS)

    G. J. Moridis; Y. Seol

    2007-01-01

    The authors investigated colloid transport in the unsaturated fractured zone by means of three-dimensional site-scale numerical model under present-day climate infiltration, considering varying colloid diameters, kinetic declogging, and filtration. The radionuclide transport model was used to simulate continuous release of colloids into fractures throughout the proposed repository, in which any components of engineered barrier system such as waste package or drip shield were not considered. the results of the study indicate the importance of subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The simulations indicate that (1) colloid transport is not significantly affected by varying the filtration parameters, (2) travel time to the water table decreases with the colloid size, (3) larger colloids show little retardation whereas very small ones are retarded significantly, and (4) fracture filtration can have an impact on transport. Because of uncertainties in the fundamentals of colloid transport and an extremely conservative approach (based on an improbably adverse worst-case scenario), caution should be exercised in the analysis and interpretation of the 3-D simulation results. The results discussed here should be viewed as an attempt to identify and evaluate the mechanisms, processes, and geological features that control colloidal transport

  4. Technetium, Iodine, and Chromium Adsorption/Desorption Kd Values for Vadose Zone Pore Water, ILAW Glass, and Cast Stone Leachates Contacting an IDF Sand Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Performance and risk assessments of immobilized low-activity waste (ILAW) at the Integrated Disposal Facility (IDF) have shown that risks to groundwater are quite sensitive to adsorption-desorption interactions occurring in the near- and far-field environment. These interactions between the underlying sediments and the contaminants present in the leachates that descend from the buried glass, secondary waste grouts, and potentially Cast Stone low-activity waste packages have been represented in these assessments using the contaminant distribution coefficient (Kd) construct. Some contaminants (99Tc, 129I, and Cr) present in significant quantities in these wastes have low Kd values and tend to drive risk to public health and the environment. Relatively small changes in the Kd value can cause relatively large changes in the retardation factor. Thus, even relatively small uncertainty in the Kd value can result in a relatively large uncertainty in the risk determined through performance assessment modeling. The purpose of this study is to further reduce the uncertainty in Kd values for 99Tc, iodine (iodide and iodate), and Cr (chromate; CrO42-) by conducting systematic adsorption-desorption experiments using actual sand-dominated Hanford formation sediments from beneath the IDF and solutions that closely mimic Hanford vadose zone pore water and leachates from Cast Stone and ILAW glass waste forms. Twenty-four batch and 21 flow-through column experiments were conducted, yielding 261 Kd measurements for these key contaminants, and contributing to our understanding for predicting transport from wastes disposed to the IDF. While the batch Kd methodology is not well-suited for measuring Kd values for non-sorbing species (as noted by the U.S. Environmental Protection Agency), the batch Kd results presented here are not wholly inconsistent with the column Kd results, and could be used for sensitivity purposes. Results from the column experiments are consistent with the best

  5. [Radionuclides in siberian Thymallus from radiation-contaminated area in the middle stream of the Yenisei River].

    Science.gov (United States)

    Zotina, T A; Trofimova, E A; Bolsunovskiĭ, A Ia

    2012-01-01

    Concentration of artificial radionuclides in bodies of arctic grayling from the radioactively contaminated zone of the Yenisei River in the vicinity of the Mining-and-Chemical Combine of Rosatom was investigated in 2007-2010. Gamma-spectrometric analysis revealed artificial radionuclides in all the organs and tissues of fish. The isotope composition was the most diverse (60Co, 65Zn, 85Sr, 99Mo, 106Ru, 137Cs, 144Ce) in internal organs of grayling. The activity of radionuclides increased in internal organs including liver and kidney and in the content of digestive tract of grayling during winter and spring, which coincided with the change in the feeding spectrum of grayling. The trophic transfer factor of radionuclides from zoobenthos (Philolimnogammarus spp.) to whole bodies and muscles of grayling was over 1 (1.8-2.4) only for natural radionuclide 40K. The trophic transfer of artificial radionuclides (60Co, 65Zn, 137Cs) to muscles and bodies of grayling was one-two orders of magnitude less effective.

  6. Bioavailability of anthropogenic radionuclides in mussels along the french mediterranean coast

    International Nuclear Information System (INIS)

    Thebault, H.; Arnaud, M.; Charmasson, S.; Andral, B.; Dimeglio, Y.; Barker, E.

    2004-01-01

    Within the framework of the Water Management Master-plan, a bio-indicator network (RINBIO) was deployed all along the French Mediterranean coast (1,800 km), using man-made cages containing mussels (Mytilus galloprovincialis) to assess contamination by heavy metals, persistent organic products and radionuclides. The caging technique compensated for the scarcity of natural shellfish stocks in significant parts of the coast and enable comparison between sites regardless of their physicochemical and trophic characteristics. Among the 103 stations of the entire program, 40 were selected for the measurement of anthropogenic radionuclides by high-efficiency gamma-spectrometry. Biometrics parameters of the each mussel samples, including 'condition index' as an indicator of soft part growth, will be correlated with radionuclides activities, allowing to correct raw data from differences in bioaccumulation between the various sites in relation to their trophic levels. A comprehensive picture of the distribution of radionuclides at a such a large spatial scale will be provided and the contribution of the Rhone river input, so far the main source for the coastal zone, will be investigated. (author)

  7. Bioavailability of anthropogenic radionuclides in mussels along the french mediterranean coast

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, H.; Arnaud, M.; Charmasson, S.; Andral, B.; Dimeglio, Y.; Barker, E. [Institut de Radioprotection et de Surete Nucleaire. IFREMER, Laboratoire d' Etudes Radioecologiques Continentales et de la Mediterranee, 83 - La Seyne-sur-Mer (France)

    2004-07-01

    Within the framework of the Water Management Master-plan, a bio-indicator network (RINBIO) was deployed all along the French Mediterranean coast (1,800 km), using man-made cages containing mussels (Mytilus galloprovincialis) to assess contamination by heavy metals, persistent organic products and radionuclides. The caging technique compensated for the scarcity of natural shellfish stocks in significant parts of the coast and enable comparison between sites regardless of their physicochemical and trophic characteristics. Among the 103 stations of the entire program, 40 were selected for the measurement of anthropogenic radionuclides by high-efficiency gamma-spectrometry. Biometrics parameters of the each mussel samples, including 'condition index' as an indicator of soft part growth, will be correlated with radionuclides activities, allowing to correct raw data from differences in bioaccumulation between the various sites in relation to their trophic levels. A comprehensive picture of the distribution of radionuclides at a such a large spatial scale will be provided and the contribution of the Rhone river input, so far the main source for the coastal zone, will be investigated. (author)

  8. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  9. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    International Nuclear Information System (INIS)

    Spatz, R.

    2000-01-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington

  10. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  11. Stochastic Parameter Development for PORFLOW Simulations of the Hanford AX Tank Farm

    International Nuclear Information System (INIS)

    Ho, C.K.; Baca, R.G.; Conrad, S.H.; Smith, G.A.; Shyr, L.; Wheeler, T.A.

