WorldWideScience

Sample records for radionuclide imaging targeting

  1. Radionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen

    Directory of Open Access Journals (Sweden)

    Hao Hong

    2008-01-01

    Full Text Available Carcinoembryonic antigen (CEA, highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET] have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can be divided into three major categories: antibody-based, antibody fragment-based and pretargeted imaging. Radiolabeled anti-CEA antibodies, reported the earliest among the three categories, typically gave suboptimal tumor contrast due to the prolonged circulation life time of intact antibodies. Subsequently, a number of engineered anti-CEA antibody fragments (e.g. Fab’, scFv, minibody, diabody and scFv-Fc have been labeled with a variety of radioisotopes for CEA imaging, many of which have entered clinical investigation. CEA-Scan (a 99mTc-labeled anti-CEA Fab’ fragment has already been approved by the United States Food and Drug Administration for cancer imaging. Meanwhile, pretargeting strategies have also been developed for CEA imaging which can give much better tumor contrast than the other two methods, if the system is designed properly. In this review article, we will summarize the current state-of-the-art of radionuclide-based cancer imaging targeting CEA. Generally, isotopes with short half-lives (e.g. 18F and 99mTc are more suitable for labeling small engineered antibody fragments while the isotopes with longer half-lives (e.g. 123I and 111In are needed for antibody labeling to match its relatively long circulation half-life. With further improvement in tumor targeting efficacy and radiolabeling strategies, novel CEA-targeted agents may play an important role in cancer patient management, paving the way to “personalized medicine”.

  2. [Preparation, quality control and thyroid molecule imaging of solid-target based radionuclide ioine-124].

    Science.gov (United States)

    Zhu, H; Wang, F; Guo, X Y; Li, L Q; Duan, D B; Liu, Z B; Yang, Z

    2018-04-18

    To provide useful information for the further production and application of this novel radio-nuclide for potential clinical application. 124 Te (p,n) 124 I nuclide reaction was used for the 124 I production. Firstly, the target material, 124 TeO 2 (200 mg) and Al2O3 (30 mg) mixture, were compressed into the round platinum based solid target by tablet device. HM-20 medical cyclotron was applied to irradiate the solid target slice for 6-10 h with helium and water cooling. Then, the radiated solid target was placed for 12 h (overnight) to decay the radioactive impurity; finally, 124 I was be purified by dry distillation using 1 mL/min nitrogen for about 6 hours and radiochemical separation methods. Micro-PET imaging studies were performed to investigate the metabolism properties and thyroid imaging ability of 124 I.After 740 kBq 124 I was injected intravenously into the tail vein of the normal mice, the animals were imaged with micro-PET and infused with CT. The micro-PET/CT infusion imaging revealed actual state 124 I's metabolism in the mice. It was been successfully applied for 200 mg 124 TeO 2 plating by the tablet device on the surface of platinum. It showed smooth, dense surface and without obviously pits and cracks. The enriched 124 Te target was irradiated for 6 to 10 hours at about 12.0 MeV with 20 μA current on HM-20 cyclotron. Then 370-1 110 MBq 124 I could be produced on the solid target after irradiation and 370-740 MBq high specific activity could be collected afterdry distillation separation and radio-chemical purification. 124 I product was finally dissolved in 0.01 mol/L NaOH for the future distribution. The gamma spectrum of the produced 124 I-solution showed that radionuclide purity was over 80.0%. The micro-PET imaging of 124 I in the normal mice exhibited the thyroid and stomach accumulations and kidney metabolism, the bladder could also be clearly visible, which was in accordance with what was previously reported. To the best of our knowledge

  3. Nanotargeted Radionuclides for Cancer Nuclear Imaging and Internal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Gann Ting

    2010-01-01

    Full Text Available Current progress in nanomedicine has exploited the possibility of designing tumor-targeted nanocarriers being able to deliver radionuclide payloads in a site or molecular selective manner to improve the efficacy and safety of cancer imaging and therapy. Radionuclides of auger electron-, α-, β-, and γ-radiation emitters have been surface-bioconjugated or after-loaded in nanoparticles to improve the efficacy and reduce the toxicity of cancer imaging and therapy in preclinical and clinical studies. This article provides a brief overview of current status of applications, advantages, problems, up-to-date research and development, and future prospects of nanotargeted radionuclides in cancer nuclear imaging and radiotherapy. Passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy are reviewed and summarized. Research on combing different modes of selective delivery of radionuclides through nanocarriers targeted delivery for tumor imaging and therapy offers the new possibility of large increases in cancer diagnostic efficacy and therapeutic index. However, further efforts and challenges in preclinical and clinical efficacy and toxicity studies are required to translate those advanced technologies to the clinical applications for cancer patients.

  4. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  5. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  6. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  7. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  8. Dosimetric model for antibody targeted radionuclide therapy of tumor cells in cerebrospinal fluid

    International Nuclear Information System (INIS)

    Millar, W.T.; Barrett, A.

    1990-01-01

    Although encouraging results have been obtained using systemic radioimmunotherapy in the treatment of cancer, it is likely that regional applications may prove more effective. One such strategy is the treatment of central nervous system leukemia in children by intrathecal instillation of targeting or nontargeting beta particle emitting radionuclide carriers. The beta particle dosimetry of the spine is assessed, assuming that the spinal cord and the cerebrospinal fluid compartment can be adequately represented by a cylindrical annulus. The radionuclides investigated were 90 Y, 131 I, 67 Cu, and 199 Au. It is shown that the radiation dose to the cord can be significantly reduced using short range beta particle emitters and that there is little advantage in using targeting carriers with these radionuclides. 199 Au and 67 Cu also have the advantage of having a suitable gamma emission for imaging, permitting pretherapy imaging and dosimetric calculations to be undertaken prior to therapy. If these methods prove successful, it may be possible to replace the external beam component used in the treatment of central nervous system leukemia in children by intrathecal radionuclide therapy, thus reducing or avoiding side effects such as growth and intellectual impairment

  9. A vector Wiener filter for dual-radionuclide imaging

    International Nuclear Information System (INIS)

    Links, J.M.; Prince, J.L.; Gupta, S.N.

    1996-01-01

    The routine use of a single radionuclide for patient imaging in nuclear medicine can be complemented by studies employing two tracers to examine two different processes in a single organ, most frequently by simultaneous imaging of both radionuclides in two different energy windows. In addition, simultaneous transmission/emission imaging with dual-radionuclides has been described, with one radionuclide used for the transmission study and a second for the emission study. There is thus currently considerable interest in dual-radionuclide imaging. A major problem with all dual-radionuclide imaging is the crosstalk between the two radionuclides. Such crosstalk frequently occurs, because scattered radiation from the higher energy radionuclide is detected in the lower energy window, and because the lower energy radionuclide may have higher energy emissions which are detected in the higher energy window. The authors have previously described the use of Fourier-based restoration filtering in single photon emission computed tomography (SPECT) and positron emission tomography (PET) to improve quantitative accuracy by designing a Wiener or other Fourier filter to partially restore the loss of contrast due to scatter and finite spatial resolution effects. The authors describe here the derivation and initial validation of an extension of such filtering for dual-radionuclide imaging that simultaneously (1) improves contrast in each radionuclide's direct image, (2) reduces image noise, and (3) reduces the crosstalk contribution from the other radionuclide. This filter is based on a vector version of the Wiener filter, which is shown to be superior [in the minimum mean square error (MMSE) sense] to the sequential application of separate crosstalk and restoration filters

  10. Automatic alignment of radionuclide images

    International Nuclear Information System (INIS)

    Barber, D.C.

    1982-01-01

    The variability of the position, dimensions and orientation of a radionuclide image within the field of view of a gamma camera hampers attempts to analyse the image numerically. This paper describes a method of using a set of training images of a particular type, in this case right lateral brain images, to define the likely variations in the position, dimensions and orientation for that type of image and to provide alignment data for a program that automatically aligns new images of the specified type to a standard position, size and orientation. Examples are given of the use of this method on three types of radionuclide image. (author)

  11. Radionuclide transverse section imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (UK)

  12. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  13. Research progess on treatment of cancer with targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Luo Jiawen; Zhang Caixia

    2008-01-01

    The new development and situation of targeted radionuclide therapy in oncology is described, which include radioimmunotherapy, peptide receptor radionuclide therapy, gene therapy and radionuclide labled chemotherapeutics therapy. The application research on labled carrier of those therapy is emphasized. Meanwhile, the research progess of indomethacin and its combined with targeted radionuclide therapy is also described. (authors)

  14. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  15. Radionuclide imaging of musculoskeletal infection

    International Nuclear Information System (INIS)

    Palestr, Christopher J.; North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY; Love, Charito

    2007-01-01

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  16. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  17. Radionuclide imaging of musculoskeletal infection

    Energy Technology Data Exchange (ETDEWEB)

    Palestr, Christopher J. [Albert Einstein College of Medicine, Bronx, NY (United States); North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging; E-mail: palestro@lij.edu; Love, Charito [North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging

    2007-09-15

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  18. uPAR Targeted Radionuclide Therapy with 177Lu-DOTA-AE105 Inhibits Dissemination of Metastatic Prostate Cancer

    DEFF Research Database (Denmark)

    Persson, Morten; Juhl, Karina; Rasmussen, Palle

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect...... of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific...... value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted 177Lu groups (p

  19. Targeted radionuclide therapy for solid tumors: An overview

    International Nuclear Information System (INIS)

    De Nardo, Sally J.; De Nardo, Gerald L.

    2006-01-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  20. Application of radionuclide imaging in hyperparathyroidism

    International Nuclear Information System (INIS)

    Zheng Yumin; Yan Jue

    2011-01-01

    Hyperparathyroidism (HPT) is overactivity of the parathyroid glands resulting in excess production of parathyroid hormone. Excessive parathyroid hormone secretion may be due to problems in the glands themselves, or may be secondary HPT. The diagnosis is mainly based on the patient's medical history and biochemical tests. The best treatment nowadays is surgical removal of the overactive parathyroid glands or adenoma. The imaging methods for the preoperative localization diagnosis include radionuclide imaging,ultrasonography, CT, MRI, etc. This article was a summary of HPT radionuclide imaging. (authors)

  1. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, P.N.; Lavender, J.P.; Myers, M.J.; Pepys, M.B.

    1988-06-25

    The specific molecular affinity of the normal plasma protein, serum amyloid P component (SAP), for all known types of amyloid fibrils was used to develop a new general diagnostic method for in-vivo radionuclide imaging of amyloid deposits. After intravenous injection of /sup 123/I-labelled purified human SAP there was specific uptake into amyloid deposits in all affected patients, 7 with systematic AL amyloid, 5 with AA amyloid, and 2 with ..beta../sub 2/M amyloid, in contrast to the complete absence of any tissue localisation in 5 control subjects. Distinctive high-resolution scintigraphic images, even of minor deposits in the carpal regions, bone marrow, or adrenals, were obtained. This procedure should yield much information on the natural history and the management of amyloidosis, the presence of which has hitherto been confirmed only by biopsy. Clearance and metabolic studies indicated that, in the presence of extensive amyloidosis, the rate of synthesis of SAP was greatly increased despite maintenance of normal plasma levels. Futhermore, once localised to amyloid deposits the /sup 123/I-SAP persisted for long periods and was apparently protected from its normal rapid degradation. These findings shed new light on the pathophysiology of amyloid and may have implications for therapeutic strategies based upon specific molecular targeting with SAP.

  2. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Choyke, Peter L; Capala, Jacek

    2010-01-01

    Prostate cancer continues to represent a major health problem, and yet there is no effective treatment available for advanced metastatic disease. Thus, there is an urgent need for the development of more effective treatment modalities that could improve the outcome. Because prostate specific...... membrane antigen (PSMA), a transmembrane protein, is expressed by virtually all prostate cancers, and its expression is further increased in poorly differentiated, metastatic, and hormone-refractory carcinomas, it is a very attractive target. Molecules targeting PSMA can be labelled with radionuclides...... to become both diagnostic and/or therapeutic agents. The use of PSMA binding agents, labelled with diagnostic and therapeutic radio-isotopes, opens up the potential for a new era of personalized management of metastatic prostate cancer....

  3. Bone stress: a radionuclide imaging perspective

    International Nuclear Information System (INIS)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.; Clark, M.W.; Goodman, M.; Herbert, D.L.

    1979-01-01

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schema is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress

  4. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours

    International Nuclear Information System (INIS)

    Zhang, Hanwen; Maecke, Helmut R.; Schuhmacher, Jochen; Eisenhut, Michael; Waser, Beatrice; Reubi, Jean Claude; Wild, Damian

    2007-01-01

    We aimed at designing and developing a novel bombesin analogue, DOTA-PEG 4 -BN(7-14) (DOTA-PESIN), with the goal of labelling it with 67/68 Ga and 177 Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG 4 ). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. [Ga III /Lu III ]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [ 67 Ga/ 177 Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [ 67 Ga/ 177 Lu]-DOTA-PESIN. [ 67 Ga/ 177 Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [ 68 Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the 177 Lu-labelled peptide remained in the tumour even 3 days post injection. The newly designed ligands have high potential with regard to PET and SPECT imaging with 68/67 Ga and targeted radionuclide therapy with 177 Lu. (orig.)

  5. Radionuclide reporter gene imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-04-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases.

  6. Radionuclide reporter gene imaging

    International Nuclear Information System (INIS)

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  7. Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of cyclotron produced radionuclides

    International Nuclear Information System (INIS)

    Bonardi, M.L.

    2002-01-01

    In accelerator production of radionuclides, thin-target yield, y(E), is defined as a function of the projectile energy E, at the End Of an Instantaneous Bombardment (EOIB), as the slope at the origin of the growing curve of the activity per unit beam current (A/I) of a specific radionuclide vs. irradiation time, for a target in which the energy loss is negligible with respect to the projectile energy itself. In practice, y(E) is defined as the second derivative of A/I with respect to particle energy and irradiation time, calculated when the irradiation time tends to zero (EOIB). The thin-target yields of different radionuclides, produced by direct and side reactions, are numerically fitted, taking into account the overall statistical errors as weights. The 'effective' cross-section σ ± (E) as a function of projectile energy is proportional to thin-target yield, but the physical meaning of this parameter is poor, being only a raw summation of the several cross sections of the reaction channels concerned, weighted on target isotopic composition. Conversely, Thick-Target Yield, Y(E,ΔE), is defined as a two parameter function of the incident particle energy E(MeV) onto the target and the energy loss ΔE (MeV), in the target itself, obtained by integration of thin-target excitation function, y(E). This approach holds in the strict approximation of a monochromatic beam of energy E, not affected by either intrinsic energy spread or straggling. The energy straggling is computed by Monte Carlo computer codes, like TRIM 2001. In case of total particle energy absorption in the target, for a nuclear reaction of energy threshold E th , the function Y(E,ΔE) reaches a value Y(E,E- E th ), for ΔE=E- E th , that represents mathematically the envelope of the Y(E,ΔE) family of curves. This envelope is a monotonically increasing curve, never reaching either a maximum or a saturation value, even if its slope becomes negligible for high particle energies and energy losses. Some

  8. Miscellaneous applications of radionuclide imaging

    International Nuclear Information System (INIS)

    Mishkin, F.S.; Freeman, L.M.

    1984-01-01

    The procedures discussed in this chapter are either developmental, in limited clinical use, or frankly moribund. A number of radionuclide imaging techniques have proved disappointing when approached from a purely anatomic point of view. This is particularly evident to our colleagues with the explosive growth of the noninvasive imaging procedures, magnetic resonance imaging (NMR), CT, and ultrasound, and the introduction of the less invasive digital radiographic approach to vascular opacification, all of which are capable of providing exquisite anatomic or tissue detail beyond the reach of current or reasonably priced nuclear medicine imaging systems. Yet, most nuclear medicine procedures possess the unique advantage of portraying a physiologic function without interfering with that function. Moreover, the procedures can be employed under conditions of stress, which are likely to bring out pathophysiologic abnormalities that remain masked when unchallenged. Information concerning form without functional data has less meaning than both together. The physiologic information inherent in nuclear medicine imaging may often provide not only key diagnostic information but also illuminate a therapeutic trail. Yet, it is often slighted in favor of the anatomic quest. While mastery of the nuances of imaging details remains critical, radionuclide image interpretation must rest upon a firm physiologic foundation. For this reason, this chapter emphasizes the physiologic approach

  9. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience.

    Science.gov (United States)

    Baum, Richard P; Kulkarni, Harshad R

    2012-01-01

    The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs) using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT), and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

  10. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience

    Directory of Open Access Journals (Sweden)

    Richard P. Baum, Harshad R. Kulkarni

    2012-01-01

    Full Text Available The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET, single photon emission computed tomography (SPECT, magnetic resonance imaging (MRI, or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT, and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

  11. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanwen; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Department of Radiology, Basel (Switzerland); Schuhmacher, Jochen; Eisenhut, Michael [German Cancer Research Centre, Department of Radiopharmaceutical Chemistry, Heidelberg (Germany); Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Berne (Switzerland); Wild, Damian [University Hospital, Clinic and Institute of Nuclear Medicine, Department of Radiology, Basel (Switzerland)

    2007-08-15

    We aimed at designing and developing a novel bombesin analogue, DOTA-PEG{sub 4}-BN(7-14) (DOTA-PESIN), with the goal of labelling it with {sup 67/68}Ga and {sup 177}Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG{sub 4}). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. [Ga{sup III}/Lu{sup III}]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN. [{sup 67}Ga/{sup 177}Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [{sup 68}Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the {sup 177}Lu-labelled peptide remained in the tumour even 3 days post injection. The newly designed ligands have high potential with regard to PET and SPECT imaging with {sup 68/67}Ga and targeted radionuclide therapy with {sup 177}Lu. (orig.)

  12. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  13. Radionuclide body function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1983-01-01

    A transverse radionuclide scan field imaging apparatus is claimed. It comprises: a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array which surrounds a scan field, each collimator being moveable relative to its adjacent collimator; means for rotating the array about the scan field and means for imparting travel to the collimators

  14. Application of radionuclide imaging to hepatic impact injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    金榕兵; 麻晓林; 温建良; 唐维佳

    2004-01-01

    Objective: To investigate the role and clinical value of radionuclide imaging in hepatic impact injuries in rabbits.Methods: Rabbits were experimentally impacted on the liver with BIM-IV bio-impact machine. Liver imaging was performed with 99mTc labeled sodium phytate. Liver blood pool imaging was performed with 99mTc -stannous pyrophosphate labeled red blood cells. The results of radionuclide imaging were compared with the anatomic results.Results: There was significant difference between the images of the injured liver and the control. Radio diminution and defect were shown in the injured liver areas. Various sorts of abnormal radioactivity distribution were observed with hepatic blood pool imaging. The results of the liver imaging and liver blood pool imaging were accorded with the results of the anatomic findings.Conclusions: Radionuclide imaging may well display the changes of hepatocellular structures and functions after injury, which is valuable in locating the concrete injured position and differentiating the injured degrees of liver.

  15. Single Photon Emission Computed Tomography/Positron Emission Tomography Imaging and Targeted Radionuclide Therapy of Melanoma: New Multimodal Fluorinated and Iodinated Radiotracers

    International Nuclear Information System (INIS)

    Maisonial, A.; Papon, J.; Bayle, M.; Vidal, A.; Auzeloux, Ph.; Rbah, L.; Bonnet-Duquennoy, M.; Miot-Noirault, E.; Galmier, M.J.; Borel, M.; Madelmont, J.C.; Moins, N.; Chezal, J.M.; Kuhnast, B.; Boisgard, R.; Dolle, F.; Tavitian, B.; Boisgard, R.; Tavitian, B.; Askienazy, S.

    2011-01-01

    This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ( 123 I, 124 I, 18 F) and systemic treatment ( 131 I) of melanoma potentialities. The biodistribution of each 125 I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [ 125 I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [ 18 F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [ 131 I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ( 18 F, 124 I) and targeted radionuclide therapy ( 131 I) of melanoma using a single chemical structure. (authors)

  16. Targeted radionuclide therapy

    African Journals Online (AJOL)

    target for which a speci c treatment/drug is intended (Fig. 1). eranostics .... Using an anti-CD20 antibody as a delivery device to target the follicular ... systems combine diagnostic imaging (Ga-68-DOTATATE PET/CT) .... Intra-articular injected ...

  17. Development and optimization of targeted radionuclide tumor therapy using folate based radiopharmaceuticals

    CERN Document Server

    Reber, Josefine Astrid

    The folate receptor (FR) has been used for a quarter of a century as a tumor-associated target for selective delivery of drugs and imaging agents to cancer cells. While several folic acid radioconjugates have been successfully employed for imaging purposes in (pre)clinical studies, a therapeutic application of folic acid radioconjugates has not yet reached the critical stage which would allow a clinical translation. Due to a substantial expression of the FR in the proximal tubule cells, radiofolates accumulate in the kidneys which are at risk of damage by particle-radiation. To improve this situation, we aimed to develop and evaluate strategies for the performance of FR-targeted radionuclide therapy by decreasing the renal uptake of radiofolates and thereby reducing potential nephrotoxic effects. Two different strategies were investigated. First, the combination of radiofolates with chemotherapeutic agents such as pemetrexed (PMX) and 5-fluorouracil (5-FU) and secondly, an approach based on radioiodinated fol...

  18. Evaluation of the specificity of radionuclide myocardial imaging for detecting CAD

    International Nuclear Information System (INIS)

    Liu Xiujie

    1992-01-01

    In order to evaluate the specificity of radionuclide myocardial perfusion imaging for detecting coronary artery disease (CAD), 50 patients with normal coronary arteriography and radionuclide myocardial perfusion scintigraphy were analysed. The results from 201 T1 (20 cases) and 99m Tc-MIBI (30 cases) studies showed that out of 33 patients with no organic cardiovascular disease, 29 had normal myocardial imaging, and the specificity of radionuclide myocardial imaging for detecting CAD was 87.8%. 4 normal young women had false positive myocardial imaging. Out of 17 patients with cardiovascular disease and normal coronary arteriography, 15 patients had abnormal myocardial imaging. The final clinical diagnoses of these 15 patients were: 4 patients with hypertrophic cardiomyopathy, 3 with old myocardial infarction, 2 with myocarditis, 3 with small coronary vessel disease, 1 with congestive cardiomyopathy, and 2 with other cardiac disorder. The points of differentiation between CAD and other cardiovascular disease using radionuclide techniques were discussed

  19. Report of the consultants' meeting on target and processing technologies for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    1999-11-01

    Cyclotron produced radionuclides are used routinely for the diagnosis of a wide variety of diseases. Recently a number of radionuclides available from cyclotrons have been proposed for use in radiotherapy. In fact Pd-103 has become routinely available in some parts of the world for incorporation into brachytherapy seeds for treating prostate cancer. The consultants meeting reviewed the status of target and processing technologies associated with cyclotron production of radionuclides. The main topics of discussion included the basic nuclear data that is crucial to the production of the desired radionuclides, gas and solid target systems, the automated chemical processing units, the Good Manufacturing Practices (GMP) required in order to use these radionuclides in human patients in a safe and efficacious manner and a review of possible candidate nuclides that show promise for use in Nuclear Medicine in the near future. Advances in the preparation of solid targets using electroplating technology has created the possibility of preparing targets capable of operating at very high beam currents which would make the production of large quantities of SPECT agents possible at cyclotron facilities throughout the world. Recognising the needs of the developing countries which have established cyclotron facilities, the consultants focussed on how to provide the technology for preparing solid targets that could be used in the existing facilities. While solid target technology can be used for many radionuclides the report concentrated on several key radionuclides, which are of current importance or show potential for use in the near future. Tl-201 is currently used for cardiac profusion studies throughout the world. New target preparation techniques could potentially make many of the member states self sufficient in the production of this nuclide. I-123 has tremendous potential because of the near ideal photon energy for SPECT cameras and its well-understood chemistry. However, it

  20. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)

  1. Clinical advance in radionuclide imaging of pulmonary cancer

    International Nuclear Information System (INIS)

    Deng Zhiyong; Yang Lichun

    2008-01-01

    Radionuclide imaging of pulmonary cancer develops very rapidly in recent years. Its important value on the diagnosis, staging, monitoring recur and metastasis after treatment, and judging the curative effect and prognosis has been demonstrated. Clinicians pay more attention to it than before. This present article introduces the imaging principle, clinical use, good and bad points, progress situation of 67 Ga, 201 Tl, 99 Tc m , 18 F and their labelled compounds, which are more commonly used in clinical. And introduces the clinical progress of radionuclide imaging of pulmonary neoplasm concerning 99 Tc m -sestamibi ( 99 Tc m -MIBI), 99 Tc m -HL91 and 18 F-fluorodeoxyglucose ( 18 F-FDG) with emphasis. (authors)

  2. Radionuclide imaging of spinal infections

    International Nuclear Information System (INIS)

    Gemmel, Filip; Dumarey, Nicolas; Palestro, Christopher J.

