WorldWideScience

Sample records for radionuclide imaging targeting

  1. Radionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen

    Directory of Open Access Journals (Sweden)

    Hao Hong

    2008-01-01

    Full Text Available Carcinoembryonic antigen (CEA, highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET] have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can be divided into three major categories: antibody-based, antibody fragment-based and pretargeted imaging. Radiolabeled anti-CEA antibodies, reported the earliest among the three categories, typically gave suboptimal tumor contrast due to the prolonged circulation life time of intact antibodies. Subsequently, a number of engineered anti-CEA antibody fragments (e.g. Fab’, scFv, minibody, diabody and scFv-Fc have been labeled with a variety of radioisotopes for CEA imaging, many of which have entered clinical investigation. CEA-Scan (a 99mTc-labeled anti-CEA Fab’ fragment has already been approved by the United States Food and Drug Administration for cancer imaging. Meanwhile, pretargeting strategies have also been developed for CEA imaging which can give much better tumor contrast than the other two methods, if the system is designed properly. In this review article, we will summarize the current state-of-the-art of radionuclide-based cancer imaging targeting CEA. Generally, isotopes with short half-lives (e.g. 18F and 99mTc are more suitable for labeling small engineered antibody fragments while the isotopes with longer half-lives (e.g. 123I and 111In are needed for antibody labeling to match its relatively long circulation half-life. With further improvement in tumor targeting efficacy and radiolabeling strategies, novel CEA-targeted agents may play an important role in cancer patient management, paving the way to “personalized medicine”.

  2. Radioisotopes for imaging and radionuclide targeted therapy in nuclear medicine

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Beran, Miloš

    -, - (2007), s. 76-77 ISSN N R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : metal radionuclides * bifunctional chelators Subject RIV: FR - Pharmacology ; Medidal Chemistry

  3. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  4. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  5. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  6. [Preparation, quality control and thyroid molecule imaging of solid-target based radionuclide ioine-124].

    Science.gov (United States)

    Zhu, H; Wang, F; Guo, X Y; Li, L Q; Duan, D B; Liu, Z B; Yang, Z

    2018-04-18

    To provide useful information for the further production and application of this novel radio-nuclide for potential clinical application. 124 Te (p,n) 124 I nuclide reaction was used for the 124 I production. Firstly, the target material, 124 TeO 2 (200 mg) and Al2O3 (30 mg) mixture, were compressed into the round platinum based solid target by tablet device. HM-20 medical cyclotron was applied to irradiate the solid target slice for 6-10 h with helium and water cooling. Then, the radiated solid target was placed for 12 h (overnight) to decay the radioactive impurity; finally, 124 I was be purified by dry distillation using 1 mL/min nitrogen for about 6 hours and radiochemical separation methods. Micro-PET imaging studies were performed to investigate the metabolism properties and thyroid imaging ability of 124 I.After 740 kBq 124 I was injected intravenously into the tail vein of the normal mice, the animals were imaged with micro-PET and infused with CT. The micro-PET/CT infusion imaging revealed actual state 124 I's metabolism in the mice. It was been successfully applied for 200 mg 124 TeO 2 plating by the tablet device on the surface of platinum. It showed smooth, dense surface and without obviously pits and cracks. The enriched 124 Te target was irradiated for 6 to 10 hours at about 12.0 MeV with 20 μA current on HM-20 cyclotron. Then 370-1 110 MBq 124 I could be produced on the solid target after irradiation and 370-740 MBq high specific activity could be collected afterdry distillation separation and radio-chemical purification. 124 I product was finally dissolved in 0.01 mol/L NaOH for the future distribution. The gamma spectrum of the produced 124 I-solution showed that radionuclide purity was over 80.0%. The micro-PET imaging of 124 I in the normal mice exhibited the thyroid and stomach accumulations and kidney metabolism, the bladder could also be clearly visible, which was in accordance with what was previously reported. To the best of our knowledge

  7. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, P.N.; Lavender, J.P.; Myers, M.J.; Pepys, M.B.

    1988-06-25

    The specific molecular affinity of the normal plasma protein, serum amyloid P component (SAP), for all known types of amyloid fibrils was used to develop a new general diagnostic method for in-vivo radionuclide imaging of amyloid deposits. After intravenous injection of /sup 123/I-labelled purified human SAP there was specific uptake into amyloid deposits in all affected patients, 7 with systematic AL amyloid, 5 with AA amyloid, and 2 with ..beta../sub 2/M amyloid, in contrast to the complete absence of any tissue localisation in 5 control subjects. Distinctive high-resolution scintigraphic images, even of minor deposits in the carpal regions, bone marrow, or adrenals, were obtained. This procedure should yield much information on the natural history and the management of amyloidosis, the presence of which has hitherto been confirmed only by biopsy. Clearance and metabolic studies indicated that, in the presence of extensive amyloidosis, the rate of synthesis of SAP was greatly increased despite maintenance of normal plasma levels. Futhermore, once localised to amyloid deposits the /sup 123/I-SAP persisted for long periods and was apparently protected from its normal rapid degradation. These findings shed new light on the pathophysiology of amyloid and may have implications for therapeutic strategies based upon specific molecular targeting with SAP.

  8. Targeted radionuclide therapy

    African Journals Online (AJOL)

    target for which a speci c treatment/drug is intended (Fig. 1). eranostics .... Using an anti-CD20 antibody as a delivery device to target the follicular ... systems combine diagnostic imaging (Ga-68-DOTATATE PET/CT) .... Intra-articular injected ...

  9. Radionuclide transverse section imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (UK)

  10. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Choyke, Peter L; Capala, Jacek

    2010-01-01

    Prostate cancer continues to represent a major health problem, and yet there is no effective treatment available for advanced metastatic disease. Thus, there is an urgent need for the development of more effective treatment modalities that could improve the outcome. Because prostate specific...... membrane antigen (PSMA), a transmembrane protein, is expressed by virtually all prostate cancers, and its expression is further increased in poorly differentiated, metastatic, and hormone-refractory carcinomas, it is a very attractive target. Molecules targeting PSMA can be labelled with radionuclides...... to become both diagnostic and/or therapeutic agents. The use of PSMA binding agents, labelled with diagnostic and therapeutic radio-isotopes, opens up the potential for a new era of personalized management of metastatic prostate cancer....

  11. Radionuclide body function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1983-01-01

    A transverse radionuclide scan field imaging apparatus is claimed. It comprises: a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array which surrounds a scan field, each collimator being moveable relative to its adjacent collimator; means for rotating the array about the scan field and means for imparting travel to the collimators

  12. Radionuclide reporter gene imaging

    International Nuclear Information System (INIS)

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  13. Radionuclide reporter gene imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-04-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases.

  14. Osteopetrosis: Radiological & Radionuclide Imaging

    International Nuclear Information System (INIS)

    Sit, Cherry; Agrawal, Kanhaiyalal; Fogelman, Ignac; Gnanasegaran, Gopinath

    2015-01-01

    Osteopetrosis is a rare inherited bone disease where bones harden and become abnormally dense. While the diagnosis is clinical, it also greatly relies on appearance of the skeleton radiographically. X-ray, radionuclide bone scintigraphy and magnetic resonance imaging have been reported to identify characteristics of osteopetrosis. We present an interesting case of a 59-year-old man with a history of bilateral hip fractures. He underwent 99m Tc-methylene diphosphonate whole body scan supplemented with single-photon emission computed tomography/computed tomography of spine, which showed increased uptake in the humeri, tibiae and femora, which were in keeping with osteopetrosis

  15. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer : Preclinical Advances and Clinical Translation

    NARCIS (Netherlands)

    Lutje, S.; Rijpkema, M.; Helfrich, W.; Oyen, W. J. G.; Boerman, O. C.

    2014-01-01

    In oncology, sensitive and reliable detection tumor tissue is crucial to prevent recurrences and to improve surgical outcome. Currently, extensive research is focused on the use of radionuclides as well as fluorophores to provide real-time guidance during surgery to aid the surgeon in the

  16. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  17. Radionuclide salivary gland imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  18. Radionuclide salivary gland imaging

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1981-01-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific

  19. Automatic alignment of radionuclide images

    International Nuclear Information System (INIS)

    Barber, D.C.

    1982-01-01

    The variability of the position, dimensions and orientation of a radionuclide image within the field of view of a gamma camera hampers attempts to analyse the image numerically. This paper describes a method of using a set of training images of a particular type, in this case right lateral brain images, to define the likely variations in the position, dimensions and orientation for that type of image and to provide alignment data for a program that automatically aligns new images of the specified type to a standard position, size and orientation. Examples are given of the use of this method on three types of radionuclide image. (author)

  20. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Latifa Rbah-Vidal

    2017-01-01

    Full Text Available PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT. TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS. RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33 ± 2.11%ID/g and 4.87 ± 0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT of 2.9 ± 0.5 days in treated vs 1.8 ± 0.3 in controls] and a prolonged median survival (27 days vs 21 in controls. P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5 ± 7.8 days vs 11.0 ± 3.8 in controls and improved median survival (111 days vs 74 in controls. CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.

  1. Radionuclide imaging of musculoskeletal infection

    International Nuclear Information System (INIS)

    Palestr, Christopher J.; North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY; Love, Charito

    2007-01-01

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  2. Radionuclide imaging of musculoskeletal infection

    Energy Technology Data Exchange (ETDEWEB)

    Palestr, Christopher J. [Albert Einstein College of Medicine, Bronx, NY (United States); North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging; E-mail: palestro@lij.edu; Love, Charito [North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging

    2007-09-15

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  3. Miscellaneous applications of radionuclide imaging

    International Nuclear Information System (INIS)

    Mishkin, F.S.; Freeman, L.M.

    1984-01-01

    The procedures discussed in this chapter are either developmental, in limited clinical use, or frankly moribund. A number of radionuclide imaging techniques have proved disappointing when approached from a purely anatomic point of view. This is particularly evident to our colleagues with the explosive growth of the noninvasive imaging procedures, magnetic resonance imaging (NMR), CT, and ultrasound, and the introduction of the less invasive digital radiographic approach to vascular opacification, all of which are capable of providing exquisite anatomic or tissue detail beyond the reach of current or reasonably priced nuclear medicine imaging systems. Yet, most nuclear medicine procedures possess the unique advantage of portraying a physiologic function without interfering with that function. Moreover, the procedures can be employed under conditions of stress, which are likely to bring out pathophysiologic abnormalities that remain masked when unchallenged. Information concerning form without functional data has less meaning than both together. The physiologic information inherent in nuclear medicine imaging may often provide not only key diagnostic information but also illuminate a therapeutic trail. Yet, it is often slighted in favor of the anatomic quest. While mastery of the nuances of imaging details remains critical, radionuclide image interpretation must rest upon a firm physiologic foundation. For this reason, this chapter emphasizes the physiologic approach

  4. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours

    International Nuclear Information System (INIS)

    Zhang, Hanwen; Maecke, Helmut R.; Schuhmacher, Jochen; Eisenhut, Michael; Waser, Beatrice; Reubi, Jean Claude; Wild, Damian

    2007-01-01

    We aimed at designing and developing a novel bombesin analogue, DOTA-PEG 4 -BN(7-14) (DOTA-PESIN), with the goal of labelling it with 67/68 Ga and 177 Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG 4 ). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. [Ga III /Lu III ]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [ 67 Ga/ 177 Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [ 67 Ga/ 177 Lu]-DOTA-PESIN. [ 67 Ga/ 177 Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [ 68 Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the 177 Lu-labelled peptide remained in the tumour even 3 days post injection. The newly designed ligands have high potential with regard to PET and SPECT imaging with 68/67 Ga and targeted radionuclide therapy with 177 Lu. (orig.)

  5. Research progess on treatment of cancer with targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Luo Jiawen; Zhang Caixia

    2008-01-01

    The new development and situation of targeted radionuclide therapy in oncology is described, which include radioimmunotherapy, peptide receptor radionuclide therapy, gene therapy and radionuclide labled chemotherapeutics therapy. The application research on labled carrier of those therapy is emphasized. Meanwhile, the research progess of indomethacin and its combined with targeted radionuclide therapy is also described. (authors)

  6. Radionuclide imaging of spinal infections

    International Nuclear Information System (INIS)

    Gemmel, Filip; Dumarey, Nicolas; Palestro, Christopher J.

    2006-01-01

    The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor 99m Tc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and 67 Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [ 18 F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including radiolabelled

  7. Radionuclide imaging of spinal infections

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Filip [Ghent Maria-Middelares, General Hospital, Division of Nuclear Medicine, Ghent (Belgium); Medical Center Leeuwarden (MCL), Division of Nuclear Medicine, Henri Dunantweg 2, Postbus 888, Leeuwarden (Netherlands); Dumarey, Nicolas [Universite Libre de Bruxelles, Hopital Erasme, Division of Nuclear Medicine, Brussels (Belgium); Palestro, Christopher J. [Long Island Jewish Medical Center, Division of Nuclear Medicine, Long Island, NY (United States)

    2006-10-15

    The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor {sup 99m}Tc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and {sup 67}Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [{sup 18}F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including

  8. Radionuclide imaging of musculoskeletal infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Palestro

    2007-09-01

    Full Text Available Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of "complicating osteomyelitis" such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose.Estudos através de imagens com o uso de radionuclídeos são rotineiramente usadas para avaliar pacientes suspeitos de terem infecção músculo-esquelética. A imagem óssea em tridimensional é facilmente avaliável, relativamente de baixo custo, e muito precisa na localização de alterações ósseas. Imagem com leucócito marcado poderia ser usada nos casos de "osteomielite com complicações" tais como infecção prostética articular. Esse teste também é útil na não suspeita clinica de osteomielite associada ao pé diabético tanto quanto nas junções neuropáticas. É sempre necessário, por outro lado, realizar imagem complementar da medula óssea para aumentar a precisão da imagem com leucócito marcado. Em contraste com outras regiões no esqueleto, imagem com leucócito marcado não é útil para diagnosticar osteomielite da coluna vertebral. Até agora, o gálio é o radionuclídeo preferido para

  9. Single Photon Emission Computed Tomography/Positron Emission Tomography Imaging and Targeted Radionuclide Therapy of Melanoma: New Multimodal Fluorinated and Iodinated Radiotracers

    International Nuclear Information System (INIS)

    Maisonial, A.; Papon, J.; Bayle, M.; Vidal, A.; Auzeloux, Ph.; Rbah, L.; Bonnet-Duquennoy, M.; Miot-Noirault, E.; Galmier, M.J.; Borel, M.; Madelmont, J.C.; Moins, N.; Chezal, J.M.; Kuhnast, B.; Boisgard, R.; Dolle, F.; Tavitian, B.; Boisgard, R.; Tavitian, B.; Askienazy, S.

    2011-01-01

    This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ( 123 I, 124 I, 18 F) and systemic treatment ( 131 I) of melanoma potentialities. The biodistribution of each 125 I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [ 125 I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [ 18 F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [ 131 I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ( 18 F, 124 I) and targeted radionuclide therapy ( 131 I) of melanoma using a single chemical structure. (authors)

  10. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun [Korea Institute of Radiological and Medical and Medical Sciences, Seoul (Korea, Republic of); Chung, June Key [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using {sup 125}I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of {sup 131}I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by {sup 125}I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to {sup 131}I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system.

  11. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    International Nuclear Information System (INIS)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun; Chung, June Key

    2012-01-01

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using 125 I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of 131 I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by 125 I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to 131 I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system

  12. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanwen; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Department of Radiology, Basel (Switzerland); Schuhmacher, Jochen; Eisenhut, Michael [German Cancer Research Centre, Department of Radiopharmaceutical Chemistry, Heidelberg (Germany); Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Berne (Switzerland); Wild, Damian [University Hospital, Clinic and Institute of Nuclear Medicine, Department of Radiology, Basel (Switzerland)

    2007-08-15

    We aimed at designing and developing a novel bombesin analogue, DOTA-PEG{sub 4}-BN(7-14) (DOTA-PESIN), with the goal of labelling it with {sup 67/68}Ga and {sup 177}Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG{sub 4}). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. [Ga{sup III}/Lu{sup III}]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN. [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [{sup 68}Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the {sup 177}Lu-labelled peptide remained in the tumour even 3 days post injection. The newly designed ligands have high potential with regard to PET and SPECT imaging with {sup 68/67}Ga and targeted radionuclide therapy with {sup 177}Lu. (orig.)

  13. WE-DE-201-06: Impact of Temporal Image Coregistration Methods On 3D Internal Dose Calculations in Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Besemer, A; Marsh, I; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), and individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by

  14. Nanotargeted Radionuclides for Cancer Nuclear Imaging and Internal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Gann Ting

    2010-01-01

    Full Text Available Current progress in nanomedicine has exploited the possibility of designing tumor-targeted nanocarriers being able to deliver radionuclide payloads in a site or molecular selective manner to improve the efficacy and safety of cancer imaging and therapy. Radionuclides of auger electron-, α-, β-, and γ-radiation emitters have been surface-bioconjugated or after-loaded in nanoparticles to improve the efficacy and reduce the toxicity of cancer imaging and therapy in preclinical and clinical studies. This article provides a brief overview of current status of applications, advantages, problems, up-to-date research and development, and future prospects of nanotargeted radionuclides in cancer nuclear imaging and radiotherapy. Passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy are reviewed and summarized. Research on combing different modes of selective delivery of radionuclides through nanocarriers targeted delivery for tumor imaging and therapy offers the new possibility of large increases in cancer diagnostic efficacy and therapeutic index. However, further efforts and challenges in preclinical and clinical efficacy and toxicity studies are required to translate those advanced technologies to the clinical applications for cancer patients.

  15. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  16. Radionuclide techniques for brain imaging

    International Nuclear Information System (INIS)

    Cowan, R.J.; Moody, D.M.

    1984-01-01

    Over the past decade, many of the prime indications for radionuclide brain scanning have become instead indications for CCT, and nuclear medicine studies of the brain have assumed more of a complementary, supportive role. However, there is great promise for improvement in central nervous system radionuclide applications with advances anticipated in both radiopharmaceuticals and instrumentation. Nuclear medicine is continuing to function as a powerful research tool and, in the relatively near future, may regain its role as a major clinical test of the central nervous system

  17. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Zhang Fuhai; Meng Zhaowei; Tan Jian

    2012-01-01

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  18. Application of radionuclide imaging in hyperparathyroidism

    International Nuclear Information System (INIS)

    Zheng Yumin; Yan Jue

    2011-01-01

    Hyperparathyroidism (HPT) is overactivity of the parathyroid glands resulting in excess production of parathyroid hormone. Excessive parathyroid hormone secretion may be due to problems in the glands themselves, or may be secondary HPT. The diagnosis is mainly based on the patient's medical history and biochemical tests. The best treatment nowadays is surgical removal of the overactive parathyroid glands or adenoma. The imaging methods for the preoperative localization diagnosis include radionuclide imaging,ultrasonography, CT, MRI, etc. This article was a summary of HPT radionuclide imaging. (authors)

  19. Bone stress: a radionuclide imaging perspective

    International Nuclear Information System (INIS)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.; Clark, M.W.; Goodman, M.; Herbert, D.L.

    1979-01-01

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schema is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress

  20. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  1. The evolution of radionuclide imaging

    International Nuclear Information System (INIS)

    Rollo, F.D.; Patton, J.A.; Cassen, B.

    1984-01-01

    This chapter briefly describes the evolution of scintillation imaging through the early 1980s. It is difficult, if not impossible, to evaluate the practical roles of current developments with any perspective, historical or otherwise. Waves of enthusiasm come and go. A simple analysis by Cassen of the factors entering into an overall performance index of any scanning or imaging system clearly shows that appreciable advances in instrumentation depend upon more efficient utilization of available gamma photons, and that future advances will depend upon the availability of agents having a greater photon yield and a smaller potential radiation dose. Further, the needs of the referring physician and improvements in other diagnostic modalities will have an impact on the future of nuclear medicine imaging requirements. For example, the availability of 201 T1 for myocardial imaging significantly increased the demand for spatial resolution of the scintillation camera. Likewise, the introduction of gated blood-pool imaging increased the requirements for count rate capabilities and spatial resolution. The need to evaluate the myocardium in the intensive care unit resulted in the development of the portable scintillation camera and computer. On the other hand, the introduction of CT for evaluating the brain had a significant impact on the value of nuclear medicine brain imaging. The impact of digital radiology and nuclear magnetic resonance can only be speculated at this point. If anything, they will probably serve as complements to nuclear medicine procedures in the diagnostic process, with nuclear medicine serving as the primary method of establishing functional information

  2. Targeted radionuclide therapy for solid tumors: An overview

    International Nuclear Information System (INIS)

    De Nardo, Sally J.; De Nardo, Gerald L.

    2006-01-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  3. Radionuclide imaging in herpes simplex encephalitis

    International Nuclear Information System (INIS)

    Karlin, C.A.; Robinson, R.G.; Hinthorn, D.R.; Liu, C.

    1978-01-01

    Eight patients with herpes simplex encephalitis among the 10 cases diagnosed at the University of Kansas Medical Center from 1966 to 1976 were studied with /sup 99m/Tc early in their diagnostic work-up. The images were unilaterally positive in the temporal lobe area in all 8 patients. Radionuclide studies can suggest herpes simplex as the specific etiology in cases of encephalitis and can also indicate the best site for brain biopsy to confirm the diagnosis by fluorescent antibody techniques. Appropriate antiviral therapy should be instituted as soon as possible to alter the course of this destructive form of viral encephalitis

  4. Radionuclide imaging of non osseous infection

    International Nuclear Information System (INIS)

    Palestro, C.J.; New York, Yeshiva Univ., NY; Torres, M.A.

    1999-01-01

    Nuclear medicine is an important tool in the diagnostic evaluation of patients with a variety of non osseous infections. In the immunocompetent population labeled leukocyte imaging is the radionuclide procedure of choice, with Gallium imaging reserved for those situations in which the leukocyte study is non diagnostic or cannot be performed. Fever of unknown origin is caused by infection in less than one-third of cases, and therefore the number of positive leukocyte studies will be relatively low. The negative leukocyte study is also useful as it has been demonstrated that a negative study excludes, with a high degree of certainty, focal infection as the cause of an FUO. In the cardiovascular system, labeled leukocyte scintigraphy is very useful for diagnosing mycotic aneurysms and infected prosthetic vascular grafts. The specificity of the study is somewhat more variable. In the central nervous system, labeled leukocyte imaging can provide important information about the etiology of contrast enhancing brain lesions identified on computed tomography. In the immunocompromised population, typified by the AIDS patient, Gallium scintigraphy is the radionuclide procedure of choice for diagnosing opportunistic diseases. In the thorax, a normal Gallium scan, in the setting of a negative chest X-ray, virtually excludes pulmonary disease. In the abdomen, Gallium is also useful for detecting nodal disease, but is not reliable for detecting large bowel disease. Labeled leukocyte imaging should be performed when colitis is a concern. Both 18 FDG PET and 201 T1 SPECT imaging of the brain are useful for distinguishing between central nervous system lymphoma and toxoplasmosis in the HIV (+) patient. On both studies, lymphoma manifests as a focus of increased tracer uptake, whereas toxoplasmosis shows little or no uptake of either tracer

  5. Radionuclide imaging of non osseous infection

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, C.J. (Long Island Jewish Medical Center, New York, NY, (United States). Dept. Nuclear Medicine New York, Yeshiva Univ., NY (United States). Albert Einstein College of Medicine); Torres, M.A. (Long Island Jewish Medical Center, New York, NY, (United States). Dept. Nuclear Medicine)

    1999-03-01

    Nuclear medicine is an important tool in the diagnostic evaluation of patients with a variety of non osseous infections. In the immunocompetent population labeled leukocyte imaging is the radionuclide procedure of choice, with Gallium imaging reserved for those situations in which the leukocyte study is non diagnostic or cannot be performed. Fever of unknown origin is caused by infection in less than one-third of cases, and therefore the number of positive leukocyte studies will be relatively low. The negative leukocyte study is also useful as it has been demonstrated that a negative study excludes, with a high degree of certainty, focal infection as the cause of an FUO. In the cardiovascular system, labeled leukocyte scintigraphy is very useful for diagnosing mycotic aneurysms and infected prosthetic vascular grafts. The specificity of the study is somewhat more variable. In the central nervous system, labeled leukocyte imaging can provide important information about the etiology of contrast enhancing brain lesions identified on computed tomography. In the immunocompromised population, typified by the AIDS patient, Gallium scintigraphy is the radionuclide procedure of choice for diagnosing opportunistic diseases. In the thorax, a normal Gallium scan, in the setting of a negative chest X-ray, virtually excludes pulmonary disease. In the abdomen, Gallium is also useful for detecting nodal disease, but is not reliable for detecting large bowel disease. Labeled leukocyte imaging should be performed when colitis is a concern. Both [sup 18]FDG PET and [sup 201]T1 SPECT imaging of the brain are useful for distinguishing between central nervous system lymphoma and toxoplasmosis in the HIV (+) patient. On both studies, lymphoma manifests as a focus of increased tracer uptake, whereas toxoplasmosis shows little or no uptake of either tracer.

  6. A vector Wiener filter for dual-radionuclide imaging

    International Nuclear Information System (INIS)

    Links, J.M.; Prince, J.L.; Gupta, S.N.

    1996-01-01

    The routine use of a single radionuclide for patient imaging in nuclear medicine can be complemented by studies employing two tracers to examine two different processes in a single organ, most frequently by simultaneous imaging of both radionuclides in two different energy windows. In addition, simultaneous transmission/emission imaging with dual-radionuclides has been described, with one radionuclide used for the transmission study and a second for the emission study. There is thus currently considerable interest in dual-radionuclide imaging. A major problem with all dual-radionuclide imaging is the crosstalk between the two radionuclides. Such crosstalk frequently occurs, because scattered radiation from the higher energy radionuclide is detected in the lower energy window, and because the lower energy radionuclide may have higher energy emissions which are detected in the higher energy window. The authors have previously described the use of Fourier-based restoration filtering in single photon emission computed tomography (SPECT) and positron emission tomography (PET) to improve quantitative accuracy by designing a Wiener or other Fourier filter to partially restore the loss of contrast due to scatter and finite spatial resolution effects. The authors describe here the derivation and initial validation of an extension of such filtering for dual-radionuclide imaging that simultaneously (1) improves contrast in each radionuclide's direct image, (2) reduces image noise, and (3) reduces the crosstalk contribution from the other radionuclide. This filter is based on a vector version of the Wiener filter, which is shown to be superior [in the minimum mean square error (MMSE) sense] to the sequential application of separate crosstalk and restoration filters

  7. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  8. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  9. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma

    NARCIS (Netherlands)

    Taieb, D.; Timmers, H.J.L.M.; Hindie, E.; Guillet, B.A.; Neumann, H.P.; Walz, M.K.; Opocher, G.; de Herder, W.W.; Boedeker, C.C.; de Krijger, R.R.; Chiti, A.; Al-Nahhas, A.; Pacak, K.; Rubello, D.

    2012-01-01

    PURPOSE: Radionuclide imaging of phaeochromocytomas (PCCs) and paragangliomas (PGLs) involves various functional imaging techniques and approaches for accurate diagnosis, staging and tumour characterization. The purpose of the present guidelines is to assist nuclear medicine practitioners in

  10. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  11. Radionuclide imaging in diagnosis and therapy of the diabetic foot

    International Nuclear Information System (INIS)

    Zhu Cansheng

    2000-01-01

    Early and accurate diagnosis of angiopathy or infection of the diabetic foot is the key to the successful management. Radionuclide imaging is very useful in detecting diabetic microangiopathy, assessing the prognosis of foot ulcers, and diagnosing the osteomyelitis

  12. Radionuclide bone image in growing and stable bone island

    International Nuclear Information System (INIS)

    Go, R.T.; El-Khoury, G.Y.; Iowa Univ., Iowa City; Wehbe, M.A.

    1980-01-01

    A normal radionuclide bone image can facilitate distinction between a bone island and significant pathologic processes, especially an osteoblastic metastasis. This distinction becomes more crucial when growth is detected in an isolated sclerotic bone lesion or if a relatively large sclerotic lesion is detected de novo in patients with a known neoplasm. This report presents three patients with isolated bone islands: two with interval growth, the other with a relatively large stable lesion; all showing a normal radionuclide bone image. (orig.) [de

  13. Dosimetric model for antibody targeted radionuclide therapy of tumor cells in cerebrospinal fluid

    International Nuclear Information System (INIS)

    Millar, W.T.; Barrett, A.

    1990-01-01

    Although encouraging results have been obtained using systemic radioimmunotherapy in the treatment of cancer, it is likely that regional applications may prove more effective. One such strategy is the treatment of central nervous system leukemia in children by intrathecal instillation of targeting or nontargeting beta particle emitting radionuclide carriers. The beta particle dosimetry of the spine is assessed, assuming that the spinal cord and the cerebrospinal fluid compartment can be adequately represented by a cylindrical annulus. The radionuclides investigated were 90 Y, 131 I, 67 Cu, and 199 Au. It is shown that the radiation dose to the cord can be significantly reduced using short range beta particle emitters and that there is little advantage in using targeting carriers with these radionuclides. 199 Au and 67 Cu also have the advantage of having a suitable gamma emission for imaging, permitting pretherapy imaging and dosimetric calculations to be undertaken prior to therapy. If these methods prove successful, it may be possible to replace the external beam component used in the treatment of central nervous system leukemia in children by intrathecal radionuclide therapy, thus reducing or avoiding side effects such as growth and intellectual impairment

  14. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  15. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  16. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)

  17. Electroplating targets for production of unique PET radionuclides

    International Nuclear Information System (INIS)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-01-01

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators

  18. Radionuclide targeting with particular emphasis on urinary bladder carcinoma

    International Nuclear Information System (INIS)

    Sjoestroem, A.

    2001-01-01

    The incidence of urinary bladder carcinoma is increasing and many patients die every year of this disease despite assumed radical therapy. Thus, there is a need for improved methods of diagnosis and therapy. Radionuclide targeting is based on achieving specific delivery of radioactive nuclides to tumour cells with minimal damage to surrounding normal tissues. Two possible target structures are the epidermal growth factor (EGF) receptor and the related receptor HER-2. Cellular binding and retention of 125 I-EGF-dextran conjugates was investigated in two bladder carcinoma cell lines. The conjugate bound specifically to the EGF receptor with delayed maximum binding, limited intracellular degradation and prolonged cellular retention compared to 125 I-EGF. EGF was labelled using different radionuclides and methods. All the labelled variants bound specifically to the tumour cells although the cellular binding patterns and retention varied considerably. 111 In-DTPA-EGF had highest cellular retention and in decreasing order 211 At-benzoyl-EGF and 125 I-labelled EGF. Bladder cancer spheroids bound both 125 I-EGF-dextran as well as 125 I-EGF. Conjugate binding increased during a 48 h incubation period and was most prominent in the outer cell layers. The length of the dextran chain appeared not to alter the binding pattern. The expression of EGF receptors and HER-2 in metastases and primary bladder carcinoma tumours was investigated. Both receptors were expressed in the majority of metastases and primary tumours. Targeting the EGF receptor and/or HER-2 in urinary bladder carcinoma is an exciting new concept

  19. Current status of radionuclide imaging in valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, C.A.; Okada, R.D.; Pohost, G.M.

    1980-12-18

    The current state-of-the-art in radionuclide imaging of valvular heart disease is based on different angiographic patterns in three left-sided valve abnormalities: pressure overload, volume overload, and inflow obstruction. In pressure overload, the left ventricle has normal dimensions or is minimally dilated the volume overload involves a left ventricular dilatation with a normal or reduced ejection fraction at rest the left ventricular function in inflow obstruction is normal, but in some cases may be depressed. Radionuclide angiography evaluates the effect of a valve abnormality on cardiac chamber and function thallium-201 imaging diagnoses regional myocardial blood flow and cell integrity and can evaluate the associated coronary artery disease.

  20. Current status of radionuclide imaging in valvular heart disease

    International Nuclear Information System (INIS)

    Boucher, C.A.; Okada, R.D.; Pohost, G.M.

    1980-01-01

    The current state-of-the-art in radionuclide imaging of valvular heart disease is based on different angiographic patterns in three left-sided valve abnormalities: pressure overload, volume overload, and inflow obstruction. In pressure overload, the left ventricle has normal dimensions or is minimally dilated the volume overload involves a left ventricular dilatation with a normal or reduced ejection fraction at rest the left ventricular function in inflow obstruction is normal, but in some cases may be depressed. Radionuclide angiography evaluates the effect of a valve abnormality on cardiac chamber and function thallium-201 imaging diagnoses regional myocardial blood flow and cell integrity and can evaluate the associated coronary artery disease

  1. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  2. Targeted radionuclide therapy for neuroendocrine tumours: principles and application.

    Science.gov (United States)

    Druce, Maralyn R; Lewington, Val; Grossman, Ashley B

    2010-01-01

    Neuroendocrine tumours comprise a group of neoplasms with variable clinical behaviour. Their growth and spread is often very slow and initially asymptomatic, and thus they are often metastatic at the time of diagnosis and incurable by surgery. An exciting therapeutic strategy for cytoreduction, both for stabilisation of tumour growth and inhibition of hormone production, is the use of targeted radionuclide therapy. Evidence from large-scale, randomised, placebo-controlled trials is very difficult to obtain in these rare diseases, but current data appear promising. It is timely to review the principles underlying the use of these therapies, together with the clinical outcomes to date and potential directions for future research. Copyright 2009 S. Karger AG, Basel.

  3. Application of radionuclide imaging to hepatic impact injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    金榕兵; 麻晓林; 温建良; 唐维佳

    2004-01-01

    Objective: To investigate the role and clinical value of radionuclide imaging in hepatic impact injuries in rabbits.Methods: Rabbits were experimentally impacted on the liver with BIM-IV bio-impact machine. Liver imaging was performed with 99mTc labeled sodium phytate. Liver blood pool imaging was performed with 99mTc -stannous pyrophosphate labeled red blood cells. The results of radionuclide imaging were compared with the anatomic results.Results: There was significant difference between the images of the injured liver and the control. Radio diminution and defect were shown in the injured liver areas. Various sorts of abnormal radioactivity distribution were observed with hepatic blood pool imaging. The results of the liver imaging and liver blood pool imaging were accorded with the results of the anatomic findings.Conclusions: Radionuclide imaging may well display the changes of hepatocellular structures and functions after injury, which is valuable in locating the concrete injured position and differentiating the injured degrees of liver.