    1999-01-01

    Parameters have been identified that can be modeled stochastically using PORFLOW and Latin Hypercube Sampling (LHS). These parameters include hydrologic and transport properties in the vadose and saturated zones, as well as source-term parameters and infiltration rates. A number of resources were used to define the parameter distributions, primarily those provided in the Retrieval Performance Evaluation Report (Jacobs, 1998). A linear rank regression was performed on the vadose-zone hydrologic parameters given in Khaleel and Freeman (1995) to determine if correlations existed between pairs of parameters. No strong correlations were found among the vadose-zone hydrologic parameters, and it was recommended that these parameters be sampled independently until future data or analyses reveal a strong correlation or functional relationship between parameters. Other distributions for source-term parameters, infiltration rates, and saturated-zone parameters that are required to stochastically analyze the performance of the AX Tank Farm using LHS/PORFLOW were adapted from distributions and values reported in Jacobs (1998) and other literature sources. Discussions pertaining to the geologic conceptualization, vadose-zone modeling, and saturated-zone modeling of the AX Tank Farm are also presented

  12. Groundwater Flow and Radionuclide Transport in Fault Zones in Granitic Rock

    International Nuclear Information System (INIS)

    Geier, Joel Edward

    2004-12-01

    Fault zones are potential paths for release of radioactive nuclides from radioactive-waste repositories in granitic rock. This research considers detailed maps of en echelon fault zones at two sites in southern Sweden, as a basis for analyses of how their internal geometry can influence groundwater flow and transport of radioactive nuclides. Fracture intensity within these zones is anisotropic and correlated over scales of several meters along strike, corresponding to the length and spacing of the en echelon steps. Flow modeling indicates these properties lead to correlation of zone transmissivity over similar scales. Intensity of fractures in the damage zone adjoining en echelon segments decreases exponentially with distance. These fractures are linked to en echelon segments as a hierarchical pattern of branches. Echelon steps also show a hierarchical internal structure. These traits suggest a fractal increase in the amount of pore volume that solute can access by diffusive mass transfer, with increasing distance from en echelon segments. Consequences may include tailing of solute breakthrough curves, similar to that observed in underground tracer experiments at one of the mapping sites. The implications of echelon-zone architecture are evaluated by numerical simulation of flow and solute transport in 2-D network models, including deterministic models based directly on mapping data, and a statistical model. The simulations account for advection, diffusion-controlled mixing across streamlines within fractures and at intersections, and diffusion into both stagnant branch fractures and macroscopically unfractured matrix. The simulations show that secondary fractures contribute to retardation of solute, although their net effect is sensitive to assumptions regarding heterogeneity of transmissivity and transport aperture. Detailed results provide insight into the function of secondary fractures as an immobile domain affecting mass transfer on time scales relevant to

  13. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, Walter P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliance & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.

  14. Origin of increased sulfate in groundwater at the ETF disposal site

    International Nuclear Information System (INIS)

    Thornton, E.C.

    1997-09-01

    Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value of about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions

  15. Main reabilitation principles for forest lands, contaminated by radionuclides

    International Nuclear Information System (INIS)

    Borodastov, G.V.; Panfilov, A.V.; Ushakov, B.A.

    1992-01-01

    The reabilitation principles of radionuclide contaminated forest lands are proposed, based on the reabilitation experience in the thirty kilometer zone, on materials of researches and design and research, works of the enterprise Vozrozhdenie. The work is oriented on using in the higher and middle links of the organization structure. The feature of the reabilitation system is a complex approach to solution of the problem

  16. Methods of separating short half-life radionuclides from a mixture of radionuclides

    International Nuclear Information System (INIS)

    Bray, L.A.; Ryan, J.L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of 223 Ra and 225 Ac, from a radionuclide ''cow'' of 227 Ac or 229 Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ''cow'' forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ''cow'' from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ''cow''. In one embodiment the radionuclide ''cow'' is the 227 Ac, the at least one daughter radionuclide is a 227 Th and the product radionuclide is the 223 Ra and the first nitrate form ion exchange column passes the 227 Ac and retains the 227 Th. In another embodiment the radionuclide ''cow'' is the 229 Th, the at least one daughter radionuclide is a 225 Ra and said product radionuclide is the 225 Ac and the 225 Ac and nitrate form ion exchange column retains the 229 Th and passes the 225 Ra/Ac. 8 figs

  17. Diffusional mass transport phenomena in the buffer material and damaged zone of a borehole wall in an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Page, S.; Cheung, S.C.H.

    1983-06-01

    The effects of the geometry of the borehole and the characteristics of the damaged borehole rock wall on the movement of the radionuclides from an underground nuclear waste vault have been studied. The results show that radionuclide transport will occur mainly through the buffer into the damaged zone of the borehole wall. As the degree of facturing of the damaged zone increases, the total radionuclide flux will increase up to a limit which can be approximated by a one-dimensional radial diffusion model. For large degrees of fracturing of the damaged zone, an increase in the radial buffer material thickness will decrease the total flux, whereas, for small degrees of fracturing, an increase in the radial buffer thickness may slightly increase the total flux. Increasing the vertical buffer thickness will significantly decrease the total flux when the degree of fracturing of the damaged zone is small. An increase in the vertical extent of the damaged zone will cause an increase in total flux

  18. Methods of separating short half-life radionuclides from a mixture of radionuclides

    Science.gov (United States)

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  19. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  20. Dynamic of radionuclides behaviour in forest soils

    International Nuclear Information System (INIS)

    Ruehm, W.; Steiner, M.; Wirth, E.; Dvornik, A.; Zhuchenko, T.A.; Kliashtorin, A.; Rafferty, B.; Shaw, G.; Kuchma, N.

    1996-01-01

    Within the research project ECP-5, the dynamics of radionuclides in automorphic forest soils within the 30-km-zone of Chernobyl and of hydromorphic forest soils in Belarus have been investigated. In upland forest soils, the lower layers of the organic horizons are characterized by the highest residence times for radiocesium and represent the largest pool for all radionuclides investigated. According to a preliminary estimate, radiocesium is more mobile compared to 125 Sb, which in turn migrates faster than 60 Co, 144 Ce, and 154 Eu. 106 Ru shows the lowest mobility. With regard to radiocesium, hydromorphic soils exhibit migration rates and transfer factors from soil to trees, which by far exceed those in automorphic soils. Based on a two-component quasi-diffusional model the average bias of 137 Cs in mesotrophic swamp soils was predicted. The activity concentrations of U, Pu, and Cs suggest that U and Pu were originally deposited as hot particles and that U is naturally accumulated in organic horizons

  1. Transfer of Chernobyl radionuclides in the aquatic systems

    International Nuclear Information System (INIS)

    Zhukova, O.; Shiryaeva, N.; Shagalova, E.; Bakarykava, Zh.

