WorldWideScience

Sample records for radionuclide migration project

  1. Evaluation of radionuclide migration in forest ecosystems in TEMAS project

    International Nuclear Information System (INIS)

    Claver, F.; Vazquez, C.

    1998-01-01

    The applicability study of the best countermeasures for the restoration of environments contaminated by the accidental liberation of radionuclides, requires the assessment of the space and the temporal flow of radionuclides. The objective of the multinational project TEMAS (Techniques and Management Strategies for environmental restoration and their ecological consequences), that is carried out under EU-CIEMAT contract n. TI4-CT95-0021, is the development of management tool that provides the necessary support in the selection of the best strategies of environmental restoration after a nuclear accident, considering all the possible affected environments (urban, agricultural, semi natural and forest). In the forest environment,CIEMAT is working with the University of Lund (Sweden) and the Physical Science Faculty of the University of Seville in the prognosis of the distribution of Cesium and Strontium in forest ecosystems and through the associated production systems. This paper summarizes the study of the response of two different models, FORM and FORESTPATH to predict the radionuclides flow in the event of an accidental contamination of a forest. The comparison of results has been carried out over a period of 100 years after deposition on a coniferous forest. Although the approaches are different, the results obtained (using generic parameters) indicate that either model could to be selected for the analysis of the intervention in TEMAS. (Author) 14 refs

  2. The MIRAGE project: large scale radionuclide transport investigations and integral migration experiments

    International Nuclear Information System (INIS)

    Come, B.; Bidoglio, G.; Chapman, N.

    1986-01-01

    Predictions of radionuclide migration through the geosphere must be supported by large-scale, long-term investigations. Several research areas of the MIRAGE Project are devoted to acquiring reliable data for developing and validating models. Apart from man-made migration experiments in boreholes and/or underground galleries, attention is paid to natural geological migration systems which have been active for very long time spans. The potential role of microbial activity, either resident or introduced into the host media, is also considered. In order to clarify basic mechanisms, smaller scale ''integral'' migration experiments under fully controlled laboratory conditions are also carried out using real waste forms and representative geological media. (author)

  3. CEC project Mirage - Second phase on migration of radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    A second phase of the Community coordinated project Mirage (migration of radionuclides in the geosphere) was launched in 1986. The present report brings together reviews of work done in the four research areas of this phase for 1988, and therefore constitues an update of the previous report, ref. EUR 11589. This project is part of the CEC R and D programme on radioactive waste management (1985-89)

  4. Laboratory and field studies related to the Hydrology/Radionuclide Migration Project

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1991-05-01

    This annual report describes research conducted in FY 1990 by Los Alamos National Laboratory for the Hydrology/Radionuclide Migration Project. This multi-agency project measures the underground movement of radionuclides related to nuclear testing at the Nevada Test Site. This project continues the long-term experiment at the site of the Cambric nuclear test. Water pumped from a well adjacent to the explosion cavity continues to show decreasing amounts of tritium and Krypton 85 but no Cesium 139. Analyses of drillback debris shows a distinction between refractory and volatile materials in respect to both their location in the test cavity and their leachability with groundwater. We surveyed materials used during nuclear testing to evaluate any post-test hazard; we concluded that most such materials pose a minimal hazard. The Los Alamos drilling program provided an opportunity for us to sample a collapsed zone above the cavity of a test, which was fired 2 years ago. We continue our research in colloid characterization and in detection of low levels of Technetium 99 in Nevada Test Site water. During FY 1990, we drilled a new hole in the Yucca Flat area to study radionuclide migration. This report also describes Los Alamos management and planning activities in support of this project. 20 refs., 2 figs., 14 tabs

  5. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig

    International Nuclear Information System (INIS)

    Reiller, P.; Buckau, G.; Kienzler, B.; Duro, L.; Martell, M.

    2006-01-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  6. The Commission of European Communities project 'mirage' (migration of radionuclides in the geosphere)

    International Nuclear Information System (INIS)

    Come, B.

    1984-01-01

    The co-ordinated project 'MIRAGE' on Migration of Radionuclides in the Geosphere corresponds to the follow-up, from 1983 onwards, of the present activities of the laboratories of the Member States, up to the end of 1984, and of the Joint Research Centre at Ispra, up to the end of 1983. It is concentrated upon the study of the transfer of radioactivity from conditioned waste through the different barriers up to the interface between the geosphere and the biosphere. The MIRAGE project is performed in the framework of the Commission of European Communities (CEC) indirect action programme on Management and Storage of Radioactive Waste, sub-programme Undergound Disposal, and of the CEC direct action programme on Safety of Nuclear Materials at the Joint Research Centre, Ispra Establishment. The total financial commitment in this project is at present 6,384,000 ECU for 1983 and 1984 and the Commission participates financially in each study selected on a cost-sharing basis to a level of about 40% of the total cost. The costs of the studies performed at JRC-Ispra are not included in this amount. The number of organizations, firms and laboratories involved in this project comes to about 40

  7. Geochemistry and radionuclide migration

    International Nuclear Information System (INIS)

    Isherwood, D.

    1978-01-01

    Theoretically, the geochemical barrier can provide a major line of defense in protecting the biosphere from the hazards of nuclear waste. The most likely processes involved are easily identified. Preliminary investigations using computer modeling techniques suggest that retardation is an effective control on radionuclide concentrations. Ion exchange reactions slow radionuclide migration and allow more time for radioactive decay and dispersion. For some radionuclides, solubility alone may limit concentrations to less than the maximum permissible now considered acceptable by the Federal Government. The effectiveness of the geochemical barrier is ultimately related to the repository site characteristics. Theory alone tells us that geochemical controls will be most efficient in an environment that provides for maximum ion exchange and the precipitation of insoluble compounds. In site selection, consideration should be given to rock barriers with high ion exchange capacity that might also act as semi-permeable membranes. Also important in evaluating the site's potential for effective geochemical controls are the oxidation potentials, pH and salinity of the groundwater

  8. Laboratory and field studies related to the Radionuclide Migration Project: Progress report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1987-08-01

    In this report we describe the work done at Los Alamos in support of the Radionuclide Migration project during fiscal year 1986. We have continued to monitor the transport of tritium and 85 Kr from the Cambric explosion zone to the satellite well, which is pumped at 600 gal/min. Corresponding movement of cationic radionuclides such as 137 Cs and 90 Sr has not yet been observed after 12 yr of pumping, nor have we seen evidence that these strongly sorbing ions move in conjunction with colloids. We have analyzed more data from the Cheshire study site but have not resolved the uncertainties regarding the distribution and movement of radioactive materials at this location. Our attempts to improve our analytical capability for 36 Cl and 99 Tc have resulted in some progress. Similarly, we have increased our understanding of radionuclide transport phenomena such as channeling in fracture flow and anion exclusion in zeolites and clays. A sample exchange with Lawrence Livermore National Laboratory has helped us identify critical steps in our procedures for collecting and analyzing large-volume water samples. We have surveyed potential sites on Pahute Mesa at the Nevada Test Site for future radionuclide migration studies and conclude that there are none other than Cheshire presently available, and none are likely to be created in the near future. The Laboratory has engaged recently in radionuclide migration studies sponsored by our weapons program; we reviewed this work in an appendix to the annual report

  9. Integrated project 'fundamental processes of radionuclide migration (FUNMIG)', within EC 6. framework programme

    International Nuclear Information System (INIS)

    Buckau, G.

    2005-01-01

    Full text of publication follows: The FUNMIG project is an integrated project within the 6. Framework Programme of the European Commissions. It started 1 January 2005 and has a duration of 4 years. The project deals with all aspects of radionuclide migration in the far-field of a high level nuclear waste repository. It is structured into seven components. Two components are on fundamental processes applicable to all nuclear waste disposal concepts and host-rock types. They are divided into processes that are conceptually well understood and one component dealing with processes where not only trustworthy data are scarce, but conceptualization is at an infant state. Three components address processes specific for host rock types presently under discussion for high level waste disposal in the EU, namely clay rich, crystalline and salt rock. One component is on integration of processes and abstraction to performance assessment. Finally, one component deals with a broad spectrum of activities on knowledge transfer and training. There are 51 contractors from 15 European countries involved. In addition, a special instrument is used for groups interested in participation as Associated Groups. There are presently about 15 such Associated Groups increasing the number of countries involved to 17. Among these Associated Groups, presently 8 national regulatory bodies are represented, promoting communication between the scientific-technical and regulatory communities. There is no specific deadline for joining the FUNMIG project as an Associated Group and negotiations with further groups/organizations is ongoing. Information about the FUNMIG project can be found under www.funmig.com. The present project is one out of four dealing with disposal of radioactive waste within the European Commissions 6. Framework Programme. The other ones are on the basis for waste disposal techniques, near field processes, and a project expected within the next future dealing with performance

  10. Radionuclide migration in soils

    Energy Technology Data Exchange (ETDEWEB)

    Demir, M [Ingenieurgesellschaft Bonnenberg und Drescher, Juelich (Germany, F.R.)

    1979-01-01

    Unplanned releases from a nuclear installation - e.g., leakage from a storage tank or other incident - can result in the escape of contaminants such as U, Pu, Cs, Sr, T etc. Nuclide transport through the ground is governed by characteristics of the subsurface hydrology and the specific nuclides under consideration. Unsaturated soil layers result in a transport rate so low as to negligible. Radionuclides reaching the ground water are assumed to endanger human life because of potential uncontrolled ingestion. The most dangerous nuclides are long-lived and not absorbed, or very poorly absorbed, in the soil. During migration of nuclides through saturated soil layers, the concentration can be reduced by dilution. Preliminary results indicate that tritium is spread with ground water velocity. Its concentration can be reduced only by diffusion, dispersion and radioactive decay. Alpha-emitters are strongly retained velocities of alpha-emitters are approximately one thousandth (10/sup -3/) that of T. Transport velocities of Cs and Sr are approximately one hundreth (10/sup -2/) and one tenth (10/sup -1/) that of T respectively.

  11. Radionuclide migration in soils

    International Nuclear Information System (INIS)

    Demir, M.

    1979-01-01

    Unplanned releases from a nuclear installation - e.g., leakage from a storage tank or other incident - can result in the escape of contaminants such as U, Pu, Cs, Sr, T etc. Nuclide transport through the ground is governed by characteristics of the subsurface hydrology and the specific nuclides under consideration. Unsaturated soil layers result in a transport rate so low as to negligible. Radionuclides reaching the ground water are assumed to endanger human life because of potential uncontrolled ingestion. The most dangerous nuclides are long-lived and not absorbed, or very poorly absorbed, in the soil. During migration of nuclides through saturated soil layers, the concentration can be reduced by dilution. Preliminary results indicate that tritium is spread with ground water velocity. Its concentration can be reduced only by diffusion, dispersion and radioactive decay. Alpha-emitters are strongly retained velocities of alpha-emitters are approximately one thousandth (10 -3 ) that of T. Transport velocities of Cs and Sr are approximately one hundreth (10 -2 ) and one tenth (10 -1 ) that of T respectively. (orig./HP) [de

  12. Radionuclide migration studies in soil

    International Nuclear Information System (INIS)

    Marumo, J.T.

    1989-01-01

    In this work a brief description about retention and migration parameters of radionuclides in soil, including main methods to determine the distribution coefficient (K) are given. Some of several factors that can act on the migration are also mentioned. (author) [pt

  13. Laboratory and field studies related to the radionuclide migration project. Progress report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    Daniels, W.R.; Thompson, J.L.

    1984-04-01

    The FY 1983 laboratory and field studies related to the Radionuclide Migration project are described. Results are presented for radiochemical analyses of water samples collected from the RNM-1 well and the RNM-2S satellite well at the Cambric site. Data are included for tritium, 36 Cl, 85 Kr, 90 Sr, 129 I, and 137 Cs. Preliminary results from water collection at the Cheshire site are reported. Laboratory studies emphasize the sorptive behavior of tuff and its dependence on mineralogy. 18 references, 7 figures, 13 tables

  14. Laboratory and field studies related to the Radionuclide Migration project: Progress report, October 1, 1986-September 30, 1987

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1988-02-01

    In this report we describe the research done by personnel of the Los Alamos National Laboratory in support of the Radionuclide Migration project during FY 1987. We are engaged in collecting data concerning the movement of radionuclides at three locations on the Nevada Test Site. We continue to monitor the elution of tritium and krypton from the RNM-2S well at the Cambric site and have described in detail the elution of 36 Cl from the same well. The data from this field study provide us with the opportunity to test the validity of several models of solute transport through geologic media. We have detected tritium and fission products in a water sample from the hole UE20n number1, which was drilled this year at the Cheshire site on Pahute Mesa. We are also continuing our efforts to learn how radionuclides have moved in test areas 3 and 4 near the Aleman site. Our laboratory work this year includes (1) a characterization of the size and density of two stable plutonium(IV) colloid suspensions prepared by different techniques and (2) a study of the transmission of colloidal-size polystyrene beads through crushed-rock columns. 18 refs., 7 figs., 9 tabs

  15. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  16. Radionuclides migration or isolation?

    International Nuclear Information System (INIS)

    Toulhoat, P.; Grambow, B.; Simoni, E.

    2005-01-01

    After 20 years of research, the chemical behaviour of actinides and fission products in nuclear waste disposal environments is much better understood. Consistent thermodynamic data have been gathered and allow much more accurate previsions. Through the considerable development of analytical spectroscopy, including time resolved laser fluorescence and X ray absorption, a better understanding of the chemical reactivity (complexation, sorption) of actinides and fission products at a molecular scale has been possible. Chemically reducing conditions are found in most selected disposal host rock formations, generally chosen for their high sorption capacity (clays); such conditions favour the chemical confinement of most radionuclides through precipitation or sorption. Low permeability host rocks participate to this confinement, as convective fluxes are lower than diffusive fluxes. The most recent performance assessment exercises have taken into account the recent progress of knowledge in the chemical evolution of the near field. They show that the dose rates at the outlet are far lower than existing recommendations for normal and most altered evolution scenarios. (authors)

  17. Migration of radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Maravic, H. von; Moreno, J.

    1993-01-01

    This report contains 13 papers presented at the plenary meeting on the coordinated project MIRAGE (Migration of Radionuclides in the Geosphere) which is in its third phase in the frame work of the 4th five year research program on management and disposal of radioactive waste (1990-1994). 12 papers in the INIS scope have been analyzed and describe the present status of various research activities, within the large integrated multinational subprojects such as: Colloids and organic materials in aquifer systems, processes of geochemical modelling (CHEMVAL project), migration experiments through different geological media, natural analogue studies

  18. The International intraval project. Phase 1 case 2. Radionuclide migration in single natural fractures in granite

    International Nuclear Information System (INIS)

    Skagius, K.

    1992-01-01

    The INTRAVAL study addresses validation of geosphere transport models for use in repository performance assessment by examining various test cases relevant to radioactive waste disposal. This report describes the results from INTRAVAL test case 2 which is based on a set of laboratory experiments studying migration of non-sorbing as well as sorbing tracers in a single fracture in granitic cores. Three project teams have investigated this test case. Models including advection, dispersion, sorption to the fracture surface, matrix diffusion and sorption within the rock matrix were calibrated against the experimental breakthrough curves. Obtained best-fit values of the parameters determining the interaction between tracer and rock were in fair agreement with independently measured data. Models neglecting matrix diffusion and sorption within the rock matrix gave poor fits to the experimental data. These results suggest the need to include matrix diffusion and matrix sorption in the model to represent data for this test case. Furthermore, it was not possible to distinguish between hydrodynamic dispersion and channelling dispersion since equally good fits were obtained with both models. Equally good fits were also obtained with models assuming constant fracture aperture and variable fracture aperture. In the context of performance assessment of repositories in fractured rock, the major outcome from this test case is additional support for the inclusion of matrix diffusion and matrix sorption in the transport models. 17 refs., 14 figs., 3 tabs

  19. CEC project Mirage - second phase on migration of radionuclides in the geosphere. Third (and final) summary progress report (work period 1989)

    International Nuclear Information System (INIS)

    Come, B.

    1990-01-01

    A second phase of the Community coordinated project Mirage (migration of radionuclides in the geosphere) was launched in 1986. The present report brings together reviews of work done in the four research areas of this phase for 1989, and therefore constitutes an update of the previous reports, ref. EUR 11589 and 12229. This project is part of the CEC R and D programme on radioactive waste management (1985-89)

  20. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig; Rapport du 1. workshop annuel du projet integre fundamental processes of radionuclide migration (IP Funmig)

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Buckau, G; Kienzler, B [Institut fur Nukleare Entsorgung (INE), Karlsruhe (Germany); Duro, L; Martell, M [Enviros (Spain)

    2006-07-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  1. Radionuclide migration test using undisturbed aerated soil

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Ogawa, Hiromichi; Wadachi, Yoshiki

    1988-01-01

    As one of the most important part of safety assessment on the shallow land disposal of lowlevel radioactive waste, the radionuclide migration was studied using undisturbed soil samples, in order to evaluate an exact radionuclide migration in an aerated soil layer. Soil samples used in the migration test were coastal sand and loamy soil which form typical surface soil layers in Japan. The aqueous solution containing 60 CoCl 2 , 85 SrCl 2 and 137 CsCl was fed into the soil column and concentration of each radionuclide both in effluent and in soil was measured. Large amount of radionuclides was adsorbed on the surface of soil column and small amount of radionuclides moved deep into the soil column. Difference in the radionuclide profile was observed in the low concentration portion particularly. It is that some fractions of 60 Co and 137 Cs are stable in non-ionic form and move downward through the soil column together with water. The radionuclide distribution in the surface of soil column can be fairly predicted with a conventional migration equation for ionic radionuclides. As a result of radionuclide adsorption, both aerated soil layers of coastal sand and loamy soil have large barrier ability on the radionuclide migration through the ground. (author)

  2. Chemical speciation of radionuclides migrating in groundwaters

    International Nuclear Information System (INIS)

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., 60 Co and 106 Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters

  3. 2. Annual Workshop Proceedings of the Integrated Project 'Fundamental Processes of Radionuclide Migration' - 6. EC FP IP FUNMIG

    International Nuclear Information System (INIS)

    Buckau, Gunnar; Kienzler, Bernhard; Duro, Lara; Montoya, Vanessa

    2007-06-01

    This Workshop combined various types of activities and meetings with the following objectives: Inform about the scientific progress; Inform about the administrative status; Inform/agree upon forthcoming reporting; Discuss various topics of interest (for example, various aspects of Integration ); Inform about and discuss training; Agree upon the forthcoming work program. Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. The proceedings are divided into the following sections: Research, Technology and Development Components activity overviews, with summaries where scientific highlights were presented. These were: RTDC1: Influence of inorganic carbon of Ni(II) and Co(II) sorption on Na-illite and Opalinus clay; Adsorption of humics to iron oxides and its effects on ion adsorption. RTDC2: Sorption of Uranium onto granite and altered material from Aespoe HRL; Sorption and reduction of uranyl by Fe(II) minerals; Mobility of uranium during the reductive dissolution of iron oxides by sulfide; U(VI/IV) adsorption mechanism on biotite surfaces and clarification of the influence of redox reactions on the U(VI) adsorption. RTDC3: Interlayer hydration H 2 O 'paradigm' (mono-porosity model); Porosity/mineral distribution characterisation (mm-cm scale), GIS system for CO x 'transport pertinent' data sets. A topical session was held around subjects associated with performance assessment/the Safety Case, especially relevant for geologic disposal in crystalline rock. The topics were: Role of biogeochemical processes on radionuclide migration; Characterization of geochemical conditions in crystalline rock/ Process identification and verification by real system analysis; Fluid flow system characterization in crystalline rock (Effects of the heterogeneity and up-scaling). Individual Scientific and Technical Contributions, containing reviewed scientific and technical manuscripts: European OBservatory for Long-term Governance on

  4. 2. Annual Workshop Proceedings of the Integrated Project 'Fundamental Processes of Radionuclide Migration' - 6. EC FP IP FUNMIG

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, Gunnar; Kienzler, Bernhard [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany); Duro, Lara; Montoya, Vanessa [Enviros Spain S.L., Barcelona (Spai n)

    2007-06-15

    This Workshop combined various types of activities and meetings with the following objectives: Inform about the scientific progress; Inform about the administrative status; Inform/agree upon forthcoming reporting; Discuss various topics of interest (for example, various aspects of Integration ); Inform about and discuss training; Agree upon the forthcoming work program. Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. The proceedings are divided into the following sections: Research, Technology and Development Components activity overviews, with summaries where scientific highlights were presented. These were: RTDC1: Influence of inorganic carbon of Ni(II) and Co(II) sorption on Na-illite and Opalinus clay; Adsorption of humics to iron oxides and its effects on ion adsorption. RTDC2: Sorption of Uranium onto granite and altered material from Aespoe HRL; Sorption and reduction of uranyl by Fe(II) minerals; Mobility of uranium during the reductive dissolution of iron oxides by sulfide; U(VI/IV) adsorption mechanism on biotite surfaces and clarification of the influence of redox reactions on the U(VI) adsorption. RTDC3: Interlayer hydration H{sub 2}O 'paradigm' (mono-porosity model); Porosity/mineral distribution characterisation (mm-cm scale), GIS system for CO{sub x} 'transport pertinent' data sets. A topical session was held around subjects associated with performance assessment/the Safety Case, especially relevant for geologic disposal in crystalline rock. The topics were: Role of biogeochemical processes on radionuclide migration; Characterization of geochemical conditions in crystalline rock/ Process identification and verification by real system analysis; Fluid flow system characterization in crystalline rock (Effects of the heterogeneity and up-scaling). Individual Scientific and Technical Contributions, containing reviewed scientific and technical manuscripts: European OBservatory for Long-term Governance

  5. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  6. Hydrology and radionuclide migration program

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1992-02-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during fiscal year 1988. The report discusses studies at a new well 100 m down the hydrologic gradient from the previous sampling point at the Cheshire site; laboratory investigations of the mineralogical composition of NTS colloids; the strength of colloidal deposits and parameters affecting their formation and release; accelerator mass spectrometric measurements of 129 I in water from the Cheshire stie; 222 Rn concentrations in water from several pumped wells at the NTS; and a description of a new well (PM3) drilled off the NTS near Area 20. Further studies on groundwater sampled show that both technetium and iodine are quite mobile; both closely track the trend of the decreasing tritium concentration with increasing distance. Antimony and cesium concentrations decrease much more rapidly than tritium, and europium was not detected at all in the new well. Colloidal particles found in water collected from the Cheshire cavity are in size range of 0.050 to 0.003 μm and are dominated by quartz and (Ca, K) feldspars. A new well was drilled on US Air Force land adjacent to the NTS Area 20. Static water level measurements and geochemical data from this well will help to determine the extent to which Pahute Mesa base flow infiltrates Oasis Valley. Preliminary results indicate tritium concentrations in water samples from this well to be in the range of 0.1 to 0.4 pCi/ml as measured under field conditions

  7. Experimental studies on the migration of radionuclides of the elements I, Sr, Cs, Co and Pd in the roof rock of the projected waste repository at Gorleben

    International Nuclear Information System (INIS)

    Klotz, D.; Lang, H.; Moser, H.

    1985-07-01

    The studies were intended to provide information on the sorptive properties of 15 samples of fine-grain and medium-grain sands with regard to the radionuclides of I, Sr, Cs, Co, and Pd, and on their hydraulic properties. The samples were taken from the geologic formations in the area surrounding the projected waste repository in the Gorleben salt mine, at depth of up to 250 m down from terrain surface, and were analysed by means of column and batch experiments. Further goals were to determine the radionuclide migration as a function of flow velocity of the groundwater, and of sand compactness, as well as the effects of carrier ions and main groundwater contituents. The margins of retardation factors for the various radionuclides are given. One important result of the studies is that it could be expeimentally verified that there is the process of quasi irreversible sorption, i.e. it could be shown that desorption of radionuclides from natural, unconsolidated rock proceeds very much slowlier than sorption, so that this finding is of great significance to the safety assessment of a radioactive waste repository in geologic formations. (orig./HP) [de

  8. Radionuclide migration in water reservoirs

    International Nuclear Information System (INIS)

    Rodionova, L.F.

    1983-01-01

    Toxicity degree and radiation effect of different radionuclides depend on multiple factors, whose interaction can strengthen or weaken the effects through the mechanism of nuclide accumulation by hydrobiontes. Stage of development of an aquatic organism, its age, mass and sex as well as lifetime and residence time of the organism in the given medium are of importance. The radionuclide build up depends on illumination, locale of the bioobject residence, on the residence nature. The concentration of radionuclides in aquatic organisms and bionts survival depend on a season, temperature of the residence medium, as well as salinity and mineral composition of water influence

  9. Study of test methods for radionuclide migration in aerated zone

    International Nuclear Information System (INIS)

    Li Shushen; Guo Zede; Wang Zhiming

    1993-01-01

    Aerated zone is an important natural barrier against transport of radionuclides released from disposal facilities of LLRW. This paper introduces study methods for radionuclide migration in aerated zone, including determination of water movement, laboratory simulation test, and field tracing test. For one purpose, results obtained with different methods are compared. These methods have been used in a five-year cooperative research project between CIRP and JAERI for an establishment of methodology for safety assessment on shallow land disposal of LLRW

  10. Geotrap: radionuclide migration in geologic, heterogeneous media. Summary of accomplishments

    International Nuclear Information System (INIS)

    2002-01-01

    GEOTRAP - the OECD/NEA Project on Radionuclide Migration in Geologic, Heterogeneous Media - was carried out in the context of site evaluation and safety assessment of deep repository systems for long-lived radioactive waste. The project was created in 1996 with the aim of developing an understanding of, and modelling capability for, potential radionuclide migration. This report provides an overview of the project's main findings and accomplishments over its five-year life. This summary should help make the valuable information collected and generated by the GEOTRAP project accessible to a wide readership both within and outside the radioactive waste community.It is a reflection of the careful attention paid by this community to the question of radionuclide transport. (authors)

  11. Migration of radionuclides in fissured rock

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1982-01-01

    Some computed results of radionuclide migration in fissured rock are presented. The computations are based on a model which describes flow as occurring in a multitude of independent fissures (stratified flow). This gives rise to strong dispersion of channeling. The radionuclide migration in the individual fissures is modelled by the advection equation on a parallel walled channel with porous walls. The nuclides may diffuse into the pores and sorb reversibly on the pore surfaces. The effluent rates of 23 important nuclides are presented as functions of distance and time for various of important parameters such as rock permeability, diffusion coefficients, release rates, time of first release, fissure spacing and fissure width distribution. (Author)

  12. Preliminary experiences of radionuclide migration with granitic materials: El Berrocal (Spain)

    International Nuclear Information System (INIS)

    Garcia Gutierrez, M.

    1994-01-01

    This report presents the radionuclide migration in granitic rocks used for radioactive waste storage. This project is developed in El Berrocal (Spain). The author studies the absorption process, applies the transport equation, the column migration and analyzes the curves

  13. Hydrology and Radionuclide Migration Program, 1985--1986 progress report

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1988-09-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (formerly the Radionuclide Migration Project) at the Nevada Test Site (NTS) during fiscal years 1985 and 1986. The report discusses studies of the partitioning and movement of dissolved and colloidal radionuclides at the Cheshire (U20n) site; tracer studies of shallow recharge and of plant-water uptake at the Cambric-site ditch carrying the effluent water pumped from well RNM-2; development of a rapid and sensitive assay for 99 Tc in groundwater and its application to a survey of technetium activities at a variety of test wells; and a series of methodological studies directed toward calibration, understanding, and improving our low-level radionuclide determinations. Groundwater sampled from the Cheshire cavity and from adjacent aquifers contains substantial concentrations (mg/L) of colloids that appear to consist primarily of natural minerals. These colloids were found to contain detectable amounts of strongly sorbed radionuclides, leading to the hypothesis that radionuclides are being transported by the groundwater in colloidal form. The RNM ditch at the Cambric site has provided a unique tritium-labeled, irrigated test plot in the desert. One study at this site continued earlier investigations of water and tritium migration in the shallow vadose (unsaturated-soil) zone adjacent to the ditch and extended that study to include using a tracer to determine the velocity of vertical water flow in the recharge zone directly below the ditch. 57 refs., 15 figs., 23 tabs

  14. Laboratory studies of radionuclide migration in tuff

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Thompson, J.L.; Triay, I.R.

    1989-01-01

    The movement of selected radionuclides has been observed in crushed tuff, intact tuff, and fractured tuff columns. Retardation factors and dispersivities were determined from the elution profiles. Retardation factors have been compared with those predicted on the basis of batch sorption studies. This comparison forms a basis for either validating distribution coefficients or providing evidence of speciation, including colloid formation. Dispersivities measured as a function of velocity provide a means of determining the effect of sorption kinetics or mass transfer on radionuclide migration. Dispersion is also being studied in the context of scaling symmetry to develop a basis for extrapolating from the laboratory scale to the field. 21 refs., 6 figs., 2 tabs

  15. Migration of radionuclide chains in subseabed disposal

    International Nuclear Information System (INIS)

    Ray, A.K.; Nuttall, H.E.

    1982-01-01

    In this study of subseabed disposal, the two dimensional (axial and radial) migration of radionuclide chains released from a canister located in a sedimentary layer bounded at the top by the ocean and at the bottom by an impermeable basalt zone is analyzed to determine the escape rate of radionuclides into the seawater. Analytical solutions have been derived to represent the transient concentration profiles within the sediment, flux and discharge rates to the water column of each member present in a decay chain. Using the properties of chain members present in actinide decay systems, the effects of half-life, adsorption equilibrium and other relevant parameters are elucidated. 4 figures, 1 table

  16. Migration of radionuclides through a river system

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Migration behavior of several atmospherically-derived radionuclides in a river watershed was studied. A main interest was in their relocation from the ground soil of the watershed to a downstream region through a river. Studied radionuclides are: {sup 137}Cs generated by weapon tests in the atmosphere; {sup 210}Pb and {sup 7}Be of naturally occurring radionuclides; {sup 137}Cs, {sup 90}Sr, {sup 239,240}Pu and {sup 241}Am released by the Chernobyl nuclear power plant accident. Dominance of the form in suspended solid in river water (particulate form) was qualified for the radionuclides in the Kuji river watershed. An importance of discharge in flooding was also confirmed. A historical budget analysis for weapon test derived {sup 137}Cs was presented for the Hi-i river watershed and its accompanied lake sediment (Lake Shinji). The work afforded a scheme of a fate of {sup 137}Cs after falling on the ground soil and on the lake surface. Several controlling factors, which can influence on the chemical form of radionuclides discharged to a river, were also investigated in the vicinity of the Chernobyl nuclear power plant. A special attention was paid on the association of the radionuclides with dissolved species in water. Preferential association of Pu and Am isotopes to a large molecular size of dissolved matrices, probably of humic substances, was suggested. (author)

  17. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  18. Modelling of radionuclide migration in forest ecosystems. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man. 42 refs, 3 tabs, 9 figs.

  19. Modelling of radionuclide migration in forest ecosystems. A literature review

    International Nuclear Information System (INIS)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man

  20. Radionuclide chain migration in fissured rock

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, I.

    1982-04-01

    Diffusion into the rock matrix has a large impact on the migration of radionuclides in the geosphere. The aim of the present study is to investigate the effect of this mechanism on radionuclide chain migration. For this purpose a previously used numerical code TRUMP is extended to incorporate chain decay. The algorithm is also changed to directly include the decay terms. The extended version was given the acronym TRUCHN. Numerical solutions from TRUCHN are compared with the analytical solutions developed by Lester et al. A good agreement is obtained. To illustrate the impact of matrix diffusion on the arrival times to the biosphere of the members of a radionuclide chain a number of numerical calculations were done for the two chains U-238 to Th-230 to Ra-226 and Pu-239 to U-235 to Pa-231. The resulting curves are compared with the results for surface sorption (penetration depth 10 - 4 m) and volume sorption (complete penetration) obtained with the computer program GETOUT. The difference in first arrival times are very large. The arrival times in the surface and volume sorption cases, differ with as much as four orders of magnitude. The corresponding times for instationary diffusion are located between these extreme values. A daughter nuclide which is strongly sorbed may be heavily retarded if it is produced far inside the rock matrix and has a long way to diffuse before it reaches the flowing water. This effect is investigated, by considering diffusion only of a radionuclide chain, with analytical and numerical (TRUCHN) methods. Finally, in connection with the reconcentration effect, some means of describing the outflow of a daughter nuclide in terms of the outflow of its parent nuclide are proposed. (Authors)

  1. The radionuclide migration experiment - overview of investigations 1985 - 1990

    International Nuclear Information System (INIS)

    Frick, U.; McKinley, I.G.; Baeyens, B.; Bradbury, M.H.; Eikenberg, J.; Heer, W.; Hoehn, E.; Smith, P.A.; Alexander, W.R.; Bossart, P.; Buehler, C.; Fierz, T.

    1992-03-01

    This paper provides an overview of the investigations conducted from 1985 to 1990 as a part of the radionuclide migration experiment which is currently in progress in the Nagra underground research laboratory at the Grimsel pass in the Central Swiss Alps. The major aims of the project are (1) to test the extrapolation of laboratory sorption data to field conditions, (2) to analyse retardation processes in a fractured rock, (3) to improve and develop the necessary methodologies for site characterization and (4) to test existing geochemical, hydrodynamic, and solute transport models or their associated data bases. Field and modeling work are complemented by an extensive laboratory support programme. The Grimsel migration experiment demonstrates conclusively how the combined efforts of modeling, laboratory and field investigations can substantially widen the understanding of radionuclide transport in a geological environment. (author) figs., tabs., refs

  2. Migration of radionuclides following shallow land burial

    International Nuclear Information System (INIS)

    Sedlet, J.; Golchert, N.W.

    1980-01-01

    A study of radionuclide migration was conducted at a facility used from 1944 to 1949 for the shallow land burial of radwaste produced during operations with two reactors and related nuclear research. It is situated in glacial drift 45 m thick. Underlying the drift is a generally level Silurian dolomite bedrock 60 m thick. The thickness of the drift decreases as the surface slopes downhill (north) until the dolomite reaches the surface and forms the bed of a river, 700 m to the north. This study was begun after tritiated water was detected in two picnic wells north of the facility, between the burial plot and the river. Surface and subsurface measurements indicate that tritium is migrating out of the burial site, but no other radionuclides have left the plot. The tritium concentrations decrease with distance from the plot. Tritium was found in the subsoil at all depths sampled, so the ground beneath and immediately around the plot contains tritium down to the dolomite aquifer. Time of travel of water from the burial plot to the nearest well is estimated to be 54 months. This would imply the peak concentration would reach the dolomite in about 35 years. By this time, 86% of the tritium would have disappeared by radioactive decay. The cyclical nature of the tritium content in the two wells implies that tritiated water is carried from the burial site by the spring rains when they recharge the groundwater supply

  3. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-01-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  4. Migration of heavy natural radionuclides in a humid climatic zone

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Alexakhin, R.M.; Taskaev, A.I.; Maslov, V.I.

    1980-01-01

    Regularities and biochemical peculiarities of the migrations of heavy natural radionuclides in the environment are examined, with special reference to two regions in a humid climatic zone representing natural patterns of radionuclide distribution and to four plots artificially contaminated with high levels of natural radioactivity more than 20 years previously. It was determined that the migration of thorium, uranium, and radium isotopes through the rock-water-soil-plant system is dependent on many physiochemical properties of these radionuclides, their compounds, and the local environment. Isotopic activity ratios provide a useful tool for studying the direction of radionuclide migration and its influence on observed distribution patterns

  5. Hydrology/Radionuclide Migration Program and related research activities

    International Nuclear Information System (INIS)

    Jones, M.A.

    1992-02-01

    This report presents the results of technical studies conducted under the Hydrology/Radionuclide Migration Program (HRMP) at the Nevada Test Site (NTS) for the period of October 1, 1985 through September 30, 1986. The HRMP was initiated in 1973 as the Radionuclide Migration Program to study and better understand the hydrologic systems of the NTS and potential movement and rates of movement of radionuclides and other contaminants injected into these systems by underground nuclear testing

  6. Migration of radionuclides in geologic media: Fundamental research needs

    International Nuclear Information System (INIS)

    Reed, D.T.; Zachara, J.M.; Wildung, R.E.; Wobber, F.J.

    1990-01-01

    An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes. 64 refs., 1 fig., 1 tab

  7. UCBNE25, Radionuclide Migration in Geologic Media

    International Nuclear Information System (INIS)

    Kilshtok, G.

    1988-01-01

    1 - Description of program or function: UCBNE25 estimates the maximum concentration of nuclides occurring during the migration of three-member radionuclide chains in geologic media without axial dispersion. Unlike other migration codes, the release rate in UCBNE25 is the independent variable, and time is the dependent variable. The extrema in concentrations are determined without having to calculate the entire concentration history. The program assumes one-dimensional water transport and sorption equilibrium for the nuclides in the soil and in the water. The water velocity is held constant, and the leach times are smaller than the half-lives of the nuclides involved. UCBNE25 calculates for each nuclide the time of the maxima at a specified position, the maximum dimensionless concentration, the corresponding water dilution rate, and the contamination time for that position. The closed form solutions can be easily checked by hand, making it a useful calibration tool for other codes. 2 - Method of solution: The method concentrates on the estimation of the extrema positions in space at a fixed time and their occurrence at a fixed position

  8. Radionuclide migration in the Chernobyl contamination zone

    International Nuclear Information System (INIS)

    Golosov, V.N.; Panin, A.V.; Ivanova, N.N.

    1998-01-01

    It is well known that fallout of 137 Cs reaching the land soils with precipitation was rapidly and tightly sorbed to the fine fraction of sediment or soils. The majority of the 137 Cs is retained in the top few centimetres of the soil or sediment profiles (Loughran et al, 1993, Owens et al, 1996). In the absence of strong variations in precipitation over a relatively small area the total bomb-derived 137 Cs fallout can assumed to be spatial uniform. The Chernobyl 137 Cs fallout was mostly connected with one or two rains. So the spatial variability of this 137 Cs can be higher. Furthermore because the explosion on the Chernobyl nuclear plant happen together with fire, a lot of ashes particles with radionuclide were distributed within vast areas. So even microvariability of Chernobyl 137 Cs can be very high in some places. The horizontal migration of 137 Cs connects with soil erosion processes that dominate on the agricultural lands of the Central Russia. The main goal of this investigation is to evaluate the caesium-137 horizontal and vertical migration within typical landscape of the Central Russia 11 years after the Chernobyl accident

  9. Radionuclide migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1989-01-01

    The United States government routinely tests nuclear devices at the Nevada Test Site (NTS) in southern Nevada. A significant amount of radioactive material exists underground at the NTS with no containers or engineered barriers to inhibit its subsequent migration. The Department of Energy has sponsored for many years a research program on radionuclide movement in the geologic media at this location. Goals of this research program are to measure the extent of movement of radionuclides away from underground explosion sites and to determine the mechanisms by which such movement occurs. This program has acquired significance in another aspect of nuclear waste management because of the Yucca Mountain Project. Yucca Mountain at the NTS is being intensively studied as the possible site for a mined repository for high level nuclear waste. The NTS provides a unique setting for field studies concerning radionuclide migration; there is the potential for greatly increasing our knowledge of the behavior of radioactive materials in volcanogenic media. This review summarizes some of the significant findings made under this research program at the NTS and identifies reports in which the details of the research may be found. 36 refs., 4 figs

  10. Experimental and modelling studies of radionuclide migration from contaminated groundwaters

    International Nuclear Information System (INIS)

    Tompkins, J. A.; Butler, A. P.; Wheater, H. S.; Shaw, G.; Wadey, P.; Bell, J. N. B.

    1994-01-01

    Lysimeter-based studies of radionuclide uptake by winter wheat are being undertaken to investigate soil-to-plant transfer processes. A five year multi-disciplinary research project has concentrated on the upward migration of contaminants from near surface water-tables and their subsequent uptake by a winter wheat crop. A weighted transfer factor approach and a physically based modelling methodology, for the simulation and prediction of radionuclide uptake, have been developed which offer alternatives to the traditional transfer factor approach. Integrated hydrological and solute transport models are used to simulate contaminant movement and subsequent root uptake. This approach enables prediction of radionuclide transport for a wide range of soil, plant and radionuclide types. This paper presents simulated results of 22 Na plant uptake and soil activity profiles, which are verified with respect to lysimeter data. The results demonstrate that a simple modelling approach can describe the variability in radioactivity in both the harvested crop and the soil profile, without recourse to a large number of empirical parameters. The proposed modelling technique should be readily applicable to a range of scales and conditions, since it embodies an understanding of the underlying physical processes of the system. This work constitutes part of an ongoing research programme being undertaken by UK Nirex Ltd., to assess the long term safety of a deep level repository for low and intermediate level nuclear waste. (author)

  11. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  12. 2. Annual Workshop Proceedings of the Integrated Project 'Fundamental Processes of Radionuclide Migration' - 6. EC FP IP FUNMIG

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, Gunnar; Kienzler, Bernhard [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany); Duro, Lara; Montoya, Vanessa [Enviros Spain S.L., Barcelona (Spai n)] (eds.)

    2007-06-15

    This Workshop combined various types of activities and meetings with the following objectives: Inform about the scientific progress; Inform about the administrative status; Inform/agree upon forthcoming reporting; Discuss various topics of interest (for example, various aspects of Integration ); Inform about and discuss training; Agree upon the forthcoming work program. Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. The proceedings are divided into the following sections: Research, Technology and Development Components activity overviews, with summaries where scientific highlights were presented. These were: RTDC1: Influence of inorganic carbon of Ni(II) and Co(II) sorption on Na-illite and Opalinus clay; Adsorption of humics to iron oxides and its effects on ion adsorption. RTDC2: Sorption of Uranium onto granite and altered material from Aespoe HRL; Sorption and reduction of uranyl by Fe(II) minerals; Mobility of uranium during the reductive dissolution of iron oxides by sulfide; U(VI/IV) adsorption mechanism on biotite surfaces and clarification of the influence of redox reactions on the U(VI) adsorption. RTDC3: Interlayer hydration H{sub 2}O 'paradigm' (mono-porosity model); Porosity/mineral distribution characterisation (mm-cm scale), GIS system for CO{sub x} 'transport pertinent' data sets. A topical session was held around subjects associated with performance assessment/the Safety Case, especially relevant for geologic disposal in crystalline rock. The topics were: Role of biogeochemical processes on radionuclide migration; Characterization of geochemical conditions in crystalline rock/ Process identification and verification by real system analysis; Fluid flow system characterization in crystalline rock (Effects of the heterogeneity and up-scaling). Individual Scientific and Technical Contributions, containing reviewed scientific and technical manuscripts: European OBservatory for

  13. Radionuclide migration in groundwater. Annual progress report for 1982

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Brodzinski, R.L.

    1984-01-01

    Research has continued at a low-level waste disposal facility to characterize the physicochemical species of radionuclides migrating in groundwater. This facility consists of an unlined basin and connecting trench which receives effluent water containing low levels of a wide variety of fission and activation products and trace amounts of transuranic radionuclides. The effluent water percolates through the soil and a small fraction of it emerges at seepage springs located some 260 meters from the trench. The disposal basin and trench are very efficient in retaining most of the radionuclides, but trace amounts of a number of radionuclides existing in mobile chemical forms migrate in the groundwater from the trench to the springs. This facility provides the opportunity for characterizing the rates and mechanisms of radionuclide migration in groundwaters, identifying retardation processes, and validating geochemical models. 13 references, 25 figures, 23 tables

  14. Verification and improvement of predictive algorithms for radionuclide migration

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Miller, C.W.; Remer, J.S.

    1984-01-01

    This research investigated the adequacy of current numerical codes in simulating geochemical interactions affecting radionuclide migration, the level of complexity required in chemical algorithms of transport models, and the validity of the constant-k/sub D/ concept in chemical transport modeling. An initial survey of the literature led to the conclusion that existing numerical codes did not encompass the full range of chemical and physical phenomena influential in radionuclide migration

  15. Process and research method of radionuclide migration in high level radioactive waste geological disposal system

    International Nuclear Information System (INIS)

    Chen Rui; Zhang Zhanshi

    2014-01-01

    Radionuclides released from waste can migrate from the repository to the rock and soil outside. On the other hand, nuclides also are retarded by the backfill material. Radionuclide migration is the main geochemical process of the waste disposal. This paper introduces various methods for radionuclide migration research, and give a brief analysis of the geochemical process of radionuclide migration. Finally, two of the most important processes of the radionuclide migration have been instanced. (authors)

  16. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    Science.gov (United States)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  17. Influence of speciation on the geospheric migration of radionuclides

    International Nuclear Information System (INIS)

    Hadermann, J.; Schweingruber, M.

    1982-01-01

    For geosphere transport calculations in safety analyses of waste repositories it is generally assumed that the retardation of a migrating radionuclide is characterized by a single retention factor. However, in groundwater, radionuclides exist in various chemical forms with strongly differing sorption properties. We consider the effect of pseudo first order chemical reactions in liquid phase on migration. Conditions are derived under which local equilibrium in liquid phase is well fulfilled and migration is governed by a single effective retention factor. It is argued that in geosphere transport, equilibrium is likely to exist even when laboratory measurements show chromatographic separations. (author)

  18. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Golovich, Elizabeth C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mattigod, Shas V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Powers, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the

  19. Estimates of potential radionuclide migration at the Bullion site

    International Nuclear Information System (INIS)

    Brikowski, T.H.

    1992-04-01

    The Bullion site in Area 20 of the Nevada Test Site has been selected for an intensive study of the hydrologic consequences of underground testing, including subsequent radionuclide migration. The bulk of the chimney and cavity lie in zeolitized tuffs of low hydraulic conductivity, while the base of the cavity may extend downward into more conductive rhyolite flows. A mathematical analog to the Bullion setting is used here to estimate expected radionuclide migration rates and concentrations. Because of a lack of hydrologic data at the site, two contrasting scenarios are considered. The first is downward-transport, in which downward hydraulic gradients flush chimney contents into the conductive underlying units, enhancing migration. The other is upward-transport, in which upward gradients tend to drive chimney contents into the low-conductivity zeolitized tuffs, discouraging migration. In the downward-transport scenario, radionuclide travel times and concentrations are predicted to be similar to those encountered at Cheshire, requiring approximately 10 years to reach a proposed well 300 m downgradient. The upward transport scenario yields predicted travel times on the order of 2,000 years to the downgradient well. The most likely scenario is a combination of these results, with vertical movement playing a limited role. Radionuclides injected directly into the rhyolites should migrate laterally very quickly, with travel times as in the downward-transport scenario. Those in the zeolitized tuff-walled portion of the chimney should migrate extremely slowly, as in the upward-transport scenario

  20. COLLAGE: a numerical code for radionuclide migration through a fractured geosphere in aqueous and colloidal phases

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, P.; Brown, R.C.; Nicholas, D.G. [Intera Information Technologies, Henley-on-Thames, Oxfordshire (United Kingdom)

    1992-06-01

    Describes the COLLAGE model for radionuclide migration. COLLAGE models a one dimensional breakthrough problem for radionuclides in groundwater containing natural colloids. The program is written in FORTRAN 77.