    2006-01-01

    The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor 99m Tc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and 67 Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [ 18 F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including radiolabelled

  3. Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target

    International Nuclear Information System (INIS)

    Kelsey, Charles T. IV

    2011-01-01

    A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 (micro)A to 2500 mA·h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

  4. Radionuclide bone image in growing and stable bone island

    International Nuclear Information System (INIS)

    Go, R.T.; El-Khoury, G.Y.; Iowa Univ., Iowa City; Wehbe, M.A.

    1980-01-01

    A normal radionuclide bone image can facilitate distinction between a bone island and significant pathologic processes, especially an osteoblastic metastasis. This distinction becomes more crucial when growth is detected in an isolated sclerotic bone lesion or if a relatively large sclerotic lesion is detected de novo in patients with a known neoplasm. This report presents three patients with isolated bone islands: two with interval growth, the other with a relatively large stable lesion; all showing a normal radionuclide bone image. (orig.) [de

  5. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun [Korea Institute of Radiological and Medical and Medical Sciences, Seoul (Korea, Republic of); Chung, June Key [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using {sup 125}I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of {sup 131}I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by {sup 125}I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to {sup 131}I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system.

  6. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    International Nuclear Information System (INIS)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun; Chung, June Key

    2012-01-01

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using 125 I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of 131 I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by 125 I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to 131 I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system

  7. Radioisotopes for imaging and radionuclide targeted therapy in nuclear medicine

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Beran, Miloš

    -, - (2007), s. 76-77 ISSN N R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : metal radionuclides * bifunctional chelators Subject RIV: FR - Pharmacology ; Medidal Chemistry

  8. Radionuclide imaging of spinal infections

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Filip [Ghent Maria-Middelares, General Hospital, Division of Nuclear Medicine, Ghent (Belgium); Medical Center Leeuwarden (MCL), Division of Nuclear Medicine, Henri Dunantweg 2, Postbus 888, Leeuwarden (Netherlands); Dumarey, Nicolas [Universite Libre de Bruxelles, Hopital Erasme, Division of Nuclear Medicine, Brussels (Belgium); Palestro, Christopher J. [Long Island Jewish Medical Center, Division of Nuclear Medicine, Long Island, NY (United States)

    2006-10-15

    The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor {sup 99m}Tc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and {sup 67}Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [{sup 18}F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including

  9. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  10. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  11. Accumulation of the radionuclides in a target irradiated in the reactor of tajoura nuclear research center

    International Nuclear Information System (INIS)

    Abdunnobi, A.R.; Arebi, B.

    1998-01-01

    One of the main stages of radionuclides production in reactor is the distinguishing of a regime on target irradiation in order to acquire the sufficient activity and the purity of radioisotope required. The authors have derived formula for calculating radionuclidic accumulation on a target irradiated in the reactor operating 10 hours per day, 4 days a week during 4 weeks. The results of I-131 and other radionuclide accumulation are illustrated by a tellurium target irradiation in the reactor operating continuously or with interruptions

  12. SU-E-T-256: Optimizing the Combination of Targeted Radionuclide Therapy Agents Using a Multi-Scale Patient-Specific Monte Carlo Dosimetry Platform

    International Nuclear Information System (INIS)

    Besemer, A; Bednarz, B; Titz, B; Grudzinski, J; Weichert, J; Hall, L

    2014-01-01

    Purpose: Combination targeted radionuclide therapy (TRT) is appealing because it can potentially exploit different mechanisms of action from multiple radionuclides as well as the variable dose rates due to the different radionuclide half-lives. The work describes the development of a multiobjective optimization algorithm to calculate the optimal ratio of radionuclide injection activities for delivery of combination TRT. Methods: The ‘diapeutic’ (diagnostic and therapeutic) agent, CLR1404, was used as a proof-of-principle compound in this work. Isosteric iodine substitution in CLR1404 creates a molecular imaging agent when labeled with I-124 or a targeted radiotherapeutic agent when labeled with I-125 or I-131. PET/CT images of high grade glioma patients were acquired at 4.5, 24, and 48 hours post injection of 124I-CLR1404. The therapeutic 131I-CLR1404 and 125ICLR1404 absorbed dose (AD) and biological effective dose (BED) were calculated for each patient using a patient-specific Monte Carlo dosimetry platform. The optimal ratio of injection activities for each radionuclide was calculated with a multi-objective optimization algorithm using the weighted sum method. Objective functions such as the tumor dose heterogeneity and the ratio of the normal tissue to tumor doses were minimized and the relative importance weights of each optimization function were varied. Results: For each optimization function, the program outputs a Pareto surface map representing all possible combinations of radionuclide injection activities so that values that minimize the objective function can be visualized. A Pareto surface map of the weighted sum given a set of user-specified importance weights is also displayed. Additionally, the ratio of optimal injection activities as a function of the all possible importance weights is generated so that the user can select the optimal ratio based on the desired weights. Conclusion: Multi-objective optimization of radionuclide injection activities

  13. Current status of radionuclide imaging in valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, C.A.; Okada, R.D.; Pohost, G.M.

    1980-12-18

    The current state-of-the-art in radionuclide imaging of valvular heart disease is based on different angiographic patterns in three left-sided valve abnormalities: pressure overload, volume overload, and inflow obstruction. In pressure overload, the left ventricle has normal dimensions or is minimally dilated the volume overload involves a left ventricular dilatation with a normal or reduced ejection fraction at rest the left ventricular function in inflow obstruction is normal, but in some cases may be depressed. Radionuclide angiography evaluates the effect of a valve abnormality on cardiac chamber and function thallium-201 imaging diagnoses regional myocardial blood flow and cell integrity and can evaluate the associated coronary artery disease.

  14. Current status of radionuclide imaging in valvular heart disease

    International Nuclear Information System (INIS)

    Boucher, C.A.; Okada, R.D.; Pohost, G.M.

    1980-01-01

    The current state-of-the-art in radionuclide imaging of valvular heart disease is based on different angiographic patterns in three left-sided valve abnormalities: pressure overload, volume overload, and inflow obstruction. In pressure overload, the left ventricle has normal dimensions or is minimally dilated the volume overload involves a left ventricular dilatation with a normal or reduced ejection fraction at rest the left ventricular function in inflow obstruction is normal, but in some cases may be depressed. Radionuclide angiography evaluates the effect of a valve abnormality on cardiac chamber and function thallium-201 imaging diagnoses regional myocardial blood flow and cell integrity and can evaluate the associated coronary artery disease

  15. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  16. Osteopetrosis: Radiological & Radionuclide Imaging

    International Nuclear Information System (INIS)

    Sit, Cherry; Agrawal, Kanhaiyalal; Fogelman, Ignac; Gnanasegaran, Gopinath

    2015-01-01

    Osteopetrosis is a rare inherited bone disease where bones harden and become abnormally dense. While the diagnosis is clinical, it also greatly relies on appearance of the skeleton radiographically. X-ray, radionuclide bone scintigraphy and magnetic resonance imaging have been reported to identify characteristics of osteopetrosis. We present an interesting case of a 59-year-old man with a history of bilateral hip fractures. He underwent 99m Tc-methylene diphosphonate whole body scan supplemented with single-photon emission computed tomography/computed tomography of spine, which showed increased uptake in the humeri, tibiae and femora, which were in keeping with osteopetrosis

  17. Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography

    International Nuclear Information System (INIS)

    Chang, L.T.

    1976-05-01

    Two techniques for radionuclide imaging and reconstruction have been studied;; both are used for improvement of depth resolution. The first technique is called coded aperture imaging, which is a technique of tomographic imaging. The second technique is a special 3-D image reconstruction method which is introduced as an improvement to the so called focal-plane tomography

  18. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma

    NARCIS (Netherlands)

    Taieb, D.; Timmers, H.J.L.M.; Hindie, E.; Guillet, B.A.; Neumann, H.P.; Walz, M.K.; Opocher, G.; de Herder, W.W.; Boedeker, C.C.; de Krijger, R.R.; Chiti, A.; Al-Nahhas, A.; Pacak, K.; Rubello, D.

    2012-01-01

    PURPOSE: Radionuclide imaging of phaeochromocytomas (PCCs) and paragangliomas (PGLs) involves various functional imaging techniques and approaches for accurate diagnosis, staging and tumour characterization. The purpose of the present guidelines is to assist nuclear medicine practitioners in

  19. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    DEFF Research Database (Denmark)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob

    2012-01-01

    -of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. MethodsA DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29...... for the first time the in vivo efficacy of an uPAR-targeted radionuclide therapeutic intervention on both tumor size and its content of uPAR expressing cells thus setting the stage for future translation into clinical use. © 2012 Elsevier Inc. All rights reserved....

  20. Entrapment of Radionuclides in Nanoparticle Compositions

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention is directed to the technical field of imaging compositions useful for diagnosing cancer and other diseases in a subject. In particular, the invention relates to a class of diagnostic compounds comprising a novel liposome composition with encapsulated metal entities such as r...... tissue and, in general, pathological conditions associated with leaky blood vessels. The present invention provides a new diagnostic tool for the utilization of positron emission tomography (PET) imaging technique.......The present invention is directed to the technical field of imaging compositions useful for diagnosing cancer and other diseases in a subject. In particular, the invention relates to a class of diagnostic compounds comprising a novel liposome composition with encapsulated metal entities...... such as radionuclides,for example 61Cu and 64Cu copper isotopes. The invention further relates to a novel method for loading delivery systems, such as liposome compositions, with metal entities such as radionuclides, and the use of liposomes for targeted diagnosis and treatment of a target site, such as cancerous...

  1. Radionuclide imaging of musculoskeletal infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Palestro

    2007-09-01

    Full Text Available Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of "complicating osteomyelitis" such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose.Estudos através de imagens com o uso de radionuclídeos são rotineiramente usadas para avaliar pacientes suspeitos de terem infecção músculo-esquelética. A imagem óssea em tridimensional é facilmente avaliável, relativamente de baixo custo, e muito precisa na localização de alterações ósseas. Imagem com leucócito marcado poderia ser usada nos casos de "osteomielite com complicações" tais como infecção prostética articular. Esse teste também é útil na não suspeita clinica de osteomielite associada ao pé diabético tanto quanto nas junções neuropáticas. É sempre necessário, por outro lado, realizar imagem complementar da medula óssea para aumentar a precisão da imagem com leucócito marcado. Em contraste com outras regiões no esqueleto, imagem com leucócito marcado não é útil para diagnosticar osteomielite da coluna vertebral. Até agora, o gálio é o radionuclídeo preferido para

  2. Translational Applications of Molecular Imaging and Radionuclide Therapy

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-01-01

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled ''Translational Applications of Molecular Imaging and Radionuclide Therapy'' to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study; and the role of a diagnostic scan on therapy selection. This latter topic will include discussions on therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research

  3. Radionuclide imaging of non osseous infection

    International Nuclear Information System (INIS)

    Palestro, C.J.; New York, Yeshiva Univ., NY; Torres, M.A.

    1999-01-01

    Nuclear medicine is an important tool in the diagnostic evaluation of patients with a variety of non osseous infections. In the immunocompetent population labeled leukocyte imaging is the radionuclide procedure of choice, with Gallium imaging reserved for those situations in which the leukocyte study is non diagnostic or cannot be performed. Fever of unknown origin is caused by infection in less than one-third of cases, and therefore the number of positive leukocyte studies will be relatively low. The negative leukocyte study is also useful as it has been demonstrated that a negative study excludes, with a high degree of certainty, focal infection as the cause of an FUO. In the cardiovascular system, labeled leukocyte scintigraphy is very useful for diagnosing mycotic aneurysms and infected prosthetic vascular grafts. The specificity of the study is somewhat more variable. In the central nervous system, labeled leukocyte imaging can provide important information about the etiology of contrast enhancing brain lesions identified on computed tomography. In the immunocompromised population, typified by the AIDS patient, Gallium scintigraphy is the radionuclide procedure of choice for diagnosing opportunistic diseases. In the thorax, a normal Gallium scan, in the setting of a negative chest X-ray, virtually excludes pulmonary disease. In the abdomen, Gallium is also useful for detecting nodal disease, but is not reliable for detecting large bowel disease. Labeled leukocyte imaging should be performed when colitis is a concern. Both 18 FDG PET and 201 T1 SPECT imaging of the brain are useful for distinguishing between central nervous system lymphoma and toxoplasmosis in the HIV (+) patient. On both studies, lymphoma manifests as a focus of increased tracer uptake, whereas toxoplasmosis shows little or no uptake of either tracer

  4. Radionuclide imaging of non osseous infection

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, C.J. (Long Island Jewish Medical Center, New York, NY, (United States). Dept. Nuclear Medicine New York, Yeshiva Univ., NY (United States). Albert Einstein College of Medicine); Torres, M.A. (Long Island Jewish Medical Center, New York, NY, (United States). Dept. Nuclear Medicine)

    1999-03-01

    Nuclear medicine is an important tool in the diagnostic evaluation of patients with a variety of non osseous infections. In the immunocompetent population labeled leukocyte imaging is the radionuclide procedure of choice, with Gallium imaging reserved for those situations in which the leukocyte study is non diagnostic or cannot be performed. Fever of unknown origin is caused by infection in less than one-third of cases, and therefore the number of positive leukocyte studies will be relatively low. The negative leukocyte study is also useful as it has been demonstrated that a negative study excludes, with a high degree of certainty, focal infection as the cause of an FUO. In the cardiovascular system, labeled leukocyte scintigraphy is very useful for diagnosing mycotic aneurysms and infected prosthetic vascular grafts. The specificity of the study is somewhat more variable. In the central nervous system, labeled leukocyte imaging can provide important information about the etiology of contrast enhancing brain lesions identified on computed tomography. In the immunocompromised population, typified by the AIDS patient, Gallium scintigraphy is the radionuclide procedure of choice for diagnosing opportunistic diseases. In the thorax, a normal Gallium scan, in the setting of a negative chest X-ray, virtually excludes pulmonary disease. In the abdomen, Gallium is also useful for detecting nodal disease, but is not reliable for detecting large bowel disease. Labeled leukocyte imaging should be performed when colitis is a concern. Both [sup 18]FDG PET and [sup 201]T1 SPECT imaging of the brain are useful for distinguishing between central nervous system lymphoma and toxoplasmosis in the HIV (+) patient. On both studies, lymphoma manifests as a focus of increased tracer uptake, whereas toxoplasmosis shows little or no uptake of either tracer.

  5. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  6. High-tension electrical injury to the heart as assessed by radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Hitoshi; Chikamori, Taishiro; Hatano, Tsuguhisa [Tokyo Medical Coll. (Japan)] [and others

    2002-12-01

    The purpose of this study was to evaluate cardiac complications associated with electrical injury, 7 patients with high-tension electrical injury (6,600 V alternating current) underwent {sup 201}Tl and {sup 123}I-metaiodobenzylguanidine (MIBG) imaging in addition to conventional electrocardiographic and echocardiographic assessments. Electrocardiography showed transient atrial fibrillation, second degree atrioventricular block, ST-segment depression, and sinus bradycardia in each patient. Echocardiography showed mild hypokinesis of the anterior wall in only 2 patients, but {sup 201}Tl and {sup 123}I-MIBG myocardial scintigraphy showed an abnormal scan image in 6/7 and 5/6 patients, respectively. Decreased radionuclide accumulation was seen primarily in areas extending from the anterior wall to the septum. Decreased radionuclide accumulation was smaller in extent and milder in degree in {sup 123}I-MIBG than in {sup 201}Tl imaging. These results suggest that even in patients without definite evidence of severe cardiac complications in conventional examinations, radionuclide imaging detects significant damage due to high-tension electrical injury, in which sympathetic nerve dysfunction might be milder than myocardial cell damage. (author)

  7. WE-DE-201-06: Impact of Temporal Image Coregistration Methods On 3D Internal Dose Calculations in Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Besemer, A; Marsh, I; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), and individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by

  8. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  9. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Latifa Rbah-Vidal

    2017-01-01

    Full Text Available PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT. TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS. RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33 ± 2.11%ID/g and 4.87 ± 0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT of 2.9 ± 0.5 days in treated vs 1.8 ± 0.3 in controls] and a prolonged median survival (27 days vs 21 in controls. P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5 ± 7.8 days vs 11.0 ± 3.8 in controls and improved median survival (111 days vs 74 in controls. CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.

  10. Electroplating targets for production of unique PET radionuclides

    International Nuclear Information System (INIS)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-01-01

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators

  11. Diagnostic value of radionuclide imaging combined with routine CT in detecting hepatic focal nodular hyperplasia

    International Nuclear Information System (INIS)

    Lu Xuemin; Yu Shuhong; Han Jiankui

    2011-01-01

    Objective: To investigate radionuclide imaging and routine CT in diagnosing hepatic focal nodular hyperplasia (FNH) and the combined diagnostic value of the two modalities. Methods: Thirty-two patients with hepatic FNH were retrospectively studied. All patients underwent routine CT scan. Twenty-four patients were examined by 99 Tc m -sulfur colloid (SC) hepatic planar scintigraphy and SPECT/CT imaging, and then patients who had abnormal foci underwent 99 Tc m -diethyl iminodiacetic acid (EHIDA) triple-phase hepatobiliary imaging. χ 2 -test of four-table or Fisher exact probabilities in 2 × 2 table was applied for statistical analysis. Results: Of all 32 patients pathologically diagnosed as FNH with single solitary nodule, 25 were classified as classic type and the rest 7 as non-classic type. Although routine CT found all hepatic lesions, only 15 cases were diagnosed pathologically as FNH classic type but the rest were either misdiagnosed or left as indeterminate. On radionuclide imaging (hepatic colloid scintigraphy plus triple-phase hepatobiliary images), 11 patients with big foci (with maximal diameter >3 cm) out of 24 patients were correctly diagnosed as FNH, with 7 diagnosed as classic type FNH and 4 as non-classic. Other 13 patients were either misdiagnosed or simply missed. The diagnosing rates of routine CT and radionuclide imaging were 60.0% (15/25) and 38.9% (7/18) for FNH classic type, 0/7 and 4/6 for non-classic type, 50.0% (10/20) and 73.3% (11/15) for big foci, 41.7% (5/12) and 0/9 for small foci (with maximal diameter ≤3 cm), respectively. The total diagnosing rate of radionuclide imaging combined with routine CT was significantly higher than that of routine CT or radionuclide imaging alone (χ 2 =4.48, P<0.05; χ 2 =4.27, P<0.05). Conclusion: Radionuclide imaging in combination with routine CT may improve the diagnostic accuracy for hepatic FNH patients. (authors)

  12. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  13. Enhancing the effect of radionuclide tumor targeting, using lysosomotropic weak bases

    International Nuclear Information System (INIS)

    Sundberg, Asa Liljegren; Steffen, Ann-Charlott

    2007-01-01

    Purpose: The aim of the present study was to investigate if treatment with lysosomotropic weak bases could increase the intracellular retention of radiohalogens and thereby increase the therapeutic effect of radionuclide tumor targeting. Methods and Materials: Four different lysosomotropic bases, chloroquine, ammonium chloride, amantadine, and thioridazine, were investigated for their ability to increase radiohalogen retention in vitro. The two most promising substances, chloroquine and ammonium chloride, were studied in several cell lines (A431, U343MGaCl2:6, SKOV-3, and SKBR-3) in combination with radiolabeled epidermal growth factor (EGF) or the HER2 binding affibody (Z HER2:4 ) 2 . Results: The uptake and retention of radionuclides was found to be substantially increased by simultaneous treatment with the lysosomotropic bases. The effect was, however, more pronounced in the epidermal growth factor:epidermal growth factor receptor (EGF:EGFR) system than in the (Z HER2:4 ) 2 :HER2 system. The therapeutic effect of ammonium chloride treatment combined with 211 At-EGF was also studied. The effect obtained after combined treatment was found to be much better than after 211 At-EGF treatment alone. Conclusions: The encouraging results from the present study indicate that the use of lysosomotropic weak bases is a promising approach for increasing the therapeutic effect of radionuclide targeting with radiohalogens

  14. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera.

    Science.gov (United States)

    Miller, Brian W; Frost, Sofia H L; Frayo, Shani L; Kenoyer, Aimee L; Santos, Erlinda; Jones, Jon C; Green, Damian J; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Orozco, Johnnie J; Press, Oliver W; Pagel, John M; Sandmaier, Brenda M

    2015-07-01

    Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was

  15. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    Science.gov (United States)

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  16. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  17. Radionuclide targeting with particular emphasis on urinary bladder carcinoma

    International Nuclear Information System (INIS)

    Sjoestroem, A.

    2001-01-01

    The incidence of urinary bladder carcinoma is increasing and many patients die every year of this disease despite assumed radical therapy. Thus, there is a need for improved methods of diagnosis and therapy. Radionuclide targeting is based on achieving specific delivery of radioactive nuclides to tumour cells with minimal damage to surrounding normal tissues. Two possible target structures are the epidermal growth factor (EGF) receptor and the related receptor HER-2. Cellular binding and retention of 125 I-EGF-dextran conjugates was investigated in two bladder carcinoma cell lines. The conjugate bound specifically to the EGF receptor with delayed maximum binding, limited intracellular degradation and prolonged cellular retention compared to 125 I-EGF. EGF was labelled using different radionuclides and methods. All the labelled variants bound specifically to the tumour cells although the cellular binding patterns and retention varied considerably. 111 In-DTPA-EGF had highest cellular retention and in decreasing order 211 At-benzoyl-EGF and 125 I-labelled EGF. Bladder cancer spheroids bound both 125 I-EGF-dextran as well as 125 I-EGF. Conjugate binding increased during a 48 h incubation period and was most prominent in the outer cell layers. The length of the dextran chain appeared not to alter the binding pattern. The expression of EGF receptors and HER-2 in metastases and primary bladder carcinoma tumours was investigated. Both receptors were expressed in the majority of metastases and primary tumours. Targeting the EGF receptor and/or HER-2 in urinary bladder carcinoma is an exciting new concept

  18. Radionuclide salivary gland imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  19. Radionuclide salivary gland imaging

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1981-01-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific

  20. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

    Science.gov (United States)

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MWnanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70% drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90%. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88% when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95% with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival

  1. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Zhang Fuhai; Meng Zhaowei; Tan Jian

    2012-01-01

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  2. Radionuclide imaging in diagnosis and therapy of the diabetic foot

    International Nuclear Information System (INIS)

    Zhu Cansheng

    2000-01-01

    Early and accurate diagnosis of angiopathy or infection of the diabetic foot is the key to the successful management. Radionuclide imaging is very useful in detecting diabetic microangiopathy, assessing the prognosis of foot ulcers, and diagnosing the osteomyelitis

  3. Feasibility of dual radionuclide brain imaging with I-123 and Tc-99m

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Loncaric, S.; Franceschi, D.

    1994-01-01

    A study was conducted to evaluate the feasibility of simultaneous dual radionuclide brain imaging with 123 I and 99m Tc using photopeak image subtraction techniques or offset photopeak image acquisition. The contribution of the photons from one radionuclide to a second radionuclide's photopeak energy window (crosstalk) was evaluated for SPECT and planar imaging of a brain phantom containing 123 I and 99m Tc for a range of activity levels and distribution properties approximating those in rCBF images of the adult human brain. Crosstalk was evaluated for 10% symmetrical energy windows centered on the 123 I and 99m Tc photopeaks and for 10% energy windows asymmetrically placed to the left and right of the center of the respective photopeaks. It was observed that the centered photopeak windows, 99m Tc crosstalk in the 123 I window is 8.9% of the 99m Tc seen in the 99m Tc window and ranges from 37.5% to 75.0% of the 123 I in the 123 I window. 123 I crosstalk is 37.8% of the 123 I seen in the 123 I window and ranges from 4.4% to 8.9% of the 99m Tc seen in the 99m Tc window. The spatial distribution of a radionuclide's crosstalk photons differs from that observed in the radionuclide's photopeak window. A 99m Tc photopeak window offset to the left does not decrease 123 I crosstalk, and the percentage of 99m Tc scattered photons is significantly increased in the window. Offsetting the 123 I window to the right decreases 99m Tc crosstalk to 9.0% to 17.9% of the 123 I counts, but decreases 123 I sensitivity by 39.9%. Offsetting both photopeak windows to the right decreases the 99m Tc scattered photons in the 99m Tc window, but increases 123 I crosstalk to 17.0% to 33.8% of the 99m Tc counts

  4. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  5. An experimental study on the application of radionuclide imaging in repair of the bone defect

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2011-08-01

    Full Text Available The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05. The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction.