    2003-01-01

    The data on radioecology of the rivers of Belarus, which catchment area is completely or partly situated in Russia and the Ukraine (the Sozh, the Iput, the Besed, the Braginka) are given. The radioactive contamination of lakes are represent. The article demonstrates, that nowadays Chernobyl radionuclides content in surface water depends on wash-off from contaminated territories, groundwater leakage, and composition of bottom sediments. Wash out by rain and melted water is considered to be the most permanent and hazardous. The accumulation of radioactive sediments before dams, in stagnant zones of rivers and reservoirs creates moving local cites of increased concentration. Today and for forthcoming decades the main input into water contamination will be Cs-137, Sr-90 and for the nearest Chernobyl PP zone - isotopes of plutonium as well as Am-241. The migration of radionuclides on the experimental watershed of the Iput river was investigated. The studies have shown that the contamination of the Iput river in the territory of Belarus was influenced by the transboundary transfer of radionuclides from the territory of Russia during first years after Chernobyl accident. According to our estimates, at the end of 1986, this contribution amounted to 30% for Cs-137 and 96% for Sr-90; as of-now, it is 86% and 65% for Cs-137 and Sr-90, respectively. The concentration of Cs-137 in bottom sediments on some sites in the Braginka river (12940 - 49760 Bq/kg), the Revuchee lake (10345 - 18260 Bq/kg) and the Svyatskoe lake (11618 - 16430 Bq/kg) are so great, that they can be attributed to low-level waste storage facilities (9630 Bq/kg). Such high levels of radioactive contamination of bottom sediments are secondary sources of pollution of surface water. (authors)

  2. On release of radionuclides from a near-surface radioactive waste repository to the environment

    Directory of Open Access Journals (Sweden)

    Gudelis Arūnas

    2015-09-01

    Full Text Available A closed near-surface radioactive waste repository is the source of various radionuclides causing the human exposure. Recent investigations confirm an effectiveness of the engineering barriers installed in 2006 to prevent the penetration of radionuclides to the environment. The tritium activity concentration in groundwater decreased from tens of kBq/l to below hundreds of Bq/l. The monitoring and groundwater level data suggest the leaching of tritium from previously contaminated layers of unsaturated zone by rising groundwater while 210Pb may disperse as a decay product of 226Ra daughters.

  3. Modeling long-term risk to environmental and human systems at the Hanford Nuclear Reservation: Scope and findings from the initial model

    International Nuclear Information System (INIS)

    Scott, Michael J.; Brandt, Charles A.; Bunn, Amoret L.; Engel, David W.; Eslinger, Paul W.; Miley, Terri B.; Napier, Bruce A.; Prendergast-Kennedy, Ellen L.; Nieves, Leslie A.

    2005-01-01

    The Groundwater/Vadose Zone (GW/VZ) Integration Project at the U.S. Department of Energy's Hanford Site in Washington state is currently developing the tools and supporting data to assess the cumulative impact to human and ecological health and the region's economy and cultures from waste that will remain at the Hanford Site after the site closes. This integrated system of new and legacy models and data is known as the System Assessment Capability (SAC). The environmental transport modules of the SAC modeling system provide estimates of contaminant concentrations from Hanford Site sources in a time-dependent manner in the vadose zone, groundwater, and the Columbia River and its associated sediments. The Risk/Impact Module uses these estimates of media- and time-specific concentrations to estimate potential impacts on the ecology of the Columbia River corridor, the health of persons who might live in or use the corridor or the upland Hanford environment, the local economy, and the cultural resources. Preliminary Monte Carlo realizations from the SAC modeling system demonstrate the feasibility of large-scale uncertainty analysis of the complex relationships in environmental transport on the one hand and ecological, human, cultural, and economic risk on the other. Initial impact results show successful linking of codes and very small long-term risks for the 10 radionuclides and chemicals evaluated

  4. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  5. Dynamics of radionuclides in forest environments

    International Nuclear Information System (INIS)

    Belli, M.; Tikhomirov, F.A.; Kliashtorin, A.; Shcheglov, A.; Rafferty, B.; Shaw, G.; Wirth, E.; Kammerer, L.; Ruehm, W.; Steiner, M.; Delvaux, B.; Maes, E.; Kruyts, N.; Bunzl, K.; Dvornik, A.M.; Kuchma, N.

    1996-01-01

    In the CIS countries, during the Chernobyl accident, more than 30000 km 2 of forested areas received a 137 Cs deposition higher than 37 kBq m -2 and about 1000 km 2 a deposition of radiocesium higher than 1.5 MBq m -2 . Before the accident only few data were available on the behaviour of radionuclides in forests and during last eight years, the understanding of the fate of radionuclides in these ecosystems has been improved significantly. This paper reports the results achieved in the frame of 1991-1996 EU/CIS collaborative project on the consequences of the Chernobyl accident. The ECP-5 project deals with the impact of radioactive contamination on natural and semi-natural environment. The investigations were carried out in different forest ecosystems, located in the near field (within the 30-km zone around the Chernobyl nuclear power plant) as well as in the far field in the CIS and in the western Europe countries. The results achieved have been used to develop a simplified model representation of the behaviour of radiocesium within forest ecosystems

  6. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  7. The transfer of radionuclides from contaminated groundwater into perennial ryegrass and winter wheat

    International Nuclear Information System (INIS)

    Wadey, P.; Shaw, G.; Butler, A. P.; Tompkins, J. A.; Wheater, H. S.

    1996-01-01

    Lysimeter studies of the migration of radionuclides from a contaminated water table and their subsequent uptake by plant roots have been undertaken using two distinct soil types and varying crop regimes. An eight year multi-disciplinary research project (funded by Nirex) has concentrated on the upward migration of contaminants from near-surface water tables, and their uptake by winter wheat and perennial ryegrass crops. Experimental data are presented for the movement and uptake of radiocaesium 137 Cs. These data show significant movement in the unsaturated zone during the first year of dosing, followed by progressively reduced availability in subsequent years. A suite of physically based hydrological and solute transport models has been developed to model radionuclide transport in the unsaturated zone. Model simulations, based on a conventional advection-dispersion representation incorporating linear sorption processes, were unable to describe adequately the distribution of radiocaesium within the soil profile. However, the introduction of root storage and translocation processes provided significantly improved results. (author)

  8. Distribution of some radionuclides in the St. Lawrence estuary, Quebec, Canada

    International Nuclear Information System (INIS)

    Serodes, J.B.; Roy, J.C.

    1983-01-01

    The distribution of γ-emitting radionuclides in the St. Lawrence estuary was studied in 1978 and 1979, by means of double sampling and the flocculation and centrifugation of very large volumes of water. Eleven radionuclides were detected, originating from a variety of sources, including soil erosion and nuclear weapons testing. The concentrations measured in 1979 were higher than those of 1978; the 21st Chinese nuclear test could be responsible for the increase of some radionuclides. Concentrations decrease markedly from the freshwater part to the marine region of the estuary. Dilution by oceanic waters, relative affinity with suspended matter and radioactive decay are the principal mechanisms involved in the distribution patterns. Cesium-137, 144 Ce, 226 Ra, 228 Ra and 228 Th are strongly associated with suspended matter, while about two thirds of 7 Be, 106 Ru and 235 U are present in the liquid phase. Results suggest that 235 U is released from sediments in the maximum turbidity zone

  9. Hanford Tank Farms Vadose Zone, Addendum to the T Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, Robert

    2000-07-01

    This addendum to the T Tank Farm Report (GJO-99-101-TARA, GJO-HAN-27) published in September 1999 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the T Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the T Tank Farm at the DOE Hanford Site in the state of Washington.