  4. Radionuclide imaging of the lower genitourinary tract

    International Nuclear Information System (INIS)

    Lowery, P.A.; Pjura, G.A.; Kin, E.E.; Brown, W.D.

    1988-01-01

    The major use of radionuclide cystography is in the management of children with vesicoureteral reflux (VUR). Reflux is common, occurring in one-third to one-half of children with urinary tract infection. The significance of VUR lies in its associated symptoms and consequences, which include impaired renal growth and function, vague ill health, renal pain, and more importantly the development of reflux nephropathy, a significant cause of end-stage renal disease and hypertension in children. Although reflux may resolve spontaneously, particularly milder degrees of reflux, the age at which this may occur is unpredictable and repeated follow-up cystography over a number of years may be necessary. Therefore, it is important to minimize radiation to the child while providing accurate diagnostic information. This paper discusses how the technique of radionuclide cystography compares favorably with routine contrast voiding cystourethrography (VCUG) in these respects, and in addition can provide quantitative information not obtained by radiographic techniques. Other indications may include screening siblings of patients known to have reflux, follow-up of antireflux surgery and occasionally screening for reflux in children who have had urinary tract infection

  5. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Reese, I.C.; Mishkin, F.S.

    1975-01-01

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  6. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  7. Development and optimization of targeted radionuclide tumor therapy using folate based radiopharmaceuticals

    CERN Document Server

    Reber, Josefine Astrid

    The folate receptor (FR) has been used for a quarter of a century as a tumor-associated target for selective delivery of drugs and imaging agents to cancer cells. While several folic acid radioconjugates have been successfully employed for imaging purposes in (pre)clinical studies, a therapeutic application of folic acid radioconjugates has not yet reached the critical stage which would allow a clinical translation. Due to a substantial expression of the FR in the proximal tubule cells, radiofolates accumulate in the kidneys which are at risk of damage by particle-radiation. To improve this situation, we aimed to develop and evaluate strategies for the performance of FR-targeted radionuclide therapy by decreasing the renal uptake of radiofolates and thereby reducing potential nephrotoxic effects. Two different strategies were investigated. First, the combination of radiofolates with chemotherapeutic agents such as pemetrexed (PMX) and 5-fluorouracil (5-FU) and secondly, an approach based on radioiodinated fol...

  8. Translational Applications of Molecular Imaging and Radionuclide Therapy

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-01-01

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled ''Translational Applications of Molecular Imaging and Radionuclide Therapy'' to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study; and the role of a diagnostic scan on therapy selection. This latter topic will include discussions on therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research

  9. Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of cyclotron produced radionuclides

    International Nuclear Information System (INIS)

    Bonardi, M.L.

    2002-01-01

    In accelerator production of radionuclides, thin-target yield, y(E), is defined as a function of the projectile energy E, at the End Of an Instantaneous Bombardment (EOIB), as the slope at the origin of the growing curve of the activity per unit beam current (A/I) of a specific radionuclide vs. irradiation time, for a target in which the energy loss is negligible with respect to the projectile energy itself. In practice, y(E) is defined as the second derivative of A/I with respect to particle energy and irradiation time, calculated when the irradiation time tends to zero (EOIB). The thin-target yields of different radionuclides, produced by direct and side reactions, are numerically fitted, taking into account the overall statistical errors as weights. The 'effective' cross-section σ ± (E) as a function of projectile energy is proportional to thin-target yield, but the physical meaning of this parameter is poor, being only a raw summation of the several cross sections of the reaction channels concerned, weighted on target isotopic composition. Conversely, Thick-Target Yield, Y(E,ΔE), is defined as a two parameter function of the incident particle energy E(MeV) onto the target and the energy loss ΔE (MeV), in the target itself, obtained by integration of thin-target excitation function, y(E). This approach holds in the strict approximation of a monochromatic beam of energy E, not affected by either intrinsic energy spread or straggling. The energy straggling is computed by Monte Carlo computer codes, like TRIM 2001. In case of total particle energy absorption in the target, for a nuclear reaction of energy threshold E th , the function Y(E,ΔE) reaches a value Y(E,E- E th ), for ΔE=E- E th , that represents mathematically the envelope of the Y(E,ΔE) family of curves. This envelope is a monotonically increasing curve, never reaching either a maximum or a saturation value, even if its slope becomes negligible for high particle energies and energy losses. Some

  10. Clinical advance in radionuclide imaging of pulmonary cancer

    International Nuclear Information System (INIS)

    Deng Zhiyong; Yang Lichun

    2008-01-01

    Radionuclide imaging of pulmonary cancer develops very rapidly in recent years. Its important value on the diagnosis, staging, monitoring recur and metastasis after treatment, and judging the curative effect and prognosis has been demonstrated. Clinicians pay more attention to it than before. This present article introduces the imaging principle, clinical use, good and bad points, progress situation of 67 Ga, 201 Tl, 99 Tc m , 18 F and their labelled compounds, which are more commonly used in clinical. And introduces the clinical progress of radionuclide imaging of pulmonary neoplasm concerning 99 Tc m -sestamibi ( 99 Tc m -MIBI), 99 Tc m -HL91 and 18 F-fluorodeoxyglucose ( 18 F-FDG) with emphasis. (authors)

  11. Production of 177Lu for targeted radionuclide therapy: Available options

    International Nuclear Information System (INIS)

    Dah, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. Jr.

    2015-01-01

    This review provides a comprehensive summary of the production of 177 Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177 Lu having the required quality for preparation of a variety of 177 Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177 Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177 Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with 177 Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177 Lu-labeled radiopharmaceuticals, but also help future developments

  12. uPAR Targeted Radionuclide Therapy with 177Lu-DOTA-AE105 Inhibits Dissemination of Metastatic Prostate Cancer

    DEFF Research Database (Denmark)

    Persson, Morten; Juhl, Karina; Rasmussen, Palle

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect...... of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific...... value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted 177Lu groups (p

  13. Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography

    International Nuclear Information System (INIS)

    Chang, L.T.

    1976-05-01

    Two techniques for radionuclide imaging and reconstruction have been studied;; both are used for improvement of depth resolution. The first technique is called coded aperture imaging, which is a technique of tomographic imaging. The second technique is a special 3-D image reconstruction method which is introduced as an improvement to the so called focal-plane tomography

  14. Clinical requirements for radionuclide imaging and recording

    International Nuclear Information System (INIS)

    McCready, R.; Flower, M.; Royal Marsden Hospital, Sutton

    1985-01-01

    The quality of current nuclear medicine images and display on hard copy makes diagnosis difficult and the interpretation of results by colleagues more difficult than it need be. The solution is to take full advantage of the power of currently available digital computers. It is understandable that the relatively small sales in the nuclear medicine field limits the effort and expense that can put into development. However, it is hoped that if the requirements are defined then advantage can be taken of recent developments in the mass market to incorporate these into nuclear medicine systems at less cost than was previously possible. (orig.) [de

  15. Simultaneous maximal exercise radionuclide angiography and thallium stress perfusion imaging

    International Nuclear Information System (INIS)

    Narahara, K.A.; Mena, I.; Maublant, J.C.; Brizendine, M.; Criley, J.M.

    1984-01-01

    Gold-195m is a new ultra-short-lived radionuclide that can be used for cardiac studies. Accurate, reproducible ejection fraction and ventricular wall motion studies can be obtained from first-transit angiography using commercially available imaging and image-processing equipment. The short half-life of gold-195m (30.5 seconds) makes simultaneous dual isotope imaging possible and substantially reduces the radiation exposure from the isotope angiography. The feasibility and possible benefits of performing dual radionuclide studies were evaluated during a single exercise stress test in 24 subjects with known coronary artery disease (CAD) and in 20 normal volunteers. High-quality first-transit angiograms were obtained in all subjects. An 83% sensitivity and 95% specificity for detecting CAD with thallium-201 imaging was noted in this investigation, suggesting that its diagnostic accuracy was not altered by simultaneous dual isotone imaging. When segmental left ventricular (LV) wall motion was compared with thallium-201 perfusion imaging, divergent results were noted in 15 of 44 subjects. An analysis of the ejection fraction (EF) results at rest and stress provided additional information that could be useful in assessing the clinical significance of such differences in segmental wall motion and perfusion. Simultaneous dual isotope imaging appears to be appropriate for situations in which both LV perfusion and function require evaluation. The use of gold-195m allows such information to be obtained from a single exercise test and can thereby reduce the cost and time required for noninvasive evaluations of patients for CAD

  16. Accumulation of the radionuclides in a target irradiated in the reactor of tajoura nuclear research center

    International Nuclear Information System (INIS)

    Abdunnobi, A.R.; Arebi, B.

    1998-01-01

    One of the main stages of radionuclides production in reactor is the distinguishing of a regime on target irradiation in order to acquire the sufficient activity and the purity of radioisotope required. The authors have derived formula for calculating radionuclidic accumulation on a target irradiated in the reactor operating 10 hours per day, 4 days a week during 4 weeks. The results of I-131 and other radionuclide accumulation are illustrated by a tellurium target irradiation in the reactor operating continuously or with interruptions

  17. Update on radionuclide imaging in hepatobiliary disease

    International Nuclear Information System (INIS)

    Rosenthall, L.

    1981-01-01

    The recent introduction of technetium Tc 99m-labeled acetanilide iminodiacetic acid (/sup 99m/Tc-IDA) analogues has facilitated the clincal study of the bile flow pathways. A variety of /sup 99m/Tc-IDA derivaties are under investigation. Basically all are metabolized by the hepatocyte and immediately thereafter excreted unconjugated into the biliary tract. Of the various derivatives tested, e.g., dimethyl (lidofenin), diethyl, paraisopropyl (iprofenin), parabutyl (butilfenin), and diisopropyl (disofenin), the last named is the best universal agent at this time. By serial liver imaging the patency of the cystic duct and the integrity of altered cholangiointestinal anatomy can be assessed, leakage of bile and gastric reflux can be disclosed, and medical and surgical jaundice can be distinguished

  18. Standardized high current solid targets for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    Al-Jammaz, Ibrahim

    2000-01-01

    The Cyclotron and Radiopharmaceuticals Department (CRP) is an advanced and modern facility that encompasses two essential components: radioisotope research, and radiopharmaceuticals manufacturing. Radiopharmaceuticals manufacturing program is not only quite unique, but also an essential component of King Faisal Specialist Hospital and Research Center (KFSH and RC) in providing quality patient care for the population of the Kingdom. Accurate diagnosis and therapy with medical imaging equipment requires quality radiopharmaceuticals that are available readily and with reliability. The CRP Department provides that quality and reliability. Research activities of the CRP Department are focused on developing new radiotracers with potential usefulness in biomedical research and clinical applications. Research projects consist of: developing cyclotron targetry for radioisotope production; developing synthesis methods for radiolabeling biomolecules; and developing analytical methods for quality control. The CRP Department operates a semi-commercial radiopharmaceuticals manufacturing program that supplies the diagnostic radioactive products to several hospitals in the Kingdom and neighboring countries. These products for clinical applications are produced according to the international standards of Good Manufacturing Practices of quality and efficacy. At the heart of the radioisotope program is a medium energy cyclotron capable of accelerating a number of particles for transformation of non-radioactive atoms into radionuclides that are the primary sources for research and development activities, and for preparing radiopharmaceuticals. In addition to having the only cyclotron facility in the region, KFSH and RC also has the only Positron Emission Tomography Center (PET) in this part of the world. This combination of cyclotron and the ultra modern PET facility translates into advanced and specialized care for the patients at KFSH and RC

  19. Targeted molecular imaging

    International Nuclear Information System (INIS)

    Kim, E. Edmund

    2003-01-01

    Molecular imaging aims to visualize the cellular and molecular processes occurring in living tissues, and for the imaging of specific molecules in vivo, the development of reporter probes and dedicated imaging equipment is most important. Reporter genes can be used to monitor the delivery and magnitude of therapeutic gene transfer, and the time variation involved. Imaging technologies such as micro-PET, SPECT, MRI and CT, as well as optical imaging systems, are able to non-invasively detect, measure, and report the simultaneous expression of multiple meaningful genes. It is believed that recent advances in reporter probes, imaging technologies and gene transfer strategies will enhance the effectiveness of gene therapy trials

  20. Sequential radionuclide bone imaging in avascular pediatric hip conditions

    International Nuclear Information System (INIS)

    Minikel, J.; Sty, J.; Simons, G.

    1983-01-01

    Radionuclide bone imaging was performed on six patients with various hip conditions. Initial bone images revealed diminished uptake of isotope /sup 99m/Tc-MDP in the capital femoral epiphysis. Following therapeutic intervention, repeat bone scans revealed normal uptake of /sup 99m/Tc-MDP in the capital femoral epiphysis. Subsequent radiographs revealed that avascular necrosis had not occurred. There are two types of avascularity: the potentially reversible, and the irreversible. Attempts should be made toward early recognition of the potentially reversible avascular insult. With early recognition, surgical reconstruction prior to osteophyte death may result in revascularization. If this can be accomplished, avascular necrosis can be avoided

  1. Report of the consultants' meeting on target and processing technologies for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    1999-11-01

    Cyclotron produced radionuclides are used routinely for the diagnosis of a wide variety of diseases. Recently a number of radionuclides available from cyclotrons have been proposed for use in radiotherapy. In fact Pd-103 has become routinely available in some parts of the world for incorporation into brachytherapy seeds for treating prostate cancer. The consultants meeting reviewed the status of target and processing technologies associated with cyclotron production of radionuclides. The main topics of discussion included the basic nuclear data that is crucial to the production of the desired radionuclides, gas and solid target systems, the automated chemical processing units, the Good Manufacturing Practices (GMP) required in order to use these radionuclides in human patients in a safe and efficacious manner and a review of possible candidate nuclides that show promise for use in Nuclear Medicine in the near future. Advances in the preparation of solid targets using electroplating technology has created the possibility of preparing targets capable of operating at very high beam currents which would make the production of large quantities of SPECT agents possible at cyclotron facilities throughout the world. Recognising the needs of the developing countries which have established cyclotron facilities, the consultants focussed on how to provide the technology for preparing solid targets that could be used in the existing facilities. While solid target technology can be used for many radionuclides the report concentrated on several key radionuclides, which are of current importance or show potential for use in the near future. Tl-201 is currently used for cardiac profusion studies throughout the world. New target preparation techniques could potentially make many of the member states self sufficient in the production of this nuclide. I-123 has tremendous potential because of the near ideal photon energy for SPECT cameras and its well-understood chemistry. However, it

  2. Targeted Nanotechnology for Cancer Imaging

    Science.gov (United States)

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  3. Target imaging and backlighting diagnosis

    International Nuclear Information System (INIS)

    Yaakobi, B.; Shvarts, D.; Marshall, F.J.; Epstein, R.; Su, Q.

    1995-01-01

    The expected backlighting and self-emission images of a particular CH target to be imploded on the Omega Upgrade are calculated for a variety of experimental parameters. It is shown that to overcome the problem of target self-emission, the image has to be monochromatized with a diffracting crystal. For the target studied, the two image components are then comparable in intensity and both provide useful information on target behavior. A particularly interesting feature is the appearance in the self-emission of a circular spike which closely delineates the fuel-shell interface, but requires high spatial resolution to be observed

  4. Current Status and Future Directions of Targeted Peptide Radionuclide Therapy

    International Nuclear Information System (INIS)

    Valkema, R.

    2009-01-01

    Current status: Peptide receptor radionuclide therapy (PRRT) is currently almost exclusively targeted at the somatostatin receptor (sst). Of the 5 receptor subtypes, sst2 is frequently very highly expressed at the cell surface of neuroendocrine tumors (NET). Octreotide is a small and stable derivative of native somatostatin, which can be very well labeled with therapeutic radionuclides such as the beta-emitters ''9''0Y, ''1''7''7Lu or the Auger emitter ''1''1''1In, chelated in DTPA or DOTA, linked to the peptide. All current therapeutic octreotide derivatives are agonists that are internalized in the cell. The affinity for the sst2 receptor is better for [DOTA,Tyr''3]octreotate than for [DOTA,Tyr''3]octreotide or [DTPA]octreotide. ''9''0Y is a pure beta-emitter, with a half-life of 2.7 days, a high energy of 2.270 MeV, and a maximum penetration in tissue of 12mm. ''1''7''7Lu with a half-life of 6.7 days emits a low abundance of gamma photons as well as beta particles of 497 keV, with a maximum tissue penetration of 2 mm. ''1''7''7Lu-[DOTA,Tyr''3]octreotate (Lu-DOTATE), ''9''0Y-[DOTA,Tyr''3]octreotate (Y-DOTATATE) and ''9''0Y-[DOTA,Tyr''3]octreotide (Y-DOTATOC) are today the most frequently used therapeutic radiopeptides. Main inclusion criteria: inoperable and/or metastatic NET, receptor-positivity in all known lesions demonstrated by sufficient uptake on ''1''1''1In-octreotide scintigraphy (intensity > liver parenchyma), life expectancy at least 3-6 months, sufficient bone marrow reserve (hemoglobin (HGB) ≥ 5 mmol/L, white blood cells (WBC) ≥ 2*10 9 /L, platelets (PLT) ≥ 75*10 12 /L), sufficient renal function (serum creatinine 40 mL/min), sufficient hepatic and cardiac reserve. Karnofski score ≥50. Efficacy: several groups have reported objective response rates (RECIST or WHO/SWOG; CT or MRI based). Complete remission (CR) is rarely seen, partial remission (PR; >50% shrinkage SWOG) in 7% - 37%, minor remission (MR, 25% - 50% shrinkage) in 13% - 17

  5. Differential diagnostic features of the radionuclide scrotal image

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, F.S.

    1977-01-01

    Differential diagnosis of scrotal lesions is aided by correlating radionuclide images with clinical findings. Subacute torsion is associated with peripheral hyperemia and can be mistaken for an inflammatory process; however, in a review of 128 studies, torsion and orchiectomy were the only processes encountered which had a center truly devoid of activity on the tissue phase compared to the normal side. Other lesions such as acute inflammation, abscess, hematoma, and hemorrhagic tumor may superficially appear to lack central activity but invariably contain at least as much activity when compared to the normal side.

  6. Applications of radionuclide myocardial perfusion imaging in acute coronary syndrome

    International Nuclear Information System (INIS)

    Han Pingping; Tian Yueqin

    2008-01-01

    In recent years, acute coronary syndrome(ACS) has been getting more and more attentions. Radionuclide myocardial perfusion imaging (MPI) can make a quick accurate diagnosis for patients with acute chest pain who cann't be diagnosed by conventional methods. The sensitivity and negative predictive value of MPI are relatively high. Besides, MPI can be applicated in the detection of ischemic and infarct size and degree, the risk stratification and the assessment of prognosis of the patients with ACS, and the appraisal of the effect of strategies. (authors)

  7. Role of radionuclide imaging in the diagnosis of acute osteomyelitis

    International Nuclear Information System (INIS)

    Demopulos, G.A.; Bleck, E.E.; McDougall, I.R.

    1988-01-01

    Over the last decade, the role of nuclear medicine studies in the diagnosis of acute osteomyelitis has been discussed in depth in the literature. Yet, the respective roles played in this setting by each of the commonly used radionuclide studies often are confusing. In an attempt to develop a cogent diagnostic strategy, we reviewed the literature published within the last 12 years pertaining to the use of radiophosphate bone scintigraphy as well as gallium and indium WBC imaging in the diagnosis of this condition. Based on our findings, we propose an alternative approach to the evaluation of a patient with suspected acute osteomyelitis. 63 references

  8. Differential diagnostic features of the radionuclide scrotal image

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1977-01-01

    Differential diagnosis of scrotal lesions is aided by correlating radionuclide images with clinical findings. Subacute torsion is associated with peripheral hyperemia and can be mistaken for an inflammatory process; however, in a review of 128 studies, torsion and orchiectomy were the only processes encountered which had a center truly devoid of activity on the tissue phase compared to the normal side. Other lesions such as acute inflammation, abscess, hematoma, and hemorrhagic tumor may superficially appear to lack central activity but invariably contain at least as much activity when compared to the normal side

  9. Early detection of Freiberg's disease by radionuclide bone imaging

    International Nuclear Information System (INIS)

    Peng Jingjing

    1993-01-01

    56 hallux valgus deformities of 28 patients were studied with radionuclide bone imaging (RNBI). Among them, 24 feet(42.85%) revealed increased uptake of radioactivity in second or third metatarsal. The ratio of radioactivity in lesion and contralateral normal site (D/N) was increased, the difference between the patient and normal groups was significant (P<0.01). The histologic study showed that there have been degenerative changes and bone cell necrosis in increased uptake area. It was concluded that RNBI was more sensitive than X ray and can be used for the early diagnosis of Freiberg's Disease

  10. Radionuclide imaging of infection: what the future holds

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, Christopher J. [Yeshiva University, NY (United States). Albert Einstein College of Medicine]. E-mail: palestro@lij.edu

    2008-12-15

    Nuclear Medicine plays an important role in the evaluation of patients suspected of harboring infection. Gallium imaging is especially useful for opportunistic infections and spinal osteomyelitis. In vitro labeled leukocyte imaging is the current radionuclide gold standard for imaging most infections, in immunocompetent patients, including cardiovascular, postoperative, and musculoskeletal infections (except spinal osteomyelitis). Several in-vivo leukocyte labeling methods have been investigated, but none are widely used. Results obtained with radiolabeled antibiotics have been disappointing. Data on FDG are still emerging, but this agent appears to be especially valuable in fever of unknown origin, spinal osteomyelitis, vasculitis and sarcoidosis. It is conceivable that in the near future, FDG-PET and PET/CT will replace gallium for many indications. Investigators also are studying ways to label leukocytes with positron emitters in order to combine the advantages of PET with those of labeled leukocytes. (author)

  11. Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target

    International Nuclear Information System (INIS)

    Kelsey, Charles T. IV

    2011-01-01

    A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 (micro)A to 2500 mA·h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

  12. Three-phase radionuclide bone imaging in sports medicine

    International Nuclear Information System (INIS)

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-01-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions

  13. Experimental fracture healing: evaluation using radionuclide bone imaging: concise communication

    International Nuclear Information System (INIS)

    Gumerman, L.W.; Fogel, S.R.; Goodman, M.A.; Hanley, E.N. Jr.; Kappakas, G.S.; Rutkowski, R.; Levine, G.

    1978-01-01

    Radionuclide bone imaging was performed in a rabbit model to observe the course of fracture healing and to establish criteria for distinguishing nonunion and delayed healing from normal healing. Sequential gamma-camera images (with pinhole collimator) were collected and subjected to computer analysis. Five groups were established: (a) control--immobilization; (b) control--immobilization plus periosteal stripping; (c) simple fracture--osteotomy; (d) delayed union--osteotomy plus periosteal stripping; and (e) nonunion--osteotomy, periosteal stripping and polymethyl methacrylate interposed between fracture fragments. Histographic representation of absolute count rates along rabbit tibias followed a predictable pattern in the simple-fracture and delayed-union groups. They differed only in the time of appearance of phases. The non-union group demonstrated no recognizable sequential pattern. In this experimental model, serial bone scanning the quantitative data analysis has shown potential for indicating the course of healing in fractures and for serving as a guide to treatment

  14. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  15. Magnetically responsive microparticles for targeted drug and radionuclide delivery

    International Nuclear Information System (INIS)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-01-01

    system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan

  16. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  17. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    Science.gov (United States)

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

    Science.gov (United States)

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MWnanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70% drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90%. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88% when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95% with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival

  19. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Costa, D.C.; Gacinovic, S.; Miller, R.F.

    1995-01-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201 Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  20. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    DEFF Research Database (Denmark)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob

    2012-01-01

    -of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. MethodsA DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29...... for the first time the in vivo efficacy of an uPAR-targeted radionuclide therapeutic intervention on both tumor size and its content of uPAR expressing cells thus setting the stage for future translation into clinical use. © 2012 Elsevier Inc. All rights reserved....

  1. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  2. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  3. Dental diseases and radionuclide imaging of the jaws.

    Science.gov (United States)

    Arias, Jose A; Pardo, Carlos; Olmos, Antonio; Cuadrado, Maria L; Ruibal, Alvaro

    2004-03-01

    The aim of this study was to compare the results of radionuclide bone scans of the jaws with data obtained at the nuclear medicine department from a brief and feasible dental history, taking special account of cases with a positive scan and no recent dental events. Ninety-eight patients undergoing radionuclide bone scan as part of their diagnosis in non-dental, oncological and non-oncological diseases were imaged with 99mTc-labelled oxidronate. Superior and inferior halves of the mandible and maxilla (392 quadrants) were regarded as normal or having an abnormally high uptake. A recent (1 year) dental history was also obtained through a brief questionnaire and data were referred to each quadrant of the jaws. The association between the bone scan and dental disease was assessed by means of the chi-squared test. The overall results of scintigraphy and history coincided in 66 patients (46 with abnormal and 20 with normal findings; P = 0.002). Twenty-five patients had a positive scintigram without any known dental disorder. Results of scintigraphy and history coincided in 254 quadrants (78 with abnormal and 176 with normal findings; P < 0.001). Eighty-three quadrants had hot spots in the scintigram without any known dental lesion. It can be concluded that abnormal jaw scintigrams are frequent in patients without known dental disease, and this may indicate silent osteoblastic activity. These observations should be reported to the dentist for several reasons. First, they may reveal asymptomatic dental lesions. Second, the use of oral prostheses and implants is increasing and they require the support of healthy alveolar bone.

  4. Radionuclide imaging of bone marrow in hematologic systemic disease

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, F.; Hahn, K.; Gamm, H.

    1987-02-01

    Radionuclide imaging studies of the bone marrow were carried out in 164 patients suffering from hematologic systemic disease. One third of 90 patients with Hodgkin lymphoma (HL) or Non Hodgkin lymphoma (NHL) displayed a pathological distribution pattern representing bone marrow expansion. In HL there were 17% accumulation defects caused by metastases in contrast to only 7% in NHL. Among 30 patients with chronic myelocytic leukemia bone marrow expansion was found in 60%, bone marrow displacement and aplasia 10%. Focal bone marrow defects were found in 3 patients. All patients with primary polycythemia rubra vera displayed a pathologic bone marrow distribution pattern as well as splenomegaly. All patients with acute myelocytic leukemia (AML) and one patient with an acute lymphatic leukemia (ALL) had a pathological distribution pattern with bone marrow expansion and displacement. Focal bone marrow defects were not seen. Multiple myeloma with bone marrow expansion was found in 6 of 12 patients and focal accumulation defects were found in 40%, the latter lesions being not visible or equivocal on skeletal imaging studies. Pathological changes in liver and spleen were found in a high percentage of the total collective. The results document the important clinical value of bone marrow scintigraphy among the hematologic diseases studied.

  5. Radionuclide imaging and diagnosis of benign tumours of the liver

    International Nuclear Information System (INIS)

    Zerbib, E.

    1996-01-01

    Radionuclide scanning takes advantages of the function of the liver. Hepatic scintigraphy can be suggested in the evaluation of solid liver masses greater than 1.5 cm and whose diagnosis has not been established by another imaging technique. 99m Tc-labeled-red-blood-cell (RBC) scintigraphy is very specific of cavernous hepatic hemangioma (100 %). Sensibility increases with tumoral size: 85 % from 1.5 to 3 cm and near 100 % beyond 3 cm. RBC scintigraphy should be performed when MRI does not assert diagnosis or cannot be performed. With 99m Tc-nanocolloids, focal nodular hyperplasia (FNH) can show intense concentration which is quite specific but appears in only 10 to 15 % of cases. A normal uptake is seen in 50 to 60 % of cases but only suggests FNH since almost 10 % of the adenomas get the same appearance. A negative defect, seen in 30 to 40 % of cases, does not allow any conclusion. Using hepatobiliary radiopharmaceuticals (IDA) FNH appears with an increased uptake during the perfusion phase, a normal uptake during the first 10 minutes and again an increased uptake during late images (hot spot). Hepatic adenoma can appear as a negative defect (over 90 % of cases) or with normal uptake (less than 10 % of cases). Increased uptake is never seen. Its aspect using hepatobiliary radio-hepatobiliary radio-pharmaceuticals is not well established but it appears as a negative defect on the perfusion phase which should discriminate it from FHN. (author)

  6. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience.

    Science.gov (United States)

    Baum, Richard P; Kulkarni, Harshad R

    2012-01-01

    The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs) using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT), and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

  7. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience

    Directory of Open Access Journals (Sweden)

    Richard P. Baum, Harshad R. Kulkarni

    2012-01-01

    Full Text Available The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET, single photon emission computed tomography (SPECT, magnetic resonance imaging (MRI, or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT, and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

  8. Prosthetic joint infections: radionuclide state-of-the-art imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Filip [AZ Alma Campus Sijsele, Department of Nuclear Medicine, Sijsele-Damme (Belgium); Wyngaert, Hans van den [AZ Alma Campus Sijsele, Department of Orthopaedic Surgery, Sijsele-Damme (Belgium); Love, Charito [Albert Einstein College of Medicine of Yeshiva University, Division of Nuclear Medicine and Radiology, Bronx, NY (United States); Welling, M.M. [Leiden University Medical Center, Scientist Molecular Imaging, Department of Radiology, Section of Nuclear Medicine C2-203, Leiden (Netherlands); Gemmel, Paul [Ghent University, The Faculty of Economics and Business Administration, Ghent (Belgium); Palestro, Christopher J. [Hofstra North Shore-Long Island Jewish Health System, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Hempstead, NY (United States)

    2012-05-15

    Prosthetic joint replacement surgery is performed with increasing frequency. Overall the incidence of prosthetic joint infection (PJI) and subsequently prosthesis revision failure is estimated to be between 1 and 3%. Differentiating infection from aseptic mechanical loosening, which is the most common cause of prosthetic failure, is especially important because of different types of therapeutic management. Despite a thorough patient history, physical examination, multiple diagnostic tests and complex algorithms, differentiating PJI from aseptic loosening remains challenging. Among imaging modalities, radiographs are neither sensitive nor specific and cross-sectional imaging techniques, such as computed tomography and magnetic resonance imaging, are limited by hardware-induced artefacts. Radionuclide imaging reflects functional rather than anatomical changes and is not hampered by the presence of a metallic joint prosthesis. As a result scintigraphy is currently the modality of choice in the investigation of suspected PJI. Unfortunately, there is no true consensus about the gold standard technique since there are several drawbacks and limitations inherent to each modality. Bone scintigraphy (BS) is sensitive for identifying the failed joint replacement, but cannot differentiate between infection and aseptic loosening. Combined bone/gallium scintigraphy (BS/GS) offers modest improvement over BS alone for diagnosing PJI. However, due to a number of drawbacks, BS/GS has generally been superseded by other techniques but it still may have a role in neutropenic patients. Radiolabelled leucocyte scintigraphy remains the gold standard technique for diagnosing neutrophil-mediated processes. It seems to be that combined in vitro labelled leucocyte/bone marrow scintigraphy (LS/BMS), with an accuracy of about 90%, is currently the imaging modality of choice for diagnosing PJI. There are, however, significant limitations using in vitro labelled leucocytes and considerable effort

  9. Prosthetic joint infections: radionuclide state-of-the-art imaging

    International Nuclear Information System (INIS)

    Gemmel, Filip; Wyngaert, Hans van den; Love, Charito; Welling, M.M.; Gemmel, Paul; Palestro, Christopher J.

    2012-01-01

    Prosthetic joint replacement surgery is performed with increasing frequency. Overall the incidence of prosthetic joint infection (PJI) and subsequently prosthesis revision failure is estimated to be between 1 and 3%. Differentiating infection from aseptic mechanical loosening, which is the most common cause of prosthetic failure, is especially important because of different types of therapeutic management. Despite a thorough patient history, physical examination, multiple diagnostic tests and complex algorithms, differentiating PJI from aseptic loosening remains challenging. Among imaging modalities, radiographs are neither sensitive nor specific and cross-sectional imaging techniques, such as computed tomography and magnetic resonance imaging, are limited by hardware-induced artefacts. Radionuclide imaging reflects functional rather than anatomical changes and is not hampered by the presence of a metallic joint prosthesis. As a result scintigraphy is currently the modality of choice in the investigation of suspected PJI. Unfortunately, there is no true consensus about the gold standard technique since there are several drawbacks and limitations inherent to each modality. Bone scintigraphy (BS) is sensitive for identifying the failed joint replacement, but cannot differentiate between infection and aseptic loosening. Combined bone/gallium scintigraphy (BS/GS) offers modest improvement over BS alone for diagnosing PJI. However, due to a number of drawbacks, BS/GS has generally been superseded by other techniques but it still may have a role in neutropenic patients. Radiolabelled leucocyte scintigraphy remains the gold standard technique for diagnosing neutrophil-mediated processes. It seems to be that combined in vitro labelled leucocyte/bone marrow scintigraphy (LS/BMS), with an accuracy of about 90%, is currently the imaging modality of choice for diagnosing PJI. There are, however, significant limitations using in vitro labelled leucocytes and considerable effort

  10. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  11. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  12. Evaluation of the specificity of radionuclide myocardial imaging for detecting CAD

    International Nuclear Information System (INIS)

    Liu Xiujie

    1992-01-01

    In order to evaluate the specificity of radionuclide myocardial perfusion imaging for detecting coronary artery disease (CAD), 50 patients with normal coronary arteriography and radionuclide myocardial perfusion scintigraphy were analysed. The results from 201 T1 (20 cases) and 99m Tc-MIBI (30 cases) studies showed that out of 33 patients with no organic cardiovascular disease, 29 had normal myocardial imaging, and the specificity of radionuclide myocardial imaging for detecting CAD was 87.8%. 4 normal young women had false positive myocardial imaging. Out of 17 patients with cardiovascular disease and normal coronary arteriography, 15 patients had abnormal myocardial imaging. The final clinical diagnoses of these 15 patients were: 4 patients with hypertrophic cardiomyopathy, 3 with old myocardial infarction, 2 with myocarditis, 3 with small coronary vessel disease, 1 with congestive cardiomyopathy, and 2 with other cardiac disorder. The points of differentiation between CAD and other cardiovascular disease using radionuclide techniques were discussed

  13. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Baum, R.P.