  1. COLLAGE: a numerical code for radionuclide migration through a fractured geosphere in aqueous and colloidal phases

    International Nuclear Information System (INIS)

    Grindrod, P.; Brown, R.C.; Nicholas, D.G.

    1992-06-01

    Describes the COLLAGE model for radionuclide migration. COLLAGE models a one dimensional breakthrough problem for radionuclides in groundwater containing natural colloids. The program is written in FORTRAN 77

  2. RANCH, Radionuclide Migration in Geological Media

    International Nuclear Information System (INIS)

    Patry, J.; Hadermann, J.

    1991-01-01

    1 - Description of problem or function: One-dimensional transport of radionuclide chains through layered geological media, taking into account longitudinal dispersion, convection and retention. 2 - Method of solution: Semi-analytical solution by Laplace transform. Convolution integrals. 3 - Restrictions on the complexity of the problem: Maximum 4 nuclides and 10 layers. Peclet number large compared to 1

  3. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  4. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area Project and the Hydrologic Resources Management Program, October 1, 2002 - September 30, 2003

    International Nuclear Information System (INIS)

    D.L.Finnegan; J.L. Thompson; B.A. Martinez

    2004-01-01

    history of the radionuclide migration project from 1973 to present and conclude our report by noting document reviews and publications produced in support of this program

  5. Confinement and migration of radionuclides in deep geological disposal

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2007-07-01

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  6. Chemistry of groundwater and the migration process of radionuclides

    International Nuclear Information System (INIS)

    Olteanu, Mirela; Popa, Aurelia; Crina, Bucur

    2001-01-01

    Establishing the criteria of selection of a host site for final repository of low and intermediate radioactive waste is based upon the study of two major components, the radioactivity diffusion in disposal site and the environmental impact. The hydrological characteristics of geological formation are the main factors that control radionuclides moving (migration), because, in general, the water is the natural way for dissolving and transport of these in environment. In interaction of the water with environment, the water is present like a dynamic and complex system, which contents dissolved or suspension of mineral and organic substances. Knowing the water-soil system interaction mechanism, the physical-chemical characteristics of each component in this system, the mobility in time of radionuclides, from the repository in environment can be estimated. In migration, the main problem is determination of transport rate of radionuclides in environment. (authors)

  7. Influence of climate changes on the migration ability of technogenic radionuclides

    International Nuclear Information System (INIS)

    Todorov, B.; Kovacheva, P.; Djingova, R.

    2011-01-01

    Full text: Global warming and climatic changes in the last decade focus the attention of scientists worldwide. Changes in climate variables (winds, precipitation, currents, temperature, etc.) affect the transport, transfer, and deposition of contaminants in the environment. Numerous investigations show the strong impact of climatic parameters like temperature and precipitations on soil characteristics, and especially on soil organic matter, which plays a significant role in the migration behaviour of the contaminants in the environment. This defines the need of special attention on elucidation of the impact of temperature and precipitations on the chemical behaviour of the radionuclides. This work presents initial results of a research project aiming to elucidate the influence of climate changes on the migration and bioaccumulation of natural and technogenic radionuclides in terrestrial ecosystems. Different types of soils were contaminated by technogenic radionuclides ( 241 Am, 137 Cs, and 60 Co) and conditioned under different temperatures and soil humidity, simulating sharp climatic variations. Chemical fractionation of the radionuclides was studied by using two different procedures for sequential extractions, followed by radiation detection by gamma-spectrometry. Evaluation of the chemical behaviour of the investigated radionuclides with respect to soil characteristics, temperature and humidity variations and duration of conditioning was performed. Initial conclusions on the influence of the climate changes on the migration ability of radionuclides of different oxidation states were made

  8. Organic migration forms of radionuclides and performance assessment

    International Nuclear Information System (INIS)

    Xu Gouqing

    2010-01-01

    Much attention is paid to inorganic migration forms of radionuclides in groundwater during performance assessment before and organic migration forms, are seldom noted. Therefore some question may come into confidence level in performance assessment. This paper mainly discusses the distribution of organic substances in groundwater and their potential effect on performance assessment. The results obtained in recent years show that clay rocks are generally impermeable to water, but in some cases the interstitial water may be observed in them and the concentration of DOC, HA and FA is rather higher than that in granitic groundwater. The concentration of DOC is relatively low in granitic groundwater, but up to now the effect of organic migration forms of radionuclides in granitic groundwater on performance assessment is not finally determined, it is necessary to make further investigations. (authors)

  9. Program Plan: field radionuclide migration studies in Climax granite

    International Nuclear Information System (INIS)

    Isherwood, D.; Raber, E.; Coles, D.; Stone, R.

    1980-01-01

    This Program Plan describes the field radionuclide migration studies we plan to conduct in the Climax granite at the Nevada Test Site. Laboratory support studies are included to help us understand the geochemical and hydrologic processes involved in the field. The Program Plan begins with background information (Section 1) on how this program fits into the National Waste Terminal Storage Program Plan and discusses the needs for field studies of this type. The objectives stated in Section 2 are in direct response to these needs, particularly the need to determine whether laboratory studies accurately reflect actual field conditions and the need for field testing to provide a data base for verification of hydrologic and mass transport models. The technical scope (Section 3) provides a work breakdown structure that integrates the various activities and establishes a base for the technical approach described in Section 4. Our approach combines an interactive system of field and laboratory migration experiments with the use of hydrologic models for pre-test predictions and data interpretation. Section 5 on program interfaces identifies how information will be transferred to other related DOE projects. A schedule of activities and major milestones (Section 6) and the budget necessary to meet the project objectives (Section 7) are included in the Program Plan. Sections 8 and 9 contain brief descriptions of how the technical and program controls will be established and maintained and an outline of our quality assurance program. This program plan is an initial planning document and provides a general description of activities. An Engineering Test Plan containing detailed experimental test plans, an instrumentation plan and equipment design drawings will be published as a separate document

  10. Study of radionuclide migration in clay formations

    International Nuclear Information System (INIS)

    Antonioli, F.; Bocola, W.

    1985-01-01

    This paper reports the studies on the migration of Cs, Sr and I in clay formations, which are presently considered for the geological disposal of radioactive wastes. The distribution and diffusion coefficients were evaluated by means of experimental techniques and computer procedures, which are presented in this report. The natural clays tested in the laboratory experiments were sampled from the most representative italian basins and from the zone of Mol (Belgium). In addition tests were performed on monomineral clays artificially remade in edometer. The experimental results are in accordance with data found in the literature and show the existence of a good correlation between the observed migration properties and the granulometric and mineralogic characteristics of the natural clays

  11. The glass block site radionuclide migration study

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Champ, D.R.

    1990-01-01

    In 1960 25 nepheline syenite glass blocks containing 14 TBq of mixed fission products in 50 kg of glass were placed below the water table in a shallow sand aquifer at Chalk River Laboratories. Experimental studies undertaken at the site since 1960 have included detailed mapping of the plume of 90 Sr in 1963, 1966 and 1971. Mathematical modeling studies have employed the radiostrontium plume data in determining the split between ion exchange and chemisorption of 90 Sr, and in obtaining reaction rate data for chemisorption. The distribution of 137 Cs on downgradient soils was mapped in 1963 and 1979. An extended plume of low-level 137 Cs contamination observed in the 1979 study prompted an investigation of the role of particulate materials in radionuclide transport. IN 1983, large volume groundwater sampling and separation of cationic, anionic, and neutral dissolved species, as well as particulates, detected anionic and cationic dissolved europium isotopes (154 and 155), and again encountered particulate 137 Cs. A variety of investigations of cesium and strontium sorption have provided a data base on sediment mineralogy, particle surface features, and information on sorption sites and processes. The year 1990 saw the inauguration of a three-year program to update investigations of radionuclide release, transport, and sorption at the glass block site. The first stage of the program has been a detailed definition and simulation of the hydrogeologic setting. Plume mapping and aqueous speciation studies are in progress. This paper summarizes past investigations, reviews the status of the current program, and discusses components of future studies, including investigations of sediment sorption mechanisms. (Author) (17 refs., 8 figs.)

  12. Barriers to migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.

    1999-01-01

    Natural inorganic sorbents are known as effective barriers that reduce the migration of radionuclides from radioactive waste repositories and contaminated sites. They could be used as buffer, backfill and sealing materials in the repository and their presence in the host rock and the surrounding geological formations increases the retention properties of the strata. Natural occurring minerals from local origin are used in the study - zeolites (clinoptilolite and mordenite), celadonite and loess. Sorption of wide range of radionuclides is studies. Batch capacity is determined. Sorption of radionuclides from simulated natural solution is studied. Distribution coefficients are calculated from sorption isotherms. Desorption in presence of different natural solutions is studied. Sorption properties are compared. It is shown that clinoptilolite acts as effective barrier against migration of radionuclides from repositories. The presence of celadonite in the clinoptilolite rock increases the retention of polyvalent ions. The retention of radionuclides on loess samples fulfils the requirements for host media for repository for low and intermediate level waste. A method for construction of additional barrier to the existing in the country disposal vault for spent sealed sources is proposed

  13. Groundwater migration of radionuclides at Fermilab

    International Nuclear Information System (INIS)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-01-01

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab's inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits

  14. Clay as a barrier to radionuclide migration: a review

    International Nuclear Information System (INIS)

    Higgo, J.J.W.

    1986-05-01

    Because of their low permeability, high sorption capacity and plasticity, clay bodies are potentially suitable repositories for radioactive waste. The paper discusses the factors that influence radionuclide mobility in natural clay materials. Methods for determining radionuclide migration rates are described and compared. Data requirements necessary to establish whether or not a particular site is suitable for waste disposal are discussed. Suggestions are made as to the most important generic research that needs to be carried out. In the appendix, some of the most relevant, published, sorption and diffusion data are summarised and compared. (author)

  15. Nopal I uranium deposit: A study of radionuclide migration

    International Nuclear Information System (INIS)

    Wong, V.; Anthony, E.; Goodell, P.

    1996-01-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium

  16. Nopal I uranium deposit: A study of radionuclide migration

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Anthony, E.; Goodell, P. [Univ. of Texas, El Paso, TX (United States)

    1996-12-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium.

  17. The computer model development for radionuclide migration analysis in geosphere

    International Nuclear Information System (INIS)

    Mulyanto

    1998-01-01

    1-D numerical model for safety assessment of spent fuel disposal have been developed. The numerical solution with planar geometric was developed in order to solve mass transport in heterogenous geological media. In this paper, Crank-Nicolson method was discussed for solving of radionuclide migration equation. Demonstration was done for calculation of concentration distribution of several radionuclides in the exclusion zone. It was concluded that the exclusion zone was an important concept should be adopted in determination of disposal site. Site should be selected as far as possible from fracture or as long as possible exclusion zone. (author)

  18. Migration of radionuclide chains through an adsorbing medium

    International Nuclear Information System (INIS)

    Lester, D.H.; Jansen, G.; Burkholder, H.C.

    1974-12-01

    The migration of actinides and other radionuclides from an underground geologic nuclear waste disposal site through a soil column to a surface water body was investigated for impulse and band releases. Numerical calculation of the analytical solutions revealed that differences in adsorption characteristics between chain members, axial dispersion, and radioactive decay all act to reduce radionuclide discharge rates at the exit of the soil column. The results of the study may have important implications in the underground storage and disposal of nuclear waste. (U.S.)

  19. A report on intercomparison studies of computer programs which respectively model: i) radionuclide migration ii) equilibrium chemistry of groundwater

    International Nuclear Information System (INIS)

    Broyd, T.W.; McD Grant, M.; Cross, J.E.

    1985-01-01

    This report describes two intercomparison studies of computer programs which respectively model: i) radionuclide migration ii) equilibrium chemistry of groundwaters. These studies have been performed by running a series of test cases with each program and comparing the various results obtained. The work forms a part of the CEC MIRAGE project (MIgration of RAdionuclides in the GEosphere) and has been jointly funded by the CEC and the United Kingdom Department of the Environment. Presentations of the material contained herein were given at plenary meetings of the MIRAGE project in Brussels in March, 1984 (migration) and March, 1985 (equilibrium chemistry) respectively

  20. Natural systems prediction of radionuclide migration

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1991-01-01

    This paper reviews the application (and limitations) of data from natural systems to the verification of performance assessments, particularly as they apply to the evaluation of the long-term performance of waste forms, backfill, canister materials, and finally, the integrity of the repository itself. Two specific examples, the corrosion of borosilicate glass and the formation of alteration products of spent fuel, will be discussed. In both cases, inferences are of three types: 1) directly applicable data (i.e. radiation effects, stable phase assemblages): 2) inferences based on the analogous behaviour of the natural and repository systems (e.g. long-term corrosion rate); 3) specific identification of new phenomena that could not have been anticipated from the short term laboratory data (i.e. new mechanisms for the retention or release of radionuclides). The latter can only be derived from the observation of natural systems. Finally, specific attention will be paid to the limitations in the use of natural systems, particularly as the spatial and temporal scales expand, and to the inherent limitations of prediction and verification. (J.P.N.)

  1. Vertical soil migration of radionuclide fallout from the Chernobyl' accident

    International Nuclear Information System (INIS)

    Silant'ev, A.N.; Shkuratova, I.G.; Bobovnikova, T.I.

    1989-01-01

    The most suitable model for describing the behavior of radionuclide fallout on a soil surface is quasidiffusion transfer with directional transfer taken into account. The parameter values for this have been determined previously and are supplemented by the results of this work. To investigate the initial radionuclide distribution along the soil profile, monolithic soil samples 5 cm thick were taken in June-September 1986 in areas which had been subjected to contamination due to the Chernobyl' accident. The samples taken were cut up into layers. The first layer, 0.5 cm thick, was cut off from the surface of the soil monolith together with the grass. The next layer cut off was also 0.5 cm thick. Then two layers, each 1 cm in thickness, were cut off. The thickness of the last layer was 2 cm. The vertical distribution of radionuclides along the soil profile which was examined may be called the initial distribution, which will then change due to nonimmediate migration of radionuclides in the soil. Based on the research which has been performed, the following conclusions may be drawn. One portion of the radionuclides resulting from fallout is trapped by plant cover, while the other enters immediately into the soil. For a thick plant covering, about 80% of the radionuclide fallout is sorbed by the grass; for sparse cover, about 40%. The radionuclides entering the soil along with rainwater penetrate into the soil depths, producing contamination which falls off exponentially with depth. The exponent index is close to 1 cm -1 . In a forest, the main amount of radionuclide fallout is trapped by litter. Approximately 10% of the contamination fallout penetrates beneath the litter

  2. Overview of CEA research in the field of radionuclides migration

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Trotignon, L.; Tevissen, E.

    2006-01-01

    This report presents a synthetic status of the researches conducted within the Nuclear Energy Division (CEA/DEN) in the field of radionuclides migration in three specific areas which have been chosen for their representativeness and potential impact: the migration of RN in PWR reactors, the migration of RN from a deep geological repository and the migration processes in the surface environments. In addition, some status is given about more generic research which is conducted in the field of RN speciation in the aqueous phase and at the interfaces and regarding chemistry / transport couplings. Additional information about the human and technical means involved in these fields of research in CEA/DEN is finally given in the Appendix. (authors)

  3. Soil Fauna Transport Versus Radionuclide Migration (invited paper)

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taeschner, M.

    2000-01-01

    From a questionnaire on radioecological topics circulated in the framework of the IUR/EURADOS/EULEP Concerted Action supported by the EC it was concluded that the effect of soil fauna on the redistribution of radionuclides in soils has never been given sufficient attention. The limited data in existence suggest than faunal effects on displacement of radionuclides may be dominant over physicochemical migration. On the basis of a given dataset, an earthworm model is presented which shows that the activity decrease in the top soil layer due to bioturbation may compete with fast physicochemical migration at rates of 1 to 10 cm.y -1 . The model represents a suggestion of how to treat faunal actions and what kind of data are necessary to operate such models. (author)

  4. Hydrology and radionuclide migration program 1987 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.V. (comp.)

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparable to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.

  5. Modeling of radionuclide migration through porous material with meshless method

    International Nuclear Information System (INIS)

    Vrankar, L.; Turk, G.; Runovc, F.

    2005-01-01

    To assess the long term safety of a radioactive waste disposal system, mathematical models are used to describe groundwater flow, chemistry and potential radionuclide migration through geological formations. A number of processes need to be considered when predicting the movement of radionuclides through the geosphere. The most important input data are obtained from field measurements, which are not completely available for all regions of interest. For example, the hydraulic conductivity as an input parameter varies from place to place. In such cases geostatistical science offers a variety of spatial estimation procedures. Methods for solving the solute transport equation can also be classified as Eulerian, Lagrangian and mixed. The numerical solution of partial differential equations (PDE) is usually obtained by finite difference methods (FDM), finite element methods (FEM), or finite volume methods (FVM). Kansa introduced the concept of solving partial differential equations using radial basis functions (RBF) for hyperbolic, parabolic and elliptic PDEs. Our goal was to present a relatively new approach to the modelling of radionuclide migration through the geosphere using radial basis function methods in Eulerian and Lagrangian coordinates. Radionuclide concentrations will also be calculated in heterogeneous and partly heterogeneous 2D porous media. We compared the meshless method with the traditional finite difference scheme. (author)

  6. Hydrology and radionuclide migration program 1987 progress report

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparable to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids

  7. Microorganisms as potential vectors of the migration of radionuclides?

    International Nuclear Information System (INIS)

    Yves, A.

    1998-01-01

    The aims of our work are the study of the sorption of radionuclides by bacteria as the first step in the microorganism-metal interaction. The latter involves the fixation of ions on a surface layer and it results in the immobilization of the metal, thus possibly being the primary step of bioaccumulation. After a rapid presentation of the direct and indirect mechanisms of the interactions, we shall present our experiments of radionuclide biosorption by bacteria. A salient feature of biosorption is the selectivity of the adsorption of some radionuclides from a composed solution. For example, Andres et al. (1993, 1995) have shown that Mycobacterium smegmatis, from a composed solution containing uranium, thorium, lanthanum, europium and ytterbium, selectively adsorbs thorium ions. The sequence of preferential fixation is: Th 4+ > UO 2 2+ > La 3+ = Eu 3+ = Yb 3+ . This selectivity is a function of the cell wall organization and of the speciation of the metal in the solution. Yet, each species of bacteria has characteristic and specific cell wall layer composition and organization. Moreover, the culture and the environmental conditions change the surface layer properties. Another parameter in the migration of radionuclides is the transfer from the soil to the microorganisms. In column experiments, Gd, and likely the rare earths, in general, adsorbed on sand can be removed with a suspension of bacteria (Thouand and Andres 1997). These examples will be discussed and serve as a basis to illustrate the diversity of the interactions between microorganisms and radionuclides

  8. NNDC database migration project

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Thomas W; Dunford, Charles L [U.S. Department of Energy, Brookhaven Science Associates (United States)

    2004-03-01

    NNDC Database Migration was necessary to replace obsolete hardware and software, to be compatible with the industry standard in relational databases (mature software, large base of supporting software for administration and dissemination and replication and synchronization tools) and to improve the user access in terms of interface and speed. The Relational Database Management System (RDBMS) consists of a Sybase Adaptive Server Enterprise (ASE), which is relatively easy to move between different RDB systems (e.g., MySQL, MS SQL-Server, or MS Access), the Structured Query Language (SQL) and administrative tools written in Java. Linux or UNIX platforms can be used. The existing ENSDF datasets are often VERY large and will need to be reworked and both the CRP (adopted) and CRP (Budapest) datasets give elemental cross sections (not relative I{gamma}) in the RI field (so it is not immediately obvious which of the old values has been changed). But primary and secondary intensities are now available on the same scale. The intensity normalization has been done for us. We will gain access to a large volume of data from Budapest and some of those gamma-ray intensity and energy data will be superior to what we already have.

  9. Radionuclide migration experiments related to an underground nuclear test: II. modeling studies

    International Nuclear Information System (INIS)

    Tompson, A.; Carle, S.F.; Smith, D.K.; Hudson, G.B.; Bruton, C.J.

    2001-01-01

    Full text: The goal of this project is to improve our understanding of water and radionuclide migration in both saturated and unsaturated geologic media by coupling advanced simulation techniques, available characterization data, and radioanalytical measurements in the context of a remarkable field experiment. Between 1975 and 1991, groundwater was steadily pumped from a well adjacent to a 1965 underground test conducted in alluvium at the Nevada Test Site. The experiment was primarily conducted in order to elicit information on radionuclide migration through the saturated zone between the test and the well. The effluent was monitored. discharged to an unlined ditch, and allowed to infiltrate into the ground during flow towards a dry lake, about a kilometer away. The 16 years of pumping and infiltration created an unexpected second experiment in which the migration of the ditch effluent through the 200 meters of unsaturated media, back to the water table, could be studied. Pumping and effluent data are being utilized in conjunction with chemical measurements made in groundwater and a series of numerical models to better understand the movement of radionuclides in the system, both between the test and the well, and between the ditch and the water table. The release of radionuclides away from a testing area will be controlled by local groundwater flow rates, by their dissolution from solidified melt glass produced by the test, and by chemical sorption processes that retard their migration rates in chemically reactive geologic media. Only the more mobile and less reactive radionuclides (e.g.. tritium, 14 C, 36 Cl, 85 Kr, and 129 I) were measured in the well effluent. The movement of these radionuclides through the unsaturated media beneath the ditch will be affected additionally by the capillary nature of moisture movement under unsaturated conditions and by their interaction with and potential mass exchange with the gas (air) phase. Results of numerical simulations

  10. Hydrology and Radionuclide Migration Program: 1989 progress report

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1992-08-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (HRMP) at the Nevada Test Site (NTS) during fiscal year 1989. The report compares and summarizes studies of radionuclide and stable element transport atf radionuclide and stable the Cheshire and Cambric sites; progress toward the understanding of colloidal particle transport in porous and fractured media; further calibration of Marinelli beaker containers for gamma-ray spectroscopy; and an appendix listing all announced tests fired near the water table through October 1989. Four such tests were fired in FY89. Laboratory and model investigations of colloid transport in porous and fractured media have supported ongoing field investigations at the NTS. Aqueous chemistry has been shown to control colloid attachment and release from clean mineral surfaces. For colloidal deposits on fracture walls, the current experimental program will determine how this material responds to hydrodynamic forcing and if the porous colloidal deposit causes the more rapid transport of colloids than non-sorbing tracers. Fifteen radionuclides are either frequently found or likely to be found in HRMP and other environmental samples. For 3 of these 15 we have calibrated 4 gamma-ray detectors for use with samples contained in Marinelli beakers. Our calibrations for these three nuclides indicate that the technique is accurate and applicable to the types of environmental samples that we analyze

  11. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  12. Verification and improvement of predictive algorithms for radionuclide migration

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Miller, C.W.; Remer, J.S.

    1984-01-01

    This research addresses issues relevant to numerical simulation and prediction of migration of radionuclides in the environment of nuclear waste repositories. Specific issues investigated are the adequacy of current numerical codes in simulating geochemical interactions affecting radionuclide migration, the level of complexity required in chemical algorithms of transport models, and the validity of the constant-k/sub D/ concept in chemical transport modeling. An initial survey of the literature led to the conclusion that existing numerical codes did not encompass the full range of chemical and physical phenomena influential in radionuclide migration. Studies of chemical algorithms have been conducted within the framework of a one-dimensional numerical code that simulates the transport of chemically reacting solutes in a saturated porous medium. The code treats transport by dispersion/diffusion and advection, and equilibrium-controlled proceses of interphase mass transfer, complexation in the aqueous phase, pH variation, and precipitation/dissolution of secondary solids. Irreversible, time-dependent dissolution of solid phases during transport can be treated. Mass action, transport, and sorptive site constraint equations are expressed in differential/algebraic form and are solved simultaneously. Simulations using the code show that use of the constant-k/sub D/ concept can produce unreliable results in geochemical transport modeling. Applications to a field test and laboratory analogs of a nuclear waste repository indicate that a thermodynamically based simulator of chemical transport can successfully mimic real processes provided that operative chemical mechanisms and associated data have been correctly identified and measured, and have been incorporated in the simulator. 17 references, 10 figures

  13. Proceedings of the international workshop on mechanistic understanding of radionuclide migration in compacted/intact systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Yui, Mikazu

    2010-03-01

    The international workshop on mechanistic understanding of radionuclide migration in compacted / intact systems was held at ENTRY, JAEA, Tokai on 21st - 23rd January, 2009. This workshop was hosted by Japan Atomic Energy Agency (JAEA) as part of the project on the mechanistic model/database development for radionuclide sorption and diffusion behavior in compacted / intact systems. The overall goal of the project is to develop the mechanistic model / database for a consistent understanding and prediction of migration parameters and its uncertainties for performance assessment of geological disposal of radioactive waste. The objective of the workshop is to integrate the state-of-the-art of mechanistic sorption and diffusion model in compacted / intact systems, especially in bentonite / clay systems, and discuss the JAEA's mechanistic approaches and future challenges, especially the following discussions points; 1) What's the status and difficulties for mechanistic model/database development? 2) What's the status and difficulties for applicability of mechanistic model to the compacted/intact system? 3) What's the status and difficulties for obtaining evidences for mechanistic model? 4) What's the status and difficulties for standardization of experimental methodology for batch sorption and diffusion? 5) What's the uncertainties of transport parameters in radionuclides migration analysis due to a lack of understanding/experimental methodologies, and how do we derive them? This report includes workshop program, overview and materials of each presentation, summary of discussions. (author)

  14. Migration of selected radionuclides in the food chain. II

    International Nuclear Information System (INIS)

    Hanusik, V.; Smajda, B.; Musatovova, O.; Szabova, T.

    1983-01-01

    The migration is described of radiostrontium, radiocesium and radioiodine in the system plant-animal-man, and the impact is monitored of the individual factors on the accumulation of these radionuclides in the organisms of animals and humans. On the basis of data published (NRC Regulatory Guide 1.109) relating to the variability of the parameters of the model, the range is estimated of variations of radiostrontium and radiocesium concentrations in meat and in milk as is the range of variations of the whole-body dose equivalent. (author)

  15. Modelling the effects of spatial variability on radionuclide migration

    International Nuclear Information System (INIS)

    1998-01-01

    The NEA workshop reflect the present status in national waste management program, specifically in spatial variability and performance assessment of geologic disposal sites for deed repository system the four sessions were: Spatial Variability: Its Definition and Significance to Performance Assessment and Site Characterisation; Experience with the Modelling of Radionuclide Migration in the Presence of Spatial Variability in Various Geological Environments; New Areas for Investigation: Two Personal Views; What is Wanted and What is Feasible: Views and Future Plans in Selected Waste Management Organisations. The 26 papers presented on the four oral sessions and on the poster session have been abstracted and indexed individually for the INIS database. (R.P.)

  16. Verification and improvement of a predictive model for radionuclide migration

    International Nuclear Information System (INIS)

    Miller, C.W.; Benson, L.V.; Carnahan, C.L.

    1982-01-01

    Prediction of the rates of migration of contaminant chemical species in groundwater flowing through toxic waste repositories is essential to the assessment of a repository's capability of meeting standards for release rates. A large number of chemical transport models, of varying degrees of complexity, have been devised for the purpose of providing this predictive capability. In general, the transport of dissolved chemical species through a water-saturated porous medium is influenced by convection, diffusion/dispersion, sorption, formation of complexes in the aqueous phase, and chemical precipitation. The reliability of predictions made with the models which omit certain of these processes is difficult to assess. A numerical model, CHEMTRN, has been developed to determine which chemical processes govern radionuclide migration. CHEMTRN builds on a model called MCCTM developed previously by Lichtner and Benson

  17. 'Kozloduy' NPP geological environment as a barrier against radionuclide migration

    International Nuclear Information System (INIS)

    Antonov, D.

    2000-01-01

    The aim of this report is to present an analysis of the geological settings along Kozloduy NPP area from the viewpoint of a natural, protective barrier against unacceptable radionuclides migration in the environment. Possible sources of such migration could be an eventual accident in an active nuclear plant; radioactive releases from decommissioned Power Units or from temporary or permanent radioactive waste repositories. The report is directed mainly to the last case, and especially to the site selection for near surface short lived low and intermediate level (LILW) radioactive repository. The main conclusion of the geological settings assessment and of the many years monitoring is that the Kozloduy NPP area offers good possibilities for site selection of LILW repository. (author)

  18. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    Science.gov (United States)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  19. Models of sorption and migration of radionuclides in geologic media

    International Nuclear Information System (INIS)

    Fukui, Masami

    1987-01-01

    Full understanding of the transportation of nuclides by groundwater is essential in designing an underground radioactive waste disposal site. What is the most important is to clarify in detail the process of sorption of nuclides by rock and soil. This report outlines various theories and experimental data that are currently available. In addition, studies made in various countries are reviewed and some problems are pointed out. First, a review is made of studies that deal with adsorption and behaviors of contaminants in natural barriers (rock, soil). Next, migration models that have been developed in studying migration processes in the field of chemical engineering or behaviors of agricultural chemicals in the field of soil physics are examined to see if they can be applied to investigations of the migration of radioactive contaminants in a porous medium. Finally, a review is made of basic underground migration models that are used in various countries in studying deep underground disposal of long-life radionuclides. Some laboratory experiments on TRU nuclides in rock are also outlined. (Nogami, K.)

  20. Migration of radionuclide through two-layered geologic media

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Takagi, Ikuji; Nakai, Kunihiro; Higashi, Kunio

    1984-01-01

    For the safety assessment of geologic disposal of high-level radioactive wastes, an analytical solution was obtained for one-dimensional migration of radionuclide through two-layered geologic media without dispersion. By applying it to geologic media composed of granite and soil layers, the effect of interlayer boundary on the discharge profile of radionuclides in decay chains into biological environment is examined. The time-space profiles of radionuclides in the vicinity of interlayer boundary are much complicated as shown in the results of calculation. Those profiles in case that the groundwater flows through granite followed by soil are quite different from those in case that the groundwater flows through soil followed by granite. Each of complicated dependence of profiles on time and space can be physically explained. The characteristic profiles in the vicinity of interlayer boundary have not been discussed previously. Recently, numerical computer codes has been developed to apply to much more realistic geologic situations. However, the numerical accuracies of the codes are necessary to be confirmed. This is achieved by comparing computational results with results from analytical solutions. The analytical solution presented will serve as a bench-mark for numerical accuracy. (author)

  1. Subseabed radionuclide migration studies and preliminary repository design concepts

    International Nuclear Information System (INIS)

    Brush, L.H.

    1982-01-01

    Geochemical research carried out by the US Subseabed Disposal Program is described. Data from studies of high-temperature interactions between sediments and pore water (seawater) and from studies of sorption and diffusion of radionuclides in oxidized, deep-sea sediments are used, along with results from heat transfer studies, to predict migration rates of raionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging. Fission products with moderate K/sub D/ values (10 2 to 10 5 ml/g) and actinides with high K/sub D/ values (10 3 to 10 6 ml/g) would not migrate significant distances before decaying to innocuous concentrations. Among this group are 137 Cs, 90 Sr, and 239 Pu. The results for anionic species in oxidized sediments are less encouraging. Planning for field verification of these laboratory and modeling studies is currently under way. Conceptual repository designs and emplacement options are also described. 33 references, 15 figures, 1 table

  2. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. (6th progress report, project summary). Period covered: January 1994 - July 1994

    International Nuclear Information System (INIS)

    Czerwinski, K.R.; Rhee, D.S.; Scherbaum, F.; Buckau, G.; Kim, J.I.; Moulin, V.; Tits, J.; Laszak, I.; Moulin, C.; Decambox, P.; Ruty, O. de; Marquardt, C.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.; Bidoglio, G.; Eliet, V.; Grenthe, I.

    1995-03-01

    The goal of the research project is to examine the complexation behaviour of actinide ions with humic substances and thermodynamically describe the binding based upon a simple complexation model. This program is a continuation of the activities of the colloid and complexation group (COCO) in the second phase of the EC-MIRAGE project. A number of different experimental methods are used to determine speciation. The metal ions examined are the trivalent lanthanides, UO 2 2+ , NpO 2 + , Am 3+ , and Cm 3+ . The project is divided into three tasks: Task 1: complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids, Task 2: complexation reactions with major cations in natural groundwaters; Task 3: validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. Five European community laboratories participated in the program: Technische Universitaet Muenchen, Commissariat a l'Energie Atomique Fontenay-Aux-Roses and Saclay, Universitaet Mainz, Katolieke Universiteit Leuven, and Joint Research Centre, Ispra. The evaluated stability constants are similar for all laboratories when the same humic substance complexation model is applied. Humic acid is shown to reduce NpO 2 + to Np 4+ , while no reduction of UO 2 2+ is observed. Temperature effects are seen on the Np humate complex. Competition is observed between NpO 2 + and Ca 2+ , but not between the trivalent lanthanides and Ca 2+ . No influence of humic acid purification on the evaluated stability constants is seen. Using the evaluated constants, calculations are conducted for natural water systems which indicate the trivalent actinide humate complex to be an important species. (orig.)

  3. All-union Conference. Principles and methods of regional and geochemical investigations into radionuclide migration

    International Nuclear Information System (INIS)

    Khitrov, L.M.

    1989-01-01

    The collection presents abstracts of papers concerning landscape-geochemical research of radionuclides migration; aspects of 'hot particles' study; radionuclides forms and behaviour in soils, in soil-plant; soil-natural water systems, as well as in water ecosystems. Methods of natural objects artificial radioactivity study are reviewed. Distribution of natural radionuclides in soils. natural waters, etc. is discussed

  4. Modelling of migration of radionuclides and trace elements between the components of the Black Sea ecosystems

    International Nuclear Information System (INIS)

    Egorov, V.N.

    1999-01-01

    This report considers peculiarities of the mathematical description of radionuclides migration between water environment and biotic and abiotic components of the Black Sea ecosystems at different periods of averaging, from the time scale of metabolic processes, taking place in hydrobionts, to the large-scale description of radionuclides migration in the Black Sea

  5. Migration of colloids of radionuclides in geologic media

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Ogawa, Hiromichi

    2001-01-01

    Radionuclide migration in underground environment is affected by the presence of colloids in ground water. As the colloids in flow systems may be trapped or collected to solid surfaces, filtration effect results from. In the present study, dependence of collector efficiency on flow velocity and on heterogeneity of solid surfaces were theoretically and experimentally investigated using DLVO (Electric double-layer and Van der Waals force) and Smoluchowski-Levich approximation and the following results were obtained: Effluent to inflow ratio of colloids obtained from the column experiments can be analyzed to give collector efficiency for single particle. The dependence of collector efficiency on flow velocity was found to be smaller than that deduced from the previously proposed models. A model in which flow system affects the Brownian motion of colloids gives a smaller flow-velocity dependence of collector efficiency. On the contrary, the heterogeneity of solid surface taken into consideration in the model increases the flow velocity dependence. (S. Ohno)

  6. Use of source term uncoupled in radionuclide migration equations

    International Nuclear Information System (INIS)

    Silveira, Claudia Siqueira da; Lima, Zelmo Rodrigues de; Alvim, Antonio Carlos Marques

    2008-01-01

    Final repositories of high-level radioactive waste have been considered in deep, low permeability and stable geological formations. A common problem found is the migration modeling of radionuclides in a fractured rock. In this work, the physical system adopted consists of the rock matrix containing a single planar fracture situated in water saturated porous rock. The partial differential equations that describe the radionuclide transport were discretized using finite differences techniques, of which the following methods were adopted: Explicit Euler, Implicit Euler and Crank-Nicholson. For each one of these methods, the advective term was discretized with the following numerical schemes: backward differences, centered differences and forward differences. We make a comparison to determine which temporal and space discretization has the best result in relation to a reference solution. The obtained results show that the Explicit Euler Method with forward discretization in the advective term has a good accuracy. Next, with the objective of improving the answer of the Implicit Euler and Crank-Nicholson Methods it was accomplished a source term uncouplement, the diffusive flux. The obtained results were considered satisfactory by comparison with previous studies. (author)

  7. Migration of uranium daughter radionuclides in natural sediments

    International Nuclear Information System (INIS)

    Colley, S.; Thomson, J.

    1991-01-01

    An irregular concentration/depth profile of uranium in deep-sea turbidities, previously elucidated, has been exploited to obtain in-situ effective diffusion coefficients for the long-lived members of the 238 U natural series. The findings are relevant to the assessment of deep-sea sediments as potential repositories for high-level radioactive waste, because waste actinides decay through the same chains of daughter radionuclides as natural actinides. This work was part of the CEC Mirage project-Second phase, Natural analogues research area

  8. A model for radionuclide Migration in Urban Environment and Drainage Systems

    International Nuclear Information System (INIS)

    Garcia, E.; Gallego, E.; Jimenez, F.

    1998-01-01

    The Model for Radionuclide Migration in Urban Environment and Drainage Systems aims to estimate the discharge of radioactivity removed by natural or forced decontamination into the receiving waters from the drainage system, as well as the radioactivity joined with the sludge produced in treatments plants, whose various applications can mean a potential hazard. This model, built in Powersim, is included in the MOIRA system, a project whose main aim is the evaluation of the situation after a radioactive contamination of the aquatic ecosystems and the estimation of optimal remedial strategies to restore the contaminated waters. Powersim is an easy-to-use software package which simulates dynamic processes. Two sub-models compose the global model: one, simulating the evolution of Cs-137 in urban areas, and the other, the behaviour of this radionuclide, once it ha entered the drainage systems, with the various existing alternatives of waste water treatment in Europe. (Author) 8 refs

  9. Radionuclide-migration model for buried waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    King, C.M.; Root, R.W. Jr.

    1982-01-01

    Solid waste has been buried at the Savannah River Plant burial ground since 1953. The solid waste is contaminated with alpha-emitting transuranium (TRU) nuclides, with beta-gamma-emitting activation and fission products, and with tritium. To provide guidance for the current use and eventual permanent retirement of the burial site from active service, a radionuclide environmental transport model has been used to project the potential influence on man if the burial site were occupied after decommissioning. The model used to simulate nuclide migration includes the various hydrological, animal, vegetative, atmospheric, and terrestrial pathways in estimating dose to man as a function of time. Specific scenarios include a four-person home farm on the 195-acre burial ground. Key input to the model includes site-specific nuclide migration rates through soil, nuclide distribution coefficients, and site topography. Coupled with literature data on plant and animal concentration factors, transfer coefficients reflecting migration routes are input to a set of linear differential equations for subsequent matrix solution. Output from the model is the nuclide-specific decayed curie intake by man. To discern principal migration routes, model-compartment inventories with time can also be displayed. Dose projections subsequently account for organ concentrations in man for the nuclide of interest. Radionuclide migration has been examined in depth with the dose-to-man model. Movement by vegetative pathways is the primary route for potential dose to man for short-lived isotopes. Hydrological routes provide a secondary scheme for long-lived nuclides. Details of model methodology are reviewed

  10. The role of dissolved organic substance in radionuclide migration in river water of the Kiev's water reservoir

    International Nuclear Information System (INIS)

    Domin, V.V.; Bondarenko, G.N.; Zheldakov, Yu.A.

    1989-01-01

    The role of organic substance dissolved (DOS) in radionuclide migration in the river water of the Kiev's water reservoir was considered. It was ascertained, that metal complexes with fulvic acids were stable and complexing properties of fulvic acids affected radionuclide migration. When DOS content increased sharply during the freshet period, radionuclide migration also increased. 8 refs.; 4 figs.; 3 tabs

  11. Radionuclide migration in soil within the estrangement zone of ChNPP

    International Nuclear Information System (INIS)

    Mikhalkin, G.S.; Arkhipov, A.N.; Arkhipov, N.P.; Sukhoruchkin, A.K.

    1992-01-01

    The problems of the radionuclide migration and redistribution in soil within the estrangement zone of ChNPP have been discussed. It has been demonstrated that the surface radioactive contamination of soil that has been represented principally by the particles of the waste nuclear fuel eventually migrates into soil depth. In this case the radionuclides remain principally the fuel matrix components, the fuel matrix decomposing gradually and releasing the radionuclides. The mechanisms of the radionuclide migration can be described with the quasi-diffusion migration model in most cases. On the 5th year since the accident the major portion of the radionuclides (95-99%) is still kept within 0-5 cm layer of soil. 3 figs.; 7 tabs

  12. Migration and biological transfer of radionuclides from shallow land burial

    International Nuclear Information System (INIS)

    1990-12-01

    This document is the final report of the Coordinated Research Programme (CRP) on the Migration and Biological Transfer of Radionuclides from Shallow Land Burial. It contains a description of the objectives of the CRP, its meetings, its achievements and the work of this individual members. Some early experiences in the operation of shallow land repositories have indicated that in the short-term, at least, radioactive wastes can be disposed of safely. However, while these experiences are encouraging, the safety of shallow-land burial for radioactive wastes remains to be demonstrated in the longer term. Some of the industrialized and more developed countries represented have well established disposal programmes for low level wastes (UK, France, USA, Japan, Sweden, Czechoslovakia, Argentina, India) while some of the developing countries represented are still at the preliminary planning stage (Thailand, Iraq). Accordingly, the interests of the participants are concerned with different aspects. Those from countries with existing facilities tend to be more interested in the development and improvement of safety assessment techniques and of a coherent long term disposal philosophy. Participants from countries without disposal facilities tend to be mainly concerned with basic experimental studies aimed at obtaining an understanding of radionuclide behaviour in soils. However, this division was by no means complete and on-going experimental studies were also reported by participants from USA, Canada and France. A total of 11 research agreements and 5 research contracts were allocated, but in addition a number of independent observers attended each of the three Research Coordination Meetings (RCMs). The RCMs were held in Vienna 4-8 November 1985, Oak Ridge, Tennessee, USA, 7-11 September 1987, and Paris, France 17-21 April 1989. Refs, figs and tabs

  13. Migration of radionuclides in the soil-crop-food product system and assessment of agricultural countermeasures

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Ageyets, V.

    1996-01-01

    Studies on dynamics of redistribution of radionuclides through of profile of the different soils on uncultivated agricultural lands of Belarus during the 1986-1995 period show that vertical migration occurs with low rate. In arable soils the radionuclides are distributed in comparatively uniform way through the whole depth of the 25-30 cm cultivated layer. Investigations on migration of radionuclides with wind erosion on the drained series of wet sandy and peat soils and water erosion on sloping lands show that one should take into consideration the secondary contamination of soils while forecasting a possible accumulation of radionuclides in farm products

  14. Overview of the 3rd phase crossover research on migration of radionuclides in biosphere

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Amano, Hikaru; Chiba, Masaru; Hisamatsu, Shun'ichi; Enomoto, Shuichi; Matsumoto, Shiro

    2003-01-01

    In 1991, we started a series of projects in Nuclear Energy Generic Crossover Research, which is known as ''Crossover Research (CR)''. This 1st phase was successfully finished with the active cooperation of five organizations: Japan Atomic Energy Research Institute (JAERI), Meteorological Research Institute (MRI), National Institute of Radiological Sciences (NIRS), the Institute of Physical and Chemical Research (RIKEN) and Power Reactor and Nuclear Fuel Development Corporation (PNC). Subsequently we carried out the 2nd phase of CR (1996-1998). A new member, Institute for Environmental Sciences (IES) participated from this phase. In the 3rd phase CR, a project on ''Development of a dynamic transfer model of radionuclides in the soil ecosphere'', is currently being promoted (1999-2003). The following five researches are carried out in this project. (1) Research into the forms of existence of nuclide and their change in the soil (NIRS and JAERI), (2) Research into the transition behavior of radionuclides in plants (IES, RIKEN and NIRS), (3) Research into the relation to the microorganism and on environmental remediation (RIKEN, JAERI and NIRS), (4) Research on the migration of radionuclides from atmosphere to soil and plant (MRI and JAERI), and (5) Database construction on transfer parameters (JAERI, NIRS and MRI). Then, JAERI, MRI and NIRS are working on the development of a dynamic transfer model for radionuclides on the basis of a gained knowledge about the environmental behavior with the cooperation of universities, etc. The dynamic transfer model developed in this project is effective not only for Japan, but also for the Southeast Asian countries. Besides, this model is capable of predicting the behavior of materials that are harmful to the environment, i.e. hazardous heavy metals discharged in the soil ecosphere. (author)

  15. Subject-3: Study on migration of radionuclides released into terrestrial and aquatic environment after nuclear accident

    International Nuclear Information System (INIS)

    Amano, H.; Matsunaga, T.; Ueno, T.; Nagao, S.; Yanase, N.; Tkachenko, Yu.

    2001-01-01

    Subject-3 has been focused on the migration behavior of long-lived radionuclides in the terrestrial surface environment, especially in connection with their chemical and physical forms. Migration behavior of radionuclides is strongly affected with their chemical and physical forms (for example; Gunten and Benes 1995). One of the two categories in Subject-3 consists of migration from surface soils including aging effects of hot particles, plant uptake from contaminated soils, and resuspension of radionuclides. The other is run off by river system, considering the role of organic materials. (author)

  16. Subject-3: Study on migration of radionuclides released into terrestrial and aquatic environment after nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Amano, H.; Matsunaga, T.; Ueno, T.; Nagao, S.; Yanase, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Arkhipov, A.N. [Chernobyl Scientific and Technical Center for International Research (Ukraine); Tkachenko, Yu. [The State Enterprise Regional Monitoring and Domestic Control (RADEC) (Unknown)

    2001-03-01

    Subject-3 has been focused on the migration behavior of long-lived radionuclides in the terrestrial surface environment, especially in connection with their chemical and physical forms. Migration behavior of radionuclides is strongly affected with their chemical and physical forms (for example; Gunten and Benes 1995). One of the two categories in Subject-3 consists of migration from surface soils including aging effects of hot particles, plant uptake from contaminated soils, and resuspension of radionuclides. The other is run off by river system, considering the role of organic materials. (author)

  17. The Palmottu natural analogue project. Progress report 1996. The behaviour of natural radionuclides in and around uranium deposits, Nr. 10

    International Nuclear Information System (INIS)

    Lampinen, P.; Ruskeeniemi, T.; Blomqvist, R.

    1997-01-01

    The report summarises the activities carried out in the Palmottu Natural Analogue project in 1996. Efforts has mainly been directed toward the hydrogeological and hydrogeochemical studies of the site. Other activities in 1996 have included up-dating the structural model of the site and radionuclide migration studies. The topical summaries documented are: (1) Hydrogeological studies, (2) Up-dating the structural model of the site, (3) Hydrogeochemical studies at Palmottu, and (4) Radionuclide migration studies. (41 refs.)

  18. Fracture mapping for radionuclide migration studies in the Climax granite

    International Nuclear Information System (INIS)

    Thorpe, R.; Springer, J.