  6. Cyclotron production of radionuclides in aqueous target matrices as alternative to solid state targetry. Production of Y-86 as example

    Energy Technology Data Exchange (ETDEWEB)

    Vogg, A.T.J.; Lang, R.; Meier-Boeke, P.; Scheel, W.; Reske, S.N.; Neumaier, B. [Universitaetsklinikum Ulm (Germany). Abt. Nuklearmedizin

    2004-07-01

    Commonly used ''organic'' positron emitting radionuclides {sup 18}F, {sup 11}C, {sup 13}N, and {sup 15}O are simply obtained from gaseous or aqueous targets, which enable an automated handling of target, i.e. both, filling and radionuclide delivery to a hot cell containing a chemistry processing and/or labelling module. In the recent years other - mostly metallic - radionuclides for PET gained more and more interest, since they can be used as surrogates for therapeutic nuclides attached to biomolecules like peptides or antibodies. The implication for surrogate nuclides results from the circumstance that an optimum dosimetric regime in endo radiotherapy relies on quantitative pharmacokinetic data obtained only by non invasive in vivo PET scans. However, for production of these alternative positron emitters the vast majority of them affords solid targets in form of metal foils, oxide or salt pellets which can not be operated by an automated processing. Those solid target systems have to be mounted and dismounted after irradiation by man, leading to two major disadvantages. First, manual cyclotron intervention is practically unsuited for daily routine radionuclide production and second the operating staff receives high radiation doses from the activated target. An alternative could be the irradiation of aqueous salts of target isotopes, allowing automated target operation. The major requirements are firstly a thermal stability of the dissolved compound, secondly the avoidance of counter ions containing nuclides which produce long-lived radionuclides under irradiation and thirdly a high solubility of the salt in the aqueous matrix. Here we report the proof of principle of the new radionuclide production concept by irradiation of strontium nitrate dissolved in water in order to produce {sup 86}Y (cf.). (orig.)

  7. Radionuclide imaging in herpes simplex encephalitis

    International Nuclear Information System (INIS)

    Karlin, C.A.; Robinson, R.G.; Hinthorn, D.R.; Liu, C.

    1978-01-01

    Eight patients with herpes simplex encephalitis among the 10 cases diagnosed at the University of Kansas Medical Center from 1966 to 1976 were studied with /sup 99m/Tc early in their diagnostic work-up. The images were unilaterally positive in the temporal lobe area in all 8 patients. Radionuclide studies can suggest herpes simplex as the specific etiology in cases of encephalitis and can also indicate the best site for brain biopsy to confirm the diagnosis by fluorescent antibody techniques. Appropriate antiviral therapy should be instituted as soon as possible to alter the course of this destructive form of viral encephalitis

  8. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.

  9. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    International Nuclear Information System (INIS)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury

  10. Detection and evaluation of left atrial myxoma by gated radionuclide imaging

    International Nuclear Information System (INIS)

    Sugihara, Hiroki; Adachi, Haruhiko; Nakagawa, Hiroaki

    1985-01-01

    Radionuclide imaging plays an important role in diagnosising left atrial myxoma (LAM). We discussed diagnostic value of Fourier analysis with phase image and evaluated left ventricular filling function using indices such as 1/3 Filling Fraction, Rapid Filling Fraction and Peak Filling Rate derived from left ventricular volume curve. Equillibrium radionuclide angiocardiography was performed in 6 LAM patients. Phase delay in the basal portion of the left ventricle was shown in 5 of 6 LAM patients, and standard deviation of left ventricular phase was larger than these of controls. Left ventricular filling disturbance was suggested in 5 of 6 LAM patients. After surgical remove of myxoma phase delay was disappeared and standard deviation was normalized. And left ventricular filling was improved. We concluded that the phase image of Fourier analysis revealed a left atrial mass prolapsing in the left ventricule during the diastole, and that diastolic indices were useful for left ventricular filling disturbance due to LAM. (author)

  11. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  12. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, Washington 99354 and College of Optical Sciences, The University of Arizona, Tucson, Arizona 85719 (United States); Frost, Sofia H. L.; Frayo, Shani L.; Kenoyer, Aimee L.; Santos, Erlinda; Jones, Jon C.; Orozco, Johnnie J. [Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 (United States); Green, Damian J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M. [Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and Department of Medicine, University of Washington, Seattle, Washington 98195 (United States); Hamlin, Donald K.; Wilbur, D. Scott [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195 (United States); Fisher, Darrell R. [Dade Moeller Health Group, Richland, Washington 99354 (United States)

    2015-07-15

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area

  13. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  14. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  15. Simultaneous maximal exercise radionuclide angiography and thallium stress perfusion imaging

    International Nuclear Information System (INIS)

    Narahara, K.A.; Mena, I.; Maublant, J.C.; Brizendine, M.; Criley, J.M.

    1984-01-01

    Gold-195m is a new ultra-short-lived radionuclide that can be used for cardiac studies. Accurate, reproducible ejection fraction and ventricular wall motion studies can be obtained from first-transit angiography using commercially available imaging and image-processing equipment. The short half-life of gold-195m (30.5 seconds) makes simultaneous dual isotope imaging possible and substantially reduces the radiation exposure from the isotope angiography. The feasibility and possible benefits of performing dual radionuclide studies were evaluated during a single exercise stress test in 24 subjects with known coronary artery disease (CAD) and in 20 normal volunteers. High-quality first-transit angiograms were obtained in all subjects. An 83% sensitivity and 95% specificity for detecting CAD with thallium-201 imaging was noted in this investigation, suggesting that its diagnostic accuracy was not altered by simultaneous dual isotone imaging. When segmental left ventricular (LV) wall motion was compared with thallium-201 perfusion imaging, divergent results were noted in 15 of 44 subjects. An analysis of the ejection fraction (EF) results at rest and stress provided additional information that could be useful in assessing the clinical significance of such differences in segmental wall motion and perfusion. Simultaneous dual isotope imaging appears to be appropriate for situations in which both LV perfusion and function require evaluation. The use of gold-195m allows such information to be obtained from a single exercise test and can thereby reduce the cost and time required for noninvasive evaluations of patients for CAD

  16. The clinical evaluation of combining radionuclide imaging with radioimmunoassay for hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Huang Chenggang; Chen Xiaoyan; Deng Yan

    2003-01-01

    By analysing nuclide image characteristics and radioimmunoassay data of 61 cases with Hashimoto's thyroiditis (HT), HT can be classified five types as below: uneven distribution, diffusion, with hyperfunction, with nodules, nearly normal. The results of radionuclide imaging and the radioimmunoassay of all the types indicate that HT can be preliminarily diagnosed by conscientiously analysing nuclide image characteristics and radioimmunoassay data and linking clinical symptoms and signs

  17. Loading technique for preparing radionuclide containing nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    associated with leaky blood vessels. The composition and methods of the invention find particular use in diagnosing and imaging cancerous tissue and, in general, pathological conditions associated with leaky blood vessels in a subject. The present invention provides a new diagnostic tool for the utilization......Source: US2012213698A The present invention relates to a novel composition and method for loading delivery systems such as liposome compositions with radionuclides useful in targeted diagnostic and/or therapy of target site, such as cancerous tissue and, in general, pathological conditions...... of positron emission tomography (PET) imaging technique. One specific aspect of the invention is directed to a method of producing nanoparticles with desired targeting properties for diagnostic and/or radio-therapeutic applications....

  18. Using radionuclide imaging for monitoring repairment of bone defect with tissue-engineered bone graft in rabbits

    International Nuclear Information System (INIS)

    Xia Changsuo; Ye Fagang; Zou Yunwen; Ji Shixiang; Wang Dengchun

    2004-01-01

    Objective: To observe the effect of tissue-engineered bone grafts in repairing bone defect in rabbits, and assess the value of radionuclide for monitoring the therapeutic effect of this approach. Methods: Bilateral radial defects of 15 mm in length in 24 rabbits were made. The tissue-engineered bone grafts (composite graft) contained bone marrow stromal cells (BMSCs) of rabbits and calcium phosphate cement (CPC) were grafted in left side defects, CPC only grafts (artificial bone graft) in right defects. After the operation, radionuclide was used to monitor the therapeutic effects at 4, 8 and 12 weeks. Results: 99 Tc m -methylene diphosphonic acid (MDP) radionuclide bone imaging indicated that there was more radionuclide accumulation in grafting region of composite than that of CPC. There was significant difference between 99 Tc m -MDP uptake of the region of interest (ROI) and scintillant counts of composite bone and the artificial bone (P<0.01). Conclusion: Tissue-engineered bone grafts is eligible for repairing radial bone defects, and radionuclide imaging may accurately monitor the revascularization and bone regeneration after the bone graft implantation. (authors)

  19. Radiography, radionuclide imaging, and asthrography in the evaluation of total hip and knee replacement

    International Nuclear Information System (INIS)

    Gelman, M.I.; Coleman, R.E.; Stevens, P.M.; Davey, B.W.

    1978-01-01

    Twenty patients with 21 total joint replacements including 17 hips and 4 knees were studied by plain film radiography, radionuclide imaging, and subtraction arthrography to evaluate these procedures for assessing prosthetic complications. Surgery was performed in 14 patients and confirmed loosening of 8 femoral and 7 acetabular hip prosthesis components and 1 femoral and 4 tibial knee prosthesis components. Plain films suggested loosening of only 9 hip components and no knee components. In contrast, radionuclide imaging and subtraction arthrography were considerably more effective in demonstrating loosening as well as other causes of the painful total joint prosthesis

  20. Aligning physics and physiology: Engineering antibodies for radionuclide delivery.

    Science.gov (United States)

    Tsai, Wen-Ting K; Wu, Anna M

    2018-03-14

    The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  2. Radionuclide imaging of infection: what the future holds

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, Christopher J. [Yeshiva University, NY (United States). Albert Einstein College of Medicine]. E-mail: palestro@lij.edu

    2008-12-15

    Nuclear Medicine plays an important role in the evaluation of patients suspected of harboring infection. Gallium imaging is especially useful for opportunistic infections and spinal osteomyelitis. In vitro labeled leukocyte imaging is the current radionuclide gold standard for imaging most infections, in immunocompetent patients, including cardiovascular, postoperative, and musculoskeletal infections (except spinal osteomyelitis). Several in-vivo leukocyte labeling methods have been investigated, but none are widely used. Results obtained with radiolabeled antibiotics have been disappointing. Data on FDG are still emerging, but this agent appears to be especially valuable in fever of unknown origin, spinal osteomyelitis, vasculitis and sarcoidosis. It is conceivable that in the near future, FDG-PET and PET/CT will replace gallium for many indications. Investigators also are studying ways to label leukocytes with positron emitters in order to combine the advantages of PET with those of labeled leukocytes. (author)

  3. Quantitative PET Imaging with Novel HER3-Targeted Peptides Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression

    Science.gov (United States)

    2017-12-01

    Independent Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Benjamin Larimer, PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...TYPE Final 3. DATES COVERED 1 Aug 2016 – 19 August 2017 Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression 5a...highly specific peptide that targets HER3 for prostate cancer imaging. The peptide was labeled with a PET imaging radionuclide and injected into mice

  4. Comparison on the production of radionuclides in 1.4 GeV proton irradiated LBE targets of different thickness

    CERN Document Server

    Maiti, Moumita; Mendonça, Tania M; Stora, Thierry; Lahiri, Susanta

    2014-01-01

    This is the first report on the inventory of radionuclides produced in 1.4 GeV proton induced reaction on Lead-Bismuth Eutectic (LBE) targets. LBE targets of 6 mm diameter and 1 to 8 mm lengths were irradiated with 1.4 GeV protons. The radionuclides ranging from Be-7 (53.12 days) to Po-207 (5.8 h) were identified in the samples with the help of time resolved gamma-ray spectroscopy. However, there is no signature of formation of At radioisotopes, which can be produced by the interaction of secondary particles, typical for thick targets.

  5. Should single-phase radionuclide bone imaging be used in suspected osteomyelitis

    International Nuclear Information System (INIS)

    Fihn, S.D.; Larson, E.B.; Nelp, W.B.; Rudd, T.G.; Gerber, F.H.

    1984-01-01

    The records of 69 patients who had 86 delayed, static radionuclide bone images for suspected osteomyelitis were studied to determine the effects of this procedure on diagnosis and treatment. Sensitivity, specificity, and positive predictive value were lower than reported in several other studies. When osteomyelitis was unlikely, imaging was either negative or falsely positive and rarely affected treatment. In 46 cases where osteomyelitis was more likely, imaging potentially changed therapy in 19 but was unhelpful or misleading in 15. Static-phase images with ''definite'' interpretations, particularly when negative, are specific, but ''equivocal'' studies may lead to diagnostic and therapeutic errors. When ostemyelitis is improbable, imaging rarely changes diagnosis or therapy

  6. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  7. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Du, Yong; Frey, Eric C; Bhattacharya, Manojeet

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  8. Three-phase radionuclide bone imaging in sports medicine

    International Nuclear Information System (INIS)

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-01-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions

  9. Paving the way to personalized medicine. Production of some theragnostic radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    2011-01-01

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrant it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.

  10. Sequential radionuclide bone imaging in avascular pediatric hip conditions

    International Nuclear Information System (INIS)

    Minikel, J.; Sty, J.; Simons, G.

    1983-01-01

    Radionuclide bone imaging was performed on six patients with various hip conditions. Initial bone images revealed diminished uptake of isotope /sup 99m/Tc-MDP in the capital femoral epiphysis. Following therapeutic intervention, repeat bone scans revealed normal uptake of /sup 99m/Tc-MDP in the capital femoral epiphysis. Subsequent radiographs revealed that avascular necrosis had not occurred. There are two types of avascularity: the potentially reversible, and the irreversible. Attempts should be made toward early recognition of the potentially reversible avascular insult. With early recognition, surgical reconstruction prior to osteophyte death may result in revascularization. If this can be accomplished, avascular necrosis can be avoided

  11. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer : Preclinical Advances and Clinical Translation

    NARCIS (Netherlands)

    Lutje, S.; Rijpkema, M.; Helfrich, W.; Oyen, W. J. G.; Boerman, O. C.

    2014-01-01

    In oncology, sensitive and reliable detection tumor tissue is crucial to prevent recurrences and to improve surgical outcome. Currently, extensive research is focused on the use of radionuclides as well as fluorophores to provide real-time guidance during surgery to aid the surgeon in the

  12. Differential diagnostic features of the radionuclide scrotal image

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, F.S.

    1977-01-01

    Differential diagnosis of scrotal lesions is aided by correlating radionuclide images with clinical findings. Subacute torsion is associated with peripheral hyperemia and can be mistaken for an inflammatory process; however, in a review of 128 studies, torsion and orchiectomy were the only processes encountered which had a center truly devoid of activity on the tissue phase compared to the normal side. Other lesions such as acute inflammation, abscess, hematoma, and hemorrhagic tumor may superficially appear to lack central activity but invariably contain at least as much activity when compared to the normal side.

  13. Differential diagnostic features of the radionuclide scrotal image

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1977-01-01

    Differential diagnosis of scrotal lesions is aided by correlating radionuclide images with clinical findings. Subacute torsion is associated with peripheral hyperemia and can be mistaken for an inflammatory process; however, in a review of 128 studies, torsion and orchiectomy were the only processes encountered which had a center truly devoid of activity on the tissue phase compared to the normal side. Other lesions such as acute inflammation, abscess, hematoma, and hemorrhagic tumor may superficially appear to lack central activity but invariably contain at least as much activity when compared to the normal side

  14. Radionuclide imaging of the painful joint replacement: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Palestro, Christopher J. [Long Island Jewish Medical Center, New Hyde Park, NY (United States)]. E-mail: palestro@lij.edu

    2002-09-01

    Differentiating aseptic loosening from infection as the cause of prosthetic joint failure is difficult because both entities are similar, clinically and histopathologically. Aseptic loosening frequently result from an immune reaction to the prosthesis. There is inflammation with an influx of histiocytes, giant cells, lymphocytes and plasma cells. Pro inflammatory cytokines and proteolytic enzymes are secreted, causing osteolysis and loosening. These same events occur in infection except that neutrophils, rarely present in aseptic loosening, area invariably present in infection. Clinical signs and symptoms, laboratory tests, X-rays and joint aspiration are insensitive, nonspecific or both. Artifacts produced by the metallic hardware hamper cross-sectional imaging modalities. Radionuclide imaging is not affected by the presence of metallic hardware and is very useful for evaluating the painful prosthesis. Bone scintigraphy, with and accuracy of 50%-70% is a useful screening test, since a normal study effectively excludes a prosthetic complication. Adding gallium-67, a nonspecific inflammation-imaging agent, improves the accuracy of bone scintigraphy to 70%-80%. The accuracy of combined leukocyte/marrow imaging, 90%, is the highest among available radionuclide studies. Its success is due to the fact that leukocytes imaging is most sensitive for detecting neutrophil mediated inflammations. Inflammatory conditions that are neutrophil-poor, even though large numbers of other leukocytes may be present, (such as the aseptically loosened joint prosthesis) go undetected. The success of leukocyte/marrow imaging is tempered by the limitations of in vitro labeling. In vivo labeling has been investigated and a murine monoclonal anti-granulocyte antibody appears promising. Some investigations have focused on F-18 FDG imaging, although specificity is a concern with this agent. (author)

  15. Radionuclide imaging of the painful joint replacement: past, present and future

    International Nuclear Information System (INIS)

    Palestro, Christopher J.

    2002-01-01

    Differentiating aseptic loosening from infection as the cause of prosthetic joint failure is difficult because both entities are similar, clinically and histopathologically. Aseptic loosening frequently result from an immune reaction to the prosthesis. There is inflammation with an influx of histiocytes, giant cells, lymphocytes and plasma cells. Pro inflammatory cytokines and proteolytic enzymes are secreted, causing osteolysis and loosening. These same events occur in infection except that neutrophils, rarely present in aseptic loosening, area invariably present in infection. Clinical signs and symptoms, laboratory tests, X-rays and joint aspiration are insensitive, nonspecific or both. Artifacts produced by the metallic hardware hamper cross-sectional imaging modalities. Radionuclide imaging is not affected by the presence of metallic hardware and is very useful for evaluating the painful prosthesis. Bone scintigraphy, with and accuracy of 50%-70% is a useful screening test, since a normal study effectively excludes a prosthetic complication. Adding gallium-67, a nonspecific inflammation-imaging agent, improves the accuracy of bone scintigraphy to 70%-80%. The accuracy of combined leukocyte/marrow imaging, 90%, is the highest among available radionuclide studies. Its success is due to the fact that leukocytes imaging is most sensitive for detecting neutrophil mediated inflammations. Inflammatory conditions that are neutrophil-poor, even though large numbers of other leukocytes may be present, (such as the aseptically loosened joint prosthesis) go undetected. The success of leukocyte/marrow imaging is tempered by the limitations of in vitro labeling. In vivo labeling has been investigated and a murine monoclonal anti-granulocyte antibody appears promising. Some investigations have focused on F-18 FDG imaging, although specificity is a concern with this agent. (author)

  16. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  17. Targeted radionuclide therapy for neuroendocrine tumours: principles and application.

    Science.gov (United States)

    Druce, Maralyn R; Lewington, Val; Grossman, Ashley B

    2010-01-01

    Neuroendocrine tumours comprise a group of neoplasms with variable clinical behaviour. Their growth and spread is often very slow and initially asymptomatic, and thus they are often metastatic at the time of diagnosis and incurable by surgery. An exciting therapeutic strategy for cytoreduction, both for stabilisation of tumour growth and inhibition of hormone production, is the use of targeted radionuclide therapy. Evidence from large-scale, randomised, placebo-controlled trials is very difficult to obtain in these rare diseases, but current data appear promising. It is timely to review the principles underlying the use of these therapies, together with the clinical outcomes to date and potential directions for future research. Copyright 2009 S. Karger AG, Basel.

  18. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Institute of Scientific and Technical Information of China (English)

    Jean-Fran?ois Sarrazin; Fran?ois Philippon; Mika?l Trottier; Michel Tessier

    2016-01-01

    Cardiovascular implantable electronic device(CIED) infection and prosthetic valve endocarditis(PVE) remain a diagnostic challenge.Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE.Over the past few years,cardiac radionuclide imaging has gained a key role in the diagnosis of these patients,and in assessing the need for surgery,mainly in the most difficult cases.Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography(18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography(WBC SPECT/CT) have been studied in these situations.In their 2015 guidelines for the management of infective endocarditis,the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE,but not CIED infection since the data were judged insufficient at the moment.This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE,and describes the technical aspects of cardiac radionuclide imaging.It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE,the limitations of these tests,and potential areas of future research.

  19. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Science.gov (United States)

    Sarrazin, Jean-François; Philippon, François; Trottier, Mikaël; Tessier, Michel

    2016-01-01

    Cardiovascular implantable electronic device (CIED) infection and prosthetic valve endocarditis (PVE) remain a diagnostic challenge. Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE. Over the past few years, cardiac radionuclide imaging has gained a key role in the diagnosis of these patients, and in assessing the need for surgery, mainly in the most difficult cases. Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography (WBC SPECT/CT) have been studied in these situations. In their 2015 guidelines for the management of infective endocarditis, the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE, but not CIED infection since the data were judged insufficient at the moment. This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE, and describes the technical aspects of cardiac radionuclide imaging. It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE, the limitations of these tests, and potential areas of future research. PMID:27721936

  20. Targeted Nanotechnology for Cancer Imaging

    Science.gov (United States)

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  1. First meeting on the CRP 'standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides'

    International Nuclear Information System (INIS)

    Winkel, P. van den

    2000-01-01

    The Cyclotron Department of the VUB has three groups performing research in the field of target development, production of radionuclides and their application in nuclear medicine. 1. The Physics Group is busy on the optimization of beam parameters, on the determination of cross sections and on neutron spectrometry. 2. The Inorganic Radiochemistry Group performs research on solid target electroplating (Tl, Zn, Cd, Rh ... ), on optimisation of target carrier geometry and cooling and on automated PC-controlled radiochemistry (Tl-201, Ga-67, In-111) and recovery systems and the associated software written in Modula-2 and Visual Basic. 3. The Organic Radiochemistry Group develops new techniques for radiolabelling of organic molecules (fatty acids, neuroleptics, synthetic polypeptides...) useful in diagnostic and therapeutic nuclear medicine. All three groups take part in bulk productions of radionuclides

  2. Radionuclide techniques for brain imaging

    International Nuclear Information System (INIS)

    Cowan, R.J.; Moody, D.M.

    1984-01-01

    Over the past decade, many of the prime indications for radionuclide brain scanning have become instead indications for CCT, and nuclear medicine studies of the brain have assumed more of a complementary, supportive role. However, there is great promise for improvement in central nervous system radionuclide applications with advances anticipated in both radiopharmaceuticals and instrumentation. Nuclear medicine is continuing to function as a powerful research tool and, in the relatively near future, may regain its role as a major clinical test of the central nervous system

  3. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.

  4. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides. Final Report

    International Nuclear Information System (INIS)

    Welch, M.J.