    2015-01-01

    Full text of publication follows. 68 Gallium is a positron emitter (t 1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68 Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177 Lutetium or 90 Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses

  14. Enhancing the effect of radionuclide tumor targeting, using lysosomotropic weak bases

    International Nuclear Information System (INIS)

    Sundberg, Asa Liljegren; Steffen, Ann-Charlott

    2007-01-01

    Purpose: The aim of the present study was to investigate if treatment with lysosomotropic weak bases could increase the intracellular retention of radiohalogens and thereby increase the therapeutic effect of radionuclide tumor targeting. Methods and Materials: Four different lysosomotropic bases, chloroquine, ammonium chloride, amantadine, and thioridazine, were investigated for their ability to increase radiohalogen retention in vitro. The two most promising substances, chloroquine and ammonium chloride, were studied in several cell lines (A431, U343MGaCl2:6, SKOV-3, and SKBR-3) in combination with radiolabeled epidermal growth factor (EGF) or the HER2 binding affibody (Z HER2:4 ) 2 . Results: The uptake and retention of radionuclides was found to be substantially increased by simultaneous treatment with the lysosomotropic bases. The effect was, however, more pronounced in the epidermal growth factor:epidermal growth factor receptor (EGF:EGFR) system than in the (Z HER2:4 ) 2 :HER2 system. The therapeutic effect of ammonium chloride treatment combined with 211 At-EGF was also studied. The effect obtained after combined treatment was found to be much better than after 211 At-EGF treatment alone. Conclusions: The encouraging results from the present study indicate that the use of lysosomotropic weak bases is a promising approach for increasing the therapeutic effect of radionuclide targeting with radiohalogens

  15. SU-E-T-345: Validation of a Patient-Specific Monte Carlo Targeted Radionuclide Therapy Dosimetry Platform

    International Nuclear Information System (INIS)

    Besemer, A; Bednarz, B

    2014-01-01

    Purpose: There is a compelling need for personalized dosimetry in targeted radionuclide therapy given that conventional dose calculation methods fail to accurately predict dose response relationships. To address this need, we have developed a Geant4-based Monte Carlo patient-specific 3D dosimetry platform for TRT. This platform calculates patient-specific dose distributions based on serial CT/PET or CT/SPECT images acquired after injection of the TRT agent. In this work, S-values and specific absorbed fractions (SAFs) were calculated using this platform and benchmarked against reference values. Methods: S-values for 1, 10, 100, and 1000g spherical tumors with uniform activity distributions of I-124, I-125, I-131, F-18, and Ra-223 were calculated and compared to OLINDA/EXM reference values. SAFs for monoenergetic photons of 0.01, 0.1, and 1 MeV and S factors for monoenergetic electrons of 0.935 MeV were calculated for the liver, kidneys, lungs, pancreas, spleen, and adrenals in the Zubal Phantom and compared with previously published values. Sufficient particles were simulated to keep the voxel statistical uncertainty below 5%. Results: The calculated spherical S-values agreed within a few percent of reference data from OLINDA/EXM for each radionuclide and sphere size. The comparison of photon SAFs and electron S-values with previously published values showed good agreement with the previously published values. The S-values and SAFs of the source organs agreed within 1%. Conclusion: Our platform has been benchmarked against reference values for a variety of radionuclides and over a wide range of energies and tumor sizes. Therefore, this platform could be used to provide accurate patientspecific dosimetry for use in radiopharmaceutical clinical trials

  16. Radionuclide Imaging of Musculoskeletal Injuries in Athletes with Negative Radiographs.

    Science.gov (United States)

    Nagle, C E; Freitas, J E

    1987-06-01

    In brief: Radionuclide bone scans can be useful in the diagnostic evaluation of musculoskeletal injuries in athletes. Bone scans can detect shinsplints, stress fractures, and muscle injuries before they are detectable on radiographs. Prognosis can be accurately assessed, allowing appropriate treatment to proceed without delay. The authors discuss the use of bone scans and identify musculoskeletal injuries that are associated with specific sports, such as stress fracture of the femur (soccer), tibia (running), scapula (gymnastics), and pars interarticularis (football or lacrosse).

  17. An experimental study on the application of radionuclide imaging in repair of the bone defect

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2011-08-01

    Full Text Available The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05. The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction.

  18. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  19. SU-E-T-256: Optimizing the Combination of Targeted Radionuclide Therapy Agents Using a Multi-Scale Patient-Specific Monte Carlo Dosimetry Platform

    International Nuclear Information System (INIS)

    Besemer, A; Bednarz, B; Titz, B; Grudzinski, J; Weichert, J; Hall, L

    2014-01-01

    Purpose: Combination targeted radionuclide therapy (TRT) is appealing because it can potentially exploit different mechanisms of action from multiple radionuclides as well as the variable dose rates due to the different radionuclide half-lives. The work describes the development of a multiobjective optimization algorithm to calculate the optimal ratio of radionuclide injection activities for delivery of combination TRT. Methods: The ‘diapeutic’ (diagnostic and therapeutic) agent, CLR1404, was used as a proof-of-principle compound in this work. Isosteric iodine substitution in CLR1404 creates a molecular imaging agent when labeled with I-124 or a targeted radiotherapeutic agent when labeled with I-125 or I-131. PET/CT images of high grade glioma patients were acquired at 4.5, 24, and 48 hours post injection of 124I-CLR1404. The therapeutic 131I-CLR1404 and 125ICLR1404 absorbed dose (AD) and biological effective dose (BED) were calculated for each patient using a patient-specific Monte Carlo dosimetry platform. The optimal ratio of injection activities for each radionuclide was calculated with a multi-objective optimization algorithm using the weighted sum method. Objective functions such as the tumor dose heterogeneity and the ratio of the normal tissue to tumor doses were minimized and the relative importance weights of each optimization function were varied. Results: For each optimization function, the program outputs a Pareto surface map representing all possible combinations of radionuclide injection activities so that values that minimize the objective function can be visualized. A Pareto surface map of the weighted sum given a set of user-specified importance weights is also displayed. Additionally, the ratio of optimal injection activities as a function of the all possible importance weights is generated so that the user can select the optimal ratio based on the desired weights. Conclusion: Multi-objective optimization of radionuclide injection activities

  20. Radiography, radionuclide imaging, and asthrography in the evaluation of total hip and knee replacement

    International Nuclear Information System (INIS)

    Gelman, M.I.; Coleman, R.E.; Stevens, P.M.; Davey, B.W.

    1978-01-01

    Twenty patients with 21 total joint replacements including 17 hips and 4 knees were studied by plain film radiography, radionuclide imaging, and subtraction arthrography to evaluate these procedures for assessing prosthetic complications. Surgery was performed in 14 patients and confirmed loosening of 8 femoral and 7 acetabular hip prosthesis components and 1 femoral and 4 tibial knee prosthesis components. Plain films suggested loosening of only 9 hip components and no knee components. In contrast, radionuclide imaging and subtraction arthrography were considerably more effective in demonstrating loosening as well as other causes of the painful total joint prosthesis

  1. Dying a thousand death. Radionuclide imaging of apoptosis

    International Nuclear Information System (INIS)

    Blankenberg, F.; Ohtsuki, K.; Strauss, H.W.

    1999-01-01

    Programmed cell death, apoptosis, in an inducible, organized, energy requiring form of demise that results in the disappearance of a cell without the induction of an inflammatory response. Apoptotic cell death is strikingly different than necrotic death, which is disorderly, does not require energy and results in local inflammation, usually secondary to sudden release of intercellular contents. Apoptosis is induced when cells undergo severe injury to their nucleus, as occurs following exposure to gamma or X-radiation, or mitochondria, as as occurs in variety of viral illnesses. Apoptosis can also be induced by externals signals, such as interaction of 'fas' ligand with 'fas' receptors. Once the cell is committed to apoptosis, the caspase enzyme cascade is activate. An early effect of caspase activation is the rapid expression of phosphatidylserine on the external leaflet of the cell membrane. Membrane bound phosphatidylserine expression serves as a signal to surrounding cells, identifying the expressing cell as undergoing apoptosis. A deficiency or an excess of programmed cell death is an integral component of autoimmune disorders, transplant rejection and cancer. A technique to image programmed cell death would be used to assist in the development of drugs, designed to treat these diseases, and to monitor the effectiveness of therapy The sudden expression of phosphatidylserine on the cell membrane is target that could be used for this purpose. A 35 kD physiologic protein, Annexin V lipocortin, binds with nanomolar affinity to membrane bound phosphatidylserine. Annexin V has been radiolabeled with Technetium-99m by direct coupling to free sulfhydryl groups, and through the hydrazinonicatinamide and N2S2 linking agents. The biodistribution of the agents labeled with each of the methods is slightly different. In all cases the radiopharmaceutical binds to cell undergoing apoptosis 'in vitro', and permits imaging of the process in experimental animals

  2. The clinical evaluation of combining radionuclide imaging with radioimmunoassay for hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Huang Chenggang; Chen Xiaoyan; Deng Yan

    2003-01-01

    By analysing nuclide image characteristics and radioimmunoassay data of 61 cases with Hashimoto's thyroiditis (HT), HT can be classified five types as below: uneven distribution, diffusion, with hyperfunction, with nodules, nearly normal. The results of radionuclide imaging and the radioimmunoassay of all the types indicate that HT can be preliminarily diagnosed by conscientiously analysing nuclide image characteristics and radioimmunoassay data and linking clinical symptoms and signs

  3. Role of radionuclide imaging in the diagnosis of chondrosarcoma

    International Nuclear Information System (INIS)

    McLean, R.G.; Choy, D.; Hoeschl, R.; Nayanar, V.; Murray, I.P.

    1985-01-01

    The diagnosis of chondrosarcoma may be difficult if there is an atypical radiographic appearance or an inconclusive biopsy. Radionuclide bone scans of 13 patients with chondrosarcoma were reviewed to assess if a pattern of scan features could be recognized in association with this tumor. A combination, including increased blood pool activity, moderate intensity of uptake, patchy uptake with cortical predominance of activity, minimal distortion of bony outline, and a well-defined scintigraphic margin, occurred regularly in the series. Recognition of this characteristic pattern of scintigraphic features in cases of suspected chondrosarcoma may assist in the diagnostic assessment

  4. Radionuclide salivary imaging usefulness in a private otolaryngology practice

    International Nuclear Information System (INIS)

    Schall, G.L.; Smith, R.R.; Barsocchini, L.M.

    1981-01-01

    Radionuclide salivary gland scans were performed on 44 patients using sodium pertechnetate Tc 99m. The accuracy of the scans and their usefulness in the clinical treatment of the patients were reviewed. The scan provided helpful information in 31 of 38 cases in which adequate follow-up data were available, although it proved diagnostic in only six patients. It was particularly useful in the evaluation of primary salivary gland neoplasms, acute and chronic sialadenitis, and sialolithiasis, as well as in the differential diagnosis of xerostomia. The value of this procedure in the elucidation of a variety of morphologic and functional diseases of these glands warrants its greater application in private otolaryngologic practices

  5. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    Science.gov (United States)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  6. External tandem target system for efficient production of short-lived positron emitting radionuclides

    International Nuclear Information System (INIS)

    Koh, K.; Dwyer, J.; Finn, R.; Sheh, Y.; Sinnreich, J.; Wooten, T.

    1983-01-01

    Recent developments in radiopharmaceutical chemistry allow the incorporation of short-lived, positron-emitting radionuclides into a variety of compounds which when used with a positron emission tomograph provide a means of monitoring physiological disorders by a standard technique. To effectively meet the increased ''in-house'' clinical demands while maintaining a production schedule, a tandem target was designed and has been installed for the simultaneous ''on-line'' preparation of oxygen-15 labelled compounds such as CO 2 15 , H 2 O 15 ; and nitrogen-13 labelled compounds such as 13 NH 3 , 13 N 2 O, and 13 N 2 . The processing time required for the synthesis of the nitrogen-13 products as compared to the essentially instantaneous formation of oxygen-15 labelled compounds has provided the necessary time delay for clinical utilization. The characterisitcs of this external tandem target system as well as the automation for the dual processing are presented

  7. Cyclotron production of radionuclides in aqueous target matrices as alternative to solid state targetry. Production of Y-86 as example

    Energy Technology Data Exchange (ETDEWEB)

    Vogg, A.T.J.; Lang, R.; Meier-Boeke, P.; Scheel, W.; Reske, S.N.; Neumaier, B. [Universitaetsklinikum Ulm (Germany). Abt. Nuklearmedizin

    2004-07-01

    Commonly used ''organic'' positron emitting radionuclides {sup 18}F, {sup 11}C, {sup 13}N, and {sup 15}O are simply obtained from gaseous or aqueous targets, which enable an automated handling of target, i.e. both, filling and radionuclide delivery to a hot cell containing a chemistry processing and/or labelling module. In the recent years other - mostly metallic - radionuclides for PET gained more and more interest, since they can be used as surrogates for therapeutic nuclides attached to biomolecules like peptides or antibodies. The implication for surrogate nuclides results from the circumstance that an optimum dosimetric regime in endo radiotherapy relies on quantitative pharmacokinetic data obtained only by non invasive in vivo PET scans. However, for production of these alternative positron emitters the vast majority of them affords solid targets in form of metal foils, oxide or salt pellets which can not be operated by an automated processing. Those solid target systems have to be mounted and dismounted after irradiation by man, leading to two major disadvantages. First, manual cyclotron intervention is practically unsuited for daily routine radionuclide production and second the operating staff receives high radiation doses from the activated target. An alternative could be the irradiation of aqueous salts of target isotopes, allowing automated target operation. The major requirements are firstly a thermal stability of the dissolved compound, secondly the avoidance of counter ions containing nuclides which produce long-lived radionuclides under irradiation and thirdly a high solubility of the salt in the aqueous matrix. Here we report the proof of principle of the new radionuclide production concept by irradiation of strontium nitrate dissolved in water in order to produce {sup 86}Y (cf.). (orig.)

  8. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT

    DEFF Research Database (Denmark)

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated ...

  9. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  10. Should single-phase radionuclide bone imaging be used in suspected osteomyelitis

    International Nuclear Information System (INIS)

    Fihn, S.D.; Larson, E.B.; Nelp, W.B.; Rudd, T.G.; Gerber, F.H.

    1984-01-01

    The records of 69 patients who had 86 delayed, static radionuclide bone images for suspected osteomyelitis were studied to determine the effects of this procedure on diagnosis and treatment. Sensitivity, specificity, and positive predictive value were lower than reported in several other studies. When osteomyelitis was unlikely, imaging was either negative or falsely positive and rarely affected treatment. In 46 cases where osteomyelitis was more likely, imaging potentially changed therapy in 19 but was unhelpful or misleading in 15. Static-phase images with ''definite'' interpretations, particularly when negative, are specific, but ''equivocal'' studies may lead to diagnostic and therapeutic errors. When ostemyelitis is improbable, imaging rarely changes diagnosis or therapy

  11. The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy.

    Science.gov (United States)

    Lehenberger, Silvia; Barkhausen, Christoph; Cohrs, Susan; Fischer, Eliane; Grünberg, Jürgen; Hohn, Alexander; Köster, Ulli; Schibli, Roger; Türler, Andreas; Zhernosekov, Konstantin

    2011-08-01

    The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging. The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate. We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Evaluation of radioiodinated vesamicol analogs for sigma receptor imaging in tumor and radionuclide receptor therapy.

    Science.gov (United States)

    Ogawa, Kazuma; Shiba, Kazuhiro; Akhter, Nasima; Yoshimoto, Mitsuyoshi; Washiyama, Kohshin; Kinuya, Seigo; Kawai, Keiichi; Mori, Hirofumi

    2009-11-01

    It has been reported that sigma receptors are highly expressed in a variety of human tumors. In this study, we selected (+)-2-[4-(4-iodophenyl)piperidino] cyclohexanol [(+)-pIV] as a sigma receptor ligand and evaluated the potential of radioiodinated (+)-pIV for tumor imaging and therapy. (+)-[(125/131)I]pIV was prepared by an iododestannylation reaction under no-carrier-added conditions with radiochemical purity over 99% after HPLC purification. Biodistribution experiments were performed by the intravenous injection of (+)-[(125)I]pIV into mice bearing human prostate tumors (DU-145). Blocking studies were performed by intravenous injection of (+)-[(125)I]pIV mixed with an excess amount of unlabeled sigma ligand into DU-145 tumor-bearing mice. For therapeutic study, (+)-[(131)I]pIV was injected at a dose of 7.4 MBq followed by measurement of the tumor size. In biodistribution experiments, (+)-[(125)I]pIV showed high uptake and long residence in the tumor. High tumor to blood and muscle ratios were achieved because the radioactivity levels of blood and muscle were low. However, the accumulations of radioactivity in non-target tissues, such as liver and kidney, were high. The radioactivity in the non-target tissues slowly decreased over time. Co-injection of (+)-[(125)I]pIV with an excess amount of unlabeled sigma ligand resulted in a significant decrease in the tumor/blood ratio, indicating sigma receptor-mediated tumor uptake. In therapeutic study, tumor growth in mice treated with (+)-[(131)I]pIV was significantly inhibited compared to that of an untreated group. These results indicate that radioiodinated (+)-pIV has a high potential for sigma receptor imaging in tumor and radionuclide receptor therapy.

  13. Diagnostic value of radionuclide imaging combined with routine CT in detecting hepatic focal nodular hyperplasia

    International Nuclear Information System (INIS)

    Lu Xuemin; Yu Shuhong; Han Jiankui

    2011-01-01

    Objective: To investigate radionuclide imaging and routine CT in diagnosing hepatic focal nodular hyperplasia (FNH) and the combined diagnostic value of the two modalities. Methods: Thirty-two patients with hepatic FNH were retrospectively studied. All patients underwent routine CT scan. Twenty-four patients were examined by 99 Tc m -sulfur colloid (SC) hepatic planar scintigraphy and SPECT/CT imaging, and then patients who had abnormal foci underwent 99 Tc m -diethyl iminodiacetic acid (EHIDA) triple-phase hepatobiliary imaging. χ 2 -test of four-table or Fisher exact probabilities in 2 × 2 table was applied for statistical analysis. Results: Of all 32 patients pathologically diagnosed as FNH with single solitary nodule, 25 were classified as classic type and the rest 7 as non-classic type. Although routine CT found all hepatic lesions, only 15 cases were diagnosed pathologically as FNH classic type but the rest were either misdiagnosed or left as indeterminate. On radionuclide imaging (hepatic colloid scintigraphy plus triple-phase hepatobiliary images), 11 patients with big foci (with maximal diameter >3 cm) out of 24 patients were correctly diagnosed as FNH, with 7 diagnosed as classic type FNH and 4 as non-classic. Other 13 patients were either misdiagnosed or simply missed. The diagnosing rates of routine CT and radionuclide imaging were 60.0% (15/25) and 38.9% (7/18) for FNH classic type, 0/7 and 4/6 for non-classic type, 50.0% (10/20) and 73.3% (11/15) for big foci, 41.7% (5/12) and 0/9 for small foci (with maximal diameter ≤3 cm), respectively. The total diagnosing rate of radionuclide imaging combined with routine CT was significantly higher than that of routine CT or radionuclide imaging alone (χ 2 =4.48, P<0.05; χ 2 =4.27, P<0.05). Conclusion: Radionuclide imaging in combination with routine CT may improve the diagnostic accuracy for hepatic FNH patients. (authors)

  14. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.

  15. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    International Nuclear Information System (INIS)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury

  16. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    Science.gov (United States)

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  17. Neuroendocrine Tumours : From Radiomolecular Imaging to Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    GEORGIOS eLIMOURIS

    2012-02-01

    Full Text Available Transhepatic radionuclide infusion (THRI has been introduced as a new treatment approach for unresectable liver neuroendocrine metastatic lesions with the prerequisite of a positive In-111 Pentetreotide (Octreoscan. Patients with multiple liver neuroendocrine metastases can be locally treated after selective hepatic artery catheterization and infusion of radiolabelled somatostatin analogues, and in case of extra-hepatic secondary spread, after simple i.v. application. According to the world wide references, the average dose per session to each patient is 6.3±0.3 GBq (~ 160-180 mCi of In-111-DTPA-Phe1- Pentetreotide, 10-12 fold in total, administered monthly or of 4.1± 0.2 GBq (~105-116 mCi of Y-90 DOTA TOC, 3 fold in total or of 7.0 ± 0.4 GBq (~178-200 mCi of Lu-177 DOTA TATE, 4-6 fold in total (the choice of which being based on the tumor size, assessed by CT or MRI . Follow-up at monthly intervals has to be performed by means of ultrasonography (US. Treat- ment response has to be assessed according to the WHO criteria (RECIST or SWOG.

  18. Hyperparathyroidism: comparison of MR imaging with radionuclide scanning

    International Nuclear Information System (INIS)

    Peck, W.W.; Higgins, C.B.; Fisher, M.R.; Ling, M.; Okerlund, M.D.; Clark, O.H.

    1987-01-01

    Twenty-three patients with hyperparathyroidism were evaluated preoperatively with magnetic resonance (MR) imaging. Twenty patients also underwent thallium-201/technetium-99m scintigraphy. Of 22 patients with primary hyperparathyroidism, 12 had persistent or recurrent disease. One had secondary hyperparathyroidism due to end-stage renal disease. MR imaging allowed accurate localization of abnormal parathyroid glands in 64% evaluated prospectively and 82% evaluated retrospectively. Scintigraphy allowed localization of 60% evaluated prospectively and 70% retrospectively. The two imaging modalities together allowed detection of 68% evaluated prospectively and 91% retrospectively. MR imaging allowed detection of two of five mediastinal adenomas evaluated prospectively and four of five retrospectively. In patients who underwent both imaging studies, MR was more successful in those with previous neck surgery (73% evaluated prospectively and 91% retrospectively) than in those with no prior surgery (57% prospectively and 71% retrospectively). Scintigraphy allowed accurate localization in 64% evaluated prospectively and 64% retrospectively in patients with previous surgery versus 57% prospectively and 86% retrospectively in patients with no prior neck surgery. Four false-positive results were obtained with MR imaging and three with scintigraphy. MR imaging was useful for parathyroid localization in patients with hyperparathyroidism, particularly in patients requiring additional surgery

  19. Radionuclide imaging of the liver in human fascioliasis

    International Nuclear Information System (INIS)

    Rivera, J.V.; Bermudez, R.H.

    1984-01-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested

  20. Detection and evaluation of left atrial myxoma by gated radionuclide imaging

    International Nuclear Information System (INIS)

    Sugihara, Hiroki; Adachi, Haruhiko; Nakagawa, Hiroaki

    1985-01-01

    Radionuclide imaging plays an important role in diagnosising left atrial myxoma (LAM). We discussed diagnostic value of Fourier analysis with phase image and evaluated left ventricular filling function using indices such as 1/3 Filling Fraction, Rapid Filling Fraction and Peak Filling Rate derived from left ventricular volume curve. Equillibrium radionuclide angiocardiography was performed in 6 LAM patients. Phase delay in the basal portion of the left ventricle was shown in 5 of 6 LAM patients, and standard deviation of left ventricular phase was larger than these of controls. Left ventricular filling disturbance was suggested in 5 of 6 LAM patients. After surgical remove of myxoma phase delay was disappeared and standard deviation was normalized. And left ventricular filling was improved. We concluded that the phase image of Fourier analysis revealed a left atrial mass prolapsing in the left ventricule during the diastole, and that diastolic indices were useful for left ventricular filling disturbance due to LAM. (author)

  1. Target Detection Using an AOTF Hyperspectral Imager

    Science.gov (United States)

    Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.

    1994-01-01

    This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.

  2. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  3. Ventilation perfusion radionuclide imaging in cryptogenic fibrosing alveolitis

    International Nuclear Information System (INIS)

    Bourke, S.J.; Hawkins, T.; Keavey, P.M.; Gascoigne, A.D.; Corris, P.A.

    1993-01-01

    There is increasing interest in ventilation perfusion (V/Q) imaging in cryptogenic fibrosing alveolitis because of the data these scans provide on the dynamic V/Q relationships in such patients undergoing single lung transplantation. We analysed the V/Q scans of 45 consecutive patients with advanced cryptogenic fibrosing alveolitis being considered for single lung transplantation. Scans were classified according to the presence, severity and degree of matching of defects in ventilation and perfusion images and the results were compared with the data obtained from lung function tests. Ventilation images showed defects in 13 (29%) and ''washout delay'' in 15 (33%) patients; 10 (22%) patients had asymmetric distribution of ventilation with one lung receiving >60% of total ventilation. Perfusion images showed normal perfusion in 8 (18%), mild defects in 18 (40%) and major defects in 19 (42%) patients. The distribution of perfusion between lungs was significantly asymmetric in 20 (45%) patients. V/Q images were matched in 15 (33%), mildly mismatched in 15 (33%) and severely mismatched in 15 (33%) patients, but the degree of V/Q mismatch did not show a relationship to KCO, PaO 2 or A-aO 2 gradient. The appearances were atypical of pulmonary embolism in eight patients. (Author)

  4. Production and dosimetric aspects of the potent Auger emitter Co-58m for targeted radionuclide therapy of small tumours

    DEFF Research Database (Denmark)

    Thisgaard, Helge; Elema, Dennis Ringkjøbing; Jensen, Mikael

    2011-01-01

    Based on theoretical calculations, the Auger emitter 58mCo has been identified as a potent nuclide for targeted radionuclide therapy of small tumors. During the production of this isotope, the coproduction of the long-lived ground state 58gCo is unfortunately unavoidable, as is ingrowth of the gr...

  5. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  6. Atlas of total body radionuclide imaging. Volume I and II

    International Nuclear Information System (INIS)

    Fordham, E.W.; Ali, A.; Turner, D.A.; Charters, J.

    1982-01-01

    This two-volume work on total body imaging may well be regarded by future historians of nuclear medicine as representing the high points in the art of total body imaging in clinical nuclear medicine. With regard to information content and volume, it is the largest collection of well-interpreted, beautifully reproduced, total body images available to date. The primary goal of this atlas is to demonstrate patterns of abnormality in both typical and less typical variations. This goal is accomplished with many well-described examples of technical artifacts, of normal variants, of common and of rare diseases, and of pitfalls in interpretations. Volume I is entirely dedicated to skeletal imaging with Tc-99m labeled phosphates or phosphonates. The volume is divided into 22 chapters, which include chapters on methodology and instrumentation, chapters on the important bone diseases and other topics such as a treatise on false-negative and false-positive scans, and soft tissue and urinary tract abnormalities recognizable on bone scintigrams

  7. High-tension electrical injury to the heart as assessed by radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Hitoshi; Chikamori, Taishiro; Hatano, Tsuguhisa [Tokyo Medical Coll. (Japan)] [and others

    2002-12-01

    The purpose of this study was to evaluate cardiac complications associated with electrical injury, 7 patients with high-tension electrical injury (6,600 V alternating current) underwent {sup 201}Tl and {sup 123}I-metaiodobenzylguanidine (MIBG) imaging in addition to conventional electrocardiographic and echocardiographic assessments. Electrocardiography showed transient atrial fibrillation, second degree atrioventricular block, ST-segment depression, and sinus bradycardia in each patient. Echocardiography showed mild hypokinesis of the anterior wall in only 2 patients, but {sup 201}Tl and {sup 123}I-MIBG myocardial scintigraphy showed an abnormal scan image in 6/7 and 5/6 patients, respectively. Decreased radionuclide accumulation was seen primarily in areas extending from the anterior wall to the septum. Decreased radionuclide accumulation was smaller in extent and milder in degree in {sup 123}I-MIBG than in {sup 201}Tl imaging. These results suggest that even in patients without definite evidence of severe cardiac complications in conventional examinations, radionuclide imaging detects significant damage due to high-tension electrical injury, in which sympathetic nerve dysfunction might be milder than myocardial cell damage. (author)

  8. Testicular radionuclide angiography and sttatic imaging: anatomy, scintigraphic interpretation, and clinical indications

    International Nuclear Information System (INIS)

    Holder, L.E.; Martire, J.R.; Holmes, E.R. III.; Wagner, H.N. Jr.

    1977-01-01

    Radionuclide testicular angiography and static imaging is an easy, rapidly performed study. Its usefulness in separating acute testicular torsion from acute epididymitis has been confirmed. Increased angiographic perfusion with definition of the testicular and deferential arteries in the spermatic cord and the pudendal artery posteriorly is equated with inflammation. Intense increased vascularity on the blood pool image is seen in abscess and acute inflammation, while cases of tumor and trauma have mild increases. Acute or missed testicular torsion, uncomplicated hydroceles, and spermatoceles show absent vascularity. On the static images, decreased activity is characteristic of the shape and location of the avascular structure. Technical factors are stressed

  9. Radionuclide imaging in primary and secondary disorders of the myocardium

    International Nuclear Information System (INIS)

    Follansbee, W.P.

    1987-01-01

    The list of all potential causes of myocardial disease or injury is an extensive one: a condensed version is presented. Conceptually these processes can be categorized into those which are, or appear to be, primary to the myocardium and those which secondarily involve it. Nuclear imaging procedures, particularly those used to assess ventricular function, are in a general sense potentially applicable to the clinical evaluation of any of these entities. In certain of these conditions, however, nuclear cardiac procedures have a demonstrated or potential additional and more specific role for the diagnosis and quantification of the entity. A number of these, including coronary artery disease, valvular heart disease, cor pulmonale, and myocardial trauma, are the topics of other chapters and, therefore, are not dealt with further here. The remainder of the myocardial disorders in which nuclear imaging procedures have a recognized or potential specific role are the focus of this discussion

  10. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  11. New developments in techniques for information processing in radionuclide imaging

    International Nuclear Information System (INIS)

    Di Paola, R.; Todd-Pokropek, A.E.; CEA, 91 - Orsay

    1981-01-01

    Processing of scintigraphic data has passed through different stages in the past fifteen years. After an 'euphoric' era when large off-line computer facilities were used to process very low-quality rectilinear scan pictures, a much more critical period followed the introduction of on-line minicomputer systems to acquire, process and visualize scintillation camera data. A selection of some of the available techniques that could improve the extraction of information from scintigraphic examinations in routine is presented. Tomography has been excluded. As examples, the different techniques of (a) inhomogeneity correction of camera response and (b) respiratory motion corrections are used to show one evolutionary process in the use of computer systems. Filtering has been for a long time the major area of research in scintigraphic image processing. Only very simple (usually smoothing) filters are widely distributed. Little use of more 'powerful' filters in clinical data has been made, and very few serious evaluations have been published. Nevertheless, the number of installed minicomputer and microprocessor systems is increasing rapidly, but in general performing tasks other than filtering. The reasons for this (relative) failure are examined. Some 'new' techniques of image processing are presented. The compression of scintigraphic information is important because of the expected need in the near future for handling of large numbers of static pictures as in dynamic and tomographic studies. For dynamic information processing, the present methodology has been narrowed to those techniques that permit the entire 'data space' to be manipulated (as opposed to curve fitting after region of interest definition). 'Functional' imaging was the first step in this process. 'Factor analysis' could be the next. The results obtained by various research laboratories are reviewed. (author)

  12. Radionuclide joint imaging in osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Peng Jingjing

    1988-01-01

    31 knee joints of 17 patients were studied with radinuclide joint imaging (RJI). The knees were afficted with primary osteoarthritis associated with various deformity. In comparison with the normal group, RJI of the group of osteoarthritiis showed increased radioactivity in medial compartment of the femorotibial articulation. The ratio of medial to lateral condyle activity was increased. The difference between the two groups was singificant (P < 0.01). In the 'hot patella' groups, the ratio of the activity of the patella to that of the femoral condyle was also increased. The difference between the group and the normals was significant (P < 0.01). Clinical evaluation of RJI was discussed

  13. Local experience on radionuclide myocardial imaging in the Philippines at the Philippine Heart Center for Asia

    International Nuclear Information System (INIS)

    Villacorta, E.V.

    1977-01-01

    The Nuclear Medicine Department of the Philippine Heart Center has introduced the detection of coronary heart disease through myocardiac perfusion imaging. The cardiovascular procedures are availed of free-of-charge to registered PHCA patients excepting for the costly TI-201 imaging. In summary, coronary perfusion in imaging should be an integral part of coronary arteriography. Barring the expensive cost of TI-120, myocardial perfusion imaging is ideal for detection of coronary heart disease. Experience shows better sensitivity of TI-201 than exercise ECG for detection of ischemia. Another non-invasive procedure for the detection of acute infarction is the radionuclide imaging using a bone radiopharmaceutical Tc99m prophosphate. In conclusion, acute infarct imaging is a valuable adjunct to ECG and enzyme studies. (RTD)

  14. Improved techniques in radionuclides imaging of prostatic lymph nodes

    International Nuclear Information System (INIS)

    Gardiner, R.A.; Fitzpatrick, J.M.; Constable, A.R.; Cranage, R.W.; O'Donoghue, E.P.N.; Wickham, J.E.A.

    1979-01-01

    Further improvements were made in the techniques of human prostatic lymphoscintigraphy, allowing better anatomical localisation of the areas of uptake of activity. A single median injection into the capsule of sup(99m)Tc labelled antimony sulphide colloid was found to give as good imaging as 2 injections on either side of the midline. By placing markers on the umbilicus, pubic symphysis and both anterior superior iliac spines, a 'pelvic grid' could be superimposed on the antero-posterior view. Further help with accurate localisation may be attained by taking 3 views; anterio-posterior, postero-anterior and lateral. In 9 instances, prostatic injection was performed without any sedation or anaesthesia. The resulting scintigrams were indistinguishable in quality from those of anaesthetised patients. (author)

  15. Clinical applications of cobalt-radionuclides in neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H.M.L

    1998-04-01

    The aim of the studies embodied in this thesis was to investigate the clinical applicability of Co in euro-imaging using positron emission tomography (PET). To this purpose, a set of closely related pilot studies were performed in patients suffering from several neurological diseases affecting the brain. Chapter 2 discusses the physiological role of Co and both indications and complications of Co-administration in the past. The probable deposition mechanism of Co is described, potential (absence of) evidence of Co mimicking Ca in vivo is discussed, a comparison is made with other tracer-analogues (Ga, TI, Rb) and several hypotheses with respect to the pharmacokinetic behaviour of Co and the role of (inflammatory) proteins and cells are forwarded. The etiologic mechanism(s), clinical symptoms, Ca-related pathophysiology and (most recent) imaging techniques are reviewed of Multiple Sclerosis, cerebrovascular stroke, traumatic brain injury and primary brain tumours. The major goal of these respective reviews is both a rough outline of present insights and near-future developments and an assessment of the (im)possibilities in visualising the actual substrate of disease. Since Co is assumed to reflect (the common pathway of) Ca, an application of Co (based on cell-decay and inflammation) may be hypothesised in all of the diseases mentioned. These considerations served as a theoretical basis for our further studies in clinical practice. Chapter 3 (Original reprints) presents the actual results, whil Chapter 4 (General discussion) reflects on lessons that can be learned from the present work and consequently formulates some suggestions for future (extended) studies. The contours of possible new emerging areas of interest (dementia of the Alzheimer type; vascular dementia; stunned myocardium) are drawn in continuation of the foregoing studies. 47 refs.