    1981-05-01

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift

  19. Radionuclide Migation Project 1984 progress report

    International Nuclear Information System (INIS)

    Buddemeier, R.W.; Isherwood, D.

    1985-04-01

    The report discusses the hydrogeologic settings and histories of studies associated with the Cheshire (U20n), Cambric (U5e), Nash (UE2ce), Bilby (U3cn), Bourbon (U7n), and Faultless (UC1) Events. Radionuclide and some chemical data are presented for water samples from cavity or chimney wells associated with the Cheshire, Cambric, and Bilby Events, and from satellite wells at the Cambric, Nash, Bibly, Bourbon, and Faultless Event sites. The report also gives the results of studies of specific sampling or analytical methodologies. These studies demonstrated that the apparent migration of 155 Eu is an artfact of spectrometric misidentification of gamma- and x-ray peaks from other constituents. A potential problem with atmospheric contamination of samples collected with evacuated thief samples was also identified. Ultrafiltration techniques were applied to some of the Cheshire cavity samples collected, and preliminary results suggest that substantial amounts of activity may be associated with colloidal particles in the size range of 0.006 to 0.45 μm. A study has begun of the recharge of effluent water from RNM-2S (Cambric satellite well) into the desert floor as a result of nine years of continuous pumping. This report gives the initial results of unsaturated zone studies showing the propagation of moisture and tritium fronts through the shallow soil. Geochemical modeling of the behavior of ruthenium and technetium was carried out, with particular emphasis on the identification of ionic species that would be potentially mobile under NTS ground-water conditions. The report compares the results with observations of ruthenium migration to the Cambric satellite well

  20. A mathematical model, and code HADES, for migration of radionuclides from a shallow repository

    International Nuclear Information System (INIS)

    Fraser, J.L.; Jarvis, R.G.

    1985-06-01

    The mathematical model is one-dimensional, to describe migration of radionuclides, by diffusion and advection, through several consecutive layers that can represent vault materials and surrounding ground. The solutions are evaluated by a computer code HADES

  1. Field studies about radionuclide migration natural analogues and faults in clays

    International Nuclear Information System (INIS)

    Williams, G.M.; Hooker, P.J.; Brightman, M.A.

    1990-01-01

    This report puts together final reports of CEC contracts about the following topics: in situ determination of the effects of organics on the mobility of radionuclides in controlled conditions of groundwater flow (Drigg site); natural analogue studies of radionuclide migration (Loch Lomond, Broubster, Needle's Eye); faults in clays: their detection and characterization (Down Ampney site)

  2. Field testing at the Climax Stock on the Nevada Test Site: spent fuel test and radionuclide migration experiments

    International Nuclear Information System (INIS)

    Ballou, L.B.; Isherwood, D.J.; Patrick, W.C.

    1982-01-01

    Two field tests in the Climax Stock are being conducted. The Climax Stock, a granitic instrusive, has been administratively excluded from consideration as a full-scale repository site. However, it provides a readily available facility for field testing with high-level radioactive materials at a depth (420 m) approaching that of a repository. The major test activity in the 1980 fiscal year has been initiation of the Spent Fuel Test-Climax (SFT-C). This test, which was authorized in June 1978, is designed to evaluate the generic feasibility of geologic storage and retrievability of commercial power reactor spent fuel assemblies in a granitic medium. In addition, the test is configured and instrumented to provide thermal and thermomechanical response data that will be relevant to the design of a repository in hard crystalline rock. The other field activity in the Climax Stock is a radionuclide migration test. It combines a series of field and laboratory migration experiments with the use of existing hydrologic models for pretest predictions and data interpretation. Goals of this project are to develop: (1) field measurement techniques for radionuclide migration studies in a hydrologic regime where the controlling mechanism is fracture permeability; (2) field test data on radionuclide migration; and (3) a comparison of laboratory- and field-measured retardation factors. This radionuclide migration test, which was authorized in the middle of the 1980 fiscal year, is in the preliminary design phase. The detailed program plan was prepared and subjected to formal peer review in August. In September/October researchers conducted preliminary flow tests with water in selected near-vertical fractures intersected by small horizontal boreholes. These tests were needed to establish the range of pressures, flow rates, and other operating parameters to be used in conducting the nuclide migration tests. 21 references, 14 figures, 1 table

  3. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  4. Migration of Co and Cs radionuclides through a loam soil column

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma bin Syed Ahmad; Shimooka, K.

    1990-01-01

    A soil column experiment was conducted to determine the migration of Co and Cs radionuclides through a loam soil. The different migration rates of the radionuclides at low and high concentrations were determined at pH 7. Retardation factor (Rf) both the radionuclides at low and high concentrations were determined by fitting adsorbed concentration distribution equations to observed values. The calculation shows that the Rf1=500 and Rf2=3 for Co at high and low concentrations, respectively. For Cs, the Rf1=600 and Rf2=5 at high and low concentrations, respectively. The results shows that major portions of both the radionuclides were adsorbed onto the soil layer at the top by ion exchange mechanism which resulted in the high retardation factor values. Minor portions had migrated downwards as insoluble cations, pseudocolloids and very fine silt particles resulting in the low retardation factor

  5. Radionuclide migration in the unsaturated zone with a variable hydrology

    International Nuclear Information System (INIS)

    Elert, M.; Collin, M.; Andersson, Birgitta; Lindgren, M.

    1990-01-01

    Radionuclide transport from contaminated ground water to the root zone of a soil has been modelled considering a variable hydrology. Hydrological calculations have been coupled with radionuclide transport calculations in order to study the influence of variations in flow rate and saturation, dispersion, and sorption. For non-sorbing radionuclides important seasonal variations in the root zone concentration were found. The dispersivity parameter proved to be very important for both sorbing and non-sorbing nuclides. In addition, some comparison calculations were made with a simple steady-state compartment model. (au)

  6. The biotic factors role in radionuclide migration of natural-vegetable complexes

    International Nuclear Information System (INIS)

    Yakushev, B.I.; Kazej, A.I.; Sak, M.M.; Kuz'mich, O.T.; Golushko, R.M.

    1992-01-01

    In Byelorussiyn from first months after the Chernobyl' accident investigation are conducting on the radionuclide de dynamics in the soil-plant-soil system. The isotope composition of soil contamination density and specific plants radioactivity are studying, the radionuclide migration dynamic through the soil profile is investigating. The data are shown on considerable reduction of the plants radioactivity (1986-91 years) in connection with the reduction in the soil contamination density with gamma-spectrum radionuclides, accounting for Ce-144, Pr-144, Ru-106, Cs-134 decay; information is done on gamma-spectrum radionuclides of organs in natural pine and meadows system. It is shown, that the radionuclides are actively absorbed by roots in a zone of the highest radionuclide concentration and are delivered into the overground plant parts, then actively are removed into environment in the breathing process. 11 refs.; 4 tabs

  7. Study on experimental models to analyze radionuclide migration behaviors through porous geologic media

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2012-08-01

    The migration phenomenon of radionuclide through geological media such as soils and porous rocks, which is important in underground disposal of radioactive wastes, can be described by the advection-dispersion of groundwater and the interactions of radionuclide with geological media. On the other hand, to understand the migration phenomenon, actual migration data are experimentally acquired by a batch test, a column test and field trial. In the present study, experimental models about the interactions of radionuclide between the solid phase and the liquid phase were discussed systematically to interpret the migration data acquired by the various techniques and conditions. Equilibrium, reversibility, linearity, mechanism and chemistry in the interactions were considered in discussion of the experimental models. A calculation program, which can analyze migration data obtained under various conditions by applying the selected 9 types of experimental models, was maintained. The calculation program makes it be able to predict the migration behavior of radionuclide under various conditions and to decide the important parameter by a fitting analysis of the migration data. (author)

  8. Automated sensitivity analysis of the radionuclide migration code UCB-NE-10.2

    International Nuclear Information System (INIS)

    Pin, F.G.; Worley, B.A.; Oblow, E.M.; Wright, R.Q.; Harper, W.V.

    1985-01-01

    The Salt Repository Project (SRP) of the U.S. Department of Energy is performing ongoing performance assessment analyses for the eventual licensing of an underground high-level nuclear waste repository in salt. As part of these studies, sensitivity and uncertainty analyses play a major role in the identification of important parameters, and in the identification of specific data needs for site characterization. Oak Ridge National Laboratory has supported the SRP in this effort resulting in thee development of an automated procedure for performing large scale sensitivity analysis using computer calculus. GRESS, GRadient Enhanced Software System, is a pre-compiler that can process FORTRAN computer codes and add derivative taking capabilities to the normal calculated results. The GRESS code is described and applied to the code UCB-NE-10.2 which simulates the migration through a sorption medium of the radionuclide members of a decay chain

  9. Natural analogues of radionuclide migration: reconnaissance study of sites (May 1985-March 1986)

    International Nuclear Information System (INIS)

    Hooker, P.J.; Ball, T.K.; Basham, I.R.; Bloodworth, A.J.; Roberts, P.D.; Ivanovich, M.

    1986-01-01

    Research into natural analogues of radionuclide migration provide data for supporting computer codes that describe the processes of transport and retardation. Such models are appropriate to the far-fields of shallow and deep radioactive waste repositories. The objective of this research project was to define locations within the UK and abroad worthy of detailed investigation. Site investigations and evaluations were carried out at a number of UK localities. The main focus of this survey has been on uraniferous veins in places at near surface where transport of uranium into sediments has occurred. Several uranium rich mineralisations associated with granite margins were visited in Cornwall, Devon and along the Solway Firth coast in Scotland; the disused U mine at South Terras in Cornwall and the coastal site at Needle's Eye near Dalbeattie are confirmed as future study sites. Results to hand from the sediments of Loch Lomand warrant further measurements of iodine and bromine in fresh cores. (author)

  10. Radionuclide distributions and migration mechanisms at shallow land burial sites

    International Nuclear Information System (INIS)

    Kirby, L.J.; Toste, A.P.; Thomas, C.W.; Rickard, W.H.; Nielson, H.L.; Campbell, R.M.; McShane, M.C.; Wilkerson, C.L.; Robertson, D.E.

    1991-02-01

    During the past several years, Pacific Northwest Laboratory (PNL) has conducted research at the Maxey Flats Disposal Site (MFDS) for the US Nuclear Regulatory Commission (NRC). This work has identified the spectrum of radionuclides present in the waste trenches, determined the processes that were occurring relative to degradation of radioactive material within the burial trenches, determined the chemical and physical characteristics of the trench leachates and the chemical forms of the leached radionuclides, determined the mobility of these radionuclides, investigated the subsurface and surface transport processes, determined the biological uptake by the native vegetation, developed strategies for environmental monitoring, and investigated other factors that influence the long-term fate of the radionuclide inventory at the disposal site. This report is a final summary of the research conducted by PNL and presents the results and discussions relative to the above investigative areas. 45 refs., 31 figs., 17 tabs

  11. Confinement and migration of radionuclides in deep geological disposal; Confinement et migration des radionucleides en stockage geologique profond

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2007-07-15

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  12. Development of migration prediction system (MIGSTEM) for cationic species of radionuclides through soil layers

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi

    1989-01-01

    The migration prediction system (MIGSTEM) has been developed for estimating the migration of cationic species of radionuclides through soil layers systematically. The MIGSTEM consists of the migration experiments, the one-dimensional fitting code (inverse analysis code) for determining retardation factor and dispersivity (migration factors) and the three-dimensional differential code (prediction code) for estimating the migration of the radionuclides. The migration experiments are carried out for obtaining the concentration profiles of the radionuclides in unsaturated and saturated soil layers. Using the inverse analysis code, the migration factors are obtained at one time by fitting the concentration profiles calculated to those observed. The prediction code can give the contours of concentration and the one-dimensional concentration profiles at selected time, as well as the changing in the concentration at a selected position with time. The validity of the MIGSTEM was obtained by the benchmark test on the prediction and inverse analysis codes. The MIGSTEM was applied to estimate the migration of Sr 2+ through the sandy soil. (author)

  13. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    Energy Technology Data Exchange (ETDEWEB)

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  14. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    International Nuclear Information System (INIS)

    Goodell, P.; Walton, J.; Rodriguez, P.J.

    2005-01-01

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration

  15. Preliminary report on retardation factors and radionuclide migration

    International Nuclear Information System (INIS)

    Isherwood, D.

    1977-01-01

    Available data on distribution coefficients for the biologically important radionuclides present in high-level waste were used to estimate retardation factors (K/sub f/) for a mass transport hydrologic model. The radionuclides were divided into 3 groups: fission products with no sorption (K/sub f/ = 1), fission products with sorption (K/sub f/ = 10 2 ), and the actinides and their daughter products (K/sub f/ = 10 4 ). Minimum and maximum values were assigned the latter two groups. Uncertainties as a function of time were estimated at +- an order of magnitude. 39 references, 5 tables

  16. Modeling of radionuclide migration and a temperature dynamics in underground disposal of liquid radioactive waste

    International Nuclear Information System (INIS)

    Larin, V.K.; Zubkov, A.A.; Balakhonov, V.G.; Sukhorukov, V.A.; Zhiganov, A.N.; Noskov, M.D.; Istomin, A.D.; Kesler, A.G.

    2002-01-01

    Mathematical model of radionuclide migration and temperature field dynamics during underground disposal of liquid radioactive wastes is presented. The model involves the description of filtration, convective-dispersion mass transfer, sorption and desorption of radionuclides, radioactive decay, convective heat transport and hear transfer. Software making possible to conduct prognosis calculations of changing state of stratum-collector of radioactive wastes was made. Results of the simulation of temperature field dynamics and behaviour of radionuclides on underground disposal of liquid radioactive wastes of the Siberian chemical plant are performed [ru

  17. The physical and chemical environment and radionuclide migration in a low level radioactive waste repository

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.

    1988-01-01

    The expected physical and chemical environment within the low-level radioactive waste repository to be sited at Chalk River is being studied to establish the rate of radionuclide migration. Chemical conditions in the repository are being assessed for their effect on buffer performance and the degradiation of the concrete structure. Experimental programs include the effect of changes in solution chemistry on radionuclide distribution between buffer/backfill materials and the aqueous phase; the chemical stability of the buffer materials and the determination of the controlling mechanism for radionuclide transport during infiltration

  18. The evaluation of the effects of buffer thickness and dry density on radionuclides migration in engineered barrier system

    International Nuclear Information System (INIS)

    Kato, Fujitaka; Ishihara, Yoshinao; Makino, Hitoshi; Ishiguro, Katsuhiko

    2000-01-01

    The evaluation of the effects of buffer thickness and dry density, one of the buffer design, on radionuclides migration behavior is important from the viewpoint of performance assessment since they have relation to radionuclides migration retardation. It is also considered to help investigation of buffer design that satisfy both safety and economy to condition of the disposal site, which may be required with development of disposal project in the future. Therefore we have performed a sensitivity analysis used buffer thickness and dry density as parameter and considered their combination in this report. Based on this, we have evaluated the effects of buffer thickness and dry density on radionuclides migration in engineered barrier system. And, we have considered about radionuclides migration retardation quality of the buffer which is based on the design (relationship between thickness and dry density) set in the second progress report on research and development for the geological disposal of HLW in Japan. In results, the maximum release rates from the engineered barrier system for the nuclides which have high distribution coefficients and short half lives are sensitive to changes in buffer thickness and dry density. And, using dose converted from the nuclide release rates from the engineered barrier system as a convenient index, it is almost shown that the maximum of total dose is less than 10 μ Sv/y in the cases which buffer thickness and dry density are based on the buffer design set in the second progress report on research and development for the geological disposal of HLW in Japan. These can be used as an information when design of buffer thickness and dry density is set by synthetically judgement of balance of safety and economy. (author)

  19. Effect of Organic Pollutants on Migration of Radionuclides in Soil

    International Nuclear Information System (INIS)

    Nasr, R.G.A.

    2012-01-01

    The aim of this thesis is to study the effect of organic pollutants on the mobility of selected heavy metal (pb 2+ ) and radionuclide ( 60 Co) in an Egyptian agricultural soil and in a clay fraction separated from the soil. The effect of presence of natural organic compounds such as humic acid is also studied

  20. Radionuclide retardation project at GTS - An overview of lessons learned and ongoing experiments

    International Nuclear Information System (INIS)

    Moeri, A.

    2001-01-01

    The joint Nagra/JNC Radionuclide Migration Programme has now been ongoing for more than 15 years in Nagra's Grimsel Test Site (GTS). The main aim of the programme has been the direct testing of radionuclide transport models in as realistic a manner as possible. The understanding and modelling of both the processes and the structures influencing radionuclide transport/retardation in fractured granitic host rocks have matured as has the experimental technology, which has contributed to develop confidence in the applicability of the underlying research models in a repository performance assessment. In this paper, three in situ experiments which were carried out in a discrete granitic shear zone are briefly presented: The Migration Experiment (MI), the Excavation Experiment (EP) and the ongoing Colloid and Radionuclide Retardation Experiment (CRR). Each project expanded on the experimental experience and research results from the preceding experiment. MI provided a sound data base of in situ tracer breakthrough curves which was used to derive relevant transport parameters by inverse modelling in order to enhance the capability for predictive modelling of tracer transport in a granitic shear zone. The Excavation Project (EP) then focussed on the excavation of the dipole flow field in order to describe the flow paths within the shear zone dipole and the retardation behaviour of sorbing radionuclides that are relevant to post-closure safety. The ongoing CRR experiment actually investigates the influence of bentonite colloids on the radionuclide transport behaviour through a fractured granitic host rock. Again, the experience in planning and handling of complex tracer field experiments gained in the proceeding experiments will be availed. The methodology adopted for the geological and hydrological characterisation of water-conducting features and the simplification of this characterisation for modelling purposes proved to be indeed effective on the modelling of

  1. The role of natural organics in radionuclide migration in natural aquifer systems

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1992-01-01

    The wide variety of organic compounds present in natural waters is assessed for the role they may play in radionuclide and, especially, actinide migration. Some natural analog and environmental data are briefly reviewed for evaluation of the effect of organics in these systems. The binding constants and the kinetics of complexation of actinides by humics are discussed in terms of probable effects on actinide migration. The role of organics in redox, and in sorption, is also considered. (orig.)

  2. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  3. Effect of Concrete Waste Form Properties on Radionuclide Migration

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Skinner, De'Chauna J.; Cordova, Elsa A.; Wood, Marcus I.

    2009-01-01

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation) the mechanism of contaminant release, the significance of contaminant release pathways, how waste form performance is affected by the full range of environmental conditions within the disposal facility, the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility, the effect of waste form aging on chemical, physical, and radiological properties and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. Numerous sets of tests were initiated in fiscal years (FY) 2006-2009 to evaluate (1) diffusion of iodine (I) and technetium (Tc) from concrete into uncontaminated soil after 1 and 2 years, (2) I and rhenium (Re) diffusion from contaminated soil into fractured concrete, (3) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, (4) evaluate the moisture distribution profile within the sediment half-cell, (5) the reactivity and speciation of uranium (VI) (U(VI)) compounds in concrete porewaters, (6) the rate of dissolution of concrete monoliths, and (7) the diffusion of simulated tank waste into concrete.

  4. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  5. The Project on the distribution of fallout radionuclide and their transfer through environment by Fukushima Daiichi NPP accident

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Yoshimura, Kazuya; Fukushima, Takehiko; Patin, Jeremy

    2013-04-01

    Radioactive contamination has been detected in Fukushima due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011. Following comprehensive investigation (FMWSE project funded by MEXT, Japan; http://fmwse.suiri.tsukuba.ac.jp/) was conducted to confirm migration of radionuclides through natural environment including soils and rivers. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200 - 600 kBq/m2. (1) Migration study of radionuclides in natural environment including forests and rivers: 1) Depth distribution of radiocaesium in soils within forests, fields, and grassland, 2) Confirmation of radionuclide distribution and investigation on migration in forests, 3) Study on radionuclide migration due to soil erosion under different land use, 4) Measurement of radionuclides entrained from natural environment including forests and soils. (2) Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water: 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use, 2) Study on paddy-to-river transfer of radionuclides through suspended sediments, 3) Study on river-to-ocean transfer of radionuclides via suspended sediments, 4) Confirmation of radionuclide deposition in ponds and reservoirs. The main finding is as follows: 1) Migration of radionuclides to soil water, stream water and ground water was confirmed low at present. On the other hand, concentration of radiocaesium was found approximately 50 kBq/kg in the suspended sediments flowing down the river. 2) Amount of sediments deposited in the tank placed at the end of downstream within the USLE plot was confirmed together with the concentrations of

  6. Evaluation of Radionuclides Migration from RADON-Type Radioactive Waste Repository in Geosphere and Biosphere

    International Nuclear Information System (INIS)

    Grigaliuniene, D.; Poskas, P.

    2001-01-01

    Migration of radionuclides from hypothetical ISAM RADON-Type repository is analysed there. This is the first comprehensive analysis for such type repository. Generated four different system evolution and radionuclides migration scenarios cover a wide range of possible system states. Off-site scenarios as well as on-site scenarios consider radionuclide release from disposal facility and migration in geosphere and biosphere. Calculations are performed using computer code AMBER. According to the results, the highest dose is from two on-site scenarios (SCE1 erosion scenario and SCE3). The most important radionuclides in this case are 226 Ra with its decay products, 228 Ra, and 239 Pu. The doses from short-lived and mobile radionuclides arc insignificant for all on-site scenarios. The doses for the off-site scenarios are less than 0,1 mSv/y. Radon gases may cause the dose of about 1 mSv/y. The comparison of the results from this study and IAEA report for similar scenarios shows that the differences in most cases are less than one order of magnitude. (author)

  7. Evaluation of radionuclide migration in the homogeneous system of a geological repository

    International Nuclear Information System (INIS)

    Prvakova, S.; Duran, J.; Necas, V.

    2005-01-01

    The aim of this paper is to study radionuclide migration and release from a deep underground repository situated in a clay formation. An insight into the processes influencing the radionuclide transport in the near field and far field will be presented. For the calculation, a set of radionuclides has been chosen, considering the half-life, decay chains, capacity of the sorption, solubility limits and diffusion coefficients. The migration of radionuclides is dependent on transport properties of the particular nuclide. Due to the low hydraulic conductivity of the backfill material and clay geological formation, the transport in the repository occurs mainly by diffusion. The migration rate will be influenced by the water chemistry, solubility, retardation and diffusive properties of the nuclides, and the water flow rate in the clay. The release rates of radionuclides from the geosphere to the biosphere will be converted into the indicative dose rates using dose conversion factors for ingestion. The impact of the critical group is considered via consumption of meat, root vegetables and drinking water from wells. (author)

  8. Features of geologic structure of 'Lira' object territory and possible radionuclide migration pathways

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Melent'ev, M.I.; Kislyj, B.I.

    1999-01-01

    In the upper part of Karachaganak salt couple on the Lira object there are 6 artificially created chambers designed for gas condensate store at the depth 850-900 m. The chambers were created with help of underground nuclear explosions. At present a general assessment of radionuclide migration pathways from underground points of an explosion on the surrounding territories in the Lira vicinage is done. On the basis of analysis of geological and hydrogeological data by the Lira area the 4 stratigraphical and hypsometric level of possible radionuclide migration pathways could be marked out. The first of these levels related with Upper Permian saliferous sediments and it covers depths about 1 km up to couple roofing. Here the radionuclide migration will take part by tectonic breaks and fractured reservoirs, activated by energies of conducted explosions. Higher stratigraphic and hypsometric levels have been related with sediments of trias, Jurassic and partially of Cretaceous (second level), pliocene and pliocene-under Quaternary age (third level) and Quaternary sediments of Ural, Ilek and Berezovka rivers terraces (fourth level) where it is possible considerable lateral radionuclide migration in the northern and southern directions toward the couple's framing carvings

  9. Prediction of the radionuclide migration in the rocky environment. Part 2

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1987-01-01

    An extension to a bidimensional form, from the model for the prediction of the migration of radionuclides in a granitic rock developed in Part I /1/, was made. The differential equations wich represent the physical problem are resolved by the explicit method of calculus. This model is applicated to examples of the bibliographie, and a verification study of the method was made. (author) [es

  10. Experimental Studies to Evaluate the Role of Colloids on the Radionuclide Migration in a Crystalline Medium

    International Nuclear Information System (INIS)

    Albarran, Nairoby; Missana, Tiziana; Alonso, Ursula; Garcia-Gutierrez, Miguel; Mingarro, Manuel; Lopez, Trinidad

    2008-01-01

    In a deep geological repository (DGR) of high level radioactive waste, all the possible phenomena affecting radionuclide migration have to be studied to assess its security over time. Colloids can play an important role for contaminant transport if the following conditions are fulfilled: colloids exist in a non negligible concentration, they are mobile and stable in the environment of interest, and they are able to adsorb radionuclides irreversibly. In this study, different transport experiments where performed to improve the knowledge on the main mechanisms affecting the radionuclide migration in the presence of colloids in a crystalline medium. Firstly, colloid stability was analysed and then transport experiments in an artificial granite longitudinal fracture were carried out. Synthetic colloids of different size and bentonite clay colloids were used to evaluate the effects of colloid size, charge, and water flow rate on their mobility. Results showed that both major importance of the water flow rate on the mobility of colloids and their recovery and a higher interaction of smaller particles with the surface. Finally, the migration behaviour of Sr, and Sr adsorbed onto bentonite colloids was compared. The elution curves of Sr adsorbed onto colloid were significantly different from the ones of Sr alone, pointing out that sorption/desorption mechanisms must be taken into account to understand the radionuclide migration in the fracture in the presence of colloids. (authors)

  11. Prediction of the radionuclide migration in the rocky environment. Part 1

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1987-01-01

    A model for the prediction of the migration of radionuclides in a granitic rock was developed. Different numerial techniques associated with the resolution of the differential equations representing the problem were analysed. Verification results of the developed methodologies are presented. (author) [es

  12. Critical look at studies of radionuclide migration in fractured granite cores

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Failor, R.

    1983-05-01

    A series of laboratory experiments studying radionuclide migration were conducted on eleven fractured granite cores from the Climax Stock at the Nevada Test Site. Failor et al (1982) discuss the equipment used, the preparation of the core, the experimental procedure, the data reduction, and the experimental results. They give estimates of the average fracture apertures, retardation values of /sup 85/Sr, /sup 95m/Tc, and /sup 137/Cs relative to /sup 3/H, and the percentage of each radionuclide retained in the core after each run. To determine the effect of fracture fill material and solution composition on radionuclide migration, they studied both natural and artificial fractures using either natural Climax ground water or distilled water. The results are summarized below along with a discussion of the problems inherent in the experiments and suggestions to minimize these problems.

  13. Critical look at studies of radionuclide migration in fractured granite cores

    International Nuclear Information System (INIS)

    Isherwood, D.; Failor, R.

    1983-05-01

    A series of laboratory experiments studying radionuclide migration were conducted on eleven fractured granite cores from the Climax Stock at the Nevada Test Site. Failor et al (1982) discuss the equipment used, the preparation of the core, the experimental procedure, the data reduction, and the experimental results. They give estimates of the average fracture apertures, retardation values of 85 Sr, /sup 95m/Tc, and 137 Cs relative to 3 H, and the percentage of each radionuclide retained in the core after each run. To determine the effect of fracture fill material and solution composition on radionuclide migration, they studied both natural and artificial fractures using either natural Climax ground water or distilled water. The results are summarized below along with a discussion of the problems inherent in the experiments and suggestions to minimize these problems

  14. Development of computer code for determining prediction parameters of radionuclide migration in soil layer

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko

    1986-07-01

    A computer code (MIGSTEM-FIT) has been developed to determine the prediction parameters, retardation factor, water flow velocity, dispersion coefficient, etc., of radionuclide migration in soil layer from the concentration distribution of radionuclide in soil layer or in effluent. In this code, the solution of the predicting equation for radionuclide migration is compared with the concentration distribution measured, and the most adequate values of parameter can be determined by the flexible tolerance method. The validity of finite differential method, which was one of the method to solve the predicting equation, was confirmed by comparison with the analytical solution, and also the validity of fitting method was confirmed by the fitting of the concentration distribution calculated from known parameters. From the examination about the error, it was found that the error of the parameter obtained by using this code was smaller than that of the concentration distribution measured. (author)

  15. Fully coupled modeling of radionuclide migration in a clayey rock disturbed by alkaline plume

    International Nuclear Information System (INIS)

    Pellegrni, D.; Windt, L. de; Lee, J.V.D.

    2002-03-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement as a barrier to minimize corrosion of steel containers and radionuclide migration and for supporting drifts and disposal vaults. In this context, reactive transport modeling of the interactions between cement or concrete and the argillaceous host rock aims at estimating the evolution in time of the containment properties of the multi-barriers system. The objectives of the paper are to demonstrate that integrating radionuclides migration in the modeling of strongly coupled geochemical processes of cement-clay stone interactions is feasible and that it represents an efficient way to assess the sensitivity and modification of the classical Kd and solubility parameters with respect to the chemical evolutions. Two types of modeling are considered in the paper: i): calculation of intrinsic solubility limits and Kd values backing up on the results of modeling of cement/clay stone interactions (radionuclides are assumed to be present over the whole domain at any time whatever the scenario), ii) full mechanistic modeling which explicitly introduces radionuclides in the calculation with ad hoc assumptions on radionuclide inventory, canister failure, migration pathway, etc. The reactive transport code HYTEC, based on the geochemical code CHESS, is used to simulate both the cement-clay stone interaction processes and the radionuclide migration in 1-D and 2-D configurations. Convective/dispersive and diffuse transport can be simulated for solutes and colloids. A wide range of processes such as aqueous chemistry, redox, dissolution/precipitation, surface complexation and ion exchange can be modeled at equilibrium or with kinetic control. In addition, HYTEC is strongly coupled, i.e. the hydrology (flow and diffusion) may change when mineral precipitation or dissolution changes the local porosity. (authors)

  16. Prediction of radionuclide migration in the geosphere: is the porous-flow model adequate

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1982-01-01

    Practically all models used today to describe radionuclide migration in geologic media are based on the concept of flow in porous media. Recently it has been questioned if Fickian dispersion is the most important dispersion mechanism. Field observations of dispersion indicate that the dispersion coefficient increases with observation distance. This should not be the case in a homogeneous porous medium. For a medium with essentially independent channels, on the other hand, such an effect can be predicted. In some calculated examples it is shown that the use of the Fickian dispersion mechanism will very seriously underestimate the radionuclide concentration at a point downstream if the spreading mechanism in reality is channelling. The consequences of the often-used assumption that the interaction between the radionuclides and the rock is instantaneous is also discussed. It has been shown that in sparsely fissured crystalline rock the whole rock mass will not be able to participate in the sorption reactions, because the radionuclides will not have time to penetrate all through the large blocks. On the other hand, the assumption that only the surface of the fissures interacts with the radionuclides is likely to be an extremely conservative assumption in view of some recent diffusion experiments in crystalline rocks performed in our laboratories and at the Canadian Geologic Survey. Some experimental results on radionuclide migration in a single natural fissure under well-controlled conditions in the laboratory are also presented and interpreted using a model which includes channelling, surface sorption, diffusion in the rock matrix and sorption in the rock matrix. Some implications of these mechanisms in predicting radionuclide migration in the geosphere are discussed and compared with what a porous-flow model would predict

  17. On the simulation of subsurface migration of radionuclides

    International Nuclear Information System (INIS)

    Angermann, L.

    1989-01-01

    The consequences of the migration of contaminants through the groundwater flow system can be estimated by means of the analytical solutions of the corresponding initial-boundary value problems. The paper states analytical solutions of some selected problems which have not been considered in this form as yet and it describes a conception for the reliable computation of the required function values. (author)

  18. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  19. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  20. Comparison of models of radionuclide migration in food chains

    International Nuclear Information System (INIS)

    Hanusik, V.; Mitro, A.; Chorvat, D.

    1985-01-01

    Two models are compared used for describing the transfer of radioactive substances to man through food chains: the model used in US NRC Regulatory Guide 1.109 and that used in Interatomehnergo NTD No. 38.220.56-81. The models are compared with regard to the approach to model construction, with regard to mathematical expressions and recommended values of parameters. The comparative calculations show that with the use of the recommended values the contribution of direct contamination is prevalent in both models. The concentration of radioactive substances in selected products calculated for indirect contamination using the NRC method is more conservative. For direct and total contamination the NRC method provides higher values of concentrations in the leaf and non-leaf vegetables (cabbage, potatoes, cucumbers) than the NTD method. Concentrations in non-leaf vegetables are higher than in wheat for 4 nuclides only and in meat and milk for 13 radionuclides of the considered set of 22 radionuclides. Substitution of the recommended values of the parameters of the NRC model with recommended values of the corresponding parameters of the NTD model will reduce total concentrations in products as against initial results of the two studied models. (author)

  1. Characterisation of radionuclide migration and plant uptake for performance assessment

    International Nuclear Information System (INIS)

    Mathias, S. A.; Ireson, A. M.; Butler, A. P.; Jackson, B. M.; Wheater, H. S.

    2008-01-01

    Unsaturated vegetated soils are an important component in performance assessment models used to quantify risks associated with deep engineered repositories for underground radioactive waste disposal. Therefore, experimental studies, funded by Nirex over nearly 20 years, have been undertaken at Imperial College to study the transfer of radionuclides (Cl-36, I-129, Tc-99) from contaminated groundwater into crops. In parallel to this has been a modelling programme to aid interpretation of the experimental data, obtain parameter values characterising transport in soil and plant uptake and provide new representations of near-surface processes for performance assessment. A particular challenge in achieving these objectives is that the scale of the experimental work (typically ≤1 m) is much smaller than that required in performance assessment. In this paper, a new methodology is developed for up-scaling model results obtained at the experimental scale for use in catchment scale models. The method is based on characterising soil heterogeneity using soil texture. This has the advantage of allowing hydrological and radionuclide transport parameters to be correlated in a consistent manner. An initial investigation into the calculation of effective (i.e. up-scaled) hydrological and transport parameters has been undertaken and shows the results to be potentially highly (and non-linearly) sensitive to soil properties. Consequently, they have important implications for future site characterisation programmes supporting a proposed underground waste repository. (authors)

  2. The role of organics on the migration of radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Carlsen, L.

    1989-01-01

    The present report summarizes factors of importance concerning the role of organics on the migration of radionuclides in the terrestrial environment. Following some introductory remarks (chapter 1), chapter 2 describes the occurrence of organic compounds in the geosphere, taking both naturally occurring as well as artificially introduced compounds into account. The behaviour of organic compounds in the terrestrial environment is summarized (chapter 3) with special emphasis on sorption and persistence in the environment. Both chemical and microbiological degradation reactions are discussed. Chapter 4 describes the fundamentals of complex formation in relation to migration. Stability constants for the interactions between relevant metal ions and low molecular weight ligands as well as with humic- and fulvic acids are summarized. Chapter 5 is devoted to an evaluation, based on theoretical considerations, of the influence of organics on the migration behaviour of radionuclides in the terrestrial environment. Additionally, the behaviour of two special elements, i.e. technetium and iodine, is discussed

  3. Radiochemical regularities of migration mobility of Chernobyl' discharge radionuclides

    International Nuclear Information System (INIS)

    Skorobogat'ko, E.P.; Rybalko, S.I.

    1992-01-01

    Data on the radionuclude (RN) migration in environment later the Chernobyl' accident are generalized. Introduction of fallout of the radioactive discharge into environment causes necessity to account and to study different factors of geochemical and physicochemical character determining further RN behaviour in the medium. For a well-founded forecast of the behaviour it is necessity to use a complex of radiochemical and physicochemical research, lying in the base of radiation monitoring of environment. 1 refs

  4. The RRP Project: investigating radionuclide retardation in the host rock

    International Nuclear Information System (INIS)

    Alexander, W.R.; Frieg, B.; Ota, K.; Bossart, P.

    1996-01-01

    The Radionuclide Retardation Project (RRP), which is a joint Nagra/PNC (Power Reactor and Nuclear Fuel Development Corp.) project, has two components: the first (the Excavation Project, EP) looks at the behaviour of radionuclides which are so strongly retarded in the experimental shear zone that they cannot pass through the zones in experimentally reasonable times. In order to determine where radionuclide retardation has occurred in the pore space, as well as the flowpath geometry in the shear zone, the entire injection zone has to be excavated and taken back to the laboratory for analysis of the sites of retardation of the radionuclides. This approach has the advantage of allowing a detailed 3D description of the experimental shear zone. The aim of the second component of the project (Connected Porosities, CP) is to examine the fate of those radionuclides which diffuse out of the main water-conducting features in the shear zone and into the pore spaces of the rock matrix, where they become trapped. This represents a potentially significant retardation mechanism in a repository host rock. (author) 8 figs., refs

  5. The separation of radionuclide migration by solution and particle transport in LLRW repository buffer material

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Woods, B.L.

    1989-01-01

    Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process

  6. MODELLING OF RADIONUCLIDE MIGRATION IN THE SYSTEM OF NUCLEAR POWER PLANT BIOLOGICAL PONDS

    Directory of Open Access Journals (Sweden)

    Ю. Кутлахмедов

    2011-04-01

    Full Text Available Migration of radionuclide coming from nuclear power plant into the system of biological pondsand then into the water reservoir-cooler is considered in the article. The theme of the work ismodeling of radionuclide migration process in the system of biological ponds on the example of thePivdennoukrainska nuclear power plant using chamber models method. Typical water ecosystemconsisting of three chambers (chamber-water, chamber-biota and chamber-bed silt was the basistaken by the authors. Application of chamber models method allowed authors to develop thedynamic chamber model of radionuclide migration in nuclear power plant biological ponds. Thismodel allows to forecast values and dynamics of radioactive water pollution based on limitedecosystem monitoring data. Thus, parameters of radioactive capacity of nuclear power plantbiological ponds system and water reservoir-cooler were modeled by authors, the estimation andprognosis of radionuclide distribution and accumulation in the system of nuclear power plantbiological ponds were done. Authors also explain the roles of basin water, biomass and bed silt inradionuclide deposition

  7. The far field migration of radionuclides in two dimensional groundwater flows though geologic media

    International Nuclear Information System (INIS)

    Ting, D.K.S.; Chambre, P.

    1985-01-01

    An analytical method to model the radionuclides migration in a two dimensional groundwater flor through geologic media has been developed and implemented into the computer code UCBNE21. Using this method, the potential hazard to the biosphere posed by the accidental release of radionuclides from a candidate repository site (WIPP) is determined. I-129 and Ra-226 are potentially the most hazardous nuclides in these sites but their discharge into the biosphere will not result in concentrations larger than their maximum permissible concentrations. (Author) [pt

  8. Migration properties of radionuclides in the polluted soils

    International Nuclear Information System (INIS)

    Mechdieva, R.N.; Suleymanov, B.A.; Abaszade, R.G.

    2006-01-01

    Full text: Due to the fact of long-term oil production some local polluted zones exist on Absheron peninsula. The reasons of this pollution vary depending upon the place of pollution. The territory of Romani Iodine plant was selected as the object of investigation. This area was polluted as a result of iodine production process as well as of the influence of stratal water coming with extracted oil. Iodine element is accumulated as other radionuclides in composition of stratal water extracted with oil from ground substratum. During the process of iodine separation from water for its usage in production, water is run through coal. After absorption process coal is placed in the open air. Being in the open air under the influence of rain and other external action coal looses its sorption ability and changes the natural radioactive background of the given territory. The task of the investigation is to determine the changed radioactive background and to set the reasons of this change. It has been observed that the radioactive background at this territory in the source differs from that one at the distance from the source. From the first stage of the investigation the territory was studied and numbered being previously subdivided to small areas. In numbered areas the radioactive background was measured at the distance 1 m above the ground surface by means of SRP - 88 dosimeter, the strength of exposure dose was determined and marked. After that the soil samples were taken at the depth of 10-20 m in the noted point by means of the dosimeter. It should be noted that in above mentioned areas firm soil existed together with the soft one. The samples are collected in special packets with their number, the place of taking and EDG. The natural radioactive background of the territory was measured in different points and so according to these measurements the radiological map of the territory was drawn up. Radionuclide content and activity of the samples were identified by gamma

  9. Studying the migration behaviour of radionuclides in boom clay by electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M. [SCK-CEN, Belgian Nuclear Research Centre, Waste and Disposal - R and D Geological Disposal Mol (Belgium)

    2001-07-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as {sup 137}Cs{sup +} and {sup 226}Ra{sup 2+} is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  10. Studying the migration behaviour of radionuclides in boom clay by electromigration

    International Nuclear Information System (INIS)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M.

    2001-01-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as 137 Cs + and 226 Ra 2+ is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  11. Behavior of colloids in radionuclide migration in deep geologic formation

    International Nuclear Information System (INIS)

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  12. Facts and features of radionuclide migration in Boom Clay

    International Nuclear Information System (INIS)

    De Regge, P.; Henrion, P.; Monsecour, M.; Put, M.

    1988-01-01

    The evolution which took place during ten years of research on the behaviour of radionuclides in Boom Clay is described. Initially, the Boom Clay was regarded as a chemically inert exchanger and the radiochemical research aimed at determining the distribution of cations between the clay and some liquid phases. The observation that Boom Clay deteriorates in contact with air and loses important intrinsic properties formed a major breakthrough in the research and led to a careful examination of the real in-situ conditions. Efforts devoted to the understanding of the chemical factors pertaining to the pH, the redox potential, the extent of the buffering capacity of FeS 2 and CaCO 3 in equilibrium with the interstitial aqueous phase are reviewed. Also emerging from the overall picture was the role of the organic material present in the Boom Clay. In contrast to the water percolating fractured formations which may not be in equilibrium with the rock, the interstitial aqueous phase is completely in equilibrium with Boom Clay mainly because of its low permeability and the large excesses of buffering components. As the retention mechanisms are better understood, a more coherent picture is obtained from distribution and diffusion experiments and the effects of consolidation are being investigated in detail. 23 refs.; 4 figs.; 3 tabs

  13. Automated sensitivity analysis of the radionuclide migration code UCBNE10.2

    International Nuclear Information System (INIS)

    Pin, F.G.; Worley, B.A.; Oblow, E.M.; Wright, R.Q.; Harper, W.V.

    1985-01-01

    The Salt Repository Project (SRP) of the US Department of Energy is performing ongoing performance assessment analyses for the eventual licensing of an underground high-level nuclear waste repository in salt. As part of these studies, sensitivity and uncertainty analysis play a major role in the identification of important parameters, and in the identification of specific data needs for site characterization. Oak Ridge National Laboratory has supported the SRP in this effort resulting in the development of an automated procedure for performing large-scale sensitivity analysis using computer calculus. GRESS, Gradient Enhanced Software System, is a pre-compiler that can process FORTRAN computer codes and add derivative taking capabilities to the normal calculated results. The GRESS code is described and applied to the code UCB-NE-10.2 which simulates the migration through an adsorptive medium of the radionuclide members of a decay chain. Conclusions are drawn relative to the applicability of GRESS for more general large-scale modeling sensitivity studies, and the role of such techniques in the overall SRP sensitivity/uncertainty program is detailed. 6 refs., 2 figs., 3 tabs

  14. Grimsel Test Site: modelling radionuclide migration field experiments

    International Nuclear Information System (INIS)

    Heer, W.; Hadermann, J.

    1994-09-01

    In the migration field experiments at Nagra's Grimsel Test Site, the processes of nuclide transport through a well defined fractured shear-zone in crystalline rock are being investigated. For these experiments, model calculations have been performed to obtain indications on validity and limitation of the model applied and the data deduced under field conditions. The model consists of a hydrological part, where the dipole flow fields of the experiments are determined, and a nuclide transport part, where the flow field driven nuclide propagation through the shear-zone is calculated. In addition to the description of the model, analytical expressions are given to guide the interpretation of experimental results. From the analysis of experimental breakthrough curves for conservative uranine, weakly sorbing sodium and more stronger sorbing strontium tracers, the following main results can be derived: i) The model is able to represent the breakthrough curves of the migration field experiments to a high degree of accuracy, ii) The process of matrix diffusion is manifest through the tails of the breakthrough curves decreasing with time as t -3/2 and through the special shape of the tail ends, both confirmed by the experiments, iii) For nuclide sorbing rapidly, not too strongly, linearly, and exhibiting a reversible cation exchange process on fault gouge, the laboratory sorption coefficient can reasonably well be extrapolated to field conditions. Adequate care in selecting and preparing the rock samples is, of course, a necessary requirement. Using the parameters determined in the previous analysis, predictions are made for experiments in a smaller an faster flow field. For conservative uranine and weakly sorbing sodium, the agreement of predicted and measured breakthrough curves is good, for the more stronger sorbing strontium reasonable, confirming that the model describes the main nuclide transport processes adequately. (author) figs., tabs., 29 refs

  15. Radionuclide sorption and migration studies of getters for backfill barriers

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1980-07-01

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 10 3 ml/g for europium; (2 to 40) x 10 3 ml/g for plutonium(IV); and (4 to 16) x 10 3 ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO 4 - ) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 10 3 ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO 4 - anions as well

  16. Radionuclide distributions and migration mechanisms at shallow land burial sites. Annual report of research investigations on the distribution, migration and containment of radionuclides at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Kirby, L.J.

    1982-07-01

    Subsurface waters at Maxey Flats are anoxic systems with high alkalinity and high concentrations of dissolved ferrous ion. Americium and cobalt in these trench waters are made more soluble by the presence of EDTA, while strontium and cesium are unaffected under the same conditions. EDTA is the major organic complexing component in waste trench 27 leachate, but other polar, water-soluble organics are also present. Evidence points to the migration of plutonium between waste trench 27 and inert atmosphere wells as an EDTA complex. Polar organic compounds may influence the migration of 90 Sr and 137 Cs. The primary pathway of water entry into the waste burial trenches is through the trench caps, but major increases in water level have occurred in an experimental trench by subsurface flow. The areal distribution of radionuclides at Maxey Flats has been influenced by surface runoff, deposition from the evaporator plume, subsurface flow and the actions of burrowing animals or deep-rooted trees. Vegetal and surface contamination on site and near site are quite low, and only 60 Co exceeds commonly observed fallout levels. Radionuclide concentrations in surface soil at Maxey Flats are comparable to concentrations resulting from normal fallout in other areas of high rainfall

  17. Generalization of some results of a vertical radionuclide migration study in soils of 30-km zone

    International Nuclear Information System (INIS)

    Ziborov, A.M.; Sadol'ko, I.V.; Sushchik, Yu.Ya.; Tikhanov, Eh.K.; Proskuryakov, A.G.; Kuz'michev, V.N.; Shcheglov, A.I.