  10. Regional survey of radionuclides in the marine environment of the French Mediterranean coast

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, Herve; Arnaud, Mireille; Duffa, Celine; Charmasson, Sabine; Dimeglio, Yves [Institut de Radioprotection et de Surete Nucleaire/PRP-ENV/SESURE/LERCM/ARM c/o Ifremer, CS 20330 Zone Portuaire de Bregaillon, 83507 La Seyne sur Mer Cedex (France)

    2014-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN) runs a continuous monitoring program of the marine environment as a mandatory task. For the French Mediterranean coast, this monitoring activity focuses on two bio-indicators species: the Mediterranean mussel (Mytilus galloprovincialis) and the red mullet (Mullus sp.) sampled on a regular basis from natural populations at ten locations along the coast. Radionuclides are measured using direct low-level gamma spectrometry as a routine technique. In addition to this long-lasting monitoring, a broad survey of radionuclide baseline levels is conducted on all compartments of the coastal zone: water, sediments and a large selection of fish species among those most currently fished and marketed. This extended data collection is necessary to fulfill the information requirements of the UE Marine Strategy Framework Directive (MSFD) and its implementation by member states. This information is also essential for impact assessment of any incident or accident, included from a remote source. Levels of less commonly measured radionuclides like {sup 3}H, {sup 14}C, {sup 90}Sr, {sup 210}Po and U, Pu isotopes are investigated. Fish sampling relies mostly on scientific stock assessment campaigns. Mussel sampling is complemented by transplanted mussels on 40 specific sites. This regional survey also focuses on two possibly impacted areas: the Rhone river mouth coastal zone, with inputs from nuclear power plants along the river and the Bay of Toulon sheltering Navy harbor of nuclear-powered sub-marines and aircraft-carrier. First results show that the activity levels of artificial radionuclides are very low for most bio-indicator species, in accordance with previous monitoring trends. {sup 137}Cs is the only artificial radionuclide regularly detected by gamma spectrometry in mussel and fish samples at a level below 1 Bg.kg{sup -1} of dry weight. Values of {sup 3}H (organically bound Tritium) in the same samples lies under

  11. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W. [Los Alamos National Laboratory

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  12. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  13. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2005-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  14. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport

  15. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  16. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J. Prouty

    2006-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  17. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  18. Cavity-based secondary mineralization in volcanic tuffs of Yucca Mountain, Nevada: a new type of the polymineral vadose speleothem, or a hydrothermal deposit?

    Directory of Open Access Journals (Sweden)

    Dublyansky Yuri V.

    2005-07-01

    Full Text Available Secondary minerals (calcite, chalcedony, quartz, opal, fluorite, heulandite, strontianite residing in open cavities in the Miocenerhyolite tuffs of Yucca Mountain, Nevada have been interpreted by some researchers as "speleothemic" formations, deposited as aresult of downward infiltration of meteoric waters (DOE, 2001, Whelan et al., 2002. The major mineral of the paragenesis, calcite,shows spectacular trend of the textural and crystal morphology change: from anhedral granular occurrences, through (optionalplatelet, bladed and scepter varieties, to euhedral blocky morphologies. The trend is consistent with the overall decrease in thesupesaturation of the mineral forming solution. Stable isotope properties of calcite evolve from 13C-enriched (δ13C = +4 to +9 ‰ PDBat early stages of growth to 13C-depleted (-5 to -10 ‰ at late stages. The non-cyclic character of the isotope record and extremevariations of isotopic values argue against the meteoric origin of mineral forming fluids. The δ13C >4 ‰ PDB require isotope partitioningbetween dissolved CO2 and CH4, which is only possible in reducing anoxic environment, but not in aerated vadose zone.Fluid inclusions studied in calcite, quartz and fluorite revealed that the minerals were deposited from thermal solutions. Thetemperatures were higher at early stages of mineral growth (60 to 85oC and declined with time. Most late-stage calcites containonly all-liquid inclusions, suggesting temperatures less than ca. 35-50oC. Minerals collected close to the major fault show the highesttemperatures. Gases trapped in fluid inclusions are dominated by CO2 and CH4; Raman spectrometry results suggest the presenceof aromatic/cyclic hydrocarbon gases. The gas chemistry, thus, also indicates reduced (anoxic character of the mineral formingfluids.Secondary minerals at Yucca Mountain have likely formed during the short-term invasion(s of the deep-seated aqueous fluidsinto the vadose zone. Following the invasion

  19. Transformation processes influencing physico-chemical forms of radionuclides and trace elements in natural water systems

    International Nuclear Information System (INIS)

    Salbu, B.; Riise, G.; Oughton, D.H.

    1995-01-01

    In order to assess short and long term consequences of radionuclides and trace elements introduced to aquatic systems, knowledge on source terms, key factors and key processes influencing the speciation is essential. The mobility, bioavailability and subsequent transfer into food chains depend on the physico-chemical forms on radionuclides and trace metals. In addition, transformation processes and especially the interaction with natural organic matter (NOM) influences the distribution pattern. Furthermore, the prevailing climate conditions, e.g. episodic events and temperature are vital for fluxes and for the kinetics of the transformation processes. In the present work processes in catchments and processes associated with acidification, episodic events, climate conditions (temperature) and mixing zone phenomena influencing the speciation of radionuclides and trace metals are highlighted. These processes should be highly relevant for assessing far field consequences of radionuclides potentially released from disposal sites. (authors). 21 refs., 8 figs., 1 tab

  20. Radionuclide deflation effects at contaminated environmental area in case of single and steady discharges to the atmosphere

    International Nuclear Information System (INIS)

    Makhon'ko, K.P.

    1984-01-01

    The effects of wind generation of radioactive dust in the area contaminated as a result of single or steady radionuclide discharges to the atmosphere are considered. Calculations are given on changing in time of the deflation coefficient Ksub(α) cm -1 on the base of the radionuclides migration rate account into the depth from a surface dust-forming soil layer and irradiation dose for account of radionuclides penetrated by food chains and into respiratory organs as a result of dusting of the contaminated zone. It is shown that the deflation effects play an essential part in case of emergency discharges owing to the possibility of including radionuclides in food chains through plants. The numerical calculations are performed for 90 Sr and 137 Cs and for light and heavy natural deposit soils

  1. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  2. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  3. Women in Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Balashevska, Y.; Kireev, S.; Navalikhin, V.