  16. Comparative analysis of radionuclide inhalation and perfusion lung imaging with X ray pulmonary angiography for the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Zhang Yanyan; Chen Man; Shao Maogang; Zhang Songlin; Mao Jieming; Guo Jingxuan

    1993-01-01

    The result of radionuclide lung imaging was compared in 18 patients of pulmonary embolism (PE) and 2 normal persons. The discovered perfusion defects correlated well with the location of angiographic obstruction. The positive angiographic and radionuclide finding was in 141 and 104 emboli arteries respectively. The sensitivity of total emboli pulmonary segments of lung imaging was 73.8%, the specificity was 82.7 and the accuracy was 79%. The techniques correlated quite well (r = 0.83, P<0.001)

  17. First meeting on the CRP 'standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides'

    International Nuclear Information System (INIS)

    Winkel, P. van den

    2000-01-01

    The Cyclotron Department of the VUB has three groups performing research in the field of target development, production of radionuclides and their application in nuclear medicine. 1. The Physics Group is busy on the optimization of beam parameters, on the determination of cross sections and on neutron spectrometry. 2. The Inorganic Radiochemistry Group performs research on solid target electroplating (Tl, Zn, Cd, Rh ... ), on optimisation of target carrier geometry and cooling and on automated PC-controlled radiochemistry (Tl-201, Ga-67, In-111) and recovery systems and the associated software written in Modula-2 and Visual Basic. 3. The Organic Radiochemistry Group develops new techniques for radiolabelling of organic molecules (fatty acids, neuroleptics, synthetic polypeptides...) useful in diagnostic and therapeutic nuclear medicine. All three groups take part in bulk productions of radionuclides

  18. Practical considerations in radionuclide imaging of pediatric patients

    International Nuclear Information System (INIS)

    Conway, J.J.

    1984-01-01

    A certain proportion of the patients encountered in the practice of nuclear medicine will fall within the pediatric age group. The pediatric age range is usually defined as extending from birth to 18 years. Therefore, the specialist in nuclear medicine may have to deal with pediatric patients weighing as little as 800 g or as much as 300 lb. This encounter may be pleasant or unpleasant, depending upon the physician's knowledge of the techniques required for handling children and obtaining an adequate study and a basic understanding of specific pediatric disorders. Among the issues that must be considered are the equipment, which must be suitable for handling and obtaining optimal images of small children; the development of a basic understanding of the peculiarities of radiopharmaceutical distribution in children, which differs from that in adults; and, importantly, a knowledge of radiation dosimetry as it relates to the pediatric patient. It is beyond the scope of this chapter to present a comprehensive dissertation on the topic of pediatric nuclear medicine. The theme therefore is limited to the general principles and techniques required for nuclear medicine studies on pediatric patients. In addition, studies that exhibit unique characteristics when performed on children are highlighted in an effort to define that essence of pediatric nuclear medicine that differentiates it from the practice of nuclear medicine in adults

  19. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  20. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  1. Feasibility of dual radionuclide brain imaging with I-123 and Tc-99m

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Loncaric, S.; Franceschi, D.

    1994-01-01

    A study was conducted to evaluate the feasibility of simultaneous dual radionuclide brain imaging with 123 I and 99m Tc using photopeak image subtraction techniques or offset photopeak image acquisition. The contribution of the photons from one radionuclide to a second radionuclide's photopeak energy window (crosstalk) was evaluated for SPECT and planar imaging of a brain phantom containing 123 I and 99m Tc for a range of activity levels and distribution properties approximating those in rCBF images of the adult human brain. Crosstalk was evaluated for 10% symmetrical energy windows centered on the 123 I and 99m Tc photopeaks and for 10% energy windows asymmetrically placed to the left and right of the center of the respective photopeaks. It was observed that the centered photopeak windows, 99m Tc crosstalk in the 123 I window is 8.9% of the 99m Tc seen in the 99m Tc window and ranges from 37.5% to 75.0% of the 123 I in the 123 I window. 123 I crosstalk is 37.8% of the 123 I seen in the 123 I window and ranges from 4.4% to 8.9% of the 99m Tc seen in the 99m Tc window. The spatial distribution of a radionuclide's crosstalk photons differs from that observed in the radionuclide's photopeak window. A 99m Tc photopeak window offset to the left does not decrease 123 I crosstalk, and the percentage of 99m Tc scattered photons is significantly increased in the window. Offsetting the 123 I window to the right decreases 99m Tc crosstalk to 9.0% to 17.9% of the 123 I counts, but decreases 123 I sensitivity by 39.9%. Offsetting both photopeak windows to the right decreases the 99m Tc scattered photons in the 99m Tc window, but increases 123 I crosstalk to 17.0% to 33.8% of the 99m Tc counts

  2. Production of {sup 177}Lu for targeted radionuclide therapy: Available options

    Energy Technology Data Exchange (ETDEWEB)

    Dah, Ashutosh [Isotope Production and Applications Division, Bhabha Atomic Research Centre (BARC), Mumbai (India); Pillai, Maroor Raghavan Ambikalmajan [Molecular Group of Companies. Kerala (India); Knapp, Furn F. Jr. [Medical Isotopes Program, Isotope Dept. Group, Oak Ridge National Laboratory (ORNL), Oak Ridge (United States)

    2015-06-15

    This review provides a comprehensive summary of the production of {sup 177}Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of {sup 177}Lu having the required quality for preparation of a variety of {sup 177}Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of {sup 177}Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable {sup 177}Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with {sup 177}Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of {sup 177}Lu-labeled radiopharmaceuticals, but also help future developments.

  3. Development of Reagents for Application of At-211 to Targeted Radionuclide Therapy of Cancer

    International Nuclear Information System (INIS)

    Wilbur, D. Scott

    2011-01-01

    This grant covered only a period of 4 months as the major portion of the award was returned to DOE due to an award of funding from NIH that covered the same research objectives. A letter regarding the termination of the research is attached as the last page of the Final Report. The research conducted was limited due to the short period of this grant, but the results obtained in that period are outlined in the Final Report. The studies addressed in the research effort were directed at a problem that is of critical importance to the in vivo application of the alpha-particle emitting radionuclide At-211. That problem, low in vivo stability of many astatinated molecules, severely limits the use of At-211 in therapeutic applications. The advances sought in the studies were expected to expand the types of biomolecules that can be used as carriers of At-211, and provide improved in vivo targeting of the radiation dose compared with the dose delivered to normal tissue.

  4. Myocardial imaging in coronary heart disease with radionuclides, with emphasis on thallium-201

    Energy Technology Data Exchange (ETDEWEB)

    Wackers, F J.Th.; Sokole, E B; Samson, G; van der Schoot, J B; Wellens, H J.J. [Amsterdam Univ. (Netherlands). Academisch Ziekenhuis

    1976-09-01

    During the past few years there has been an increasing interest in cardiology for myocardial imaging with radionuclides. At present the experience with both negative (thallium-201) and positive (sup(99m)Tc-pyrophosphate) imaging of myocardial infarction is increasing rapidly. Since 1974, over 1100 patient studies with thallium-201 were performed. In this article a survey is presented of experience with thallium-201 in patients with acute and chronic coronary artery disease. In patients with acute myocardial infarction data from studies with sup(99m)Tc-pyrophosphate will be discussed as well.

  5. The evaluation of gastroesophageal reflux in children with chronic respiratory diseases by radionuclide gastroesophageal imaging

    International Nuclear Information System (INIS)

    Zhao Ruifang; Zeng Jihua; Shi Yumin

    1999-01-01

    Objective: To evaluate the gastroesophageal reflux (GER) in children with chronic respiratory diseases (CRD) by radionuclide gastroesophageal imaging and to investigate the therapeutic effect of Cisapride. Methods: 45 patients were studied with 99 Tc m -DTPA gastroesophageal imaging, and compared the results with those obtained from 8 normal children. The repeated imagings were performed on some of the cases at the end of a three months' Cisapride therapy. Results: 25 (55%) among 45 patients were diagnosed as GER by imaging, while none of 8 normal children. 10 cases with GER received Cisapride therapy for 3 months. At the end of the treatment, the second imaging revealed that GER completely disappeared in 7 of them, and clinical follow-up showed marked improvement of CRD symptoms. Conclusions: The incidence of GER among with CRD children is rather great. Cisapride therapy not only remarkably relieve reflux, but also improve the symptoms of CRD

  6. SPECT versus planar bone radionuclide imaging in the detection of spondylolysis

    International Nuclear Information System (INIS)

    Whitten, C.G.; El-Khoury, G.Y.; Chang, P.J.; Seabold, J.E.; Found, E.M.; Renfrew, D.L.

    1991-01-01

    This paper evaluates the relative performance and ease of interpretation of SPECT versus planar radionuclide bone imaging in the detection of spondylolysis. The authors studied all patients presenting with back pain suggestive of spondylolysis from November 1989 to January 1991 who underwent bone scanning; patients underwent both planar and SPECT imaging. The planar and SPECT images were randomly mixed and independently interpreted by four observers for presence or absence of spondylolysis and ease of interpretation for each scan. Receiver operating characteristic (ROC) and analysis of variance (ANOVA) were used. Of 72 patients, 19 had confirmed spondylolysis, and 53 did not. While ROC analysis showed that SPECT performed slightly better than planar imaging for all four observers, the difference was not statistically significant. ANOVA results suggest that planar imaging was significantly easier to use than SPECT and that ease of use was strongly correlated with the observer's confidence in the diagnosis

  7. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  8. Analysis of cardiac images of radionuclide ventriculography in AT-Type personal computer

    International Nuclear Information System (INIS)

    Lillo, R.; Gonzalez, P.; Ehijo, A.; Otarola, T.M.S.; Ortiz, M.; Silva, A.M.; Ortiz, M.

    1990-01-01

    The goal of this research was to produce software for the processing of Cardiac Phase images in personal computers. The results of standard radionuclide Ventriculography and Fourier analysis, got on gamma camera Ohio Nuclear 410 Sygma and Digital PDP 11/34 computer were coded into ASCII file and then transfered via Smarterm 220/Kermit to an Accel 900 AT PC. After decoding the images they were processed with a program develope in C Lenguaje obtaining the values of Phase Angles in the whole phase images and in regions of interest drawn around the cardiac chambers. The images and values were the same as those obtained by conventional processing in the PDP 11/34 computer. This is considered a first stage for the use of PC to Nuclear Medicine imaging studies. (author)

  9. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  10. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  11. Proceedings of Soil Decon '93: Technology targeting radionuclides and heavy metals

    International Nuclear Information System (INIS)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document

  12. Evaluation of cardiac involvement using radionuclide myuocardial imaging in patients with Takayasu arteritis

    International Nuclear Information System (INIS)

    Yang Minfu; Guo Xinhua; He Zuoxiang; Jiang Xiongjing; Dou Kefei

    2008-01-01

    Objective: The aim of the study was to assess the value of radionuclide myocardial imaging in the evaluation of cardiac involvement in patients with Takayasu arteritis (TA). Methods: The 99 Tc m -methoxyisobutylisonitrile myocardial perlusion imaging (MIBI-MPI) and (or) 18 F-fluorodeoxyglucose (FDG) PET imaging findings in 12 TA patients [3 men and 9 women, mean age (35 ± 15) years] with coronary lesions (CL; n=8) or aortic insufficiency (AI; n=4) were retrospectively reviewed and analysed. Of the 4 AI-TA patients, 1 underwent exercise MIBI-MPI, 1 underwent pharmacologic stress MIBI-MPI and 2 un- derwent resting MIBI-MPI. Of the 8 CL-TA patients, 4 pnderwent MIBI-MPI (2 stress and 2 rest) and 4 un- derwent a dual-isotope simultaneous acquisition (DISA) SPECT protocol after injection of MIBI and FDG. Results: All 4 AI-TA patients showed left ventricular enlargement but no peffusion abnormalities. In 3 CL- TA patients with no documented infarct, MPI or DISA showed stress ischemia (n=2) or mismatched perfusion-metabolism defects (n=1). In the remaining 5 CL-TA patients with documented infarcts, 2 showed large perfusion defects on resting MIBI and 3 showed matched perfusion-metabolism defects on DISA SPECT. Conclusion: Radionuclide imaging is useful in providing a comprehensive functional evaluation for TA patients with cardiac involvement. (authors)

  13. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Institute of Scientific and Technical Information of China (English)

    Jean-Fran?ois Sarrazin; Fran?ois Philippon; Mika?l Trottier; Michel Tessier

    2016-01-01

    Cardiovascular implantable electronic device(CIED) infection and prosthetic valve endocarditis(PVE) remain a diagnostic challenge.Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE.Over the past few years,cardiac radionuclide imaging has gained a key role in the diagnosis of these patients,and in assessing the need for surgery,mainly in the most difficult cases.Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography(18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography(WBC SPECT/CT) have been studied in these situations.In their 2015 guidelines for the management of infective endocarditis,the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE,but not CIED infection since the data were judged insufficient at the moment.This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE,and describes the technical aspects of cardiac radionuclide imaging.It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE,the limitations of these tests,and potential areas of future research.

  14. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Science.gov (United States)

    Sarrazin, Jean-François; Philippon, François; Trottier, Mikaël; Tessier, Michel

    2016-01-01

    Cardiovascular implantable electronic device (CIED) infection and prosthetic valve endocarditis (PVE) remain a diagnostic challenge. Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE. Over the past few years, cardiac radionuclide imaging has gained a key role in the diagnosis of these patients, and in assessing the need for surgery, mainly in the most difficult cases. Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography (WBC SPECT/CT) have been studied in these situations. In their 2015 guidelines for the management of infective endocarditis, the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE, but not CIED infection since the data were judged insufficient at the moment. This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE, and describes the technical aspects of cardiac radionuclide imaging. It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE, the limitations of these tests, and potential areas of future research. PMID:27721936

  15. Radionuclide imaging of the painful joint replacement: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, Christopher J. [Long Island Jewish Medical Center, New Hyde Park, NY (United States)]. E-mail: palestro@lij.edu

    2002-09-01

    Differentiating aseptic loosening from infection as the cause of prosthetic joint failure is difficult because both entities are similar, clinically and histopathologically. Aseptic loosening frequently result from an immune reaction to the prosthesis. There is inflammation with an influx of histiocytes, giant cells, lymphocytes and plasma cells. Pro inflammatory cytokines and proteolytic enzymes are secreted, causing osteolysis and loosening. These same events occur in infection except that neutrophils, rarely present in aseptic loosening, area invariably present in infection. Clinical signs and symptoms, laboratory tests, X-rays and joint aspiration are insensitive, nonspecific or both. Artifacts produced by the metallic hardware hamper cross-sectional imaging modalities. Radionuclide imaging is not affected by the presence of metallic hardware and is very useful for evaluating the painful prosthesis. Bone scintigraphy, with and accuracy of 50%-70% is a useful screening test, since a normal study effectively excludes a prosthetic complication. Adding gallium-67, a nonspecific inflammation-imaging agent, improves the accuracy of bone scintigraphy to 70%-80%. The accuracy of combined leukocyte/marrow imaging, 90%, is the highest among available radionuclide studies. Its success is due to the fact that leukocytes imaging is most sensitive for detecting neutrophil mediated inflammations. Inflammatory conditions that are neutrophil-poor, even though large numbers of other leukocytes may be present, (such as the aseptically loosened joint prosthesis) go undetected. The success of leukocyte/marrow imaging is tempered by the limitations of in vitro labeling. In vivo labeling has been investigated and a murine monoclonal anti-granulocyte antibody appears promising. Some investigations have focused on F-18 FDG imaging, although specificity is a concern with this agent. (author)

  16. Radionuclide imaging of the painful joint replacement: past, present and future

    International Nuclear Information System (INIS)

    Palestro, Christopher J.

    2002-01-01

    Differentiating aseptic loosening from infection as the cause of prosthetic joint failure is difficult because both entities are similar, clinically and histopathologically. Aseptic loosening frequently result from an immune reaction to the prosthesis. There is inflammation with an influx of histiocytes, giant cells, lymphocytes and plasma cells. Pro inflammatory cytokines and proteolytic enzymes are secreted, causing osteolysis and loosening. These same events occur in infection except that neutrophils, rarely present in aseptic loosening, area invariably present in infection. Clinical signs and symptoms, laboratory tests, X-rays and joint aspiration are insensitive, nonspecific or both. Artifacts produced by the metallic hardware hamper cross-sectional imaging modalities. Radionuclide imaging is not affected by the presence of metallic hardware and is very useful for evaluating the painful prosthesis. Bone scintigraphy, with and accuracy of 50%-70% is a useful screening test, since a normal study effectively excludes a prosthetic complication. Adding gallium-67, a nonspecific inflammation-imaging agent, improves the accuracy of bone scintigraphy to 70%-80%. The accuracy of combined leukocyte/marrow imaging, 90%, is the highest among available radionuclide studies. Its success is due to the fact that leukocytes imaging is most sensitive for detecting neutrophil mediated inflammations. Inflammatory conditions that are neutrophil-poor, even though large numbers of other leukocytes may be present, (such as the aseptically loosened joint prosthesis) go undetected. The success of leukocyte/marrow imaging is tempered by the limitations of in vitro labeling. In vivo labeling has been investigated and a murine monoclonal anti-granulocyte antibody appears promising. Some investigations have focused on F-18 FDG imaging, although specificity is a concern with this agent. (author)

  17. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    International Nuclear Information System (INIS)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob; Ploug, Michael; Kjaer, Andreas

    2012-01-01

    The proposition of uPAR as a potential target in cancer therapy is advanced by its predominant expression at the invasive front of colorectal cancer (CRC) and its value as prognostic biomarker for poor survival in this disease. In this study, we provide the first in vivo proof-of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. Methods: A DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64 Cu and 177 Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29 cells were inoculated in Nude mice and treated with 177 Lu-DOTA-AE105 once a visible tumor had formed. To evaluate the true effect of the targeted radiotherapy, two controls groups were included in this study, one receiving a 177 Lu-labeled non-binding control peptide and one receiving vehicle. All animals were treated day 0 and 7. A parallel 18 F-FLT PET/CT study was performed on day 0, 1, 3 and 6. Dosimetry calculations were based on a biodistribution study, where organs and tissue of interest were collected 0.5, 1.0, 2.0, 4.0 and 24 h post injection of 177 Lu-DOTA-AE105. Toxicity was assessed by recording mouse weight and by H and E staining of kidneys in each treatment group. Results: uPAR-positive HT-29 xenograft was clearly visualized by PET/CT imaging using 64 Cu-DOTA-AE105. Subsequently, these xenograft transplants were locally irradiated using 177 Lu-DOTA-AE105, where a significant effect on tumor size and the number of uPAR-positive cells in the tumor was found (p 18 F-FLT PET/CT imaging study revealed a significant correlation between 18 F-FLT tumor uptake and efficacy of the radionuclide therapy. A histological examination of the kidneys from one animal in each treatment group did not reveal any gross abnormalities and the general performance of all treated animals also showed no indications of radioactivity-induced toxicity. Conclusion: These findings

  18. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    Science.gov (United States)

    Jin, Zhao-Hui; Furukawa, Takako; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Yamasaki, Tomoteru; Kawamura, Kazunori; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2016-09-01

    The transmembrane cell adhesion receptor αVβ3 integrin (αVβ3) has been identified as an important molecular target for cancer imaging and therapy. We have developed a tetrameric cyclic RGD (Arg-Gly-Asp) peptide-based radiotracer (64)Cu-cyclam-RAFT-c(-RGDfK-)4, which successfully captured αVβ3-positive tumors and angiogenesis by PET. Here, we subsequently evaluated its therapeutic potential and side effects using an established αVβ3-positive tumor mouse model. Mice with subcutaneous U87MG glioblastoma xenografts received single administrations of 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 (37 MBq/nmol), peptide control, or vehicle solution and underwent tumor growth evaluation. Side effects were assessed in tumor-bearing and tumor-free mice in terms of body weight, routine hematology, and hepatorenal functions. Biodistribution of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 with ascending peptide doses (0.25-10 nmol) and with the therapeutic dose of 2 nmol were determined at 3 hours and at various time points (2 minutes-24 hours) postinjection, respectively, based on which radiation-absorbed doses were estimated. The results revealed that (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently slowed down the tumor growth. The mean tumor doses were 1.28 and 1.81 Gy from 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, respectively. Peptide dose study showed that the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently decreased at doses ≥1 nmol, indicating a saturation of αVβ3 with the administered therapeutic doses (1 and 2 nmol). Combined analysis of the data from tumor-bearing and tumor-free mice revealed no significant toxicity caused by 37-74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 Our study demonstrates the therapeutic efficacy and safety of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 for αVβ3-targeted radionuclide therapy. (64)Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising theranostic drug for cancer imaging and therapy. Mol Cancer Ther; 15(9); 2076-85. ©2016 AACR

  19. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.

  20. Use of radionuclide imaging in the early diagnosis and treatment of renal allograft rejection

    International Nuclear Information System (INIS)

    Mandel, S.R.; Mattern, W.D.; Staab, E.; Johnson, G. Jr.

    1975-01-01

    Data are presented on the clinical application of radionuclide imaging to evaluate changes in cadaver transplant function in the immediate postoperative period. The method uses orthoiodohippuric acid (hippuran) administered IV, with scintillation imaging, and curve analysis by a digital computer. An initial study is always obtained 24 hours after transplantation. Serial studies are then obtained, as needed, to interpret the clinical course. Selected cases are presented which illustrate the use of this protocol in various clinical settings. In the oliguric patient serial studies have been of particular value. They have identified ATN so that overenthusiastic treatment for rejection could be avoided. They have also identified acute rejection complicating ATN so that high dose steroid therapy could be administered appropriately. In the nonoliguric patient they have frequently contributed to the early diagnosis of acute rejection, and they have been useful in monitoring the effect and duration of treatment for severe rejection crisis. It is concluded that radionuclide imaging studies, when carefully applied and interpreted, are a valuable adjunct to the management of patients in this complex clinical setting

  1. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  2. Biologic considerations in anatomic imaging with radionuclides. Final progress report, July 1974--June 1975

    International Nuclear Information System (INIS)

    Potchen, E.J.

    1975-01-01

    An important task relating to anatomic imaging with radionuclides is the determination of factors which effect the use of imaging procedures. This is important to reduce radiation exposure in the population, to improve the efficacy of diagnostic imaging procedures and finally to provide a basis for evaluating the potential effects of proposed regulation of use rates. In this report we describe a methodology for obtaining clinical data relating to the use of the brain scan in an inner city teaching hospital. The development of a questionnaire suitable for use in a clinical setting and providing both prospective and retrospective data is presented. The results of the use of the questionnaire at the Johns Hopkins Hospital during a three month period in 1974 are shown and discussed. Some preliminary results from these data are given and a method for further analysis is indicated

  3. β-ray track imaging application in phytoremediation of radionuclide-contaminated soil

    International Nuclear Information System (INIS)

    Wan Junsheng; Xiao Yan; Pan Xiaobing; Tang Xiuhuan; Yang Yongqing; Wang Beisong; Zhao Xiangfeng; Li Hua; Miao Zhengqiang; Yang Jun

    2008-01-01

    The phytoremediation was widely studied in the field of treating technology of soil contamination with long-lived nuclides. Studies on the β-ray track imaging application in phytoremediation of radionuclide-contaminated soil were carried out in the present work. Experiments showed that this technology might be used for screening plants for phytoremediation and for the studies of phytoremediation mechanism, such as radioactivity concentration and distribution in plant organs. The influence of α- and γ-rays on the β-ray track imaging was studied. Theoretical studies showed that the influence of α-rays might be heavily reduced with proper thickness of PE-film. The image sensor was not so sensitive to γ-rays as β-rays, and the influence of surrounding γ-rays could be heavily reduced with a proper thickness of Pb-shielding

  4. Artifacts in Radar Imaging of Moving Targets

    Science.gov (United States)

    2012-09-01

    CA, USA, 2007. [11] B. Borden, Radar imaging of airborne targets: A primer for Applied mathematicians and Physicists . New York, NY: Taylor and... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 21 September 2012 3. REPORT TYPE AND DATES COVERED...CW Continuous Wave DAC Digital to Analog Convertor DFT Discrete Fourier Transform FBP Filtered Back Projection FFT Fast Fourier Transform GPS

  5. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, Washington 99354 and College of Optical Sciences, The University of Arizona, Tucson, Arizona 85719 (United States); Frost, Sofia H. L.; Frayo, Shani L.; Kenoyer, Aimee L.; Santos, Erlinda; Jones, Jon C.; Orozco, Johnnie J. [Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 (United States); Green, Damian J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M. [Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and Department of Medicine, University of Washington, Seattle, Washington 98195 (United States); Hamlin, Donald K.; Wilbur, D. Scott [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195 (United States); Fisher, Darrell R. [Dade Moeller Health Group, Richland, Washington 99354 (United States)

    2015-07-15

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area

  6. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera.

    Science.gov (United States)

    Miller, Brian W; Frost, Sofia H L; Frayo, Shani L; Kenoyer, Aimee L; Santos, Erlinda; Jones, Jon C; Green, Damian J; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Orozco, Johnnie J; Press, Oliver W; Pagel, John M; Sandmaier, Brenda M

    2015-07-01

    Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was

  7. Physics and imaging for targeting of oligometastases.

    Science.gov (United States)

    Yin, Fang-Fang; Das, Shiva; Kirkpatrick, John; Oldham, Mark; Wang, Zhiheng; Zhou, Su-Min

    2006-04-01

    Oligometastases refer to metastases that are limited in number and location and are amenable to regional treatment. The majority of these metastases appear in the brain, lung, liver, and bone. Although the focus of interest in the past within radiation oncology has been on the treatment of intracranial metastases, there has been growing interest in extracranial sites such as the liver and lung. This is largely because of the rapid development of targeting techniques for oligometastases such as intensity-modulated and image-guided radiation therapy, which has made it possible to deliver single or a few fractions of high-dose radiation treatments, highly conformal to the target. The clinical decision to use radiation to treat oligometastases is based on both radiobiological and physics considerations. The radiobiological considerations involve improvement of treatment schema for time, dose, and volume. Areas of interests are hypofractionation, tumor and normal tissue tolerance, and hypoxia. The physics considerations for oligometastases treatment are focused mainly on ensuring treatment accuracy and precision. This article discusses the physics and imaging aspects involved in each step of the radiation treatment process for oligometastases, including target definition, treatment simulation, treatment planning, pretreatment target localization, radiation delivery, treatment verification, and treatment evaluation.

  8. Astrophysical targets of the Fresnel diffractive imager

    Science.gov (United States)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with

  9. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using {sup 125}I, an Auger electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Gardette, M.; Papon, J.; Bonnet, M.; Labarre, P.; Miot-Noirault, E.; Madelmont, J. C.; Chezal, J. M.; Moins, N. [UMR 990, INSERM, Universite d' Auvergne, Clermont-Ferrand (France); Desbois, N. [EA 3660, Universite de Bourgogne, Dijon (France); Wu, T. D.; Guerquin-Kern, J. L. [U 759 INSERM, Institute Curie, Orsay (France)

    2013-06-01

    The full text of the publication follows. The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodo-benzamides or analogs are known to possess specific affinity for melanoma tissue. New hetero-aromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using {sup 125}I, Auger electrons emitter which gives high-energetic localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with {sup 125}I, the two compounds induced in vitro a significant radiotoxicity on B16F0 melanoma cells. The acridine compound, ICF01040, appeared more radio toxic than the acridone compound, ICF01035. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with ICF01035, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. Nevertheless, an important radiotoxicity was measured for the two compounds while the nuclear accumulation was low. Indeed, even if nuclear localization remains the main target sensitive to Auger electrons, the cell membrane remains sensitive to {sup 125}I decays. So, these compounds may induce secondary toxic effects of irradiation, such as membrane lipid damage. Conducted to current experiments are evaluate such hypothesis. Taken together, these results suggest that ICF01040 is a better candidate for application in targeted radionuclide therapy using {sup 125}I. The next step will be in vivo evaluation, where high tumoral vectorization gives

  10. Radionuclide dynamic renal imaging for renal function study in patients with NIDDM

    International Nuclear Information System (INIS)

    Yang Ruiping; Qu Wanying; Gao Wenping

    1996-01-01

    Radionuclide dynamic renal imaging was performed to gain evidence for further treatment and evaluation of prognosis in patients with non-insulin-dependent diabetes mellitus (NIDDM). 99m Tc-DTPA dynamic renal imaging was performed in 137 NIDDM patients and 44 normal controls (NC). Glomerular filtration rate (GFR) and renogram were acquired simultaneously. Renal tubular secretion function was measured with 99m Tc-EC in 126 of the 137 diabetics and 17 NC. GFR decreased in all patients with different duration of NIDDM and the difference was remarkably significance in comparison with NC (t = 7.17∼13.73, P 99m Tc-EC. This study showed that the function of glomerular filtration and tubular secretion were both damaged in all diabetics. Their magnitude was aggravated with the prolongation of the course of disease

  11. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1981-01-01

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma

  12. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  13. Radiography, radionuclide imaging, and asthrography in the evaluation of total hip and knee replacement. [/sup 99m/Tc-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, M.I.; Coleman, R.E.; Stevens, P.M.; Davey, B.W.

    1978-09-01

    Twenty patients with 21 total joint replacements including 17 hips and 4 knees were studied by plain film radiography, radionuclide imaging, and subtraction arthrography to evaluate these procedures for assessing prosthetic complications. Surgery was performed in 14 patients and confirmed loosening of 8 femoral and 7 acetabular hip prosthesis components and 1 femoral and 4 tibial knee prosthesis components. Plain films suggested loosening of only 9 hip components and no knee components. In contrast, radionuclide imaging and subtraction arthrography were considerably more effective in demonstrating loosening as well as other causes of the painful total joint prosthesis.

  14. A motion correction algorithm for an image realignment programme useful for sequential radionuclide renography

    International Nuclear Information System (INIS)

    De Agostini, A.; Moretti, R.; Belletti, S.; Maira, G.; Magri, G.C.; Bestagno, M.

    1992-01-01

    The correction of organ movements in sequential radionuclide renography was done using an iterative algorithm that, by means of a set of rectangular regions of interest (ROIs), did not require any anatomical marker or manual elaboration of frames. The realignment programme here proposed is quite independent of the spatial and temporal distribution of activity and analyses the rotational movement in a simplified but reliable way. The position of the object inside a frame is evaluated by choosing the best ROI in a set of ROIs shifted 1 pixel around the central one. Statistical tests have to be fulfilled by the algorithm in order to activate the realignment procedure. Validation of the algorithm was done for different acquisition set-ups and organ movements. Results, summarized in Table 1, show that in about 90% of the stimulated experiments the algorithm is able to correct the movements of the object with a maximum error less of equal to 1 pixel limit. The usefulness of the realignment programme was demonstrated with sequential radionuclide renography as a typical clinical application. The algorithm-corrected curves of a 1-year-old patient were completely different from those obtained without a motion correction procedure. The algorithm may be applicable also to other types of scintigraphic examinations, besides functional imaging in which the realignment of frames of the dynamic sequence was an intrinsic demand. (orig.)