    1992-01-01

    Results of radionuclide distribution study in a vertical profile of soils are presented under different landscape geochemical conditions in 1989-1991. It is ascertained that radionuclide migration process in geochemical profile of soils of 30-km zone is in early stage of development. More than 90% of radioactivity concentrates in the upper 5-10 cm layer whereas measurable radioactivity fixes at a depth up to 1 m. The process of deepening of radioactivity reserve center takes place in the surface soil layer. Now it equals 1,5-3 cm. Peculiarities of the vertical radionuclide distribution haven't brightly pronounced character depending on soil types and are at the formation stage. 12 figs.; 2 tabs

  18. Review and assessment of models for predicting the migration of radionuclides through rivers

    International Nuclear Information System (INIS)

    Monte, Luigi; Boyer, Patrick; Brittain, John E.; Haakanson, Lars; Lepicard, Samuel; Smith, Jim T.

    2005-01-01

    The present paper summarises the results of the review and assessment of state-of-the-art models developed for predicting the migration of radionuclides through rivers. The different approaches of the models to predict the behaviour of radionuclides in lotic ecosystems are presented and compared. The models were classified and evaluated according to their main methodological approaches. The results of an exercise of model application to specific contamination scenarios aimed at assessing and comparing the model performances were described. A critical evaluation and analysis of the uncertainty of the models was carried out. The main factors influencing the inherent uncertainty of the models, such as the incompleteness of the actual knowledge and the intrinsic environmental and biological variability of the processes controlling the behaviour of radionuclides in rivers, are analysed

  19. Analysis of the Research Status and Topics on the Radionuclide Migration and Retardation in Natural Barriers

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Park, Chung Kyun; Kim, Seung Soo; Lee, Seung Yeop; Lee, Jae Kwang

    2008-12-01

    In this report, recent research status for major developed countries in the high-level radioactive waste disposal including international organizations was investigated and analyzed in research topics for the radionuclide migration and retardation in natural barriers. Besides, recent research trends and future prospects were investigated for selected major 10 topics about the radionuclide migration and retardation processes. Based upon these investigations and analyses, future research goals and topics to be concentrated were presented. This report will be helpful for understanding our current research status and technical position and establishing future research direction and topics by analyzing domestic and foreign research status and trends. The results will also be utilized as basic information for establishing future policy and plans of the government for the high-level radioactive waste disposal

  20. Modelling and prediction of radionuclide migration from shallow, subgrade nuclear waste facilities in arid environments

    International Nuclear Information System (INIS)

    Smith, A.; Ward, A.; Geldenhuis, S.

    1986-01-01

    Over the past fifteen years, prodigious efforts and significant advances have been made in methods of prediction of the migration rate of dissolved species in aqueous systems. Despite such work, there remain formidable obstacles in prediction of solute transport in the unsaturated zone over the long time periods necessarily related to the radionuclide bearing wastes. The objective of this paper is to consider the methods, issues and problems with the use of predictive solute transport models for radionuclide migration from nuclear waste disposal in arid environments, if and when engineering containment of the waste fails. Having considered the ability for long term solute prediction for a number of geological environments, the advantages of a disposal environment in which the solute transport process is diffusion controlled will be described

  1. Analysis of the Research Status and Topics on the Radionuclide Migration and Retardation in Natural Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Park, Chung Kyun; Kim, Seung Soo; Lee, Seung Yeop; Lee, Jae Kwang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    In this report, recent research status for major developed countries in the high-level radioactive waste disposal including international organizations was investigated and analyzed in research topics for the radionuclide migration and retardation in natural barriers. Besides, recent research trends and future prospects were investigated for selected major 10 topics about the radionuclide migration and retardation processes. Based upon these investigations and analyses, future research goals and topics to be concentrated were presented. This report will be helpful for understanding our current research status and technical position and establishing future research direction and topics by analyzing domestic and foreign research status and trends. The results will also be utilized as basic information for establishing future policy and plans of the government for the high-level radioactive waste disposal.

  2. Analysis of the behavior of radionuclides migration in fractured medium in different types of rocks matrices

    International Nuclear Information System (INIS)

    Sá, Ludimila Silva Salles de; Silveira, Cláudia Siqueira da; Lima, Zelmo Rodrigues de

    2017-01-01

    In management of radioactive wastes, the current trend is to dispose the radioactive waste for long life and high activity in permanent repositories of depth, geologically stable and low permeability. Thus, it is relevant to analyze the groundwater movement process, because the mechanism by which the radionuclides in a repository with fractures could return to the surface would be through the groundwater circulation system. A common problem encountered is the modeling of the migration of radionuclides in a fractured medium. The objective of this work is to evaluate the behavior of the migration of radionuclides in two types of rock matrix, considering the following properties: volumetric density, porosity, distribution coefficient and molecular diffusion coefficient. The physical system adopted consists of the matrix rock containing a discrete fracture in a porous medium saturated with water. The partial differential equations that describe the radionuclide movement were discretized by finite differences, and the Implicit Euler method was adopted. While for the convective term the numerical scheme of progressive differences was used

  3. Evaluation of maximum radionuclide concentration from decay chains migration in aquifers

    International Nuclear Information System (INIS)

    Aquino Branco, O.E. de.

    1983-01-01

    The mathematical formulation of the mechanisms involved in the transport of contaminants in aquifers is presented. The methodology employed is described. A method of calculation the maximum concentration of radionuclides migrating in the underground water, and resulting from one decay chain, is then proposed. As an example, the methodology is applied to a waste basin, built to receive effluents from a hypothectical uranium ore mining and milling facility. (M.A.C.) [pt

  4. Radionuclide migration study in the case of a geological disposal site. Bibliographic research report

    International Nuclear Information System (INIS)

    Rio, Sophie

    1997-01-01

    The present bibliographic research deals with the study of radionuclide migration in the case of a geological disposal of spent fuel from PWR nuclear reactors. Bibliography was made with the DIALOG server on the following databases: INSPEC, NTIS, Ei Compendex Plus, SPIN, SciSearch, Pascal et Current Contents Search, and with the INIS and DocTheses CD-Roms. A synthesis based on a few documents is made in the second part of the report. (author) [fr

  5. Natural sorbents as barriers against migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.; Gradev, G.D.

    1993-01-01

    The sorption properties of Bulgarian inorganic sorbents - clinoptilolite, vermiculite, bentonite, glauconite, celadonite and loess, which can be used as buffer, backfill and sealing materials in radwaste repository are studied. Experimental data about sorption and desorption capacities, radiation and thermal stability of sorbents from different Bulgarian deposits are reported and compared. Clinoptilolite from Beli Plast and its sodium variety from Kostino and Moryantsi is recommended as a barrier against radionuclide migration from radwaste repository due to their high sorption capacity of 137 Ce, 90 Sr and 60 Co. The high selectivity of vermiculite for polyvalent ions ( 144 Ce, 59 Fe and 90 Sr) gives grounds to include the sorption on vermiculite as a second step in the ion exchange technology for low level laundry waste decontamination. Bentonite is studied as a proposed buffer, backfill and sealing material. Its selectivity for cesium is lower compared to those of clinoptilolite. Thus a tailored-made mixture of bentonite and clinoptilolite will act as a barrier against radionuclides in different oxidation state. Glauconite can be successfully used as a barrier against migration of 144 Ce, 90 Sr, 54 Mn and 65 Zn. Loess is also included in the study, as the Kozloduy NPP is sited on loess formation and it is a natural potential site for low and intermediate level waste burial. It is concludes that zeolites and clays of Bulgarian deposits can be used effectively against radionuclide migration from radioactive waste repositories. 59 refs., 5 tabs. (author)

  6. Study on radionuclide migration through a buffer material of the repository for high level nuclear waste

    International Nuclear Information System (INIS)

    Tsukamoto, Masaki; Ohe, Toshiaki

    1989-01-01

    The present report discusses radionuclide migration through a buffer material from the view point of experimental and data analysis. Na-bentonite loosely compacted with dry density of 0.8 - 1 g/cm 3 was contacted with cesium chloride solution of about 100 ppb containing Cs-134 as a tracer at 40degC and at 70degC. After the experiments, the bentonite cake was sliced and cesium distribution in the cake was measured by gamma-spectrometry. Apparent diffusivities of 2∼5 x 10 -7 cm 2 /sec was determined through the analysis method where pore diffusion and adsorption were involved. Numerical solution well described the observed data. The pore diffusion would be clearfied to be a dominant mechanism of the radionuclide migration in the bentonite, through discussing the pore diffusion mechanism and activation energy of the diffusion. This report also discusses the capability of the chemical transport model CHEMTRN for long-term predictions of the radionuclide migration. (author)

  7. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Smith, D.K.

    1997-01-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids

  8. MARFA user's manual: Migration analysis of radionuclides in the far field

    International Nuclear Information System (INIS)

    Painter, S.; Mancillas, J.

    2013-12-01

    The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide concentration. Multiple non-branching decay chains of arbitrary length are supported, as is full heterogeneity in the transport and retention properties. Two variants of the code are provided. These two versions differ in how particles are routed through the computational domain. In MARFA 3.2.3, transport is assumed to occur along a set of trajectories or pathways that originate at radionuclide source locations. The trajectories are intended to represent the movement of hypothetical, advectively transported groundwater tracers and are typically calculated by pathline tracing in a discrete fracture network flow code. The groundwater speed and retention properties along each pathway may change in time, but the pathway trajectories are fixed. MARFA 3.3.1 allows the transport effects of changing flow directions to be represented by abandoning the fixed pathways and performing node routing within MARFA. (orig.)

  9. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    Science.gov (United States)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  10. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.K.

    1997-04-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids.

  11. Analysis on fractal-like behaviour expected for migration of radionuclides in geologic sorbing media

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Harada, Makoto; Tsubata, Kyoichi; Sato, Yasuo

    1998-01-01

    In earlier work, we showed that within nonhomogeneous sorbing media the desorption process becomes fractal-like. In migration of radionuclides in geologic media, the adsorption is an essential factor retardating the migration. Moreover, geologic media is inherently nonhomogeneous. It is therefore probable that the migration is significantly influenced by the fractal-like feature. Based on this idea, we have analyzed migration behaviours by employing a new model and compared the results with those obtained using conventional models. The nuclides migrate in the media with the flow of ground water being continually trapped on adsorption sites and released (desorbed) to the flow. The concept of the overall residence-time distribution function for nuclides on the adsorption sites is introduced in the new model. This function obeys the power form, ∼t -1-α (α > 0), for sufficiently large t (t denotes time). The migration behaviours predicted by our theory are qualitatively different from those by conventional theories, and the details of the differences are greatly dependent on the exponent α. In particular, the migration behaviour in cases of 0 < α < 1 is characterized by far larger retardation effects. (author)

  12. Cenotic and physiological control of the radionuclides migration into system soil-plant

    International Nuclear Information System (INIS)

    Kravets, A.P.

    1998-01-01

    . Investigation into the various aspects of biological control of radionuclide migration in the soil-plant system is proposed as a necessary step in the development of the modern management methods for soil reclamation

  13. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    International Nuclear Information System (INIS)

    Kim, J.J.; Longworth, G.; Hasler, S.E.; Gardiner, M.; Fritz, P.; Klotz, D.; Lazik, D.; Wolf, M.; Geyer, S.; Alexander, J.L.; Read, D.; Thomas, J.B.

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O, 34 S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  14. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  15. Consideration for modelling studies of migration of accidentally released radionuclides in a river watershed

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi; Tsuduki, Katsunori; Yanase, Nobuyuki; Hanzawa, Yukiko; Ueno, Takashi

    2004-01-01

    Concerning radionuclides that might be released in an event of an accident from a nuclear facility, much attention has been paid to the migration pathways including the atmospheric deposition and subsequent inflow to surface water bodies since the Chernobyl nuclear accident in 1986. In European countries, computer-coded systems for predicting the migration including those pathways and providing scientific supports for decision makers to manage the contamination have been developed. This report is a summary of presentations and discussion made at the occasion of the visit of Dr. Monte in order to have directions related to the current subject of research, development of a mathematical model of the behavior of radionuclides in a river watershed. Those presentations and discussions were made at JAERI and also at prominent universities and institutes of Japan involved in this study field. As a result of these discussions, distinct advantages and key issues in use of a mathematical model for prediction of the migration of radionuclides in a river watershed have been identified and analyzed. It was confirmed that the use of mathematical modeling has distinct advantages. Re-arrangement of the existing experimental knowledge on the environment in an ordered way according to a theory (a mathematical model) will lead to a new angle to consider a problem in that environment, despite several gaps in the data array. A model to assess the radionuclide behaviour in contaminated aquatic ecosystems is a basis of decision analysis tools for helping decision-makers to select the most appropriate intervention strategies for the ecosystems. Practical use of a mathematical model and continuous effort in its validation were recognized as crucial. (author)

  16. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.; Legin, E.; Legin, V. [Khlopin Radium Institute, St. Petersburg (Russian Federation); Shishlov, A.; Savitskii, Yu. [Krasnoyarsk Mining and Chemical Combine, Krasnoyarsk (Russian Federation); Novikov, A.; Goryachenkova, T. [Russian Academy of Sciences, Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    2001-03-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  17. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.; Legin, E.; Legin, V.; Shishlov, A.; Savitskii, Yu.; Novikov, A.; Goryachenkova, T.

    2001-01-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  18. Association of actinides with microorganisms and clay: Implications for radionuclide migration from waste-repository sites

    International Nuclear Information System (INIS)

    Ohnuki, T.; Francis, A.; Kozai, N.; Sakamoto, F.; Ozaki, T.; Nankawa, T.; Suzuki, Y.

    2010-01-01

    We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH 3 COOK) removed approximately 80% of the associated uranium while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of

  19. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  20. Surrogate Indicators of Radionuclide Migration at the Amargosa Desert Research Site, Nye County, Nevada

    Science.gov (United States)

    Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.

    2005-05-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.

  1. The influence of transverse diffusion/dispersion on the migration of radionuclides in porous media

    International Nuclear Information System (INIS)

    Schmocker, U.

    1980-07-01

    Repositories in geological formations are planned for the final disposal of radioactive wastes produced by nuclear power. Generally, water entry leading to leaching of the waste matrix is considered as the critical process which can result in release of radionuclides from a waste repository. Consequently, radionuclide transport through the geosphere is of crucial importance, because the geological medium acts as the last barrier to the biosphere. The influence of the transverse diffusion/dispersion effect on the migration of radionuclides through the geosphere is dealt with. Migration in porous media only is considered which is the standard approach of most existing transport models. The present study shows that it is only for homogeneous-isotropic media that the three-dimensional time-dependent transport equation can be solved analytically - provided that only simple source geometries and leach processes are taken into account. For heterogeneous layered media only the two-dimensional quasi-stationary transport equation can be solved; the only time dependent process which can be handled is simple radioactive decay excluding extended decay chains. The study shows moreover that only for an idealized three-layer geology can analytical solutions be found. In particular the solutions for multi-layered media cannot be derived from single-layer solutions; each problem with special source and boundary conditions has to be solved directly. The numerical results from the present study show a relatively strong influence of the transverse dispersion effect in the case of homogeneous-isotropic media. (Auth.)

  2. MARFA version 3.2.2 user's manual: migration analysis of radionuclides in the far field

    International Nuclear Information System (INIS)

    Painter, Scott; Mancillas, James

    2009-12-01

    The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. Transport in sparsely fractured rock is of interest because this medium may serve as a barrier to migration of radionuclides to the accessible environment. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Multiple non-branching decay chains of arbitrary length are supported. This document describes the technical basis and input requirements for MARFA Version 3.2.2. MARFA Version 3.2 included new capabilities to accommodate transient flow velocities and sorption parameters, which are assumed to be piecewise constant in time. Version 3.2.1 was a minor change from Version 3.2 to allow a more convenient input format for sorption information. New capabilities in Version 3.2.2 include an option to specify a non-zero start time for the simulation, an optional input parameter that decreases the amount of retention within a single fracture because of flow channeling, and an alternative method for sampling the radionuclide source. MARFA uses the particle on random streamline segment algorithm /Painter et al. 2006/, a Monte Carlo algorithm combining time-domain random walk methods with pathway stochastic simulation. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The set of times required for particles to pass through the geological barrier are then used to reconstruct discharge rates (mass or activity basis). Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide

  3. Integrated report on radionuclide migration at the Savannah River shallow land burial site

    International Nuclear Information System (INIS)

    Towler, O.A. Jr.

    1989-03-01

    The impact of the SRP Solid Radioactive Waste Burial Ground on the environment has been studied since the early 1970s in four subtasks: subsurface monitoring of groundwater, lysimeter tests of waste, soil-water chemistry effects, and radionuclide transport modeling. This document summarizes and integrates the results of the four subtasks. More information has been gathered on the behavior of radionuclides in a solid waste disposal facility located in a humid region than from any other waste disposal site in the world. The design of closure for the SRP Burial Ground has been given a firm technical basis. The limiting pathways for radionuclide migration have been determined to be infiltrating rainwater and root penetration. Closure designs must therefore address both these factors. The designs for new storage/disposal facilities have also been given a firm technical basis. The major conclusions are that tritium will be stored for decay and not allowed to contact the groundwater, waste containing long-lived radionuclides such as iodine-129 must be stored for later geologic disposal, and above and below ground concrete vaults should be used for disposal of other low-level radioactive waste. 61 refs., 18 figs. 8 tabs

  4. Distribution and migration of cesium and strontium radionuclides in Estonian scots pine stands

    International Nuclear Information System (INIS)

    Martin, L.; Tekko, S.; Aaspollu, J.; Martin, J.; Vilde, R.; Nifontova, M.

    1994-01-01

    Radioactive pollution from the Chernobyl NPS reactor accident in 1986 has wide scale impact through radionuclides fallout over large areas. We used mushrooms, macrolichenes, mosses and pine needles, forest litter and soil for the investigaton of 137 Cs and 90 Sr accumulation and migration in pine ecosystems. Systematic collections were made on 63 field sites, total amount of samples analyzed is 350. Highest concentrations of radiocaesium were determined in mushrooms (41.8 kBq/kg) in north-east of Estonia, in macrolichens at the Lahemaa National Park (6.2 kBq/kg). At the Rumpo Botanical Reserve the level of radiocaesium exceeded background concentration (1985) 1.3-1.8 times and at the Koljaku 4.0-4.4 times. During five years of observations (1986-1991) decrease of radionuclides pollution revealed 15 times the Rumpo and Koljaku. Radiostrontium concentrations in different ecosystem compartments all over the territory did not exeed harmful levels. (author). 2 tabs

  5. Impact of kinetics and flow path heterogeneity on nanoparticle/radionuclide migration

    International Nuclear Information System (INIS)

    Huber, Florian M.

    2011-01-01

    The prevailing PhD thesis experimentally investigates the impact of both sorption/desorption (reversibility) and reduction kinetics on radionuclide migration in synthetic and natural systems from the nano-to the centimeter scale. Furthermore, the impact of fracture heterogeneity on flow and solute/nanoparticle transport as a potential additional retardation mechanism is examined both on an experimental and numerical basis. The process of sorptive reduction of U(VI) to sparingly soluble tetravalent uranium by structural bound Fe(II) in magnetite shows fast kinetics (hours to a few days contact time). A clear correlation between the Fe(II) content on the magnetite surface and the amount of U(VI) was observed, that is, increasing U(IV) with increasing Fe(II). Moreover, a congruency between the measured Eh(SHE) and the U valence state can partly been derived within the analytical uncertainties of the redox potential measurements. Thus, secondary phases as the stainless steel corrosion product magnetite can have beneficial effects on radionuclide migration as an effective retardation pathway for redox sensitive radionuclides. Beside, the studies on U(VI) maghemite sorption show that oxidized surfaces can possess long-term reduction capacities further enhancing radionuclide retention. Concerning the colloid-facilitated radionuclide transport, the batch sorption reversibility studies revealed the significance of kinetically controlled radionuclide desorption from the colloidal phase and subsequent sorption to the fracture filling materials (independent of the mineralogy and/or size fraction). By this process, initially colloidal associated radionuclides like the tri-and tetravalent radionuclides Th, Pu and Am are effectively retarded leading to an increase in the residence time. These reversibility results need to be included in codes for simulating colloid-facilitated radionuclide transport to reduce the conservatism and degree of uncertainties in input parameters

  6. Impact of kinetics and flow path heterogeneity on nanoparticle/radionuclide migration

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Florian M.

    2011-11-29

    The prevailing PhD thesis experimentally investigates the impact of both sorption/desorption (reversibility) and reduction kinetics on radionuclide migration in synthetic and natural systems from the nano-to the centimeter scale. Furthermore, the impact of fracture heterogeneity on flow and solute/nanoparticle transport as a potential additional retardation mechanism is examined both on an experimental and numerical basis. The process of sorptive reduction of U(VI) to sparingly soluble tetravalent uranium by structural bound Fe(II) in magnetite shows fast kinetics (hours to a few days contact time). A clear correlation between the Fe(II) content on the magnetite surface and the amount of U(VI) was observed, that is, increasing U(IV) with increasing Fe(II). Moreover, a congruency between the measured Eh(SHE) and the U valence state can partly been derived within the analytical uncertainties of the redox potential measurements. Thus, secondary phases as the stainless steel corrosion product magnetite can have beneficial effects on radionuclide migration as an effective retardation pathway for redox sensitive radionuclides. Beside, the studies on U(VI) maghemite sorption show that oxidized surfaces can possess long-term reduction capacities further enhancing radionuclide retention. Concerning the colloid-facilitated radionuclide transport, the batch sorption reversibility studies revealed the significance of kinetically controlled radionuclide desorption from the colloidal phase and subsequent sorption to the fracture filling materials (independent of the mineralogy and/or size fraction). By this process, initially colloidal associated radionuclides like the tri-and tetravalent radionuclides Th, Pu and Am are effectively retarded leading to an increase in the residence time. These reversibility results need to be included in codes for simulating colloid-facilitated radionuclide transport to reduce the conservatism and degree of uncertainties in input parameters

  7. U.S. Department of Energy approaches to the assessment of radionuclide migration for the geologic repository program

    International Nuclear Information System (INIS)

    Luik, A.E. van; Apted, M.J.

    1988-01-01

    Potential radionuclide migration in geologic repositories is being addressed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management through its Office of Geologic Repositories (OGR). A diversity of geohydrologic settings is being investigated: unsaturated tuff, saturated basalt, and bedded salt. A number of approaches to assessing potential migration are being considered. Mass transfer is prominent among near-field approaches. For far-field analysis of migration in the geosphere, detailed characterizations of potential repository sites will lead to site-specific models describing radionuclide migration for a variety of postulated release scenarios. Finite-element and finite-difference codes are being used and developed to solve the mathematical equations pertinent to far-field assessments. Computational approaches presently in use generally require distribution coefficients to estimate the retardation of specific radionuclides with respect to the transport rate of water. 26 refs

  8. Ways of investigating radionuclide migration processes in the lithosphere and hydrosphere

    International Nuclear Information System (INIS)

    Belousova, A.P.; Shmakov, A.I.; Galaktionova, O.V.

    1994-01-01

    In Russia, until recently, it was considered that groundwater was protected from surface radioactive contamination by soil and rocks in the zone aeration. Groundwater was not a subject of radiation control. The accident at the Chernobyl Nuclear Power Plant showed, however, that groundwater is vulnerable to radioactive contamination. In this connection, the vulnerability of groundwater to and the problems of protecting groundwater from radioactive contamination became urgent. The assessment of natural protection of groundwater from radioactive contamination is now considered a top priority. The zone of aeration is generally considered to be the zone separating groundwater from surface contamination. In respect to radioactive contamination, soils that may fix a large quantity of radionuclides serve as a protection zone of a higher order. The mapping of protectibility was done for each radionuclide taking into consideration the specific structure of the flow medium and migration properties of a radionuclide. 90 Sr and 137 Cs have different mechanisms of transport; convective transport is characteristic of the former and diffusive transfer of the latter. This is conditioned by different physico-chemical properties of the radionuclides and principally by their sorption capacities. The coefficient of distribution of 90 Sr is in many times less than the coefficient of distribution of 137 Cs. The environmental protection problem in regions with nuclear power plants and in areas subjected to radioactive contamination may be solved using a monitoring, system including interrelated systems of observation and prediction of the lithosphere and the hydrosphere. The problem of mathematical modeling of migration processes is related to the complexities of modeling the processes of flow, mass transfer, and the accompanying physicochemical processes in zones of full and partial saturation, as well as difficulties in mathematical calculations. 4 refs

  9. Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth's surface

    International Nuclear Information System (INIS)

    Allard, T.; Muller, J.-P.

    1998-01-01

    The origin of 3 types of point defects (A-, Aminutes or feet- and B-centers) in kaolinite, due to natural irradiation and detected by electron paramagnetic resonance spectroscopy (EPR), has been demonstrated by artificial irradiation. The potential use of tracing the dynamics of the transfer of radionuclides through A-centers (i.e. the most stable centers) was qualitatively tested on different low-temperature alteration systems, some associated with U-concentrations. This paper proposes a quantitative approach to the reconstruction of the past migration of radionuclides by dosimetry of A-centers. With this aim in mind, the efficiency of α- and γ-radiations to produce A-centers was determined by experimental irradiation. Parameters extracted from A-center growth curves, together with their relationship with a parameter describing the degree of order of kaolinite, permitted (i) a definition to be made of the dose range in which a given kaolinite could be used as a dosimeter and (ii) the quantitative derivation of U-concentration from the cumulative dose (paleodose) of kaolinites. This was achieved by a formalism that accounted for the contribution of natural radiosources to the production of A-centers. The formalism was applied to the Nopal I U-deposit (Chihuhua, Mexico), considered as a natural analogue of a high level nuclear waste repository. Irrespective of the scenario considered, in terms of kaolinite age and of degree of isotopic disequilibrium in the system, A-center dosimetry permitted the determination of past occurrences of U which were several orders of magnitude higher than the present-day measured U-concentrations. Furthermore, this approach also provided evidence for several previous episodes of U-migration. EPR spectroscopy is thus a unique tool for the quantitative, indirect assessment of past radionuclide migration in the geosphere and kaolinite is a reliable in-situ dosimeter. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights

  10. Simulation of radionuclides migration in porous media through integral transform method

    International Nuclear Information System (INIS)

    Ostwald, P.N.; Cotta, R.M.

    1992-01-01

    An analytical solution is obtained for the transient one-dimensional convection-diffusion equation that governs the dispersion of radionuclides through planar porous media, by applying the generalized integral transform technique. The present simulation has direct application in the analysis of radioactive waste migration through the soil and engineering barriers, originated from leakages in waste repositories. Results for concentration distributions in a typical application (Cs 137 ) are critically compared to those from a purely numerical approach, available in a scientific subroutines library. Different runs for combinations of the governing parameters are then interpreted. (author)

  11. A study on the radionuclide migration by means of the code LISA

    International Nuclear Information System (INIS)

    Frenquellucci, F.; Deserti, M.

    1989-01-01

    LISA code (Long Term Isolation Safety Assessment) has been developed by J.R.C. EUROATOM Ispra (Radiochemistry Division) and it's utilized in order to study migration of radionuclides through porous media. Aim of the present work is to analyze LISA's input and output files. A brief description of the code is also performed. As LISA is a research and in development code, its structure is rather complex and an exhaustive description of input/output files is helpful for the user. Version 3 of LISA code, loaded on ENEA's IBM 3090, is avaylable by ENEA-VEL Bologna

  12. Scoping calculations for canister-tunnel migration of corrodants, oxidants and radionuclides

    International Nuclear Information System (INIS)

    Shaw, W.; Worth, D.

    1992-03-01

    This report presents the mathematical models and results obtained for a set of scooping calculations which estimate the possible extent of the vertical migration of canister corrodants, oxidants (forming a redox front) and radionuclides between a copper canister containing spent nuclear fuel, and an overlying emplacement tunnel. The KBS-3 concept for the disposal of spent nuclear fuel is copper canisters, vertically emplaced in deposition holes bored in the floor of a tunnel, situated deep underground. The deposition holes are filled with a buffer of bentonite and the tunnel is backfilled with a mixture of sand and bentonite. (au)

  13. Studies of migration and dispersion of radionuclides from the storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1976-08-01

    Conditions were tested under which fixed low level liquid radioactive wastes could be safely stored in geological formations of Czechoslovakia. Geological models were constructed to yield relatively accurate information on the migration and dispersion properties of some soils and rock formation in both static and dynamic conditions. Based on results of the models further testing was conducted under field conditions. The principal radionuclides used during the tests were 90 Sr and 137 Cs. Relative transport and dispersion data are provided for various of the earth studied groups and an assessment of the various sites provided in the report

  14. Analysis gives sensibility two models gives migration and transport gives radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Torres Berdeguez, M. B.; Gil Castillo, R.; Peralta Vidal, J.L.

    1998-01-01

    An sensibility analysis it was applied two models, the first one, a model compressible for the near field (I finish source) The second, a simple model gives migration and transport radionuclides in the geosphere. The study was developed varying the securities ed simultaneously at the same time each parameter and observing the results in changes in the output and input. The intention in analysis it is to determine the parameter that but it influences in the variation the concentration. The statistical technique Regression it was employee in the study. This statistical method is used to analyze the dependence between a dependent variable and an or but independent variables

  15. Investigations and technical reviews on the reliability of prediction for migration behavior of radionuclides (H15)

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-02-01

    The research plan of the validation on effects of colloids and organic materials drawn up by the Japan Nuclear Fuel Cycle Development Institute and its' research outcome were reviewed comprehensively by an expert committee established in the Nuclear Safety Research Association. Additionally, experimental investigations for the migration behavior of actinide elements and fission products in engineering barrier and natural barrier medias, and for solution chemistry of them were carried out and discussed by the committee, in order to enhance the reliability of prediction for migration behavior of radionuclides. The subjects investigated by the expert committee are as follows: (1) Research on solubility products of An(III) hydroxide. (2) Diffusion and electromigration behavior of plutonium in buffer material. (3) Analysis of the nuclide solubility in compacted bentonite. (4) Survey of the actual contamination by alpha emitters in steel materials. (author)

  16. Effect of retardation coefficient for radionuclide migration on assessment results of environmental impact

    International Nuclear Information System (INIS)

    Wang Zhiming

    2004-01-01

    Environmental impact report is an important content in enforcing environmental impact assessment system. Effect of retardation coefficient used in models of radionuclide migration in geological media on the calculated results of maximum concentration of calculated points at the lower reaches is discussed in this paper. It is shown from experimental results that the retardation coefficient is not a constant. And it is shown from calculated results that retardation coefficient obviously affect the calculated results of maximum concentration of calculated point at the lower reaches. Conservation level of the assessment results would considerably be affected, and hence confidence level of results would be affected if the aspects are not paid enough attention and solved. The paper suggests that retardation coefficient used in migration models should directly be obtained by measurement in the field or in column, rather than using the result derived from distribution coefficients according to some formula in order to prevent the nonconservative results

  17. Modelling the effect of diffusion into the rock matrix on radionuclide migration

    International Nuclear Information System (INIS)

    Lever, D.A.; Bradbury, M.H.; Hemingway, S.J.

    1983-01-01

    Diffusion into the rock matrix is potentially an important retardation mechanism for nuclides leached from an underground radioactive waste repository in a fractured hard rock. Models of this diffusion process are discussed and incorporated into three-dimensional radionuclide migration models. Simple solutions to these models are derived for two regions: the region near to the repository where the nuclide is diffusing into effectively infinite rock, and that much further downstream where the concentrations in the rock and fractures are almost in equilibrium. These solutions are used to evaluate the possible impact on migration. It is shown that retardation factors in excess of 100 and reductions in the peak concentration at a given point on the flow path by three or four orders of magnitude are possibe for non-sorbed ions, which would otherwise be carried by the flow and not retarded at all. (author)

  18. Simplified method of evaluation of radionuclides migration in soil; Methode simplifiee d'evaluation de la migration de radionucleides dans le sol

    Energy Technology Data Exchange (ETDEWEB)

    Rozel, Ch

    1998-06-01

    In the frame of safety studies, it is useful to know the advance of an eventual release of radionuclides in ground water to determine the radiological impact on man by water ingestion, by irrigated plants ingestion and animals production ingestion (such milk or meat). The objectives of this report are to present the different physics phenomenons encountered during the migration, to list the different methods of doing ( to determine the radionuclides migration in soil), to choose one method and to check the results coherence with experience return. (N.C.)

  19. Migration of 137Cs artificial radionuclide in the valley of the Takhtakushuk river of the Degelen massif

    International Nuclear Information System (INIS)

    Panitskij, A.V.

    2005-01-01

    Study of horizontal and vertical radionuclide distribution in the valley of the Takhtakushuk River of the 'Degelen' Massif is carried out in the framework of ecological and biological investigations of soil and plant cover within radioactive contaminated areas, and radionuclide migration in biological chain 'soil - plant - animal'. For the first time, the pool-type method was used in the studies of soil of the valley that allows tracing solid and liquid substances migrating by means of surface and soil drainage from its head to final part. This paper presents some physical and chemical properties of the study landscape's soils, radionuclide content in soil genetic horizons of the valley. The study results showed that major mass of 137 Cs radionuclide is sorbed by soil humus and fine-dispersed clay particles of grass soils within the valley. (author)

  20. Research on radionuclide migration under subsurface geochemical conditions. JAERI/AECL Phase II Collaborative Program Year 1 (joint research)

    International Nuclear Information System (INIS)

    1998-11-01

    A radionuclide migration experiment program for fractured rocks was performed under the JAERI/AECL Phase-II Collaborative Program on research and development in radioactive waste management. The program started in the fiscal year 1993, as a five-year program consists of Quarried block radionuclide migration program, Speciation of long-lived radionuclides in groundwater, Isotopic hydrogeology and Groundwater flow model development. During the first year of the program (Program Year 1: March 18, 1994 - September 30, 1994), a plan was developed to take out granite blocks containing part of natural water-bearing fracture from the wall of the experimental gallery at the depth of 240 m, and literature reviews were done in the area of the speciation of long-lived radionuclides in groundwater, isotopic hydrogeology and the groundwater flow model development to proceed further work for the Program Year 2. (author)

  1. Impact of water environmental change and migration of radionuclides on hokutolite conservation in Peito (Taiwan)

    International Nuclear Information System (INIS)

    Lin, C.C.; Tsai, T.L.; Lung, C.C.

    2012-01-01

    Chemical factors (including pH, redox potential, content of total organic compound (TOC) and major ions) and U/Th-series radionuclides in the hot-spring water environment of Peito were determined to investigate the impact of environmental change and migration of radionuclides in water on conserving the precious mineral, hokutolite, in Peito (Taiwan). The activity concentrations of U/Th increased with E h and those of Cl - and SO 4 2- . 234 U/ 238 U ratios were nearly > 1 ascribed to Szilard-Chalmers effect and α-recoil. 230 Th/ 234 U ratios were 228 Ra and 226 Ra activities were governed by pH, E h and SO 4 2- concentration. Disequilibria of 228 Th/ 228 Ra and 228 Ra/ 232 Th were evident attributed to complexation of Th with major anions and co-precipitation of radium with (Ba,Pb)SO 4 . Alpha-recoil caused the enrichment of 228 Ra and apparent disequilibrium of 232 Th/ 228 Th. A mechanism illustrating the radiochemistry involving the formation of hokutolite in Peito was derived accordingly. The water environment of the studied area was found apparently changed in light of the variation of temperature, TOC and concentration ratio of Ba/Pb, which resulted from the channeling of hot spring water and the release of household waste water. The water environmental change can thus hinder the migration of radionuclides as well as the formation of hokutolite so that the performance of hokutolite conservation can be decreased. Immediate enactment of regulations for conserving hokutolite in Peito was therefore suggested in this research. (orig.)

  2. A review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1984-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were present in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7x10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve. (author)

  3. Review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1983-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were presented in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7 x 10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl, and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve

  4. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  5. Busted Butte report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T.T.; Drew, D.J.; Ticknor, K.V

    2002-11-01

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) and the other two, nominally one cubic metre (1 m{sup 3}), were excavated from the Busted Butte Test Facility on the Nevada Test Site and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m{sup 3} blocks were used for unsaturated flow experiments. The remaining 1-m{sup 3} block is being used for saturated flow experiments and will be reported on separately. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in the 1-m{sup 3} block. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m{sup 3} block was continuing after 600 days. Results obtained from the migration experiment in the trial block showed that transport of {sup 95m+99}Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water ({sup 3}H{sub 2}O) as a flow indicator. Retardation of {sup 237}Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the {sup 22}Na had migrated about half the distance through the block, and that {sup 60}Co and {sup 137}Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results from static batch sorption studies. In the larger scale experiment, the transport behavior of Tc is very similar to that of the transport solution at this point in time. None of the other radionuclide tracers have been detected in water collected from this block. This observation is consistent with the observations for the smaller block. (author)

  6. Compilation of data for the analysis of radionuclide migration from SFL 3-5

    International Nuclear Information System (INIS)

    Skagius, K.; Pettersson, Michael; Wiborgh, M.; Albinsson, Yngve; Holgersson, Stellan

    1999-12-01

    A preliminary safety assessment of the deep repository for long-lived, low and intermediate level waste, SFL 3-5, has been made. This report contains a compilation of data selected for the calculations of the migration of radionuclides and toxic metals from the waste to the biosphere. It also contains the data needed for the next step, which is to calculate dose to man from the far-field release figures. In the preliminary safety assessment it is assumed that SFL 3-5 is located in connection to the deep repository for spent fuel. This makes it possible to utilise site-specific information derived within the safety assessment of the deep repository for spent fuel, SR 97, for the sites Aberg, Beberg and Ceberg. When information from SR 97 is utilised, the values selected are as far as possible those proposed as a 'reasonable estimate' for the migration calculations in SR 97. The selection of values for parameters specific for the calculation of migration from the SFL 3-5 repository is in general on the pessimistic side. The uncertainty in the selected values is discussed and if possible also quantified

  7. Radionuclide migration in non-saline rock formations - status and perspectives

    International Nuclear Information System (INIS)

    Kienzler, B.; Geckeis, H.; Fanghaenel, T.

    2002-01-01

    The article is a condensed version of a paper presented at a workshop on 'Final Storage in Non-saline Rock Formations - Previous and Future German R and D Activities' at the Karlsruhe Research Center on April 8-9, 2002. The objectives, methods, and results of the research work performed at the Institute for Nuclear Waste Management (INE) of the Karlsruhe Research Center on the migration of radionuclides, in particular of the actinides, and the perspectives derived from these activities are described. The R and D work presented comprises laboratory studies of granite and clay as well as in situ experiments at the underground laboratories of Aespoe, Sweden, and Grimsel, Switzerland. An exemplary overview is presented of the findings about actinide migration in fractures, colloid migration in the shear zone of a granite formation, and the sorption of actinides and lanthanides onto clay and various argillaceous materials. Fundamental studies by INE of the problems outlined here include the elucidation of the structures and binding patterns of species sorbed onto surfaces, the stability and characteristics of colloids, the relevant basic thermodynamic features, and methodological developments. (orig.) [de

  8. Compilation of data for the analysis of radionuclide migration from SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, K.; Pettersson, Michael; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden); Albinsson, Yngve; Holgersson, Stellan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-12-01

    A preliminary safety assessment of the deep repository for long-lived, low and intermediate level waste, SFL 3-5, has been made. This report contains a compilation of data selected for the calculations of the migration of radionuclides and toxic metals from the waste to the biosphere. It also contains the data needed for the next step, which is to calculate dose to man from the far-field release figures. In the preliminary safety assessment it is assumed that SFL 3-5 is located in connection to the deep repository for spent fuel. This makes it possible to utilise site-specific information derived within the safety assessment of the deep repository for spent fuel, SR 97, for the sites Aberg, Beberg and Ceberg. When information from SR 97 is utilised, the values selected are as far as possible those proposed as a 'reasonable estimate' for the migration calculations in SR 97. The selection of values for parameters specific for the calculation of migration from the SFL 3-5 repository is in general on the pessimistic side. The uncertainty in the selected values is discussed and if possible also quantified.

  9. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  10. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Abel, K.H.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1986-01-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field investigation was conducted in 1983 and 1984 to compliment the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater environment

  11. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    Heath, M.J.; Durrance, E.M.

    1985-01-01

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10 -7 ms -1 has been obtained, 2.11x10 -8 ms -1 if the major hydraulic features are excluded

  12. Effects of thermally generated convection on the migration of radionuclides in saturated geologic formation

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Paik, Seungho; Rood, A.S.

    1994-01-01

    The problem of radionuclide migration in the presence of simultaneous forced and free convection in parallel flows is studied numerically by a hybrid spectral numerical technique. In this method, the momentum, energy, and mass conservation equations together with Boussinesq approximations are solved using a combined Galerkin and collocation method in conjunction with the backward Euler for time integration. Several cases are simulated with varying buoyancy parameters and Peclet number for prescribed thermal output and leach rates at the surface of a spherical canister. The results indicate that the actions of the buoyancy force are either to aid or oppose the main flow which can lead to an elongation of the concentration plume in the streamwise or transverse direction. It is also found that for a fixed Peclet number, influence of buoyancy force remains noticeable even when buoyancy parameter is an order of magnitude smaller than the Peclet number. (author)

  13. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  14. Studies on migration behavior of radionuclides under reducing conditions in JNC

    International Nuclear Information System (INIS)

    Kitamura, A.; Sato, H.

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) has performed extensive researches and developments to investigate the geochemistry and radionuclide migration in buffer materials and geosphere. Experimental and modeling studies have been carried out related to the geological disposal of high-level radioactive waste (HLW) as a link in the chair of a follow-up of the second progress report, which has explained in the technical feasibility of HLW geological disposal in Japan. In this paper, three experimental studies on solubility, sorption and diffusion of radionuclides under reducing conditions for assuring the reliability and for improving the quality of the databases are introduced. Solubility and sorption behavior of neptunium (Np) have been studied under reducing conditions in carbonate media. For the solubility study, thermodynamic equilibrium constants of carbonatohydroxo complexes of Np(IV) have been determined from a solubility measurement in alkaline solutions. For the sorption study, distribution coefficient (K d ) of Np onto smectite has been determined in weak alkaline solutions under reducing conditions in carbonate media. For the diffusion study, apparent diffusivity (D a ) of selenium (Se) in compacted bentonite have been determined under reducing conditions as a function of silica sand content and temperature

  15. Analysis of radionuclide migration through fractures using the stream tube approach

    International Nuclear Information System (INIS)

    Jong Soon Song; Kun Jai Lee

    1988-01-01

    An analytical solution for the radionuclide migration in the heterogeneous geologic media is developed by using the Green's function techniques. To take into account the non-homogeneous geologic formation and non-uniform groundwater flow field effectively, a combined fracture/porous media model (in series network) is introduced. The stream tube approach is suggested as an efficient method to analyze groundwater hydrology occurring primarily along the fractures. With this approach, three-dimensional heterogeneous media may be approximated as a network of one-dimensional flow paths (fractures) and the corresponding subsurface transport equations can be solved more easily and efficiently by using the Green's function technique within each unit stream tubes. Also a method of combining the corresponding separate Green's functions to derive an overall Green's function for the flow path network is developed. Analytical solutions with various time-dependent radionuclide release modes for heterogeneous geologic media are obtained and sample calculations are performed for the parametric studies. Comparison with other model shows the validity of the present model. 22 refs.; 11 figs.; 5 tabs

  16. Migration of radionuclides in fissured rock: The influence of micropore diffusion and longitudinal dispersion

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, I.

    1981-01-01

    The migration of radionuclides in the fissures in the bedrock surrounding a repository is discussed. A one-dimensional transport model is presented. It includes diffusion of the nuclides into the microfissures of the rock, and linear sorption, and longitudinal dispersion in the bedrock. An analytical solution to the model is given in terms of an infinite integral. The integrand is a sometimes highly oscillatory function of the system parameters. A special integration method is developed to evaluate the infinite integral. The method utilizes the oscillatory behavior of the integrand. The assessment of input parameters is discussed in some detail. Dimensionless breakthrough curves are given for the approximate range of variation of the input parameters. Calculations are made for a repository of spent fuel surrounded by fissured but fairly good rock (K/sub p/ = 10 -9 m/s and fissure spacing S = 50 m). Longitudinal dispersion may significantly affect the amount of radioactive material reaching the biosphere. Radionuclides, which would decay completely without longitudinal dispersion, may arrive in nonnegligible concentrations. Dispersion effects of the magnitude considered in this study can significantly diminish the retardation effects of matrix diffusion

  17. Migration of radionuclides in fissured rock - The influence of micropore diffusion and longitudinal dispersion

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, I.

    1979-12-01

    The migration of radionuclides in the fissures in the bedrock surrounding a repository is discussed. A one-dimensional transport model is presented. It includes diffusion of the nuclides into the microfissures of the rock, and linear sorption and longitudinal dispersion in the bedrock. An analytical solution to the model is given in terms of an infinite integral. The integrand is a sometimes highly oscillatory function of the system parameters. A special integration method is developed to evaluate the infinite integral. The method utilizes the oscillatory behavior of the integrand. The assessment of input parameters is discussed in some detail. Dimensionless breakthrough curves are given for the approximate range of variation of the input parameters. Calculations are made for a repository of spent fuel surrounded by fissured but fairly good rock (K(sub)p=10- 9 m/s and fissure spacing S=50 m). Longitudinal dispersion may significantly affect the amount of radioactive material reaching the biosphere. Radionuclides, which would decay completely without longitudinal dispersion, may arrive in non-negligible concentrations. Dispersion effects of the magnitude considered in this study can significantly diminish the retardation effects of matrix diffusion. (authors)

  18. Retention and radionuclide migration mechanisms in the environment of a radioactive waste repository in granitic formation

    International Nuclear Information System (INIS)

    Rancon, D.; Miara, P; Vinson, J.M.; Petronin, J.C.; Dozol, J.F.

    1986-01-01

    A laboratory pre-determination of retention mechanisms of radionuclides migrating outside the primary waste containers in repository surroundings was started up. Backfillings materials (clay and sand) as well as granite and its weathering products are concerned here. A method allowing the evaluation of the sorption and desorption of radionuclides of the surfaces of fractures by measuring surface retention coefficients, had initially been started up as well as a laboratory device developed for experiments in a reducing environment. The experiments have consisted of studying the sorbing properties of granite minerals of Auriat and its weathering products and of determining the retention of Np, Pu, AM, CS and Sr on the surface fractures of this granite. The influence of a reducing environment on the behaviour of activities has been studied. Complementary percolation tests have also been carried out on clays, at raised temperature and under irradiation. These experiments have enabled a deeper knowledge of retention mechanisms, the taking of parametric sensitivity measurements and the preparation of elaborating more performing experimental devices which included the parameters needed for a realistic simulation of transfer phenomena

  19. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 2: annotated bibliography

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    Part 2 of UCRL-52078 consists of the bibliography and abstracts that were compiled in the course of searching the literature for information on the migration of radionuclides in groundwater at the Nevada Test Site. The bibliography also includes numerous references to work done at foreign nuclear centers or contracted to outside agencies by these same centers

  20. Migration of 134,137Cs radionuclides in the soil and uptake by plants in German spruce forests

    International Nuclear Information System (INIS)

    Buermann, W.; Drissner, J.; Miller, R.; Heider, R.; Lindner, G.; Zibold, G.; Sykowa, T.