    2015-01-01

    Today, 29 years after the Chernobyl accident, the Exclusion Zone still remains an areal unsealed radiation source of around 2600 km"2. It is not just a gigantic radioactive waste storage facility (the amount of radioactive waste accumulated within the Zone, except for the Shelter, is estimated at about 2.8 million m"3), but also a unique research and engineering platform for biologists, radiologists, chemists and physicists. Taking into account the amount of the radionuclides released during the accident, it becomes quite understood that the radiological environment in the Exclusion Zone is far from favorable. However, among the Exclusion Zone personnel who numbers 5000, there are female workers. The poster represents the results of the research performed among the female employees of the largest enterprise of the Exclusion Zone, “Chornobyl Spetskombinat”. The survey was performed with the view to knowing what makes women work in the most radioactively contaminated area in Europe, and what their role is, to revealing their fears and hopes, and to estimating the chances of the brave women of Chernobyl Exclusion Zone to succeed in their careers. (author)

  4. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  5. Airborne remote sensing of estuarine intertidal radionuclide concentrations

    International Nuclear Information System (INIS)

    Rainey, M.P.

    1999-08-01

    The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Pic.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafield-derived 137 Cs and 241 Am and clay content (r 2 = 0.93 and 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5μm) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r 2 = 0.81). Subsequently, the established relationships between 137 Cs and 241 Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92 km 2 ) to be mapped at a geomorphic scale (1.75 m). The accuracy of these maps

  6. Diffusive transport and evaporation to the atmosphere from a NAPL source in the vadose zone

    DEFF Research Database (Denmark)

    Holtegaard, L.E.; Bjerre, T.; Christophersen, Mette

    2002-01-01

    To evaluate the risks concerned with the presence of volatile organic compounds in the unsaturated zone it is important to know how the compounds are transported in the soil. In this project the effective diffusion coefficient of 3-methylpentane, hexane, methyl-cyclopentane, iso-octane and methyl...

  7. Aquatic ecosystems within the Chernobyl NPP exclusion zone: radioactive contamination, doses and effects

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Kuzmenko, M.I.; Krot, Y.G.; Kipnis, L.S.; Mardarevich, M.G.; Ponomaryov, A.V.; Derevets, V.V.; Nazarov, A.B.

    2003-01-01

    For past 17 years after accident the character of radioactive contamination of water objects within the Chernobyl NPP exclusion zone has undergone essential changes. First of all it connected with realisation on a wide area of deactivation works, and also with transformation of radioactive substances in water-soil systems. Besides, during 1991-95 the complex of hydraulic engineering structures as protection dams, interfering washing away of radioactive substances from soils of the left-bank catchment basin and changed a hydrological regime of these territories during a high water, was constructed. The levels of radionuclide contamination of water objects within the Chernobyl NPP exclusion zone was rather stabilised. Due to high water change rate the river bottom sediments have undergone decontamination processes (especially during floods and periods of high water) and over the years have ceased to play the essential role as a secondary source of water contamination. On the other hand, the closed reservoirs have considerably higher levels of radioactive contamination caused by limited water change and by relatively high concentration of radionuclides deposited in the bottom sediments. Therefore, for the majority of standing reservoirs the level of radionuclide content is determined mainly by the rates of mobile radionuclide forms exchange between bottom sediment and water, as well as by the external washout from the catchment basin. In this paper will be considered: (1) the latest data on radionuclide content (Sr-90, Cs-137, Pu-238, Pu-239+240 and Am-241) and dynamics in water, seston, bottom sediments and hydrobionts of different trophic levels and ecological groups; (2) the peculiarities of formation of vegetative communities from lakes within embankment territory of Pripyat River flood-lands and its impact on radionuclide redistribution in aquatic ecosystems; (3) the major hydrochemical factors, which determine the behaviour of radionuclides in the aquatic

  8. An analysis of nature and mechanisms of the Lira objects territories' radionuclide contamination

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K; Tuleushev, A.Zh.; Lukashenko, S.N.; Solodukhin, V.P.; Kazachevskij, I.V.; Reznikov, S.V.

    2001-01-01

    In the paper the results of study of radioactive contamination of 'Lira' objects territories are presented. Obtained data are evidencing, that existing radiation situation does not presents a threat for operating personnel of both the occupied on the deposit and its objects furthermore for inhabitants of the closest localities. Therewith a radionuclides concentration in the soils on the examined areas is slightly exceeds the background values characteristic for this region. Two hypothesises for reveled radionuclide contamination have been considered: yield on the surface and distribution by territory immediately after explosion 137 Xe and 90 Kr inert gases - they are genetical predecessors of 137 Cs and 90 Sr, relatively; existence of a constant effluence of these radionuclides on a surface from a 'ditch cavities' of the 'Lira' objects by the zones of dis-consolidation and crack propagations in the earth crust. With purpose for these hypothesis correctness clarification the distribution of radionuclides by soil layer depth in the vicinities of militant wells (TK-2 and TK-5), as well as in the case and riverbed of the Berezovka river. There are not data confirm the hypothesis about possible constant radionuclides influent from a 'ditch cavities'. So, the hypothesis of the 'Lira' objects territories radionuclide contamination due to inert gases yield on the surface is a more rightful

  9. Experimental investigation of long-lived radionuclide migration in floodplain soils of Chernobyl NPP 10-km zone and risk estimation of ground water pollution

    International Nuclear Information System (INIS)

    Zhirnov, V.G.; Popov, V.E.

    1993-01-01

    Heavily polluted with long-lived radionuclides, the floodplain soils of Chernobyl NPP 30-km zone is a potential danger for the river system and reservoirs of the Ukraine. In 1991, the building of a dam along the river left bank was started to isolate the river-bed. However, during the spring rise of water in the river body, the water will all the same infiltrate through the soil to the floodplain because of hydraulic pressure. The main goal of this work was to estimate the strontium 90 content in the top water and it's dependence on the depth of water over the soil surface. We studied the strontium 90 different chemical forms distribution in the left bank part of the floodplain and experimentally determined the strontium 90 washing out by river water taken into account it's upward flow

  10. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    International Nuclear Information System (INIS)

    Golian, C.; Lever, D.A.; Baker, A.J.; Connell, L.D.; Bennett, D.G.; Read, D.; Lindgreen, M.; Pers, K.; Skagius, K.; Murakami, T.; Ohnuki, T.