  15. Application of radionuclide imaging in grading and therapeutic evaluation in patients with fallopian tube dysfunction

    International Nuclear Information System (INIS)

    Liu Zhixiang; Zhang Yanhua; Li Guangzhou; Zhang Peisen; Xie Hai; Sun Tao; Ren Chun'e; Zhang Shizhuang; Jiang Aifang

    2012-01-01

    Objective: To observe the conception status of patients with fallopian tube dysfunction after medical treatment and to guide treatment strategy for patients with different degrees of tubal injury by radionuclide imaging. Methods Six hundred and two patients with at least one side of patent fallopian tube underwent modified fallopian tube radionuclide imaging. The patients were graded as: mild, moderate or severe injury, non-functioning or tubal obstruction. The conception status was analyzed after medical treatment, including abdominal hot pack with Chinese medicine, oral intake of Guizhi tuckahoe capsules,and Kangfu anti-inflammatory anal suppository. The constituent ratios of conception in different groups were compared using χ 2 test and the curative and effective rates were calculated. Results: After 1-6 cycles of medical treatment,patients with fallopian tube dysfunction had a curative rate of 29.5% (46/156) and effective rate of 71.8% (112/156). There was a statistically significant difference among the different degrees of oviduct injury (χ 2 =166.4, P<0.05). After medical treatment,the natural pregnancy rate for patients with bilateral mild, moderate and severe injury was 52.6% (102/194), 42.6% (46/108) and 13.8% (16/116), respectively. The rate for patients with one side of normal tubal function was 78.3% (144/184), which was significantly higher than that of patients with bilateral mild, moderate and severe injury (χ 2 =37.86, 52.09 and 121.71, all P<0.05). The natural pregnancy rates of both mild and moderate injury groups were significantly different from the severe injury group (χ 2 =67.29, 42.82, both P<0.05), but there was no difference between the mild and moderate injury groups (χ 2 =3.29, P>0.05). In the severe injury group, 32.8% (38/116) patients were naturally infertile after the medical treatment, while 53.4% (62/116) patients underwent in vitro fertilization (IVF) and 51.6% (32/62) of them succeeded in pregnancy. Conclusions: The natural

  16. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  17. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  18. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  19. Using radionuclide imaging for monitoring repairment of bone defect with tissue-engineered bone graft in rabbits

    International Nuclear Information System (INIS)

    Xia Changsuo; Ye Fagang; Zou Yunwen; Ji Shixiang; Wang Dengchun

    2004-01-01

    Objective: To observe the effect of tissue-engineered bone grafts in repairing bone defect in rabbits, and assess the value of radionuclide for monitoring the therapeutic effect of this approach. Methods: Bilateral radial defects of 15 mm in length in 24 rabbits were made. The tissue-engineered bone grafts (composite graft) contained bone marrow stromal cells (BMSCs) of rabbits and calcium phosphate cement (CPC) were grafted in left side defects, CPC only grafts (artificial bone graft) in right defects. After the operation, radionuclide was used to monitor the therapeutic effects at 4, 8 and 12 weeks. Results: 99 Tc m -methylene diphosphonic acid (MDP) radionuclide bone imaging indicated that there was more radionuclide accumulation in grafting region of composite than that of CPC. There was significant difference between 99 Tc m -MDP uptake of the region of interest (ROI) and scintillant counts of composite bone and the artificial bone (P<0.01). Conclusion: Tissue-engineered bone grafts is eligible for repairing radial bone defects, and radionuclide imaging may accurately monitor the revascularization and bone regeneration after the bone graft implantation. (authors)

  20. A Monte Carlo study on {sup 223}Ra imaging for unsealed radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Miwa, Kenta; Sasaki, Masayuki [Faculty of Medical Sciences, Department of Health Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-06-15

    Purpose: Radium-223 ({sup 223}Ra), an α-emitting radionuclide, is used in unsealed radionuclide therapy for metastatic bone tumors. The demand for qualitative {sup 223}Ra imaging is growing to optimize dosimetry. The authors simulated {sup 223}Ra imaging using an in-house Monte Carlo simulation code and investigated the feasibility and utility of {sup 223}Ra imaging. Methods: The Monte Carlo code comprises two modules, HEXAGON and NAI. The HEXAGON code simulates the photon and electron interactions in the tissues and collimator, and the NAI code simulates the response of the NaI detector system. A 3D numeric phantom created using computed tomography images of a chest phantom was installed in the HEXAGON code. {sup 223}Ra accumulated in a part of the spine, and three x-rays and 19 γ rays between 80 and 450 keV were selected as the emitted photons. To evaluate the quality of the {sup 223}Ra imaging, the authors also simulated technetium-99m ({sup 99m}Tc) imaging under the same conditions and compared the results. Results: The sensitivities of the three photopeaks were 147 counts per unit of source activity (cps MBq{sup −1}; photopeak: 84 keV, full width of energy window: 20%), 166 cps MBq{sup −1} (154 keV, 15%), and 158 cps MBq{sup −1} (270 keV, 10%) for a low-energy general-purpose (LEGP) collimator, and those for the medium-energy general-purpose (MEGP) collimator were 33, 13, and 8.0 cps MBq{sup −1}, respectively. In the case of {sup 99m}Tc, the sensitivity was 55 cps MBq{sup −1} (141 keV, 20%) for LEGP and 52 cps MBq{sup −1} for MEGP. The fractions of unscattered photons of the total photons reflecting the image quality were 0.09 (84 keV), 0.03 (154 keV), and 0.02 (270 keV) for the LEGP collimator and 0.41, 0.25, and 0.50 for the MEGP collimator, respectively. Conversely, this fraction was approximately 0.65 for the simulated {sup 99m}Tc imaging. The sensitivity with the LEGP collimator appeared very high. However, almost all of the counts were

  1. Comparison on the production of radionuclides in 1.4 GeV proton irradiated LBE targets of different thickness

    CERN Document Server

    Maiti, Moumita; Mendonça, Tania M; Stora, Thierry; Lahiri, Susanta

    2014-01-01

    This is the first report on the inventory of radionuclides produced in 1.4 GeV proton induced reaction on Lead-Bismuth Eutectic (LBE) targets. LBE targets of 6 mm diameter and 1 to 8 mm lengths were irradiated with 1.4 GeV protons. The radionuclides ranging from Be-7 (53.12 days) to Po-207 (5.8 h) were identified in the samples with the help of time resolved gamma-ray spectroscopy. However, there is no signature of formation of At radioisotopes, which can be produced by the interaction of secondary particles, typical for thick targets.

  2. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    International Nuclear Information System (INIS)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; Bondt, Pieter De; Buechel, Ronny R.; Kaufmann, Philip A.; Cuocolo, Alberto; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J.H.A.; Slart, Riemer H.J.A.; Traegaardh, Elin; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015 0 7 E ANM F INAL myocardial p erfusion g uideline.pdf. (orig.)

  3. The study of parotid function with radionuclide imaging after radiation therapy in nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Li Huanbin; Zhang Qi; Wang Ling; Wu Shixiu; Xie Congying

    2006-01-01

    Objective: To study the uptake and excretion function of parotid by radionuclide imaging after simultaneous modulated accelerated radiation therapy (SMART) in nasopharyngeal cancer. Methods: Forty-eight nasopharyngeal cancer cases, 38 of them were treated by SMART with 2.5 Gy/fraction at tumor and enlarged lymph node to a total dose of 70 Gy, and 2.0 Gy/fraction at subclinical foci and prophy laxtic area volume to a total dose of 56 Gy in 38 d. The other 10 cases were treated by traditional radiation therapy (RT). After treatment, all patients performed parotid imaging and both uptake index (UI) and excretion index (EI) after acid stimulation were calculated. Clinical manifestation such as grade of mouth dryness was also analyzed. Results: Average UI and EI in SMART group decreased 21.9% and 37.3% respectively, with 12 cases moderate and severe mouth dryness, whereas in traditional RT group, mean UI and El decreased 56.1% and 96.1% respectively, with 9 cases moderate and severe mouth dryness. There was significant difference between them (P<0.05). Conclusion: Parotid imaging is sensitive for monitoring parotid function, and it is also reliable to evaluate the safety of SMART to parotid.. (authors)

  4. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    Energy Technology Data Exchange (ETDEWEB)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de [University of Amsterdam, Department of Nuclear Medicine, F2-238, Academic Medical Center, Amsterdam (Netherlands); Acampa, Wanda [National Council of Research, Institute of Biostructures and Bioimaging, Naples (Italy); Anagnostopoulos, Constantinos [Academy of Athens, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Athens (Greece); Ballinger, Jim [Guy' s Hospital - Guy' s and St Thomas' Trust Foundation, Department of Nuclear Medicine, London (United Kingdom); Bengel, Frank [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Bondt, Pieter De [OLV Hospital, Department of Nuclear Medicine, Aalst (Belgium); Buechel, Ronny R.; Kaufmann, Philip A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Flotats, Albert [Universitat Autonoma de Barcelona, Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Hindorf, Cecilia [Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Lindner, Oliver [University Hospital of the Ruhr-University Bochum, Heart and Diabetes Center North Rhine-Westphalia, Institute for Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen (Germany); Ljungberg, Michael [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Lonsdale, Markus [Bispebjerg Hospital, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Manrique, Alain [Caen University Hospital, Department of Nuclear Medicine, Service Commun Investigations chez l' Homme, GIP Cyceron, Caen (France); Minarik, David [Skaane University Hospital, Radiation Physics, Malmoe (Sweden); Scholte, Arthur J.H.A. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Traegaardh, Elin [Skaane University Hospital and Lund University, Clinical Physiology and Nuclear Medicine, Malmoe (Sweden); Hesse, Birger [University Hospital of Copenhagen, Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark)

    2015-11-15

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015{sub 0}7{sub E}ANM{sub F}INAL myocardial{sub p}erfusion{sub g}uideline.pdf. (orig.)

  5. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  6. Flash trajectory imaging of target 3D motion

    Science.gov (United States)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  7. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Salah, F.A.; Ziada, G.; Hejazy, M.A.; Khalil, W.A.

    2008-01-01

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99m Tc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99m Tc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  8. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera.

    Science.gov (United States)

    Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J

    2010-08-01

    We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, pstress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a

  9. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/μCi-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult

  10. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/..mu..Ci-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult.

  11. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    Science.gov (United States)

    Grudzinski, Joseph J.; Floberg, John M.; Mudd, Sarah R.; Jeffery, Justin J.; Peterson, Eric T.; Nomura, Alice; Burnette, Ronald R.; Tomé, Wolfgang A.; Weichert, Jamey P.; Jeraj, Robert

    2012-03-01

    We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole-body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n = 10), or a ‘fast-clearing’ agent, 18F-FLT (3‧-deoxy-3‧-fluorothymidine) (n = 13) and imaged via micro-PET/CT pseudo-dynamically or dynamically, respectively. Regions of interest were drawn within the heart and tumor to create time-concentration curves for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao lower bounds theory. Accuracy was assessed using correlation coefficient, bias and standard error of the estimate normalized to the mean (SEE/mean). The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 h-1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47 ± 1.24 Gy). The PK parameter estimation of FLT

  12. Development of positron emitting radionuclides for imaging with improved positron detectors

    International Nuclear Information System (INIS)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced 82 Rb; cyclotron-produced 62 Zn; and reactor-produced 64 Cu. Investigation of the 82 Sr (25 d)-- 82 Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of 82 Rb and the breakthrough of 82 Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced 82 Sr was used to charge a compact 82 Rb generator to obtain multi-millicurie amounts of 82 Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl 2 to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of 62 Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of 62 Zn-histidine in the prostate of a dog at 20 h. 64 Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of 67 Ga citrate under the same conditions. 64 Cu-asparagine had better tumor-to-soft tissue ratios than 67 Ga-citrate

  13. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  14. Combined anti-tumor therapeutic effect of targeted gene, hyperthermia, radionuclide brachytherapy in breast carcinoma

    International Nuclear Information System (INIS)

    Chen Daozhen; Tang Qiusha; Xiang Jingying; Xu Fei; Zhang Li; Wang Junfeng

    2011-01-01

    Objective: To investigate the antitumor therapeutic effect of combined therapy of magnetic induction heating by nano-magnetic particles, herpes simplex virus thymidine kinase gene (HSV-tk suicide gene) and internal radiation in mice bearing MCF-7 breast carcinoma. Methods: The transfection reagents, plasmids heat shock protein-HSV-tk (pHSP-HSV-tk), ferroso-ferric oxide nano-magnetic fluid flow and 188 Re-ganciclovir-bovine serum albumin-nanopaticles (GCV-BSA-NP) were prepared. The heating experiments in vivo were carried out using ferroso-ferric oxide nano-magnetic fluid flow. Sixty mice tumor models bearing MCF-7 breast carcinoma were established and randomly divided into six groups. Group A was the control group, B was gene transfection therapy group, C was hyperthermia group, D was gene transfection therapy combined with radionuclide brachytherapy group, E was gene therapy combined with hyperthermia group, and F was gene therapy, hyperthermia combined with radionuclide brachytherapy group. The tumor growth, tumor mass and histopathological changes were evaluated. The expression of HSV-tk in the groups of B, D, E and F was detected by RT-PCR. Poisson distribution and one-way analysis of variance (ANOVA) were used for statistical analysis by SPSS 10.0 software. Results: In the animal heating experiments, the temperature of tumor increased up to 39.6 degree C, 43.2 degree C, and 48.1 degree C quickly with different injected doses (2, 4 and 6 mg respectively) of nano-magnetic particles and maintained for 40 min. The temperature of tumor tissue reduced to 36.8 degree C, 37.5 degree C and 37.8 degree C in 10 min when alternating magnetic field (AMF) stopped. The tumor mass in Groups C ((452.50±30.29) mg), D ((240.98±35.32)mg), E((231.87±27.41) mg) and F ((141.55±23.78) mg) were much lower than that in Group A ((719.12±22.65) mg) (F=800.07, P<0.01), with the most significant treatment effect in Group F.The tumor mass in Group B((684.05±24.02) mg) was higher than

  15. Targeted radionuclide therapy with RAFT-RGD radiolabelled with {sup 90}Y or {sup 177}Lu in a mouse model of αvβ3-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bozon-Petitprin, A.; Bacot, S.; Ahmadi, M.; Marti-Batlle, D.; Perret, P.; Broisat, A.; Riou, L.M. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); Gauchez, A.S.; Bourre, J.C.; Fagret, D.; Vuillez, J.P. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); CHRU Grenoble, Hopital Michallon, Service de Medecine Nucleaire, Grenoble (France); Claron, M.; Boturyn, D. [CNRS, UMR 5250, Departement de Chimie Moleculaire, Grenoble (France); Ghezzi, Catherine [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); INSERM U1039, Radiopharmaceutiques biocliniques, Batiment Jean Roget, Domaine de la Merci, Faculte de Medecine, La Tronche (France)

    2014-08-28

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK]){sub 4} (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β{sup -} emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD and {sup 90}Y-RAFT-RAD or {sup 177}Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of {sup 90}Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of {sup 177}Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of {sup 90}Y-RAFT-RAD or 37 MBq of {sup 177}Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of {sup 90}Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. {sup 90}Y-RAFT-RGD and {sup 177}Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy. (orig.)

  16. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy.

    Science.gov (United States)

    Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad

    2016-06-01

    We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p targeting SSR positive tumors for enhanced cytoxicity and reduced renal radiation dose associated with conventional PRRT. To our knowledge of literature, this is the first study to establish in vitro and in vivo efficacy profile of nanoparticles in PRRT providing a stepping-stone for undergoing and future research

  17. Targeted radionuclide therapy with RAFT-RGD radiolabelled with (90)Y or (177)Lu in a mouse model of αvβ3-expressing tumours.

    Science.gov (United States)

    Bozon-Petitprin, A; Bacot, S; Gauchez, A S; Ahmadi, M; Bourre, J C; Marti-Batlle, D; Perret, P; Broisat, A; Riou, L M; Claron, M; Boturyn, D; Fagret, D; Ghezzi, Catherine; Vuillez, J P

    2015-02-01

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β(-) emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD and (90)Y-RAFT-RAD or (177)Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of (90)Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of (177)Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of (90)Y-RAFT-RAD or 37 MBq of (177)Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of (90)Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. (90)Y-RAFT-RGD and (177)Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy.

  18. RAPID AUTOMATED RADIOCHEMICAL ANALYZER FOR DETERMINATION OF TARGETED RADIONUCLIDES IN NUCLEAR PROCESS STREAMS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Egorov, Oleg; Devol, Timothy A.

    2008-01-01

    Some industrial process-scale plants require the monitoring of specific radionuclides as an indication of the composition of their feed streams or as indicators of plant performance. In this process environment, radiochemical measurements must be fast, accurate, and reliable. Manual sampling, sample preparation, and analysis of process fluids are highly precise and accurate, but tend to be expensive and slow. Scientists at Pacific Northwest National Laboratory (PNNL) have assembled and characterized a fully automated prototype Process Monitor instrument which was originally designed to rapidly measure Tc-99 in the effluent streams of the Waste Treatment Plant at Hanford, WA. The system is capable of a variety of tasks: extraction of a precise volume of sample, sample digestion/analyte redox adjustment, column-based chemical separations, flow-through radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results can be immediately calculated and electronically reported. It is capable of performing a complete analytical cycle in less than 15 minutes. The system is highly modular and can be adapted to a variety of sample types and analytical requirements. It exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  19. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  20. Radionuclide bone imaging in suspected skeletal metastasis: does it contribute to diagnosis or treatment ?

    International Nuclear Information System (INIS)

    Reddy, K.G.; Subbarao, K.; Kumaresan, K.; Murthy, V.S.; Kishore, L.T.

    1988-01-01

    A retrospective analysis of 47 patients with suspected bone metastases is performed to evaluate the role of bone scan in diagnosis or treatment and to compare radionuclide images with radiographs. Scan revealed solitary lesions in 27.7 per cent, multiple lesions in 44.7 per cent and was normal in 10.6 per cent of patients studied. In 11 patients the scan was +ve and x-ray was -ve and scan was false negative in one patient. Role of bone scan is evaluated by a scoring method. Scan contributed to correct diagnosis in 25.5 per cent, altered the management in 21.3 per cent of patients. However, scan by itself did not contribute to final management in 48.6 per cent of patients. Scan had misled the diagnosis because of false positive result in 4.3 per cent of patients. It is highlighted that though bone scan is non-specific, it has contributed considerably to the management of majority of patients. (author). 10 refs., 3 tabs., 4 figs

  1. Identification of hip surface arthroplasty failures with TcSC/TcmDP radionuclide imaging

    International Nuclear Information System (INIS)

    Thomas, B.J.; Amstutz, H.C.; Mai, L.L.; Webber, M.M.

    1982-01-01

    The roentgenographic identification of femoral component loosening after hip surface arthroplasty is often impossible because the metallic femoral component obscures the bone-cement interface. The use of combined technetium sulfur colloid and technetium methylene diphosphonate radionuclide imaging has been especially useful in the diagnosis of loosening. In 40 patients, follow-up combined TcSC and TcmDP scans at an average of three, nine, and 27 months postoperation revealed significant differences in the isotope uptakes in patients who had loose prostheses compared with those without complications. Scans were evaluated by first dividing them into eight anatomical regions and then rating the uptake in each region or 'zone' on a five-point scale. Results were compared using the Student's t-test and differences were noted between normal controls and patients who had femoral component loosening. Combining both TcSC and TcmDP studies increased the statistical significance obtained when comparing patients who had complications to those in the control group

  2. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  3. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    Science.gov (United States)

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  4. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera

    International Nuclear Information System (INIS)

    Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F.; Erlandsson, Kjell; Waddington, Wendy A.; Ell, Peter J.; Sharir, Tali; Roth, Nathaniel; Berman, Daniel S.

    2010-01-01

    We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5±11.8 years of age, 16 men) were injected with 74 MBq of 201 Tl (rest) and 250 MBq 99m Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest 201 Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress 99m Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest 201 Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest 201 Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p 201 Tl D-SPECT acquisition. (orig.)

  5. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  6. Development and validation of a simple model for cellular and cell cluster dosimetry with practical application in targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Bardies, M.; Myers, M.J.

    1992-01-01

    The authors have developed an analytical technique for calculating the mean absorbed dose to the cell nucleus from a variety of spatial distributions of cells and activities and a wide range of emitted energies and radionuclides. The dose to the nucleus has been calculated using this method from activity distributed (1) on the cell surface (2) throughout the cytoplasm (3) throughout a cluster of cells (micrometastasis) and (4) on the surface of the cluster of cells. The derived absorption factors have been based on the latest point kernels of Berger and have been validated against published estimates. They show good agreement and the model has the advantage of being easily adapted for revisions and extensions of available low energy data. Data sets may be derived with the absorbed fractions or the absorbed dose per emission as a function of the radial extent of the activity, and either the individual energies of the emissions or the totality of the emissions from a particular radio-nuclide. The practical applications of the model have included: (a) calculation of the absorbed dose to radioimmuno-targeted micrometastasis in the peritoneum; (b) calculations of doses to cells labelled on the surface with some novel emitters such as 67 Cu, 177 Lu, 153 Sm, 111 Ag, 186 Re, 188 Re as well as 131 I, 125 I and 90 Y; (c) comparison of doses to the cell nucleus from MIBG labelled with 125 I and 131 I and distributed in the cytoplasm of the cell; and (d) estimates of the absorbed dose to the cell nucleus from alpha emitters distributed on the surface of the cell

  7. Radionuclide examinations

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1989-01-01

    This paper reports on radionuclide examinations of the pancreas. The pancreas, situated retroperitonally high in the epigastrium, was a particularly difficult organ to image noninvasively before ultrasonography and computed tomography (CT) became available. Indeed the organ still remains difficult to examine in some patients, a fact reflected in the variety of methods available to evaluate pancreatic morphology. It is something of a paradox that the pancreas is metabolically active and physiologically important but that its examination by radionuclide methods has virtually ceased to have any role in day-to-day clinical practice. To some extent this is caused by the tendency of the pancreas's commonest gross diseases emdash carcinoma and pancreatitis, for example emdash to result in nonfunction of the entire organ. Disorders of pancreatic endocrine function have generally not required imaging methods for diagnosis, although an understanding of diabetes mellitus and its nosology has been advanced by radioimmunoassay of plasma insulin concentrations

  8. Fluorescent imaging of cancerous tissues for targeted surgery

    Science.gov (United States)

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  9. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  10. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  11. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets

    International Nuclear Information System (INIS)

    Challana, M.B.; Comsana, M.N.H.; Moawadb, G.S.; Abou-Zeid, M.A.

    2008-01-01

    Cross section study for proton induced reaction on natural Gadolinium targets were performed. Excitation functions for the reactions n atGd(p,x) 152m+g , 154m,154g Tb from threshold up to E p = 18 MeV have been measured employing the stacked foil activation technique, and using high resolution HPGe gamma spectrometry. Utilizing the simultaneous measurement of the excitation function of n atCu(p,x) 62 Zn, n atCu(p,x) 63 Zn, and n atCu(p,x) 65 Zn as monitor reactions. The theoretical analysis of the excitation functions has been done employing both ALICE-91 and EMPIRE-II codes. In general, theoretical calculations agree well with the experimental data. A significant contribution of pre-equilibrium component has been observed at these energies

  12. Solid targets and irradiation facilities for production of diagnostic and therapeutic radionuclides at the Debrecen cyclotron

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ando, L.; Szucs, Z.; Mahunka, I.; Kovacs, Z.

    2000-01-01

    The MGC-20E (NIIEFA, Leningrad, USSR) variable energy compact cyclotron (k=20) was installed in ATOMKI (Debrecen, Hungary) in 1985. Protons, deuterons, 3 He- and α-particles can be accelerated with currents up to 300 μA for internal irradiation and up to 50 μA for external beams. The establishment of the Cyclotron Laboratory was partly supported by the International Atomic Energy Agency. The application of the cyclotron is multipurpose: basic nuclear research, application of activation technique for analytical and wear studies, application of intense fast neutron source for agro-biological, bio-medical application and for radiation damage test of electronic components, and finally radioisotope production for medical diagnostics and for other scientific and applied fields. The cyclotron laboratory has six target rooms, a radiochemistry laboratory and a medical unit equipped with PET

  13. Radar Imaging of Stationary and Moving Targets

    Science.gov (United States)

    2012-06-28

    Sciences Research Institute. Member of Organizing Committee for introductory workshop at MSRI • June 14-18, 2010, arranged for AFRL (Matt Ferrara ) to...Schneible, Vincent Amuso, SciTech Publishing, Inc., 2010. 2. K. Voccola, B. Yazici, M. Ferrara , and M. Cheney, “On the relationship between the generalized...echo imaging using distributed apertures in multi-path,” IEEE Radar Conference, May, 2008, Rome, Italy . 14 10. “Wideband pulse-echo imaging using

  14. Proposal on ''standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides''

    International Nuclear Information System (INIS)

    Suparman, Ibon

    2000-01-01

    The Center for the Development of Radioisotopes and Radiopharmaceuticals - National Nuclear Energy Agency (P2RR-BATAN) has one Cyclotron type CS-30 with maximum 30 MeV proton energy. It is used since 1990 for 201 Tl production. The main use of 201 Tl in Indonesia is for diagnosis and assessment of myocardial ischaemia, especially diagnosis of coronary artery disease, viability of the heart muscle and forecasting the outcome for patients with coronary disease. The Cyclotron facility is supported with a solid target station, two hot cells and the chemical equipment for electroplating. The yield of 201 Tl production currently achieved around 40-50%. The irradiation technique and chemical separation should be improved. We are also very interested in the development of the production of 103 Pd via 103 Rh (p,n) 103 Pd reaction. The objective of this proposal will support the main program of the National Nuclear Energy Agency (BATAN) in enhancement of health care and in providing Cyclotron produced radiopharmaceuticals for hospitals

  15. Quantitative PET Imaging with Novel HER3-Targeted Peptides Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression

    Science.gov (United States)

    2017-12-01

    Independent Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Benjamin Larimer, PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...TYPE Final 3. DATES COVERED 1 Aug 2016 – 19 August 2017 Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression 5a...highly specific peptide that targets HER3 for prostate cancer imaging. The peptide was labeled with a PET imaging radionuclide and injected into mice

  16. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  17. Production and dosimetric aspects of the potent Auger emitter 58mCo for targeted radionuclide therapy of small tumors

    International Nuclear Information System (INIS)

    Thisgaard, H.; Elema, D.R.; Jensen, M.

    2011-01-01

    Purpose: Based on theoretical calculations, the Auger emitter 58m Co has been identified as a potent nuclide for targeted radionuclide therapy of small tumors. During the production of this isotope, the coproduction of the long-lived ground state 58g Co is unfortunately unavoidable, as is ingrowth of the ground state following the isomeric decay of 58m Co. The impact of 58g Co as a β + - and γ-emitting impurity should be included in the dosimetric analysis. The purpose of this study was to investigate this critical part of dosimetry based on experimentally determined production yields of 58m Co and 58g Co using a low-energy cyclotron. Also, the cellular S-values for 58m Co have been calculated and are presented here for the first time. Methods: 58m Co was produced via the 58 Fe(p,n) 58m Co nuclear reaction on highly enriched 58 Fe metal. In addition, radiochemical separations of produced radio-cobalt from nat Fe target material were performed. The theoretical subcellular dosimetry calculations for 58m Co and 58g Co were performed using the MIRD formalism, and the impact of the increasing ground state impurity on the tumor-to-normal-tissue dose ratios (TND) per disintegration as a function of time after end of bombardment (EOB) was calculated. Results: 192 ± 8 MBq of 58m Co was produced in the irradiation corresponding to a production yield of 10.7 MBq/μAh. The activity of 58g Co was measured to be 0.85% ± 0.04% of the produced 58m Co activity at EOB. The radio-cobalt yields in the rapid separations were measured to be >97% with no detectable iron contaminations in the cobalt fractions. Due to the unavoidable coproduction and ingrowth of the long-lived ground state 58g Co, the TND and the potency of the 58m Co decrease with time after EOB. If a future treatment with a 58m Co labeled compound is not initiated before, e.g., 21 h after EOB, the resulting TND will be approximately 50% of the TND of 'pure' 58m Co as a result of the increased normal tissue dose from

  18. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  19. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross section...

  20. Antibody-targeted thrombus imaging and thrombolysis

    International Nuclear Information System (INIS)

    Wu Guoxin; Ruan Changgeng

    1993-05-01

    In respect of thrombus imaging, the femoral arterial or venous thrombus model was prepared in dogs and imaged with single photon emission computerized tomography (SPECT). After 4 hours of injection of 131 I-SZ-51 the radioactivity ratio between thrombus and blood (T/B) was 18 : 1 and 8 : 1 for arterial and venous thrombus respectively. The result conformed with the T/B ratio of the removed thrombus and blood after 24 hours of injection of radiotracer. It indicates that the McAb SZ-51 has a great potential to bind with thrombus. In respect of thrombolysis, the Fab(fragment, antigen-binding) fragment of McAb SZ-51 was chemically conjugated of urokinase (UK) by the disulfide-linking reagent SPDP and 2-iminothiolane. The resulting conjugate was 3 to 5 times as potent as UK in vitro in human platelet-rich plasma assay. The increase of fibrinolytic potency was accompanied by a decrease of consumption of plasminogen and fibrinogen. It shows that the increase of potency is the result of selectivity increase

  1. Design and implementation of typical target image database system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  2. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Science.gov (United States)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  3. The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86.

    Science.gov (United States)

    Ikotun, Oluwatayo F; Lapi, Suzanne E

    2011-04-01

    Positron emission tomography, with its high sensitivity and resolution, is growing rapidly as an imaging technology for the diagnosis of many disease states. The success of this modality is reliant on instrumentation and the development of effective and novel targeted probes. Initially, research in this area was focused on what we will define in this article as 'standard' PET isotopes (carbon-11, nitrogen-13, oxygen-15 and fluorine-18), but the short half-lives of these isotopes limit radiopharmaceutical development to those that probe rapid biological processes. To overcome these limitations, there has been a rise in nonstandard isotope probe development in recent years. This review focuses on the biological probes and processes that have been examined, in additiom to the preclinical and clinical findings with nonstandard radiometals: copper-64, zirconium-89, and yttrium-86.

  4. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  5. Use of phase images in radionuclide ventriculography for topical diagnosis of the Wolff-Parkinson-White syndrome and sources of abnormal rhythms in the ventricles

    International Nuclear Information System (INIS)

    Ostroumov, E.N.; Sergienko, V.B.; Golitsin, S.P.

    1990-01-01

    The paper presents the results of the mapping of various types of the Wolff-Parkinson-White syndrome and ventricular arrhythmias by using phase images of radionuclide ventriculograms as compared to 12 leads and electrophysiological studies. Phase images are a highly informative method that supplements an electrophysiological study in the topical diagnosis of abnormal tracts and ventricular arrhythmias

  6. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Du, Yong; Frey, Eric C; Bhattacharya, Manojeet

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  7. Radiographic and radionuclide lung perfusion imaging in healthy calves and calves naturally infected with bovine respiratory syncytial virus

    International Nuclear Information System (INIS)

    Verhoeff, J.; Brom, W.E. van den; Ingh, T.S.G.A.M. van den

    1992-01-01

    Nine calves between three and 18 weeks old with serologically confirmed natural bovine respiratory syncytial virus infection were examined clinically, radiographically and by radionuclide lung perfusion imaging. The results were compared with those from seven healthy calves. The diseased calves were euthanased and examined pathologically, virologically and bacteriologically. The clinical signs indicated that the disease was in an acute stage. Radiography of the diseased animals revealed cysts, corresponding morphologically with bullous emphysema, and infiltrations roughly corresponding in distribution with atelectatic and, or, pneumonic areas. Radionuclide lung perfusion imaging revealed no perfusion shifts between the left and right lungs and a normal perfusion pattern in five of the nine diseased calves. The abnormalities in the perfusion patterns of three calves were probably caused by anatomical disorders such as cysts and pleural adhesions, but no cause of the abnormality could be found in one calf. These findings suggest that in calves infected with bovine respiratory syncytial virus, the normal perfusion pattern is maintained until anatomical disorders occur. The pathological examination and radiography revealed that the cranioventral lung fields were particularly poorly ventilated. This finding and the normal perfusion pattern indicate that these parts of the lungs are probably the sites where shuntings and perfusion-ventilation mismatchings occur

  8. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    Petitprin, A.

    2013-01-01

    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90 Y-RAFT-RGD or 177 Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90 Y-RAFT-RAD or 177 Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90 Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90 Y-RAFT-RGD and 177 Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  9. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Science.gov (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  10. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  11. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  12. MR imaging of avascular necrosis of the femoral head: Correlation with radiography, radionuclide scan and clinical finding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Sik; Woo, Young Hoon; Joo, Yang Goo; Lee, Sung Moon; Zeon, Seok Kil; Suh, Soo Jhi; Kang, Chang Soo [School of Medicine, Keimyung University, Taegu (Korea, Republic of)

    1992-03-15

    To explore the ability of magnetic resonance imaging(MRI) in the diagnosis of avascular necrosis(AVN) of the femoral head, we compared appearances on MRI of 85 proven AVN lesions with those on radiographs(n=79) and radionuclide scans(n=75). Clinical symptoms(n=85) were also correlated. All MR studies included coronal and axial T1WI and coronal T2WI. All lesions involved the anterosuperterior aspect of the femoral head and were surrounded by a low signal intensity rim on both T1 and T2WI. The signal intensity of the lesions was variable depending on the disease course, and the lesions were divided into four classes according to the classification suggested by Mitchell. Radiographs were normal in 16%(13/79) of the lesions which were in MR class A(10), B(1), C(2). The radionuclide scans showed normal in 16%(12/75) of the lesions which were in MR class A(8). B(1), C(2), D(1). On the other hand, 93% of the lesions with MR class A(27/29) showed stage 1 and 2 lesions on radiographs. Clinical symptoms were absent in 25%(21/85) of the lesions, and among these,81%(17/21) were MR class A. Conclusively, MR is superior to the radiography and radionuclide scan in the early detection of AVN, and can also show the exact location, extent and signal characteristic of the lesion. Therefore, Mr is essential in diagnosis and management of AVN.

  13. MR imaging of avascular necrosis of the femoral head: Correlation with radiography, radionuclide scan and clinical finding

    International Nuclear Information System (INIS)

    Kim, Jung Sik; Woo, Young Hoon; Joo, Yang Goo; Lee, Sung Moon; Zeon, Seok Kil; Suh, Soo Jhi; Kang, Chang Soo

    1992-01-01

    To explore the ability of magnetic resonance imaging(MRI) in the diagnosis of avascular necrosis(AVN) of the femoral head, we compared appearances on MRI of 85 proven AVN lesions with those on radiographs(n=79) and radionuclide scans(n=75). Clinical symptoms(n=85) were also correlated. All MR studies included coronal and axial T1WI and coronal T2WI. All lesions involved the anterosuperterior aspect of the femoral head and were surrounded by a low signal intensity rim on both T1 and T2WI. The signal intensity of the lesions was variable depending on the disease course, and the lesions were divided into four classes according to the classification suggested by Mitchell. Radiographs were normal in 16%(13/79) of the lesions which were in MR class A(10), B(1), C(2). The radionuclide scans showed normal in 16%(12/75) of the lesions which were in MR class A(8). B(1), C(2), D(1). On the other hand, 93% of the lesions with MR class A(27/29) showed stage 1 and 2 lesions on radiographs. Clinical symptoms were absent in 25%(21/85) of the lesions, and among these,81%(17/21) were MR class A. Conclusively, MR is superior to the radiography and radionuclide scan in the early detection of AVN, and can also show the exact location, extent and signal characteristic of the lesion. Therefore, Mr is essential in diagnosis and management of AVN

  14. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  15. Estimates of internal dose equivalent to 22 target organs for radionuclides occurring in routine releases from nuclear fuel-cycle facilities. Vol. 1

    International Nuclear Information System (INIS)

    Killough, G.G.; Dunning, D.E. Jr.; Bernard, S.R.; Pleasant, J.C.