    1994-01-01

    In southern German spruce forests on different geological substrates the depth distributions of the activity inventories of 134 Cs and 137 Cs radionuclides from Chernobyl and nuclear weapons testing fallout and the corresponding activity concentrations in the dry mass of different plants were measured. Using a compartment model based on first order kinetics, the vertical residence half-times and migration rates of 137 Cs were calculated. Migration rates decrease with increasing soil depth and retention time of the 137 Cs radionuclides in the soil. The aggregated soil to plant transfer factors [m 2 /kg] on the other hand, are comparatively high: Up to 1.1 m 2 /kg for fern, and smaller values for bilberry and raspberry. It is suggested that a fixation of cesium radionuclides in the organic matter of the litter debris occurs and that the transfer to plants is mediated by carrier substances produced by microorganisms responsible for the degradation of the litter. (orig.)

  1. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of 36 Cl and 129 I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  2. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of {sup 36}Cl and {sup 129}I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  3. In situ radionuclide migration studies in a shallow sand aquifer (Part 1)

    International Nuclear Information System (INIS)

    Williams, G.M.; Alexander, L.S.; Hitchman, S.P.; Hooker, P.J.; Noy, D.J.; Ross, C.A.M.; Stuart, A.; West, J.M.

    1985-07-01

    As a result of a study of the geology of the British Nuclear Fuels premises at Drigg, Cumbria, the British Geological Survey identified a shallow glacial sand deposit approximately 1.5m thick, interbedded between two clay horizons. An array of boreholes has been contructed in this sand in order to study the migration of radionuclides introduced into the formation under controlled conditions of groundwater flow. Conservative tracers used in the field test include chloride (as NaCl, detected using a specific ion electrode) and iodine-131 (as NaI, detected radiometrically using a NaI (T1) crystal). Strontium-85 (as the chloride) has been used as a chemically reactive tracer in conjuction with 131 I. The principal research objectives of the programme are as follows:- (1) to undertake laboratory batch sorption experiments using core material from the field site in order to choose those nuclides of radiological interest that would migrate sufficiently quickly for their behaviour to be studied in a field experiment within a reasonable time period. (2) to identify and quantify the mechanisms for nuclide/sediment interaction by determination of the geochemical distribution of 85 Sr in contaminated cores using a sequential leaching procedure. (3) to obtain appropriate data on the hydraulic characteristics of the sand formation in order to construct a mathematical model to describe groundwater flow and reactive mass transport. (author)

  4. Minneapolis Multi-Ethnic Curriculum Project--Migration Unit.

    Science.gov (United States)

    Minneapolis Public Schools, Minn. Dept. of Intergroup Education.

    The student booklet presents short chapters illustrating the migration unit of the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. Sixteen brief chapters describe migration, immigration, and emigration in the United States. The first six chapters offer first person accounts of immigrants from Norway, Korea, Egypt, Hitler's…

  5. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  6. Overview of CEA research in the field of radionuclides migration; Syntheses des recherches menees par le CEA sur la migration des radionucleides

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch; Trotignon, L; Tevissen, E

    2006-07-01

    This report presents a synthetic status of the researches conducted within the Nuclear Energy Division (CEA/DEN) in the field of radionuclides migration in three specific areas which have been chosen for their representativeness and potential impact: the migration of RN in PWR reactors, the migration of RN from a deep geological repository and the migration processes in the surface environments. In addition, some status is given about more generic research which is conducted in the field of RN speciation in the aqueous phase and at the interfaces and regarding chemistry / transport couplings. Additional information about the human and technical means involved in these fields of research in CEA/DEN is finally given in the Appendix. (authors)

  7. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  8. Hydrology of the solid waste burial ground, as related to the potential migration of radionuclides, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Barraclough, J.T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-08-01

    This report describes a study conducted by the U. S. Geological Survey with the following objectives: to evaluate the hydrologic, radiologic and geochemical variables that control the potential for subsurface migration of waste radionuclides from the burial trenches to the Snake River Plain aquifer; to determine the extent of radionuclide migration, if any; and, to construct monitoring wells into the aquifer. Statistically significant trace amounts of radioactivity were found in about one-half of the 44 sedimentary samples from the six holes core drilled inside the burial ground and from all water samples from one hole tapping a perched water table. These very low levels of radioactivity are detectable only with the most sensitive of analytical equipment and techniques. The levels of radioactivity detected were, in most cases, less than the amounts found in surface soils in this region resulting from world-wide fallout. This radioactivity found in the cores could have been introduced naturally by migration by infiltrating water which had made contact with buried waste or could have been introduced artificially during drilling and sampling. The available data from the four peripheral monitoring wells do not indicate that radionuclide constituents from the burial ground have migrated into the underlying Snake River Plain aquifer. The low concentrations of radionuclides detected in samples taken from the sedimentary layers are not expected to migrate to the Snake River Plain aquifer. Water samples from the peripheral wells and one core hole inside the burial ground will continue to be collected and analyzed for radioactivity semi-annually

  9. In situ radionuclide migration studies in a shallow sand aquifer. Part. 1. Part. 2: appendices

    International Nuclear Information System (INIS)

    Williams, G.M.; Alexander, L.S.; Hitchman, S.P.; Hooker, P.J.; Noy, D.J.; Ross, C.A.M.; Stuart, A.; West, J.M.

    1986-01-01

    As a result of a study of the geology of the British Nuclear Fuels premises at Drigg, Cumbria, the British Geological Survey identified a shallow glacial sand deposit approximately 1.5m thick, interbedded between two clay horizons. An array of boreholes has been constructed in this sand in order to study the migration of radionuclides introduced into the formation under controlled conditions of groundwater flow. Conservative tracers used in the field test include chloride (as NaCl) and iodine-131 (as NaI). Strontium-85 (as the chloride) has been used as a chemically reactive tracer in conjunction with 131 I. The principal research objectives of the programme are as follows: (1) To undertake laboratory batch sorption experiments using core material from the field site in order to choose those nuclides of radiological interest that would migrate sufficiently quickly for their behaviour to be studied in a field experiment within a reasonable time period. (2) To identify and quantify the mechanisms for nuclide/sediment interaction by determination of the geochemical distribution of 85 Sr in contaminated cores using a sequential leaching procedure. (3) To obtain appropriate data on the hydraulic characteristics of the sand formation in order to construct a mathematical model to describe groundwater flow and reactive mass transport. Part 2 of this report contains the following appendices: (1) Calculation of sorption parameters. (2) A low-cost manifold system for use with multi-level samplers. (3) Radioactivity curves for 131 I and 85 Sr. (4) Results of particle size analysis for sand aquifers

  10. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  11. Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. First technical progress report (work period 01.97 - 12.97)

    International Nuclear Information System (INIS)

    Buckau, G.

    1998-08-01

    The present report describes progress within the first year of the EC-project 'Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides'. The project is conducted within the EC-Cluster 'Radionuclide Transport/Retardation Processes'. Contrary to formal requirements of the Commission, this report with a great deal of detail is established already after one year of project work. It is scheduled to be followed by a second technical progress report covering the second year of the project. In agreement with the contractual obligations a final report of similar technical detail will also be generated. The report contains an executive summary written by the coordinator (FZK/INE) with strong support from the other three task leaders (BGS, CEA-SGC and RMC-E). More detailed results are given by individual contributions of the project partners in 13 annexes. In the executive summary report the origin of results presented is given, also serving as guidance for finding more detailed results in the annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. (orig.)

  12. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. 5. progress report. Period covered: July - December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.I. [Technische Univ. Muenchen, Garching (Germany); Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany); Zeh, P. [Technische Univ. Muenchen, Garching (Germany); Probst, T. [Technische Univ. Muenchen, Garching (Germany); Lin, X. [Technische Univ. Muenchen, Garching (Germany); Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany); Schauer, C. [Technische Univ. Muenchen, Garching (Germany); Ivanovich, M. [Harwell Lab., AEA Environment and Energy, Oxon (United Kingdom); Longworth, G. [Harwell Lab., AEA Environment and Energy, Oxon (United Kingdom); Hasler, S.E. [Harwell Lab., AEA Environment and Energy, Oxon (United Kingdom); Gardiner, M. [Harwell Lab., AEA Decommissioning and RadWaste, Oxon (United Kingdom); Fritz, P. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Klotz, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Lazik, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Wolf, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Geyer, S. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-02-01

    The aim of the joint research programme is to determine the significance of groundwater colloids in far field radionuclide migration. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena of radionuclides in selected Gorleben aquifer systems are the main objectives of the present research programme. Gorleben aquifer systems are chosen because they are well characterized in terms of their hydrological and geological properties and because they contain substantial amounts of colloids of different chemical compositions as well as considerable quantities of chemical homologues and natural analogues of radionuclides, e.g. M(III), M(IV), M(VI), and Th and U decay series. The research tasks are investigated jointly by the four laboratories (listed below) in close coordination of experimental capacities of each laboratory. (orig.)

  13. Migration behavior and sorption mechanisms of radionuclides in sedimentary sand stones

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Kamiyama, Hideo; Sriyotha, K.

    1993-05-01

    The influence of crushed particle size and weathering of sedimentary rock on migration behavior and sorption mechanisms of 60 Co, 85 Sr and 137 Cs has been investigated by using the fresh sand stones (classified into two particle size ranges of 1 ∼ 3 mm and 2 , KCl, NH 2 OH-HCl, K-oxalate and H 2 O 2 solutions were carried out, to elucidate their dominated sorption mechanisms. Distribution coefficient values of the all three radionuclides, Kds, for the sand stone of 1 ∼ 3 mm was smaller than that of 85 Sr, and the same irreversible sorptions as the selective sorption of Co onto manganese oxides and fixation of Cs by the layer silicate for 60 Co and 137 Cs, respectively. Larger sorbability of the weathered sand stone was explained to be related to an increase of amounts of the effective sorption site, such as cation exchangeable site, calcite, smectite and manganese oxides, which was possibly caused from metamorphism induced by weathering the fresh sand stone. (author)

  14. Analysis of structure-tectonic pattern within the 'Degelen' massif conformably to conditions of radionuclide migration in ground water

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.; Ivanchenko, G.N.; Godunova, L.D.

    2005-01-01

    Major orientation of radiation monitoring on the Semipalatinsk test site lies in direction of common regularities for formation and distribution of radioactive contamination. Zones, within the 'Degelen' technical area. of hydrogeological active faults are patly subjected to impact of underground explosions. Data of computer-aided decryption of a stellite image by means of program package LESSA allow specification of para-genesis structures standing as probabilistic pathways of radionuclide migration. (author)

  15. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  16. Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site

    Science.gov (United States)

    Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel

    2013-04-01

    Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form

  17. COLLAGE 2: a numerical code for radionuclide migration through a fractured geosphere in aqueous and colloidal phases

    International Nuclear Information System (INIS)

    Grindrod, P.; Cooper, N.

    1993-05-01

    In previous work, the COLLAGE code was developed to model the impacts of mobile and immobile colloidal material upon the dispersal and migration of a radionuclide species within a saturated planer fracture surrounded by porous media. The adsorption of radionuclides to colloid surfaces was treated as instantaneous and reversible. In this report we present a new version of the code, COLLAGE 2. Here the adsorption of radionuclides to the colloidal material is treated via first order kinetics. The flow and geometry of the fracture remain as in the previous model. The major effect of colloids upon the radionuclide species is to adsorb them within the fracture space and thus exclude them from the surrounding porous medium. Thus the matrix diffusion process, a strongly retarding effect, is exchanged for a colloid capture/release process by which adsorbed nuclides are also retarded. The effects of having a colloid-radionuclide kinetic interaction include the phenomena of double pulse breakthrough (the pseudo colloid population followed by the solute plume) in cases where the desorption process is slow and the pseudo colloids are highly mobile. Some example calculations are given and some verification examples are discussed. Finally a complete listing of the code is presented as an appendix, including the subroutines allowing for the numerical inversion of the Laplace transformed solution via Talbot's method. 6 figs

  18. COLLAGE 2: a numerical code for radionuclide migration through a fractured geosphere in aqueous and colloidal phases

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, P.; Cooper, N. [Intera Information Technologies Ltd., Henley-on-Thames (United Kingdom)

    1993-05-01

    In previous work, the COLLAGE code was developed to model the impacts of mobile and immobile colloidal material upon the dispersal and migration of a radionuclide species within a saturated planer fracture surrounded by porous media. The adsorption of radionuclides to colloid surfaces was treated as instantaneous and reversible. In this report we present a new version of the code, COLLAGE 2. Here the adsorption of radionuclides to the colloidal material is treated via first order kinetics. The flow and geometry of the fracture remain as in the previous model. The major effect of colloids upon the radionuclide species is to adsorb them within the fracture space and thus exclude them from the surrounding porous medium. Thus the matrix diffusion process, a strongly retarding effect, is exchanged for a colloid capture/release process by which adsorbed nuclides are also retarded. The effects of having a colloid-radionuclide kinetic interaction include the phenomena of double pulse breakthrough (the pseudo colloid population followed by the solute plume) in cases where the desorption process is slow and the pseudo colloids are highly mobile. Some example calculations are given and some verification examples are discussed. Finally a complete listing of the code is presented as an appendix, including the subroutines allowing for the numerical inversion of the Laplace transformed solution via Talbot`s method. 6 figs.

  19. Testing and intercomparison of model predictions of radionuclide migration from a hypothetical area source

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Yu, C.; Zeevaert, T.; Olyslaegers, G.; Amado, V.; Setlow, L.W.; Waggitt, P.W.

    2008-01-01

    This work was carried out as part of the International Atomic Energy Agency's EMRAS program. One aim of the work was to develop scenarios for testing computer models designed for simulating radionuclide migration in the environment, and to use these scenarios for testing the models and comparing predictions from different models. This paper presents the results of the development and testing of a hypothetical area source of NORM waste/residue using two complex computer models and one screening model. There are significant differences in the methods used to model groundwater flow between the complex models. The hypothetical source was used because of its relative simplicity and because of difficulties encountered in finding comprehensive, well-validated data sets for real sites. The source consisted of a simple repository of uniform thickness, with 1 Bq g -1 of uranium-238 ( 238 U) (in secular equilibrium with its decay products) distributed uniformly throughout the waste. These approximate real situations, such as engineered repositories, waste rock piles, tailings piles and landfills. Specification of the site also included the physical layout, vertical stratigraphic details, soil type for each layer of material, precipitation and runoff details, groundwater flow parameters, and meteorological data. Calculations were carried out with and without a cover layer of clean soil above the waste, for people working and living at different locations relative to the waste. The predictions of the two complex models showed several differences which need more detailed examination. The scenario is available for testing by other modelers. It can also be used as a planning tool for remediation work or for repository design, by changing the scenario parameters and running the models for a range of different inputs. Further development will include applying models to real scenarios and integrating environmental impact assessment methods with the safety assessment tools currently

  20. Radionuclide distributions and migration mechanisms at shallow land burial sites. 1982 annual report of research investigations on the distribution, migration and containment of radionuclides at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Kirby, L.J.

    1984-02-01

    Subsurface waters at Maxey Flats are anoxic, have a high alkalinity and contain high concentrations of ferrous, sulfide and ammonium ions and organic carbon. The trench leachates are extremely variable in composition. Prominent radionuclides include 3 H, 60 Co, 90 Sr, 137 Cs, 238 239 240 Pu and 241 Am. A wide spectrum of dissolved organic compounds is present in the leachates, including EDTA, polar organics and decomposition products from the waste forms. Cobalt-60 and plutonium are present as EDTA complexes and 90 Sr and 137 Cs are associated with carboxylic acid type compounds. The chemistry of these waters changes drastically as they become oxic and plutonium becomes less mobile under these new conditions. Water enters the trenches by infiltration through the trench caps, through subsidence areas, and through interfaces between new landfill and the original soil. Lateral flow is very complex and slow, and apparently occurs mainly by fracture flow. The plastic infiltration barrier installed in 1981 to 1982 has been effective in reducing soil moisture if cracks and leaks are eliminated. To date, no direct evidence of radionuclide transport to offsite locations by subsurface flow has been confirmed. The offsite distribution of radionuclides, except for tritium, is comparable to the ambient fallout from nuclear weapons testing. Tritium concentrations in water offsite are orders of magnitude below MPC levels. 24 figures, 31 tables

  1. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  2. Busted Butte : final report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated and saturated conditions

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Drew, D.J.; Ticknor, K.V.; Hamon, C.J.

    2004-01-01

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) in volume and the other two, nominally one cubic meter (1 m 3 ) in volume, were excavated from the Busted Butte Test Facility on the Nevada Test Site in 1999 and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m 3 blocks were used for radionuclide migration experiments under unsaturated conditions; the remaining 1-m3 block was used for similar migration experiments under saturated conditions. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in two locations on the upper surface of the 1-m 3 block. These flow rates correspond to infiltration rates of about 120 cm/year and about 17 cm/year, respectively. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m3 block was performed for a period of 588 days. Results obtained from the migration experiment in the trial block showed that transport of 95m+99 Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water ( 3 H 2 0) as a flow indicator. Retardation of 237 Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the 22 Na plume had migrated about half the distance through the block, and that 60 Co and 137 Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results obtained in static batch sorption studies. In the larger-scale experiment, the transport behavior of Tc was also very similar to that of the transport solution. None of the other radionuclide tracers

  3. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  4. MARFA version 3.2.2 user's manual: migration analysis of radionuclides in the far field

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott; Mancillas, James (Center for Nuclear Waste Regulatory Analyses, Southwest Research Inst., San Antonio, TX (United States))

    2009-12-15

    The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. Transport in sparsely fractured rock is of interest because this medium may serve as a barrier to migration of radionuclides to the accessible environment. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Multiple non-branching decay chains of arbitrary length are supported. This document describes the technical basis and input requirements for MARFA Version 3.2.2. MARFA Version 3.2 included new capabilities to accommodate transient flow velocities and sorption parameters, which are assumed to be piecewise constant in time. Version 3.2.1 was a minor change from Version 3.2 to allow a more convenient input format for sorption information. New capabilities in Version 3.2.2 include an option to specify a non-zero start time for the simulation, an optional input parameter that decreases the amount of retention within a single fracture because of flow channeling, and an alternative method for sampling the radionuclide source. MARFA uses the particle on random streamline segment algorithm/Painter et al. 2006/, a Monte Carlo algorithm combining time-domain random walk methods with pathway stochastic simulation. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The set of times required for particles to pass through the geological barrier are then used to reconstruct discharge rates (mass or activity basis). Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide

  5. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)

  6. Speciation Analysis of Radionuclides in the Environment - NSK-B SPECIATION project report 2009

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Aldahan, Ala; Possnert, Göran

    . Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Further-more, sorption experiments have been performed......, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionu-clides in soil and sediment. This report summarizes the work completed in the project partners’ laboratories, Method developments include: Development of an rapid and in-suit separation method for the speciation...... analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes...

  7. Modelling of radionuclide migration and heat transport from an High-Level-Radioactive-Waste-repository (HLW) in Boom clay

    International Nuclear Information System (INIS)

    Put, M.; Henrion, P.

    1992-01-01

    For the modelling of the migration of radionuclides in the Boom clay formation, the analytical code MICOF has been updated with a 3-dimensional analytical solution for discrete sources. the MICOF program is used for the calculation of the release of α and β emitters from the HIGH LEVEL RADIOACTIVE WASTES (HLW). A coherent conceptual model is developed which describes all the major physico-chemical phenomena influencing the migration of radionuclides in the Boom clay. The concept of the diffusion accessible porosity is introduced and included in the MICOF code. Different types of migration experiments are described with their advantages and disadvantages. The thermal impact of the HLW disposal in the stratified Boom clay formation has been evaluated by a finite element simulation of the coupled heat and mass transport equation. The results of the simulations show that under certain conditions thermal convection cells may form, but the convective heat transfer in the clay formation is negligible. 6 refs., 19 figs., 2 tabs., 5 appendices

  8. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  9. A study on the radiation and environmental safety -Studies on radionuclide migration and distribution in terrestrial ecosystem-

    International Nuclear Information System (INIS)

    Lee, Jung Hoh; Lee, Hyun Duk; Kim, Sam Lang; Lee, Chang Woo; Choi, Yong Hoh; Kim, Sang Bok; Lee, Myung Hoh; Hong, Kwang Heui; Lee, Won Yoon; Park, Doo Won; Choi, Sang Doh

    1995-07-01

    In order to investigate the migrational behaviors of radionuclides deposited onto the farm-land during crop cultures, potato and red pepper were cultured on lysimeters installed in a greenhouse and the solution of mixed radionuclides such as Mn-54, Co-60, Sr-85 and Cs-137 was distributed over the land surface on different growth stages of the crops. For rice, soybean, Chinese cabbage and radish, the second or third year's radio-tracer experiments were carried out. Experimental results on Sr-85 and Cs-137 transfer factors for Chinese cabbage and radish were compared with their root-uptake concentrations calculated using existing methods. Samples of farm-land soils and crop plants were collected in the middle part of Korea and concentrations of several γ-emitters were measured. Soil-to-plant transfer factors of Cs-137 measured in outdoor fields were compared with those from greenhouse experiments. 20 figs, 35 tabs, 58 refs. (Author)

  10. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  11. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site

    International Nuclear Information System (INIS)

    1993-09-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m 2 grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards

  12. Radionuclide migration through porous cement-waste composition in semi-real conditions

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Kostadinovic, A.

    1989-01-01

    In this paper, result of examination of Leakage rate or radionuclides Co-60 and Cs-137 in semi-real conditions are given. Radionuclides Co-60 and Cs-137 were immobilized by cement process and conditioned in concrete containers trying to make similar scenario for storing radioactive waste materials as in engineering trench system, repository. Experiments were realized with two waste water, evaporator bottom and reactor cooling system, (EB) and (RCS), from Nuclear Power Plants Krsko, in which the main radionuclides are Co-60 and Cs-137. These results will be used for future Yugoslav radioactive waste storing center (author)

  13. Vertical Migration of Radionuclides in Soils on the Chernobyl Nuclear Power Plant (ChNPP) Exclusion Zone (1987-2007)

    Science.gov (United States)

    Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained

  14. Sensitivity analysis and uncertainties simulation of the migration of radionuclide in the system of geological disposal-CRP-GEORC model

    International Nuclear Information System (INIS)

    Su Rui; Wang Ju; Chen Weiming; Zong Zihua; Zhao Honggang

    2008-01-01

    CRP-GEORC concept model is an artificial system of geological disposal for High-Level radioactive waste. Sensitivity analysis and uncertainties simulation of the migration of radionuclide Se-79 and I-129 in the far field of this system by using GoldSim Code have been conducted. It can be seen from the simulation results that variables used to describe the geological features and characterization of groundwater flow are sensitive variables of whole geological disposal system. The uncertainties of parameters have remarkable influence on the simulation results. (authors)

  15. Modelling the migration and accumulation of radionuclides in forest ecosystems. Report of the Forest Working Group of BIOMASS Theme 3

    International Nuclear Information System (INIS)

    2002-08-01

    ) radionuclide migration and accumulation in forest ecosystems. This report describes results of the studies undertaken by the Forest Working Group under Theme 3

  16. Mathematical and numerical modeling considerations for radionuclide ion migration in porous media

    International Nuclear Information System (INIS)

    Treadway, A.H.

    1984-04-01

    The equations governing radionuclide transport in sorbing, porous media are presented using phenomenological coefficients. Both equilibrium controlled and simple rate controlled chemistry are summarized. Several simplified models are discussed. Finally, various numerical problems are considered. 25 references

  17. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    International Nuclear Information System (INIS)

    Golian, C.; Lever, D.A.; Baker, A.J.; Connell, L.D.; Bennett, D.G.; Read, D.; Lindgreen, M.; Pers, K.; Skagius, K.; Murakami, T.; Ohnuki, T.

    1992-01-01

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The 234 U/ 238 U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that 234 U is preferentially mobile relative to 238 U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater, thus leading to ( 234

  18. Hydrothermal alterations as natural analogues of radionuclide migration in granitic rocks

    International Nuclear Information System (INIS)

    Piantone, P.

    1989-01-01

    The document is the final report of the project Hydrothermal alteration systems as analogues of nuclear waste repositories in granitic rocks which was the subject of contract n 0 F1 1 W/0072-F (CD) performed at shared cost between the Bureau de Recherches Geologiques et Minieres (BRGM), the Commissariat a l'Energie Atomique and the Commission of the European Communities as part of the MIRAGE programme. This study is the continuation of a preliminary study made by BRGM in 1986 and which concerned the same programme. The data given in this report were obtained from the study of the infilling and hydrothermalized walls of a mineralized vein located at Fombillou, Lot Department, in the French Massif Central. A satisfactory model of the processes generated by hydrothermal alteration then by climatic weathering such as formation of new minerals, flow of elements and variations in volume, was thus built. The mobility of elements displaying physical and chemical properties similar to those of radionuclides present in high-level radioactive waste was studied. A preliminary thermodynamic simulation of mineral transformations and transfers of matter during hydrothermal alteration was performed using the calculation code CEQCSY (Chemical EQuilibrium in Complex SYstem). This simulation is based on the values of the main physical and chemical parameters deduced from the analysis of the natural system. On the basis of the results obtained from Fombillou, an appraisal was made of the response of the granitic environment which has been disturbed by a hydrothermal system produced by heat emitted by the storage of high-level radio-active waste as well as its potential capacities of retention in case of possible leakage

  19. Strategy for a consistent selection of radionuclide migration parameters for the Belgian safety and feasibility case-1

    International Nuclear Information System (INIS)

    Bruggeman, C.; Maes, N.; Salah, S.; Brassinnes, S.; Van Geet, M.

    2010-01-01

    Document available in extended abstract form only. The purpose of this presentation is to describe the strategy for the selection of retention and migration parameters for safety-relevant nuclides that was developed in the framework of the Belgian Safety and Feasibility Case SFC-1. A geochemical database containing state-of-the-art retention and migration parameters of all safety-relevant radionuclides, is ideally based on a thermodynamic understanding and an ability to accurately describe the geochemical and transport behaviour of all these radionuclides under the geochemical conditions that are considered for a reference host formation. In Belgium, this reference formation is Boom Clay. The parameters will be used in Performance Assessment (PA) calculations, and therefore must also be adapted to PA models. Since these models currently use only a four parameters for every radionuclide, the whole geochemical and transport behaviour must be comprised to a very limited parameter set that describe on the one hand chemical retention within the Boom Clay formation, and on the other hand transport through the Boom Clay formation. Chemical retention considers two concepts: 1) a concentration limit (S), which represents the mobile concentration of a nuclide present in the aqueous phase under undisturbed far field Boom Clay conditions; 2) a retardation (R/Kd) factor, which represents the uptake of a mobile nuclide by the inorganic and organic phases present in the Boom Clay formation. For mobility/migration two additional concepts are introduced: 3) the diffusion accessible porosity (η), which is the total physical space available for transport of a nuclide. The maximum value of η is limited by the water content of the formation; 4) the pore diffusion coefficient (Dp), which represents the transport velocity of a nuclide in a diffusion-dominated system. Within the framework of SFC-1, primary focus is laid on the compilation of parameter ranges, instead of individual &apos

  20. A strategy for validation a concept model for radionuclide migration in the saturated zone beneath Yucca Mountain

    International Nuclear Information System (INIS)

    Robinson, B.A.

    1994-01-01

    A conceptual model for radionuclide migration in the saturated zone beneath Yucca Mountain is presented. The available hydrologic data from the site is compiled to present a qualitative picture of transport of radionuclides horizontally within the first 100-200 m of the saturated zone. The transport model consists of flow within fractures and interchange of dissolved species between the fractures and surrounding matrix blocks via molecular diffusion. A parametric study illustrates that at the groundwater conditions expected to exist in the saturated zone, radionuclide will have ample time to diffuse fully within the matrix blocks. The result is a predicted solute transport time several orders of magnitude greater than the groundwater travel time (GWTT). To validate this model, a suite of interwell tracer tests are proposed at various flow rates and with conservative and sorbing species. Numerical simulations show that these tests will allow us to discriminate between a matrix diffusion model and a more conventional continuum transport model. (author) 8 figs., tabs., 35 refs

  1. Monitoring Programme of Radionuclide Migration Through Food Chains at Low and Intermediate Level Radioactive Waste Repository in Trgoska Gora Mountain

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Kucar Dragicevic, S.; Subasic, D.; Barisic, D.

    2001-01-01

    Full text: Basic objective of the paper is to prepare a comprehensive programme of monitoring at the preferred site for low and intermediate level radioactive waste repository in the region of Trgovska Gora mountain. The programme is based on available information regarding hydrogeology, lithostratigraphy, tectonics, seismotectonics, geomorphology, meteorology, bioecology, demography and other site relevant disciplines. It is supposed to ensure (1) identification of the zero state at the broader region of the Trgovska gora mountain, and (2) to underline activities needed for monitoring of concentrations of expected radionuclides throughout possible pathways (particularly through food chains) that would migrate to the biosphere in the period after start of radioactive waste repository operation. Inventory of radionuclides contained in the radioactive waste to be disposed of at the site is naturally an important element of the programme structure. There should be identified those radionuclides which concentrations require to be monitored. Concentration measuring methods are proposed in the article. In addition, relevant aquatic and terrestrial organisms, serving as bioindicators, are identified. Types, quantities, frequency and methodology of sampling present an important part of the monitoring programme. Determination of monitoring sites for undertaking particular types of sampling (e.g. stream waters, stream sediment, detritus, ichtiofauna, groundwater, terrestrial organisms, honey, etc.), presenting an important aspect of a well-organised monitoring programme, is also included into this presentation. (author)

  2. Radionuclide migration studies at the Savannah River Plant humid shallow land burial site for low-level waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Hoeffner, S.L.; King, C.M.

    1984-01-01

    A program of field, laboratory, and modeling studies for the Savannah River Plant low-level waste burial ground has been conducted for several years. The studies provide generic data on an operating shallow land burial site in a humid region. Recent results from individual studies on subsurface monitoring, lysimeter tests, soil-water chemistry, and transport modeling are reported. Monitoring continues to show little movement of radionuclides except tritium. Long-term lysimeter tests with a variety of defense wastes measure migration under controlled field conditions. One lysimeter was excavated to study radionuclide distribution on the soil column beneath the waste. New soil-water distribution coefficients (K/sub d/) were measured for Co-60, Sr-90, Ru-106, Sb-125, and I-129. Laboratory and field data are integrated by means of the SRL dose-to-man model, to evaluate effects of alternative disposal practices. The model recently has been used to evaluate TRU disposal criteria and to predict migration behavior of tritium, Tc-99, and I-129. 14 references, 2 tables

  3. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    Science.gov (United States)

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  4. The study of the migration of the radionuclide Am-241 in unsaturated soil from in Saligny area

    International Nuclear Information System (INIS)

    Toma, Alexandru Dan

    2005-01-01

    The functioning of the Cernavoda Nuclear Power Plant will generate low and medium radioactive waste contaminated with long-lived fission products (from U, Pu, Np, Am fission or decay), radioactive carbon (C-14) and tritium (H-3), which by their radiochemical characteristics and their influence upon the environment and people, request special attention regarding their storage and disposal. Based on the geological and mineralogical researches regarding the location of a repository for low and medium active waste, Saligny area near the Cernavoda Nuclear Power Plant was chosen. The repository will be located in loess, seated on sedimentary formations with insertions of clay patches. The main target of the research is to obtain some experimental data necessary for the evaluation of the migration of the radionuclide Am-241 (resulted from Cernavoda Nuclear Power Plant) in unsaturated soils in Saligny area, which will be the host of the Final Repository for Low and Medium Active Waste. The analysis of the test data obtained in the laboratory for the determination of the migration parameters of the radionuclide Am-241 in the material of the geological formation of Saligny area showed that there is a direct correlation between the values of these parameters and the basic mineralogical component - clay - of the soil sample. (author)

  5. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D A; Baker, A J; Connell, L D [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D G; Read, D [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M; Pers, K; Skagius, K [Kemakta Consultants co., Stockholm (Sweden); Murakami, T; Ohnuki, T [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1993-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  6. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D.A.; Baker, A.J.; Connell, L.D. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D.G.; Read, D. [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M.; Pers, K.; Skagius, K. [Kemakta Consultants co., Stockholm (Sweden); Murakami, T.; Ohnuki, T. [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1992-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  7. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site

    International Nuclear Information System (INIS)

    1994-05-01

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ''as low as reasonably achievable'' (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m 2 ) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report

  8. Aspects of uranium/thorium series disequilibrium applications to radionuclide migration studies

    International Nuclear Information System (INIS)

    Ivanovich, M.

    1989-11-01

    The aim of this paper is to consider the contribution which the uranium/thorium series disequilibrium concept can make to understanding the retardation and transport of radionuclides in the far-field of a radioactive waste repository. In principle, naturally occurring isotopes of uranium, thorium and radium can be regarded as geochemical analogues of the divalent radionuclides and multivalent actinides expected to be present in the radioactive waste inventory. The study of their retardation and/or transport in real rock/water systems which have taken place over geological timescales, can make an important contribution to establishing a rational basis for long-term predictive modelling of radionuclide transport required for safety assessments. (author)

  9. Speciation analysis of radionuclides in the environment - NSK-B SPECIATION project report 2009

    International Nuclear Information System (INIS)

    Hou, X.; Aldahan, A.; Possnert, G.; Lujaniene, G.; Lehto, J.; Skipperud, L.; Lind, O.C.; Salbu, B.

    2009-10-01

    The second stage of the NKS-B project SPECIATION was complemented in 2008-2009, which mainly focus on three aspects: (1) Further improvement and development of methods for speciation analysis of radionuclides; (2) Investigation of speciation of some radionuclides in the environment (water, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionuclides in soil and sediment. This report summarizes the work completed in the project partners' laboratories. Method developments include: Development of an rapid and in-suit separation method for the speciation analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes: Speciation of 129I and 127I in time-series precipitation samples collected in Denmark 2001-2006 and its application for the investigation of geochemistry and atmospheric chemistry of iodine, Speciation of radionuclides in Ob and Yenisey Rivers, and Speciation of 129I and 127I in Lake Heimdalen water. Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Furthermore, sorption experiments have been performed to investigate the association of Pu, Am and Cs with different geological materials. The intercomparison exercises included sequential extraction of Pu, 137Cs, U, Th, and 129I in one soil and one sediment standard reference materials (NIST-4354, IAEA-375) and Pu in sediment collected from the Lake Heimdalen, Norway. (author)

  10. Speciation analysis of radionuclides in the environment - NSK-B SPECIATION project report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Aldahan, A. (Uppsala Univ., Dept. of Earth Science (Sweden)); Possnert, G. (Uppsala Univ., Tandem Lab. (Sweden)); Lujaniene, G. (Univ. of Helsinki, Lab. of Radiochemistry (Finland)); Lehto, J. (Institute of Physics (Lithuania)); Skipperud, L.; Lind, O.C.; Salbu, B. (Norwegian Univ. of Life Sciences, Isotope Lab., AAs (Norway))

    2009-10-15

    The second stage of the NKS-B project SPECIATION was complemented in 2008-2009, which mainly focus on three aspects: (1) Further improvement and development of methods for speciation analysis of radionuclides; (2) Investigation of speciation of some radionuclides in the environment (water, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionuclides in soil and sediment. This report summarizes the work completed in the project partners' laboratories. Method developments include: Development of an rapid and in-suit separation method for the speciation analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes: Speciation of 129I and 127I in time-series precipitation samples collected in Denmark 2001-2006 and its application for the investigation of geochemistry and atmospheric chemistry of iodine, Speciation of radionuclides in Ob and Yenisey Rivers, and Speciation of 129I and 127I in Lake Heimdalen water. Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Furthermore, sorption experiments have been performed to investigate the association of Pu, Am and Cs with different geological materials. The intercomparison exercises included sequential extraction of Pu, 137Cs, U, Th, and 129I in one soil and one sediment standard reference materials (NIST-4354, IAEA-375) and Pu in sediment collected from the Lake Heimdalen, Norway. (author)

  11. The role of bioaccumulation in migration of technogenic radionuclides in freshwater ecosystem

    International Nuclear Information System (INIS)

    Petkeviciute, D.

    1999-01-01

    The concentrations of 137 Cs, 60 Co and 54 Mn were estimated in bottom sediments and different species of macrophyte as well as fish of Lake Druksiai, the cooling basin for the Ignalina NPP. Besides, the concentration factors for radionuclides were calculated in sediments and macrophyte. The results suggested that macrophyte accumulated radionuclides from water more than from bottom sediments. The 'trophic level effect' (bio-magnification) was found for 137 Cs accumulation in fish, while as for 60 Co and 54 Mn that effect did not occur. (au)

  12. The Palmottu natural analogue project. The behaviour of natural radionuclides in and around uranium deposits. Summary report 1992-1994

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, R; Ruskeeniemi, T; Ahonen, L [Geological Survey of Finland, Espoo (Finland); Suksi, J [Helsinki Univ. (Finland). Lab. of Radiochemistry; Niini, H [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Engineering Geology and Geophysics; Vuorinen, U [VTT Chemical Technology, Espoo (Finland); Jakobsson, K [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-06-01

    The Palmottu U-Th mineralization at Nummi-Pusula, southwestern Finland, has been studied as a natural analogue to deep disposal of radioactive wastes since 1988. The report gives a summary of the results of investigations carried out during the years 1992-1994. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes structural interpretations based in part on geophysical measurements, hydrological studies including hydraulic downhole measurements, flow modelling, hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, mineralogical studies, geochemical interpretation and modelling, including paleohydrogeological aspects, and studies of radionuclide mobilization and migration processes including numerical simulations. The project has produced a large amount of data related to natural analogue aspects. The data obtained have already been utilized in developing logical conceptual ideas of the time frames and processes operating in the bedrock of the site. (61 refs., 24 figs., 8 tabs.).

  13. The Palmottu natural analogue project. The behaviour of natural radionuclides in and around uranium deposits. Summary report 1992-1994

    International Nuclear Information System (INIS)

    Blomqvist, R.; Ruskeeniemi, T.; Ahonen, L.; Suksi, J.; Jakobsson, K.

    1995-06-01

    The Palmottu U-Th mineralization at Nummi-Pusula, southwestern Finland, has been studied as a natural analogue to deep disposal of radioactive wastes since 1988. The report gives a summary of the results of investigations carried out during the years 1992-1994. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes structural interpretations based in part on geophysical measurements, hydrological studies including hydraulic downhole measurements, flow modelling, hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, mineralogical studies, geochemical interpretation and modelling, including paleohydrogeological aspects, and studies of radionuclide mobilization and migration processes including numerical simulations. The project has produced a large amount of data related to natural analogue aspects. The data obtained have already been utilized in developing logical conceptual ideas of the time frames and processes operating in the bedrock of the site. (61 refs., 24 figs., 8 tabs.)

  14. Microorganisms and their influence on radionuclide migration in igneous rock environments

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    2005-01-01

    Microorganisms interact with their surroundings and in some cases they greatly modify the characteristics of their environment. Several such interactions may have a significant influence on the behaviour of radionuclides possibly escaping from underground radioactive waste repositories. Microbes can mobilise trace elements. Unattached microbes may act as large colloids, transporting radionuclides on their cell surfaces with the groundwater flow. Many microbes produce ligands that can mobilise trace elements from solid phases and that can inhibit trace element sorption to solid phases. Bacterial species from the deep subsurface have demonstrated a significant effect on the mobilization of 59 Fe(III), 147 Pm(III), 234 Th(IV) and 241 Am(III) under varying redox conditions. The extent of bacterial immobilisation of radionuclides has been investigated under in situ conditions. Experiments have demonstrated this effect with 60 Co, 147 Pm, 234 Th, 237 Np, and 232 U. A large group of microbes catalyse the formation of iron oxides from dissolved ferrous iron in groundwater that reaches an oxidising environment. Such biological iron oxide systems (BIOS) will have a retardation effect on many radionuclides. Microorganisms execute an important influence on the chemical situation in groundwater. Especially, they may catalyse reactions that stabilise the redox potential in groundwater at a low and, therefore, beneficial level for a radioactive waste repository. (author)

  15. Preliminary rate expressions for analysis of radionuclide migration resulting from fluid flow through jointed media

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, K.L.

    1979-01-01

    A theoretical and experimental basis is being developed for analysis of radionuclide transport in jointed geologic media. Batch equilibration and rate experiments involving samples of Eleana argillite and tertiary silicic tuffs in contact with solutions containing Cs, Sr, or Pm indicated that most radionuclide sorption was associated with the surfaces of very small intergranular regions and that the rate of sorption was controlled by diffusion of the nuclides into such regions. Based on these experimental results, the continuity equations for radionuclides in the mobile and immobile phases were reduced to a model analogous to Rosen's equations for packed beds and were solved similarly. Using the model and experimental data, limited radionuclide transport analyses were made which indicated that important parameters controlling transport include the intergranular porosity and nuclide penetration depth, fracture plate spacing and length, fluid velocity and sorption distribution coefficient. Many of these parameters represent physical quantities or processes which can be quantified in the laboratory. However, fluid velocities and fracture plate spacings and lengths must be obtained from the field, and methods must be developed to establish reliable bounds for such field-determined parameters.

  16. Preliminary rate expressions for analysis of radionuclide migration resulting from fluid flow through jointed media

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    A theoretical and experimental basis is being developed for analysis of radionuclide transport in jointed geologic media. Batch equilibration and rate experiments involving samples of Eleana argillite and tertiary silicic tuffs in contact with solutions containing Cs, Sr, or Pm indicated that most radionuclide sorption was associated with the surfaces of very small intergranular regions and that the rate of sorption was controlled by diffusion of the nuclides into such regions. Based on these experimental results, the continuity equations for radionuclides in the mobile and immobile phases were reduced to a model analogous to Rosen's equations for packed beds and were solved similarly. Using the model and experimental data, limited radionuclide transport analyses were made which indicated that important parameters controlling transport include the intergranular porosity and nuclide penetration depth, fracture plate spacing and length, fluid velocity and sorption distribution coefficient. Many of these parameters represent physical quantities or processes which can be quantified in the laboratory. However, fluid velocities and fracture plate spacings and lengths must be obtained from the field, and methods must be developed to establish reliable bounds for such field-determined parameters

  17. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Appendix III

    International Nuclear Information System (INIS)

    Wolf, M.; Geyer, S.; Fritz, P.; Klotz, D.; Lazik, D.

    1994-01-01

    The results obtained from the 152 Eu migration experiment in various columns packed with fine grained sand and equilibrated with a humic substance rich groundwater are: The retardation of mobile Eu-pseudocolloids (Eu-humate) is negligible, since the recovery is 152 Eu concentration is irreversible sorbed on the column, the degree of filtration expressed by the recovery is strongly dependant on the filtration velocity (flow rate): The recovery increases with increasing flow rates, indicating decreasing filtration, since the humic substances are negatively charged, the migration of the Eu pseudocolloids (humic colloids) is slightly accelerated relative to the migration of the 3 HHO tracer, due to anion repulsion. (orig.)

  18. Study of the influence of hydrogeological conditions in the upper aquifer on radionuclide migration from a geological repository using a 2D groundwater flow model

    Energy Technology Data Exchange (ETDEWEB)

    Shestopalov, Vyacheslav; Bohuslavskyy, Alexander; Shybetskyi, Iurii [National Academy of Science of Ukaraine, Kyiv (Ukraine). Radioenvironmental Centre

    2015-07-01

    Results are presented of a case groundwater flow-transport modeling to predict the radionuclide migration from a deep geological repository (DGR) of radioactive waste. The influence of hydrogeological conditions in the upper aquifers of a storey water exchange system on the rate of contaminant migration from the DGR to its natural far-field groundwater discharges (a shallow well and a river) as a general DGR safety condition is considered.

  19. Scientific data necessary to predict radionuclide migration within or near a mined nuclear repository

    International Nuclear Information System (INIS)

    Downs, W.F.

    1983-03-01

    The National Waste Terminal Storage Program was created to develop a system to isolate radioactive wastes from the biosphere. It has been determined that the most reasonable means for accomplishing this task is to place the high-level and transuranic wastes in mined geologic repositories. Three geologic environments have been selected for further study and evaluation: (1) domed or bedded salt formations, (2) thick basalt flows fo the Columbia River Plateau and (3) alkali igneous rocks, both tuffs and granites, of the Nevada Test Site. Each of these candidate geologies will present a different physical-chemical environment to the waste package. The physical environments have been estimated based on depth of repository, radionuclide loading, and spacing of canisters. The chemical environments are based on initial host-rock mineralogy, native ground-water geochemistry, and likely alteration assemblages. The latter sections of this report discuss the mechanisms of radionuclide release, transport, and retention on the host rocks or their alteration products

  20. The Palmottu Analogue Project, Progress Report 1993. The behaviour of natural radionuclides in and around uranium deposits, Nr. 7

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Suksi, J.; Niini, H.

    1994-01-01

    The report gives a summary of the results of investigations carried out in 1993 at the Palmottu natural analogue study site, which comprises a small U-Th mineralization in Nummi-Pusula, southwestern Finland. Additionally, the report includes several separate articles dealing with various aspects of the Palmottu Analogue Project: (1) 3-dimensional model of fracture zones, (2) redox chemistry of uranium in groundwater, (3) humic substances in groundwater, (4) uranium mineralogy, (5) importance of selective extractions in uranium migration studies, (6) modelling of matrix diffusion, and (7) uranium in surficial deposits. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes (1) structural interpretations partly based on geophysical measurements, (2) hydrological studies including hydraulic drill-hole measurements, (3) flow modelling, (4) hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, (5) mineralogical studies, (6) geochemical interpretation and modelling, (7) studies on mobilization and retardation of uranium, and (8) modelling of uranium series data. Paleohydrogeological aspects are of special interest, due to the anticipated future glaciation of the Fennoscandian Shield. Surficial sediments and waters are studied to gain information on postglacial migration in the overburden. (orig.)

  1. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  2. Testing-ground investigations of radionuclide migration in temporary area for radioactive waste localization << Ryzhy Les >>.; Poligonnye issledovaniya migratsii radionuklidov na uchastke punkta vremennoj lokalizatsii radioaktivnykh otkhodov << Ryzhij les >>.

    Energy Technology Data Exchange (ETDEWEB)

    Dzhepo, S P; Skal` skij, A S; Bugaj, D A; Gudzenko, V V; Mogil` nyj, S A; Proskura, N I [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Geologicheskikh Nauk; [Admyinyistratsyiya zoni vyidchuzhennya, Chernobil` (Ukraine)

    1994-12-31

    Experimental investigations carried out on testing grounds have permitted studying hydrogeological and geochemical conditions, contamination levels of ground waters and mechanisms of radionuclide migration in the areas of radioactive waste burial in sector 2.1 of temporary area for radioactive waste localization << Ryzhy Les >>. Distribution coefficients for {sup 137} Cs and {sup 90} Sr as well as chemical forms of sorbed radionuclides have been determined under in situ conditions. Lateral rates of radionuclide migration in ground waters are estimated.