    1992-01-01

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The 234 U/ 238 U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that 234 U is preferentially mobile relative to 238 U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater, thus leading to ( 234

  11. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D A; Baker, A J; Connell, L D [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D G; Read, D [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M; Pers, K; Skagius, K [Kemakta Consultants co., Stockholm (Sweden); Murakami, T; Ohnuki, T [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1993-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  12. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D.A.; Baker, A.J.; Connell, L.D. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D.G.; Read, D. [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M.; Pers, K.; Skagius, K. [Kemakta Consultants co., Stockholm (Sweden); Murakami, T.; Ohnuki, T. [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1992-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  13. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-01-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC 'ground truthing' exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity 'target' in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical resistivity

  14. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  15. Modelling of radionuclide transport along the underground access structures of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [SAM Switzerland GmbH, Zuerich (Switzerland); Mayer, G.; Hayek, M. [AF-Consult Switzerland AG, Baden (Switzerland)

    2014-08-15

    The arrangement and sealing of the access routes to a deep geological repository for radioactive waste should ensure that any radionuclide release from the emplacement rooms during the post closure phase does not by-pass the geological barriers of the repository system to a significant extent. The base case of the present study, where realistic values for the hydraulic properties of the seals and the associated excavation damage zones were assumed, assesses to what extent this is actually the case for different layout variants (ramp and shaft access and shaft access only). Furthermore, as a test of robustness of system performance against uncertainties related to such seals and the associated excavation damage zones, the present study also considers a broad spectrum of calculation cases including the hypothetical possibility that the seals perform much more poorly than expected and to check whether, consequently, the repository tunnel system and the access structures may provide significant release pathways. The study considers a generic repository system for high-level waste (HLW repository) and for low- and intermediate-level waste (L/ILW repository), both with Opalinus Clay as the host rock. It also considers the alternative possibilities of a ramp or a shaft as the access route for material transport (waste packages, etc.) to the underground facilities. Additional shafts, e.g. for the transport of persons and for ventilation, are included in both cases. The overall modelling approach consists of three broad steps: (a) the network of tunnels and access structures is implemented in a flow model, which serves to calculate water flow rates along the tunnels and through the host rock; (b) all relevant transport paths are implemented in a radionuclide release and transport model, the water flow rates being obtained from the preceding flow model calculations; (c) individual effective dose rates arising from the radionuclides released from the considered repository

  16. [Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents].

    Science.gov (United States)

    Kotenko, K V; Shinkarev, S M; Abramov, Iu V; Granovskaia, E O; Iatsenko, V N; Gavrilin, Iu I; Margulis, U Ia; Garetskaia, O S; Imanaka, T; Khoshi, M

    2012-01-01

    The nuclear accident occurred at Fukushima Dai-ichi Nuclear Power Plant (NPP) (March 11, 2011) similarly to the accident at the Chernobyl NPP (April 26, 1986) is related to the level 7 of the INES. It is of interest to make an analysis of the radionuclide composition of the fallout following the both accidents. The results of the spectrometric measurements were used in that comparative analysis. Two areas following the Chernobyl accident were considered: (1) the near zone of the fallout - the Belarusian part of the central spot extended up to 60 km around the Chernobyl NPS and (2) the far zone of the fallout--the "Gomel-Mogilev" spot centered 200 km to the north-northeast of the damaged reactor. In the case of Fukushima accident the near zone up to about 60 km considered. The comparative analysis has been done with respect to refractory radionuclides (95Zr, 95Nb, 141Ce, 144Ce), as well as to the intermediate and volatile radionuclides 103Ru, 106Ru, 131I, 134Cs, 137Cs, 140La, 140Ba and the results of such a comparison have been discussed. With respect to exposure to the public the most important radionuclides are 131I and 137Cs. For the both accidents the ratios of 131I/137Cs in the considered soil samples are in the similar ranges: (3-50) for the Chernobyl samples and (5-70) for the Fukushima samples. Similarly to the Chernobyl accident a clear tendency that the ratio of 131I/137Cs in the fallout decreases with the increase of the ground deposition density of 137Cs within the trace related to a radioactive cloud has been identified for the Fukushima accident. It looks like this is a universal tendency for the ratio of 131I/137Cs versus the 137Cs ground deposition density in the fallout along the trace of a radioactive cloud as a result of a heavy accident at the NPP with radionuclides releases into the environment. This tendency is important for an objective reconstruction of 131I fallout based on the results of 137Cs measurements of soil samples carried out at

  17. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  18. Sorption and desorption reactions of radionuclides with a crushed basalt-bentonite packing material

    International Nuclear Information System (INIS)

    Barney, G.S.; Lane, D.L.; Allen, C.C.; Jones, T.E.

    1985-04-01

    Current design of waste packages for disposal of high-level radioactive wastes in underground basalt formations includes a layer of packing material that surrounds the waste container. One of the functions of this material is to limit the release of radionuclides from a breached container into groundwater by providing a low hydraulic conductivity zone and by sorbing dissolved radionuclides. The objective of this study was to assess the radionuclide sorption capability of a proposed packing material composed of 25% sodium bentonite and 75% crushed basalt (by weight). Sorption and desorption reactions of several important waste radioelements (neptunium, uranium, plutonium, technetium, selenium, and radium) were investigated in the absence of air at 90 0 C. Uranium and neptunium were sorbed by slow reactions that follow first-order kinetics. The reaction rates are probably controlled by reduction of weakly sorbed uranium(VI) and neptunium(V) by ferrous iron in the crushed basalt component. Technetium(VII) was not reduced or sorbed under these conditions. Freundlich sorption and desorption isotherms for a given radionuclide were non-singular and show a strong tendency for sorption hysteresis. Applying the isotherm data to a one-dimensional transport model indicated that hysteretic sorption on the packing material provides an important safety factor in controlling releases of some radionuclides

  19. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    International Nuclear Information System (INIS)

    Saueressig, Daniel G.

    2013-01-01

    In 1965 and 1966, approximately 303 m 3 of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  20. The levels of radionuclides and heavy metals in Black Sea ecosystems (Bulgaria)

    International Nuclear Information System (INIS)

    Strezov, A.; Nonova, Tz.

    2006-01-01

    In order to evaluate the influence of geographically varying marine ecosystem properties on the uptake of radionuclides and toxic metals in marine environment, samples of sand, slime and silt sediments were taken during the period 1991-2004. Samples were collected from different zones along the Bulgarian Black Sea coast - from the north Romanian border (Durankulak) to the South Turkish border (Rezovo). Technogenic and natural radionuclides were measured by Low-level Gamma Spectroscopy using HPGe detector with 35 % counting efficiency and energy resolution 1.8 KeV (1332 KeV). Heavy metals (HM) were measured by Atomic Absorption Spectrometry (AAS) - ETAAS (Perkin - Elmer Zeeman 3030 with graphite furnace) and flame AAS - Pye Unicam SP 1950. The measured radionuclides concentrations in Black Sea sediments were found to depend on sediment type - slime sediments accumulate technogenic ( 1 37Cs) and natural nuclides (U and Th series) to the highest extent. Considerably low levels of technogenic and natural radionuclides and a narrow concentration intervals were established for sand and silt sediment samples. The intercomparison of radionuclide and HM content in bottom sediments from one and the same sampling location gives information for mechanisms of radionuclide transfer and shows the trend of potential hazard of anthropogenic impact on marine ecosystems. The obtained data show that highest nuclide and heavy metal content in Black Sea sediments were determined in the northern part of the Black Sea coast. It can be attributed to the influence of the big rivers entering the northern part of the Black Sea - Danube, Dnyepr, Dnester. Data for radionuclides and heavy metals in sediments are in the limits of the cited in literature natural levels, showing no additional anthropogenic contamination

  1. Monitoring and characterization of radionuclide transport in the hydrogeologic system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Raymond, J.R.