    2012-01-01

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N 4 -methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the oxygen

  5. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    International Nuclear Information System (INIS)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob; Ploug, Michael; Kjaer, Andreas

    2012-01-01

    The proposition of uPAR as a potential target in cancer therapy is advanced by its predominant expression at the invasive front of colorectal cancer (CRC) and its value as prognostic biomarker for poor survival in this disease. In this study, we provide the first in vivo proof-of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. Methods: A DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64 Cu and 177 Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29 cells were inoculated in Nude mice and treated with 177 Lu-DOTA-AE105 once a visible tumor had formed. To evaluate the true effect of the targeted radiotherapy, two controls groups were included in this study, one receiving a 177 Lu-labeled non-binding control peptide and one receiving vehicle. All animals were treated day 0 and 7. A parallel 18 F-FLT PET/CT study was performed on day 0, 1, 3 and 6. Dosimetry calculations were based on a biodistribution study, where organs and tissue of interest were collected 0.5, 1.0, 2.0, 4.0 and 24 h post injection of 177 Lu-DOTA-AE105. Toxicity was assessed by recording mouse weight and by H and E staining of kidneys in each treatment group. Results: uPAR-positive HT-29 xenograft was clearly visualized by PET/CT imaging using 64 Cu-DOTA-AE105. Subsequently, these xenograft transplants were locally irradiated using 177 Lu-DOTA-AE105, where a significant effect on tumor size and the number of uPAR-positive cells in the tumor was found (p 18 F-FLT PET/CT imaging study revealed a significant correlation between 18 F-FLT tumor uptake and efficacy of the radionuclide therapy. A histological examination of the kidneys from one animal in each treatment group did not reveal any gross abnormalities and the general performance of all treated animals also showed no indications of radioactivity-induced toxicity. Conclusion: These findings

  6. SU-E-T-345: Validation of a Patient-Specific Monte Carlo Targeted Radionuclide Therapy Dosimetry Platform

    International Nuclear Information System (INIS)

    Besemer, A; Bednarz, B

    2014-01-01

    Purpose: There is a compelling need for personalized dosimetry in targeted radionuclide therapy given that conventional dose calculation methods fail to accurately predict dose response relationships. To address this need, we have developed a Geant4-based Monte Carlo patient-specific 3D dosimetry platform for TRT. This platform calculates patient-specific dose distributions based on serial CT/PET or CT/SPECT images acquired after injection of the TRT agent. In this work, S-values and specific absorbed fractions (SAFs) were calculated using this platform and benchmarked against reference values. Methods: S-values for 1, 10, 100, and 1000g spherical tumors with uniform activity distributions of I-124, I-125, I-131, F-18, and Ra-223 were calculated and compared to OLINDA/EXM reference values. SAFs for monoenergetic photons of 0.01, 0.1, and 1 MeV and S factors for monoenergetic electrons of 0.935 MeV were calculated for the liver, kidneys, lungs, pancreas, spleen, and adrenals in the Zubal Phantom and compared with previously published values. Sufficient particles were simulated to keep the voxel statistical uncertainty below 5%. Results: The calculated spherical S-values agreed within a few percent of reference data from OLINDA/EXM for each radionuclide and sphere size. The comparison of photon SAFs and electron S-values with previously published values showed good agreement with the previously published values. The S-values and SAFs of the source organs agreed within 1%. Conclusion: Our platform has been benchmarked against reference values for a variety of radionuclides and over a wide range of energies and tumor sizes. Therefore, this platform could be used to provide accurate patientspecific dosimetry for use in radiopharmaceutical clinical trials

  7. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  8. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/..mu..Ci-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult.

  9. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/μCi-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult

  10. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT

    DEFF Research Database (Denmark)

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated ...

  11. SPECT versus planar bone radionuclide imaging in the detection of spondylolysis

    International Nuclear Information System (INIS)

    Whitten, C.G.; El-Khoury, G.Y.; Chang, P.J.; Seabold, J.E.; Found, E.M.; Renfrew, D.L.

    1991-01-01

    This paper evaluates the relative performance and ease of interpretation of SPECT versus planar radionuclide bone imaging in the detection of spondylolysis. The authors studied all patients presenting with back pain suggestive of spondylolysis from November 1989 to January 1991 who underwent bone scanning; patients underwent both planar and SPECT imaging. The planar and SPECT images were randomly mixed and independently interpreted by four observers for presence or absence of spondylolysis and ease of interpretation for each scan. Receiver operating characteristic (ROC) and analysis of variance (ANOVA) were used. Of 72 patients, 19 had confirmed spondylolysis, and 53 did not. While ROC analysis showed that SPECT performed slightly better than planar imaging for all four observers, the difference was not statistically significant. ANOVA results suggest that planar imaging was significantly easier to use than SPECT and that ease of use was strongly correlated with the observer's confidence in the diagnosis

  12. Testicular radionuclide angiography and sttatic imaging: anatomy, scintigraphic interpretation, and clinical indications

    International Nuclear Information System (INIS)

    Holder, L.E.; Martire, J.R.; Holmes, E.R. III.; Wagner, H.N. Jr.

    1977-01-01

    Radionuclide testicular angiography and static imaging is an easy, rapidly performed study. Its usefulness in separating acute testicular torsion from acute epididymitis has been confirmed. Increased angiographic perfusion with definition of the testicular and deferential arteries in the spermatic cord and the pudendal artery posteriorly is equated with inflammation. Intense increased vascularity on the blood pool image is seen in abscess and acute inflammation, while cases of tumor and trauma have mild increases. Acute or missed testicular torsion, uncomplicated hydroceles, and spermatoceles show absent vascularity. On the static images, decreased activity is characteristic of the shape and location of the avascular structure. Technical factors are stressed

  13. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H.R. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide

  14. Use of radionuclide imaging in the early diagnosis and treatment of renal allograft rejection

    International Nuclear Information System (INIS)

    Mandel, S.R.; Mattern, W.D.; Staab, E.; Johnson, G. Jr.

    1975-01-01

    Data are presented on the clinical application of radionuclide imaging to evaluate changes in cadaver transplant function in the immediate postoperative period. The method uses orthoiodohippuric acid (hippuran) administered IV, with scintillation imaging, and curve analysis by a digital computer. An initial study is always obtained 24 hours after transplantation. Serial studies are then obtained, as needed, to interpret the clinical course. Selected cases are presented which illustrate the use of this protocol in various clinical settings. In the oliguric patient serial studies have been of particular value. They have identified ATN so that overenthusiastic treatment for rejection could be avoided. They have also identified acute rejection complicating ATN so that high dose steroid therapy could be administered appropriately. In the nonoliguric patient they have frequently contributed to the early diagnosis of acute rejection, and they have been useful in monitoring the effect and duration of treatment for severe rejection crisis. It is concluded that radionuclide imaging studies, when carefully applied and interpreted, are a valuable adjunct to the management of patients in this complex clinical setting

  15. Analysis of cardiac images of radionuclide ventriculography in AT-Type personal computer

    International Nuclear Information System (INIS)

    Lillo, R.; Gonzalez, P.; Ehijo, A.; Otarola, T.M.S.; Ortiz, M.; Silva, A.M.; Ortiz, M.

    1990-01-01

    The goal of this research was to produce software for the processing of Cardiac Phase images in personal computers. The results of standard radionuclide Ventriculography and Fourier analysis, got on gamma camera Ohio Nuclear 410 Sygma and Digital PDP 11/34 computer were coded into ASCII file and then transfered via Smarterm 220/Kermit to an Accel 900 AT PC. After decoding the images they were processed with a program develope in C Lenguaje obtaining the values of Phase Angles in the whole phase images and in regions of interest drawn around the cardiac chambers. The images and values were the same as those obtained by conventional processing in the PDP 11/34 computer. This is considered a first stage for the use of PC to Nuclear Medicine imaging studies. (author)

  16. Early detection of Freiberg's disease by radionuclide bone imaging

    International Nuclear Information System (INIS)

    Peng Jingjing

    1993-01-01

    56 hallux valgus deformities of 28 patients were studied with radionuclide bone imaging (RNBI). Among them, 24 feet(42.85%) revealed increased uptake of radioactivity in second or third metatarsal. The ratio of radioactivity in lesion and contralateral normal site (D/N) was increased, the difference between the patient and normal groups was significant (P<0.01). The histologic study showed that there have been degenerative changes and bone cell necrosis in increased uptake area. It was concluded that RNBI was more sensitive than X ray and can be used for the early diagnosis of Freiberg's Disease

  17. Evaluation of cardiac involvement using radionuclide myuocardial imaging in patients with Takayasu arteritis

    International Nuclear Information System (INIS)

    Yang Minfu; Guo Xinhua; He Zuoxiang; Jiang Xiongjing; Dou Kefei

    2008-01-01

    Objective: The aim of the study was to assess the value of radionuclide myocardial imaging in the evaluation of cardiac involvement in patients with Takayasu arteritis (TA). Methods: The 99 Tc m -methoxyisobutylisonitrile myocardial perlusion imaging (MIBI-MPI) and (or) 18 F-fluorodeoxyglucose (FDG) PET imaging findings in 12 TA patients [3 men and 9 women, mean age (35 ± 15) years] with coronary lesions (CL; n=8) or aortic insufficiency (AI; n=4) were retrospectively reviewed and analysed. Of the 4 AI-TA patients, 1 underwent exercise MIBI-MPI, 1 underwent pharmacologic stress MIBI-MPI and 2 un- derwent resting MIBI-MPI. Of the 8 CL-TA patients, 4 pnderwent MIBI-MPI (2 stress and 2 rest) and 4 un- derwent a dual-isotope simultaneous acquisition (DISA) SPECT protocol after injection of MIBI and FDG. Results: All 4 AI-TA patients showed left ventricular enlargement but no peffusion abnormalities. In 3 CL- TA patients with no documented infarct, MPI or DISA showed stress ischemia (n=2) or mismatched perfusion-metabolism defects (n=1). In the remaining 5 CL-TA patients with documented infarcts, 2 showed large perfusion defects on resting MIBI and 3 showed matched perfusion-metabolism defects on DISA SPECT. Conclusion: Radionuclide imaging is useful in providing a comprehensive functional evaluation for TA patients with cardiac involvement. (authors)

  18. Production cross sections of short-lived silver radionuclides from natPd(p,xn) nuclear processes

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Kim, Guinyun

    2012-01-01

    Production cross-sections of short-lived 103 Ag, 104m Ag and 104g Ag radionuclides from proton-induced reactions on natural palladium (Pd) were measured up to 41 MeV by using a stacked-foil activation technique combined with high resolution γ-ray spectrometry. The present results are compared with the available literature values as well as theoretical data calculated by the TALYS and the ALICE-IPPE computer codes. Note that production cross-sections of the 104m Ag radionuclide from nat Pd(p,xn) processes has been measured here for the first time. Physical thick target yields for the investigated radionuclides were deduced from the respective threshold energy to 41 MeV taking into account that the total energy is absorbed in the targets. Measured data of the short-lived 103 Ag radionuclide are noteworthy due to its possible applications as a precursor for the indirect production of widely used therapeutic 103 Pd radionuclide via nat Pd(p,xn) 103 Ag → 103 Pd processes. On the other hand, the investigated 104 Ag radionuclide finds importance due to its potential use as a diagnostic and positron emission tomography (PET) imaging analogue. Above all, measured data will enrich the literature database leading to various applications in science and technology.

  19. Applications of radionuclide myocardial perfusion imaging in acute coronary syndrome

    International Nuclear Information System (INIS)

    Han Pingping; Tian Yueqin

    2008-01-01

    In recent years, acute coronary syndrome(ACS) has been getting more and more attentions. Radionuclide myocardial perfusion imaging (MPI) can make a quick accurate diagnosis for patients with acute chest pain who cann't be diagnosed by conventional methods. The sensitivity and negative predictive value of MPI are relatively high. Besides, MPI can be applicated in the detection of ischemic and infarct size and degree, the risk stratification and the assessment of prognosis of the patients with ACS, and the appraisal of the effect of strategies. (authors)

  20. Assessments for high dose radionuclide therapy treatment planning

    International Nuclear Information System (INIS)

    Fisher, D.R.

    2003-01-01

    Advances in the biotechnology of cell specific targeting of cancer and the increased number of clinical trials involving treatment of cancer patients with radiolabelled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high dose radionuclide therapy procedures. Optimised radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be the lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential timepoints using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organ tissues of concern, for the whole body and sometimes for selected tumours. Patient specific factors often require that dose estimates be customised for each patient. In the United States, the Food and Drug Administration regulates the experimental use of investigational new drugs and requires 'reasonable calculation of radiation absorbed dose to the whole body and to critical organs' using the methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high dose studies shows that some are conducted with minimal dosimetry, that the marrow dose is difficult to establish and is subject to large uncertainties. Despite the general availability of software, internal dosimetry methods often seem to be inconsistent from one clinical centre to another. (author)

  1. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Costa, D.C.; Gacinovic, S.; Miller, R.F.

    1995-01-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin's B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with 201 Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma

  2. β-ray track imaging application in phytoremediation of radionuclide-contaminated soil

    International Nuclear Information System (INIS)

    Wan Junsheng; Xiao Yan; Pan Xiaobing; Tang Xiuhuan; Yang Yongqing; Wang Beisong; Zhao Xiangfeng; Li Hua; Miao Zhengqiang; Yang Jun

    2008-01-01

    The phytoremediation was widely studied in the field of treating technology of soil contamination with long-lived nuclides. Studies on the β-ray track imaging application in phytoremediation of radionuclide-contaminated soil were carried out in the present work. Experiments showed that this technology might be used for screening plants for phytoremediation and for the studies of phytoremediation mechanism, such as radioactivity concentration and distribution in plant organs. The influence of α- and γ-rays on the β-ray track imaging was studied. Theoretical studies showed that the influence of α-rays might be heavily reduced with proper thickness of PE-film. The image sensor was not so sensitive to γ-rays as β-rays, and the influence of surrounding γ-rays could be heavily reduced with a proper thickness of Pb-shielding

  3. Comparative analysis of radionuclide inhalation and perfusion lung imaging with X ray pulmonary angiography for the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Zhang Yanyan; Chen Man; Shao Maogang; Zhang Songlin; Mao Jieming; Guo Jingxuan

    1993-01-01

    The result of radionuclide lung imaging was compared in 18 patients of pulmonary embolism (PE) and 2 normal persons. The discovered perfusion defects correlated well with the location of angiographic obstruction. The positive angiographic and radionuclide finding was in 141 and 104 emboli arteries respectively. The sensitivity of total emboli pulmonary segments of lung imaging was 73.8%, the specificity was 82.7 and the accuracy was 79%. The techniques correlated quite well (r = 0.83, P<0.001)

  4. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    Science.gov (United States)

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Target imaging and backlighting diagnosis

    International Nuclear Information System (INIS)

    Yaakobi, B.; Shvarts, D.; Marshall, F.J.; Epstein, R.; Su, Q.

    1995-01-01

    The expected backlighting and self-emission images of a particular CH target to be imploded on the Omega Upgrade are calculated for a variety of experimental parameters. It is shown that to overcome the problem of target self-emission, the image has to be monochromatized with a diffracting crystal. For the target studied, the two image components are then comparable in intensity and both provide useful information on target behavior. A particularly interesting feature is the appearance in the self-emission of a circular spike which closely delineates the fuel-shell interface, but requires high spatial resolution to be observed

  6. Radionuclide therapy of endocrine-related cancer

    International Nuclear Information System (INIS)

    Kratochwil, C.; Giesel, F.L.

    2014-01-01

    This article gives an overview of the established radionuclide therapies for endocrine-related cancer that already have market authorization or are currently under evaluation in clinical trials. Radioiodine therapy is still the gold standard for differentiated iodine-avid thyroid cancer. In patients with bone and lung metastases (near) total remission is seen in approximately 50 % and the 15-year survival rate for these patients is approximately 90 %. In contrast to the USA, meta-iodobenzylguanidine (MIBG) therapy has market approval in Europe. According to the current literature, in the setting of advanced stage neuroblastoma and malignant pheochromocytoma or paraganglioma, radiological remission can be achieved in > 30 % and symptom control in almost 80 % of the treated patients. Somatostatin receptor targeted radionuclide therapies (e.g. with DOTATATE or DOTATOC) demonstrated promising results in phase 2 trials, reporting progression-free survival in the range of 24-36 months. A first phase 3 pivotal trial for intestinal carcinoids is currently recruiting and another trial for pancreatic neuroendocrine tumors is planned. Radiopharmaceuticals based on glucagon-like peptide 1 (GLP1) or minigastrins are in the early evaluation stage for application in the treatment of insulinomas and medullary thyroid cancer. In general, radiopharmaceutical therapy belongs to the group of so-called theranostics which means that therapy is tailored for individual patients based on molecular imaging diagnostics to stratify target positive or target negative tumor phenotypes. (orig.) [de

  7. Preliminary study on the establishment of the radionuclide declaration methods for radionuclides in LILW radioactive waste

    International Nuclear Information System (INIS)

    Hwang, K. H.; Lee, K. J.; Jung, C. W.

    2003-01-01

    The preliminary study on declaration methods has been done for each radionuclide in LILW radwaste drum in Korean NPPs. View from the preliminary establishment of radio nuclide declaration methods, The selection of assessment target nuclide through the qualitative method and preliminary criteria for routine declaration methods in each radio nuclide was derived. First of all, selection criteria and preliminary assessment method for each target radionuclide was surveyed and investigated. And, the selection criteria and selected the target radio nuclides from the basis on criteria was derived. And the preliminary suggestion about the declaration methods for each target radio nuclide was established

  8. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  9. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several

  10. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule

    DEFF Research Database (Denmark)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H

    2017-01-01

    -expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with (57)Co (T1/2 = 271.8 d......), (55)Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide (68)Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope (57)Co was used in animal studies. Both (57)Co-DOTA-ZEGFR:2377 and (68)Ga-DOTA......Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The (111)In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR...

  11. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Salah, F.A.; Ziada, G.; Hejazy, M.A.; Khalil, W.A.

    2008-01-01

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99m Tc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99m Tc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  12. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Lee, K. J.; Song, M. C.; Hwang, G. H.; Lee, C. M.; Yuk, D. S.; Lee, S. C.

    2004-02-01

    The contents and the scope of this study are as follows : reassessment of selection criteria and final selection of target radionuclides, establishment of detailed radionuclide evaluation methods for each target radionuclide, development of requirement and fulfillment guidelines for the assessment methods of the assay-target radionuclide inventory

  13. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Song, M. C.; Hwang, G. H.; Lee, C. M.; Yuk, D. S.; Lee, S. C. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2004-02-15

    The contents and the scope of this study are as follows : reassessment of selection criteria and final selection of target radionuclides, establishment of detailed radionuclide evaluation methods for each target radionuclide, development of requirement and fulfillment guidelines for the assessment methods of the assay-target radionuclide inventory.

  14. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99m Tc/ 123 I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99m Tc and 123 I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  15. Myocardial imaging in coronary heart disease with radionuclides, with emphasis on thallium-201

    Energy Technology Data Exchange (ETDEWEB)

    Wackers, F J.Th.; Sokole, E B; Samson, G; van der Schoot, J B; Wellens, H J.J. [Amsterdam Univ. (Netherlands). Academisch Ziekenhuis

    1976-09-01

    During the past few years there has been an increasing interest in cardiology for myocardial imaging with radionuclides. At present the experience with both negative (thallium-201) and positive (sup(99m)Tc-pyrophosphate) imaging of myocardial infarction is increasing rapidly. Since 1974, over 1100 patient studies with thallium-201 were performed. In this article a survey is presented of experience with thallium-201 in patients with acute and chronic coronary artery disease. In patients with acute myocardial infarction data from studies with sup(99m)Tc-pyrophosphate will be discussed as well.

  16. Radiography, radionuclide imaging, and asthrography in the evaluation of total hip and knee replacement. [/sup 99m/Tc-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, M.I.; Coleman, R.E.; Stevens, P.M.; Davey, B.W.

    1978-09-01

    Twenty patients with 21 total joint replacements including 17 hips and 4 knees were studied by plain film radiography, radionuclide imaging, and subtraction arthrography to evaluate these procedures for assessing prosthetic complications. Surgery was performed in 14 patients and confirmed loosening of 8 femoral and 7 acetabular hip prosthesis components and 1 femoral and 4 tibial knee prosthesis components. Plain films suggested loosening of only 9 hip components and no knee components. In contrast, radionuclide imaging and subtraction arthrography were considerably more effective in demonstrating loosening as well as other causes of the painful total joint prosthesis.

  17. The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy.

    Science.gov (United States)

    Lehenberger, Silvia; Barkhausen, Christoph; Cohrs, Susan; Fischer, Eliane; Grünberg, Jürgen; Hohn, Alexander; Köster, Ulli; Schibli, Roger; Türler, Andreas; Zhernosekov, Konstantin

    2011-08-01

    The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging. The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate. We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Methods of Increasing the Performance of Radionuclide Generators Used in Nuclear Medicine: Daughter Nuclide Build-Up Optimisation, Elution-Purification-Concentration Integration, and Effective Control of Radionuclidic Purity

    Directory of Open Access Journals (Sweden)

    Van So Le

    2014-06-01

    certainty with respect to optimising decay/measurement time and product sample activity used for QC quality control. The optimisation ensures a certainty of measurement of the specific impure radionuclide and avoids wasting the useful amount of valuable purified/concentrated daughter nuclide product. This process is important for the spectrometric measurement of very low activity of impure radionuclide contamination in the radioisotope products of much higher activity used in medical imaging and targeted radiotherapy.

  19. Flash trajectory imaging of target 3D motion

    Science.gov (United States)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  20. Experimental fracture healing: evaluation using radionuclide bone imaging: concise communication

    International Nuclear Information System (INIS)

    Gumerman, L.W.; Fogel, S.R.; Goodman, M.A.; Hanley, E.N. Jr.; Kappakas, G.S.; Rutkowski, R.; Levine, G.

    1978-01-01

    Radionuclide bone imaging was performed in a rabbit model to observe the course of fracture healing and to establish criteria for distinguishing nonunion and delayed healing from normal healing. Sequential gamma-camera images (with pinhole collimator) were collected and subjected to computer analysis. Five groups were established: (a) control--immobilization; (b) control--immobilization plus periosteal stripping; (c) simple fracture--osteotomy; (d) delayed union--osteotomy plus periosteal stripping; and (e) nonunion--osteotomy, periosteal stripping and polymethyl methacrylate interposed between fracture fragments. Histographic representation of absolute count rates along rabbit tibias followed a predictable pattern in the simple-fracture and delayed-union groups. They differed only in the time of appearance of phases. The non-union group demonstrated no recognizable sequential pattern. In this experimental model, serial bone scanning the quantitative data analysis has shown potential for indicating the course of healing in fractures and for serving as a guide to treatment

  1. Radionuclide Therapy. Chapter 19

    Energy Technology Data Exchange (ETDEWEB)

    Flux, G.; Du, Yong [Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom)

    2014-12-15

    Cancer has been treated with radiopharmaceuticals since the 1940s. The radionuclides originally used, including 131I and 32P, are still in use. The role of the physicist in radionuclide therapy encompasses radiation protection, imaging and dosimetry. Radiation protection is of particular importance given the high activities of the unsealed sources that are often administered, and must take into account medical staff, comforters and carers, and, as patients are discharged while still retaining activity, members of the public. Regulations concerning acceptable levels of exposure vary from country to country. If the administered radiopharmaceutical is a γ emitter, then imaging can be performed which may be either qualitative or quantitative. While a regular system of quality control must be in place to prevent misinterpretation of image data, qualitative imaging does not usually rely on the image corrections necessary to determine the absolute levels of activity that are localized in the patient. Accurate quantitative imaging is dependent on these corrections and can permit the distribution of absorbed doses delivered to the patient to be determined with sufficient accuracy to be clinically beneficial.

  2. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  3. Role of radionuclide imaging in the diagnosis of acute osteomyelitis

    International Nuclear Information System (INIS)

    Demopulos, G.A.; Bleck, E.E.; McDougall, I.R.

    1988-01-01

    Over the last decade, the role of nuclear medicine studies in the diagnosis of acute osteomyelitis has been discussed in depth in the literature. Yet, the respective roles played in this setting by each of the commonly used radionuclide studies often are confusing. In an attempt to develop a cogent diagnostic strategy, we reviewed the literature published within the last 12 years pertaining to the use of radiophosphate bone scintigraphy as well as gallium and indium WBC imaging in the diagnosis of this condition. Based on our findings, we propose an alternative approach to the evaluation of a patient with suspected acute osteomyelitis. 63 references

  4. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  5. Proceedings of Soil Decon '93: Technology targeting radionuclides and heavy metals

    International Nuclear Information System (INIS)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document

  6. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  7. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy.