  3. Chernobyl'-92. Reports of the 3. All-Union scientific and technical meeting on results of accident effect elimination at the Chernobyl' NPP. V. 1. Radiation monitoring. Migration of radionuclides in natural environment. Part 1

    International Nuclear Information System (INIS)

    Senin, E.V.

    1992-01-01

    Section Radiation monitoring comprises: atlas of area radioactive contamination as a result of the Chernobyl' nuclear power station accident, state of computerized radiation control system, hydrological monitoring, radiation situation in different areas, problems of radioactive monitoring and protection of water objects, methods for determining radionuclides content, radiochemical mechanisms of radionuclide migration mobility of the Chernobyl' effluents, the results of investigations into migration of radionuclides in soils, landscapes, bottom depositions, in the soil-plant chain

  4. Radionuclide migration at sites of temporary storage of SNF and RW in North-West Russia - Contribution to regulatory development

    International Nuclear Information System (INIS)

    Sneve, M.K.; Shandala, N.K.; Orlova, E.I.; Titov, A.V.; Kochetkov, O.A.; Smith, G.M.; Barraclough, I.M.

    2007-01-01

    Two technical bases of the Northern Fleet were created in the Russian northwest in the 1960s at Andreeva in the Kola Bay and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel. No further stored material was received after 1985. These technical bases have since been re-categorised as sites of temporary storage. It is necessary to note that, during the storage of RW and SNF, certain conditions arose which resulted in failure of the storage barrier system, resulting in release of radionuclides. Remediation activities at the site focus on reduction of major risks associated with most hazardous radioactive source terms. In addition, the long term management of the sites includes consideration of how to remediate contaminated areas, not only because they affect continuing work at the site, but also because this work will influence final radiological status of the sites. The optimum approach to remediation will be affected by how quickly radionuclides could move, both during the remediation works and, so far as any residual activity is concerned, after the works are completed. Present investigations reported here are directed to determination of sorption-desorption parameters of radionuclides in the studied areas, which will affect their underground migration, with the purpose of accounting for regional peculiarities in optimization process of the STSs remediation. The work is being carried out by the TSO State Research Centre - Institute of Biophysics, of Russian Federation, with assistance from western experts. The work forms part of a regulatory collaboration programme on-going between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency which is designed to support the development of norms and standards to be applied in the remediation of these sites of temporary storage. (author)

  5. Research over the extraction process in order to simulate 226Ra and Unat radionuclides migration in uranium waste dumps

    International Nuclear Information System (INIS)

    Bragea, Mihaela; Toro, Laszlo; Cristache, Carmen

    2008-01-01

    To simulate the phenomenon of migration availability of radioactive elements in uranium waste product from waste dump into the environment it was taken into account the Ciudanovita, Romania area with its uranium waste dumps. It were made studies through experiments of static extraction in agitation pot (static regime), which allow to pursue the evolution of contaminants along a specific period of time. It was accomplish a study about sorption and adsorption process on the geological environment (clay). It was observed that 226 Ra and U nat transition through the sorption and adsorption processes were induced by the type of clay (due to variable solubility of clay and the physics and chemical status of 226 Ra and U nat into the clay) and the time interval until the water contacts the clay. The concentration measurements of radionuclides into different dimension of clay particles were made to give pertinent information about the way of chosen the repair strategies for the studied site. The present work is based mainly on this research direction: optimization and improvement of the performances obtained from the geo-chemical processes investigation methods in the waste dumps and the surrounding geological structures to isolate them, in order to reduce the negative environmental impact. Measurements of the two radionuclides concentrations in particles with different dimensions were made to supply accurate information regarding the selection of remediation strategies for the dumpsite in study. (author)

  6. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Wimmer, H.; Buckau, G.; Klenze, R.; Decambox, P.; Moulin, C.; Moulin, V.; Tits, J.; Marquardt, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1992-09-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting constants into geochemical modelling of the actinide migration. (orig.)

  7. Study of radionuclides migration in hydraulic binders. Influence of binder alteration on transfer mechanisms and kinetic

    International Nuclear Information System (INIS)

    Richet, C.

    1992-01-01

    In the framework of low and medium activity wastes surface storage, hydraulic binders materials are usually used as containment barrier. The safety analysis of this storage mode involves the knowledge of their behaviour and of their retention capacity towards radionuclides, at short and long-term. The knowledge of diffusional processes inside their liquid phase and those of the interactions existing between the diffusing element and the cement matrix, as well as their kinetics, are essential elements for the study of their durability on 300 years. An experimental methodology has been defined, allowing the characterization of the transfer of an element j in a porous material by the determination of the diffusion coefficient of j in the pores of the material x and the determination of the local equilibrium constant characterizing the interaction of j with the material x. This can be made from the analytical expressions coming from the Fick laws. These parameters have been studied from diffusion and leaching experiments of radionuclides in pure cement pastes. A modelling of the leaching processes is proposed here. The decomposition of the hydraulic binders, by their leaching in a demineralized solution at 'aggressive' pH, leads essentially to their decalcification - whose kinetics answers to a pure diffusion law in √t - and an increase of their porosity. In these attack conditions, it seems that it exists a decalcification limit condition, from which a lattice of interconnected microcracks is developed in all the material. In consequence, the retention capacity of these degraded materials towards radionuclides decreases. The cesium transfer appears more sensitive to the degradation of the material than of those of the tritium. (O.M.)

  8. EVEGAS Project (European validation exercise of GAS migration model)

    Energy Technology Data Exchange (ETDEWEB)

    Manai, T. [Geostock S.A., Rueil-Malmaison (France)

    1995-03-01

    The EVEGAS project aims at the verification and validation of numerical codes suitable for simulating gas flow phenomenon in low permeability porous media. Physical phenomena involved in gas generation and gas flow are numerous, often complex, and may not be very well described. The existing numerical codes cannot represent all the occurring possible phenomena, but allow a good trade-off betwen simplicity and representativity of such phenomena. Two phase flow (Gas and Water) appear to be the most consequential phenomena in gas migration and pressure sizing. The project is organised in three major steps: (1) a simple problem with analytical solutions. (2) A few problems based on laboratory or in-situ experiments. (3) A 3-D repository scenarios involving the following aspects: a repository design; a source of gas; rock characteristics; and fluid characteristics.

  9. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. 1. progress report

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.; Decambox, P.; Mauchien, P.; Moulin, C.; Moulin, V.; Tits, J.; Marquardt, C.; Riegel, J.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Diercks, A.; Vancluysen, J.; Maes, A.; Bidoglio, G.; Righetto, L.

    1992-02-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting constants into geochemical modelling of the actinide migration. This programme is a continuation of the activities of the COCO group in the second phase of the CEC-MIRAGE project. (orig.)

  10. Natural and artificial radionuclides in forest and bog soils: tracers for migration processes and soil development

    International Nuclear Information System (INIS)

    Schleich, N.; Degering, D.; Unterricker, S.

    2000-01-01

    Radionuclide distributions in undisturbed forest and bog soils, mostly situated in Saxony, Germany (Erzgebirge), were studied. Low concentrations of naturally-occurring U and Th decay series nuclides, including 210 Pb, and artificial radioisotopes ( 125 Sb, 134 Cs, 137 Cs, 241 Am) were determined using low-level γ-spectrometry. In addition, the activities of 238 Pu and 239,240 Pu were determined by radiochemical separation and α-spectrometry. 14 C and excess 210 Pb dating methods were used to date the sampled bog profiles. The different radionuclides show characteristic depth distributions in the forest and bog soil horizons, which were sub-sampled as thin slices. 125 Sb, 241 Am, 238 Pu and 239,240 Pu are strongly fixed in soil organic matter. In spruce forest soils, the influence of soil horizons with distinct properties dominates the vertical time-dependent distribution. In ombrotrophic bogs, the peak positions correlated with the year of maximum input of each nuclide. The Sb, Am and Pu ''time markers'' and the 14 C and 210 Pb dating results correspond very well. Although Cs seems to be relatively mobile in organic as well as mineral forest soil horizons, it is enriched in the organic material. In ombrotrophic bogs, Cs is very mobile in the peat deposit. In Sphagnum peat, Cs is translocated continuously towards the growing apices of the Sphagnum mosses, where it is accumulated. (orig.)

  11. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  12. Selection of dominant radionuclides for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since their inception in 1944. A vital step in the estimation of radiation doses is the determination of the source term,'' that is, the quantities of radionuclides that were released to the environment from the various Hanford operations. Hanford operations have at various times involved hundreds of different radionuclides, some in relatively large quantities. Those radionuclides present in the largest quantities, although significant from an operational handling point of view, may not necessarily have been those of greatest concern for offsite radiation dose. This report documents the selection of the dominant radionuclides (those that may have resulted in the largest portion of the received doses) in the source term for Phase 1 of the HEDR Project, that is, for atmospheric releases from 1944 through 1947 and for surface water releases from 1964 through 1966. 15 refs., 3 figs., 10 tabs.

  13. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; O'Kelley, G.D.; Case, F.I.; Land, J.F.

    1989-08-01

    Information that is being developed by projects within the Department of Energy (DOE) pertinent to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository is being evaluated by Oak Ridge National Laboratory (ORNL) for the Nuclear Regulatory Commission (NRC). During this report period, all experiments were conducted with tuff from the proposed high-level nuclear waste site at Yucca Mountain, Nevada. The principal emphasis in this report period was on column studies of migration of uranium and technetium in water from well J-13 at the Yucca Mountain site. Columns 1 cm in diameter and about 5 cm long were constructed and carefully packed with ground tuff. The characteristics of the columns were tested by determination of elution curves of tritium and TcO 4 - . Elution peaks obtained in past studies with uranium were asymmetrical and the shapes were often complex, observations that suggested irreversibilities in the sorption reaction. To try to understand these observations, the effects of flow rate and temperature on uranium migration were studied in detail. Sorption ratios calculated from the elution peaks became larger as the flow rate decreased and as the temperature increased. These observations support the conclusion that the sorption of uranium is kinetically hindered. To confirm this, batch sorption ratio experiments were completed for uranium as a function of time for a variety of conditions

  14. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Martinez; D. L. Finnegan; Joseph L. Thompson; K. S. Kung

    1999-03-01

    In this report, we describe the work done in FY 1998 at Los Alamos National Laboratory as part of the Hydrologic Resources Management Program (HRMA) funded by the Nevada Operations Office of the US Department of Energy (DOE/NV). The major part of our research effort was to measure radionuclides present in water or soil samples collected from near nuclear tests. We report our measurements for materials collected in both saturated and unsaturated horizons adjacent to nuclear test cavities or collapse chimneys and from within several cavities. Soil samples collected from above the cavities formed by the Halfbeak, Jerboa, and Bobac tests contained no radioactivity, although a test similar to Bobac in the same area had been contaminated with {sup 137}Cs. Water samples from near the Shoal test contained no measurable radionuclides, whereas those from near Faultless and Aleman had concentrations similar to previous measurements. Water from the Tybo-Benham site was similar to earlier collections at that site; this year, we added {sup 241}Am to the list of radionuclides measured at this location. Two Bennett pumps in tandem were used to extract water from the piezometer tube in the cavity of the Dalhart event. This extraction is a significant achievement in that it opens the possibility of purging similar tubes at other locations on the NTS. The Cheshire post shot hole was reconfigured and pumped from two horizons for the first time since mid-1980. We are especially interested in examining water from the level of the working point to determine the hydrologic source term in a cavity filled with groundwater for over 20 years. We devoted much time this year to examining the colloid content of NTS groundwater. After developing protocols for collecting, handling, and storing groundwater samples without altering their colloid content, we analyzed water from the Tybo-Benham and from the Cheshire sites. Whereas the colloid concentration did not vary much with depth at Tybo

  15. A column experiment for the study of colloidal radionuclide migration in Gorleben aquifer systems

    International Nuclear Information System (INIS)

    Kim, J.I.; Delakowitz, B.; Zeh, P.; Klotz, D.; Lazik, D.

    1994-01-01

    A column experiment is performed for the assessment of the migration behaviour of trivalent 152 Eu, 241 Am and tetra- and pentavalent 237 Np, 233 Pa in the presence of humic colloids. Groundwater of an organic rich aquifer from the geological site at Gorleben is chosen for the experiment, as this has been well characterized during the earlier work and contains a substantial amount of humic colloids. The chemical and mineralogical composition of the pleistocene quartz-sand used in the column experiment is characterized by various analytical and mineralogical methods. Prior to the actinide migration experiment, the hydraulic properties (flow velocity, effective porosity, longitudinal dispersion coefficient) are determined in order to ascertain stable conditions for the experiment. In addition, the microstructure parameters (sediment surface, pore size distribution) of the groundwater-sand system in the column are determined. Radiotracers used for the determination of the hydraulic properties are 3 HHO and 82 Br - . Results obtained to date indicate a relatively high mobility of the lanthanide and actinide ions loaded on aquatic humic colloids. The recovery of injected radiotracer ions in eluates is found to depend on the flow velocity of groundwater through the column. The results help to elucidate the actinide migration behaviour in the presence of natural humic colloids. (orig.)

  16. Radionuclide deposition and migration within the Gideaa and Finnsjoen study sites, Sweden: A study of the fallout after the Chernobyl accident

    International Nuclear Information System (INIS)

    Gustafsson, E.; Sundblad, B.; Karlberg, O.; Lampe, S.; Tullborg, E.L.

    1987-12-01

    Radionuclides originating from the Chernobyl accident in April 1986 were deposited over large areas of Sweden. The distribution and migration of the radionuclides during the first months after deposition were measured in a comprehensive survey within two study sites, Gideaa in Aangermanland county and Finnsjoen in Uppland county. The sites are previously investigated in the SKB site characterization programme and well defined regarding geology and hydrology. Radionuclides analysed are: Mn-54, Co-60, Sr-90, Zr-95, Nb-95, Mo-99, Ru-103, Ru-106, Ag-110m, Sb-125, I-131, Cs-134, Cs-136, Cs-137, Ba-140, La-140, Ce-141 and Ce-144. The CS-137 surface activity gave a range of 30-100 kBq/m 2 in Gideaa and 20-40 kBq/m 2 in Finnsjoen. Radionuclide migration is observed in soil profiles, groundwater and rock fissures. An active transport by surface water is also evident from sediment samples. Radionuclides have been absorbed in different types of vegetation. (orig./DG)

  17. Radionuclide migration pathways analysis for the Oak Ridge Central Waste Disposal Facility on the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Pin, F.G.; Witherspoon, J.P.; Lee, D.W.; Cannon, J.B.; Ketelle, R.H.

    1984-10-01

    A dose-to-man pathways analysis is performed for disposal of low-level radioactive waste at the Central Waste Disposal Facility on the West Chestnut Ridge Site. Both shallow land burial (trench) and aboveground (tumulus) disposal methods are considered. The waste volumes, characteristics, and radionuclide concentrations are those of waste streams anticipated from the Oak Ridge National Laboratory, the Y-12 Plant, and the Oak Ridge Gaseous Diffusion Plant. The site capacity for the waste streams is determined on the basis of the pathways analysis. The exposure pathways examined include (1) migration and transport of leachate from the waste disposal units to the Clinch River (via the groundwater medium for trench disposal and Ish Creek for tumulus disposal) and (2) those potentially associated with inadvertent intrusion following a 100-year period of institutional control: an individual resides on the site, inhales suspended particles of contaminated dust, ingests vegetables grown on the plot, consumes contaminated water from either an on-site well or from a nearby surface stream, and receives direct exposure from the contaminated soil. It is found that either disposal method would provide effective containment and isolation for the anticipated waste inventory. However, the proposed trench disposal method would provide more effective containment than tumuli because of sorption of some radionuclides in the soil. Persons outside the site boundary would receive radiation doses well below regulatory limits if they were to ingest water from the Clinch River. An inadvertent intruder could receive doses that approach regulatory limits; however, the likelihood of such intrusions and subsequent exposures is remote. 33 references, 31 figures, 28 tables

  18. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Claudia S. da; Alvim, Antonio C.M., E-mail: csilveira@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear

    2011-07-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  19. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2011-01-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  20. Application of decision tree technique to sensitivity analysis for results of radionuclide migration calculations. Research documents

    International Nuclear Information System (INIS)

    Nakajima, Kunihiko; Makino, Hitoshi

    2005-03-01

    Uncertainties are always present in the parameters used for the nuclide migration analysis in the geological disposal system. These uncertainties affect the result of such analyses, e.g., and the identification of dominant nuclides. It is very important to identify the parameters causing the significant impact on the results, and to investigate the influence of identified parameters in order to recognize R and D items with respect to the development of geological disposal system and understanding of the system performance. In our study, the decision tree analysis technique was examined in the sensitivity analysis as a method for investigation of the influences of the parameters and for complement existing sensitivity analysis. As a result, results obtained from Monte Carlo simulation with parameter uncertainties could be distinguished with not only important parameters but also with their quantitative conditions (e.g., ranges of parameter values). Furthermore, information obtained from the decision tree analysis could be used 1) to categorize the results obtained from the nuclide migration analysis for a given parameter set, 2) to show prospective effect of reduction to parameter uncertainties on the results. (author)

  1. The development of MESHNOTE code for radionuclide migration in the near field

    International Nuclear Information System (INIS)

    Wakasugi, Keiichiro; Makino, Hitoshi; Robinson, P.

    1999-12-01

    MESHNOTE code was developed to evaluate the engineered barrier system in collaboration with QuantiSci. This code is used to simulate glass dissolution, diffusive transport of nuclides in the buffer material and release to surrounding host rock. MESHNOTE is a one-dimensional finite difference code, which uses cylindrical co-ordinates for the solution of a radially symmetric diffusion problem. MESHNOTE has the following characteristics: MESHNOTE can solve for diffusive transport of nuclides through an annulus shaped buffer region while accounting for multiple decay chains, linear and non-linear sorption onto the buffer materials and elemental solubility limits; MESHNOTE can solve for in growth of plural daughter nuclides from a singular parent nuclide (branching), and the ingrowth of a singular daughter nuclide from plural parent nuclides (rejoining); MESHNOTE can treat the leaching of nuclide from the vitrified waste and the release of nuclide from buffer to surrounding rock, which are boundary conditions for migration in the buffer, basing on the phenomena; MESHNOTE can treat principal parameters (e.g. solubility and distribution coefficient) relevant to nuclide migration as time and space-dependence parameters; The time stepping scheme in MESHNOTE is controlled by tolerance defined by the user. The time stepping will increase automatically while checking the accuracy of the numerical solution. The conceptual model, the mathematical model and the numerical implementation of the MESHNOTE code are described in this report and the characteristic functions of MESHNOTE are verified by comparing with analytical solutions or simulations produced with other calculation cedes. (author)

  2. Radionuclide migration in forest ecosystems - results of a model validation study

    International Nuclear Information System (INIS)

    Shaw, G.; Venter, A.; Avila, R.; Bergman, R.; Bulgakov, A.; Calmon, P.; Fesenko, S.; Frissel, M.; Goor, F.; Konoplev, A.; Linkov, I.; Mamikhin, S.; Moberg, L.; Orlov, A.; Rantavaara, A.; Spiridonov, S.; Thiry, Y.

    2005-01-01

    The primary objective of the IAEA's BIOMASS Forest Working Group (FWG) was to bring together experimental radioecologists and modellers to facilitate the exchange of information which could be used to improve our ability to understand and forecast radionuclide transfers within forests. This paper describes a blind model validation exercise which was conducted by the FWG to test nine models which members of the group had developed in response to the need to predict the fate of radiocaesium in forests in Europe after the Chernobyl accident. The outcomes and conclusions of this exercise are summarised. It was concluded that, as a group, the models are capable of providing an envelope of predictions which can be expected to enclose experimental data for radiocaesium contamination in forests over the time scale tested. However, the models are subject to varying degrees of conceptual uncertainty which gives rise to a very high degree of divergence between individual model predictions, particularly when forecasting edible mushroom contamination. Furthermore, the forecasting capability of the models over future decades currently remains untested

  3. Chemical modelling studies on the impact of small scale mineralogical changes on radionuclide migration

    International Nuclear Information System (INIS)

    Emren, A.T.

    1998-01-01

    Several models exist for control of redox properties in groundwater. The proposals for redox controlling substances include iron oxides, chlorites, methane, pyrite and poly-sulphides. The CRACKER program has been developed to model groundwater formation in crystalline rock. The program has been used to model observed Aespoe groundwaters. The modelled and observed groundwater properties have been found to be similar. It has been found that some of the models have difficulties in explaining other properties than the pE-pH behaviour (properties like element concentrations), while other models perform quite well. pE-pH results are shown for a model consisting of some thirty minerals and a high salinity groundwater at two temperatures. The redox properties have been assumed to be controlled by several redox reactions occurring simultaneously. The most obvious feature is the decrease in pH at a higher temperature. It has also been found that modelled retardation of radionuclides is lower if the mineral distribution shows a spatial variability at a length scale of a few millimeters rather than being homogeneous at such length scales. (R.P.)

  4. Laser induced breakdown detection for the assessment of colloid mediated radionuclide migration

    CERN Document Server

    Walther, C; Hauser, W; Kim, J I; Scherbaum, F J

    2002-01-01

    Colloids play an important role in the transport of pollutants in the environment. Harmful substances can undergo transport over large distances if bound to colloids in aqueous surrounding. One important example is the migration of Pu(IV) at unexpectedly high rates over several miles at a Nevada nuclear detonation test site. For long term safety assessments of radioactive waste repositories, it is hence crucial to know about the amount, size distribution and chemical composition of colloids in the ground water. Standard methods (e.g. light scattering) can be applied for high concentrations and large sizes of particles. Colloids smaller than 50 nm, however, are detected with very low efficiency. Laser induced breakdown detection (LIBD) can fill this gap. A new instrumentation is presented, which as compared to previous instruments, opens up a much wider operational dynamic range, now covering three orders of magnitude in size (5-1000 nm) and seven orders of magnitude in particle concentration (1 ppt - several ...

  5. Proceedings of the meeting on computational and experimental studies for modeling of radionuclide migration in complex aquatic ecosystems

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi; Hakanson, Lars

    2010-09-01

    The Research Group for Environmental Science of JAEA held a meeting on computational and experimental studies for modeling of radionuclide migration in complex aquatic ecosystems during November 16-20 of 2009. The aim was to discuss the relevance of various computational and experimental approaches to that modeling. The meeting was attended by a Swedish researcher, Prof. Dr. Lars Hakanson of Uppsala University. It included a joint talk at the Institute for Environmental Sciences, in addition to a field and facility survey of the JNFL commercial reprocessing plant located in Rokkasho, Aomori. The meeting demonstrated that it is crucial 1) to make a model structure be strictly relevant to the target objectives of a study and 2) to account for inherent fluctuations in target values in nature in a manner of qualitative parameterization. Moreover, it was confirmed that there can be multiple different approaches of modeling (e.g. detailed or simplified) with relevance for the objectives of a study. These discussions should be considered in model integration for complex aquatic ecosystems consisting catchments, rivers, lakes and coastal oceans which can interact with the atmosphere. This report compiles research subjects and lectures presented at the meeting with associated discussions. The 10 of the presented papers indexed individually. (J.P.N.)

  6. Laboratory and field tests for radionuclide migration and high flow paths in clay

    International Nuclear Information System (INIS)

    Bourke, P.J.; Jefferies, N.L.; Lineham, T.R.; Nesirky, P.

    1991-01-01

    Two investigations have been undertaken in this programme. The principal investigation was at Culham Laboratory, England, where water flow within the Kimmeridge clay was measured. A subsidiary investigation at SCK/CEN was undertaken at the Underground Research Laboratory SCK/CEN Mol, Belgium, where an in situ measurement of solute transport by diffusion was attempted. The in situ migration experiment at the Underground Research Laboratory at SCK/CEN Mol, Belgium, was unsuccessful, due to problems with the engineering installation. These difficulties caused significant disturbance to the Boom clay which was to be tested. Nevertheless the laboratory test proved the feasibility of the experiment. The field measurements at Culham Laboratory, Oxfordshire, were completed with the flow testing of a very silty clay horizon in the Kimmeridge clay. This layer was proved to be laterally continuous after drilling three exploratory boreholes. The hydraulic conductivity of the layer was ≥ 10 -8 ms -1 and comparative tests in the clay showed the conductivity of the clay to be at least 50 times less. 12 figs

  7. IP FUNMIG: The European far-field project

    International Nuclear Information System (INIS)

    Kienzler, B.; Buckau, G.

    2007-01-01

    The fundamental processes of radionuclide migration (the FUNMIG) is the subject matter for the Integral Project in terms of the European Commission 6-th Frame Programme (the FP6). Within the frameworks of the Project one focuses on the processes of the hot radionuclide interaction with various rocks associated with the migration of the hot radionuclides from the deep underground storage. Paper describes the Project objectives, arrangement and implementation. One highlights the German involvement in the Project [ru

  8. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site

    International Nuclear Information System (INIS)

    Gonzales, D.

    1993-12-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m 2 grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards

  9. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. 3. Progress report

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Buckau, G.; Moulin, V.; Tits, J.; Decambox, P.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1993-03-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting reaction constants into geochemical modelling of the actinide migration. This programme is a continuation of the activities of the COCO group in the second phase of the CEC-MIRAGE project. The programme consists of the following three main tasks: Task 1: Complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids; Task 2: Competition reactions with major cations in natural groundwaters; Task 3: Validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. (orig./EF)

  10. Verification and validation of models: far-field modelling of radionuclide migration

    International Nuclear Information System (INIS)

    Porter, J.D.; Herbert, A.W.; Clarke, D.S.; Roe, P.; Vassilic Melling, D.; Einfeldt, B.; Mackay, R.; Glendinning, R.

    1992-01-01

    The aim of this project was to improve the capability, efficiency and realism of the NAMMU and NAPSAC codes, which simulate groundwater flow and solute transport. Using NAMMU, various solution methods for non linear problems were investigated. The Broyden method gave a useful reduction in computing time and appeared robust. The relative saving obtained with this method increased with the problem size. This was also the case when parameter stepping was used. The existing empirical sorption models in NAMMU were generalized and a ternary heterogeneous ion exchange model was added. These modifications were tested and gave excellent results. The desirability of coupling NAMMU to an existing geochemical speciation code was assessed

  11. Chernobyl'-92. Reports of the 3. All-Union scientific and technical meeting on results of accident effect elimination at the Chernobyl' NPP. V. 1. Radiation monitoring. Migration of radionuclides in environment. Part 2

    International Nuclear Information System (INIS)

    Senin, E.V.

    1992-01-01

    Section Radiation monitoring comprises: atlas of area radioactive contamination as a result of the Chernobyl' NPP accident, state of automated radiation monitoring control system, hydrological monitoring, radiation situation in different areas, problems of radiation monitoring and protection of water objects, methods for determining radionuclidescontents, radiochemical mechanisms of radionuclide migration mobility in the Chernobyl' effluents, the results of investigations into migration of radionuclides in soils, landscapes, bottom depositions, in the soil-plant chain

  12. Investigation on nuclide migration behaviors

    International Nuclear Information System (INIS)

    Baik, Minhoon; Park, Chungkyun; Kim, Seungsoo

    2012-04-01

    In this study, we investigated the properties of geochemical reactions and sorption of high-level radionuclides and highly-mobile radionuclides in deep geological disposal environments. We also analyzed the dissolution properties of pyro wastes and constructed databases for the geochemical reactions and sorption for the safety assessment of HLW disposal. Technologies for measuring diffusion depths of radionuclides through fracture surfaces and rock matrix were developed in KURT conditions and their diffusion properties were analyzed and evaluated. The combined reactions of radionuclide/mineral/microbe in deep disposal environments were investigated and the effects of microbe on the radionuclide migration and disposal system behaviors were evaluated. In-situ solute migration system and on-line monitoring system were installed in KURT and the migration and retardation behaviors of various solutes and their interaction with fracture-filling materials were investigated. Basic properties of KURT groundwater colloids were analyzed using various methods. In addition, in-situ colloid migration experiments through a rock fracture were carried out and the developed migration model was verified. We have participated in Colloid Formation and Migration (CFM) international joint project in GTS and obtained reliability for our research results by comparing research results each other

  13. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    International Nuclear Information System (INIS)

    Annanmaeki, M.; Turtiainen, T.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ( 222 Rn), uranium ( 238,234 U), radium ( 226 , 228 Ra), lead ( 210 Pb) and polonium ( 210 Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 μSv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong acidic cation exchange resins

  14. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [eds.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ({sup 222}Rn), uranium ({sup 238,234}U), radium ({sup 226}, {sup 228}Ra), lead ({sup 210}Pb) and polonium ({sup 210}Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 {mu}Sv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong

  15. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    Science.gov (United States)

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  16. Speciation analysis of radionuclides in the environment. NKS-B speciation project report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolin Hou (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Aldahan, A. (Uppsala Univ., Dept. of Earth Science, Uppsala (Sweden)); Possnert, G. (Uppsala Univ., Tandem Lab., Uppsala (Sweden)); Lujaniene, G. (Institute of Physics, Vilnius (Lithuania)); Lehto, J. (Univ. of Helsinki, Dept. of Chemistry, Helsinki (Finland)); Salbu, B. (Norwegian Univ. of Life Sciences (UMB), AAs (Norway))

    2008-07-15

    This report describes the work carried out under the NUK-B project SPECIATION 2007. In 2007, the project partners had two meeting in April and November, organized a NUK seminar on speciation and hot particles. SPECIATION 2007 t mainly focused on two issues on speciation (1) further development of speciation methods for radionuclides, and (2) investigation of speciation of radionuclides in environment. The report summarized the work done in partners labs, which includes: (1) Further development on the speciation of 129I and 127I in water samples; (2) Speciation method for 129I and 127I in air; (3) Dynamic system for fractionation of Pu and Am in soil and sediment; (4) Investigation on Re-absorption of Pu during the fractionation of Pu in soil and sediment; (5) Speciation of 129I in North Sea surface water; (6) Partition of 137Cs and 129I in the Nordic lake sediment, pore-water and lake water; (7) Sequential extraction of Pu in soil, sediment and concrete samples, (8) Pu sorption to Mn and Fe oxides in the geological materials, (10) Investigation of the adsorbed species of lanthanides and actinides on clays surfaces. In addition, two review articles on the speciation of plutonium and iodine in environmental are planned to be submitted to an international journal for publication. (au)

  17. Speciation analysis of radionuclides in the environment. NKS-B speciation project report 2007

    International Nuclear Information System (INIS)

    Hou, Xiaolin; Aldahan, A.; Possnert, G.; Lujaniene, G.; Lehto, J.; Salbu, B.

    2008-07-01

    This report describes the work carried out under the NUK-B project SPECIATION 2007. In 2007, the project partners had two meeting in April and November, organized a NUK seminar on speciation and hot particles. SPECIATION 2007 t mainly focused on two issues on speciation (1) further development of speciation methods for radionuclides, and (2) investigation of speciation of radionuclides in environment. The report summarized the work done in partners labs, which includes: (1) Further development on the speciation of 129I and 127I in water samples; (2) Speciation method for 129I and 127I in air; (3) Dynamic system for fractionation of Pu and Am in soil and sediment; (4) Investigation on Re-absorption of Pu during the fractionation of Pu in soil and sediment; (5) Speciation of 129I in North Sea surface water; (6) Partition of 137Cs and 129I in the Nordic lake sediment, pore-water and lake water; (7) Sequential extraction of Pu in soil, sediment and concrete samples, (8) Pu sorption to Mn and Fe oxides in the geological materials, (10) Investigation of the adsorbed species of lanthanides and actinides on clays surfaces. In addition, two review articles on the speciation of plutonium and iodine in environmental are planned to be submitted to an international journal for publication. (au)

  18. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barber, David S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betsill, J. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlefield, Adriane C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shanks, Sonoya T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yuldashev, Bekhzad [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Saalikhbaev, Umar [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Radyuk, Raisa [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Djuraev, Akram [Tajik Academy of Sciences, Dushanbe (Tajikistan); Djuraev, Anwar [Tajik Academy of Sciences, Dushanbe (Tajikistan); Vasilev, Ivan [Inst. of Physics, Bishkek (Kyrgyzstan); Tolongutov, Bajgabyl [Inst. of Physics, Bishkek (Kyrgyzstan); Valentina, Alekhina [Inst. of Physics, Bishkek (Kyrgyzstan); Solodukhin, Vladimir [Inst. of Nuclear Physics, Almaty (Kazakhstan); Pozniak, Victor [Inst. of Nuclear Physics, Almaty (Kazakhstan)

    2003-04-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. The Project also collects data on basic water quality parameters. Data obtained in this project are shared among all participating countries and the public through a world-wide web site (http://www.cmc.sandia.org/Central/centralasia.html), and are available for use in further studies and in regional transboundary water resource management efforts. This report includes graphs showing selected data from the Fall 2000 and Spring 2001 sampling seasons. These data include all parameters grouped into six regions, including main rivers and some tributaries in the Amu Darya and Syr Darya river systems. This report also assembles all data (in tabular form) generated by the project from Fall 2000 through Fall 2001. This report comes as the second part of a planned three-part reporting process. The first report is the Sampling and Analysis Plan and Operational Manual, SAND 2002-0484. This is the second report.

  19. Cooperative research at JAERI on the consequences of the Chernobyl accident. 3. Distribution and migration characteristics of long-lived radionuclides in the environment around the damaged Chernobyl reactor

    International Nuclear Information System (INIS)

    Amano, Hikaru

    2001-01-01

    The purpose of this study was to elucidate the actual long-term migration characteristics of radionuclides released and accumulated on the earth surface environment after the reactor accident. The objective areas were mainly in 30 km distant areas from the reactor. The study concerned the distribution of radionuclides on the ground surface, their physical and chemical forms, their migration characteristics, their migration from the ground to aqueous system like river, their physical and chemical forms in that system, their migration into vegetables, and their re-floating and concentration in air. The study involved those methods such as a newly developed liquid scintillation counting of 241 Pu for assessing 241 Am accumulation and the alpha-track method for detection of hot particles. Findings were: Hot particles of small diameters around several microns were still present; Depth distribution of radionuclides was dependent on the soil sort; Chemical forms of 90 Sr, 137 Cs and transuranium elements were different; Depth distribution in the soil depended on chemical forms; Annual change of radionuclides was evident in air; Migration coefficients to vegetables were determined; High molecular weight organic colloid was important in the migration to water system; Amounts of 137 Cs and transuranium elements depended on those of suspended matters in the river water and >90% 90 Sr were in soluble forms; Apparent partition ratios (soluble/suspended) of radionuclides in the river and lake were determined; Soluble transuranium elements were bound to humus materials in the river. (K.H.)

  20. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 1. Review and analysis of existing information

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    A history of NTS is given, the geologic and hydrologic setting is described, and the amount of radioactivity deposited within and near the main aquifers is estimated. The conclusions include: information currently available is insufficient to state categorically that radioactivity will never be carried off the Nevada Test Site by ground water movement; nonetheless, such a migration at levels above the maximum permissible concentration to existing wells and springs is considered unlikely; if offsite migration occurs, it will probably be from the southwestern margins of Pahute Mesa, where there is only a small chance of contaminating existing public water supplies; tritium is the most mobile radionuclide and may be the only long-lived isotope of concern. Highest priority is assigned to measurement of tritium and other radionuclides in large water samples taken from nuclear chimneys that water has re-entered after an explosion; expansion of the existing groundwater monitoring program at NTS to include wells with a higher probability of intersecting flow of contaminated water; measurement of groundwater flow velocities and other associated hydrologic parameters. High priority is assigned to production of an inventory of radionuclides deposited near NTS borders, especially beneath Pahute Mesa; determination of amounts of radioactivity deposited directly into the Lower Carbonate Aquifer; a sensitivity analysis of the many parameters that enter into transport calculations; a study of the many unplugged holes that penetrate the Tuff Aquitard; testing of the assumption that radionuclides deposited in the unsaturated zone are isolated from the saturated zone because of limited precipitation and downward movement of moisture; and determination of distribution coefficients for NTS alluvium, carbonate, and rhyolitic rocks, which are lacking or poorly represented in the literature. Twelve other recommendations of lesser priority are also given

  1. Development of thermodynamic databases and geochemical/transport models for prediction of long-term radionuclide migration (Germany)

    International Nuclear Information System (INIS)

    Kienzler, B.

    2000-01-01

    The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)

  2. Determination of radionuclide migration parameters through immobilised radioactive waste; Odredjivanje migracionih parametara radionuklida kroz imobilisani radioaktivni otpad

    Energy Technology Data Exchange (ETDEWEB)

    Plecas, I; Drljaca, J; Peric, A; Kostadinovic, A [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    In this paper are presented results obtained from leakage rate determination of specific radionuclides (Co-60, Cs-137, Mn-54, Sr-85) in PWR NPP waste. Measurements were carried out using original IBK-Vinca method. This method permits simulation of radionuclide leakage through multiple safety barriers in engineered tranches system for radioactive waste disposal. These results will be used for future Yugoslav radioactive waste storing center. (author)

  3. Natural analogue approach for estimating the health risks from release and migration of radionuclides from radioactive waste

    International Nuclear Information System (INIS)

    Gilbert, T.L.

    1983-01-01

    The health risks from radioactive waste may be expressed as a sum of products of transfer factors that characterize the causal chain of events between disposal of radionuclides in a waste field and the consequent health effects. Model estimates for the transfer factors are commonly obtained by modeling transport and other mechanisms in the subsystems that form the links in the causal chain. Natural estimates of some conversion factors for naturally occurring radionuclides can be obtained from data on the concentrations of naturally occurring radionuclides in soil, food, and the human body. These model and natural estimates can be used with scaling procedures to estimate the uncertainties and to obtain better estimates of the values. The scaling procedures take into account the differences in the source characteristics for radionuclides in a waste field of limited size and for radionuclides generally distributed in the natural environment. The ratios of the natural estimates to the model estimates for several transfer factors and several radionuclides belonging to the U-238 decay series have been determined. These ratios range from 1/8 to 4/1 for food-concentration/source-concentration transfer factors for the food pathways and from 1 to 77 for dose-rate/source-concentration transfer factors for the internal radiation dose pathways to various organs. 14 references

  4. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  5. Environmental Management Department Quality Assurance Project Plan for Radionuclide Emission Measurements Project for compliance with National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Energy Technology Data Exchange (ETDEWEB)

    Poole, D A

    1992-06-01

    This Quality Assurance Project Plan (QAPP) satisfies the quality assurance (QA) requirements in 40 CFR Part 61, Method 114, for ensuring that the radionuclide air emission measurements from the Y-12 Plant are representative; of a known precision and accuracy; and include administrative controls to ensure prompt response when emission measurements indicate an increase over normal radionuclide emissions. The QAPP ensures the quality of the Y-12 Plant radionuclide emission measurements data from the continuous samplers, breakthrough monitors, and minor radionuclide release points. The plan specifies the procedures for the management of the activities affecting the quality of the data for the Y-12 Plant Environmental Management Department (EMD) within the Health, Safety, Environment, and Accountability Division (HSEA).

  6. Environmental Management Department Quality Assurance Project Plan for Radionuclide Emission Measurements Project for compliance with National Emission Standards for Hazardous Air Pollutants (NESHAP)

    International Nuclear Information System (INIS)

    Poole, D.A.

    1992-06-01

    This Quality Assurance Project Plan (QAPP) satisfies the quality assurance (QA) requirements in 40 CFR Part 61, Method 114, for ensuring that the radionuclide air emission measurements from the Y-12 Plant are representative; of a known precision and accuracy; and include administrative controls to ensure prompt response when emission measurements indicate an increase over normal radionuclide emissions. The QAPP ensures the quality of the Y-12 Plant radionuclide emission measurements data from the continuous samplers, breakthrough monitors, and minor radionuclide release points. The plan specifies the procedures for the management of the activities affecting the quality of the data for the Y-12 Plant Environmental Management Department (EMD) within the Health, Safety, Environment, and Accountability Division (HSEA)

  7. The migration of the radionuclide 3 H in unsaturated soil from the disposal in the final repository for low and medium active waste in Saligny area

    International Nuclear Information System (INIS)

    Toma, A.D.

    2002-01-01

    The functioning of the Cernavoda Nuclear Power Plant will generate low and medium active waste which will be contaminated with long-life fission products (U, Pu, Np, Am), radioactive carbon ( 14 C) and tritium ( 3 H), which through their radiochemical characteristics and their influence upon the environment and people, request special attention regarding their storage and disposal. Based on the geological and mineralogical research regarding the location of a repository for low and medium active waste, Saligny area near the Cernavoda Nuclear Power Plant was chosen. The repository will be located in loess, seated on sedimentary formations with insertions of clay patches. The main target of the research is to obtain some experimental data necessary for the evaluation of the migration of the radionuclide 3 H (resulting from Cernavoda Nuclear Power Plant) in unsaturated soils in Saligny area. From the analysis of the test data obtained in the laboratory for the determination of the migration parameters of the radionuclide 3 H in the material of the geological formation of Saligny area it results that there is a direct correlation between the values of these parameters and the basic mineralogical component - clay - of the soil sample. (authors)

  8. Use of MICRAS code on the evaluation of the maximum radionuclides concentrations due to transport/migration of decay chain in groundwaters

    International Nuclear Information System (INIS)

    Aquino Branco, O.E. de

    1995-01-01

    This paper presents a methodology for the evaluation of the maximum radionuclides concentrations in groundwaters, due to the transport/migration of decay chains. Analytical solution of the equations system is difficult, even if only three elements of the decay chain are considered. Therefore, a numerical solution is most convenient. An application of the MICRAS code, developed to assess maximum concentrations of each radionuclide, starting with the initial concentrations, is presented. The maximum concentration profile for 226 Ra, calculated using MICRAS, is compared with the results obtained through an analytical and a numerical model. The fitness of results is considered good. Simplified models, like the one represented by the application of MICRAS, are largely employed in the section in the selection and characterization of sites for radioactive wastes repositories and in studies of safety evaluation for the same purpose. A detailed analysis of the transport/migration of contaminants in aquifers requires a large quantify of data from the site and from the installation as well, which makes this analysis expensive and inviable during the preliminary phases of the studies. (author). 6 refs, 1 fig, 1 tab

  9. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    Energy Technology Data Exchange (ETDEWEB)

    Skalskyi, O.; Bugai, D. [Institute of Geological Sciences, National Academy of Sciences of Ukraine (Ukraine); Ryazantsev, V. [State Nuclear Regularity Committee of Ukraine, Kiev (Ukraine)

    2014-05-15

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  10. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  11. Nuclide-migration field experiments

    International Nuclear Information System (INIS)

    Erdal, B.R.; Wolfsberg, K.; Johnstone, J.K.; Erickson, K.L.; Friedman, A.M.; Fried, S.; Hines, J.J.

    1981-03-01

    When considering groundwater flow and radionuclide retention in the complex flow systems that can occur in geologic formations, one has a serious problem in determining if laboratory studies are being performed under conditions appropriate to natural systems. This document is the project plan for a program designed to begin to address these problems. The project is being carried out jointly by the Los Alamos National Laboratory, Sandia National Laboratories, and Argonne National Laboratory. The work has three principal objectives: (1) to develop the experimental, instrumental, and safety techniques necessary to conduct controlled, small-scale radionuclide migration field experiments, including those involving actinides; (2) to use these techniques to define radionuclide migration through rock by performing generic, at-depth experiments under closely monitored conditions; and (3) to determine whether available lithologic, geochemical, and hydrologic properties together with existing or developing transport models are sufficient and appropriate to describe real field conditions

  12. Nuclide-migration field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, B.R.; Wolfsberg, K.; Johnstone, J.K.; Erickson, K.L.; Friedman, A.M.; Fried, S.; Hines, J.J.

    1981-03-01

    When considering groundwater flow and radionuclide retention in the complex flow systems that can occur in geologic formations, one has a serious problem in determining if laboratory studies are being performed under conditions appropriate to natural systems. This document is the project plan for a program designed to begin to address these problems. The project is being carried out jointly by the Los Alamos National Laboratory, Sandia National Laboratories, and Argonne National Laboratory. The work has three principal objectives: (1) to develop the experimental, instrumental, and safety techniques necessary to conduct controlled, small-scale radionuclide migration field experiments, including those involving actinides; (2) to use these techniques to define radionuclide migration through rock by performing generic, at-depth experiments under closely monitored conditions; and (3) to determine whether available lithologic, geochemical, and hydrologic properties together with existing or developing transport models are sufficient and appropriate to describe real field conditions.

  13. Influence of microbial activity on the migration behaviour of redox-sensitive radionuclides (technetium and selenium) in loose rock

    International Nuclear Information System (INIS)

    Stroetmann, I.

    1995-01-01

    In closed cycle column tests under sterile conditions there was no or hardly any sorption of the two radionuclides. In closed cycle column tests with unsterile soils, however, the two radionuclides were extremely immobilised (80 % of the output activity of Tc-95m and 40 % of the output activity of Se-75). By inoculation of the sterile columns with mixed soil cultures an increase in sorption of 40 % of the output activity was achieved which is attributed to the microbial activity. The adsorbed radionuclides in unsterile columns could be remobilized by adding a bactericide. In columns with saline water the sorption of radionuclides was slightly lower. Soils with a 5 % organic carbon content showed extremely increased sorption of the two radionuclides. In comparison with closed cycle columns shake tests were carried out. During turbulent intermixing of water and solid, no sorption of technetium was observed in unsterile tests either, while Se-75 added as selenite was strongly adsorbed to the solid. When adding acetate as a C-source, the microbially conditioned reduction of the redox potential to -100 mV and, subsequently, a strong increase of sorption could be observed. A reduction of the pH value in the soils to pH 4, and simultaneous adding of acetate significally reduced the microbial activity and the sorption of technetium, while selenite sorption remained strong as before. Sorption tests with bacteria-pure and mixed cultures showed no sorption of the pertechnetate anion in the oxidation stage (VII). However, when reducing the pertechnetate by means of SnCl2, up to 40 % of the feed activity of killed and living biomass was immobilized. Between 20-30 % of the adsorbed technetium quantity was outside at the membrane, and 40% inside the cells. After a three-day incubation period in a technetium-containing solution, a factor of 15,5 was achieved as the maximum intracellular concentration factor for the isolate 143 (Xanthomas sp.). (orig./MG) [de

  14. Radionuclide migration around uranium ore bodies: analogue of radioactive waste repositories. Annual report, July 1982-June 1983

    International Nuclear Information System (INIS)

    Airey, P.L.