    1978-01-01

    This report is the first of a two-volume tabulation of internal radiation dose conversion factors for man for radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. This volume treats 68 radionuclides, all of mass number less than 150. Intake by inhalation and ingestion is considered. In the former case, the ICRP Task Group Lung Model has been used to simulate the behavior of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 μm are given. The GI tract has been represented by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in other organs was characterized by linear combinations of decaying exponential functions. Dose equivalent per microcurie intake of each parent nuclide is given for 22 target organs with contributions from specified source organs plus surplus activity in the rest of the body. Cross irradiation due to penetrating radiations has also been considered in the calculations

  16. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ - supplementary report

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Jr, D E; Pleasant, J C; Killough, G G

    1980-05-01

    The purpose of this report is to describe revisions in the SFACTOR computer code and to provide useful documentation for that program. The SFACTOR computer code has been developed to implement current methodologies for computing the average dose equivalent rate S(X reverse arrow Y) to specified target organs in man due to 1 ..mu..Ci of a given radionuclide uniformly distributed in designated source orrgans. The SFACTOR methodology is largely based upon that of Snyder, however, it has been expanded to include components of S from alpha and spontaneous fission decay, in addition to electron and photon radiations. With this methodology, S-factors can be computed for any radionuclide for which decay data are available. The tabulations in Appendix II provide a reference compilation of S-factors for several dosimetrically important radionuclides which are not available elsewhere in the literature. These S-factors are calculated for an adult with characteristics similar to those of the International Commission on Radiological Protection's Reference Man. Corrections to tabulations from Dunning are presented in Appendix III, based upon the methods described in Section 2.3. 10 refs.

  17. Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow

    International Nuclear Information System (INIS)

    Mitchell, D.G.; Tobin, M.; LeVeen, R.; Tomaczewski, J.; Alavi, A.; Staum, M.; Kundel, H.

    1988-01-01

    To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using 113 Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney

  18. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    International Nuclear Information System (INIS)

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique

  19. PIRATE: pediatric imaging response assessment and targeting environment

    Science.gov (United States)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  20. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  1. EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides

    International Nuclear Information System (INIS)

    Carlsson, Jörgen; Wester, Kenneth; De La Torre, Manuel; Malmström, Per-Uno; Gårdmark, Truls

    2015-01-01

    There is limited effect of tyrosine kinase inhibitors or “naked” antibodies binding EGFR or HER2 for therapy of metastasized urinary bladder cancer and these methods are therefore not routinely used. Targeting radio-nuclides to the extracellular domain of the receptors is potentially a better possibility. EGFR- and HER2-expression was analyzed for primary tumors and corresponding metastases from 72 patients using immunohistochemistry and the internationally recommended HercepTest. Intracellular mutations were not analyzed since only the receptors were considered as targets and intracellular abnormalities should have minor effect on radiation dose. EGFR was positive in 71% of the primary tumors and 69% of corresponding metastases. Local and distant metastases were EGFR-positive in 75% and 66% of the cases, respectively. The expression frequency of HER2 in related lesions was slightly higher (data from previous study). The EGFR-positive tumors expressed EGFR in metastases in 86% of the cases. The co-expression of EGFR and HER2 was 57% for tumors and 53% for metastases. Only 3% and 10% of the lesions were negative for both receptors in tumors and metastases, respectively. Thus, targeting these receptors with radionuclides might be applied for most patients. At least one of the EGFR- or HER2-receptors was present in most cases and co-expressed in more than half the cases. It is therefore interesting to deliver radionuclides for whole-body receptor-analysis, dosimetry and therapy. This can hopefully compensate for resistance to other therapies and more patients can hopefully be treated with curative instead of palliative intention

  2. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  3. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  4. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  5. Target plane imaging system for the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-01-01

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 μm, 0.53 μm, and 0.35 μm. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described

  6. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  7. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  8. Target acquisition performance : Effects of target aspect angle, dynamic imaging and signal processing

    NARCIS (Netherlands)

    Beintema, J.A.; Bijl, P.; Hogervorst, M.A.; Dijk, J.

    2008-01-01

    In an extensive Target Acquisition (TA) performance study, we recorded static and dynamic imagery of a set of military and civilian two-handheld objects at a range of distances and aspect angles with an under-sampled uncooled thermal imager. Next, we applied signal processing techniques including

  9. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  10. Diffractive imaging of 3-bar targets using an opaque sphere

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1995-01-01

    In this discussion we present a description of imaging using an opaque obstruction with a circular cross section (such as a sphere) as the optical imaging element. Image formation is discussed in terms of the convolution product of the point spread function of the system and the optical intensity distribution of the object. It is shown how this convolution product can be efficiently accomplished in the frequency domain using digital technqiues. The emphasis of this report is placed on the numerical generation of the transfer function of the optical system. An analytical example of imaging using this technique with a standard 3-bar target as the object is presented. Experimental verification of the analytical results is also given. copyright 1995 American Institute of Physics

  11. Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation

    Science.gov (United States)

    2018-01-01

    During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507

  12. Potential clinical impact of radionuclide imaging technologies: highlights of the ITBS 2003 meeting

    Energy Technology Data Exchange (ETDEWEB)

    Itti, Roland E-mail: roland.itti@univ-lyon1.fr

    2004-07-11

    Radiopharmaceuticals are major determinants of progress in Nuclear Medicine. Besides {sup 18}FDG, the most common PET tracer, several other molecules are under evaluation, such as {sup 18}F-fluoride for bone studies, numerous ligands for neurotransmission, {sup 18}F-DOPA for neuro-endocrine tumors or generator produced {sup 68}Ga-peptides for various cancers. Nuclear medicine gradually changes for 'molecular imaging' and medical imaging, which was at the beginning mainly anatomic, has progressed in the direction of functional and metabolic imaging. The present challenge is to achieve some degree of 'in vivo' biochemistry or even histology or genetics. The importance of anatomic/functional image fusion justifies the development of combined PET-CT instrumentation, whose objectives have to be discussed in terms of anatomical landmarks and/or additional clinical information. The question of 'hard' or 'soft' image co-registration remains open, involving not only CT, but also SPECT or MRI. Development of dedicated imaging devices, whether single photon or positron, is of major interest for breast imaging, allowing optimal imaging conditions, with results definitely superior to classical gamma-cameras or PET. The patient population concerned with scintimammography is still controversial, as well as the imaging modalities: FDG or sestaMIBI, planar or tomographic, scintillators or semi-conductors, and the research field remains open. This is also valid for external or per-operative probe systems for tumor or lymph nodes localization.

  13. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  14. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  15. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  16. Multimodality molecular imaging - from target description to clinical studies

    International Nuclear Information System (INIS)

    Schober, O.; Rahbar, K.; Riemann, B.

    2009-01-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. (orig.)

  17. Phantom feet on digital radionuclide images and other scary computer tales

    International Nuclear Information System (INIS)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.; Ponto, R.

    1989-01-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images

  18. Test Targets 2.0 and Digital Imaging

    Directory of Open Access Journals (Sweden)

    Robert Chung

    2003-04-01

    Full Text Available Current color management systems, based on a modular approach, enable color portability and mass customization of digital images for print. Because of the non-specific nature of the workflow, implementation of ICC-based color management becomes the responsibility of the user. As such the performance of ICC-based CMS is often unknown and has caused much confusion and slow adoption in the printing and publishing industries. To demonstrate how ICC-based color management can be implemented in a number of workflows, this paper describes a project, called Test Targets 2.0. A description of the test targets and how they were used for device calibration, device profiling, and color imaging applications under different workflows, e.g., from scanner to press, or digital camera to press, are introduced. Color management should work equally well for color matching applications. Thus, a continuation of the project focuses on device gamut and profile accuracy assessment.

  19. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  20. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  1. Ultrasound and radionuclide images of liver. An IAEA (CRP) group study

    International Nuclear Information System (INIS)

    Fukuda, M.; Bergmann, H.; Padhy, A.K.; Fukuhisa, K.

    1996-01-01

    Liver diseases are many and vary widely in etiology and pathology. Pattern of liver diseases also vary depending on the geographical and demographical factors. Alcoholic cirrhosis is more common in industrialised countries whereas post necrotic or post hepatitic cirrhosis is more common in developing countries. Abscesses and parasitic cysts are more common in less privileged countries whereas cancer seems to be equally prevalent in all parts of the world. These differences in geographic pathology of liver diseases influence the education, training, learning process and skills of medical personnel who interpret liver images obtained from various imaging modalities. Thus the skills of liver image interpretation becomes an important variable which determines the ultimate value of a given imaging modality. In different countries, the training of nuclear medicine physicians vary in scope and content. The coordinated research programme (CRP), ''Evaluation of imaging procedures in the diagnosis of liver diseases (Phase II)'' endeavoured to address all these aspects mentioned above. This CRP was started in 1989 as a logical sequence to its predecessor, ''Evaluation of nuclear medicine procedures for the diagnosis of liver diseases''. Apart from Japan, nine other countries participated in the CRP. The objective of the CRP was to determine the sensitivity and specificity of the radiocolloid liver imaging and the standard grey scale ultrasound imaging of liver in different types of liver diseases with a view to determine the relative merit of each imaging modality in the diagnosis of a given type of liver disease. The intention was that if one shows distinctive superiority in term of its diagnostic value, then that modality can be recommended as a front line investigation in a given type of liver disease. This approach not only gives certain cost effectiveness in patient care, but also reduces demand on resources that are already under strain in developing countries

  2. Intravenous streptokinase therapy in acute myocardial infarction: Assessment of therapy effects by quantitative 201Tl myocardial imaging (including SPECT) and radionuclide ventriculography

    International Nuclear Information System (INIS)

    Koehn, H.; Bialonczyk, C.; Mostbeck, A.; Frohner, K.; Unger, G.; Steinbach, K.

    1984-01-01

    To evaluate a potential beneficial effect of systemic streptokinase therapy in acute myocardial infarction, 36 patients treated with streptokinase intravenously were assessed by radionuclide ventriculography and quantitative 201 Tl myocardial imaging (including SPECT) in comparison with 18 conventionally treated patients. Patients after thrombolysis had significantly higher EF, PFR, and PER as well as fewer wall motion abnormalities compared with controls. These differences were also observed in the subset of patients with anterior wall infarction (AMI), but not in patients with inferior wall infarction (IMI). Quantitative 201 Tl imaging demonstrated significantly smaller percent myocardial defects and fewer pathological stress segments in patients with thrombolysis compared with controls. The same differences were also found in both AMI and IMI patients. Our data suggest a favorable effect of intravenous streptokinase on recovery of left ventricular function and myocardial salvage. Radionuclide ventriculography and quantitative 201 Tl myocardial imaging seem to be reliable tools for objective assessment of therapy effects. (orig.)

  3. Gold-manganese nanoparticles for targeted diagnostic and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-10

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibit up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.

  4. Targeting SR-BI for cancer diagnostics, imaging and therapy

    Directory of Open Access Journals (Sweden)

    Maneesha Amrita Rajora

    2016-09-01

    Full Text Available Scavenger receptor class B type I (SR-BI plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumours and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.

  5. PET imaging of T cells: Target identification and feasibility assessment.

    Science.gov (United States)

    Auberson, Yves P; Briard, Emmanuelle; Rudolph, Bettina; Kaupmann, Klemen; Smith, Paul; Oberhauser, Berndt

    2018-06-01

    Imaging T cells using positron emission tomography (PET) would be highly useful for diagnosis and monitoring in immunology and oncology patients. There are however no obvious targets that can be used to develop imaging agents for this purpose. We evaluated several potential target proteins with selective expression in T cells, and for which lead molecules were available: PKC , Lck, ZAP70 and Itk. Ultimately, we focused on Itk (interleukin-2-inducible T cell kinase) and identified a tool molecule with properties suitable for in vivo imaging of T cells, (5aR)-5,5-difluoro-5a-methyl-N-(1-((S)-3-(methylsulfonyl)-phenyl)(tetrahydro-2H-pyran-4-yl)methyl)-1H-pyrazol-4-yl)-1,4,4a,5,5a,6-hexahydro-cyclopropa[f]-indazole-3-carboxamide (23). While not having the optimal profile for clinical use, this molecule indicates that it might be possible to develop Itk-selective PET ligands for imaging the distribution of T cells in patients. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99m Tc/ 123 I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99m Tc and 123 I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  7. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  8. Dynamic radionuclide imaging with 99mTc-sucralfate in the detection of oesophageal ulceration.

    Science.gov (United States)

    Mearns, A J; Hart, G C; Cox, J A

    1989-01-01

    Standard oesophageal scintigraphic techniques using 99mTc-colloids rarely identify oesophageal mucosal damage. Sucralfate can be labelled with 99mTc for the detection of oesophageal mucosal ulceration. This method uses two separate supine swallows of 10 MBq 99mTc-colloid in 10 ml, followed by a single supine swallow of 30 MBq 99mTc-sucralfate. The data are processed to give time-activity curves, mean transit times and condensed dynamic images. When oesophageal ulceration is detected, the time-activity curves using sucralfate show residual activity in the oesophagus after the transit time indicated by the colloid swallow. The condensed dynamic image shows a persistence of activity at the level of the ulceration. Erect sucralfate images taken immediately after the dynamic sequence show no oesophageal localisation. The results from a study of 62 patients have shown excellent correlation between the dynamic 99mTc-sucralfate images and endoscopy findings. Sequential sucralfate studies for healing also correlate well. The use of labelled sucralfate to detect oesophageal ulceration could modify the indications for endoscopy in gastrooesophageal reflux disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:2806994

  9. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  10. The use of radioactive tracers in medicine. Part 2. The development of devices for imaging radionuclides

    International Nuclear Information System (INIS)

    Bailey, D.L.

    1996-01-01

    Tracer techniques have been used in medical research for more that two centuries. The history of the measurement of radiotracer in vivo is presented starting with non-imaging, quantitative measurements, and continuing with gamma cameras through to PET scanners. The latest represent the state-of-the-art due to the combination of in-vivo use of tracers with medical tomographic imaging. Its ability to correct accurately for attenuation makes it potentially quantifiable in radioactivity concentration terms and from this follows the ability to determine biological parameters non-invasively. 8 refs., 1 tab. 3 figs

  11. Evaluation of coronary artery disease by functional imaging from equilibrium radionuclide ventriculography

    International Nuclear Information System (INIS)

    He Zuoxiang

    1992-01-01

    Functional imagings were performed in 10 normals, 9 subjects with Non coronary Artery disease (NCAD), 33 CAD patients with documented MI (CAD-WMI) and 20 without MI (CAD-NMI). The sensitivity of LVGEF, LVREF and phase analysis at rest for detecting CAD-WMI was 66.7%, 78.8%, 93.9% respectively. LVGEF, LVREF during exercise for assessing CAD-NMI had the sensitivity of 90%, 80%, respectively, while specificity 90%. Early LVEF decrease, > 10% LVEF decrease and abnormal response at > 7 sectors during exercise were observed in 2 patients with 3 vessel. In conclusion, functional imaging were very useful for detecting CAD and evaluating its extent

  12. Gastric visualization and image quality in radionuclide bone scanning: concise communication

    International Nuclear Information System (INIS)

    Wilson, M.A.; Pollack, M.J.

    1981-01-01

    In a 12-mo study period, there were 14 days identified when the stomach was visualized in routine bone imaging. On these days, 44% of the 110 patients imaged demonstrated this effect. There was a significant linear correlation between the presence and degree of gastric visualization and the radiopharmaceutical incubation and quality control parameters. The study suggests a sporadic phenomenon that appears to result from partial oxidation of the agent during incubation, producing (a) different species of labeled diphosphonate that display altered affinity for bone (scan quality) and (b) free pertechnetate

  13. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  14. Radionuclide imaging in the nonsurgical treatment of liver and spleen trauma

    Energy Technology Data Exchange (ETDEWEB)

    Lutzker, L.G.; Chun, K.J.

    1981-01-01

    As part of evaluation in patients with abdominal trauma severe enough to require hospital admission but not sufficiently severe to warrant immediate surgery, liver-spleen imaging with Tc-99m sulfur coloid was performed in 30 patients in the following age ranges: 10 mo-5 yr (3 patients), 6-10 yr (11), 11-15 yr (7), and 16-40 yr (9). Routine projections by gamma camera were acquired in the anterior, posterior, lateral, anterior oblique, and posterior oblique projections, supplemented with caudally angulated or upright views when indicated. Scintigraphically, there was a linear defect in ten patients, a round, intraparenchymal or wedge defect in 12, and an edge defect in eight. In 24 patients that underwent subsequent studies, the initial image was positive in 21 and equivocal in three. Of the 21 patients, partial resolution of the defects was seen on the images 2 wk to 7 mo following trauma in 14 patients, and nearly complete resolution in 2 wk to 10 mo in nine patients. Complete resolution was seen in 1-13 mo in nine patients. No defects enlarged over time. These authors presented a decision tree for the initial evaluation and subsequent studies in patients with liver-spleen trauma. They feel that consideration of clinical signs and serial liver-spleen imaging can eliminate some surgery when there is a question of delayed or missed splenic rupture.

  15. Radionuclide imaging in the nonsurgical treatment of liver and spleen trauma

    International Nuclear Information System (INIS)

    Lutzker, L.G.; Chun, K.J.

    1981-01-01

    As part of evaluation in patients with abdominal trauma severe enough to require hospital admission but not sufficiently severe to warrant immediate surgery, liver-spleen imaging with Tc-99m sulfur coloid was performed in 30 patients in the following age ranges: 10 mo-5 yr (3 patients), 6-10 yr (11), 11-15 yr (7), and 16-40 yr (9). Routine projections by gamma camera were acquired in the anterior, posterior, lateral, anterior oblique, and posterior oblique projections, supplemented with caudally angulated or upright views when indicated. Scintigraphically, there was a linear defect in ten patients, a round, intraparenchymal or wedge defect in 12, and an edge defect in eight. In 24 patients that underwent subsequent studies, the initial image was positive in 21 and equivocal in three. Of the 21 patients, partial resolution of the defects was seen on the images 2 wk to 7 mo following trauma in 14 patients, and nearly complete resolution in 2 wk to 10 mo in nine patients. Complete resolution was seen in 1-13 mo in nine patients. No defects enlarged over time. These authors presented a decision tree for the initial evaluation and subsequent studies in patients with liver-spleen trauma. They feel that consideration of clinical signs and serial liver-spleen imaging can eliminate some surgery when there is a question of delayed or missed splenic rupture

  16. Quantification of the radionuclide image: Theoretical concepts and the role of the computer

    International Nuclear Information System (INIS)

    Rabinowitz, A.; Wexler, J.P.; Blaufox, M.D.

    1984-01-01

    The purpose of this chapter is to provide the reader with the basic fundamentals for understanding dynamic and quantitative imaging studies. The computer, which is a basic requirement for the optimum generation and analysis of these data, is discussed here. These studies require an understanding of physiologic and mathematic principles and of the workings of the machine that is used to record them

  17. PEGylation, increasing specific activity and multiple dosing as strategies to improve the risk-benefit profile of targeted radionuclide therapy with 177Lu-DOTA-bombesin analogues

    Science.gov (United States)

    2012-01-01

    Background Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart. Methods Derivatisation of a stabilised DOTA-BN(7–14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a β3hLys-βAla-βAla spacer between the BN sequence and the DOTA chelator. The non-PEGylated and the PEGylated analogues were radiolabelled with 177Lu. In vitro evaluation was performed in human prostate carcinoma PC-3 cells, and in vivo studies were carried out in nude mice bearing PC-3 tumour xenografts. Different specific activities of the PEGylated BN analogue and various dose regimens were evaluated concerning their therapeutic efficacy. Results The specificity and the binding affinity of the BN analogue for BN2/GRP receptors were only slightly reduced by PEGylation. In vitro binding kinetics of the PEGylated analogue was slower since steady-state condition was reached after 4 h. PEGylation improved the stability of BN conjugate in vitro in human plasma by a factor of 5.6. The non-PEGylated BN analogue showed favourable pharmacokinetics already, i.e. fast blood clearance and renal excretion, but PEGylation improved the in vivo behaviour further. One hour after injection, the tumour uptake of the PEG5k-BN derivative was higher compared with that of the non-PEGylated analogue (3.43 ± 0.63% vs. 1.88 ± 0.4% ID/g). Moreover, the increased tumour retention resulted in a twofold higher tumour accumulation at 24 h p.i., and increased tumour-to-non-target ratios (tumour-to-kidney, 0.6 vs. 0.4; tumour-to-liver, 8.8 vs. 5.9, 24 h p.i.). In the therapy study, both 177Lu-labelled BN analogues significantly inhibited tumour

  18. FULLY AUTOMATED IMAGE ORIENTATION IN THE ABSENCE OF TARGETS

    Directory of Open Access Journals (Sweden)

    C. Stamatopoulos

    2012-07-01

    Full Text Available Automated close-range photogrammetric network orientation has traditionally been associated with the use of coded targets in the object space to allow for an initial relative orientation (RO and subsequent spatial resection of the images. Over the past decade, automated orientation via feature-based matching (FBM techniques has attracted renewed research attention in both the photogrammetry and computer vision (CV communities. This is largely due to advances made towards the goal of automated relative orientation of multi-image networks covering untargetted (markerless objects. There are now a number of CV-based algorithms, with accompanying open-source software, that can achieve multi-image orientation within narrow-baseline networks. From a photogrammetric standpoint, the results are typically disappointing as the metric integrity of the resulting models is generally poor, or even unknown, while the number of outliers within the image matching and triangulation is large, and generally too large to allow relative orientation (RO via the commonly used coplanarity equations. On the other hand, there are few examples within the photogrammetric research field of automated markerless camera calibration to metric tolerances, and these too are restricted to narrow-baseline, low-convergence imaging geometry. The objective addressed in this paper is markerless automatic multi-image orientation, maintaining metric integrity, within networks that incorporate wide-baseline imagery. By wide-baseline we imply convergent multi-image configurations with convergence angles of up to around 90°. An associated aim is provision of a fast, fully automated process, which can be performed without user intervention. For this purpose, various algorithms require optimisation to allow parallel processing utilising multiple PC cores and graphics processing units (GPUs.

  19. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    Science.gov (United States)

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  20. Integrin αβ3-Targeted Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  1. Co-targeting androgen receptor and DNA for imaging and molecular radiotherapy of prostate cancer: in vitro studies.

    Science.gov (United States)

    Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina

    2014-12-01

    The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.

  2. Gastric visualization and image quality in radionuclide bone scanning: concise communication

    International Nuclear Information System (INIS)

    Wilson, M.A.; Pollack, M.J.

    1981-01-01

    In a 12-mo study period, there were 14 days identified when the stomach was visualized in routine bone imaging. On these days, 44% of the 110 patients imaged demonstrated this effect. Only the quality control, binding efficiency, and scan quality differed (p less than 0.005) when the study population was compared with a reference population of 162 patients. However, on the days when this effect was noted, there was a significant (p less than 0.001) linear correlation between the presence and degree of gastric visualization and the radiopharmaceutical incubation and quality control parameters. The study suggests a sporadic phenomenon that appears to result from partial oxidation of the agent during incubation, producing (a) different species of labeled diphosphonate that display altered affinity for bone (scan quality) and (b) free pertechnetate

  3. RADIONUCLIDE IMAGING IN THE ASSESSMENT OF THE RESIDUAL CORTICAL FUNCTION OF OBSTRUCTIVE NEPHROPATHIES

    OpenAIRE

    川村, 寿一; 伊藤, 坦; 王, 本欽; 吉田, 修; 藤田, 透

    1980-01-01

    The diagnostic value of 99m-Tc-DMSA renal scintigraphy was assessed in 156 kidneys of 107 patients with a variety of obstructive nephropathies. DMSA renal cortical imaging well demonstrated morphological changes in the renal parenchyma around the dilated pelvocalyceal system. DMSA renal uptake, as a marker of cortical functioning mass, paralleled the grading of the hydronephrotic changes on IVP. DMSA renal scintigram well visualizes the residual functioning area in the renal parenchyma and DM...

  4. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    Science.gov (United States)

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  5. Evaluation of ventricular function of patients with tetralogy of Fallot before and after operation by radionuclide myocardial imaging

    International Nuclear Information System (INIS)

    Zhang Nanbin; Wang Zengwei; Zhang Renfu; Chen Xianying; Liu Zhifan; Zhang Zhaozhong; Wang Kaigen

    1996-01-01

    Radionuclide myocardial imaging was utilized to evaluate the ventricular function of 43 patients with tetralogy of Fallot in preoperative and postoperative periods. The examination was made before and 25∼35 days after operation respectively. Ventricular ejection fraction, peak ejection rate and peak filling rate were used as indices for cardiac function. Before operation, the average left ventricular ejection fraction (LVEF) was 55%, the average left ventricular peak ejection rate (LVPER) was 2.95EDV/s and the average left ventricular peak filling rate (LVPFR) was 3.05EDV/s. After operation, the above three values were increased to 71%, 4.35EDV/s and 5.05EDV/s respectively, all with P<0.01. The function of right ventricle before operation was decreased and was significantly improved after operation (RVEF 42% vs 50%, RVPER 2.35EDV/s vs 3.00EDV/s and RVPFR 2.32EDV/s vs 3.36EDV/s, P<0.01). Poor right ventricular function in patients with tetralogy of Fallot is improved after surgical operation. Evaluation of the right ventricular function status is useful for assessing the degree of obstruction of right ventricular outflow tract

  6. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  7. Short-lived cyclotron produced radionuclides evaluation on the myocardial imaging agents

    International Nuclear Information System (INIS)

    Rikitake, Tomoyuki; Tateno, Yukio; Yamane, Akiko; Matsumoto, Touru; Umegaki, Youichiro

    1978-01-01

    Organ uptake after venous administration of 13 N-ammonia, 43 K, 86 Rb, 201 Tl and after rectal administration of 13 N-ammonia was studied. Each nuclides highly accumulated in myocardium after intravenous injection, but rectal administrated 13 N-ammonia did not show this tendency. Intravenously injected 13 N-ammonia showed very early myocardial uptake and early secretion from kidney. Rectal administrated 13 N-ammonia was less accumulated in myocardium. 43 KCl and 13 NH 4 Cl were injected intravenously and administrated from the rectum to the rabbits under imaging scintilator system. Whole-body scintiscanner with display-processing unit was used for a 43 KCl injected rabbit. A positroncamera with computer system (TOSBAC 3400 on line system) was used for 13 NH 4 Cl (i.v. and rectal ad.) rabbits. The dynamic studies of 43 KCl, 13 NH 4 Cl were made from these imaging data. The countratio of heart to the liver after 43 K injection was nearly equal or less than the liver. The peakcount was at 15 min after 13 NH 4 Cl intravenous injection. 13 N accumulated promptly at upper mediastinal part and kidney, and soon disappeared from these part. Uptake of the heat was high and that of the liver was low. When 13 NH 4 Cl was administrated from the rectum, 13 N trapped at the liver, and uptake of the heart was very low level. Scintiscanning after 13 KCl intravenously injected, did not show the high resolution. Rabbit heart was distinguishable from the liver, but there are no visibility of the detail. Seeing positronscintigram after 13 NH 4 Cl administration both from intravenously and from rectum, the detail was well visible. We concluded the positron scintigram after 13 NH 4 Cl injection should be a good myocardial imaging agent. Furthermore, 13 Nh 4 Cl has two eminent characters as a myocardial imaging agent comparing 201 TlCl. One is prompt making of image, the others is the very low radiation dose. (auth.)

  8. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  9. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  10. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    International Nuclear Information System (INIS)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-01-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies

  11. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  12. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  13. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Pillai, Maroor Raghavan Ambikalmajan; Nanabala, Raviteja; Joy, Ajith; Sasikumar, Arun; Knapp, Furn F.

    2016-01-01

    Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-L-aspartyl-L-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68 Ga and 177 Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68 Ga for PET-CT imaging and 177 Lu for therapy. In particular, because of availability from the long-lived 68 Ge (T 1/2 = 270 days)/ 68 Ga (T 1/2 = 68 min) generator system and increasing availability of PET-CT, the 68 Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.

  14. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    Science.gov (United States)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  15. Risk stratification by using non-invasive radionuclide imaging in patients with unstable angina spec tories

    International Nuclear Information System (INIS)

    Saghari, M.

    2002-01-01

    Unstable angina represents a heterogeneous spectrum of clinical entities between chronic stable angina and acute myocardial infraction. Acute ischemic syndromes (including unstable angina) result from abrupt reduction in coronary flow, frequently after atherosclerotic plaque disruption and with or without associated thrombosis or vasospasm. Nuclear cardiology studies and in particular, myocardial perfusion imaging are powerful noninvasive tools for detecting and assessing the severity of acute ischemic syndromes, including unstable angina pec tories. The information derived from a nuclear cardiology study can answer unresolved clinical question and aid in subsequent patient management, specifically jeopardized myocardium detected during spontaneously occurring acute chest pain or controlled stress testing are important determinant of: 1) The need for admission to an intensive care monitoring unit 2) The need for and urgency of coronary angiography 3) The appropriate use of percutaneous or surgical coronary revascularization procedures. Extensive information suggests the stress nuclear perfusion imaging is the best validated technique for predischarge risk stratification with unstable angina patients who have been medically stabilized. Early information suggests avoidance of unecessary coronary angiography or revascularization is the cost effective strategy

  16. Radiation pneumonitis: generalised lung changes detected by radionuclide imaging following focal lung irradiation

    International Nuclear Information System (INIS)

    Ball, D.; Sephton, R.; Irving, L.; Crennan, E.

    1992-01-01

    The usefulness of a nuclear imaging technique as a means of detecting radiation-induced lung injury is examined. The technique involves the patient inhaling modified technegas TM , a gas-like radiotracer which is an ultra fine particulate dispersion. This crosses the alveolar-capillary membrane and the clearance rate of the tracer from the lungs is presumed to reflect membrane permeability. A case of a patient who, after receiving localised radiotherapy and chemotherapy for lung cancer, developed symptoms and signs of radiation pneumonitis is reported. Pre- and post-radiotherapy investigations using the nuclear technique showed acceleration of rates of tracer clearance from both lungs, consistent with generalised changes in alveolar-capillary membrane permeability. It is suggested that the symptoms of radiation pneumonitis may in part result from pathophysiologic changes in nonirradiated lung which may appear radiologically normal. 4 refs., 2 figs

  17. Radionuclide bone imaging in the surgical treatment planning of odontogenic keratocysts

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, A.G.; Puri, S.; James, R.B.; Warnich, J.T.

    1976-12-01

    Locally aggressive benign lesions of the jaws, such as odontogenic keratocysts and ameloblastomas, require complete excision in view of the high incidence of recurrence after incomplete surgical removal. Because of the limitations of conventional radiology as the sole technique for determining the extent of these lesions, the use of 99m-technetium-labeled bone-imaging agents is suggested. This method of defining the location of surgical margins is based on the agent's sensitivity as an indicator of subtle changes in bone metabolism. A case of an unusually large recurrent odontogenic keratocyst is presented in which the planning of the surgical procedure was predicated on the results of a bone scan of the jaws in addition to conventional radiology. This diagnostic procedure, especially when used in conjunction with conventional radiology, appears to be of considerable value in defining the extent of a variety of oral-maxillofacial bony lesions.

  18. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Possible explanations for the discordant findings are: (a) normal bone metabolism at the site of an old spondylolysis and (b) radiographically inapparent stress fractures. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  19. Evaluation of indium-111 colloid for radionuclide imaging of the abdominal lymph nodes

    International Nuclear Information System (INIS)

    Vieras, F.; Hamilton, R.F.; Grissom, M.P.; Kiepffer, R.F.; Vandergrift, J.F.

    1981-01-01

    The experimental evaluation of indium-111 colloid for imaging the para-aortic lymph nodes in animals is described and preliminary results obtained in human subjects. Serial lymphatic scintigraphy performed in beagle dogs following bilateral pedal subcutaneous injections of indium-111 colloid revealed good para-aortic lymph node visualization. A normal migration pattern of indium-111 colloid was also observed in human subjects following subcutaneous injection in the feet; there was clear visualization of the ileo-inguinal and para-aortic lymph nodes. Organ distribution studies for indium-111 colloid were performed in rats following unilateral pedal subcutaneous injection in rats; these results were used for calculating radiation dose estimates to various organs. The study demonstrates the feasibility of using 111 In-colloid clinically for abdominal lymphatic scintiography for the use of sup(99m)Tc-labelled colloids results in lower radiation doses. (U.K.)

  20. Radionuclide bone imaging in the surgical treatment planning of odontogenic keratocysts

    International Nuclear Information System (INIS)

    Lurie, A.G.; Puri, S.; James, R.B.; Warnich, J.T.

    1976-01-01

    Locally aggressive benign lesions of the jaws, such as odontogenic keratocysts and ameloblastomas, require complete excision in view of the high incidence of recurrence after incomplete surgical removal. Because of the limitations of conventional radiology as the sole technique for determining the extent of these lesions, the use of 99m-technetium-labeled bone-imaging agents is suggested. This method of defining the location of surgical margins is based on the agent's sensitivity as an indicator of subtle changes in bone metabolism. A case of an unusually large recurrent odontogenic keratocyst is presented in which the planning of the surgical procedure was predicated on the results of a bone scan of the jaws in addition to conventional radiology. This diagnostic procedure, especially when used in conjunction with conventional radiology, appears to be of considerable value in defining the extent of a variety of oral-maxillofacial bony lesions

  1. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  2. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    Directory of Open Access Journals (Sweden)

    Ruqaya AL Darwish

    2015-01-01

    Full Text Available There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB, with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  3. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target

    DEFF Research Database (Denmark)

    Persson, Morten; Kjaer, Andreas

    2013-01-01

    modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we...... will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker....

  4. High current Tl-203, Rh-103 targets preparation for cyclotron production of Tl-201 and Pd-103 radionuclides

    International Nuclear Information System (INIS)

    Arzumanov, A.; Berger, V.; Borissenko, A.; Gorodisskaya, N.; Ilmatov, I.; Knyazev, A.; Koptev, V.; Lyssukhin, S.; Platov, A.; Sychikov, G.; Zheltov, D.

    2004-01-01

    The objectives of the present work are to increase thermal stability of cyclotron targets for production of Tl-201 isotope, increase Tl-203 regeneration rate at radiochemical reprocessing of the targets and develop production technology for radiochemical sources based on Rd-103 isotope. Electrochemical coating of copper substrate with Tl increased the beam current at target irradiation from 100 μA to 125 μA. Further increase of the beam current results in sharp decrease of target stability time at irradiation to 15 min at beam current 150 μA. Thermal calculations and tests at the electron-beam stand predict satisfactory stability at such currents. The discrepancy with the irradiation results has not been explained. More accurate specification of regimes for Tl-203 electrochemical recovery from irradiated targets and better matching of the electrolyte composition made it possible to increase the recovery rate up to 99.5%. Before the present Project, the INP had no experience in production of radioactive sources based on Pd-103. Thermo-diffusion extraction of Pd-103 from irradiated rhodium foil has been chosen as a technology-defining method. The process assures good extraction rate and high purity of extracted isotope. Production of Pd-103 sources based on this technology is much simpler compared to the same based on electrochemical processes. (author)

  5. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  6. Taking radionuclides to heart

    International Nuclear Information System (INIS)

    Kleynhans, P.H.T.; Lotter, M.G.; Van Aswegen, A.; Minnaar, P.C.; Iturralde, M.; Herbst, C.P.; Marx, D.