    1975-01-01

    Historical records pertaining to the 300 North and Wye Burial Grounds at the Hanford Reservation were reviewed as a prerequisite to determining programs for land reclamation. All available historical documents, agency communications, and engineering drawings related to the study areas were located, reviewed, and analyzed. An inventory of recorded location, type, and quantity of radionuclides and associated materials in each burial ground was completed and distributed to cooperating investigators. A geophysical survey of the 300 North Burial Ground was conducted as a basis for detecting the composition, size, distribution, and depth of buried objects and characterizing the sediments in which they are buried. Acoustic, radar, magnetic, and metal detection surveys were completed and their applicability evaluated; drilling techniques and equipment for recovering and characterizing sediments and radioactive contaminated material were developed. Drilling will also determine the amount and dimensional extent of radionuclide migration; sediment-fluid interaction and fluid migration through the unsaturated zone at the 300 North Burial Ground were characterized. A study to determine biological transport of radionuclides at the Wye Burial Ground was also initiated. This study involved a preliminary survey of present flora and fauna inhabiting the Wye Burial Ground site. Plant tissue was chemically and radiochemically analyzed to determine radionuclide migration and possible dose effects and population dynamics of burrowing animals that could potentially be exposed to buried waste materials were investigated

  2. UZIG USGS research: Advances through interdisciplinary interaction

    Science.gov (United States)

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  3. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  4. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    Science.gov (United States)

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Speciation analysis of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.

    2010-01-01

    Full text: Naturally occurring and artificially produced radionuclides in the environment can be present in different physico-chemical forms (i. e. radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, complexing ability etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time dependent transformation processes such as mobilization of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, however, the original distribution of radionuclides deposited in ecosystems will change over time and influence the ecosystem behaviour. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews fractionation techniques which should be utilised for radionuclide speciation purposes. (author)

  6. The relationship of mineral and geochemical composition to artificial radionuclide partitioning in Yenisei river sediments downstream from Krasnoyarsk.

    Science.gov (United States)

    Bondareva, Lydia

    2012-06-01

    Discharges from the Mining-and-Chemical Combine (MCC) of Rosatom, downstream from Krasnoyarsk, resulted in radioactive contamination of sediments of the River Yenisei. The concentration of artificial gamma-emitting radionuclides ((137)Cs, (60)Co, (152)Eu, and (241)Am) was determined with the objective to analyze the migration processes leading to the transport of these radionuclides. The content of artificial radionuclides in the surface layers of the study area varied in wide ranges: (137)Cs-318-1,800 Bq/kg, (60)Co-87-720 Bq/kg, (152)Eu-12-287 Bq/kg and (241)Am-6-76 Bq/kg. There was a sequence of migration of radionuclides investigated in the surface layer of sediments that were collected in the near zone of influence of the MCC: (241)Am ≈ (152)Eu > (60)Co > (137)Cs. Radionuclide species have been found to be directly related to sediment structure and composition.

  7. Quantitative radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Scholz, P.M.; Rerych, S.K.; Moran, J.F.; Newman, G.E.; Douglas, J.M.; Sabiston, D.C. Jr.; Jones, R.H.

    1980-01-01

    This study introduces a new method for calculating actual left ventricular volumes and cardiac output from data recorded during a single transit of a radionuclide bolus through the heart, and describes in detail current radionuclide angiocardiography methodology. A group of 64 healthy adults with a wide age range were studied to define the normal range of hemodynamic parameters determined by the technique. Radionuclide angiocardiograms were performed in patients undergoing cardiac catherization to validate the measurements. In 33 patients studied by both techniques on the same day, a close correlation was documented for measurement of ejection fraction and end-diastolic volume. To validate the method of volumetric cardiac output calcuation, 33 simultaneous radionuclide and indocyanine green dye determinations of cardiac output were performed in 18 normal young adults. These independent comparisons of radionuclide measurements with two separate methods document that initial transit radionuclide angiocardiography accurately assesses left ventricular function

  8. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    OpenAIRE

    Bonzom , Jean-Marc; Hättenschwiler , Stephan; Lecomte-Pradines , Catherine; Chauvet , Eric; Gaschak , Sergey; Beaugelin-Seiller , Karine; Della-Vedova , Claire; Dubourg , Nicolas; Maksimenko , Andrey; Garnier-Laplace , Jacqueline; Adam-Guillermin , Christelle

    2016-01-01

    International audience; The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely un- known. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the function- ing of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black a...

  9. Summary of the data which is used for radionuclide transport analysis in the groundwater

    International Nuclear Information System (INIS)

    Koga, Osamu; Nagara, Shuichi; Matsumura, Toshihiro; Takeuchi, Akira; Takeda, Shinji; Sato, Kazuhiko; Tokizawa, Takayuki

    2004-03-01

    To analyze high precision in groundwater flow and radionuclide transport around Yotsugi open-pit mining place site and around Yotsugi mill tailing yard, besides the topic in past analysis is extracted, following it did examination of the corresponding method and arrangement of physical properties value. It investigated concerning the 3-dimensional flow and transport analysis code which can handle the chain-radionuclide selected. The range of the analytical area examined that become the object of groundwater flow and transport analysis, the wide area, Yotsugi open-pit mining place site and Yotsugi mill tailing yard selected the analytical model area, concerning the range which is surrounded with the divide. Receiving the influence of the alteration zone and the crush zone concerning the coefficient of permeability of the granite, it re-appraised excluding the value which is supposed that water permeability is high. The weathered granite from the lithofacies divided in the high weathered granite and the low weathered granite. As for the geometrical mean of coefficient of permeability of the former 10 -6 m/s order, the later 10 -8 m/s order, there is a difference of 2 orders in both. In addition, the data which is obtained to this year concerning physical properties value for analysis, groundwater level, precipitation and radionuclide density etc. rearranged and data set drew up. (author)

  10. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  11. Biological considerations in nuclear decommissioning, and radioactive waste management

    International Nuclear Information System (INIS)

    Rees, J.F.