    1984-10-01

    A number of uranium ore bodies in the Northern Territory of Australia have been evaluated as geochemical analogues of high-level radioactive waste repositories. The aim of the study is to contribute to the understanding of the scientific basis for the long-term prediction of the transport of radionuclides. Particular attention is being paid to investigations of (i) mechanisms of mobilization and subsequent retardation of uranium series nuclides following the weathering of metamorphic host rocks, (ii) the role of iron minerals in the retardation of uranium and thorium, (iii) the role of groundwater colloids in the transport of radionuclides, (iv) experimental methods for studying the time dependence of adsorption coefficients, and (v) conceptual methods for studying the effect of transport of uranium series nuclides through crystalline host rocks over geological time. The possibility of incorporating certain transuranic and fission product elements into the analogue is discussed. 29 figures, 36 tables

  15. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas. Final report of a coordinated research project

    International Nuclear Information System (INIS)

    2005-01-01

    This publication summarizes the results of the Coordinated Research Project (CRP) on Worldwide Marine Radioactivity Studies (WOMARS) carried out by the IAEA's Marine Environment Laboratory in Monaco. It provides the most comprehensive information on levels of anthropogenic radionuclides in the world ocean. Three anthropogenic radionuclides - 90 Sr, 137 Cs and 239,240 Pu - were chosen as the most representative of anthropogenic radioactivity in the marine environment, comprising beta-, gamma- and alpha-emitters which have the highest potential contribution to radiation doses to humans via seafood consumption. Although the ocean contains the majority of the anthropogenic radionuclides released into the environment, the radiological impact of this contamination is low. Radiation doses from naturally-occurring radionuclides in the marine environment (e.g. 210 Po) are on the average two orders of magnitude higher. The results confirm that the dominant source of anthropogenic radionuclides in the marine environment is global fallout. The total 137 Cs input from global fallout was estimated to be 311 PBq for the Pacific Ocean, 201 PBq for the Atlantic Ocean, 84 PBq for the Indian Ocean and 7.4 PBq for the Arctic Ocean. For comparison, about 40 PBq of 137 Cs was released to the marine environment from Sellafield and Cap de la Hague reprocessing plants. The Chernobyl accident contributed about 16 PBq of 137 Cs to the sea, mainly the Baltic and Black Seas, where the present average concentrations of 137 Cs in surface water were estimated to be about 60 and 25 Bq/m 3 , respectively, while the worldwide average concentration due to global fallout is about 2 Bq/m 3 . For the purposes of this study, the world ocean was divided into latitudinal belts for which average radionuclide concentrations were estimated. Further, where available, time trends in radionuclide concentrations in surface water were studied and mean residence times of radionuclides in these areas as well as in

  16. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, Katja [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Fritsch, Katharina [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippold, Holger [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Poetsch, Maria [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Kulenkampff, Johannes [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Joseph, Claudia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Moll, Henry [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Cherkouk, Andrea [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Bader, Miriam [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg-1) and the background electrolyte (NaCl, CaCl2, MgCl2).

  17. Feasibility of disposal of high-level radioactive waste into the seabed. volume 7: Review of laboratory investigations of radionuclide migration through deep-sea sediments

    International Nuclear Information System (INIS)

    Brush, L.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This volume contains a review of the laboratory investigations of radionuclide migration through deep-sea sediments. In addition, it discusses the data selected for the radiological assessment, on the basis of both field and laboratory studies

  18. Plan for studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. Volume 2 of 2. Appendices

    International Nuclear Information System (INIS)

    1983-11-01

    This document describes planned studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. A plan is provided for each proposed study. The rational for arriving at the list of proposed studies is also presented. This document consists of two volumes. In the first volume, Sections 1 through 5 contain the introduction, the objectives of the proposed studies, and background information. The discussion is not comprehensive in detail; documents are referenced that discuss the background material in greater detail. Sections 6 through 9 identify and select the group of studies to be performed and discuss the peer review process. The second volume contains Appendices A and B, which present the assignment of responsibilities and the detailed plans, schedules, and costs for the proposed program

  19. Sandstone uranium deposits of Meghalaya: natural analogues for radionuclide migration and backfill material in geological repository for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.

    2008-01-01

    Sandstone uranium deposits serve as potential natural analogue to demonstrate safety offered by geological media against possible release of nuclear waste from their confinement and migration towards biosphere. In this study, available database on geochemical aspects of Domisiat uranium deposit of Meghalaya has been evaluated to highlight the behavior of radionuclides of concern over long term in a geological repository. Constituents like actinides (U and Th), fission products and RE elements are adequately retained in clays and organic matters associated with these sandstone deposits. The study also highlights the possibility of utilization of lean ore discarded during mining and milling as backfill material in far field areas and optimizing near field buffers/backfills in a geological repository located in granitic rocks in depth range of 400-500m. (author)

  20. Plan for studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1983-11-01

    This document describes planned studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. A plan is provided for each proposed study. The rational for arriving at the list of proposed studies is also presented. This document consists of two volumes. In the first volume, Sections 1 through 5 contain the introduction, the objectives of the proposed studies, and background information. The discussion is not comprehensive in detail; documents are referenced that discuss the background material in greater detail. Sections 6 through 9 identify and select the group of studies to be performed and discuss the peer review process. The second volume contains Appendices A and B, which present the assignment of responsibilities and the detailed plans, schedules, and costs for the proposed program

  1. Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices

    International Nuclear Information System (INIS)

    Jagercikova, M.; Balesdent, J.; Cornu, S.; Evrard, O.; Lefevre, I.

    2014-01-01

    Soil mixing and the downward movement of solid matter in soils are dynamic pedological processes that strongly affect the vertical distribution of all soil properties across the soil profile. These processes are affected by land use and the implementation of various farming practices, but their kinetics have rarely been quantified. Our objective was to investigate the vertical transfer of matter in Luvisols at long-term experimental sites under different land uses (cropland, grassland and forest) and different farming practices (conventional tillage, reduced tillage and no tillage). To investigate these processes, the vertical radionuclide distributions of 137 Cs and 210 Pb (xs) were analyzed in 9 soil profiles. The mass balance calculations showed that as much as 91± 9% of the 137 Cs was linked to the fine particles (2 mm). To assess the kinetics of radionuclide redistribution in soil, we modeled their depth profiles using a convection-diffusion equation. The diffusion coefficient represented the rate of bioturbation, and the convection velocity provided a proxy for fine particle leaching. Both parameters were modeled as either constant or variable with depth. The tillage was simulated using an empirical formula that considered the tillage depth and a variable mixing ratio depending on the type of tillage used. A loss of isotopes due to soil erosion was introduced into the model to account for the total radionuclide inventory. All of these parameters were optimized based on the 137 Cs data and were then subsequently applied to the 210 Pb (xs) data. Our results show that the 137 Cs isotopes migrate deeper under grasslands than under forests or croplands. Additionally, our results suggest that the diffusion coefficient decreased with depth and that it remained negligible below the tillage depth at the cropland sites, below 20 cm in the forest sites, and below 80 cm in the grassland sites. (authors)

  2. The Grimsel radionuclide migration experiment - a contribution to raising confidence in the validity of solute transport models used in performance assessment

    International Nuclear Information System (INIS)

    Frick, U.

    1995-01-01

    The safety assessment of radioactive waste repositories is to provide confidence that the predictive models utilized are applicable for the specific repository systems. Nagra has carried out radionuclide migration experiments at the Grimsel underground test site (Switzerland) for testing of currently used methodologies, data bases, conceptual approaches and codes for modeling radionuclide transport through fractured host rocks. Specific objectives included: identification of the relevant transport processes, to test the extrapolation of laboratory sorption data to field conditions, and to demonstrate the applicability of currently used methodology for conceptualizing or building realistic transport models. Field tests and transport modeling work are complemented by an extensive laboratory program. The field experimental activities focused predominantly on establishing appropriate conditions for identifying relevant transport mechanisms on the scale of a few meters, aiming at full recovery of injected tracers, simple geometry and long-term stability of induced dipole flow fields. A relatively simple homogeneous, dual-porosity advection/diffusion model was built with input from a state of the art petrographic characterisation of the water conducting feature. It was possible to calibrate the model from conservative tracer breakthrough curves. (J.S.). 21 refs., 14 figs., 4 tabs

  3. Report of drilling and radionuclide migration investigations at UE20n number-sign 1, Pahute Mesa, Nevada Test Site, 1987

    International Nuclear Information System (INIS)

    Erikson, S.J.

    1991-04-01

    Exploratory hole UE20n number-sign 1 was drilled 305 m down hydraulic gradient of the Cheshire event (U20n) as part of the Radionuclide Migration Program at the Nevada Test Site. The hole was designed to investigate the possibility of groundwater transport of radionuclides from the U20n cavity region. Drilling reached a total depth of 1005.8 m. Composite static water levels in the borehole were measured at approximately 620 m below ground surface. The borehole penetrated about 386 m of saturated zone, which was comprised primarily of rhyolite lava flows of the Upper Rhyolite Lavas, Tuffs, and Rhyolites of Area 20. Evidence from UE20n number-sign 1 suggests the presence of a relatively more permeable zone in the 730 to 750-m depth interval. The neutron log suggests that greater quantities of water were present at depths between 729 and 747 m. Core collected over three depth intervals showed the highest fracture density in a reddish-grey rhyolite lava flow in the 733.8 to 738.1-m core interval. Groundwater flow away from U20n through this permeable zone is suggested by the UE20n number-sign 1 borehole temperature logs. Elevated 3 H activities were observed with the highest activities found near 732 m. The 3 H activities observed in the 732 to 802-m interval in UE20n number-sign 1 were of similar magnitude to those found in the cavity region in the U20n post-shot hole. The activities of 125 Sb and 85 Kr, which are known to be mobile in groundwater, were of similar magnitude to those found near the cavity region, while 137 Cs, which is thought to be adsorbed during transport, was found in activities two to three orders of magnitude lower than near the cavity. These temperature and radioisotope data suggest that radionuclide migration via groundwater flow may be occurring laterally from the U20n rubble chimney through the permeable zone located at the 730 to 750-m depth. 25 refs., 18 figs., 15 tabs

  4. [Modeling of Processes of Migration and Accumulation of Radionuclides in Freshwater Ecosystems by the Example of the Samson, Lev, Vandras Rivers Related to the Ob-Irtysh River Basin].

    Science.gov (United States)

    Trapeznikov, A V; Korzhavin, A V; Trapeznikova, V N; Nikolkin, V N

    2016-01-01

    Mathematical models of horizontal distribution and migration of radionuclides are presented in water and floodplain soils of the Samson-Lev-Vandras river system related to the Ob-Irtysh river basin. Integral inventory of radionuclides in the main components of the river ecosystems is calculated. The estimated annual discharge of radionuclides from the Vandras river to the Great Salym river is given. The effect of the removal of man-made radionuclides in the Samson, Lev, Vandras rivers on radioactive contamination of the Ob-Irtysh river system is shown in comparison with the Techa river, that also belongs to the Ob-Irtysh river basin. Despite the presence of an additional radioactive contamination of the Samson floodplain, the transfer of radioactive substances in the Samson, Lev, Vandras rivers has a much smaller impact on the contamination of the Ob-Irtysh river system, compared to the Techa river, prone to a large-scale radioactive contamination.

  5. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  6. Radionuclide behavior at underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal.

  7. Projected radionuclide inventories of DWPF glass from current waste at time of production

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the DWPF estimate the inventory of long-lived radionuclides present in the waste glass, and report the values in the Waste Form Qualification Report. In this report, conservative (biased high) estimates of the radionuclide inventory of glass produced from waste currently in the Tank Farm are provided. In most cases, these calculated values compare favorably with actual data. In those cases where the agreement is not good, the values reported here are conservative

  8. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Park, Hyun Soo

    2003-04-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. This project is composed of 6 subjects such as data production required for safety assessments, sorption properties and mechanisms, nuclide migration in the fractured rock, colloid formation and migration, nuclide speciation in deep geological environments, and total evaluation of geochemical behaviors considering multi-factors. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  9. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  10. Influence of the transversal diffusion/dispersion on the radionuclide migration in porous media - investigation of analytically solvable problems for geological layer structures. Der Einfluss der transversalen Diffusion/Dispersion auf die Migration von Radionukliden in poroesen Medien - Untersuchung analytisch loesbarer Probleme fuer geolog. Schichtstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Schmocker, U

    1980-07-01

    Repositories in geological formations are planned for the final disposal of radioactive wastes produced by nuclear power. Generally, water entry leading to leaching of the waste matrix is considered as the critical process which can result in release of radionuclides from a waste repository. In risk analyses for waste repositories the migration of radionuclides through the geosphere is usually described mathematically by a one-dimensional transport model. On the other hand the hydrological calculational models used for determining the critical migration paths are invariably two- or three-dimensional. A one-dimensional transport calculation always gives conservative results for a specific migration path because the influence of the transverse dispersion/diffusion effect is neglected. This effect results in an additional decrease of the nuclide concentration along the migration path. On the other hand radionuclides can spread to adjacent geological formations which are not taken into account in a one-dimensional model. If the water velocities in these formations are higher than along the original (one-dimensional) migration path or if the distance to the biosphere (e.g. lake, river or well) is shorter, then the process of the transverse diffusion/dispersion can represent an additional risk. The present work deals with the influence of the transverse diffusion/dispersion effect on the migration of radionuclides through the geosphere. We restrict ourselves to migration in porous media which is the standard approach of most existing transport models. For modelling the transport of radionuclides in fissured systems there exist only a few preliminary calculational approaches to date. We are mainly interested in analytically soluble problems which take into account the transverse diffusion/dispersion effect. This procedure permits investigation of the most important effects in a simple and direct manner. 17 refs., 36 figs., 2 tabs.

  11. Vertical random variability of the distribution coefficient in the soil and its effect on the migration of fallout radionuclides

    International Nuclear Information System (INIS)

    Bunzl, K.

    2002-01-01

    In the field, the distribution coefficient, K d , for the sorption of a radionuclide by the soil cannot be expected to be constant. Even in a well defined soil horizon, K d will vary stochastically in horizontal as well as in vertical direction around a mean value. The horizontal random variability of K d produce a pronounced tailing effect in the concentration depth profile of a fallout radionuclide, much less is known on the corresponding effect of the vertical random variability. To analyze this effect theoretically, the classical convection-dispersion model in combination with the random-walk particle method was applied. The concentration depth profile of a radionuclide was calculated one year after deposition assuming constant values of the pore water velocity, the diffusion/dispersion coefficient, and the distribution coefficient (K d = 100 cm 3 x g -1 ) and exhibiting a vertical variability for K d according to a log-normal distribution with a geometric mean of 100 cm 3 x g -1 and a coefficient of variation of CV 0.53. The results show that these two concentration depth profiles are only slightly different, the location of the peak is shifted somewhat upwards, and the dispersion of the concentration depth profile is slightly larger. A substantial tailing effect of the concentration depth profile is not perceivable. Especially with respect to the location of the peak, a very good approximation of the concentration depth profile is obtained if the arithmetic mean of the K d -values (K d = 113 cm 3 x g -1 ) and a slightly increased dispersion coefficient are used in the analytical solution of the classical convection-dispersion equation with constant K d . The evaluation of the observed concentration depth profile with the analytical solution of the classical convection-dispersion equation with constant parameters will, within the usual experimental limits, hardly reveal the presence of a log-normal random distribution of K d in the vertical direction in

  12. Status of subseabed repository design concepts and radionuclide

    International Nuclear Information System (INIS)

    Brush, L.H.

    1980-01-01

    Various projects underway in support of the marine disposal of radioactive wastes are described. These include: geochemical studies on sediments; canister-related research and development activities; radionuclide transport studies through smectitic sediments; seawater-sediment interactions under near-field conditions; effects of a radiation field on high temperature, seawater-sediment interactions; sorption of fission products and actinides by deep-sea sediments under far-field (below 100 0 C) conditions; sorption experiments using column diffusion; development of a computer code, IONMIG, to model the migration of radionuclides through undisturbed deep-sea sediments; and planning for a field test of the laboratory measurements and computer models of radionuclide transport

  13. Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Caplin, J.L.; Flatman, W.D.; Dymond, D.S.

    1985-01-01

    There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)

  14. Intercomparison and biokinetic model validation of radionuclide intake assessment. Report of a co-ordinated research project. 1996-1998

    International Nuclear Information System (INIS)

    1999-03-01

    This TECDOC presents the results of a Co-ordinated Research Project (CRP) on Intercomparison and Biokinetic Model Validation of Radionuclide Intake Assessment, including the conclusions of a Research Co-ordination Meeting held from 6 to 8 July 1998. The present CRP on Intercomparison and Biokinetic Model Validation of Radionuclide Intake Assessment is part of the activities of the IAEA's Occupational Protection programme. The objective of this programme is to promote an internationally harmonized approach for optimizing occupational radiation protection through: the development of guides, within the IAEA's activities for establishing standards for radiation protection, for restricting radiation exposures in the workplace and for applying current occupational radiation protection techniques; and the promotion of application of these guidelines

  15. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories; Metodologia experimental para estudios de sorcion y migracion de radionucleidos en formaciones geologicas y barreras de almacenamientos de residuos

    Energy Technology Data Exchange (ETDEWEB)

    Rojo Sanz, H.

    2010-07-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  16. Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India.

    Science.gov (United States)

    Ross, E Mahiban; Raj, Y Lenin; Wesley, S Godwin; Rajan, M P

    2013-01-01

    The activity concentrations of certain radionuclides were quantified in some plant foods cultivated around Kudankulam, where a mega-nuclear power plant is being established. The activity concentrations were found more in the 'pulses' group and were the lowest in 'other vegetable' category. The annual effective dose was computed based on the activity concentration of radionuclides and it was found to be higher due to the consumption of cereals and pulses. Other vegetables, cereals, pulses and nuts recorded high transfer factors for the radionuclide (228)Ra. Fruits, leafy vegetables, tubers and roots, and palm embryo registered high transfer factors for (226)Ra. Group-wise activity concentration, radiation dose to the public and soil-plant-to-transfer factor are discussed in detail. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Palmottu natural analogue project. Progress report 1995. The behaviour of natural radionuclides in and around uranium deposits, Nr. 9

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.

    1996-01-01

    Natural analogue studies at Palmottu (in Finland) have concentrated on characterising the general geological, hydrogeological and radiochemical setting of the uranium mineralisation. Since 1992 a research program focusing on the hydrogeological characterisation of potential flow routes has been in progress, and the basis for a constrained flow system has already been identified. Sophisticated studies have also been performed on groundwater redox chemistry and matrix diffusion processes. The report consists of an introduction to the activities carried out in 1995 followed by topical summaries documented by the principal investigators in charge of each activity. The following summaries are included in the report (1) Hydrogeological studies at Palmottu, (2) Modelling of groundwater flow, (3) TV-logging of boreholes, (4) Mineralogical and petrological studies, (5) Radionuclide migration studies and (6) Humic substances. Full technical and scientific results are documented in appropriate topical reports and publications referred to in this Progress Report. (46 refs., 10 figs., 4 tabs.)

  18. Role of endophytic fungi in the migration of the radionuclides in the vascular plants of the Ukrainian Polesye sphagniopratum

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Sokolova, E.V.; Kurchenko, I.N.; Orlov, A.A.

    2002-01-01

    It is known that the specific activity of 137 Cs in vegetative phytomass of cranberry and sphagnum in oligotrophic conditions of Ukrainian Polessye forest sphagniopratum amounts 5000 - 10000 Bq/kg of air-dry weight. Roots of cranberry in natural conditions never run up to peat and mainly are located in top layer of the sphagnum top which is sodden by a water, but specific activity of the radionuclide in swamp water is low (2 - 10 Bq/l). It was supposed that mycorrhizal and endophytic micromycetes take an essential part in transferring the mineral substances and 137 Cs from sphagnum mosses to ericoid plants under oligotrophic swamp conditions. Endophytic fungi from vascular plants were not investigated in Ukraine. The article is devoted to the estimation of distribution of endophytic fungi in plants which are dominants of the plant cover of sphagniopratum. 47 species of micromycetes which belong to 27 genera were identified. For moss and ericoid plants five mutual species of endophytic fungi was detected

  19. Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India

    International Nuclear Information System (INIS)

    Ross, E. Mahiban; Raj, Y. Lenin; Wesley, S. Godwin; Rajan, M.P.

    2013-01-01

    The activity concentrations of certain radionuclides were quantified in some plant foods cultivated around Kudankulam, where a mega-nuclear power plant is being established. The activity concentrations were found more in the ‘pulses’ group and were the lowest in ‘other vegetable’ category. The annual effective dose was computed based on the activity concentration of radionuclides and it was found to be higher due to the consumption of cereals and pulses. Other vegetables, cereals, pulses and nuts recorded high transfer factors for the radionuclide 228 Ra. Fruits, leafy vegetables, tubers and roots, and palm embryo registered high transfer factors for 226 Ra. Group-wise activity concentration, radiation dose to the public and soil-plant-to-transfer factor are discussed in detail. Highlights: ► Fallout radionuclides ( 90 Sr and 137 Cs) were below the limit of detection. ► 228 Ra activities were higher than 226 Ra activity concentrations. ► ‘Pulses’ group (leguminous grains) was the highest accumulator of radium nuclides. ► 228 Ra transfer factor was higher in few groups while 226 Ra was higher in others.

  20. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.

  1. A study of long-term (103-104Yr) elemental migration in saturated clays and sediments

    International Nuclear Information System (INIS)

    Mac Kenzie, A.B.; Scott, R.D.; Ridgway, I.M.; Mc Kinley, I.G.; West, J.M.

    1986-01-01

    This report presents the results of a project to investigate the use of elemental profiles in Scottisch sediments resulting from the Flandrian marine transgression as a natural analogue of radionuclide migration through argillaceous material. The work was carried out within Research Area no. 5 of the CEC project MIRAGE ''Natural Geological Migration Systems''

  2. Design solutions to interface flow problems. A review of groundwater flow and radionuclide migration along sealed radioactive waste repository tunnels. Final report

    International Nuclear Information System (INIS)

    1986-02-01

    All published proposals for the deep level burial of radioactive waste recognise that the access shafts, tunnels and boreholes must be sealed, and that the sealing of these openings plays an integral role in the overall isolation of the waste. Previous studies have identified the interface between the host ground formation and the various sealing materials as potential defects in the overall quality of the waste isolation. The significance of groundwater flow at and near the interface has been assessed for representative conditions in generic repository materials. A range of design options to minimise the significance of flow in the interface zone have been proposed, and the most practical of these options have been selected for quantitative analysis. It has been found that isolated high impermeability collars are of limited value unless a highly effective method of minimising ground disturbance during excavation can be developed. It has also been found that control of radionuclide migration by sorptive processes provides an attractive option. The effect of various geometrical arrangements of sorptive materials has been investigated. Consideration has also been given to the particular conditions in the near field, to the behaviour of weak plastic clay host formations and to the mechanical interaction between the backfill material and the host formation. (author)

  3. Checking the mathematical model of the radionuclides migration velocity in the system: bitumen-spent ion-exchange resins; Provera matematickog modela za brzinu izluzivanja radionukluda u sistemu: bitumen-istrosene jonoizmenjivacke smole

    Energy Technology Data Exchange (ETDEWEB)

    Peric, A; Plecas, I; Kostadinovic, A [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1992-07-01

    Immobilization process of the spent ion-exchange resins was performed in bitumen matrix. from the twelve investigated formulations, one was chosen: BIT 200-40% I.I. resin, on which the mathematical model of the migration velocity for radionuclides Co-60 and Cs-137 was checked. Behaviour of the migration velocity trend obtained by mathematical modeling was compared with the measured results. Leaching level trends obtained by measurements and by mathematical modeling of the process do not show great differences in the nearly two years of investigation, and pointed out the stability of the bitumenized rad-waste form in the relatively relevant period of time. (author)

  4. Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Jackson, R.E.; Inch, K.J.

    1980-01-01

    In the mid-1950's two experimental disposals of liquid radioactive waste containing about 700 curries of strontium-90 and cesium-137 were made into pits in sandy ground at one of the disposal areas at Chalk River Nuclear Laboratories. Since then, the wastes have migrated into two nearby aquifers and have chromatographically separated into strontium-90 and cesium-137 plumes moving at velocities less than that of the transporting groundwater. Analysis of radioactively contaminated aquifer sediments showed that most of the strontium-90 is exchangeably adsorbed, primarily to feldspars and layer silicates (mainly biotite); the rest is either specifically adsorbed to iron (III) and perhaps manganese (IV) oxhydroxides or fixed to unknown sinks. Less than one half of adsorbed cesium-137 is exchangeable with 0.5 m calcium chloride; the high levels of cesium-137 adsorption and fixation are probably due to its reaction with micaceous minerals. Complexation of strontium-90 and cesium-137 does not appear to be an important factor affecting their transport or adsorption. In studies of groundwater quality or pollution, dissolved oxygen and sulfide should be measured in addition to the redox potential since it allows independent assessment of the redox levels. The latter were found to affect the mobility of multivalent transition metals and nonmetals. (DN)

  5. Radionuclide adsorption distribution coefficients measured in Hanford sediments for the low level waste performance assessment project

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Serne, R.J.; Owen, A.T.

    1996-08-01

    Preliminary modeling efforts for the Hanford Site's Low Level Waste-Performance Assessment (LLW PA) identified 129 I, 237 Np, 79 Se, 99 Tc, and 234 , 235 , 238 U as posing the greatest potential health hazard. It was also determined that the outcome of these simulations was very sensitive to the parameter describing the extent to which radionuclides sorb to the subsurface matrix, i.e., the distribution coefficient (K d ). The distribution coefficient is a ratio of the radionuclide concentration associated with the solid phase to that in the liquid phase. The objectives of this study were to (1) measure iodine, neptunium, technetium, and uranium K d values using laboratory conditions similar to those expected at the LLW PA disposal site, and (2) evaluate the effect of selected environmental parameters, such as pH, ionic strength, moisture concentration, and radio nuclide concentration, on K d values of selected radionuclides. It is the intent of these studies to develop technically defensible K d values for the PA. The approach taken throughout these studies was to measure the key radio nuclide K d values as a function of several environmental parameters likely to affect their values. Such an approach provides technical defensibility by identifying the mechanisms responsible for trends in K d values. Additionally, such studies provide valuable guidance regarding the range of K d values likely to be encountered in the proposed disposal site

  6. Bentonite erosion: effects on the long term performance of the engineered barrier and radionuclide transport - The BELBAR project

    International Nuclear Information System (INIS)

    Sellin, P.; Sundman, D.; Bailey, L.; Missana, T.; Schaefer, T.; Cervinka, R.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. BELBaR is a Collaborative Project within the Seventh Framework Programme of the European Atomic Energy Community (Euratom) for nuclear research and training activities. The main aim of BELBaR is to increase knowledge of the processes that control clay colloid stability, generation and its ability to transport radionuclides. The overall purpose of the project is to come up with a new way of treating issues in long-term safety/performance assessment. The project started March 1, 2012 and has a duration of 48 months. The project has 14 partners from seven European countries. The main aim of BELBaR is to reduce the uncertainties in the description of the effect of clay colloids on the long term performance of the engineered barrier and on radionuclide transport as illustrated in Figure 1. This is done by: - Improving the understanding on when bentonite colloids are unstable. For a given site/site evolution, this is critical information, since it determines whether or not clay colloids need to be included in the long-term assessment. - Improving the quantitative models for erosion on the bentonite barrier for the cases when the colloids are stable - Improving the understanding of how radionuclides attach to clay colloids. This information will be used to formulate improved transport models for the assessment of radionuclide transport in the geosphere. To meet the main aim a number of experimental and modelling activities will be undertaken within the project. BELBaR consists of six RTD (research and technical development) work packages and one project management work package. WP1 will have the responsibility to ensure that that the type and values of the parameters selected for experimental and modelling work are those that represent as much as possible the full range of conditions and situations that can be expected in a repository. Drawing on the work undertaken in WP 2 to 5, the general objective of this work package

  7. Children’s Migration to the United States from Mexico and Central America: Evidence from the Mexican and Latin American Migration Projects

    Directory of Open Access Journals (Sweden)

    Katharine M. Donato

    2015-02-01

    Full Text Available In light of rising numbers of unaccompanied minors at the Mexico-US border in 2014, this article examines child migration from Mexico, Guatemala, El Salvador, Costa Rica, and Nicaragua. Using data from the Mexican and Latin American Migration Projects that permit us to go beyond simple descriptive analysis about children apprehended at the border, we investigate the extent to which children from these countries: (1 enter without legal authorization to do so; (2 are more likely to cross the border now than in the past; and (3 are tied to their parents’ migration. In theory, if immigration and refugee protections worked well for children and offered them legal pathways to reunify with their families, then we would expect low levels of unauthorized entry and no dramatic shifts over time. However, our examination of child migration shows that it is strongly linked to unauthorized entry, period of entry, and parents’ US experience.The findings show that the migration of children is closely linked to their parents’ migration history. Although the overall likelihood of a Mexican child making a first US trip is quite low, it is practically non-existent for children whose parents have no US experience. Thus, the increase in child migration from Central America, and the continued high levels of child migration from Mexico result from widespread migration networks and the United States’ long-standing reliance on the children’s parents as immigrant workers. The findings suggest that these children need protection in the form of family reunification and permanent legal status.

  8. Colloid-facilitated effects on migration of radionuclides in fractured rock with a kinetic solubility-limited dissolution model

    International Nuclear Information System (INIS)

    Jen Chunping; Tien Nengchuan

    2010-01-01

    Nuclides can move with groundwater either as solutes or colloids, where the latter mechanism generally results in much shorter traveling time as the nuclides interact strongly with solid phases, such as actinides. In the performance assessment, it is therefore essential to assess the relative importance of these two transport mechanisms for different nuclides. The relative importance of colloids depends on the nature and concentration of the colloids in groundwater. Plutonium (Pu), neptunium (Np), uranium (U) and americium (Am) are four nuclides of concern for the long-term emplacement of nuclear wastes at potential repository sites. These four actinides have a high potential for migrating if attached to iron oxide, clay or silica colloids in the groundwater.Strong sorption of the actinides by colloids in the groundwater may facilitate the transport of these nuclides along potential flow paths. The solubility-limited dissolution model can be used to assess the safety of the release of nuclear waste in geological disposal sites. Usually, it has been assumed that the solubility of the waste form is constant. If a nuclide reaches its solubility limit at an inner location near the waste form, it is unlikely that the same nuclide will reach its solubility limit at an outer location unless this nuclide has a parent nuclide. It is unlikely that the daughter nuclides will exceed their solubility limit due to decay of their parent nuclide. The present study investigates the effect of colloids on the transport of solubility-limited nuclides under the kinetic solubility-limited dissolution (KSLD) boundary condition in fractured media. The release rate of the nuclides is proportional to the difference between the saturation concentration and the inlet aqueous concentration of the nuclides. The presence of colloids decreases the aqueous concentration of nuclides and, thus, increases the release flux of nuclides from the waste form. (authors)

  9. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    illite and clay rocks, even though some assumptions made have to be verified. In parallel, actual 3D geometrical pore size distributions of compacted illite, and in less extent, clay rock samples, were successfully determined by combining TEM and FIB-nt analyses on materials maintained in a water-like saturation state by means of an extensive impregnation step. Based on this spatial distribution of pores, first numerical diffusion experiments were carried at the pore scale through virtual illite, enabling a better understanding of how transfer pathways are organized in the porous media. Finally, the EC CatClay project allowed a better understanding of the migration of strongly sorbing tracers through low permeability 'clay rock' formations, increasing confidence in our capacity to demonstrate that the models used to predict radionuclide migration through these rocks are scientifically sound. (authors)

  10. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Sampling and Analysis Plan and Operational Manual

    International Nuclear Information System (INIS)

    Passell, Howard D.; Barber, David S.; Betsill, J. David; Littlfield, Adriane C.; Mohagheghi, Amir H.; Shanks, Sonoya T.; Yuldashev, Bekhzad; Salikhbaev, Umar; Radyuk, Raisa; Djuraev, Akram; Djuraev, Amwar; Vasilev, Ivan; Tolongutov, Bajgabyl; Valentina, Alekhina; Solodukhin, Vladimir; Pozniak, Victor

    2002-01-01

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site, and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  11. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Sampling and Analysis Plan and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D.; Barber, David S.; Betsill, J. David; Littlfield, Adriane C.; Mohagheghi, Amir H.; Shanks, Sonoya T.; Yuldashev, Bekhzad; Salikhbaev, Umar; Radyuk, Raisa; Djuraev, Akram; Djuraev, Amwar; Vasilev, Ivan; Tolongutov, Bajgabyl; Valentina, Alekhina; Solodukhin, Vladimir; Pozniak, Victor

    2002-04-02

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site, and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  12. Demographic Models for Projecting Population and Migration: Methods for African Historical Analysis

    Directory of Open Access Journals (Sweden)

    Patrick Manning

    2015-08-01

    Full Text Available This study presents methods for projecting population and migration over time in cases were empirical data are missing or undependable. The methods are useful for cases in which the researcher has details of population size and structure for a limited period of time (most obviously, the end point, with scattered evidence on other times. It enables estimation of population size, including its structure in age, sex, and status, either forward or backward in time. The program keeps track of all the details. The calculated data can be reported or sampled and compared to empirical findings at various times and places to expected values based on other procedures of estimation. The application of these general methods that is developed here is the projection of African populations backwards in time from 1950, since 1950 is the first date for which consistently strong demographic estimates are available for national-level populations all over the African continent. The models give particular attention to migration through enslavement, which was highly important in Africa from 1650 to 1900. Details include a sensitivity analysis showing relative significance of input variables and techniques for calibrating various dimensions of the projection with each other. These same methods may be applicable to quite different historical situations, as long as the data conform in structure to those considered here.

  13. Modelling gas migration in fractured rock. A contribution to the EU's PROGRESS project

    International Nuclear Information System (INIS)

    Humm, J.; Robinson, P.; Clark, K.

    2001-01-01

    To assess the performance of a waste repository, it is necessary to be able to predict the rates of gas generation and to understand and evaluate both the way the gas may disperse from the repository and any effects that might be associated with this dispersal. This document describes the modelling work carried out by QuantiSci on behalf of the UK Environment Agency, in conjunction with the CEC PROGRESS Project (Research into Gas Generation and Migration in Radioactive Waste Repository Systems) which has been carried out as part of the European Commission's IV th framework R and D programme. The project was under the PEGASUS (Projects on the Effects of GAS in Underground Storage facilities) umbrella. A review is provided of alternative conceptual models for the migration of gas through an initially water saturated fracture. A range of front or interface tracking methods for computing gas migration through a fracture is described: direct discretisation, marker particle, volume of fluids and level set methods. Volume of fluids methods are identified as the most appropriate approach for models of this sort. Subsequently, a description is given of the development of a model of gas injection into a single fracture in a portion of Borrowdale Volcanic Granite. The theoretical approach for the model is described in detail and the model compared to experimental results obtained for the real fracture. The experimental results of the CEC PROGRESS Project (obtained using Positron Emission Tomography) do not show particularly good agreement with the model results. However, there are strong indications that this is largely the result of uncertainties in the interpretation of the PET results. The experimental results are acknowledged to be extremely hard to interpret and the apparent negative gas thicknesses observed experimentally confirm this fact. Given the clearly critical dependence of the gas migration pathways on the aperture distribution, any discrepancies of this sort

  14. Application and validation of predictive computer programs describing the chemistry of radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Waters, M.; Duffield, J.R.; Griffiths, P.J.F.; Williams, D.R.

    1991-01-01

    Chemval is an international project concerned with improving the data used to model the speciation chemistry of radionuclide migration from underground waste disposal sites. Chemval has two main aims: to produce a reliable database of thermodynamic equilibrium constants for use in such chemical modelling; to perform a series of test-case modelling exercises based upon real site and field data to verify and validate the existing tools used for simulating the chemical speciation and the transport of radionuclides in the environment

  15. Determination and maintenance of DE minimis risk for migration of residual tritium (3H) from the 1969 Project Rulison nuclear test to nearby hydraulically fractured natural gas wells.

    Science.gov (United States)

    Daniels, Jeffrey I; Chapman, Jenny B

    2013-05-01

    The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.

  16. FixO3 project results, legacy and module migration to EMSO

    Science.gov (United States)

    Lampitt, Richard

    2017-04-01

    The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used

  17. Elementary analyses in behalf of the project: Orientating investigation to Polonium-210 and other radionuclides in Dutch aquatic ecosystems

    International Nuclear Information System (INIS)

    Hart, M.J. 't; Breugem, P.M.; Koester, H.W.

    1989-11-01

    In this report, results of the determinations of total, organic and inorganic carbon analysis are reported for the project 'Orientating investigations of Polonium-210 and other natural radionuclides in Dutch aquatic ecosystems', projectnumber 248476. The method used is a modification of the method described by Froelich and is based on elemental analysis. Sediment samples from several locations of sea and river water show a large variation of the carbon content. The organic carbon concentration varies from 2.78 to 22.42 percent; the inorganic carbon varies from 1.25 to 5.66 percent. The analyses were run in duplicate with a mean standard deviation of 0.1 percent. (author). 4 refs.; 5 figs.; 7 tabs

  18. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  19. Surface diffusion of sorbed radionuclides

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.

    1991-01-01

    Surface diffusion has in the past been invoked to explain rates of radionuclide migration which were greater than those predicted. Results were generally open to interpretation but the possible existence of surface diffusion, whereby sorbed radionuclides could potentially migrate at much enhanced rates, necessitated investigation. In this work through-diffusion experiments have shown that although surface diffusion does exist for some nuclides, the magnitude of the phenomenon is not sufficient to affect repository safety assessment modelling. (author)

  20. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    International Nuclear Information System (INIS)

    Berner, U.

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In this case, significant

  1. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In

  2. Radionuclide transfer

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1993-01-01

    The research project described here had the aim to obtain further information on the transfer of nuclides during pregnancy and lactation. The tests were carried out in mini-pigs and rats receiving unchanging doses of radionuclides with the food. The following findings were revealed for the elements examined: Fe, Se, Cs and Zn were characterized by very high transfer levels in the mother, infant and foetus. A substantial uptake by the mother alone was observed for Co, Ag and Mn. The uptake by the foetus and infant here was 1 to 10 times lower. A preferential concentration in certain tissues was seen for Sr and Tc; the thyroid levels of Tc were about equally high in mothers and infants, while Sr showed less accumulation in the maternal bone. The lanthanide group of substances (Ce, Eu and Gd as well as Y and Ru) were only taken up to a very limited extent. The uptake of the examined radionuclides (Fe, Co, Ag, Ce) with the food ingested was found here to be ten times greater in rats as compared to mini-pigs. This showed that great caution must be observed, if the behaviour of radionuclides in man is extrapolated from relevant data obtained in rodents. (orig./MG) [de

  3. The oceanic geochemistry of artificial radionuclides: The ''SEEP'' project: [Final] progress report for period 1 August 1986-31 July 1987

    International Nuclear Information System (INIS)

    Sholkovitz, E.R.; Livingston, H.D.

    1986-03-01

    The objective of the SEEP project was to quantify the biological and geochemical processes controlling the concentration, distribution, flux, and speciation of natural and artificial radionuclides. The focus is on the shelf/slope region. Research was concentrated on the sediment chemistry of plutonium and on the nature of fallout transuranic transport in, and removal from, waters of the US continental margin

  4. Nanoparticles migration in fractured rocks and affects on contaminant migration

    Science.gov (United States)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  5. 90Sr-90Y radionuclide generator based on ionex chromatography. Part 1 - project

    International Nuclear Information System (INIS)

    Miler, V.; Budsky, F.; Malek, Z.

    2003-09-01

    This part contains a proposal for the generator column design, materials to be used (chemicals, ionexes) and technological procedures. The proposal was inspired by the 90 Sr- 90 Y generator operated by Zfk Rossendorf. The aim was to develop and launch a generator for the preparation of carrier-free 90 Y in the form of [ 90 Y] chloride solution in dilute hydrochloric acid. The separation of Y from Sr is based on ionex chromatography by sorbing the two radionuclides on a catex. While Sr remains sorbed, 90 Y is eluted with lithium citrate. During this process, 90 Y is bonded in a citrate complex which, having a negative charge, is subsequently trapped by an anex. A guard column is inserted before the anex column to trap any traces of 90 Sr. 90 Y is eluted from the anex in the yttrium chloride form by using dilute hydrochloric acid. The product from the generator can be used for the preparation of [ 90 Y] - Fe colloid injection or [ 90 Y] - yttrium citrate injection for intra-articular application or for the development of monoclonal antibodies and peptides

  6. Pocos de Caldas Project

    International Nuclear Information System (INIS)

    1988-01-01

    The first annual report of the Pocos de Caldas Project describes the results of the feasibility study established to test the objectives of the work. Boreholes have been drilled at two sites, the Osamu Utsumi uranium mine and Morro do Ferro, to assess the feasibility of using them as natural analogues of radionuclide migration processes. Detailed geochemical analysis and hydrogeological studies are described. (author)

  7. The influence of temperature on migration of radionuclides in deep-sea sediments: Simulation experiments concerning sorption and heat flow related to deep-sea disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Geldermalsen, L.A. van

    1985-02-01

    This report presents the results of a study on the effects of temperatures up to 90 0 C on the migration of the radionuclides plutonium, neptunium and americium through marine sediments in the near field of a canister with radioactive waste. Topics entered were; (i) the influence of temperature on the distribution coefficients of the transuranics plutonium, americium and neptunium, (ii) the effect of temperature on the composition and characteristics of interstitial water and (iii) the effects of a point heat source on the temperature distributions and flow velocities in interstitial water of sediments. (Auth.)

  8. Development of a mechanistic model for release of radionuclides from spent fuel in brines: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.; Windisch, C.F.

    1988-03-01

    At present there are no comprehensive mechanistic models describing the release of radionuclides from spent fuel in brine environments. This report provides a comprehensive review of the various factors that can affect radionuclide release from spent fuel, suggests a modeling approach, and discusses proposed experiments for obtaining a better mechanistic understanding of the radionuclide release processes. Factors affecting radionuclide release include the amount, location, and disposition of radionuclides in the fuel and environmental factors such as redox potential, pH, the presence of complexing anions, temperature, and radiolysis. It is concluded that a model describing the release of radionuclides from spent fuel should contain separate terms for release from the gap, grain boundaries, and grains of the fuel. Possible functional forms for these terms are discussed in the report. Experiments for assessing their validity and obtaining key model parameters are proposed. 71 refs., 4 figs., 6 tabs

  9. Projections of the Population of the Republic of Croatia to the Year 2031: Can Migration Alleviate Future Negative Trends?

    Directory of Open Access Journals (Sweden)

    Snježana Mrđen

    2004-03-01

    Full Text Available The paper presents middle duration projections of Croatia’s population, until the year 2031, determined via the cohort-component method. It outlines eight variants derived from supposed hypotheses in regard to changing birth, migration and death rates. Differences in the variants are exclusively differences in birth and migration rates, since the assumptions in regard to the death rates are the same in all the variants. The corrected estimate of the population on January 1st 2001, according to the most recent census, served as the base population. The results of the projections indicate that in the next thirty years the overall and the natural population reduction of Croatia will continue, and at the end of the period (2031 the population will be demographically older than at the start (2001. The variants differ only in relation to the intensity (i.e. swiftness of the aging process, yet the direction remains the same. Thus, in the variant that assumes a positive migration balance, the process of aging would be somewhat slower. The only variant that assumes a constant proportion of young people (on the 2001 level, gradual demographic growth and at the end of the period a larger population than in 2001, is the variant based on a high birth rate and positive migration. The impact of migration is very important for future demographic processes. Namely, in the short run, migration cannot change the direction of demographic processes, but it can lessen already existing negative trends.

  10. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    International Nuclear Information System (INIS)

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy's definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary

  11. DEMETERRES project: development of innovative technologies for removing radionuclides from contaminated solid and liquid matrices

    Science.gov (United States)

    Chagvardieff, Pierre; Barré, Yves; Blin, Virginie; Faure, Sylvain; Fornier, Anne; Grange, Didier; Grandjean, Agnès; Guiderdoni, Emmanuel; Henner, Pascale; Siroux, Brice; Leybros, Antoine; Messalier, Marc; Paillard, Hervé; Prévost, Thierry; Rennesson, Malvina; Sarrobert, Catherine; Vavasseur, Alain; Véry, Anne-Aliénor

    2017-09-01

    As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA) proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor …) and biological ones (bioextractants, phytoextraction) which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.

  12. Characterization of clay (bentonite)/crushed granite mixtures to build barriers against the migration of radionuclides: diffusion studies and physical properties

    International Nuclear Information System (INIS)

    Mingarro, E.; Rivas, P.; Villar, L.P. del; Cruz, B. de la; Gomez, P.; Hernandez, A.; Turrero, M.J.; Villar, M.V.; Campos, R.; Cozar, J.

    1991-01-01

    In Spain, the possibility is being considered of storage of radioactive waste in granitic rocks, using Spanish clays as backfill and sealing materials. The study and selection of these materials is the objective of the project, accomplished with Community financial support under CEC contract No Fl1W-0191-E (TT). With the aim of minimizing the chemical-mineralogical disequilibrium between the granitic rock and the artificial barrier, the possibility has been studied of using molten granite as an additive and illite as clayish material, instead of the normal use of smectite (montmorillonite). The studies have been carried out on 30 commercial Spanish clays and two kinds of granite and have been orientated to the selection of materials and the optimization of the clay-granite mixtures, chemical characterization, mechanics and physics of the mixtures and compacted blocks, determination of their behaviour in the gradient fields of temperature, pressure and chemical potentials and to the determination of the migration parameters. 59 Figs.; 6 Micrograph; 52 Tabs.; 30 Refs

  13. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  14. DEMETERRES project: development of innovative technologies for removing radionuclides from contaminated solid and liquid matrices

    Directory of Open Access Journals (Sweden)

    Chagvardieff Pierre

    2017-01-01

    Full Text Available As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor … and biological ones (bioextractants, phytoextraction which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.