    1980-01-01

    Ischaemic heart disease is a main cause of death in South Africa. Non-invasive ECG gated radionuclide bloodpool imaging plays an increasingly useful role in the evalution of the function of the heart as a pump, and the extent of heart muscle perfusion defects is further pinpointed by invasive krypton-81m studies to improve patient management

  7. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  8. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  9. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting {sup 223}Ra-dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Medical Physics; Ventroni, Guido; Mango, Lucio [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Nuclear Medicin; De Vincentis, Giuseppe; Di Castro, Elisabetta; Frantellizzi, Viviana; Follacchio, Giulia Anna; Garkavaya, Tatiana [Rome Univ. (Italy). Dept. of Radiological, Oncological and Anatomo Pathological Sciences; Cassano, Bartolomeo; Lorenzon, Leda [Rome Univ. (Italy). Postgraduate School of Medical Physics; Pellegrini, Rosanna; Pani, Roberto [Rome Univ. (Italy). Dept. of Molecular Medicine; Ialongo, Pasquale [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Radiology

    2016-01-15

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for {sup 223}Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on {sup 99m}Tc-MDP whole-body images, and the ROIs superimposed on the {sup 223}Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T{sub 1/2eff}) of {sup 223}Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), D{sub RBE} = 899 mGy/MBq (range 340-2,450 mGy/MBq). The

  10. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  11. Targeting the treatment of drug abuse with molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Wynne K. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: wynne@bnl.gov; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-10-15

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences.

  12. Imaging and Targeted Therapy of Multidrug Resistance. Final Report

    International Nuclear Information System (INIS)

    Piwnica-Worms, David

    2009-01-01

    One focus area of DOE Office of Science was the Imaging of Gene Expression in Health and Disease in real time in tissue culture, whole animals and ultimately patients. Investigators of the Molecular Imaging Group, Washington University Medical School, ascribed to this objective and a major focus of this group directly tied into the DOE program through their efforts targeting the multidrug resistance gene (MDR1). Our plans for continuation of the program were to extend and build on this line of investigation, incorporating new molecular tools into our methodology to selectively inhibit MDR1 gene expression with novel modulation strategies. Two approaches were to be pursued: (1) high throughput screening of compounds that disrupted mutant p53 transactivation of the MDR1 promoter, and (2) knockdown of MDR1 messenger RNA with retroviral-mediated delivery of small interfering RNA constructs. These would be combined with our continuing effort to synthesize ligands and examine structure-activity relationships of bis-salicylaldehydes labeled with gallium-68 to generate PET agents for imaging MDR1 P-glycoprotein function. We would be uniquely positioned to correlate therapeutic modulation of MDR1 gene expression and protein function in the same systems in vivo using PET and bioluminescence reporters. Use of animal models such as the mdr1a/1b(-/-) gene deleted mice would also have enabled refined analysis of modulation and tracer pharmacokinetics in vivo. Overall, this DOE program and resultant tools would enable direct monitoring of novel therapeutic strategies and the MDR phenotype in relation to gene expression and protein function in vivo.

  13. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Schiffer, Wynne K.; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L.

    2007-01-01

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  14. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun Ki; Herbst, Roy

    2006-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  15. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2008-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  16. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2007-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  17. Loading technique for preparing radionuclide containing nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    associated with leaky blood vessels. The composition and methods of the invention find particular use in diagnosing and imaging cancerous tissue and, in general, pathological conditions associated with leaky blood vessels in a subject. The present invention provides a new diagnostic tool for the utilization......Source: US2012213698A The present invention relates to a novel composition and method for loading delivery systems such as liposome compositions with radionuclides useful in targeted diagnostic and/or therapy of target site, such as cancerous tissue and, in general, pathological conditions...... of positron emission tomography (PET) imaging technique. One specific aspect of the invention is directed to a method of producing nanoparticles with desired targeting properties for diagnostic and/or radio-therapeutic applications....

  18. Radionuclide data

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Chapter 8 presents tables on selected alpha, beta, gamma and x-ray emitters by increasing energy; information on specific activity for selected radionuclides; naturally occurring radionuclides; the natural decay series; and the artificially produced neptunium series. A table of alpha emitters is listed by increasing atomic number and by energy. The table of β emitters presented is useful in identifying β emitters whose energies and possibly half-lives have been determined by standard laboratory techniques. It is also a handy guide to β-emitting isotopes for applications requiring specific half-lives and/or energies. Gamma rays for radionuclides of importance to radiological assessments and radiation protection are listed by increasing energy. The energies and branching ratios are important for radionuclide determinations with gamma spectrometry detectors. This section also presents a table of x-ray energies which are useful for radiochemical analyses. A number of nuclides emit x-rays as part of their decay scheme. These x-rays may be counted with Ar proportional counters, Ge planar or n-type Ge co-axial detectors, or thin crystal NaI(T1) scintillation counters. In both cases, spectral measurements can be made and both qualitative and quantitative information obtained on the sample. Nuclear decay data (energy and probability by radiation type) for more than one hundred radionuclides that are important to health physicists are presented in a schematic manner

  19. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  20. Hepatectomy simulation discrepancy between radionuclide receptor imaging and CT volumetry. Influence of decreased unilateral portal venous flow

    International Nuclear Information System (INIS)

    Akaki, Shiro; Okumura, Yoshihiro; Sasai, Nobuya; Sato, Shuhei; Tsunoda, Masatoshi; Kuroda, Masahiro; Kanazawa, Susumu; Hiraki, Yoshio

    2003-01-01

    discrepancy between hepatectomy simulations with radionuclide receptor imaging and CT volumetry. (author)

  1. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  2. Chemistry and radiochemistry of As, Re and Rh isotopes relevant to radiopharmaceutical applications: high specific activity radionuclides for imaging and treatment.

    Science.gov (United States)

    Feng, Yutian; Phelps, Tim E; Carroll, Valerie; Gallazzi, Fabio; Sieckman, Gary; Hoffman, Timothy J; Barnes, Charles L; Ketring, Alan R; Hennkens, Heather M; Jurisson, Silvia S

    2017-10-31

    The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77 As, 186,188 Re and 105 Rh are discussed.

  3. Impact of 4D image quality on the accuracy of target definition

    International Nuclear Information System (INIS)

    Nielson, Tim B.; Hansen, Christian R.; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV–CTV expansions (0.5–1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  4. Impact of 4D image quality on the accuracy of target definition.

    Science.gov (United States)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  5. Radionuclide therapy with tissue factor targeting Lu-177-FVIIai inhibits growth in an experimental mouse model of human pancreatic cancer

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Jensen, Mette; Fonslet, Jesper

    2017-01-01

    in several organs at 1, 4, 24, 72 and 168 hours after injection. The in vivo biodistribution of 177Lu-FVIIai was evaluated by SPECT/CT imaging. Furthermore, competition and dose escalation experiments (1-30 MBq) were performed. In a parallel set of NMRI mice, toxic effects of 177Lu-FVIIai were evaluated...... by hematology, histology and 99mTc-DMSA scintigraphy. Results: FVIIai was successfully radiolabeled with 177Lu with a specific activity of 10-25 GBq/µmol after EDTA scavenging and PD-10 purification. Treatment with FVIIai did not change tumor growth compared to the vehicle groups. The mice that received 15 MBq...... uptake of 177Lu-FVIIai measured ex vivo was 1.16±0.04, 1.97±0.18, 1.95±0.07, 1.01±0.06, 0.31±0.02 percent injected dose per gram (%ID/g) at 1, 4, 24, 72 and 168 hours post-injection, respectively. Injection with unlabeled FVIIai 10 minutes before 177Lu-FVIIai injection significantly reduced tumor uptake...

  6. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Riccabona, G.

    2001-01-01

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β - emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  7. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  8. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  9. Production and dosimetric aspects of the potent Auger emitter {sup 58m}Co for targeted radionuclide therapy of small tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.; Elema, D.R.; Jensen, M. [PET and Cyclotron Unit, Nuclear Medicine Department, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark and Institute of Clinical Research, University of Southern Denmark, Winsloewparken 19, DK-5000 Odense (Denmark); The Hevesy Laboratory, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2011-08-15

    Purpose: Based on theoretical calculations, the Auger emitter {sup 58m}Co has been identified as a potent nuclide for targeted radionuclide therapy of small tumors. During the production of this isotope, the coproduction of the long-lived ground state {sup 58g}Co is unfortunately unavoidable, as is ingrowth of the ground state following the isomeric decay of {sup 58m}Co. The impact of {sup 58g}Co as a {beta}{sup +}- and {gamma}-emitting impurity should be included in the dosimetric analysis. The purpose of this study was to investigate this critical part of dosimetry based on experimentally determined production yields of {sup 58m}Co and {sup 58g}Co using a low-energy cyclotron. Also, the cellular S-values for {sup 58m}Co have been calculated and are presented here for the first time. Methods: {sup 58m}Co was produced via the {sup 58}Fe(p,n){sup 58m}Co nuclear reaction on highly enriched {sup 58}Fe metal. In addition, radiochemical separations of produced radio-cobalt from {sup nat}Fe target material were performed. The theoretical subcellular dosimetry calculations for {sup 58m}Co and {sup 58g}Co were performed using the MIRD formalism, and the impact of the increasing ground state impurity on the tumor-to-normal-tissue dose ratios (TND) per disintegration as a function of time after end of bombardment (EOB) was calculated. Results: 192 {+-} 8 MBq of {sup 58m}Co was produced in the irradiation corresponding to a production yield of 10.7 MBq/{mu}Ah. The activity of {sup 58g}Co was measured to be 0.85% {+-} 0.04% of the produced {sup 58m}Co activity at EOB. The radio-cobalt yields in the rapid separations were measured to be >97% with no detectable iron contaminations in the cobalt fractions. Due to the unavoidable coproduction and ingrowth of the long-lived ground state {sup 58g}Co, the TND and the potency of the {sup 58m}Co decrease with time after EOB. If a future treatment with a {sup 58m}Co labeled compound is not initiated before, e.g., 21 h after EOB, the

  10. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  11. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Fenster, Aaron; Ward, Aaron D

    2018-03-01

    Magnetic resonance imaging (MRI)-targeted, three-dimensional (3D) transrectal ultrasound (TRUS)-guided prostate biopsy aims to reduce the 21-47% false-negative rate of clinical two-dimensional (2D) TRUS-guided systematic biopsy, but continues to yield false-negative results. This may be improved via needle target optimization, accounting for guidance system errors and image registration errors. As an initial step toward the goal of optimized prostate biopsy targeting, we investigated how needle delivery error impacts tumor sampling probability for two targeting strategies. We obtained MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident assessed these MR images and contoured 81 suspicious regions, yielding tumor surfaces that were registered to 3D TRUS. The biopsy system's root-mean-squared needle delivery error (RMSE) and systematic error were modeled using an isotropic 3D Gaussian distribution. We investigated two different prostate tumor-targeting strategies using (a) the tumor's centroid and (b) a ring in the lateral-elevational plane. For each simulation, targets were spaced at equal arc lengths on a ring with radius equal to the systematic error magnitude. A total of 1000 biopsy simulations were conducted for each tumor, with RMSE and systematic error magnitudes ranging from 1 to 6 mm. The difference in median tumor sampling probability and probability of obtaining a 50% core involvement was determined for ring vs centroid targeting. Our simulation results indicate that ring targeting outperformed centroid targeting in situations where systematic error exceeds RMSE. In these instances, we observed statistically significant differences showing 1-32% improvement in sampling probability due to ring targeting. Likewise, we observed statistically significant differences showing 1-39% improvement in 50% core involvement probability due to ring targeting. Our results suggest that the optimal targeting scheme for prostate biopsy depends on

  12. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  13. Entrapment of Radionuclides in Nanoparticle Compositions

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention is directed to the technical field of imaging compositions useful for diagnosing cancer and other diseases in a subject. In particular, the invention relates to a class of diagnostic compounds comprising a novel liposome composition with encapsulated metal entities such as r...... tissue and, in general, pathological conditions associated with leaky blood vessels. The present invention provides a new diagnostic tool for the utilization of positron emission tomography (PET) imaging technique.......The present invention is directed to the technical field of imaging compositions useful for diagnosing cancer and other diseases in a subject. In particular, the invention relates to a class of diagnostic compounds comprising a novel liposome composition with encapsulated metal entities...... such as radionuclides,for example 61Cu and 64Cu copper isotopes. The invention further relates to a novel method for loading delivery systems, such as liposome compositions, with metal entities such as radionuclides, and the use of liposomes for targeted diagnosis and treatment of a target site, such as cancerous...

  14. Robust through-the-wall radar image classification using a target-model alignment procedure.

    Science.gov (United States)

    Smith, Graeme E; Mobasseri, Bijan G

    2012-02-01

    A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE

  15. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides. Final Report

    International Nuclear Information System (INIS)

    Welch, M.J.

    2012-01-01

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N 4 -methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the oxygen

  16. Radionuclide generators for biomedical applications

    International Nuclear Information System (INIS)

    Finn, R.D.; Molinski, V.J.; Hupf, H.B.; Kramer, H.

    1983-10-01

    This document reviews the chemical literature of those radionuclide generators that have gained or appear to possess utility in medical imaging. The text represents a conscientious effort to peruse the scientific literature through 1980. The intent of this work is to provide a reference point for the investigator who is interested in the development of a particular generator system and the refinements which have been reported. Moreover, the incorporation of the particular daughter radionuclide into a suitable radiodiagnostic agent is presented

  17. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Lee, K. J.; Song, M. C.; Hwang, G. H.; Lee, C. M.; Yuk, D. S.; Lee, S. C.

    2004-02-01

    The contents and the scope of this study are as follows : reassessment of selection criteria and final selection of target radionuclides, establishment of detailed radionuclide evaluation methods for each target radionuclide, development of requirement and fulfillment guidelines for the assessment methods of the assay-target radionuclide inventory

  18. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Song, M. C.; Hwang, G. H.; Lee, C. M.; Yuk, D. S.; Lee, S. C. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2004-02-15

    The contents and the scope of this study are as follows : reassessment of selection criteria and final selection of target radionuclides, establishment of detailed radionuclide evaluation methods for each target radionuclide, development of requirement and fulfillment guidelines for the assessment methods of the assay-target radionuclide inventory.

  19. A model for inverse dose-rate effects - low dose-rate hyper-sensibility in response to targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Murray, I.; Mather, S.J.

    2015-01-01

    Full text of publication follows. The aim of this work was to test the hypothesis that the Linear-Quadratic (LQ) model of cell survival, developed for external beam radiotherapy (EBRT), could be extended to targeted radionuclide therapy (TRT) in order to predict dose-response relationships in a cell line exhibiting low dose hypersensitivity (LDH). Methods: aliquots of the PC-3 cancer cell line were treated with either EBRT or an in-vitro model of TRT (Irradiation of cell culture with Y-90 EDTA over 24, 48, 72 or 96 hours). Dosimetry for the TRT was calculated using radiation transport simulations with the Monte Carlo PENELOPE code. Clonogenic as well as functional biological assays were used to assess cell response. An extension of the LQ model was developed which incorporated a dose-rate threshold for activation of repair mechanisms. Results: accurate dosimetry for in-vitro exposures of cell cultures to radioactivity was established. LQ parameters of cell survival were established for the PC-3 cell line in response to EBRT. The standard LQ model did not predict survival in PC-3 cells exposed to Y 90 irradiation over periods of up to 96 hours. In fact cells were more sensitive to the same dose when irradiation was carried out over 96 hours than 24 hours. I.e. at a lower dose-rate. Deviations from the LQ predictions were most pronounced below a threshold dose-rate of 0.5 Gy/hr. These results led to an extension of the LQ model based upon a dose-rate dependent sigmoid model of single strand DNA repair. This extension to the model resulted in predicted cell survival curves that closely matched the experimental data. Conclusion: the LQ model of cell survival to radiation has been shown to be largely predictive of response to low dose-rate irradiation. However, in cells displaying LDH, further adaptation of the model was required. (authors)

  20. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H.R. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide

  1. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Nazanin Hakimzadeh

    Full Text Available Molecular imaging of matrix metalloproteinases (MMPs may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9 with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT imaging that effectively targets atherosclerotic lesions in mice.

  2. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    Science.gov (United States)

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  3. Preclinical evaluation of "1"1"1In-DOTA-Bombesin analogue for peptide receptor targeted imaging

    International Nuclear Information System (INIS)

    Salgueiro, C.; Castiglia, S.G. de; Tesan, F.; Salgueiro, M.J.

    2017-01-01

    Peptide receptors are very important targets for imaging and therapy. The bombesin family is becoming significant, in special the gastrine-releasing peptide receptor (GRPr) that has been found in Prostate and Breast tumors. The aim of this work is to label [DOTA-Pro1,Tyr4] BN with "1"1"1InCl3 and study its efficacy in normal and tumor animals. Radiolabeling experiences were made to find the best peptide : radionuclide relationship. The radiochemical purity was determined by Sep-pak C18 cartridge (Waters) and ITLC-SG using 50mM EDTA in 0.1M ammonium acetate (pH 5.5) and 3.5%(v/v) ammonia/methanol 1:1. Gamma imaging studies were made 24 hs after injection of the product in control rats. On the other hand gamma imaging studies were made at 24 hs in tumor bearing nude mice too. The tumor was induced by subcutaneous injection of PC3 cells. For biodistribution studies animals were sacrificed and blood, pancreas, intestine, kidneys, liver, lungs, femoral muscle and tumor were analyzed. The results were expressed as %ID/g of tissue. Radiolabeling experiments allowed us to obtain an stable product with >95% of radiochemical purity and 5.78MBq/nmol of specific activity, with a ratio of 13μg peptide per In-111 mCi. The normal and tumor animals imaging show physiological uptake in kidneys and a biodistribution according to bibliography. A specific uptake is evidenced in tumor. Our results show a radiochemical stable compound for 48 hs and suitable for GRPr imaging. (authors) [es

  4. Impact of 4D image quality on the accuracy of target definition

    DEFF Research Database (Denmark)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas

    2016-01-01

    that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal...

  5. Eccentricity in Images of Circular and Spherical Targets and its Impact to 3D Object Reconstruction

    Directory of Open Access Journals (Sweden)

    T. Luhmann

    2014-06-01

    Full Text Available This paper discusses a feature of projective geometry which causes eccentricity in the image measurement of circular and spherical targets. While it is commonly known that flat circular targets can have a significant displacement of the elliptical image centre with respect to the true imaged circle centre, it can also be shown that the a similar effect exists for spherical targets. Both types of targets are imaged with an elliptical contour. As a result, if measurement methods based on ellipses are used to detect the target (e.g. best-fit ellipses, the calculated ellipse centre does not correspond to the desired target centre in 3D space. This paper firstly discusses the use and measurement of circular and spherical targets. It then describes the geometrical projection model in order to demonstrate the eccentricity in image space. Based on numerical simulations, the eccentricity in the image is further quantified and investigated. Finally, the resulting effect in 3D space is estimated for stereo and multi-image intersections. It can be stated that the eccentricity is larger than usually assumed, and must be compensated for high-accuracy applications. Spherical targets do not show better results than circular targets. The paper is an updated version of Luhmann (2014 new experimental investigations on the effect of length measurement errors.

  6. Radionuclide transfer

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1993-01-01

    The research project described here had the aim to obtain further information on the transfer of nuclides during pregnancy and lactation. The tests were carried out in mini-pigs and rats receiving unchanging doses of radionuclides with the food. The following findings were revealed for the elements examined: Fe, Se, Cs and Zn were characterized by very high transfer levels in the mother, infant and foetus. A substantial uptake by the mother alone was observed for Co, Ag and Mn. The uptake by the foetus and infant here was 1 to 10 times lower. A preferential concentration in certain tissues was seen for Sr and Tc; the thyroid levels of Tc were about equally high in mothers and infants, while Sr showed less accumulation in the maternal bone. The lanthanide group of substances (Ce, Eu and Gd as well as Y and Ru) were only taken up to a very limited extent. The uptake of the examined radionuclides (Fe, Co, Ag, Ce) with the food ingested was found here to be ten times greater in rats as compared to mini-pigs. This showed that great caution must be observed, if the behaviour of radionuclides in man is extrapolated from relevant data obtained in rodents. (orig./MG) [de

  7. Nuclear cardiology. I - Radionuclide angiographic assessment of left ventricular contraction: uses, limitations and future directions. II - The role of myocardial perfusion imaging using thallium-201 in diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Bodenheimer, M.M.; Banka, V.S.; Helfant, R.H.; Pennsylvania, University, Philadelphia, PA)

    1980-01-01

    The current status of radionuclide angiography is reviewed. First pass and gated equilibrium methods for determining left ventricular contraction are compared. Some clinical applications of radionuclide angiography are then examined, including the detection of discrete versus diffuse asynergy and the assessment of myocardial infarction. The second part of this work reviews the uses and limitations of thallium-201 perfusion imaging in the diagnosis of the acute and chronic manifestations of coronary heart disease. Theoretical and technical considerations of thallium-201 imaging are reviewed along with the clinical implications of the technique

  8. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  9. Radionuclide Therapy. Chapter 19

    Energy Technology Data Exchange (ETDEWEB)

    Flux, G.; Du, Yong [Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom)

    2014-12-15

    Cancer has been treated with radiopharmaceuticals since the 1940s. The radionuclides originally used, including 131I and 32P, are still in use. The role of the physicist in radionuclide therapy encompasses radiation protection, imaging and dosimetry. Radiation protection is of particular importance given the high activities of the unsealed sources that are often administered, and must take into account medical staff, comforters and carers, and, as patients are discharged while still retaining activity, members of the public. Regulations concerning acceptable levels of exposure vary from country to country. If the administered radiopharmaceutical is a γ emitter, then imaging can be performed which may be either qualitative or quantitative. While a regular system of quality control must be in place to prevent misinterpretation of image data, qualitative imaging does not usually rely on the image corrections necessary to determine the absolute levels of activity that are localized in the patient. Accurate quantitative imaging is dependent on these corrections and can permit the distribution of absorbed doses delivered to the patient to be determined with sufficient accuracy to be clinically beneficial.

  10. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  11. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  12. Multimodal imaging of breast cancer metastasis targeting and antimetastatic nanotherapy

    NARCIS (Netherlands)

    Rizzo, Larissa; Rijcken, Cristianne|info:eu-repo/dai/nl/304833770; Pola, Robert; Storm, G|info:eu-repo/dai/nl/073356328; Ehling, Josef; Von Stillfried, Saskia; Kiessling, Fabian; Lammers, Twan|info:eu-repo/dai/nl/304824577

    INTRODUCTION: As opposed to the routine use of nanomedicines for drug targeting to solid tumors, the highest medical need refers to targeting and treating metastasis. Little is known regarding the accumulation of polymers, liposomes and micelles in metastases, and no systematic analyses have been

  13. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  14. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  15. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    Science.gov (United States)

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  16. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  17. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  18. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  19. Paving the way to personalized medicine. Production of some theragnostic radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    2011-01-01

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrant it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.

  20. Comparison of exercise radionuclide angiography with thallium SPECT imaging for detection of significant narrowing of the left circumflex coronary artery

    International Nuclear Information System (INIS)

    Dilsizian, V.; Perrone-Filardi, P.; Cannon, R.O. III; Freedman, N.M.; Bacharach, S.L.; Bonow, R.O.

    1991-01-01

    Although quantitation of exercise thallium tomograms has enhanced the noninvasive diagnosis and localization of coronary artery disease, the detection of stenosis of the left circumflex coronary artery remains suboptimal. Because posterolateral regional wall motion during exercise is well assessed by radionuclide angiography, this study determined whether regional dysfunction of the posterolateral wall during exercise radionuclide angiography is more sensitive in identifying left circumflex disease than thallium perfusion abnormalities assessed by single-photon emission computed tomography (SPECT). One hundred ten consecutive patients with CAD were studied, of whom 70 had a significant stenosis of the left circumflex coronary artery or a major obtuse marginal branch. Both regional function and segmental thallium activity of the posterolateral wall were assessed using visual and quantitative analysis. Left ventricular regional function was assessed objectively by dividing the left ventricular region of interest into 20 sectors; the 8 sectors corresponding to the posterolateral free wall were used to assess function in the left circumflex artery distribution. Similarly, using circumferential profile analysis of short-axis thallium tomograms, left ventricular myocardial activity was subdivided into 64 sectors; the 16 sectors corresponding to the posterolateral region were used to assess thallium perfusion abnormalities in the left circumflex artery territory. Qualitative posterolateral wall motion analysis detected 76% of patients with left circumflex coronary artery stenosis, with a specificity of 83%, compared with only 44% by qualitative thallium tomography (p less than 0.001) and a specificity of 92%

  1. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  2. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  3. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    Science.gov (United States)

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  4. Radionuclide radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.; Bradley, K.M.

    2006-01-01

    This is the fourth in a series of short reviews of internet-based radiological educational resources, and will focus on radionuclide radiology and nuclear medicine. What follows is a list of carefully selected websites to save time in searching them out. Most of the sites cater for trainee or non-specialist radiologists, but may also be of interest to specialists for use in teaching. This article may be particularly useful to radiologists interested in the rapidly expanding field of positron emission tomography computed tomography (PET-CT). Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (February 2006)

  5. Extraperitoneal urine leak after renal transplantation: the role of radionuclide imaging and the value of accompanying SPECT/CT - a case report

    International Nuclear Information System (INIS)

    Son, Hongju; Heiba, Sherif; Kostakoglu, Lale; Machac, Josef

    2010-01-01

    The differentiation of the nature of a fluid collection as a complication of kidney transplantation is important for management and treatment planning. Early and delayed radionuclide renography can play an important role in the evaluation of a urine leak. However, it is sometimes limited in the evaluation of the exact location and extent of a urine leak. A 71-year-old male who had sudden anuria, scrotal swelling and elevated creatinine level after cadaveric renal transplantation performed Tc-99 m MAG3 renography to evaluate the renal function, followed by an ultrasound which was unremarkable. An extensive urine leak was evident on the planar images. However, an exact location of the urine leak was unknown. Accompanying SPECT/CT images confirmed a urine leak extending from the lower aspect of the transplant kidney to the floor of the pelvic cavity, presacral region and the scrotum via right inguinal canal as well as to the right abdominal wall. Renal scintigraphy is very useful to detect a urine leak after renal transplantation. However, planar imaging is sometimes limited in evaluating the anatomical location and extent of a urine leak accurately. In that case accompanying SPECT/CT images are very helpful and valuable to evaluate the anatomical relationships exactly

  6. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  7. SAR Image Simulation of Ship Targets Based on Multi-Path Scattering

    Science.gov (United States)

    Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.

    2018-04-01

    Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.

  8. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  9. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    Science.gov (United States)

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus

  10. Diagnosis and screening of small hepatocellular carcinomas. Comparison of radionuclide imaging, ultrasound, computed tomography, hepatic angiography, and alpha 1-fetoprotein assay

    International Nuclear Information System (INIS)

    Takashima, T.; Matsui, O.; Suzuki, M.; Ida, M.

    1982-01-01

    Twenty-nine small (less than 5 cm) hepatocellular carcinomas in 18 patients were examined by radionuclide imaging (RN), ultrasound (US), computed tomography (CT), hepatic angiography, and serum alpha 1-fetoprotein (AFP) assay. Sensitivity was 39% with RN, 50% with US, 56% with CT, and 94% with angiography, including infusion hepatic angiography (IHA). Lesions larger than 3 cm could be detected by all of these methods; those between 2 and 3 cm were generally shown by US and CT but not RN. IHA was essential for diagnosis of lesions less than 2 cm, which were otherwise difficult or impossible to detect except with angiography. As a screening method, AFP was best, followed by US and CT. The authors recommend using AFP and US to minimize expense and radiation exposure. In questionable cases, IHA should be performed

  11. Medical Physics Staffing Needs in Diagnostic Imaging and Radionuclide Therapy: An Activity Based Approach [Endorsed by International Organization for Medical Physics

    International Nuclear Information System (INIS)

    2018-01-01

    Over the last decades, the rapid technological development of diagnostic and interventional radiology and nuclear medicine has made them major tools of modern medicine. However, at the same time the involved risks, the growing number of procedures and the increasing complexity of the procedures require competent professional staff to ensure safe and effective patient diagnosis, treatment and management. Medical physicists (or clinically qualified medical physicists) have been recognized as vital health professionals with important and clear responsibilities related to quality and safety of applications of ionizing radiation in medicine. This publication describes an algorithm developed to determine the recommended staffing levels for clinical medical physics services in medical imaging and radionuclide therapy, based on current best practice, as described in international guidelines.

  12. Radionuclide therapy of endocrine-related cancer

    International Nuclear Information System (INIS)

    Kratochwil, C.; Giesel, F.L.

    2014-01-01

    This article gives an overview of the established radionuclide therapies for endocrine-related cancer that already have market authorization or are currently under evaluation in clinical trials. Radioiodine therapy is still the gold standard for differentiated iodine-avid thyroid cancer. In patients with bone and lung metastases (near) total remission is seen in approximately 50 % and the 15-year survival rate for these patients is approximately 90 %. In contrast to the USA, meta-iodobenzylguanidine (MIBG) therapy has market approval in Europe. According to the current literature, in the setting of advanced stage neuroblastoma and malignant pheochromocytoma or paraganglioma, radiological remission can be achieved in > 30 % and symptom control in almost 80 % of the treated patients. Somatostatin receptor targeted radionuclide therapies (e.g. with DOTATATE or DOTATOC) demonstrated promising results in phase 2 trials, reporting progression-free survival in the range of 24-36 months. A first phase 3 pivotal trial for intestinal carcinoids is currently recruiting and another trial for pancreatic neuroendocrine tumors is planned. Radiopharmaceuticals based on glucagon-like peptide 1 (GLP1) or minigastrins are in the early evaluation stage for application in the treatment of insulinomas and medullary thyroid cancer. In general, radiopharmaceutical therapy belongs to the group of so-called theranostics which means that therapy is tailored for individual patients based on molecular imaging diagnostics to stratify target positive or target negative tumor phenotypes. (orig.) [de

  13. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    Science.gov (United States)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  14. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several

  16. Collimator design for neutron imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Sommargren, G.E.; Lerche, R.A.

    1981-01-01

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism

  17. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2002-07-01

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO{sub 4} solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT.

  18. Breaking camouflage and detecting targets require optic flow and image structure information.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Chen, Chang; Bingham, Geoffrey P

    2017-08-01

    Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators. With camouflage, visual targets and distracters cannot be distinguished using only static image structure (i.e., appearance). Motion generates another source of optical information, optic flow, which breaks camouflage and specifies target locations. Optic flow calibrates image structure with respect to spatial relations among targets and distracters, and calibrated image structure makes previously camouflaged targets perceptible in a temporally stable fashion after motion stops. We investigated this proposal using laboratory experiments and compared how many camouflaged targets were identified either with optic flow information alone or with combined optic flow and image structure information. Our results show that the combination of motion-generated optic flow and target-projected image structure information yielded efficient and stable perception of camouflaged targets.

  19. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  20. Research on the underwater target imaging based on the streak tube laser lidar

    Science.gov (United States)

    Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan

    2018-03-01

    A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.

  1. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  2. Radionuclides in thyroid cancer

    International Nuclear Information System (INIS)

    Mahadev, V.

    1980-01-01

    The three main areas of application of radionuclides in thyroid disease will be reviewed. Firstly thyroid radionuclide imaging in thyroid swellings, in relationship to lumps in the neck and ectopic thyroid tissue such as retrosternal goitre, and lingual goitre will be described. Future developments in the field including tomographic scanning, using the coded aperture method, and fluorescent scans and ultrasound are reviewed. The second area of application is the assessment and evaluation of thyroid function and the therapy of Grave's Disease and Plummer's Disease using radioiodine. The importance of careful collection of the line of treatment, results of treatment locally and the follow-up of patients after radioiodine therapy will be described. The third area of application is in the diagnosis and therapy of thyroid cancer. Investigation of thyroid swelling, and the diagnosis of functioning metastases are reported. The therapeutic iodine scan as the sole evidence of functioning metastatic involvement is recorded. Histological thyroid cancer appears to be increasingly encountered in clinical practice and the plan of management in relation to choice of cases for therapeutic scanning is discussed with case reports. Lastly the role of whole body scanning in relationship to biochemical markers is compared. In the changing field of nuclear medicine radionuclide applications in thyroid disease have remained pre-eminent and this is an attempt to reassess its role in the light of newer developments and local experience in the Institute of Radiotherapy, Oncology and Nuclear Medicine. (author)

  3. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    Science.gov (United States)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  4. Molecular targeting of angiogenesis for imaging and therapy

    International Nuclear Information System (INIS)

    Brack, Simon S.; Neri, Dario; Dinkelborg, Ludger M.

    2004-01-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  5. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters.

    Science.gov (United States)

    Tian, Chao; Jiang, Zheng; Chen, Weidong; Wang, Dongjin

    2017-10-21

    Microwave staring correlated imaging (MSCI) can achieve ultra-high resolution in real aperture staring radar imaging using the correlated imaging process (CIP) under all-weather and all-day circumstances. The CIP must combine the received echo signal with the temporal-spatial stochastic radiation field. However, a precondition of the CIP is that the continuous imaging region must be discretized to a fine grid, and the measurement matrix should be accurately computed, which makes the imaging process highly complex when the MSCI system observes a wide area. This paper proposes an adaptive imaging approach for the targets in discrete clusters to reduce the complexity of the CIP. The approach is divided into two main stages. First, as discrete clustered targets are distributed in different range strips in the imaging region, the transmitters of the MSCI emit narrow-pulse waveforms to separate the echoes of the targets in different strips in the time domain; using spectral entropy, a modified method robust against noise is put forward to detect the echoes of the discrete clustered targets, based on which the strips with targets can be adaptively located. Second, in a strip with targets, the matched filter reconstruction algorithm is used to locate the regions with targets, and only the regions of interest are discretized to a fine grid; sparse recovery is used, and the band exclusion is used to maintain the non-correlation of the dictionary. Simulation results are presented to demonstrate that the proposed approach can accurately and adaptively locate the regions with targets and obtain high-quality reconstructed images.