    1991-01-01

    The importance of natural processes such as microbial action in waste management has recently been recognised. Although it is often difficult to predict the effects because the interactive processes are complex, human intervention can optimize the process. This paper highlights some of the fundamental stages in the management of low- and intermediate-level radioactive wastes where particular uncertainties exist and which might benefit from controlled microbial intervention. The areas considered are the use of biodegradable surfactants for cleaning surfaces before disposal, microbial adsorption and concentration of intermediate-level wastes from solution, microbial transformation of intermediate-level wastes organic fractions, enhancement of radionuclide transfer to the atmosphere, enhancement of transfer into vadose zone and ground water and the microbial treatment of any oily residues. (UK)

  12. SPECIFICITY OF ACCUMULATION OF VARIOUS RADIONUCLIDES (137Cs и 90Sr IN SPINACH (Spinacia oleracea L.

    Directory of Open Access Journals (Sweden)

    A. V. Soldatenko

    2016-01-01

    Full Text Available Knowledge of the specificity of accumulation of 137Cs and 90Sr by plants and limits of accumulation by plant fruits plays a key role at breeding of vegetable crops, which make demand for ecological safety of the product. The article is concerned with the study of varietal sources of spinach (Spinacia oleracea L. aimed at development of ecological safety product on the territory polluted by radionuclides.The specificity of accumulation of radionuclides 137Cs and 90Sr was studied in 54 varieties of spinach at industrial contaminated and polluted lands. Experimental tests were conducted in the Moscow and Bryansk regions in 2012 and 2014. The absolute value of radionuclide 90Sr was higher than absolute value of radionuclide 137Cs in all studied zones. It was found that the hazard rate of 90Sr is higher because the level of pollution of product reaches up to 76% from maximum permissible concentration (MPC, while the level of product pollution by 137Cs is 26,4% from MPC. The spinach genotype differentiation for 90Sr in the most environments is lower than differentiation for 137Cs. The histograms of distribution 90Sr and 137Cs showed that samples amount in the groups of accumulation for both radionuclides are equal. Statistically significant data for radionuclides 137Cs and 90Sr in spinach were not obtained. The evaluation of spinach for low content of radionuclides should be conducted separately for each radionuclide on various backgrounds.

  13. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, Daniel G. [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  14. Phytoremediation and land management of radionuclide contaminated areas

    International Nuclear Information System (INIS)

    Vanek, T.; Valenova, S.; Soudek, P.

    2006-01-01

    A study was conducted to examine the feasibility of using radiophytoremediation for wastewater treatment, where the conditions of contaminants can be similar to hydroponic arrangement. Due to the fact that large doses of radiation can cause cellular damage, the remediation of radionuclides from the environment is important for human health. These high risk pollutants are introduced into the environment at uranium ore processing factories, nuclear power plants, and nuclear bomb testing sites. Following the Chernobyl accident in 1986, various studies were conducted to analyze the dynamic of 137 Cs radionuclide in natural and semi-natural environments. The use of plants to clean up soils, sediments, surface and ground waters contaminated by radionuclides or toxic elements has been extensively tested. This study in particular, examined the uptake, translocation and distribution of 137 Cs, 90 Sr and 125 I uptake from a radioactive hydroponic solution. It also examined the activity distribution within different plant tissues. The influence of K + , Ca 2+ and NH 4 + on 137 Cs and 90 Sr uptake and accumulation by sunflowers was also studied in order to evaluate the effects of these ions that are normally present in the soil. The study examined which plant species could grow in contaminated areas and accumulate large amounts of radionuclides which would be suitable for radiophytoremediation purposes. Approximately 44 plant species were tested in greenhouse experiments, field studies and constructed wetlands. It was concluded that for soil-cleaning purposes, the solubility of the contaminant and its mobility in soil is the main limiting factor along with the extent of root-zone of certain plant species

  15. Estimation of the radionuclide content and radionuclide behaviour and the state of the wild nature in the Chernobyl' PNN region

    International Nuclear Information System (INIS)

    Martoshov, V.Z.; Smirnov, E.G.; Suvorova, L.N.; Tarasova, O.V.; Bogatova, L.V.; Torkhova, N.Yu.

    1992-01-01

    As a result radioactive isotope decay an isotope relation in the threw-out radioactive substance changes and to 1991 year is such that: strontium-90, ruthenium-106, Cs-137, cerium-144, plutonium-238,-239,-240; americium-231. Next years the dose commitments will be formed from Sr-90, Cs-137, Pu-239, Am-241. In soils of the thirty kilometer zone the content of the watersoluble Cs-137 do not change with time (0.1-1.0% from the radionuclide content in the soil. The watersoluble form content of Sr-90 is above, than of CS-137, 0.2-1.8%). Six-year investigations in the thirty kilometer, zone show that the Cs-137 concentration in the animal organisms is not changed. In relation to the previous trophic level Cs-137 accumulates in organisms of amphibians, reptiles and predatory mammals and don't in the herbivorous animal organism

  16. Accumulation and potential dissolution of Chernobyl-derived radionuclides in river bottom sediment

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Matsunaga, Takeshi; Yanase, Nobuyuki; Nagao, Seiya; Amano, Hikaru; Takada, Hideshige; Tkachenko, Yuri

    2002-01-01

    Areas contaminated with radionuclides from the Chernobyl nuclear accident have been identified in Pripyat River near the Chernobyl Nuclear Power Plant. The river bottom sediment cores contained 137 Cs (10 5 - 10 6 Bq/m 2 ) within 0-30 cm depth, whose concentration is comparable to that in the ground soil in the vicinity of the nuclear power plant (the Exclusion Zone). The sediment cores also accumulated 90 Sr (10 5 Bq/m 2 ), 239,240 Pu (10 4 Bq/m 2 ) and 241 Am (10 4 Bq/m 2 ) derived from the accident. Several nuclear fuel particles have been preserved at 20-25 cm depth that is the peak area of the concentrations of the radionuclides. Th ese inventories in the bottom sediments were compared with those of the released radionuclides during the accident. An analysis using a selective sequential extraction technique was applied for the radionuclides in the sediments. Results suggest that the possibility of release of 137 Cs and 239,240 Pu from the bottom sediment was low compared with 90 Sr. The potential dissolution and subsequent transport of 90 Sr from the river bottom sediment should be taken into account with respect to the long-term radiological influence on the aquatic environment

  17. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  18. Radionuclide distributions in vertical soil cross sections of the Chernobyl NPP 30-kilometer zone along the western fallout track. II. Chernozem

    International Nuclear Information System (INIS)

    Rogozin, Yu.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Bryzgalova, R.V.; Alekseev, V.A.; Avdeev, V.A.; Kuksov, A.A.; Zudova, I.Yu.

    1993-01-01

    Radionuclide distributions in vertical cross sections taken from chernozem in a former garden and tillable field along the western fallout track at distances of 5, 13.5, and 22 km from the fourth block of the Chernobyl NPP are studied. The distributions through the chernozem cross sections are more complicated than those of sandy soil. Although the main mass of radionuclides in the cross sections is concentrated at depths of 0-3 cm, instances are observed where up to 5-15% of the radionuclides penetrate to greater depths

  19. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  20. Specialized ecological forestry system for the management of forests in the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Kuchma, N.D.; Berchij, V.I.

    1997-01-01

    Prevention of radionuclides expansion in environment is one of the most complicated tasks in the complex of problems connected with measures, to decrease consequences of accident in Chernobyl nuclear power plant. Ten years experience of work in the exclusion zone show that the most real biogeochemical barrier on the way of radionuclides transfer are forests, which occupy half of the territory and keep main part of falls in the boundaries of forest landscapes