    Science.gov (United States)

    Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad

    2016-06-01

    We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p targeting SSR positive tumors for enhanced cytoxicity and reduced renal radiation dose associated with conventional PRRT. To our knowledge of literature, this is the first study to establish in vitro and in vivo efficacy profile of nanoparticles in PRRT providing a stepping-stone for undergoing and future research

  8. External tandem target system for efficient production of short-lived positron emitting radionuclides

    International Nuclear Information System (INIS)

    Koh, K.; Dwyer, J.; Finn, R.; Sheh, Y.; Sinnreich, J.; Wooten, T.

    1983-01-01

    Recent developments in radiopharmaceutical chemistry allow the incorporation of short-lived, positron-emitting radionuclides into a variety of compounds which when used with a positron emission tomograph provide a means of monitoring physiological disorders by a standard technique. To effectively meet the increased ''in-house'' clinical demands while maintaining a production schedule, a tandem target was designed and has been installed for the simultaneous ''on-line'' preparation of oxygen-15 labelled compounds such as CO 2 15 , H 2 O 15 ; and nitrogen-13 labelled compounds such as 13 NH 3 , 13 N 2 O, and 13 N 2 . The processing time required for the synthesis of the nitrogen-13 products as compared to the essentially instantaneous formation of oxygen-15 labelled compounds has provided the necessary time delay for clinical utilization. The characterisitcs of this external tandem target system as well as the automation for the dual processing are presented

  9. Radionuclide examinations

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1989-01-01

    This paper reports on radionuclide examinations of the pancreas. The pancreas, situated retroperitonally high in the epigastrium, was a particularly difficult organ to image noninvasively before ultrasonography and computed tomography (CT) became available. Indeed the organ still remains difficult to examine in some patients, a fact reflected in the variety of methods available to evaluate pancreatic morphology. It is something of a paradox that the pancreas is metabolically active and physiologically important but that its examination by radionuclide methods has virtually ceased to have any role in day-to-day clinical practice. To some extent this is caused by the tendency of the pancreas's commonest gross diseases emdash carcinoma and pancreatitis, for example emdash to result in nonfunction of the entire organ. Disorders of pancreatic endocrine function have generally not required imaging methods for diagnosis, although an understanding of diabetes mellitus and its nosology has been advanced by radioimmunoassay of plasma insulin concentrations

  10. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  11. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1981-01-01

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma

  12. Evaluation of radioiodinated vesamicol analogs for sigma receptor imaging in tumor and radionuclide receptor therapy.

    Science.gov (United States)

    Ogawa, Kazuma; Shiba, Kazuhiro; Akhter, Nasima; Yoshimoto, Mitsuyoshi; Washiyama, Kohshin; Kinuya, Seigo; Kawai, Keiichi; Mori, Hirofumi

    2009-11-01

    It has been reported that sigma receptors are highly expressed in a variety of human tumors. In this study, we selected (+)-2-[4-(4-iodophenyl)piperidino] cyclohexanol [(+)-pIV] as a sigma receptor ligand and evaluated the potential of radioiodinated (+)-pIV for tumor imaging and therapy. (+)-[(125/131)I]pIV was prepared by an iododestannylation reaction under no-carrier-added conditions with radiochemical purity over 99% after HPLC purification. Biodistribution experiments were performed by the intravenous injection of (+)-[(125)I]pIV into mice bearing human prostate tumors (DU-145). Blocking studies were performed by intravenous injection of (+)-[(125)I]pIV mixed with an excess amount of unlabeled sigma ligand into DU-145 tumor-bearing mice. For therapeutic study, (+)-[(131)I]pIV was injected at a dose of 7.4 MBq followed by measurement of the tumor size. In biodistribution experiments, (+)-[(125)I]pIV showed high uptake and long residence in the tumor. High tumor to blood and muscle ratios were achieved because the radioactivity levels of blood and muscle were low. However, the accumulations of radioactivity in non-target tissues, such as liver and kidney, were high. The radioactivity in the non-target tissues slowly decreased over time. Co-injection of (+)-[(125)I]pIV with an excess amount of unlabeled sigma ligand resulted in a significant decrease in the tumor/blood ratio, indicating sigma receptor-mediated tumor uptake. In therapeutic study, tumor growth in mice treated with (+)-[(131)I]pIV was significantly inhibited compared to that of an untreated group. These results indicate that radioiodinated (+)-pIV has a high potential for sigma receptor imaging in tumor and radionuclide receptor therapy.

  13. Dental diseases and radionuclide imaging of the jaws.

    Science.gov (United States)

    Arias, Jose A; Pardo, Carlos; Olmos, Antonio; Cuadrado, Maria L; Ruibal, Alvaro

    2004-03-01

    The aim of this study was to compare the results of radionuclide bone scans of the jaws with data obtained at the nuclear medicine department from a brief and feasible dental history, taking special account of cases with a positive scan and no recent dental events. Ninety-eight patients undergoing radionuclide bone scan as part of their diagnosis in non-dental, oncological and non-oncological diseases were imaged with 99mTc-labelled oxidronate. Superior and inferior halves of the mandible and maxilla (392 quadrants) were regarded as normal or having an abnormally high uptake. A recent (1 year) dental history was also obtained through a brief questionnaire and data were referred to each quadrant of the jaws. The association between the bone scan and dental disease was assessed by means of the chi-squared test. The overall results of scintigraphy and history coincided in 66 patients (46 with abnormal and 20 with normal findings; P = 0.002). Twenty-five patients had a positive scintigram without any known dental disorder. Results of scintigraphy and history coincided in 254 quadrants (78 with abnormal and 176 with normal findings; P < 0.001). Eighty-three quadrants had hot spots in the scintigram without any known dental lesion. It can be concluded that abnormal jaw scintigrams are frequent in patients without known dental disease, and this may indicate silent osteoblastic activity. These observations should be reported to the dentist for several reasons. First, they may reveal asymptomatic dental lesions. Second, the use of oral prostheses and implants is increasing and they require the support of healthy alveolar bone.

  14. Fluorescent imaging of cancerous tissues for targeted surgery

    Science.gov (United States)

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  15. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  16. Tumour therapy with radionuclides: assessment of progress and problems

    International Nuclear Information System (INIS)

    Carlsson, Joergen; Forssell Aronsson, Eva; Hietala, Sven-Ola; Stigbrand, Torgny; Tennvall, Jan

    2003-01-01

    Radionuclide therapy is a promising modality for treatment of tumours of haematopoietic origin while the success for treatment of solid tumours so far has been limited. The authors consider radionuclide therapy mainly as a method to eradicate disseminated tumour cells and small metastases while bulky tumours and large metastases have to be treated surgically or by external radiation therapy. The promising therapeutic results for haematological tumours give hope that radionuclide therapy will have a breakthrough also for treatment of disseminated cells from solid tumours. New knowledge related to this is continuously emerging since new molecular target structures are being characterised and the knowledge on pharmacokinetics and cellular processing of different types of targeting agents increases. There is also improved understanding of the factors of importance for the choice of appropriate radionuclides with respect to their decay properties and the therapeutic applications. Furthermore, new methods to modify the uptake of radionuclides in tumour cells and normal tissues are emerging. However, we still need improvements regarding dosimetry and treatment planning as well as an increased knowledge about the tolerance doses for normal tissues and the radiobiological effects on tumour cells. This is especially important in targeted radionuclide therapy where the dose rates often are lower than 1 Gy/h

  17. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Pillai, Maroor Raghavan Ambikalmajan; Nanabala, Raviteja; Joy, Ajith; Sasikumar, Arun; Knapp, Furn F.

    2016-01-01

    Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-L-aspartyl-L-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68 Ga and 177 Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68 Ga for PET-CT imaging and 177 Lu for therapy. In particular, because of availability from the long-lived 68 Ge (T 1/2 = 270 days)/ 68 Ga (T 1/2 = 68 min) generator system and increasing availability of PET-CT, the 68 Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.

  18. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    Science.gov (United States)

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  19. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  20. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using {sup 125}I, an Auger electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Gardette, M.; Papon, J.; Bonnet, M.; Labarre, P.; Miot-Noirault, E.; Madelmont, J. C.; Chezal, J. M.; Moins, N. [UMR 990, INSERM, Universite d' Auvergne, Clermont-Ferrand (France); Desbois, N. [EA 3660, Universite de Bourgogne, Dijon (France); Wu, T. D.; Guerquin-Kern, J. L. [U 759 INSERM, Institute Curie, Orsay (France)

    2013-06-01

    The full text of the publication follows. The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodo-benzamides or analogs are known to possess specific affinity for melanoma tissue. New hetero-aromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using {sup 125}I, Auger electrons emitter which gives high-energetic localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with {sup 125}I, the two compounds induced in vitro a significant radiotoxicity on B16F0 melanoma cells. The acridine compound, ICF01040, appeared more radio toxic than the acridone compound, ICF01035. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with ICF01035, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. Nevertheless, an important radiotoxicity was measured for the two compounds while the nuclear accumulation was low. Indeed, even if nuclear localization remains the main target sensitive to Auger electrons, the cell membrane remains sensitive to {sup 125}I decays. So, these compounds may induce secondary toxic effects of irradiation, such as membrane lipid damage. Conducted to current experiments are evaluate such hypothesis. Taken together, these results suggest that ICF01040 is a better candidate for application in targeted radionuclide therapy using {sup 125}I. The next step will be in vivo evaluation, where high tumoral vectorization gives

  1. Production and dosimetric aspects of the potent Auger emitter Co-58m for targeted radionuclide therapy of small tumours

    DEFF Research Database (Denmark)

    Thisgaard, Helge; Elema, Dennis Ringkjøbing; Jensen, Mikael

    2011-01-01

    Based on theoretical calculations, the Auger emitter 58mCo has been identified as a potent nuclide for targeted radionuclide therapy of small tumors. During the production of this isotope, the coproduction of the long-lived ground state 58gCo is unfortunately unavoidable, as is ingrowth of the gr...

  2. Local experience on radionuclide myocardial imaging in the Philippines at the Philippine Heart Center for Asia

    International Nuclear Information System (INIS)

    Villacorta, E.V.

    1977-01-01

    The Nuclear Medicine Department of the Philippine Heart Center has introduced the detection of coronary heart disease through myocardiac perfusion imaging. The cardiovascular procedures are availed of free-of-charge to registered PHCA patients excepting for the costly TI-201 imaging. In summary, coronary perfusion in imaging should be an integral part of coronary arteriography. Barring the expensive cost of TI-120, myocardial perfusion imaging is ideal for detection of coronary heart disease. Experience shows better sensitivity of TI-201 than exercise ECG for detection of ischemia. Another non-invasive procedure for the detection of acute infarction is the radionuclide imaging using a bone radiopharmaceutical Tc99m prophosphate. In conclusion, acute infarct imaging is a valuable adjunct to ECG and enzyme studies. (RTD)

  3. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    Science.gov (United States)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  4. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  5. Radionuclide dynamic renal imaging for renal function study in patients with NIDDM

    International Nuclear Information System (INIS)

    Yang Ruiping; Qu Wanying; Gao Wenping

    1996-01-01

    Radionuclide dynamic renal imaging was performed to gain evidence for further treatment and evaluation of prognosis in patients with non-insulin-dependent diabetes mellitus (NIDDM). 99m Tc-DTPA dynamic renal imaging was performed in 137 NIDDM patients and 44 normal controls (NC). Glomerular filtration rate (GFR) and renogram were acquired simultaneously. Renal tubular secretion function was measured with 99m Tc-EC in 126 of the 137 diabetics and 17 NC. GFR decreased in all patients with different duration of NIDDM and the difference was remarkably significance in comparison with NC (t = 7.17∼13.73, P 99m Tc-EC. This study showed that the function of glomerular filtration and tubular secretion were both damaged in all diabetics. Their magnitude was aggravated with the prolongation of the course of disease

  6. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  7. Study of solid target preparation for developing I-124, Pd-103, Cu-64 radioisotopes based cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hong; Park, Hyun; Lee, Ji Sub; Lee, Dong Hoon; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Choi, Hee Dong [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    The decay characteristics of I-124, Pd-103 and Cu-64 radioisotopes produced by cyclotron have considered useful agents for diagnostic imaging or therapy. Numbers of radioisotopes used in medical applications or promised for development are produced with solid targets. The aims of developing solid targets are to obtain large quantities of radionuclides from accelerators. The scope of the study is to develop optimized target system and chemical procedures of these radioisotopes. In order to increase the availability of the radionuclides, the investigation for the design of the solid target and different procedures yielding efficient production of high specific activity will be carrying. In this work, we will present the issue of the primary target design concept.

  8. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  9. Targeted radionuclide therapy with RAFT-RGD radiolabelled with (90)Y or (177)Lu in a mouse model of αvβ3-expressing tumours.

    Science.gov (United States)

    Bozon-Petitprin, A; Bacot, S; Gauchez, A S; Ahmadi, M; Bourre, J C; Marti-Batlle, D; Perret, P; Broisat, A; Riou, L M; Claron, M; Boturyn, D; Fagret, D; Ghezzi, Catherine; Vuillez, J P

    2015-02-01

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β(-) emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD and (90)Y-RAFT-RAD or (177)Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of (90)Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of (177)Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of (90)Y-RAFT-RAD or 37 MBq of (177)Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of (90)Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. (90)Y-RAFT-RGD and (177)Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy.

  10. Production of 177Lu for targeted radionuclide therapy: Available options

    International Nuclear Information System (INIS)

    Dah, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. Jr.

    2015-01-01

    This review provides a comprehensive summary of the production of 177 Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177 Lu having the required quality for preparation of a variety of 177 Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177 Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177 Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with 177 Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177 Lu-labeled radiopharmaceuticals, but also help future developments

  11. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    Science.gov (United States)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  12. Choice of radionuclide for antibody labelling: new perspectives

    International Nuclear Information System (INIS)

    Hazra, D.K.; Dass, S.

    1983-01-01

    The expanding horizons of labelled antibody techniques in diagnostic imaging or assay, therapy and research and the availabilities of monoclonal antibodies is resulting in a demand for suitable radionuclides as antibody labels. An outline is given of the different criteria for choosing an appropriate radionuclide for labelling an antibody depending on its particular field of use. The requirements of procedures for firmly linking radionuclides to antibodies are also given. (U.K.)

  13. Co-targeting androgen receptor and DNA for imaging and molecular radiotherapy of prostate cancer: in vitro studies.

    Science.gov (United States)

    Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina

    2014-12-01

    The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.

  14. Radionuclide imaging of bone marrow in hematologic systemic disease

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, F.; Hahn, K.; Gamm, H.

    1987-02-01

    Radionuclide imaging studies of the bone marrow were carried out in 164 patients suffering from hematologic systemic disease. One third of 90 patients with Hodgkin lymphoma (HL) or Non Hodgkin lymphoma (NHL) displayed a pathological distribution pattern representing bone marrow expansion. In HL there were 17% accumulation defects caused by metastases in contrast to only 7% in NHL. Among 30 patients with chronic myelocytic leukemia bone marrow expansion was found in 60%, bone marrow displacement and aplasia 10%. Focal bone marrow defects were found in 3 patients. All patients with primary polycythemia rubra vera displayed a pathologic bone marrow distribution pattern as well as splenomegaly. All patients with acute myelocytic leukemia (AML) and one patient with an acute lymphatic leukemia (ALL) had a pathological distribution pattern with bone marrow expansion and displacement. Focal bone marrow defects were not seen. Multiple myeloma with bone marrow expansion was found in 6 of 12 patients and focal accumulation defects were found in 40%, the latter lesions being not visible or equivocal on skeletal imaging studies. Pathological changes in liver and spleen were found in a high percentage of the total collective. The results document the important clinical value of bone marrow scintigraphy among the hematologic diseases studied.

  15. A Monte Carlo study on {sup 223}Ra imaging for unsealed radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Miwa, Kenta; Sasaki, Masayuki [Faculty of Medical Sciences, Department of Health Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-06-15

    Purpose: Radium-223 ({sup 223}Ra), an α-emitting radionuclide, is used in unsealed radionuclide therapy for metastatic bone tumors. The demand for qualitative {sup 223}Ra imaging is growing to optimize dosimetry. The authors simulated {sup 223}Ra imaging using an in-house Monte Carlo simulation code and investigated the feasibility and utility of {sup 223}Ra imaging. Methods: The Monte Carlo code comprises two modules, HEXAGON and NAI. The HEXAGON code simulates the photon and electron interactions in the tissues and collimator, and the NAI code simulates the response of the NaI detector system. A 3D numeric phantom created using computed tomography images of a chest phantom was installed in the HEXAGON code. {sup 223}Ra accumulated in a part of the spine, and three x-rays and 19 γ rays between 80 and 450 keV were selected as the emitted photons. To evaluate the quality of the {sup 223}Ra imaging, the authors also simulated technetium-99m ({sup 99m}Tc) imaging under the same conditions and compared the results. Results: The sensitivities of the three photopeaks were 147 counts per unit of source activity (cps MBq{sup −1}; photopeak: 84 keV, full width of energy window: 20%), 166 cps MBq{sup −1} (154 keV, 15%), and 158 cps MBq{sup −1} (270 keV, 10%) for a low-energy general-purpose (LEGP) collimator, and those for the medium-energy general-purpose (MEGP) collimator were 33, 13, and 8.0 cps MBq{sup −1}, respectively. In the case of {sup 99m}Tc, the sensitivity was 55 cps MBq{sup −1} (141 keV, 20%) for LEGP and 52 cps MBq{sup −1} for MEGP. The fractions of unscattered photons of the total photons reflecting the image quality were 0.09 (84 keV), 0.03 (154 keV), and 0.02 (270 keV) for the LEGP collimator and 0.41, 0.25, and 0.50 for the MEGP collimator, respectively. Conversely, this fraction was approximately 0.65 for the simulated {sup 99m}Tc imaging. The sensitivity with the LEGP collimator appeared very high. However, almost all of the counts were

  16. The evaluation of gastroesophageal reflux in children with chronic respiratory diseases by radionuclide gastroesophageal imaging

    International Nuclear Information System (INIS)

    Zhao Ruifang; Zeng Jihua; Shi Yumin

    1999-01-01

    Objective: To evaluate the gastroesophageal reflux (GER) in children with chronic respiratory diseases (CRD) by radionuclide gastroesophageal imaging and to investigate the therapeutic effect of Cisapride. Methods: 45 patients were studied with 99 Tc m -DTPA gastroesophageal imaging, and compared the results with those obtained from 8 normal children. The repeated imagings were performed on some of the cases at the end of a three months' Cisapride therapy. Results: 25 (55%) among 45 patients were diagnosed as GER by imaging, while none of 8 normal children. 10 cases with GER received Cisapride therapy for 3 months. At the end of the treatment, the second imaging revealed that GER completely disappeared in 7 of them, and clinical follow-up showed marked improvement of CRD symptoms. Conclusions: The incidence of GER among with CRD children is rather great. Cisapride therapy not only remarkably relieve reflux, but also improve the symptoms of CRD

  17. Biologic considerations in anatomic imaging with radionuclides. Final progress report, July 1974--June 1975

    International Nuclear Information System (INIS)

    Potchen, E.J.

    1975-01-01

    An important task relating to anatomic imaging with radionuclides is the determination of factors which effect the use of imaging procedures. This is important to reduce radiation exposure in the population, to improve the efficacy of diagnostic imaging procedures and finally to provide a basis for evaluating the potential effects of proposed regulation of use rates. In this report we describe a methodology for obtaining clinical data relating to the use of the brain scan in an inner city teaching hospital. The development of a questionnaire suitable for use in a clinical setting and providing both prospective and retrospective data is presented. The results of the use of the questionnaire at the Johns Hopkins Hospital during a three month period in 1974 are shown and discussed. Some preliminary results from these data are given and a method for further analysis is indicated

  18. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    Science.gov (United States)

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  19. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  20. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  1. Radionuclide generators for biomedical applications

    International Nuclear Information System (INIS)

    Finn, R.D.; Molinski, V.J.; Hupf, H.B.; Kramer, H.

    1983-10-01

    This document reviews the chemical literature of those radionuclide generators that have gained or appear to possess utility in medical imaging. The text represents a conscientious effort to peruse the scientific literature through 1980. The intent of this work is to provide a reference point for the investigator who is interested in the development of a particular generator system and the refinements which have been reported. Moreover, the incorporation of the particular daughter radionuclide into a suitable radiodiagnostic agent is presented

  2. Radionuclide cisternographic findings in patients with spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Jung, Dong Jin; Kim, Jae Seung; Ryu, Jin Sook; Shin, Jung Woo; Im, Joo Hyuk; Lee, Myoung Chong; Jung, Sung Joo; Moon, Dae Hyuk; Lee, Hee Kyung

    1998-01-01

    Radionuclide cisternography may be helpful in understanding pathophysiology of postural headache and low CSF pressure in patients with spontaneous intracranial hypotension. The purpose of this study was to characterize radionuclide cisternogrpahic findings of spontaneous intracranial hypotension. The study population consists of 15 patients with spontaneous intracranial hypotension. Diagnosis was based on their clinical symptoms and results of lumbar puncture. All patients underwent radionuclide cisternography following injection of 111 to 222 MBq of Tc-99m DTPA into the lumbar subarachnoid space. Sequential images were obtained between 1/2 hour and 24 hour after the injection of Tc-99m DTPA. Radioactivity of the bladder, soft tissue uptake, migration of radionuclide in the subarachnoid space, and extradural leakage of radionuclide were evaluated according to the scan time. Radionuclide cisternogram showed delayed migration of radionuclide into the cerebral convexity (14/15), increased soft tissue uptake (11/15), and early visualization of bladder activity at 30 min (6/10) and 2 hr (13/13). Cisternography also demonstrated leakage site of CSF in 4 cases and 2 of these were depicted at 30min. Epidural blood patch was done in 11 patients and headache was improved in all cases. The characteristics findings of spontaneous intracranial hypotension were delayed migration of radionuclide and early visualization of the soft tissue and bladder activity. These scintigraphic findings suggest that CSF leakage rather than increased CSF absorption or decreased production may be the main pathophysiology of spontaneous intracranial hypotension. Early and multiple imaging including the bladder and soft tissue is required to observe the entire dynamics of radionuclide migration

  3. External accumulation of radionuclide in hepatic hydrothorax

    International Nuclear Information System (INIS)

    Albin, R.J.; Johnston, G.S.

    1989-01-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax

  4. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  5. Present status and problems of radionuclide studies in emergency cases

    International Nuclear Information System (INIS)

    Ogawa, Kiyoshi

    1983-01-01

    Scintigraphy is just right for diagnosing emergency cases due to its noninvasive and simple method, but emergency radionuclide studies have not become practical as a result of difficulty problems. Recently, nuclear medical devices have become easier to use in operations. It is become of this, that I have submitted this report regarding the problems of radionuclide studies in emergency cases. There were 101 cases (1.4 %) out of 7,310 cases for the year period Sept. 1981 - Aug. 1982. The studies consisted of 12 brain imaging cases, 9 plumonary imaging cases, 22 cardiac study cases (cardio-angiography cases 8, 99m-Tc-PYP myocardium imaging cases 12, 201-Tl myocardium imaging cases 2), 12 renal study cases, 11 G.I. blood loss cases, 35 peripheral angiography cases. In the near future, we will have to be ready to perform emergency radionuclide studies if the need arises. (author)

  6. Nanocarriers for nuclear imaging and radiotherapy of cancer.

    Science.gov (United States)

    Mitra, Amitava; Nan, Anjan; Line, Bruce R; Ghandehari, Hamidreza

    2006-01-01

    Several nanoscale carriers (nanoparticles, liposomes, water-soluble polymers, micelles and dendrimers) have been developed for targeted delivery of cancer diagnostic and therapeutic agents. These carriers can selectively target cancer sites and carry large payloads, thereby improving cancer detection and therapy effectiveness. Further, the combination of newer nuclear imaging techniques providing high sensitivity and spatial resolution such as dual modality imaging with positron emission tomography/computed tomography (PET/CT) and use of nanoscale devices to carry diagnostic and therapeutic radionuclides with high target specificity can enable more accurate detection, staging and therapy planning of cancer. The successful clinical applications of radiolabeled monoclonal antibodies for cancer detection and therapy bode well for the future of nanoscale carrier systems in clinical oncology. Several radiolabeled multifunctional nanocarriers have been effective in detecting and treating cancer in animal models. Nonetheless, further preclinical, clinical and long-term toxicity studies will be required to translate this technology to the care of patients with cancer. The objective of this review is to present a brief but comprehensive overview of the various nuclear imaging techniques and the use of nanocarriers to deliver radionuclides for the diagnosis and therapy of cancer.