  6. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    Science.gov (United States)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  7. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience

    OpenAIRE

    Richard P. Baum, Harshad R. Kulkarni

    2012-01-01

    The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and...

  8. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer

    DEFF Research Database (Denmark)

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe

    2016-01-01

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high...

  9. Method and apparatus from imaging target components in a biological sample using permanent magnets

    NARCIS (Netherlands)

    Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2010-01-01

    The present invention is a method and means for positive selecting and imaging target entities. This includes a coated permanent magnetic device for magnetic manipulation in the system of the present invention. The system immunomagnetically concentrates the target entity, fluorescently labels,

  10. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Science.gov (United States)

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  11. Correction for tissue attenuation in radionuclide gastric emptying studies: a comparison of a lateral image method and a geometric mean method

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.J.; Chatterton, B.E. (Royal Adelaide Hospital (Australia)); Horowitz, M.; Shearman, D.J.C. (Adelaide Univ. (Australia). Dept. of Medicine)

    1984-08-01

    Variation in depth of radionuclide within the stomach may result in significant errors in the measurement of gastric emptying if no attempt is made to correct for gamma-ray attenuation by the patient's tissues. A method of attenuation correction, which uses a single posteriorly located scintillation camera and correction factors derived from a lateral image of the stomach, was compared with a two-camera geometric mean method, in phantom studies and in five volunteer subjects. A meal of 100 g of ground beef containing /sup 99/Tcsup(m)-chicken liver, and 150 ml of water was used in the in vivo studies. In all subjects the geometric mean data showed that solid food emptied in two phases: an initial lag period, followed by a linear emptying phase. Using the geometric mean data as a standard, the anterior camera overestimated the 50% emptying time (T/sub 50/) by an average of 15% (range 5-18) and the posterior camera underestimated this parameter by 15% (4-22). The posterior data, corrected for attenuation using the lateral image method, underestimated the T/sub 50/ by 2% (-7 to +7). The difference in the distances of the proximal and distal stomach from the posterior detector was large in all subjects (mean 5.7 cm, range 3.9-7.4).

  12. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  13. Development of positron emitting radionuclides for imaging with improved positron detectors. [/sup 82/Rb, /sup 62/Zn, /sup 64/Cu, /sup 67/Ga

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced /sup 82/Rb; cyclotron-produced /sup 62/Zn; and reactor-produced /sup 64/Cu. Investigation of the /sup 82/Sr (25 d)--/sup 82/Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of /sup 82/Rb and the breakthrough of /sup 82/Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced /sup 82/Sr was used to charge a compact /sup 82/Rb generator to obtain multi-millicurie amounts of /sup 82/Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl/sub 2/ to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of /sup 62/Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of /sup 62/Zn-histidine in the prostate of a dog at 20 h. /sup 64/Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of /sup 67/Ga citrate under the same conditions. /sup 64/Cu-asparagine had better tumor-to-soft tissue ratios than /sup 67/Ga-citrate.

  14. Target recognition of log-polar ladar range images using moment invariants

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  15. Target recognition of ladar range images using even-order Zernike moments.

    Science.gov (United States)

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  16. Restoration of longitudinal laser tomography target image from inhomogeneous medium degradation under common conditions.

    Science.gov (United States)

    Yi, WenJun; Wang, Ping; Fu, MeiCheng; Tan, JiChun; Zhu, Jubo; Li, XiuJian

    2017-07-10

    In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

  17. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images.

    Science.gov (United States)

    Kim, Sohyun; Jang, Gwang-Il; Kim, Sungho; Kim, Junmo

    2018-03-27

    This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

  18. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images

    Directory of Open Access Journals (Sweden)

    Sohyun Kim

    2018-03-01

    Full Text Available This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS and airborne EO/IR system.

  19. SAR image dataset of military ground targets with multiple poses for ATR

    Science.gov (United States)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  20. Aligning physics and physiology: Engineering antibodies for radionuclide delivery.

    Science.gov (United States)

    Tsai, Wen-Ting K; Wu, Anna M

    2018-03-14

    The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Therapy of Patients with Malignant Glioma with Targeted A-Radionuclide Therapy Using 213Bi-DOTA-[Thi8, Met (Oo)11]-Substanz P

    International Nuclear Information System (INIS)

    Forrer, F.; Mueller-Brand, J.; Cordier, D.; Merlo, A.; Morgenstern, A.; Bruchertseifer, F.; Maecke, H.R.

    2009-01-01

    The prognosis of patients with malignant glioma is very poor. New therapy options are mandatory. Substance P is the main ligand of neurokinin type 1 (NK-1) receptors, which are consistently over-expressed in malignant gliomas and surrounding tumor vessels. Administration of 90 Y-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P was shown to be feasible and safe. However, in critically located tumors, the mean tissue range of 5 mm of 90 Y may lead to unacceptable damage of adjacent, functional critical areas of the brain. We report a phase I study with locally administered 213 Bi labeled DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P in patients with malignant glioma. By using a direct, intratumoral injection, the problem of the short physical half life of Bismuth-213 can be circumvent. To date, 5 patients with malignant glioma (2 Grade IV, 1 Grade III and 2 grade II) without previous treatment were included. One to three catheter systems were placed stereotactically into the tumor. After a diagnostic injection with 111 In-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P and subsequent dosimetry, totally 30 to 138 mCi of 213 Bi-DOTA-[Thi8, Met (O o ) 11 ]-Substanz P was injected intratumorally performing 3 to 4 applications over 2 days. SPECT/CT was used to assess the biodistribution. Follow up was performed clinically and with morphological imaging. Targeted radiopeptide therapy using 213 Bi-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P was very well tolerated by all patients. No additional neurological deficit was observed. Repetitive imaging is suggestive of progressive radiation-induced necrosis, which was validated by subsequent resection of the tumors. Time to progression was found to be 11 and 14 months respectively in patients with grade IV glioma. No progression is found after 18 to 23 months in patients with grade II or III glioma. We conclude that targeted loco-regional radiotherapy using 213 Bi-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P represents an innovative and effective

  2. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  3. ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    Jibin Zheng

    2017-03-01

    Full Text Available For inverse synthetic aperture radar (ISAR imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD technique is blurred and the range-instantaneous-Doppler (RID technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF. The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.

  4. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    Science.gov (United States)

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  5. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    International Nuclear Information System (INIS)

    Guo Bao-Feng; Wang Jun-Ling; Gao Mei-Guo

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. (paper)

  6. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  7. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment

    International Nuclear Information System (INIS)

    Flampouri, S.; Evans, P.M.; Partridge, M.; Nahum, A.E.; Verhaegen, A.E.; Spezi, E.

    2002-01-01

    Megavoltage portal images suffer from poor quality compared to those produced with kilovoltage x-rays. Several authors have shown that the image quality can be improved by modifying the linear accelerator to generate more low-energy photons. This work addresses the problem of using Monte Carlo simulation and experiment to optimize the beam and detector combination to maximize image quality for a given patient thickness. A simple model of the whole imaging chain was developed for investigation of the effect of the target parameters on the quality of the image. The optimum targets (6 mm thick aluminium and 1.6 mm copper) were installed in an Elekta SL25 accelerator. The first beam will be referred to as Al6 and the second as Cu1.6. A tissue-equivalent contrast phantom was imaged with the 6 MV standard photon beam and the experimental beams with standard radiotherapy and mammography film/screen systems. The arrangement with a thin Al target/mammography system improved the contrast from 1.4 cm bone in 5 cm water to 19% compared with 2% for the standard arrangement of a thick, high-Z target/radiotherapy verification system. The linac/phantom/detector system was simulated with the BEAM/EGS4 Monte Carlo code. Contrast calculated from the predicted images was in good agreement with the experiment (to within 2.5%). The use of MC techniques to predict images accurately, taking into account the whole imaging system, is a powerful new method for portal imaging system design optimization. (author)

  8. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  9. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  10. Radionuclide brain scanning

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.

    1992-01-01

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ''allied advances'' with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  11. Radionuclide brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Dayem, H

    1993-12-31

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ``allied advances`` with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  12. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    Directory of Open Access Journals (Sweden)

    Xiaozhou Fan

    Full Text Available To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45, and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles.

  13. Accuracy verification of PET-CT image fusion and its utilization in target delineation of radiotherapy

    International Nuclear Information System (INIS)

    Wang Xuetao; Yu Jinming; Yang Guoren; Gong Heyi

    2005-01-01

    Objective: Evaluate the accuracy of co-registration of PET and CT (PET-CT) images on line with phantom, and utilize it on patients to provide clinical evidence for target delineation in radiotherapy. Methods: A phantom with markers and different volume cylinders was infused with various concentrations of 18 FDG, and scanned at 4 mm by PET and CT respectively. After having been transmitted into GE eNTEGRA and treatment planning system (TPS) workstations, the images were fused and reconstructed. The distance between the markers and the errors were monitored in PET and CT images respectively. The volume of cylinder in PET and CT images were measured and compared by certain pixel value proportion deduction method. The same procedure was performed on the pulmonary tumor image in ten patients. Results: eNTEGRA and TPS workstations had a good length linearity, but the fusion error of the latter was markedly greater than the former. Tumors in different volume filled by varying concentrations of 18 FDG required different pixel deduction proportion. The cylinder volume of PET and CT images were almost the same, so were the images of pulmonary tumor of ten patients. Conclusions: The accuracy of image co-registration of PET-CT on line may fulfill the clinical demand. Pixel value proportion deduction method can be used for target delineation on PET image. (authors)

  14. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  15. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    Science.gov (United States)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  16. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Viorel Simion

    Full Text Available MicroRNAs (miRNAs are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  17. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    Science.gov (United States)

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal; Baril, Patrick

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  18. A study on gallbladder empty of patients with functional dyspepsia by radionuclide imaging and on assessment of plasma levels of gastrointestinal hormones

    International Nuclear Information System (INIS)

    Li Juan; Sun Xiaoning; Liu Baojun; Zhang Li

    2001-01-01

    Objective: To study the role of gallbladder kinetics and plasma levels of gastrointestinal hormones in the mechanism of functional dyspepsia. Methods: Gallbladder ejection fractions (GBEF) were determined with 99 Tc m radionuclide imaging, and plasma levels of motilin (MTL), cholecystokinin (CCK), vasoactive intestinal peptide (VIP) and somatostatin (SS) were measured with radioimmunoassay. Thirty-two patients with functional dyspepsia of dyskinetic type (FD group) and 20 normal volunteers in control group were studied. Results: The preprandial and postprandial gallbladder ejection fractions (GBEF) and MTL levels were both obviously lower in FD group (P preprandial = 0.82, P postprandial 0.94, P 0.05), while the levels of postprandial CCK were significantly decreased in FD group (P preprandial -0.81, P postprandial = - 0.47, P 0.05). Conclusions: Patients with FD of dyskinetic type might have a significant decrease of preprandial and postprandial gallbladder emptying. The decrease of plasma levels of gastrointestinal hormones. MTL, CCK and the elevation of VIP might be the cause of slow gallbladder emptying and part of the basic pathophysiology in FD

  19. Can Physicians Identify Inappropriate Nuclear Stress Tests? An Examination of Inter-rater Reliability for the 2009 Appropriate Use Criteria for Radionuclide Imaging

    Science.gov (United States)

    Ye, Siqin; Rabbani, LeRoy E.; Kelly, Christopher R.; Kelly, Maureen R.; Lewis, Matthew; Paz, Yehuda; Peck, Clara L.; Rao, Shaline; Bokhari, Sabahat; Weiner, Shepard D.; Einstein, Andrew J.

    2014-01-01

    Background We sought to determine inter-rater reliability of the 2009 Appropriate Use Criteria (AUC) for radionuclide imaging (RNI) and whether physicians at various levels of training can effectively identify nuclear stress tests with inappropriate indications. Methods and Results Four hundred patients were randomly selected from a consecutive cohort of patients undergoing nuclear stress testing at an academic medical center. Raters with different levels of training (including cardiology attending physicians, cardiology fellows, internal medicine hospitalists, and internal medicine interns) classified individual nuclear stress tests using the 2009 AUC. Consensus classification by two cardiologists was considered the operational gold standard, and sensitivity and specificity of individual raters for identifying inappropriate tests was calculated. Inter-rater reliability of the AUC was assessed using Cohen’s kappa statistics for pairs of different raters. The mean age of patients was 61.5 years; 214 (54%) were female. The cardiologists rated 256 (64%) of 400 NSTs as appropriate, 68 (18%) as uncertain, 55 (14%) as inappropriate; 21 (5%) tests were unable to be classified. Inter-rater reliability for non-cardiologist raters was modest (unweighted Cohen’s kappa, 0.51, 95% confidence interval, 0.45 to 0.55). Sensitivity of individual raters for identifying inappropriate tests ranged from 47% to 82%, while specificity ranged from 85% to 97%. Conclusions Inter-rater reliability for the 2009 AUC for RNI is modest, and there is considerable variation in the ability of raters at different levels of training to identify inappropriate tests. PMID:25563660

  20. An assessment of independent component analysis for detection of military targets from hyperspectral images

    Science.gov (United States)

    Tiwari, K. C.; Arora, M. K.; Singh, D.

    2011-10-01

    Hyperspectral data acquired over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. Though spectral response of every material is expected to be unique, but in practice, it exhibits variations, which is known as spectral variability. Most target detection algorithms depend on spectral modelling using a priori available target spectra In practice, target spectra is, however, seldom available a priori. Independent component analysis (ICA) is a new evolving technique that aims at finding out components which are statistically independent or as independent as possible. The technique therefore has the potential of being used for target detection applications. A assessment of target detection from hyperspectral images using ICA and other algorithms based on spectral modelling may be of immense interest, since ICA does not require a priori target information. The aim of this paper is, thus, to assess the potential of ICA based algorithm vis a vis other prevailing algorithms for military target detection. Four spectral matching algorithms namely Orthogonal Subspace Projection (OSP), Constrained Energy Minimisation (CEM), Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), and four anomaly detection algorithms namely OSP anomaly detector (OSPAD), Reed-Xiaoli anomaly detector (RXD), Uniform Target Detector (UTD) and a combination of Reed-Xiaoli anomaly detector and Uniform Target Detector (RXD-UTD) were considered. The experiments were conducted using a set of synthetic and AVIRIS hyperspectral images containing aircrafts as military targets. A comparison of true positive and false positive rates of target detections obtained from ICA and other algorithms plotted on a receiver operating curves (ROC) space indicates the superior performance of the ICA over other algorithms.

  1. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    Science.gov (United States)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  2. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English

    Directory of Open Access Journals (Sweden)

    Zhou Hui

    2015-06-01

    Full Text Available Conventional ground moving target imaging algorithms mainly focus on the range cell migration correction and the motion parameter estimation of the moving target. However, in real Synthetic Aperture Radar (SAR data processing, non-ideal motion error compensation is also a critical process, which focuses and has serious impacts on the imaging quality of moving targets. Non-ideal motion error can not be compensated by either the stationary SAR motion error compensation algorithms or the autofocus techniques. In this paper, two sorts of non-ideal motion errors that affect the Doppler centroid of the moving target is analyzed, and a novel non-ideal motion error compensation algorithm is proposed based on the Inertial Navigation System (INS data and the range walk trajectory. Simulated and real data processing results are provided to demonstrate the effectiveness of the proposed algorithm.

  3. Photoacoustic imaging of tumor targeting with biotin conjugated nanostructured phthalocyanine assemblies

    Science.gov (United States)

    Lee, Seunghyun; Li, Xingshu; Lee, Dayoung; Yoon, Juyoung; Kim, Chulhong

    2018-02-01

    Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice's whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.

  4. Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy

    Science.gov (United States)

    Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan

    2018-02-01

    Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.

  5. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  6. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging

    DEFF Research Database (Denmark)

    Lobatto, Mark E; Calcagno, Claudia; Millon, Antoine

    2015-01-01

    Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated...... enhanced magnetic resonance imaging and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosis....

  7. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    Science.gov (United States)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  8. Radionuclide imaging of small-cell lung cancer (SCLC) using 99mTc-labeled neurotensin peptide 8-13

    International Nuclear Information System (INIS)

    Zhang Kaijun; An Rui; Gao Zairong; Zhang Yongxue; Aruva, Mohan R.

    2006-01-01

    Objectives: To prepare 99m technetium ( 99m Tc)-labeled neurotensin (NT) peptide and to evaluate the feasibility of imaging oncogene NT receptors overexpressed in human small-cell lung cancer (SCLC) cells. Methods: The NT analogue (Nα-His)Ac-NT(8-13) was synthesized such that histidine was attached at the N-terminus. The analogue was labeled with [ 99m Tc(H 2 O) 3 (CO) 3 ] at pH 7. 99m Tc-(Nα-His)Ac-NT(8-13) in vitro stability was determined by challenging it with 100 times the molar excess of DTPA, human serum albumin (HSA) and cysteine. The affinity, 99m Tc-(Nα-His)Ac-NT(8-13) binding to SCLC cell line NCI-H446, was studied in vitro. Biodistribution and imaging with 99m Tc-(Nα-His)Ac-NT(8-13) were performed at 4 and 12 h postinjection, and tissue distribution and imaging after receptor blocking were carried out at 4 h in nude mice bearing human SCLC tumor. Blood clearance was determined in normal mice. Results: The affinity constant (K d ) of 99m Tc-(Nα-His)Ac-NT(8-13) to SCLC cells was 0.56 nmol/L. When challenged with 100 times the molar excess of DTPA, HSA or cysteine, more than 97±1.8% radioactivity remained as 99m Tc-(Nα-His)Ac-NT(8-13). Tumor-to-muscle ratio was 3.35±1.01 at 4 h and 4.20±1.35 at 12 h postinjection. The excretory route of 99m Tc-(Nα-His)Ac-NT(8-13) was chiefly through the renal pathway. In the receptor-blocking group treated with unlabeled (Nα-His)Ac-NT(8-13), tumor-to-muscle ratio at 4 h was 1.25±0.55. Conclusion: The results suggest that 99m Tc-(Nα-His)Ac-NT(8-13) specifically binds to the SCLC cells and made 99m Tc-(Nα-His)Ac-NT(8-13) a desirable compound for further studies in planar or SPECT imaging of oncogene receptors overexpressed in SCLC cells

  9. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  10. Added prognostic value of ischaemic threshold in radionuclide myocardial perfusion imaging: a common-sense integration of exercise tolerance and ischaemia severity

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Cecilia [IRCCS AOU San Martino-National Institute for Cancer Research, CNR Institute of Bioimaging and Molecular Physiology, Section of Genoa c/o Nuclear Medicine, Pad. Sommariva, Genoa (Italy); Acampa, Wanda [National Council of Research, Naples (Italy); Bauckneht, Matteo; Capitanio, Selene; Fiz, Francesco; Dib, Bassam; Sambuceti, Gianmario [University of Genoa, IRCCS-AOU San Martino-National Institute for Cancer Research, Nuclear Medicine, Department of Health Science, Genoa (Italy); Daniele, Stefania; Cantoni, Valeria; Zampella, Emilia; Assante, Roberta; Cuocolo, Alberto [University Federico II, Nuclear Medicine, Naples (Italy); Bruzzi, Paolo [IRCCS AOU San Martino-National Institute for Cancer Research, Epidemiology Unit, Genoa (Italy)

    2015-04-01

    Reversible ischaemia at radionuclide myocardial perfusion imaging (MPI) accurately predicts risk of cardiac death and nonfatal myocardial infarction (major adverse cardiac events, MACE). This prognostic penetrance might be empowered by accounting for exercise tolerance as an indirect index of ischaemia severity. The present study aimed to verify this hypothesis integrating imaging assessment of ischaemia severity with exercise maximal rate pressure product (RPP) in a large cohort of patients with suspected or known coronary artery disease (CAD). We analysed 1,502 consecutive patients (1,014 men aged 59 ± 10 years) submitted to exercise stress/rest MPI. To account for exercise tolerance, the summed difference score (SDS) was divided by RPP at tracer injection providing a clinical prognostic index (CPI). Reversible ischaemia was documented in 357 patients (24 %) and was classified by SDS as mild (SDS 2-4) in 180, moderate (SDS 5-7) in 118 and severe (SDS >7) in 59. CPI values of ischaemic patients were clustered into tertiles with lowest and highest values indicating low and high risk, respectively. CPI modified SDS risk prediction in 119/357 (33 %) patients. During a 60-month follow-up, MACE occurred in 68 patients. Kaplan-Meier analysis revealed that CPI significantly improved predictive power for MACE incidence with respect to SDS alone. Multivariate Cox analysis confirmed the additive independent value of CPI-derived information. Integration of ischaemic threshold and ischaemia extension and severity can improve accuracy of exercise MPI in predicting long-term outcome in a large cohort of patients with suspected or known CAD. (orig.)

  11. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  12. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    Science.gov (United States)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  13. Study of the activation of targets containing Mo for the production of 99Mo by the 98Mo(n,γ)99Mo nuclear reaction and the behaviour of the radionuclidic impurities of the process

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    1998-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MOO 3 and MoZr gel were evaluated, and these represent the two possible ways of preparing the gel of MoZr. A target of metallic Mo was also studied. The radionuclidic purity of 99m Tc eluted from generators prepared in these ways was also measured and compared with the generators prepared with fission 99 Mo. The results showed that, by all the parameters analysed, the best way of preparing the generator of 99 Mo - 99m Tc is the irradiation of MOO 3 and further preparation of the gel and the generators. (author)

  14. Quantitative imaging of protein targets in the human brain with PET

    International Nuclear Information System (INIS)

    Gunn, Roger N; Slifstein, Mark; Searle, Graham E; Price, Julie C

    2015-01-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  15. Quantitative imaging of protein targets in the human brain with PET

    Science.gov (United States)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  16. Clinical evaluation of Tc-99m-mebrofenin and comparison with Tc-disofenin for radionuclide hepatobiliary imaging

    International Nuclear Information System (INIS)

    Klingensmith, W. III; Fritzberg, A.; Spitzer, V.

    1982-01-01

    The clinical comparison reported indicates that Tc-mebrofenin has a significantly lower level of renal excretion that Tc-disofenin at all bilirubin levels. At a total bilirubin level of 25 mg/dl the renal excretion of Tc-mebrofenin is still less than the renal excretion of Tc-disofenin in subjects with normal bilirubin levels. In addition, renal radioactivity in images was never seen in subjects with normal bilirubins while visualization of renal radioactivity is routine in normal subjects with Tc-disofenin. No significant differences were found in any other parameter including hepatocyte extraction efficiency, time of maximum hepatic radioactivity, and hepatic parenchymal washout. This study indicates that Tc-mebrofenin is equal to Tc-disofenin in its hepatobiliary characteristics and superior in its renal characteristics

  17. An evaluation for spatial resolution, using a single target on a medical image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)

    2016-12-15

    Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

  18. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Allen, S.E.; Horrill, A.D.; Howard, B.J.; Lowe, V.P.W.; Parkinson, J.A.

    1983-07-01

    The subject is discussed under the headings: concentration and spatial distribution of radionuclides in grazed and ungrazed saltmarshes; incorporation of radionuclides by sheep grazing on an estuarine saltmarsh; inland transfer of radionuclides by birds feeding in the estuaries and saltmarshes at Ravenglass; radionuclides in contrasting types of coastal pastures and taken up by individual plant species found in west Cumbria; procedures developed and used for the measurement of alpha and gamma emitters in environmental materials. (U.K.)

  19. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid.

    Science.gov (United States)

    Meckel, M; Bergmann, R; Miederer, M; Roesch, F

    2017-01-01

    Bisphosphonates have a high adsorption on calcified tissues and are commonly used in the treatment of bone disorder diseases. Conjugates of bisphosphonates with macrocyclic chelators open new possibilities in bone targeted radionuclide imaging and therapy. Subsequent to positron emission tomography (PET) examinations utilizing 68 Ga-labelled analogues, endoradiotheraphy with 177 Lu-labelled macrocyclic bisphosphonates may have a great potential in the treatment of painful skeletal metastases. Based on the established pharmaceuticals pamidronate and zoledronate two new DOTA-α-OH-bisphosphonates, DOTA PAM and DOTA ZOL (MM1.MZ) were successfully synthesized. The ligands were labelled with the positron emitting nuclide 68 Ga and the β - emitting nuclide 177 Lu and compared in in vitro studies and in ex vivo biodistribution studies together with small animal PET and single photon emission computed tomography (SPECT) studies against [ 18 F]NaF and a known DOTA-α-H-bisphosphonate conjugate (BPAPD) in healthy Wistar rats. The new DOTA-bisphosphonates can be labelled in high yield of 80 to 95 % in 15 min with post-processed 68 Ga and >98 % with 177 Lu. The tracers showed very low uptake in soft tissue, a fast renal clearance and a high accumulation on bone. The best compound was [ 68 Ga]DOTA ZOL (SUV Femur  = 5.4 ± 0.6) followed by [ 18 F]NaF (SUV Femur  = 4.8 ± 0.2), [ 68 Ga]DOTA PAM (SUV Femur  = 4.5 ± 0.2) and [ 68 Ga]BPAPD (SUV Femur  = 3.2 ± 0.3). [ 177 Lu]DOTA ZOL showed a similar distribution as the diagnostic 68 Ga complex. The 68 Ga labelled compounds showed a promising pharmacokinetics, with similar uptake profile and distribution kinetics. Bone accumulation was highest for [ 68 Ga]DOTA ZOL , which makes this compound probably an interesting bone targeting agent for a therapeutic approach with 177 Lu. The therapeutic compound [ 177 Lu]DOTA ZOL showed a high target-to-background ratio. SPECT experiments showed concordance

  20. Production cross sections of short-lived silver radionuclides from natPd(p,xn) nuclear processes

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Kim, Guinyun

    2012-01-01

    Production cross-sections of short-lived 103 Ag, 104m Ag and 104g Ag radionuclides from proton-induced reactions on natural palladium (Pd) were measured up to 41 MeV by using a stacked-foil activation technique combined with high resolution γ-ray spectrometry. The present results are compared with the available literature values as well as theoretical data calculated by the TALYS and the ALICE-IPPE computer codes. Note that production cross-sections of the 104m Ag radionuclide from nat Pd(p,xn) processes has been measured here for the first time. Physical thick target yields for the investigated radionuclides were deduced from the respective threshold energy to 41 MeV taking into account that the total energy is absorbed in the targets. Measured data of the short-lived 103 Ag radionuclide are noteworthy due to its possible applications as a precursor for the indirect production of widely used therapeutic 103 Pd radionuclide via nat Pd(p,xn) 103 Ag → 103 Pd processes. On the other hand, the investigated 104 Ag radionuclide finds importance due to its potential use as a diagnostic and positron emission tomography (PET) imaging analogue. Above all, measured data will enrich the literature database leading to various applications in science and technology.

  1. Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting

    Science.gov (United States)

    Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing

    2018-02-01

    Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.

  2. Cerebral Effects of Targeted Temperature Management Methods Assessed by Diffusion-Weighted Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael

    2016-01-01

    The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well k...

  3. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  4. A Parasitic Array Receiver for ISAR Imaging of Ship Targets Using a Coastal Radar

    Directory of Open Access Journals (Sweden)

    Fabrizio Santi

    2016-01-01

    Full Text Available The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.

  5. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  6. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  7. Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Antonio Plaza

    2010-01-01

    Full Text Available Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the spectral domain, and this information can be used to address detection tasks in many applications. In many surveillance applications, the size of the objects (targets searched for constitutes a very small fraction of the total search area and the spectral signatures associated to the targets are generally different from those of the background, hence the targets can be seen as anomalies. In hyperspectral imaging, many algorithms have been proposed for automatic target and anomaly detection. Given the dimensionality of hyperspectral scenes, these techniques can be time-consuming and difficult to apply in applications requiring real-time performance. In this paper, we develop several new parallel implementations of automatic target and anomaly detection algorithms. The proposed parallel algorithms are quantitatively evaluated using hyperspectral data collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS system over theWorld Trade Center (WTC in New York, five days after the terrorist attacks that collapsed the two main towers in theWTC complex.

  8. Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Paz Abel

    2010-01-01

    Full Text Available Abstract Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the spectral domain, and this information can be used to address detection tasks in many applications. In many surveillance applications, the size of the objects (targets searched for constitutes a very small fraction of the total search area and the spectral signatures associated to the targets are generally different from those of the background, hence the targets can be seen as anomalies. In hyperspectral imaging, many algorithms have been proposed for automatic target and anomaly detection. Given the dimensionality of hyperspectral scenes, these techniques can be time-consuming and difficult to apply in applications requiring real-time performance. In this paper, we develop several new parallel implementations of automatic target and anomaly detection algorithms. The proposed parallel algorithms are quantitatively evaluated using hyperspectral data collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS system over theWorld Trade Center (WTC in New York, five days after the terrorist attacks that collapsed the two main towers in theWTC complex.

  9. Target localization on standard axial images in computed tomography (CT) stereotaxis for functional neurosurgery - a technical note

    International Nuclear Information System (INIS)

    Patil, A.-A.

    1986-01-01

    A simple technique for marking functional neurosurgery target on computed tomography (CT) axial image is described. This permits the use of standard axial image for computed tomography (CT) stereotaxis in functional neurosurgery. (Author)

  10. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    Science.gov (United States)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  11. Targeted Imaging of Tumor-Associated Macrophages by Cyanine 7-Labeled Mannose in Xenograft Tumors

    Directory of Open Access Journals (Sweden)

    Chong Jiang MD

    2017-01-01

    Full Text Available Mannose receptor is considered as a hallmark of M2-oriented tumor-associated macrophages (TAMs, but its utility in TAMs was rarely reported. Therefore, deoxymannose (DM, a high-affinity ligand of mannose receptor, was labeled with near-infrared dye cyanine 7 (Cy7, and its feasibility of targeted imaging on TAMs was evaluated in vitro and in vivo. The Cy7-DM was synthesized, and its binding affinity with induced TAMs in vitro, whole-body imaging in xenograft tumor mouse model in vivo, and the cellular localization in dissected tissues were evaluated. We demonstrated a high uptake of Cy7-DM by induced M2 macrophages and TAMs in tumor tissues. In vivo near-infrared live imaging visualized abundant TAMs in tumor lesions instead of inflammatory sites by Cy7-DM imaging, and the quantity of Cy7-DM signals in tumors was significantly higher than that shown in inflammatory sites from 1 to 8 hours of imaging. Our results suggest that mannose could rapidly and specifically target TAMs and is a promising candidate for targeted diagnosis of tumor with rich TAMs.

  12. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release.

    Science.gov (United States)

    Guldris, Noelia; Gallo, Juan; García-Hevia, Lorena; Rivas, José; Bañobre-López, Manuel; Salonen, Laura M

    2018-04-12

    A versatile iron oxide nanoparticle platform is reported that can be orthogonally functionalized to obtain highly derivatized nanomaterials required for a wide variety of applications, such as drug delivery, targeted therapy, or imaging. Facile functionalization of the nanoparticles with two ligands containing isocyanate moieties allows for high coverage of the surface with maleimide and alkyne groups. As a proof-of-principle, the nanoparticles were subsequently functionalized with a fluorophore as a drug model and with biotin as a targeting ligand towards tumor cells through Diels-Alder and azide-alkyne cycloaddition reactions, respectively. The thermoreversibility of the Diels-Alder product was exploited to induce the on-demand release of the loaded molecules by magnetic hyperthermia. Additionally, the nanoparticles were shown to target cancer cells through in vitro experiments, as analyzed by magnetic resonance imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  14. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    Science.gov (United States)

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  15. Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics

    Science.gov (United States)

    Yi, Weisong; Zhang, Jian; Jiang, Houmin; Zhang, Niya

    2014-09-01

    Gastric cancer is one of the leading causes of cancer death in the world due to its high morbidity and mortality. Hyperspectral imaging (HSI) is an emerging, non-destructive, cutting edge analytical technology that combines conventional imaging and spectroscopy in one single system. The manuscript has investigated the application of near-infrared hyperspectral imaging (900-1700 nm) (NIR-HSI) for gastric cancer detection with algorithms. Major spectral differences were observed in three regions (950-1050, 1150-1250, and 1400-1500 nm). By inspecting cancerous mean spectrum three major absorption bands were observed around 975, 1215 and 1450 nm. Furthermore, the cancer target detection results are consistent and conformed with histopathological examination results. These results suggest that NIR-HSI is a simple, feasible and sensitive optical diagnostic technology for gastric cancer target detection with chemometrics.

  16. The inextricable axis of targeted diagnostic imaging and therapy: An immunological natural history approach

    International Nuclear Information System (INIS)

    Cope, Frederick O.; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin

    2016-01-01

    Summary: In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. 99m Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a K d of 3 × 10 −11 M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (> 2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular “drug compilers” of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate 99m Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis

  17. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  18. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  19. Technique for Targeting Arteriovenous Malformations Using Frameless Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Liu, Lina; Adler, John R.; Gibbs, Iris C.; Moore, Teri; Sarmiento, Marily; Chang, Steve D.; Dodd, Robert; Marks, Michael; Do, Huy M.

    2011-01-01

    Purpose: To integrate three-dimensional (3D) digital rotation angiography (DRA) and two-dimensional (2D) digital subtraction angiography (DSA) imaging into a targeting methodology enabling comprehensive image-guided robotic radiosurgery of arteriovenous malformations (AVMs). Methods and Materials: DRA geometric integrity was evaluated by imaging a phantom with embedded markers. Dedicated DSA acquisition modes with preset C-arm positions were configured. The geometric reproducibility of the presets was determined, and its impact on localization accuracy was evaluated. An imaging protocol composed of anterior-posterior and lateral DSA series in combination with a DRA run without couch displacement between acquisitions was introduced. Software was developed for registration of DSA and DRA (2D-3D) images to correct for: (a) small misalignments of the C-arm with respect to the estimated geometry of the set positions and (b) potential patient motion between image series. Within the software, correlated navigation of registered DRA and DSA images was incorporated to localize AVMs within a 3D image coordinate space. Subsequent treatment planning and delivery followed a standard image-guided robotic radiosurgery process. Results: DRA spatial distortions were typically smaller than 0.3 mm throughout a 145-mm x 145-mm x 145-mm volume. With 2D-3D image registration, localization uncertainties resulting from the achievable reproducibility of the C-arm set positions could be reduced