  15. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final

    International Nuclear Information System (INIS)

    1994-01-01

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230

  16. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. Final report of a co-ordinated research project 1994-1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The `renaissance` of the therapeutic applications of radiopharmaceuticals during the last few years was in part due to a greater availability of radionuclides with appropriate nuclear decay properties, as well as to the development of carrier molecules with improved characteristics. Although radionuclides such as {sup 32}P, {sup 89}Sr and {sup 131}I, were used from the early days of nuclear medicine in the late 1930s and early 1940s, the inclusion of other particle emitting radionuclides into the nuclear medicine armamentarium was rather late. Only in the early 1980s did the specialized scientific literature start to show the potential for using other beta emitting nuclear reactor produced radionuclides such as {sup 153}Sm, {sup 166} Ho, {sup 165}Dy and {sup 186-188}Re. Bone seeking agents radiolabelled with the above mentioned beta emitting radionuclides demonstrated clear clinical potential in relieving intense bone pain resulting from metastases of the breast, prostate and lung of cancer patients. Therefore, upon the recommendation of a consultants meeting held in Vienna in 1993, the Co-ordinated Research Project (CRP) on Optimization of the Production and quality control of Radiotherapeutic Radionuclides and Radiopharmaceuticals was established in 1994. The CRP aimed at developing and improving existing laboratory protocols for the production of therapeutic radionuclides using existing nuclear research reactors including the corresponding radiolabelling, quality control procedures; and validation in experimental animals. With the participation of ten scientists from IAEA Member States, several laboratory procedures for preparation and quality control were developed, tested and assessed as potential therapeutic radiopharmaceuticals for bone pain palliation. In particular, the CRP optimised the reactor production of {sup 153}Sm and the preparation of the radiopharmaceutical {sup 153}Sm-EDTMP (ethylene diamine tetramethylene phosphonate), as well as radiolabelling

  17. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. Final report of a co-ordinated research project 1994-1998

    International Nuclear Information System (INIS)

    1999-09-01

    The 'renaissance' of the therapeutic applications of radiopharmaceuticals during the last few years was in part due to a greater availability of radionuclides with appropriate nuclear decay properties, as well as to the development of carrier molecules with improved characteristics. Although radionuclides such as 32 P, 89 Sr and 131 I, were used from the early days of nuclear medicine in the late 1930s and early 1940s, the inclusion of other particle emitting radionuclides into the nuclear medicine armamentarium was rather late. Only in the early 1980s did the specialized scientific literature start to show the potential for using other beta emitting nuclear reactor produced radionuclides such as 153 Sm, 166 Ho, 165 Dy and 186-188 Re. Bone seeking agents radiolabelled with the above mentioned beta emitting radionuclides demonstrated clear clinical potential in relieving intense bone pain resulting from metastases of the breast, prostate and lung of cancer patients. Therefore, upon the recommendation of a consultants meeting held in Vienna in 1993, the Co-ordinated Research Project (CRP) on Optimization of the Production and quality control of Radiotherapeutic Radionuclides and Radiopharmaceuticals was established in 1994. The CRP aimed at developing and improving existing laboratory protocols for the production of therapeutic radionuclides using existing nuclear research reactors including the corresponding radiolabelling, quality control procedures; and validation in experimental animals. With the participation of ten scientists from IAEA Member States, several laboratory procedures for preparation and quality control were developed, tested and assessed as potential therapeutic radiopharmaceuticals for bone pain palliation. In particular, the CRP optimised the reactor production of 153 Sm and the preparation of the radiopharmaceutical 153 Sm-EDTMP (ethylene diamine tetramethylene phosphonate), as well as radiolabelling techniques and quality control methods for

  18. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  19. An intercomparison on radionuclides in environmental samples, Baltic-Danish co-operation project on radiation protection 2001-2003

    DEFF Research Database (Denmark)

    Nielsen, S.P.

    2004-01-01

    Sixteen laboratories participated in an intercomparison exercise carried out in 2003 on laboratory analyses of radionuclides in environmental samples. The sample types included seawater, lake water, soil, dry milk and seaweed and the exercise involved theradionuclides 137Cs, 90Sr, 60Co, 239, 240Pu...... laboratories passed the evaluation tests. The results indicate that for several of the laboratories there isroom to improve the analytical quality on radionuclides in environmental samples to match an uncertainty corresponding to a relative standard deviation of 10%....

  20. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianwei [Louisiana State Univ., Baton Rouge, LA (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  1. Radionuclide co-precipitation

    International Nuclear Information System (INIS)

    Bruno, J.; Sandino, A.

    1987-12-01

    The thermodynamic and kinetic behaviour of the minor components of the spent fuel matrix has been theoretically and experimentally investigated. Two different situations have been studied: Part I, the near field scenario, where the release and migration of the minor components is dependent on the solubility behaviour of UO 2 (s); Part II, the far field, where the solubility and transport of the radionuclides is related to the major geochemical processes occurring. (orig.)

  2. An intercomparison on radionuclides in environmental samples, Baltic-Danish co-operation project on radiation protection 2001-2003

    International Nuclear Information System (INIS)

    Nielsen, S.P.

    2004-07-01

    Sixteen laboratories participated in an intercomparison exercise carried out in 2003 on laboratory analyses of radionuclides in environmental samples. The sample types included seawater, lake water, soil, dry milk and seaweed and the exercise involved the radionuclides 137 Cs, 90 Sr, 60 Co, 239,240 Pu, 241 Am, 226 Ra, 2 40 K. The evaluation of analytical performance was based on comparison with median values, a 10% target standard deviation and statistical tests at the 99% level. For 137Cs the results from 10 out of 16 laboratories passed the evaluation tests. For 90 Sr the results from 5 out of 12 laboratories passed the evaluation tests. For 60 Co, 239,240 Pu and 241 Am two laboratories submitted results and both passed the tests. For the natural radionuclides 226 Ra, 232 Th and 40 K, only a few laboratories did not pass the tests. For all radionuclides combined, the results from 6 out of 16 laboratories passed the evaluation tests. The results indicate that for several of the laboratories there is room to improve the analytical quality on radionuclides in environmental samples to match an uncertainty corresponding to a relative standard deviation of 10%. (au)

  3. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  4. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects. Annual report, October 1984-September 1985. Volume 4

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Blencoe, J.G.; Jacobs, G.K.; Kelmers, A.D.; Seeley, F.G.; Whatley, S.K.

    1986-05-01

    Information pertaining to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository, which is being developed by projects within the Department of Energy (DOE), is being evaluated by Oak Ridge National Laboratory for the Nuclear Regulatory Commission (NRC). During this report period, emphasis was placed on the evaluation of information pertinent to the Hanford site in southeastern Washington. Results on the sorption/solubility behavior of technetium, neptunium, and uranium in the basalt/water geochemical system are summarized and compared to the results of DOE. Also, summaries of results are reported from two geochemical modeling studies: (1) an evaluation of the information developed by DOE on the native copper deposits of Michigan as a natural analog for the emplacement of copper canisters in a repository in basalt, and (2) calculation of the solubility and speciation of radionuclides for representative groundwaters from the Yucca Mountain site in Nevada

  5. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

    2002-04-24

    tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  6. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

    2002-04-24

    tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  7. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Gee, Glendon W.; Selker, John S.; Cooper, Caly

    2002-01-01

    of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford

  8. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Gee, Glendon W.; Selker, John S.; Cooper, Clay

    2002-01-01

    of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford

  9. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  10. Recent developments in the integrated approach toward characterization of radionuclide transport, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.; Canepa, J.A.

    1992-01-01

    The radionuclide migration program for the Yucca Mountain Site Characterization Project (YMP) includes studies of radionuclide solubility, sorption, diffusion, and transport. The study plans incorporate all possible parameters of investigation; decision-making strategies for prioritizing the parameters and evaluating their significance were developed in conjunction with the study plans. After definition of explicit research goals for each study, YMP evaluated the applicability of existing data and formulated experimental approaches for obtaining additional data. This resulted in development of individual testing strategies that were integrated into an overall strategy for the radionuclide migration program designed to provide input to credible performance assessments. The strategies allow for decision points at various steps of data collection and testing. They provide a streamlined process toward a defensible level of understanding of chemical retardation and transport processes that will be used to predict the mountain's ability to isolate waste. (author)

  11. The Introduction of Innovative Services in a State Owned Airline: A Case Study of an IT Migration Project

    Directory of Open Access Journals (Sweden)

    Konstantinos Malagas

    2013-03-01

    Full Text Available This study critically examines the transition process followed by a state-owned airline in a major IT migration project (introduction of novel electronic services. The change management process proposed by Kotter (1995 is examined in relation to the different phases identifed, based on an interview based qualitative research. Focusing on the project team leaders a set of results is identifed / determined, which provides signifcant insight into the key factors, defciencies and outcomes of the project, with reference to the characteristics of a state-owned company. Further elaboration of the proposed methodology is deemed to be applicable in the identifcation of the weak and strong points of similar change projects.

  12. Prediction of radionuclide migration in the Pripyat river and Dnieper reservoirs and decision support of water protection measures on the basis of mathematical modelling

    International Nuclear Information System (INIS)

    Morozov, A.A.; Zheleznyak, M.J.; Voitsekhovich, O.; Aliev, K.A.; Bilotkach, U.V.

    1997-01-01

    Since May 1986 in Kiev in the Institute of Mathematical Machines and System Problems, Cybernetics Center of the National Academy of Sciences of Ukraine has been started the development of the computerised system for processing of Dniper basin radiological monitoring data and modelling of radionuclide dispersion in rivers and reservoirs. For this work it was established the Interdisciplinary Working Group that joints the specialists from the State Committee of Water Resources, State Committee of Hydrometeorology, National Academy of Sciences and other Ukrainian institutions. The objectives of the computerized system development were formulated by the State Emergency Commission and later by the Ukrainian Minchernobyl as follows: reliable evaluation of the surface water contamination at Pripyat River and Dnieper River on the basis of monitoring data from the different institutions; seasonal and long-term prediction of the surface water radioactive contamination; decision support for the aquatic post-accidental countermeasures, directed to diminish the radionuclides fluxes from the Chernobyl area through the Pripyat River and Dnieper Reservoirs; decision support for the countermeasures directed on changes in the water assumption

  13. Modelling the transfer of radionuclides to fruit. Report of the Fruits Working Group of BIOMASS Theme 3. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    International Nuclear Information System (INIS)

    2003-07-01

    This report contains a description of the activities carried out by the Fruits Working Group and presents the main results such as conceptual advances, quantitative data and models on the transfer of radionuclides to fruit in the context of the overall objective of BIOMASS Theme 3. The aim of the study was to improve understanding of the processes affecting the migration of radionuclides in the fruit system and to identify the uncertainties associated with modelling the transfer of radionuclides to fruit. The overall objective was to improve the accuracy of risk assessment that should translate to improved health safety for the population and associated cost savings. The significance of fruit, intended as that particular component of the human diet generally consumed as a dessert item, derives from its high economic value, the agricultural area devoted to its cultivation, and its consumption rates. These are important factors for some countries and groups of population. Fruits may become contaminated with radioactive material from nuclear facilities during routine operation, as a consequence of nuclear accidents, or due to migration through the biosphere of radionuclides from radioactive waste disposal facilities. Relevant radionuclides when considering transfer to fruit from atmospheric deposition were identified as 3 H, 14 C, 35 S, 36 Cl, 90 Sr, 129 I, 134 Cs and 137 Cs. The transfer of radionuclides to fruit is complex and involves many interactions between biotic and abiotic components. Edible fruit is borne by different plant species, such as herbaceous plants, shrubs and trees, that can grow under different climatic conditions and may be found in agricultural or natural ecosystems. A review of experimental, field and modelling information on the transfer of radionuclides to fruit was carried out at the inception of the activities of the Group, taking into account results from a Questionnaire circulated to radioecologists. Results on current experimental

  14. Modelling the transfer of radionuclides to fruit. Report of the Fruits Working Group of BIOMASS Theme 3. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report contains a description of the activities carried out by the Fruits Working Group and presents the main results such as conceptual advances, quantitative data and models on the transfer of radionuclides to fruit in the context of the overall objective of BIOMASS Theme 3. The aim of the study was to improve understanding of the processes affecting the migration of radionuclides in the fruit system and to identify the uncertainties associated with modelling the transfer of radionuclides to fruit. The overall objective was to improve the accuracy of risk assessment that should translate to improved health safety for the population and associated cost savings. The significance of fruit, intended as that particular component of the human diet generally consumed as a dessert item, derives from its high economic value, the agricultural area devoted to its cultivation, and its consumption rates. These are important factors for some countries and groups of population. Fruits may become contaminated with radioactive material from nuclear facilities during routine operation, as a consequence of nuclear accidents, or due to migration through the biosphere of radionuclides from radioactive waste disposal facilities. Relevant radionuclides when considering transfer to fruit from atmospheric deposition were identified as {sup 3}H, {sup 14}C, {sup 35}S, {sup 36}Cl, {sup 90}Sr, {sup 129}I, {sup 134}Cs and {sup 137}Cs. The transfer of radionuclides to fruit is complex and involves many interactions between biotic and abiotic components. Edible fruit is borne by different plant species, such as herbaceous plants, shrubs and trees, that can grow under different climatic conditions and may be found in agricultural or natural ecosystems. A review of experimental, field and modelling information on the transfer of radionuclides to fruit was carried out at the inception of the activities of the Group, taking into account results from a Questionnaire circulated to

  15. Out-migration and land-use change in agricultural frontiers: insights from Altamira settlement project

    Science.gov (United States)

    D’Antona, Álvaro O.

    2012-01-01

    One of Daniel Hogan’s lasting impacts on international demography community comes through his advocacy for studying bidirectional relationships between environment and demography, particularly migration. We build on his holistic approach to mobility and examine dynamic changes in land use and migration among small farm families in Altamira, Pará, Brazil. We find that prior area in either pasture or perennials promotes out-migration of adult children, but that out-migration is not directly associated with land-use change. In contrast to early formulations of household life cycle models that argued that aging parents would decrease productive land use as children left the farm, we find no effect of out-migration of adult children on land-use change. Instead, remittances facilitate increases in area in perennials, a slower to pay off investment that requires scarce capital, but in pasture. While remittances are rare, they appear to permit sound investments in the rural milieu and thus to slow rural exodus and the potential consolidation of land into large holdings. We would do well to promote the conditions that allow them to be sent and to be used productively to keep families on the land to avoid the specter of extensive deforestation for pasture followed by land consolidation. PMID:23129878

  16. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  17. An integrated approach to radionuclide flow in semi-natural ecosystems underlying exposure pathways to man. Final report of the LANDSCAPE project

    International Nuclear Information System (INIS)

    Moberg, L.; Hubbard, L.; Avila, R.; Wallberg, L.; Feoli, E.; Scimone, M.; Milesi, C.; Mayes, B.; Iason, G.; Rantavaara, A.; Vetikko, V.; Bergman, R.; Nylen, T.; Palo, T.; White, N.; Guillitte, O.

    1999-10-01

    The general objective of the LANDSCAPE project has been to obtain a basis for reliable assessments of the radiation exposure to man under different time scales from radionuclides in plant and animal products of representative forest ecosystems in Europe. The work has been focussed on radiocaesium, 134 Cs, 137 Cs. In particular, the project has included (i) to quantify some major processes which influence the radiocaesium contamination of vegetation and fungi, (ii) to quantify radiocaesium intake of key herbivores, particularly free ranging moose, relative to food availability and degree of contamination, (iii) to quantify the influence of forest management on radiocaesium dynamics, and (iv) to incorporate these processes in dynamic models. The LANDSCAPE project has been the combined effort of eight research groups from five European countries, and this report describes the results obtained during 30 months of common work

  18. An integrated approach to radionuclide flow in semi-natural ecosystems underlying exposure pathways to man. Final report of the LANDSCAPE project

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, L; Hubbard, L; Avila, R; Wallberg, L [Swedish Radiation Protection Inst., Stockholm (Sweden); Feoli, E; Scimone, M; Milesi, C [Trieste Univ. (Italy); Mayes, B; Iason, G [Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Rantavaara, A; Vetikko, V [Radiation and Nuclear Safety Authority, Helsinki (Finland); Bergman, R; Nylen, T [National Defence Research Establishment, Umeaa (Sweden); Palo, T; White, N [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Faculty of Forestry; Raitio, H; Aro, L; Kaunisto, S [The Finnish Forest Research Inst., Parkano (Finland); Guillitte, O [Faculte Univ. des Sciences Agronomiques de Gembloux (Belgium)

    1999-10-01

    The general objective of the LANDSCAPE project has been to obtain a basis for reliable assessments of the radiation exposure to man under different time scales from radionuclides in plant and animal products of representative forest ecosystems in Europe. The work has been focussed on radiocaesium, {sup 134}Cs, {sup 137}Cs. In particular, the project has included (i) to quantify some major processes which influence the radiocaesium contamination of vegetation and fungi, (ii) to quantify radiocaesium intake of key herbivores, particularly free ranging moose, relative to food availability and degree of contamination, (iii) to quantify the influence of forest management on radiocaesium dynamics, and (iv) to incorporate these processes in dynamic models. The LANDSCAPE project has been the combined effort of eight research groups from five European countries, and this report describes the results obtained during 30 months of common work.

  19. Experimental investigation of long-lived radionuclide migration in floodplain soils of Chernobyl NPP 10-km zone and risk estimation of ground water pollution

    International Nuclear Information System (INIS)

    Zhirnov, V.G.; Popov, V.E.

    1993-01-01

    Heavily polluted with long-lived radionuclides, the floodplain soils of Chernobyl NPP 30-km zone is a potential danger for the river system and reservoirs of the Ukraine. In 1991, the building of a dam along the river left bank was started to isolate the river-bed. However, during the spring rise of water in the river body, the water will all the same infiltrate through the soil to the floodplain because of hydraulic pressure. The main goal of this work was to estimate the strontium 90 content in the top water and it's dependence on the depth of water over the soil surface. We studied the strontium 90 different chemical forms distribution in the left bank part of the floodplain and experimentally determined the strontium 90 washing out by river water taken into account it's upward flow

  20. The influence of radioactive waste solidification methods and storage conditions on the migration and dispersion of radionuclides in the terrestrial environment

    International Nuclear Information System (INIS)

    Golinski, M.; Ferenc, M.; Tomczak, W.; Cholerzynski, A.

    1979-01-01

    In the first part of the paper a survey of literature data on the methods and apparatus used for solidification of low- and intermediate-level radioactive wastes is done and the methods for the determination of the solidification product properties are discussed. The second part of the paper contains the experimental leachability data for 60 Co, 90 Sr and 137 Cs from simulated radioactive waste solidification products obtained with the help of bitumen, cement and urea formaldehyde resin. The leachability of radionuclides from the bituminization products decreases in the following order: 137 Cs 90 Sr 60 Co while that form concrete and the urea formaldehyde resin blocks as follows: 137 Cs 60 Co 90 Sr. A very good resistance of bitumen blocks against changeable atmospheric conditions and saline has been observed. The results obtained show that bitumen is the best binder while urea formaldehyde resin is the worst. (author)

  1. State of the art in establishing computed models of adsorption processes to serve as a basis of radionuclide migration assessment for safety analyses

    International Nuclear Information System (INIS)

    Koss, V.

    1991-01-01

    An important point in safety analysis of an underground repository is adsorption of radionuclides in the overlying cover. Adsorption may be judged according to experimental results or to model calculations. Because of the reliability aspired in safety analyses, it is necessary to strengthen experimental results by theoretical calculations. At the time, there is no single thermodynamic model of adsorption to be agreed on. Therefore, this work reviews existing equilibrium models of adsorption. Limitations of the K d -concept and of adsorption-isotherms according to Freundlich and Langmuir are mentioned. The surface ionisation and complexation edl model is explained in full as is the criticism of this model. The application is stressed of simple surface complexation models to adsorption experiments in natural systems as is experimental and modelling work according to systems from Gorleben. Hints are given how to deal with modelling of adsorption related to Gorleben systems in the future. (orig.) [de

  2. Migrating Worker

    DEFF Research Database (Denmark)

    Hansen, Hans

    This is the preliminary report on the results obtained in the Migrating Worker-project. This project was initiated by the Danish Ministry of Finance with the aim of illustrating the effects of the 1408/71 agreement and the bilateral double taxation agreements Denmark has with the countries included...

  3. Dynamic of radionuclides behaviour in forest soils

    International Nuclear Information System (INIS)

    Ruehm, W.; Steiner, M.; Wirth, E.; Dvornik, A.; Zhuchenko, T.A.; Kliashtorin, A.; Rafferty, B.; Shaw, G.; Kuchma, N.

    1996-01-01

    Within the research project ECP-5, the dynamics of radionuclides in automorphic forest soils within the 30-km-zone of Chernobyl and of hydromorphic forest soils in Belarus have been investigated. In upland forest soils, the lower layers of the organic horizons are characterized by the highest residence times for radiocesium and represent the largest pool for all radionuclides investigated. According to a preliminary estimate, radiocesium is more mobile compared to 125 Sb, which in turn migrates faster than 60 Co, 144 Ce, and 154 Eu. 106 Ru shows the lowest mobility. With regard to radiocesium, hydromorphic soils exhibit migration rates and transfer factors from soil to trees, which by far exceed those in automorphic soils. Based on a two-component quasi-diffusional model the average bias of 137 Cs in mesotrophic swamp soils was predicted. The activity concentrations of U, Pu, and Cs suggest that U and Pu were originally deposited as hot particles and that U is naturally accumulated in organic horizons

  4. Modeling gas migration experiments in repository host rocks for the MEGAS project

    International Nuclear Information System (INIS)

    Worgan, K.; Impey, M.; Volckaert, G.; DePreter, P.

    1993-01-01

    In response to concerns over the possibility of hydrogen gas generation within an underground repository for high-level radioactive waste, and its implications for repository safety, a joint European research study (MEGAS) is underway. Its aims are to understand and characterize the behavior of gas migration within an argillacious, host-rock. Laboratory experiments are being carried out by SCK/CEN, BGS and ISMES. SCK/CEN are also conducting in situ experiments at the underground laboratory at Mol, Belgium. Modeling of gas migration is being done in parallel with the experiments, by Intera Information Technologies. A two-phase flow code, TOPAZ, has been developed specifically for this work. In this paper the authors report on the results of some preliminary calculations performed with TOPAZ, in advance of the in situ experiments

  5. The influence of ground heterogeneity on the migration of radionuclides in the soil and soil-water system. Numerical and laboratory experiment

    International Nuclear Information System (INIS)

    Loxham, M.; van Meurs, G.A.M.; Weststrate, F.A.

    1989-01-01

    To assess the effects of macro scale soil structures, such as lenses and inclusions, on the migration patterns of leached components from a shallow burial trench for radioactive waste, a theoretical and experimental study has been carried out. In the study the unsaturated as well as the saturated zone has been considered. The objectives of the study are two-fold: 1. to assess the importance of macro-structure in the soil for typical parameter choices associated with a generic shallow burial site. 2. to examine various models for predicting the migration patterns in the light of the soil macro-structure. For the saturated aquifer pathways fully determinate calculations have been made, using the preverified numerical contaminant transport code VERA. Laboratory experiments on thin-slit models resulted in substantial qualitative and reasonable conformation of the numerical results. As for the unsaturated pathway no such determinate numerical model is available, several statistic and analytical models have been used to achieve the first objective. In this case the second objective cannot be achieved without recourse to an experimental program. The unsaturated thin-slit laboratory experiments, however, have not met with experimental success to date. The report presents the results of the theoretical and laboratory experiments. Furthermore a short analysis of the practical consequences of these results is given

  6. Research Status and Feasibility Analysis on the Participation in International Joint Studies for Radionuclide and Colloid Migration Using Foreign Underground Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Park, Chung Kyun; Lee, Jae Kwang; Choi, Jong Won

    2007-12-15

    The research status of the potential international joint projects that we can join were analyzed by investigating world-wide underground research facilities. Based upon the investigations, we visited Aspo in Sweden and GTS in Switzerland, discussed about the participation in the international joint projects and mutual cooperation, and then discussed in detail about time and method for the participation by inviting an expert from Nagra. It is resulted from the investigations and discussions that it is most relevant to participate in the following two international joint projects. 1) Task Force on Modelling of Groundwater Flow and Transport of Solutes in Aspo, 2) CFM project in GTS. We also summarized the on-going current status for the participation in the two international joint projects.

  7. 1{sup st} annual workshop proceedings of the collaborative project ''Fast/instant release of safety relevant radionuclides from spent nuclear fuel'' (7{sup th} EC FP CP FIRST-Nuclides)

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Duro, Lara; Valls, Alba (eds.)

    2013-07-01

    place at the rim of the fuel pellets. The physico-chemical properties of the fuel are further complicated by additions of gadolinium oxide and/or chromium oxide, which is used for criticality control or to adjust the UO{sub 2} grain sizes for minimizing fission gas release (FGR). Moreover, the fission products of uranium cause expansion in the UO{sub 2} crystal structure leading to disturbances of the fuel matrix. The chemical stability of the fission products oxides in the UO{sub 2} matrix, can be classified into different groups: (i) the rare earth elements and Y, Zr, Ba and Sr, whose oxides form either solid solutions with UO{sub 2} or single phase precipitates; (ii) Mo, Cs and Rb, which are either oxidized or not, depending on the O/U ratio; and (iii) elements like Ru, with unstable oxides which form metallic precipitates within the UO{sub 2}. The CP is organized in six workpackages (WP): WP1, ''Samples and tools'' deals with the selection, characterization and preparation of the materials to be studied and the set-up of experimental and organisational tools. In this sense, one of the essential requirements of the project is that typical and sufficiently well characterized spent nuclear fuel is being used for the experiments and modelling studies. WP2 covers the ''Gas release and rim and grain boundary diffusion experiments'' and WP3 addresses ''Dissolution based release studies''. This includes determining the chemical form of released radionuclides, fission gases, {sup 135}Cs, {sup 129}I, {sup 14}C, {sup 79}Se, {sup 99}Tc and {sup 126}Sn. WP4 ''Modelling'' deals with modelling of release/retention processes of fission products in the spent fuel structure. Special attention is attributed to fission product migration along the grain boundaries, the effects of fractures in the pellets and of holes/fractures in the cladding. The modelling work within FIRST-Nuclides will help to clarify

  8. Pocos de Caldas Project

    International Nuclear Information System (INIS)

    1989-01-01

    The second annual report of the Pocos de Caldas Project describes the results of the first phase of the post-feasibility study investigations. Boreholes have been drilled at two sites, the Osamu Utsumi uranium mine and Morro do Ferro, and rock and groundwater samples analysed to provide data on natural analogues of radionuclide migration processes. These detailed geochemical analysis and hydrogeological studies are described, and related to four specific objectives concerning issues of importance in repository performance assessment. (author)

  9. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  10. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  11. Nuclear radiation and agricultural production - the food chain as a pathway for radionuclide (toxic trace elements) migration from the source to the ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Giacintov, P [Statni Veterinarni Ustav, Brno (Czechoslovakia)

    1978-01-01

    The transport of /sup 131/I from the source into the atmosphere, its concentration in the atmosphere above agricultural land, its deposition in the vegetative cover and factors which affect the deposition rate, its retention and the effects of weather conditions are described as an example of the transport of radionuclides from the source to the ecosystem and into the human body. The relation is given for the calculation of the effective half-life of /sup 131/I retention in plants. In steady state during permanent /sup 131/I release the effective life-time is 7.2 days on the average. The transport is described of /sup 131/I from the vegetation into the organism of the cow, into milk and from there into the human body. The intake of /sup 131/I depends on the amount of milk consumed which again depends on age, sex and dietary habits. For children the maximum permissible concentration of /sup 131/I in milk is 15 to 40 pCi/l, based on a dose limit of 90 mrem/y to the thyroid. The knowledge of all factors related to /sup 131/I transport through the food chain to the human body allows determining the permissible level of /sup 131/I release from a nuclear power plant.

  12. Laboratory and field studies related to radionuclide migration at the Nevada Test Site. Progress report, October 1, 1996 - September 30, 1997

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1998-02-01

    In this report the authors describe the work done at Los Alamos National Laboratory in FY 1997 for the Hydrologic Resources Management Program funded by the Nevada Operations Office of the US Department of Energy. A major part of their work is the study of the movement underground of radioactive material from nuclear tests at the Nevada Test Site. This year water samples from near the nuclear tests BULLION, BILBY, DALHART, CHESHIRE, and TYBO were analyzed for radionuclides. Data from the first four sites were consistent with expectations based on previous measurements; however, the water from TYBO contained unexpected amounts of plutonium. This plutonium was subsequently found to originate from the BENHAM test which was located 1.3 km distant. The low concentration of plutonium was associated with natural groundwater colloids and could be largely removed by filtration. The authors are attempting to identify the physical and chemical form of the plutonium and to assess the mechanism(s) of its movement over the observed distance. They report the successful testing of small diameter pumps in tandem to extract water form tubing too small to accommodate other means of pumping. And finally, they review this year's consultative and educational activities and list their publications

  13. Solubility limited radionuclide transport through geologic media

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  14. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  15. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  16. SKB WP-cave project. Radionuclide release from the near-field in a WP-cave repository

    International Nuclear Information System (INIS)

    Lindgren, M.; Skagius, K.

    1989-04-01

    The release of radionuclides from the bentonite-sand barrier (near-field) in a WP-cave repository for high level radioactive waste has been studied. Calculations were made for two cases; a Low Flow Through Case and a High Flow Through Case. The difference between the two cases lies in the assumed hydraulic properties of the bentonite-sand barrier and the system inside the barrier. The effect on the nuclide release of solubility limitations, sorption capacity of the barriers, radiolytic fuel oxidation rate as well as the thickness of the bentonite-sand barrier, were also investigated for the Low Flow Through Case. (authors)

  17. A simple method for migrating narrow aperture, noisy seismic reflection data and application to Project INDEPTH (International Deep Profiling of Tibet and the Himalaya) deep seismic profiles

    Science.gov (United States)

    Alsdorf, Doug

    1997-08-01

    Migration of deep seismic data is often hindered by a narrow recording aperture (line length by record length) and a low signal-to-noise ratio. The severity of typical migration artifacts (e.g., lateral smearing of discontinuous reflections into synforms, "smiles") increases with travel time such that interpreters of deep seismic data have often substituted migrated line drawings for the actual sections. As part of Project INDEPTH (International Deep Profiling of Tibet and the Himalaya), a new migration method was developed to address both the noise and migration issues. The method works in the time-space domain and uses the simple, constant velocity, straight ray path to perform the migration. First, only amplitudes within a given range are retained for migration, thus avoiding high-amplitude noise bursts and low-amplitude background noise. Then, the local dip of a reflection is found by automatically fitting a straight line to the highest amplitudes within a small window (several time samples by several traces) and calculating the dip of the line using a constant velocity. Finally, using this dip, the method migrates a selected amplitude value. The dips, lateral positions, and depths of the migrated events compare very well with output from more conventional algorithms (e.g.,fk-Stolt, finite difference, etc.). The advantages of the new method include fewer artifacts, fast computer run times, low memory use and the ability to migrate long profiles and travel times (e.g., 50 s). The output of the method is a grid of migrated amplitudes (not wavelets) or dip values which is particularly effective for making small figures, such as those needed for publication. The principal disadvantage is the use of a constant migration velocity.

  18. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  19. Radionuclide data

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Chapter 8 presents tables on selected alpha, beta, gamma and x-ray emitters by increasing energy; information on specific activity for selected radionuclides; naturally occurring radionuclides; the natural decay series; and the artificially produced neptunium series. A table of alpha emitters is listed by increasing atomic number and by energy. The table of β emitters presented is useful in identifying β emitters whose energies and possibly half-lives have been determined by standard laboratory techniques. It is also a handy guide to β-emitting isotopes for applications requiring specific half-lives and/or energies. Gamma rays for radionuclides of importance to radiological assessments and radiation protection are listed by increasing energy. The energies and branching ratios are important for radionuclide determinations with gamma spectrometry detectors. This section also presents a table of x-ray energies which are useful for radiochemical analyses. A number of nuclides emit x-rays as part of their decay scheme. These x-rays may be counted with Ar proportional counters, Ge planar or n-type Ge co-axial detectors, or thin crystal NaI(T1) scintillation counters. In both cases, spectral measurements can be made and both qualitative and quantitative information obtained on the sample. Nuclear decay data (energy and probability by radiation type) for more than one hundred radionuclides that are important to health physicists are presented in a schematic manner

  20. Radionuclide migration around uranium ore bodies in the Alligator Rivers region of the Northern Territory, Australia - analogue of radioactive waste repositories

    International Nuclear Information System (INIS)

    Airey, P.L.; Roman, D.; Golian, C.; Short, S.; Nightingale, T.; Lowson, R.T.; Davey, B.G.; Gray, D.

    1984-01-01

    Appropriate geochemical analogues may be used to reduce the uncertainties in predicting the long-term transport of actinides, radium and fission products from laboratory adsorption and hydrological data. In this study the migration of uranium series nuclides within, and down-gradient of ore bodies in the Alligator Rivers uranium province of the Northern Territory of Australia is described. A mathematical framework was developed to permit calculation of the rate of leaching or deposition of uranium and radium between defined zones of the ore bodies, and the rate of loss of the nuclides due to groundwater transport and surface erosion. A detailed study was made of the distribution of uranium, thorium and radium isotopes within various minerals comprising the weathered ore assemblage. Uranium and thorium concentrate principally in the iron minerals and radium in the clay-quartz phases. Substantial disequilibria are observed, which are attributed to a combination of α-recoil and chemical effects. Evidence of the relative lability of iron phases is presented. The transport of uranium series nuclides in groundwater intersecting the deposits was investigated. Down-gradient of the Ranger One deposit, the maximum retardation factor of uranium is 250. The role of colloids in groundwater transport is being studied. Uranium is transported principally in solution. There appears to be an equilibrium between solute and articulate uranium

  1. Analysis of the behavior of radionuclides migration in fractured medium in different types of rocks matrices; Análise do comportamento da migração de radionuclídeos em meio fraturado em diferentes tipos de matrizes rochosas

    Energy Technology Data Exchange (ETDEWEB)

    Sá, Ludimila Silva Salles de; Silveira, Cláudia Siqueira da; Lima, Zelmo Rodrigues de, E-mail: Ludimilasalles.md@gmail.com, E-mail: siqueira_claudia@yahoo.com.br, E-mail: zelmolima@yahoo.com.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil); Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    In management of radioactive wastes, the current trend is to dispose the radioactive waste for long life and high activity in permanent repositories of depth, geologically stable and low permeability. Thus, it is relevant to analyze the groundwater movement process, because the mechanism by which the radionuclides in a repository with fractures could return to the surface would be through the groundwater circulation system. A common problem encountered is the modeling of the migration of radionuclides in a fractured medium. The objective of this work is to evaluate the behavior of the migration of radionuclides in two types of rock matrix, considering the following properties: volumetric density, porosity, distribution coefficient and molecular diffusion coefficient. The physical system adopted consists of the matrix rock containing a discrete fracture in a porous medium saturated with water. The partial differential equations that describe the radionuclide movement were discretized by finite differences, and the Implicit Euler method was adopted. While for the convective term the numerical scheme of progressive differences was used.

  2. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  3. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  4. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  5. Sim1 is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord.

    Science.gov (United States)

    Blacklaws, Jake; Deska-Gauthier, Dylan; Jones, Christopher T; Petracca, Yanina L; Liu, Mingwei; Zhang, Han; Fawcett, James P; Glover, Joel C; Lanuza, Guillermo M; Zhang, Ying

    2015-09-01

    V3 spinal interneurons (INs) are a group of excitatory INs that play a crucial role in producing balanced and stable gaits in vertebrate animals. In the developing mouse spinal cord, V3 INs arise from the most ventral progenitor domain and form anatomically distinctive subpopulations in adult spinal cords. They are marked by the expression of transcription factor Sim1 postmitotically, but the function of Sim1 in V3 development remains unknown. Here, we used Sim1(Cre) ;tdTomato mice to trace the fate of V3 INs in a Sim1 mutant versus control genetic background during development. In Sim1 mutants, V3 INs are produced normally and maintain a similar position and organization as in wild types before E12.5. Further temporal analysis revealed that the V3 INs in the mutants failed to migrate properly to form V3 subgroups along the dorsoventral axis of the spinal cord. At birth, in the Sim1 mutant the number of V3 INs in the ventral subgroup was normal, but they were significantly reduced in the dorsal subgroup with a concomitant increase in the intermediate subgroup. Retrograde labeling at lumbar level revealed that loss of Sim1 led to a reduction in extension of contralateral axon projections both at E14.5 and P0 without affecting ipsilateral axon projections. These results demonstrate that Sim1 is essential for proper migration and the guidance of commissural axons of the spinal V3 INs. © 2015 Wiley Periodicals, Inc.

  6. Mirage project. Second summary progress report (Work period January to December 1984)

    International Nuclear Information System (INIS)

    Come, B.

    1985-01-01

    This report summarizes the second year of work (1984) in the CEC project MIRAGE on migration of radionuclides in the geosphere. It complements CEC reports EUR 9304 (Description of the project) and EUR 9543 (Works carried out in 1983) on the same topic

  7. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    International Nuclear Information System (INIS)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.; Thomas, C.W.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as well as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal

  8. Evaluation of Bernese periacetabular osteotomy: prospective studies examining projected load-bearing area, bone density, cartilage thickness and migration.

    Science.gov (United States)

    Mechlenburg, Inger

    2008-06-01

    mean thickness of the femoral cartilage was 1.18 mm, SD 0.06. The precision calculated as the error variance was estimated for the thickness of the acetabular cartilage to 0.01 and femoral cartilage 0.02. We suggest that the method can be advantageous for assessing the progression of osteoarthritis in dysplastic hips after periacetabular osteotomy. In study IV, 32 dysplastic hips, 27 females and 5 males were included in the study. Radiostereometric examinations (RSA) were done at one week, four weeks, eight weeks and six months. Data are presented as mean + SD. Six months postoperatively, the acetabular fragment had migrated 0.7 mm + 0.8 medially, and 0.7 mm + 0.5 proximally. Mean rotation in adduction was 0.5 degrees + 1.3. In other directions, mean migration was below 0.5 mm/degrees. There was no statistical difference between migration 8 weeks and 24 weeks postoperatively in translation or rotation. Due to the limited migration, we find our postoperative partial weight-bearing regime safe. In conclusion, the studies in the present PhD thesis indicate that the projected loadbearing area of the hip joint increases considerable in patients undergoing periacetabular osteotomy and a method to estimate this area was described. Bone density increases in the medial quadrants two years postoperative and a method is developed to precisely estimate bone density on CT images. Also a method to precisely estimate cartilage thickness was presented and we suggest that the method can be advantageous for assessing the progression of osteoarthritis in dysplastic hips after periacetabular osteotomy. Due to the very limited migration of the acetabular fragment fixated with two screws, we find our fixation sufficient and the postoperative partial weight-bearing regimen safe.

  9. Radionuclide Metrology in Europe: Joint Research Projects in the Framework of EMRP; La Metrologia de Radionucleidos en el entorno europeo: proyectos conjuntos de investigacion en el marco de EMRP

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Torano, E.

    2013-02-01

    During recent years, the tendency to integrate national research groups into Europe-wide projects has increased significantly. In the field of Metrology, the launch of specific programmes such as EMRP, co-funded by the European Commission and the participating countries, has driven this trend. This article describes the work of the CIEMAT Radionuclide Metrology laboratory and the main European projects in which it is currently taking part. (Author) 8 refs.

  10. Radionuclide examinations

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1989-01-01

    This paper reports on radionuclide examinations of the pancreas. The pancreas, situated retroperitonally high in the epigastrium, was a particularly difficult organ to image noninvasively before ultrasonography and computed tomography (CT) became available. Indeed the organ still remains difficult to examine in some patients, a fact reflected in the variety of methods available to evaluate pancreatic morphology. It is something of a paradox that the pancreas is metabolically active and physiologically important but that its examination by radionuclide methods has virtually ceased to have any role in day-to-day clinical practice. To some extent this is caused by the tendency of the pancreas's commonest gross diseases emdash carcinoma and pancreatitis, for example emdash to result in nonfunction of the entire organ. Disorders of pancreatic endocrine function have generally not required imaging methods for diagnosis, although an understanding of diabetes mellitus and its nosology has been advanced by radioimmunoassay of plasma insulin concentrations

  11. Validation of the global model for 90SR migration from the waste burial in the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Dewiere, L.; Bugai, D.; Kashparov, V.; Barthes, V.

    2004-01-01

    The Institute for Radiation Protection and Nuclear Safety (IRSN) has managed (1999-2003) the Chernobyl Pilot Site Project (CPS project) in collaboration with the Ukrainian Institute of Agricultural Radiology (UIAR), the Institute of Geological Sciences (IGS) and the Tracer Application Section (CEA/SAT). The special focus of the CPS project was environmental behavior and radionuclide release mechanisms from dispersed nuclear fuel particles, forming radionuclide migration source-term. So, the contaminated environment was used as an open-sky laboratory to develop site characterization techniques, better understand and model processes of radionuclides migration in soils and geological environment. The CPS project resulted in detailed characterization of site geology structure, hydrogeology regime, hydro-dispersion regime in the aquifer and unsaturated zone, radionuclide inventory and distribution in trench no.22, focused at 137 Cs and 90 Sr. The special research program using scanning electron microscopy and sequential extraction analytical techniques was devoted to characterization of fuel particles and quantification of their dissolution behavior. It was established that Chernobyl radionuclides are associated with uranium oxide matrix particles of different degree of oxidation, characterized by different dissolution rates, as well as with non-dissolvable zirconium containing matrix particles. The multi-component fuel particles dissolution model with empirical dissolution rate constants was developed to describe the source-term. The methodology for radionuclide transport was based on application of the classical advection-diffusion equation and utilization of effective transport parameters. The developed so far modeling methodology is mostly suited for producing spatially averaged parameter values (such as radionuclide concentrations in trench porous solution, and/or integral radionuclide release to aquifer), and for long-term predictions on a scale of years and

  12. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    YanYan Mao

    Full Text Available Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents.

  13. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    Science.gov (United States)

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  14. Biogeochemistry of radionuclides in ecosystems (historical aspect)

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1991-01-01

    The paper presents the most important results of the study on the radionuclides' behaviour in natural and model biogeocenoses(ecosystems) obtained by N.W.Timofeev-Ressovskij and co-workers during the period 1947-1968. As early as at that period, radionuclides were classified according to the types of distribution, accumulation and migration within the surface and freshwater ecosystems, and the methods of biological purification of radioactive sewage were proposed

  15. A mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I of the project: early effects of inhaled radionuclides

    International Nuclear Information System (INIS)

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.

    1980-06-01

    The report presents a mathematical model for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included

  16. [Migration of industrial radionuclides in soils and benthal deposits at the coastal margins of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management (SevRAO) and its influence on the possible contamination of the sea offshore waters].

    Science.gov (United States)

    Filonova, A A; Seregin, V A

    2014-01-01

    For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.

  17. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1983-01-01

    Radionuclide migration have been studied in natural fissures orieted parallel to the axis of granite drill cores. A short pulse of the radionuclides solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the eluate measured. After several hundred fissure volumes water had been pumped through the fissure following the radionuclide pulse the activity distribution on the fissure surfaces was measured. From the retardation of 152 Eu, 235 Np and 237 Pu it is concluded that these radionuclides are transported in the oxidation states Eu(III), Pu(IV) and Np(V). The distribution coefficients K sub (d) calculated from flow and activity distribution data on the basis of geometric surface area/volume ratios are of the same order as published K sub (d) values obtained from batch equilibrium experiments. (Author)

  18. Laboratory and in situ determination of the migration processes of actinide complexes and colloids in a fissured granitic environment. El Berrocal project (preliminary activities - phase 0)

    International Nuclear Information System (INIS)

    Astudillo, J.; Del Olmo, C.; Commission of the European Communities, Ispra

    1993-01-01

    The experimental site of El Berrocal has been chosen for a study of the migration of natural radionuclides in a fractured granitic environment. The granite is classified as an alkaline feldspar-rich quartz granite with two micas. The fresh granite is affected by hydrothermal alteration processes related to fractures, which has led to a strong sericitization of albite, and the precipitation of secondary chlorites and carbonates. The most important U-bearing and Th-bearing accessory minerals are uraninite, thorite-auerlite, monazite, anatase, apatite and zircon. Approximately 65% of the total of U in the rock is held as uraninite. In the altered granite, most of the U is held as autunite. Hydrogeochemical data show that Co 2 /H 2 CO 3 is the dominant system, followed by the silica-silicate system. Based on their stability analyses, two zones can be defined: (i) waters north of the dyke and from deep zones where calcite is in equilibrium and albite and gibbsite precipitate, and (ii) surface waters, south of the dyke, subsaturated in relation to calcite, producing the alteration of albite and the precipitation of montmorillonite. The size distribution of the colloids varies, depending on the treatment given to the water samples. The particles are mainly composed of K-feldspars and clay minerals (smectite) and occasionally by quartz, mica, calcite and pollen. The El Berrocal groundwaters have a very low amount of organic matter. Column migration tests have been carried out and were performed with intact granitic cores and with crushed granite. Np proved to be an adequate radionuclide for these experiments. Under oxic conditions and in the absence of organic matter, it was completely retained in both types of columns, whereas in the presence of organic matter a more rapid breakthrough was observed. Under anoxic conditions, and with or without organic matter, Np was found to move faster than under oxic conditions. (author). 13 refs., 46 figs., 23 tabs

  19. Compilation of data for radionuclide transport analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This report is one of the supporting documents to the updated safety assessment (project SAFE) of the Swedish repository for low and intermediate level waste, SFR 1. A number of calculation cases for quantitative analysis of radionuclide release and dose to man are defined based on the expected evolution of the repository, geosphere and biosphere in the Base Scenario and other scenarios selected. The data required by the selected near field, geosphere and biosphere models are given and the values selected for the calculations are compiled in tables. The main sources for the selected values of the migration parameters in the repository and geosphere models are the safety assessment of a deep repository for spent fuel, SR 97, and the preliminary safety assessment of a repository for long-lived, low- and intermediate level waste, SFL 3-5. For the biosphere models, both site-specific data and generic values of the parameters are selected. The applicability of the selected parameter values is discussed and the uncertainty is qualitatively addressed for data to the repository and geosphere migration models. Parameter values selected for these models are in general pessimistic in order not to underestimate the radionuclide release rates. It is judged that this approach combined with the selected calculation cases will illustrate the effects of uncertainties in processes and events that affects the evolution of the system as well as in quantitative data that describes this. The biosphere model allows for probabilistic calculations and the uncertainty in input data are quantified by giving minimum, maximum and mean values as well as the type of probability distribution function.

  20. Compilation of data for radionuclide transport analysis

    International Nuclear Information System (INIS)

    2001-11-01

    This report is one of the supporting documents to the updated safety assessment (project SAFE) of the Swedish repository for low and intermediate level waste, SFR 1. A number of calculation cases for quantitative analysis of radionuclide release and dose to man are defined based on the expected evolution of the repository, geosphere and biosphere in the Base Scenario and other scenarios selected. The data required by the selected near field, geosphere and biosphere models are given and the values selected for the calculations are compiled in tables. The main sources for the selected values of the migration parameters in the repository and geosphere models are the safety assessment of a deep repository for spent fuel, SR 97, and the preliminary safety assessment of a repository for long-lived, low- and intermediate level waste, SFL 3-5. For the biosphere models, both site-specific data and generic values of the parameters are selected. The applicability of the selected parameter values is discussed and the uncertainty is qualitatively addressed for data to the repository and geosphere migration models. Parameter values selected for these models are in general pessimistic in order not to underestimate the radionuclide release rates. It is judged that this approach combined with the selected calculation cases will illustrate the effects of uncertainties in processes and events that affects the evolution of the system as well as in quantitative data that describes this. The biosphere model allows for probabilistic calculations and the uncertainty in input data are quantified by giving minimum, maximum and mean values as well as the type of probability distribution function