  7. Targeted radionuclide therapy with RAFT-RGD radiolabelled with {sup 90}Y or {sup 177}Lu in a mouse model of αvβ3-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bozon-Petitprin, A.; Bacot, S.; Ahmadi, M.; Marti-Batlle, D.; Perret, P.; Broisat, A.; Riou, L.M. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); Gauchez, A.S.; Bourre, J.C.; Fagret, D.; Vuillez, J.P. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); CHRU Grenoble, Hopital Michallon, Service de Medecine Nucleaire, Grenoble (France); Claron, M.; Boturyn, D. [CNRS, UMR 5250, Departement de Chimie Moleculaire, Grenoble (France); Ghezzi, Catherine [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); INSERM U1039, Radiopharmaceutiques biocliniques, Batiment Jean Roget, Domaine de la Merci, Faculte de Medecine, La Tronche (France)

    2014-08-28

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK]){sub 4} (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β{sup -} emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD and {sup 90}Y-RAFT-RAD or {sup 177}Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of {sup 90}Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of {sup 177}Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of {sup 90}Y-RAFT-RAD or 37 MBq of {sup 177}Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of {sup 90}Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. {sup 90}Y-RAFT-RGD and {sup 177}Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy. (orig.)

  8. Bromine-77-labeled estrogen receptor-binding radiopharmaceuticals for breast tumor imaging

    International Nuclear Information System (INIS)

    McElvany, K.D.

    1985-01-01

    Two derivatives of 16α-bromoestradiol, both with and without an 11β-methoxy substituent, have been labeled with bromine-77 and evaluated as potential breast tumor imaging agents. Extensive characterization of these radiotracers in animal models has demonstrated their effective concentration in estrogen target tissues. Preliminary clinical studies have demonstrated the potential of radiolabeled estrogens for breast tumor imaging; however, the suboptimal decay properties of bromine-77 limit the utility of these agents in imaging studies. These results with 77 -Br-labeled estrogens suggest that estrogen derivatives labeled with other radionuclides should provide enhanced image resolution with various imaging devices. Although the decay characteristics of bromine-77 are such that it is not ideally suited to imaging with conventional gamma cameras, it may be a useful radionuclide for therapeutic applications

  9. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy?

    International Nuclear Information System (INIS)

    Guerard, F.; Barbet, J.; Cherel, M.; Chatal, J.-F.; Haddad, F.; Kraeber-Bodere, F.

    2015-01-01

    Beta-emitting radionuclides are not able to kill isolated tumor cells disseminated in the body, even if a high density of radiolabeled molecules can be targeted at the surface of these cells because the vast majority of emitted electrons deliver their energy outside the targeted cells. Alpha-particle emitting radionuclides may overcome this limitation. It is thus of primary importance to test and validate the radionuclide of choice, the most appropriate carrier molecule and the most promising clinical indication. Four α-particle emitting radionuclides have been or are clinically tested in phase I studies namely 213 Bi, 225 Ac, 212 Pb and 211 At. Clinical safety has been documented and encouraging efficacy has been shown for some of them ( 213 Bi and 211 At). 211 At has been the most studied and could be the most promising radionuclide but 225 Ac and 212 Pb are also of potential great interest. Any carrier molecule that has been labeled with β-emitting radionuclides could be labeled with alpha particle-emitting radionuclide using, for some of them, the same chelating agents. However, the physical half-life of the radionuclide should match the biological half-life of the radioconjugate or its catabolites. Finally everybody agrees, based on the quite short range of alpha particles, on the fact that the clinical indications for alpha-immunotherapy should be limited to the situation of disseminated minimal residual diseases made of small clusters of malignant cells or isolated tumor cells.

  10. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    Science.gov (United States)

    Jin, Zhao-Hui; Furukawa, Takako; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Yamasaki, Tomoteru; Kawamura, Kazunori; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2016-09-01

    The transmembrane cell adhesion receptor αVβ3 integrin (αVβ3) has been identified as an important molecular target for cancer imaging and therapy. We have developed a tetrameric cyclic RGD (Arg-Gly-Asp) peptide-based radiotracer (64)Cu-cyclam-RAFT-c(-RGDfK-)4, which successfully captured αVβ3-positive tumors and angiogenesis by PET. Here, we subsequently evaluated its therapeutic potential and side effects using an established αVβ3-positive tumor mouse model. Mice with subcutaneous U87MG glioblastoma xenografts received single administrations of 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 (37 MBq/nmol), peptide control, or vehicle solution and underwent tumor growth evaluation. Side effects were assessed in tumor-bearing and tumor-free mice in terms of body weight, routine hematology, and hepatorenal functions. Biodistribution of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 with ascending peptide doses (0.25-10 nmol) and with the therapeutic dose of 2 nmol were determined at 3 hours and at various time points (2 minutes-24 hours) postinjection, respectively, based on which radiation-absorbed doses were estimated. The results revealed that (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently slowed down the tumor growth. The mean tumor doses were 1.28 and 1.81 Gy from 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, respectively. Peptide dose study showed that the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently decreased at doses ≥1 nmol, indicating a saturation of αVβ3 with the administered therapeutic doses (1 and 2 nmol). Combined analysis of the data from tumor-bearing and tumor-free mice revealed no significant toxicity caused by 37-74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 Our study demonstrates the therapeutic efficacy and safety of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 for αVβ3-targeted radionuclide therapy. (64)Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising theranostic drug for cancer imaging and therapy. Mol Cancer Ther; 15(9); 2076-85. ©2016 AACR

  11. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  12. Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy

    International Nuclear Information System (INIS)

    Chérel, Michel; Barbet, Jacques

    2013-01-01

    Today, cancer treatments mainly rely on surgery or external beam radiation to remove or destroy bulky tumors. Chemotherapy is given when tumours cannot be removed or when dissemination is suspected. However, these approaches cannot permanently treat all cancers and relapse occurs in up to 50% of the patients’ population. Radioimmunotherapy (RIT) and peptide receptor radionuclide therapy (PRRT) are effective against some disseminated and metastatic diseases, although they are rarely curative. Most preclinical and clinical developments in this field have involved electron-emitting radionuclides, particularly iodine-131, yttrium-90 and lutetium-177. The large range of the electrons emitted by these radionuclides reduces their efficacy against very small tumour cell clusters or isolated tumour cells present in residual disease and in many haematological tumours (leukaemia, myeloma). The range of alpha particles in biological tissues is very short, less than 0.1 mm, which makes alpha emitters theoretically ideal for treatment of such isolated tumour cells or micro-clusters of malignant cells. Thus, over the last decade, a growing interest for the use of alpha-emitting radionuclides has emerged. Research on targeted alpha therapy (TAT) began years ago in Nantes through cooperation between Subatech, a nuclear physics laboratory, CRCNA, a cancer research centre with a nuclear oncology team and ITU (Karlsruhe, Germany). CD138 was demonstrated as a potential target antigen for Multiple Myeloma, which is a target of huge clinical interest particularly suited for TAT because of the disseminated nature of the disease consisting primarily of isolated cells and small clusters of tumour cells mainly localized in the bone marrow. Thus anti-CD138 antibodies were labelled with bismuth-213 from actinium-225/bismuth-213 generators provided by ITU and used to target multiple myeloma cells. In vitro studies showed cell cycle arrest, synergism with chemotherapy and very little induction

  13. Intravenous streptokinase therapy in acute myocardial infarction: Assessment of therapy effects by quantitative 201Tl myocardial imaging (including SPECT) and radionuclide ventriculography

    International Nuclear Information System (INIS)

    Koehn, H.; Bialonczyk, C.; Mostbeck, A.; Frohner, K.; Unger, G.; Steinbach, K.

    1984-01-01

    To evaluate a potential beneficial effect of systemic streptokinase therapy in acute myocardial infarction, 36 patients treated with streptokinase intravenously were assessed by radionuclide ventriculography and quantitative 201 Tl myocardial imaging (including SPECT) in comparison with 18 conventionally treated patients. Patients after thrombolysis had significantly higher EF, PFR, and PER as well as fewer wall motion abnormalities compared with controls. These differences were also observed in the subset of patients with anterior wall infarction (AMI), but not in patients with inferior wall infarction (IMI). Quantitative 201 Tl imaging demonstrated significantly smaller percent myocardial defects and fewer pathological stress segments in patients with thrombolysis compared with controls. The same differences were also found in both AMI and IMI patients. Our data suggest a favorable effect of intravenous streptokinase on recovery of left ventricular function and myocardial salvage. Radionuclide ventriculography and quantitative 201 Tl myocardial imaging seem to be reliable tools for objective assessment of therapy effects. (orig.)

  14. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy

    International Nuclear Information System (INIS)

    Millar, W.T.; Glasgow Univ.

    1991-01-01

    The LQ model has now been extended to include a general time varying dose rate profile, and the equations can be readily evaluated if an exponential radiation damage repair process is assumed. These equations are applicable to radionuclide directed therapy, including brachytherapy. Kinetic uptake data obtained during radionuclide directed therapy may therefore be used to determine the radiobiological dosimetry of the target and non-target tissues. Also, preliminary tracer studies may be used to pre-plan the radionuclide directed therapy, provided that tracer and therapeutic amounts of the radionuclide carrier are identically processed by the tissues. It is also shown that continuous radionuclide therapy will induce less damage in late-responding tissues than 2 Gy/fraction external beam therapy if the ratio of the maximum dose rate and the sublethal damage repair half-life in the tissue is less than 1.0 Gy. Similar inequalities may be derived for β-particle radionuclide directed therapy. (author)

  15. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  16. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  17. Radionuclide studies for malignant hepatic and splenic disease

    International Nuclear Information System (INIS)

    Drum, D.E.; Royal, H.D.

    1986-01-01

    For many years radionuclide studies have afforded an invaluable aid to clinicians for the detection and management of malignant tumors of the liver. Alternative methods for producing images of the liver are now available to the radiologist, and each technique has exhibited a variety of useful and limiting features. In an effort to clarify and guide choices about applications of all radiological techniques, our department recently developed a monograph describing algorithms for optimal use of all imaging modalities by referring physicians. The approach to detection of hepatic metastases illustrates in a correlative way applications of radioisotope imaging in such patients. As presented, the algorithm is neither identical to nor unlike those recommended or published elsewhere. This chapter reviews the major applications of radionuclide imaging for metastatic cancer of liver with close attention to the clinician's point of view

  18. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    Science.gov (United States)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  19. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  20. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  1. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  2. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  3. Estimates of internal dose equivalent to 22 target organs for radionuclides occurring in routine releases from nuclear fuel-cycle facilities. Vol. 1

    International Nuclear Information System (INIS)

    Killough, G.G.; Dunning, D.E. Jr.; Bernard, S.R.; Pleasant, J.C.

    1978-01-01

    This report is the first of a two-volume tabulation of internal radiation dose conversion factors for man for radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. This volume treats 68 radionuclides, all of mass number less than 150. Intake by inhalation and ingestion is considered. In the former case, the ICRP Task Group Lung Model has been used to simulate the behavior of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 μm are given. The GI tract has been represented by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in other organs was characterized by linear combinations of decaying exponential functions. Dose equivalent per microcurie intake of each parent nuclide is given for 22 target organs with contributions from specified source organs plus surplus activity in the rest of the body. Cross irradiation due to penetrating radiations has also been considered in the calculations

  4. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  5. Application of radionuclide imaging in grading and therapeutic evaluation in patients with fallopian tube dysfunction

    International Nuclear Information System (INIS)

    Liu Zhixiang; Zhang Yanhua; Li Guangzhou; Zhang Peisen; Xie Hai; Sun Tao; Ren Chun'e; Zhang Shizhuang; Jiang Aifang

    2012-01-01

    Objective: To observe the conception status of patients with fallopian tube dysfunction after medical treatment and to guide treatment strategy for patients with different degrees of tubal injury by radionuclide imaging. Methods Six hundred and two patients with at least one side of patent fallopian tube underwent modified fallopian tube radionuclide imaging. The patients were graded as: mild, moderate or severe injury, non-functioning or tubal obstruction. The conception status was analyzed after medical treatment, including abdominal hot pack with Chinese medicine, oral intake of Guizhi tuckahoe capsules,and Kangfu anti-inflammatory anal suppository. The constituent ratios of conception in different groups were compared using χ 2 test and the curative and effective rates were calculated. Results: After 1-6 cycles of medical treatment,patients with fallopian tube dysfunction had a curative rate of 29.5% (46/156) and effective rate of 71.8% (112/156). There was a statistically significant difference among the different degrees of oviduct injury (χ 2 =166.4, P<0.05). After medical treatment,the natural pregnancy rate for patients with bilateral mild, moderate and severe injury was 52.6% (102/194), 42.6% (46/108) and 13.8% (16/116), respectively. The rate for patients with one side of normal tubal function was 78.3% (144/184), which was significantly higher than that of patients with bilateral mild, moderate and severe injury (χ 2 =37.86, 52.09 and 121.71, all P<0.05). The natural pregnancy rates of both mild and moderate injury groups were significantly different from the severe injury group (χ 2 =67.29, 42.82, both P<0.05), but there was no difference between the mild and moderate injury groups (χ 2 =3.29, P>0.05). In the severe injury group, 32.8% (38/116) patients were naturally infertile after the medical treatment, while 53.4% (62/116) patients underwent in vitro fertilization (IVF) and 51.6% (32/62) of them succeeded in pregnancy. Conclusions: The natural

  6. Production of {sup 177}Lu for targeted radionuclide therapy: Available options

    Energy Technology Data Exchange (ETDEWEB)

    Dah, Ashutosh [Isotope Production and Applications Division, Bhabha Atomic Research Centre (BARC), Mumbai (India); Pillai, Maroor Raghavan Ambikalmajan [Molecular Group of Companies. Kerala (India); Knapp, Furn F. Jr. [Medical Isotopes Program, Isotope Dept. Group, Oak Ridge National Laboratory (ORNL), Oak Ridge (United States)

    2015-06-15

    This review provides a comprehensive summary of the production of {sup 177}Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of {sup 177}Lu having the required quality for preparation of a variety of {sup 177}Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of {sup 177}Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable {sup 177}Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with {sup 177}Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of {sup 177}Lu-labeled radiopharmaceuticals, but also help future developments.

  7. Impact of 4D image quality on the accuracy of target definition

    International Nuclear Information System (INIS)

    Nielson, Tim B.; Hansen, Christian R.; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV–CTV expansions (0.5–1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  8. Impact of 4D image quality on the accuracy of target definition.

    Science.gov (United States)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  9. 'Image and treat': an individualized approach to urological tumors

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Capala, Jacek

    2010-01-01

    The current treatment options for advanced urologic cancers demonstrate limited efficacy. To obtain optimal clinical results, there is a need for new, individualized, therapeutic strategies, which have only recently been applied to these malignancies. Nuclear medicine plays an important role in e...... in establishing imaging biomarkers necessary for personalized medicine. This review focuses on the current status of the 'image and treat' approach combining molecular imaging with targeted radionuclide therapy of urological malignancies...

  10. The role of radionuclide studies in emergency cases

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Hayashida, Kohei; Uehara, Toshiisa

    1982-01-01

    Radionuclide studies have been performed popularly because of its noninvasive and simple method recently. In this study, we applied this technique for the evaluation of emergency cases in cardiovascular diseases. There were 93 cases (1.5%) out of 6163 cases, done during 1981. The subjects were 34 cases of cardiac studies (9 cases of sup(99m)Tc-PYP myocardial imaging, 12 cases of thallium myocardial imaging, 13 cases of cardioangiography), 23 cases of peripheral diseases (12 cases of peripheral angiography, 11 cases of venography), 16 cases of pulmonary imaging, 10 cases of renal studies (6 cases of renal angiography, 9 cases of renal imaging) and 5 cases of brain angiography. These studies were proven to be useful clinically for the evaluation of emergency cases and follow-up studies. In the near future, ''emergency radionuclide studies'' would be benefit for the high-risk patients noninvasively. (author)

  11. Prosthetic joint infections: radionuclide state-of-the-art imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Filip [AZ Alma Campus Sijsele, Department of Nuclear Medicine, Sijsele-Damme (Belgium); Wyngaert, Hans van den [AZ Alma Campus Sijsele, Department of Orthopaedic Surgery, Sijsele-Damme (Belgium); Love, Charito [Albert Einstein College of Medicine of Yeshiva University, Division of Nuclear Medicine and Radiology, Bronx, NY (United States); Welling, M.M. [Leiden University Medical Center, Scientist Molecular Imaging, Department of Radiology, Section of Nuclear Medicine C2-203, Leiden (Netherlands); Gemmel, Paul [Ghent University, The Faculty of Economics and Business Administration, Ghent (Belgium); Palestro, Christopher J. [Hofstra North Shore-Long Island Jewish Health System, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Hempstead, NY (United States)

    2012-05-15

    Prosthetic joint replacement surgery is performed with increasing frequency. Overall the incidence of prosthetic joint infection (PJI) and subsequently prosthesis revision failure is estimated to be between 1 and 3%. Differentiating infection from aseptic mechanical loosening, which is the most common cause of prosthetic failure, is especially important because of different types of therapeutic management. Despite a thorough patient history, physical examination, multiple diagnostic tests and complex algorithms, differentiating PJI from aseptic loosening remains challenging. Among imaging modalities, radiographs are neither sensitive nor specific and cross-sectional imaging techniques, such as computed tomography and magnetic resonance imaging, are limited by hardware-induced artefacts. Radionuclide imaging reflects functional rather than anatomical changes and is not hampered by the presence of a metallic joint prosthesis. As a result scintigraphy is currently the modality of choice in the investigation of suspected PJI. Unfortunately, there is no true consensus about the gold standard technique since there are several drawbacks and limitations inherent to each modality. Bone scintigraphy (BS) is sensitive for identifying the failed joint replacement, but cannot differentiate between infection and aseptic loosening. Combined bone/gallium scintigraphy (BS/GS) offers modest improvement over BS alone for diagnosing PJI. However, due to a number of drawbacks, BS/GS has generally been superseded by other techniques but it still may have a role in neutropenic patients. Radiolabelled leucocyte scintigraphy remains the gold standard technique for diagnosing neutrophil-mediated processes. It seems to be that combined in vitro labelled leucocyte/bone marrow scintigraphy (LS/BMS), with an accuracy of about 90%, is currently the imaging modality of choice for diagnosing PJI. There are, however, significant limitations using in vitro labelled leucocytes and considerable effort

  12. Prosthetic joint infections: radionuclide state-of-the-art imaging

    International Nuclear Information System (INIS)

    Gemmel, Filip; Wyngaert, Hans van den; Love, Charito; Welling, M.M.; Gemmel, Paul; Palestro, Christopher J.

    2012-01-01

    Prosthetic joint replacement surgery is performed with increasing frequency. Overall the incidence of prosthetic joint infection (PJI) and subsequently prosthesis revision failure is estimated to be between 1 and 3%. Differentiating infection from aseptic mechanical loosening, which is the most common cause of prosthetic failure, is especially important because of different types of therapeutic management. Despite a thorough patient history, physical examination, multiple diagnostic tests and complex algorithms, differentiating PJI from aseptic loosening remains challenging. Among imaging modalities, radiographs are neither sensitive nor specific and cross-sectional imaging techniques, such as computed tomography and magnetic resonance imaging, are limited by hardware-induced artefacts. Radionuclide imaging reflects functional rather than anatomical changes and is not hampered by the presence of a metallic joint prosthesis. As a result scintigraphy is currently the modality of choice in the investigation of suspected PJI. Unfortunately, there is no true consensus about the gold standard technique since there are several drawbacks and limitations inherent to each modality. Bone scintigraphy (BS) is sensitive for identifying the failed joint replacement, but cannot differentiate between infection and aseptic loosening. Combined bone/gallium scintigraphy (BS/GS) offers modest improvement over BS alone for diagnosing PJI. However, due to a number of drawbacks, BS/GS has generally been superseded by other techniques but it still may have a role in neutropenic patients. Radiolabelled leucocyte scintigraphy remains the gold standard technique for diagnosing neutrophil-mediated processes. It seems to be that combined in vitro labelled leucocyte/bone marrow scintigraphy (LS/BMS), with an accuracy of about 90%, is currently the imaging modality of choice for diagnosing PJI. There are, however, significant limitations using in vitro labelled leucocytes and considerable effort

  13. Radionuclide imaging of the lower genitourinary tract

    International Nuclear Information System (INIS)

    Lowery, P.A.; Pjura, G.A.; Kin, E.E.; Brown, W.D.

    1988-01-01

    The major use of radionuclide cystography is in the management of children with vesicoureteral reflux (VUR). Reflux is common, occurring in one-third to one-half of children with urinary tract infection. The significance of VUR lies in its associated symptoms and consequences, which include impaired renal growth and function, vague ill health, renal pain, and more importantly the development of reflux nephropathy, a significant cause of end-stage renal disease and hypertension in children. Although reflux may resolve spontaneously, particularly milder degrees of reflux, the age at which this may occur is unpredictable and repeated follow-up cystography over a number of years may be necessary. Therefore, it is important to minimize radiation to the child while providing accurate diagnostic information. This paper discusses how the technique of radionuclide cystography compares favorably with routine contrast voiding cystourethrography (VCUG) in these respects, and in addition can provide quantitative information not obtained by radiographic techniques. Other indications may include screening siblings of patients known to have reflux, follow-up of antireflux surgery and occasionally screening for reflux in children who have had urinary tract infection

  14. Radionuclide brain scanning

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.

    1992-01-01

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ''allied advances'' with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  15. Radionuclide brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Dayem, H

    1993-12-31

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ``allied advances`` with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  16. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    International Nuclear Information System (INIS)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; Bondt, Pieter De; Buechel, Ronny R.; Kaufmann, Philip A.; Cuocolo, Alberto; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J.H.A.; Slart, Riemer H.J.A.; Traegaardh, Elin; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015 0 7 E ANM F INAL myocardial p erfusion g uideline.pdf. (orig.)

  17. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  18. Taking radionuclides to heart

    International Nuclear Information System (INIS)

    Kleynhans, P.H.T.; Lotter, M.G.; Van Aswegen, A.; Minnaar, P.C.; Iturralde, M.; Herbst, C.P.; Marx, D.

    1980-01-01

    Ischaemic heart disease is a main cause of death in South Africa. Non-invasive ECG gated radionuclide bloodpool imaging plays an increasingly useful role in the evalution of the function of the heart as a pump, and the extent of heart muscle perfusion defects is further pinpointed by invasive krypton-81m studies to improve patient management

  19. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  20. Development of positron emitting radionuclides for imaging with improved positron detectors

    International Nuclear Information System (INIS)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced 82 Rb; cyclotron-produced 62 Zn; and reactor-produced 64 Cu. Investigation of the 82 Sr (25 d)-- 82 Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of 82 Rb and the breakthrough of 82 Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced 82 Sr was used to charge a compact 82 Rb generator to obtain multi-millicurie amounts of 82 Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl 2 to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of 62 Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of 62 Zn-histidine in the prostate of a dog at 20 h. 64 Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of 67 Ga citrate under the same conditions. 64 Cu-asparagine had better tumor-to-soft tissue ratios than 67 Ga-citrate

  1. Preclinical evaluation of "1"1"1In-DOTA-Bombesin analogue for peptide receptor targeted imaging

    International Nuclear Information System (INIS)

    Salgueiro, C.; Castiglia, S.G. de; Tesan, F.; Salgueiro, M.J.

    2017-01-01

    Peptide receptors are very important targets for imaging and therapy. The bombesin family is becoming significant, in special the gastrine-releasing peptide receptor (GRPr) that has been found in Prostate and Breast tumors. The aim of this work is to label [DOTA-Pro1,Tyr4] BN with "1"1"1InCl3 and study its efficacy in normal and tumor animals. Radiolabeling experiences were made to find the best peptide : radionuclide relationship. The radiochemical purity was determined by Sep-pak C18 cartridge (Waters) and ITLC-SG using 50mM EDTA in 0.1M ammonium acetate (pH 5.5) and 3.5%(v/v) ammonia/methanol 1:1. Gamma imaging studies were made 24 hs after injection of the product in control rats. On the other hand gamma imaging studies were made at 24 hs in tumor bearing nude mice too. The tumor was induced by subcutaneous injection of PC3 cells. For biodistribution studies animals were sacrificed and blood, pancreas, intestine, kidneys, liver, lungs, femoral muscle and tumor were analyzed. The results were expressed as %ID/g of tissue. Radiolabeling experiments allowed us to obtain an stable product with >95% of radiochemical purity and 5.78MBq/nmol of specific activity, with a ratio of 13μg peptide per In-111 mCi. The normal and tumor animals imaging show physiological uptake in kidneys and a biodistribution according to bibliography. A specific uptake is evidenced in tumor. Our results show a radiochemical stable compound for 48 hs and suitable for GRPr imaging. (authors) [es

  2. Relating β+ radionuclides' properties by order theory

    International Nuclear Information System (INIS)

    Quintero, N.Y.; Guillermo Restrepo; Cohen, I.M.; Universidad Tecnologica Nacional, Buenos Aires

    2013-01-01

    We studied 27 β + radionuclides taking into account some of their variants encoding information of their production, such as integral yield, threshold energy and energy of projectiles used to generate them; these radionuclides are of current use in clinical diagnostic imaging by positron emission tomography (PET). The study was conducted based on physical, physico-chemical, nuclear, dosimetric and quantum properties, which characterise the β + radionuclides selected, with the aim of finding meaningful relationships among them. In order to accomplish this objective the mathematical methodology known as formal concept analysis was employed. We obtained a set of logical assertions (rules) classified as implications and associations, for the set of β + radionuclides considered. Some of them show that low mass defect is related to high and medium values of maximum β + energy, and with even parity and low mean lives; all these parameters are associated to the dose received by a patient subjected to a PET analysis. (author)

  3. Use of phase images in radionuclide ventriculography for topical diagnosis of the Wolff-Parkinson-White syndrome and sources of abnormal rhythms in the ventricles

    International Nuclear Information System (INIS)

    Ostroumov, E.N.; Sergienko, V.B.; Golitsin, S.P.

    1990-01-01

    The paper presents the results of the mapping of various types of the Wolff-Parkinson-White syndrome and ventricular arrhythmias by using phase images of radionuclide ventriculograms as compared to 12 leads and electrophysiological studies. Phase images are a highly informative method that supplements an electrophysiological study in the topical diagnosis of abnormal tracts and ventricular arrhythmias

  4. Choice of radionuclides for radioimmunotherapy

    International Nuclear Information System (INIS)

    DeNardo, S.J.; Jungerman, J.A.; DeNardo, G.L.; Lagunas-Solar, M.C.; Cole, W.C.; Meares, C.F.

    1985-01-01

    Innumerable questions need to be answered and obstacles overcome before radioimmunotherapy can be generally successful in cancer patients. Major developments have greatly enhanced the likelihood of success. The important development of appropriate radionuclides and radiochemistry for this therapy must be intimately linked with the biological and biochemical realities. All aspects must be considered, such as the specific nature of the antigenic target, the pharmacokinetics of the antibody fragment carrier, the capability of in vivo quantitation of tumor uptake and turnover time, as well as total body kinetics. With this knowledge, then, practical radiochemistry methods can be integrated with the suitable radionuclide choices, and production methods can be developed which will deliver effective and dependable products for patient therapy

  5. Cancer imaging with radiolabeled antibodies

    International Nuclear Information System (INIS)

    Goldenberg, D.M.

    1990-01-01

    This book presents a perspective of the use of antibodies to target diagnostic isotopes to tumors. Antibodies with reasonable specificity can be developed against almost any substance. If selective targeting to cancer cells can be achieved, the prospects for a selective therapy are equally intriguing. But the development of cancer detection, or imaging, with radiolabeled antibodies has depended upon advances in a number of different areas, including cancer immunology and immunochemistry for identifying suitable antigen targets and antibodies to these targets, tumor biology for model systems, radiochemistry for he attachment of radionuclides to antibodies, molecular biology for reengineering the antibodies for safer and more effective use in humans, and nuclear medicine for providing the best imaging protocols and instrumentation to detect minute amounts of elevated radioactivity against a background of considerable noise. Accordingly, this book has been organized to address the advances that are being made in many of these areas

  6. 100 Years of radionuclide metrology

    International Nuclear Information System (INIS)

    Judge, S.M.; Arnold, D.; Chauvenet, B.; Collé, R.; De Felice, P.; García-Toraño, E.; Wätjen, U.

    2014-01-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. - Highlights: • The driving forces for the development of radionuclide metrology. • Radium standards to facilitate trade of this valuable commodity in the early years. • After 1950, focus changes to healthcare and industrial applications. • National Measurement Institutes develop new techniques, standards, and disseminate the best practice in measurement. • Challenges in nuclear medicine, radioactive waste management and nuclear forensics

  7. Radionuclide imaging and diagnosis of benign tumours of the liver

    International Nuclear Information System (INIS)

    Zerbib, E.

    1996-01-01

    Radionuclide scanning takes advantages of the function of the liver. Hepatic scintigraphy can be suggested in the evaluation of solid liver masses greater than 1.5 cm and whose diagnosis has not been established by another imaging technique. 99m Tc-labeled-red-blood-cell (RBC) scintigraphy is very specific of cavernous hepatic hemangioma (100 %). Sensibility increases with tumoral size: 85 % from 1.5 to 3 cm and near 100 % beyond 3 cm. RBC scintigraphy should be performed when MRI does not assert diagnosis or cannot be performed. With 99m Tc-nanocolloids, focal nodular hyperplasia (FNH) can show intense concentration which is quite specific but appears in only 10 to 15 % of cases. A normal uptake is seen in 50 to 60 % of cases but only suggests FNH since almost 10 % of the adenomas get the same appearance. A negative defect, seen in 30 to 40 % of cases, does not allow any conclusion. Using hepatobiliary radiopharmaceuticals (IDA) FNH appears with an increased uptake during the perfusion phase, a normal uptake during the first 10 minutes and again an increased uptake during late images (hot spot). Hepatic adenoma can appear as a negative defect (over 90 % of cases) or with normal uptake (less than 10 % of cases). Increased uptake is never seen. Its aspect using hepatobiliary radio-hepatobiliary radio-pharmaceuticals is not well established but it appears as a negative defect on the perfusion phase which should discriminate it from FHN. (author)

  8. Therapeutic radionuclides: Making the right choice

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1996-01-01

    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article

  9. EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides

    International Nuclear Information System (INIS)

    Carlsson, Jörgen; Wester, Kenneth; De La Torre, Manuel; Malmström, Per-Uno; Gårdmark, Truls

    2015-01-01

    There is limited effect of tyrosine kinase inhibitors or “naked” antibodies binding EGFR or HER2 for therapy of metastasized urinary bladder cancer and these methods are therefore not routinely used. Targeting radio-nuclides to the extracellular domain of the receptors is potentially a better possibility. EGFR- and HER2-expression was analyzed for primary tumors and corresponding metastases from 72 patients using immunohistochemistry and the internationally recommended HercepTest. Intracellular mutations were not analyzed since only the receptors were considered as targets and intracellular abnormalities should have minor effect on radiation dose. EGFR was positive in 71% of the primary tumors and 69% of corresponding metastases. Local and distant metastases were EGFR-positive in 75% and 66% of the cases, respectively. The expression frequency of HER2 in related lesions was slightly higher (data from previous study). The EGFR-positive tumors expressed EGFR in metastases in 86% of the cases. The co-expression of EGFR and HER2 was 57% for tumors and 53% for metastases. Only 3% and 10% of the lesions were negative for both receptors in tumors and metastases, respectively. Thus, targeting these receptors with radionuclides might be applied for most patients. At least one of the EGFR- or HER2-receptors was present in most cases and co-expressed in more than half the cases. It is therefore interesting to deliver radionuclides for whole-body receptor-analysis, dosimetry and therapy. This can hopefully compensate for resistance to other therapies and more patients can hopefully be treated with curative instead of palliative intention

  10. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters.

    Science.gov (United States)

    Tian, Chao; Jiang, Zheng; Chen, Weidong; Wang, Dongjin

    2017-10-21

    Microwave staring correlated imaging (MSCI) can achieve ultra-high resolution in real aperture staring radar imaging using the correlated imaging process (CIP) under all-weather and all-day circumstances. The CIP must combine the received echo signal with the temporal-spatial stochastic radiation field. However, a precondition of the CIP is that the continuous imaging region must be discretized to a fine grid, and the measurement matrix should be accurately computed, which makes the imaging process highly complex when the MSCI system observes a wide area. This paper proposes an adaptive imaging approach for the targets in discrete clusters to reduce the complexity of the CIP. The approach is divided into two main stages. First, as discrete clustered targets are distributed in different range strips in the imaging region, the transmitters of the MSCI emit narrow-pulse waveforms to separate the echoes of the targets in different strips in the time domain; using spectral entropy, a modified method robust against noise is put forward to detect the echoes of the discrete clustered targets, based on which the strips with targets can be adaptively located. Second, in a strip with targets, the matched filter reconstruction algorithm is used to locate the regions with targets, and only the regions of interest are discretized to a fine grid; sparse recovery is used, and the band exclusion is used to maintain the non-correlation of the dictionary. Simulation results are presented to demonstrate that the proposed approach can accurately and adaptively locate the regions with targets and obtain high-quality reconstructed images.

  11. Radiographic and radionuclide lung perfusion imaging in healthy calves and calves naturally infected with bovine respiratory syncytial virus

    International Nuclear Information System (INIS)

    Verhoeff, J.; Brom, W.E. van den; Ingh, T.S.G.A.M. van den

    1992-01-01

    Nine calves between three and 18 weeks old with serologically confirmed natural bovine respiratory syncytial virus infection were examined clinically, radiographically and by radionuclide lung perfusion imaging. The results were compared with those from seven healthy calves. The diseased calves were euthanased and examined pathologically, virologically and bacteriologically. The clinical signs indicated that the disease was in an acute stage. Radiography of the diseased animals revealed cysts, corresponding morphologically with bullous emphysema, and infiltrations roughly corresponding in distribution with atelectatic and, or, pneumonic areas. Radionuclide lung perfusion imaging revealed no perfusion shifts between the left and right lungs and a normal perfusion pattern in five of the nine diseased calves. The abnormalities in the perfusion patterns of three calves were probably caused by anatomical disorders such as cysts and pleural adhesions, but no cause of the abnormality could be found in one calf. These findings suggest that in calves infected with bovine respiratory syncytial virus, the normal perfusion pattern is maintained until anatomical disorders occur. The pathological examination and radiography revealed that the cranioventral lung fields were particularly poorly ventilated. This finding and the normal perfusion pattern indicate that these parts of the lungs are probably the sites where shuntings and perfusion-ventilation mismatchings occur

  12. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  13. Radiolabelled multifunctional nanoparticles for targeted diagnostic and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Rangger, C.

    2013-01-01

    Nanoparticles, liposomes in particular, have gained great attention as easily engineerable nanoscale systems with distinct properties, offering an ideal platform for a variety of diagnostic and therapeutic applications. The aim of this PhD thesis was the design, synthesis as well as the in vitro and in vivo evaluation of several radiolabelled multifunctional liposomal nanoparticles for the targeted imaging of tumour cells and tumour-induced angiogenesis. Radiolabelling methods for different radionuclides were developed and the liposomes were functionalised with polyethylene glycol (PEG) to improve the pharmacokinetic profile. Targeting sequences such as the tripeptide Arg-Gly-Asp (RGD), the neuropeptide substance P (SP), the somatostatin analogue tyrosine-3-octreotide (TOC), and the vasoactive intestinal peptide (VIP) were tested for their applicability as tools for the targeted delivery of imaging agents. Finally, by the combination of two targeting sequences, namely RGD and SP, on one liposome multireceptor-targeting (hybrid-targeting) was investigated. These multifunctional vehicles were also functionalized with imaging labels for the detection and imaging of tumours by single photon emission computed tomography (SPECT), fluorescence microscopy as well as magnetic resonance (MR) imaging. The liposomes developed in this thesis showed multifunctional properties combining several imaging approaches with specific targeting for oncological applications. In vitro behaviour, e.g., receptor binding could be improved, resulting in optimised targeting shown both by the radiolabel and fluorescent label. However, the in vivo properties, especially the tumour targeting characteristics remained suboptimal, revealing the challenges of targeting approaches in nanoscience. Nonetheless, these results brought important insights for the development and optimisation of multifunctional nanocarriers. (author) [de

  14. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Science.gov (United States)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  15. The study of parotid function with radionuclide imaging after radiation therapy in nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Li Huanbin; Zhang Qi; Wang Ling; Wu Shixiu; Xie Congying

    2006-01-01

    Objective: To study the uptake and excretion function of parotid by radionuclide imaging after simultaneous modulated accelerated radiation therapy (SMART) in nasopharyngeal cancer. Methods: Forty-eight nasopharyngeal cancer cases, 38 of them were treated by SMART with 2.5 Gy/fraction at tumor and enlarged lymph node to a total dose of 70 Gy, and 2.0 Gy/fraction at subclinical foci and prophy laxtic area volume to a total dose of 56 Gy in 38 d. The other 10 cases were treated by traditional radiation therapy (RT). After treatment, all patients performed parotid imaging and both uptake index (UI) and excretion index (EI) after acid stimulation were calculated. Clinical manifestation such as grade of mouth dryness was also analyzed. Results: Average UI and EI in SMART group decreased 21.9% and 37.3% respectively, with 12 cases moderate and severe mouth dryness, whereas in traditional RT group, mean UI and El decreased 56.1% and 96.1% respectively, with 9 cases moderate and severe mouth dryness. There was significant difference between them (P<0.05). Conclusion: Parotid imaging is sensitive for monitoring parotid function, and it is also reliable to evaluate the safety of SMART to parotid.. (authors)

  16. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    Energy Technology Data Exchange (ETDEWEB)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de [University of Amsterdam, Department of Nuclear Medicine, F2-238, Academic Medical Center, Amsterdam (Netherlands); Acampa, Wanda [National Council of Research, Institute of Biostructures and Bioimaging, Naples (Italy); Anagnostopoulos, Constantinos [Academy of Athens, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Athens (Greece); Ballinger, Jim [Guy' s Hospital - Guy' s and St Thomas' Trust Foundation, Department of Nuclear Medicine, London (United Kingdom); Bengel, Frank [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Bondt, Pieter De [OLV Hospital, Department of Nuclear Medicine, Aalst (Belgium); Buechel, Ronny R.; Kaufmann, Philip A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Flotats, Albert [Universitat Autonoma de Barcelona, Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Hindorf, Cecilia [Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Lindner, Oliver [University Hospital of the Ruhr-University Bochum, Heart and Diabetes Center North Rhine-Westphalia, Institute for Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen (Germany); Ljungberg, Michael [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Lonsdale, Markus [Bispebjerg Hospital, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Manrique, Alain [Caen University Hospital, Department of Nuclear Medicine, Service Commun Investigations chez l' Homme, GIP Cyceron, Caen (France); Minarik, David [Skaane University Hospital, Radiation Physics, Malmoe (Sweden); Scholte, Arthur J.H.A. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Traegaardh, Elin [Skaane University Hospital and Lund University, Clinical Physiology and Nuclear Medicine, Malmoe (Sweden); Hesse, Birger [University Hospital of Copenhagen, Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark)

    2015-11-15

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015{sub 0}7{sub E}ANM{sub F}INAL myocardial{sub p}erfusion{sub g}uideline.pdf. (orig.)

  17. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  18. Radionuclide diagnosis of pulmonary capillary protein leakage

    International Nuclear Information System (INIS)

    Creutzig, H.; Sturm, J.A.; Schober, O.; Nerlich, M.L.; Kant, C.J.; Medizinische Hochschule Hannover

    1984-01-01

    Pulmonary extravascular albumin extra-vasation in patients with adult respiratory distress syndrome can be quantified with radionuclide techniques. While imaging procedures with a computerized gamma camera will allow reproducible ROIs, this will be the main limitation in nonimaging measurements with small scintillation probes. Repeated positioning by one operator results in a mean spatial variation of position of about 2 cm and a variation in count rate of 25%. For the estimation of PCPL the small probes must be positioned under scintigraphic control. Under these conditions the results of both techniques are identical. The upper limit of normal was estimated to be 1 x E-5/sec. The standard deviation abnormal measurements was about 10%. The pulmonary capillary protein leakage can be quantified by radionuclide techniques with good accuracy, using the combination of imaging and nonimaging techniques. (orig.) [de

  19. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  20. Tumor development following internal exposures to radionuclides during the perinatal period

    International Nuclear Information System (INIS)

    Sikov, M.R.

    1988-07-01

    Exposure to radiation from internally deposited radionuclides during the prenatal and/or neonatal periods involves a distinct oncogenic potential. The fundamental mechanisms for perinatal radionuclide carcinogenesis seem to be generally similar to those that pertain to external radiation exposures and other carcinogenic agents, but unique interactions may be superimposed. Specific dose-effect relationships differ among radionuclides; many studies find dose-related increases in the incidence of tumors or decreases in age at tumor appearance following prenatal or neonatal radiation exposures. Tumor incidences may be decreased, especially at high dose levels; these are usually attributable to cell death, inhibited development of target tissues, or to endocrine malfunction. Age-related differences in predominant tumor types and/or sites of tumor development are often detected, and are explainable by the existence of nuclide-specific target organs or tissues, dosimetric factors, and developmental considerations. 34 refs

  1. Robust through-the-wall radar image classification using a target-model alignment procedure.

    Science.gov (United States)

    Smith, Graeme E; Mobasseri, Bijan G

    2012-02-01

    A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE

  2. Radiolabelled RGD peptides for imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.C.; Schwaiger, M.; Beer, A.J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Kessler, H. [Technische Universitaet Muenchen, Institute for Advanced Study and Center of Integrated Protein Science, Department of Chemistry, Garching (Germany); King Abdulaziz University, Chemistry Department, Faculty of Science, Jeddah (Saudi Arabia); Wester, H.-J. [Institute for Pharmaceutical Radiochemistry, Garching (Germany)

    2012-02-15

    Imaging of angiogenesis has become increasingly important with the rising use of targeted antiangiogenic therapies like bevacizumab (Avastin). Non-invasive assessment of angiogenic activity is in this respect interesting, e.g. for response assessment of such targeted antiangiogenic therapies. One promising approach of angiogenesis imaging is imaging of specific molecular markers of the angiogenic cascade like the integrin {alpha}{sub v}{beta}{sub 3}. For molecular imaging of integrin expression, the use of radiolabelled peptides is still the only approach that has been successfully translated into the clinic. In this review we will summarize the current data on imaging of {alpha}{sub v}{beta}{sub 3} expression using radiolabelled RGD peptides with a focus on tracers already in clinical use. A perspective will be presented on the future clinical use of radiolabelled RGD peptides including an outlook on potential applications for radionuclide therapy. (orig.)

  3. Nuclear cardiology. I - Radionuclide angiographic assessment of left ventricular contraction: uses, limitations and future directions. II - The role of myocardial perfusion imaging using thallium-201 in diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Bodenheimer, M.M.; Banka, V.S.; Helfant, R.H.; Pennsylvania, University, Philadelphia, PA)

    1980-01-01

    The current status of radionuclide angiography is reviewed. First pass and gated equilibrium methods for determining left ventricular contraction are compared. Some clinical applications of radionuclide angiography are then examined, including the detection of discrete versus diffuse asynergy and the assessment of myocardial infarction. The second part of this work reviews the uses and limitations of thallium-201 perfusion imaging in the diagnosis of the acute and chronic manifestations of coronary heart disease. Theoretical and technical considerations of thallium-201 imaging are reviewed along with the clinical implications of the technique

  4. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  5. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  6. 90Nb: potential radionuclide for application in immuno-PET. Development of appropriate production strategy and first in vivo evaluation of 90Nb-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Radchenko, Valery

    2013-01-01

    Nuclear medicine is a modern and highly effective tool for the detection and treatment of oncological disease. Molecular imaging based on radiotracers includes single photon emission tomography (SPECT) and positron emission tomography (PET), which provide non-invasive tumor visualization on nano- and picomolar level, respectively. Currently, many novel tracers for more precise discovery of small tumors and metastases have been introduced and are under investigation. Many of them are protein-based biomolecules which nature herself produces as antigens for the eradication of tumor cells. Antibodies and antibody fragments play an important role in tumor diagnostics and treatment. PET imaging with antibodies and antibody fragments is called immuno-PET. The main issue that needs to be addressed is that appropriate radiotracers with half-lives related to the half-lives of biomolecules are needed. The development of novel radiotracers is a multistep, complicated task. This task includes the evaluation of production, separation and labeling strategy for chosen radionuclide. Finally, the biomolecule-radionuclide complex should be stable in time. An equally important factor is the economic suitability of the production strategy, which will lead to a key decision for future application of the developed radionuclide. In recent work, 90 Nb has been proposed as a potential candidate for application in immuno-PET. Its half-life of 14.6 hours is suitable for application with antibody fragments and some intact antibodies. 90 Nb has a relatively high positron branching of 53% and an optimal energy of β + emission of 0.35 MeV that can provide high quality of imaging with low dose of used radionuclide. First proof-of-principle studies have shown that 90 Nb: (i) can be produced in sufficient amount and purity by proton bombardment of natural zirconium target (ii) can be isolated from target material with appropriate radiochemical purity (iii) may be used for labeling of monoclonal

  7. Application of accelerator-produced short-lived radionuclides in industry

    International Nuclear Information System (INIS)

    Kupsch, H.

    1986-01-01

    Several problems such as corrosion, catalysis, wear, process optimization and diagnosis, damage analysis, arising in idustry can be solved using short-lived radioisotopes. Some examples of technological target designs which have been developed are demonstrated for the radionuclide production based on p,n; d,α; α,n; α,2n; α,p; γ,n; γ,p nuclear reactions. Applications of short-lived radionuclides in plants and processes of electrodeposition and gas concrete production are described. (author)

  8. MR imaging of avascular necrosis of the femoral head: Correlation with radiography, radionuclide scan and clinical finding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Sik; Woo, Young Hoon; Joo, Yang Goo; Lee, Sung Moon; Zeon, Seok Kil; Suh, Soo Jhi; Kang, Chang Soo [School of Medicine, Keimyung University, Taegu (Korea, Republic of)

    1992-03-15

    To explore the ability of magnetic resonance imaging(MRI) in the diagnosis of avascular necrosis(AVN) of the femoral head, we compared appearances on MRI of 85 proven AVN lesions with those on radiographs(n=79) and radionuclide scans(n=75). Clinical symptoms(n=85) were also correlated. All MR studies included coronal and axial T1WI and coronal T2WI. All lesions involved the anterosuperterior aspect of the femoral head and were surrounded by a low signal intensity rim on both T1 and T2WI. The signal intensity of the lesions was variable depending on the disease course, and the lesions were divided into four classes according to the classification suggested by Mitchell. Radiographs were normal in 16%(13/79) of the lesions which were in MR class A(10), B(1), C(2). The radionuclide scans showed normal in 16%(12/75) of the lesions which were in MR class A(8). B(1), C(2), D(1). On the other hand, 93% of the lesions with MR class A(27/29) showed stage 1 and 2 lesions on radiographs. Clinical symptoms were absent in 25%(21/85) of the lesions, and among these,81%(17/21) were MR class A. Conclusively, MR is superior to the radiography and radionuclide scan in the early detection of AVN, and can also show the exact location, extent and signal characteristic of the lesion. Therefore, Mr is essential in diagnosis and management of AVN.

  9. MR imaging of avascular necrosis of the femoral head: Correlation with radiography, radionuclide scan and clinical finding

    International Nuclear Information System (INIS)

    Kim, Jung Sik; Woo, Young Hoon; Joo, Yang Goo; Lee, Sung Moon; Zeon, Seok Kil; Suh, Soo Jhi; Kang, Chang Soo

    1992-01-01

    To explore the ability of magnetic resonance imaging(MRI) in the diagnosis of avascular necrosis(AVN) of the femoral head, we compared appearances on MRI of 85 proven AVN lesions with those on radiographs(n=79) and radionuclide scans(n=75). Clinical symptoms(n=85) were also correlated. All MR studies included coronal and axial T1WI and coronal T2WI. All lesions involved the anterosuperterior aspect of the femoral head and were surrounded by a low signal intensity rim on both T1 and T2WI. The signal intensity of the lesions was variable depending on the disease course, and the lesions were divided into four classes according to the classification suggested by Mitchell. Radiographs were normal in 16%(13/79) of the lesions which were in MR class A(10), B(1), C(2). The radionuclide scans showed normal in 16%(12/75) of the lesions which were in MR class A(8). B(1), C(2), D(1). On the other hand, 93% of the lesions with MR class A(27/29) showed stage 1 and 2 lesions on radiographs. Clinical symptoms were absent in 25%(21/85) of the lesions, and among these,81%(17/21) were MR class A. Conclusively, MR is superior to the radiography and radionuclide scan in the early detection of AVN, and can also show the exact location, extent and signal characteristic of the lesion. Therefore, Mr is essential in diagnosis and management of AVN

  10. A motion correction algorithm for an image realignment programme useful for sequential radionuclide renography

    International Nuclear Information System (INIS)

    De Agostini, A.; Moretti, R.; Belletti, S.; Maira, G.; Magri, G.C.; Bestagno, M.

    1992-01-01

    The correction of organ movements in sequential radionuclide renography was done using an iterative algorithm that, by means of a set of rectangular regions of interest (ROIs), did not require any anatomical marker or manual elaboration of frames. The realignment programme here proposed is quite independent of the spatial and temporal distribution of activity and analyses the rotational movement in a simplified but reliable way. The position of the object inside a frame is evaluated by choosing the best ROI in a set of ROIs shifted 1 pixel around the central one. Statistical tests have to be fulfilled by the algorithm in order to activate the realignment procedure. Validation of the algorithm was done for different acquisition set-ups and organ movements. Results, summarized in Table 1, show that in about 90% of the stimulated experiments the algorithm is able to correct the movements of the object with a maximum error less of equal to 1 pixel limit. The usefulness of the realignment programme was demonstrated with sequential radionuclide renography as a typical clinical application. The algorithm-corrected curves of a 1-year-old patient were completely different from those obtained without a motion correction procedure. The algorithm may be applicable also to other types of scintigraphic examinations, besides functional imaging in which the realignment of frames of the dynamic sequence was an intrinsic demand. (orig.)

  11. Methods of separating short half-life radionuclides from a mixture of radionuclides

    International Nuclear Information System (INIS)

    Bray, L.A.; Ryan, J.L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of 223 Ra and 225 Ac, from a radionuclide ''cow'' of 227 Ac or 229 Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ''cow'' forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ''cow'' from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ''cow''. In one embodiment the radionuclide ''cow'' is the 227 Ac, the at least one daughter radionuclide is a 227 Th and the product radionuclide is the 223 Ra and the first nitrate form ion exchange column passes the 227 Ac and retains the 227 Th. In another embodiment the radionuclide ''cow'' is the 229 Th, the at least one daughter radionuclide is a 225 Ra and said product radionuclide is the 225 Ac and the 225 Ac and nitrate form ion exchange column retains the 229 Th and passes the 225 Ra/Ac. 8 figs

  12. Breaking camouflage and detecting targets require optic flow and image structure information.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Chen, Chang; Bingham, Geoffrey P

    2017-08-01

    Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators. With camouflage, visual targets and distracters cannot be distinguished using only static image structure (i.e., appearance). Motion generates another source of optical information, optic flow, which breaks camouflage and specifies target locations. Optic flow calibrates image structure with respect to spatial relations among targets and distracters, and calibrated image structure makes previously camouflaged targets perceptible in a temporally stable fashion after motion stops. We investigated this proposal using laboratory experiments and compared how many camouflaged targets were identified either with optic flow information alone or with combined optic flow and image structure information. Our results show that the combination of motion-generated optic flow and target-projected image structure information yielded efficient and stable perception of camouflaged targets.

  13. Central nervous system imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Since its introduction in 1973, computed tomography (CT) of the brain has had a revolutionary impact on neuroradiologic diagnosis. It has largely replaced radionuclide brain imaging as the initial, noninvasive neurologic screening examination. Although conventional radionuclide brain imaging still contributes useful and unique diagnostic information in a few clinical situations, it appears that new technology and applications must be found if nuclear imaging is to play a prominent future role in neurologic diagnosis as it did in the past. One of the main advantages of CT over radionuclide brain imaging at present is CT's ability to demonstrate the size, shape, and position of the cerebral ventricles and subarachnoid spaces. Another important strength of CT is the ability to differentiate ischemic cerebral infarction from intracerebral hemorrhage. The overall sensitivity of CT in detecting intracranial neoplasms is also greater than that of radionuclide brain imaging, and CT is very useful in demonstrating the effects of head trauma. Magnetic resonance imaging appears superior to CT in the evaluation of neurologic disorders. A renewed interest in radionuclide brain imaging has developed because of recent advances in emission computed tomographic imaging. When tracer kinetic models are used, cerebral blood flow (CBF), blood volume, metabolic rate, and glucose and amino acid transport can be measured. Other applications involve investigation of receptor bindings, evaluation of the blood-brain barrier, brain blood-volume measurement, and cisternography

  14. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  15. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  16. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2002-07-01

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO{sub 4} solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT.

  17. A Review of Imaging Methods for Prostate Cancer Detection

    Directory of Open Access Journals (Sweden)

    Saradwata Sarkar

    2016-01-01

    Full Text Available Imaging is playing an increasingly important role in the detection of prostate cancer (PCa. This review summarizes the key imaging modalities–multiparametric ultrasound (US, multiparametric magnetic resonance imaging (MRI, MRI-US fusion imaging, and positron emission tomography (PET imaging–-used in the diagnosis and localization of PCa. Emphasis is laid on the biological and functional characteristics of tumors that rationalize the use of a specific imaging technique. Changes to anatomical architecture of tissue can be detected by anatomical grayscale US and T2-weighted MRI. Tumors are known to progress through angiogenesis–-a fact exploited by Doppler and contrast-enhanced US and dynamic contrast-enhanced MRI. The increased cellular density of tumors is targeted by elastography and diffusion-weighted MRI. PET imaging employs several different radionuclides to target the metabolic and cellular activities during tumor growth. Results from studies using these various imaging techniques are discussed and compared.

  18. Methods of separating short half-life radionuclides from a mixture of radionuclides

    Science.gov (United States)

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  19. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  20. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  1. Trends in cyclotrons for radionuclide production

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Lambrecht, R.M.

    1999-01-01

    The IAEA recently concluded a worldwide survey of the cyclotrons used for radionuclide production. Most of the institutions responded to the questionnaire. The responses identified technical, utilisation and administrative information for 206 cyclotrons. Compiled data includes the characteristics, performance and popularity of each of the different commercial cyclotrons. Over 20 cyclotrons are scheduled for installation in 1998. The expansion in the number of cyclotron installations during the last decade was driven by the advent of advances in medical imaging instrumentation (namely, positron emission tomography (PET), and more recently by 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons; and recent governmental decisions that permit reimbursement for cyclotron radiopharmaceutical studies by the government or insurance companies. The priorities for the production of clinical, commercial and research radionuclides were identified. The emphasis is on radionuclides used for medical diagnosis with SPET (e.g. 123 I, 201 Tl) and PET (e.g. 11 C, 13 N, 15 O, 18 F) radiopharmaceuticals, and for individualized patient radiation treatment planning (e.g. 64 Cu, 86 Y, 124 I) with PET. There is an emerging trend to advance the cyclotron as an alternative method to nuclear reactors for the production of neutron-rich radionuclides (e.g. 64 Cu, 103 Pd, 186 Re) needed for therapeutic applications. (authors)

  2. Target plane imaging system for the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-01-01

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 μm, 0.53 μm, and 0.35 μm. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described

  3. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    International Nuclear Information System (INIS)

    Chen Haojun; Wu Hua

    2012-01-01

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin α v β 3 . Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin α v β 3 . (authors)

  4. Target Detection Using an AOTF Hyperspectral Imager

    Science.gov (United States)

    Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.

    1994-01-01

    This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.

  5. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  6. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  7. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  8. SAR Image Simulation of Ship Targets Based on Multi-Path Scattering

    Science.gov (United States)

    Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.

    2018-04-01

    Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.

  9. PIRATE: pediatric imaging response assessment and targeting environment

    Science.gov (United States)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  10. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  11. Limitations of radionuclide flow studies in bilateral carotid thrombosis

    International Nuclear Information System (INIS)

    Messert, B.; Tyson, I.B.; Barron, S.A.

    1975-01-01

    Radionuclide angiography as a noninvasive procedure has become an important tool in the evaluation of cerebrovascular diseases. Determinations of arm-to-brain circulation times complemented by the transit times of the radionuclide bolus through the brain afford insight into the functional status of the vascular system of the brain. Delays in perfusion, asymmetries in appearance, and washout of the radionuclide material can be correlated with disease entities. However, as with many procedures elevated to the status of a screening test, the possibility of false-positive and false-negative results exists. Two cases of bilateral carotid occlusion are presented, showing normal or only delayed, fairly symmetrical brain perfusion. The appearance of the radionuclide flow in the neck in AP and lateral views gave no suggestion of the involved deficits. Even multiple-projection imaging might fail to demonstrate major vascular obstructions. However, attentive study of these projections might yield interesting evidence of unexpected collateral flow systems. (U.S.)

  12. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  13. Principles of radionuclide studies of the genitourinary system

    International Nuclear Information System (INIS)

    Kim, E.E.; Pjura, G.A.; Lowry, P.A.

    1988-01-01

    The clinical assessment of renal diseases with radionuclide procedures is discussed. It has achieved general recognition only during the last decade. The proper assessment of renal function with radionuclides provides useful information for the management of patients with renal disease and renal transplant recipients. Renal imaging with radionuclides gives some information on morphology and the integrity of the urinary collecting system, but more importantly it provides functional information that may include renal blood flow or effective renal plasma flow (ERPF), glomerular filtration rate (GFR), the quantitation of differential renal function, the evaluation of vesicoureteral reflux, the quantitation of postvoiding residual urine volume, and the differential diagnosis of testicular disease. Acute renal failure resulting from acute tubular necrosis, hepatorenal syndrome, acute interstitial nephirits, cortical necrosis, renal artery embolism, or acute pyelonephritis may be recognized by radionuclide studies. Data useful in the diagnosis and management of the patient with obstructive or reflux nephropathy also may be obtained. Radionuclide studies in patients with chronic renal failure may reveal such causes as renal artery stenosis, chronic pyelonephritis, or infiltrative renal disease. Finally, nuclear study in transplant recipients is useful to help differentiate rejection from acute tubular necrosis and other causes of reduced renal function

  14. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  15. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  16. Development of Reagents for Application of At-211 to Targeted Radionuclide Therapy of Cancer

    International Nuclear Information System (INIS)

    Wilbur, D. Scott

    2011-01-01

    This grant covered only a period of 4 months as the major portion of the award was returned to DOE due to an award of funding from NIH that covered the same research objectives. A letter regarding the termination of the research is attached as the last page of the Final Report. The research conducted was limited due to the short period of this grant, but the results obtained in that period are outlined in the Final Report. The studies addressed in the research effort were directed at a problem that is of critical importance to the in vivo application of the alpha-particle emitting radionuclide At-211. That problem, low in vivo stability of many astatinated molecules, severely limits the use of At-211 in therapeutic applications. The advances sought in the studies were expected to expand the types of biomolecules that can be used as carriers of At-211, and provide improved in vivo targeting of the radiation dose compared with the dose delivered to normal tissue.

  17. Neutron activation of microspheres containing 165Ho: theoretical and experimental radionuclidic impurities study

    International Nuclear Information System (INIS)

    Squair, Peterson L.; Pozzo, Lorena; Ivanov, Evandro; Osso Junior, Joao A.

    2011-01-01

    The 166 Ho microspheres are potentially interesting for medical applications for treatment of many tumors. The internal radionuclide therapy can use polymer or glass device that provides structural support for the radionuclide. After activation, beta minus emission of 166 Ho (T 1/2 =26.8h, β - E max =1.84 MeV, γ E p =80.6 keV) can be used for therapeutic purposes. The aim of this work is study the influence of radionuclide impurities between End of Bombardment (EOB) and the medical application. The appropriate specific activities and purity along decay should be adequate for their safe and efficient medical applications. The good practices on neutron activation techniques are choice a high purity target to avoid production of undesirable radionuclides and when possible with enriched targets to obtain higher specific activity. In this work the target used was Ho 2 O 3 and polymeric microspheres containing holmium acetylacetonate (HoAcAc) manufactured at the Biotechnology Center-IPEN/CNEN-SP. Three conditions were evaluated: preliminary test with 1.0x10 13 n.cm -2 s -1 for 1.0 hour; nowadays maximum capability of IEA-R1 reactor with 5.0x10 13 n.cm -2 s -1 for 64.0 hours and the ideal IEA-R1 operation with 5.0x10 13 n.cm -2 s -1 for 120.0 hours. Considering the sample with 99.9% 165 Ho purity and 0.1% for each impurities elements with its natural abundance, the highest radionuclidic impurity is the Lutetium followed by Ytterbium, Lanthanum and Cerium. The intrinsic radionuclidic impurity of 166 mHo is less relevant. This review is important to identify the radionuclidic purity characteristics of the preliminary studies with different time and flux irradiation. The data produced in this paper will help to define strategies for the production of 166 Ho radioisotope at IEA-R1 IPEN/CNEN-SP reactor. (author)

  18. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Riccabona, G.

    2001-01-01

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β - emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  19. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  20. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    Science.gov (United States)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  1. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    Quinn, T.P.

    2003-01-01

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99m Tc and 188 Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  2. Tomographic imaging

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Tomography is used to image anatomy of organs as in the case of CT and MRI or image body functions as in the case of SPECT and PET. The theory of reconstruction applies equally well to CT, SPECT and PET with a minor differences. The main difference between SPECT and PET is that SPECT images single photon emitters (radionuclides) which emit normal gamma rays (like Tc-99m), whereas PET images positron emitting radionuclides such as O 15 or F 18 . The word tomography means drawing of the body. Every tomography results in an image of the inside of the body and is represented as a slice. (author)

  3. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ - supplementary report

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Jr, D E; Pleasant, J C; Killough, G G

    1980-05-01

    The purpose of this report is to describe revisions in the SFACTOR computer code and to provide useful documentation for that program. The SFACTOR computer code has been developed to implement current methodologies for computing the average dose equivalent rate S(X reverse arrow Y) to specified target organs in man due to 1 ..mu..Ci of a given radionuclide uniformly distributed in designated source orrgans. The SFACTOR methodology is largely based upon that of Snyder, however, it has been expanded to include components of S from alpha and spontaneous fission decay, in addition to electron and photon radiations. With this methodology, S-factors can be computed for any radionuclide for which decay data are available. The tabulations in Appendix II provide a reference compilation of S-factors for several dosimetrically important radionuclides which are not available elsewhere in the literature. These S-factors are calculated for an adult with characteristics similar to those of the International Commission on Radiological Protection's Reference Man. Corrections to tabulations from Dunning are presented in Appendix III, based upon the methods described in Section 2.3. 10 refs.

  4. Physics and imaging for targeting of oligometastases.

    Science.gov (United States)

    Yin, Fang-Fang; Das, Shiva; Kirkpatrick, John; Oldham, Mark; Wang, Zhiheng; Zhou, Su-Min

    2006-04-01

    Oligometastases refer to metastases that are limited in number and location and are amenable to regional treatment. The majority of these metastases appear in the brain, lung, liver, and bone. Although the focus of interest in the past within radiation oncology has been on the treatment of intracranial metastases, there has been growing interest in extracranial sites such as the liver and lung. This is largely because of the rapid development of targeting techniques for oligometastases such as intensity-modulated and image-guided radiation therapy, which has made it possible to deliver single or a few fractions of high-dose radiation treatments, highly conformal to the target. The clinical decision to use radiation to treat oligometastases is based on both radiobiological and physics considerations. The radiobiological considerations involve improvement of treatment schema for time, dose, and volume. Areas of interests are hypofractionation, tumor and normal tissue tolerance, and hypoxia. The physics considerations for oligometastases treatment are focused mainly on ensuring treatment accuracy and precision. This article discusses the physics and imaging aspects involved in each step of the radiation treatment process for oligometastases, including target definition, treatment simulation, treatment planning, pretreatment target localization, radiation delivery, treatment verification, and treatment evaluation.

  5. Standardized high current solid targets for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    Al-Jammaz, Ibrahim

    2000-01-01

    The Cyclotron and Radiopharmaceuticals Department (CRP) is an advanced and modern facility that encompasses two essential components: radioisotope research, and radiopharmaceuticals manufacturing. Radiopharmaceuticals manufacturing program is not only quite unique, but also an essential component of King Faisal Specialist Hospital and Research Center (KFSH and RC) in providing quality patient care for the population of the Kingdom. Accurate diagnosis and therapy with medical imaging equipment requires quality radiopharmaceuticals that are available readily and with reliability. The CRP Department provides that quality and reliability. Research activities of the CRP Department are focused on developing new radiotracers with potential usefulness in biomedical research and clinical applications. Research projects consist of: developing cyclotron targetry for radioisotope production; developing synthesis methods for radiolabeling biomolecules; and developing analytical methods for quality control. The CRP Department operates a semi-commercial radiopharmaceuticals manufacturing program that supplies the diagnostic radioactive products to several hospitals in the Kingdom and neighboring countries. These products for clinical applications are produced according to the international standards of Good Manufacturing Practices of quality and efficacy. At the heart of the radioisotope program is a medium energy cyclotron capable of accelerating a number of particles for transformation of non-radioactive atoms into radionuclides that are the primary sources for research and development activities, and for preparing radiopharmaceuticals. In addition to having the only cyclotron facility in the region, KFSH and RC also has the only Positron Emission Tomography Center (PET) in this part of the world. This combination of cyclotron and the ultra modern PET facility translates into advanced and specialized care for the patients at KFSH and RC

  6. Radionuclide evaluation of renal transplants

    International Nuclear Information System (INIS)

    Yang Hong; Zhao Deshan

    2000-01-01

    Radionuclide renal imaging and plasma clearance methods can quickly quantitate renal blood flow and function in renal transplants. They can diagnose acute tubular necrosis and rejection, renal scar, surgical complications such as urine leaks, obstruction and renal artery stenosis after renal transplants. At the same time they can assess the therapy effect of renal transplant complications and can also predict renal transplant survival from early post-operative function studies

  7. Target recognition of ladar range images using even-order Zernike moments.

    Science.gov (United States)

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  8. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  9. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  10. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  11. Photoacoustic imaging of tumor targeting with biotin conjugated nanostructured phthalocyanine assemblies

    Science.gov (United States)

    Lee, Seunghyun; Li, Xingshu; Lee, Dayoung; Yoon, Juyoung; Kim, Chulhong

    2018-02-01

    Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice's whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.

  12. Nanobody: the "magic bullet" for molecular imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.

  13. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    International Nuclear Information System (INIS)

    Borghuis, Sander; Brown, Justin; Steenhuisen, Frits; Skorve, Johnny

    2000-01-01

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240 Pu and to large extent 137 Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90 Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  14. Targeting radiation to tumours

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Greater Glasgow Health Board, Glasgow

    1994-01-01

    Biologically targeted radiotherapy entails the preferential delivery of radiation to solid tumours or individual tumour cells by means of tumour-seeking delivery vehicles to which radionuclides can be conjugated. Monoclonal antibodies have attracted attention for some years as potentially selective targeting agents, but advances in tumour and molecular biology are now providing a much wider choice of molecular species. General radiobiological principles may be derived which are applicable to most forms of targeted radiotherapy. These principles provide guidelines for the appropriate choice of radionuclide in specific treatment situations and its optimal combination with other treatment modalities. In future, the availability of gene targeting agents will focus attention on the use of Auger electron emitters whose high potency and short range selectivity makes them attractive choices for specific killing of cancer cells whose genetic peculiarities are known. (author)

  15. Research on the underwater target imaging based on the streak tube laser lidar

    Science.gov (United States)

    Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan

    2018-03-01

    A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.

  16. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  17. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Fenster, Aaron; Ward, Aaron D

    2018-03-01

    Magnetic resonance imaging (MRI)-targeted, three-dimensional (3D) transrectal ultrasound (TRUS)-guided prostate biopsy aims to reduce the 21-47% false-negative rate of clinical two-dimensional (2D) TRUS-guided systematic biopsy, but continues to yield false-negative results. This may be improved via needle target optimization, accounting for guidance system errors and image registration errors. As an initial step toward the goal of optimized prostate biopsy targeting, we investigated how needle delivery error impacts tumor sampling probability for two targeting strategies. We obtained MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident assessed these MR images and contoured 81 suspicious regions, yielding tumor surfaces that were registered to 3D TRUS. The biopsy system's root-mean-squared needle delivery error (RMSE) and systematic error were modeled using an isotropic 3D Gaussian distribution. We investigated two different prostate tumor-targeting strategies using (a) the tumor's centroid and (b) a ring in the lateral-elevational plane. For each simulation, targets were spaced at equal arc lengths on a ring with radius equal to the systematic error magnitude. A total of 1000 biopsy simulations were conducted for each tumor, with RMSE and systematic error magnitudes ranging from 1 to 6 mm. The difference in median tumor sampling probability and probability of obtaining a 50% core involvement was determined for ring vs centroid targeting. Our simulation results indicate that ring targeting outperformed centroid targeting in situations where systematic error exceeds RMSE. In these instances, we observed statistically significant differences showing 1-32% improvement in sampling probability due to ring targeting. Likewise, we observed statistically significant differences showing 1-39% improvement in 50% core involvement probability due to ring targeting. Our results suggest that the optimal targeting scheme for prostate biopsy depends on

  18. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  19. 135La as an auger-electron emitter for targeted internal radiotherapy

    DEFF Research Database (Denmark)

    Fonslet, Jesper; Lee, Boon Quan; Tran, Thuy A.

    2018-01-01

    Introduction: 135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, imaging characteristics, and dosimetry related to 135La therapy. Methods and Results: 135La was produced by 16.5 Me....... The generated Auger spectrum was used to recalculate cellular S-factors. Conclusion: 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy. ....... recovered > 98 % of the 135La with an effective molar activity of 70 ±20 GBq/µmol. To better assess cellular and organ dosimetry of this nuclide, we have recalculated the X-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade...

  20. Target recognition of log-polar ladar range images using moment invariants

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  1. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    Science.gov (United States)

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  2. Progress of radionuclide diagnostic methods in central nervous system diseases

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Zen'kovich, S.G.

    1982-01-01

    A summarry on modern radionuclide diagnosis achivements of central nervous system diseases is presented. Most optimal tumorotropic preparations and compounds in the view of decreasing irradiation does and optimazing image are given

  3. Speciation analysis of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.

    2010-01-01

    Full text: Naturally occurring and artificially produced radionuclides in the environment can be present in different physico-chemical forms (i. e. radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, complexing ability etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time dependent transformation processes such as mobilization of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, however, the original distribution of radionuclides deposited in ecosystems will change over time and influence the ecosystem behaviour. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews fractionation techniques which should be utilised for radionuclide speciation purposes. (author)

  4. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera.

    Science.gov (United States)

    Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J

    2010-08-01

    We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, pstress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a

  5. Identification of hip surface arthroplasty failures with TcSC/TcmDP radionuclide imaging

    International Nuclear Information System (INIS)

    Thomas, B.J.; Amstutz, H.C.; Mai, L.L.; Webber, M.M.

    1982-01-01

    The roentgenographic identification of femoral component loosening after hip surface arthroplasty is often impossible because the metallic femoral component obscures the bone-cement interface. The use of combined technetium sulfur colloid and technetium methylene diphosphonate radionuclide imaging has been especially useful in the diagnosis of loosening. In 40 patients, follow-up combined TcSC and TcmDP scans at an average of three, nine, and 27 months postoperation revealed significant differences in the isotope uptakes in patients who had loose prostheses compared with those without complications. Scans were evaluated by first dividing them into eight anatomical regions and then rating the uptake in each region or 'zone' on a five-point scale. Results were compared using the Student's t-test and differences were noted between normal controls and patients who had femoral component loosening. Combining both TcSC and TcmDP studies increased the statistical significance obtained when comparing patients who had complications to those in the control group

  6. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  7. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    Science.gov (United States)

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  8. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  9. Quantitative radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Scholz, P.M.; Rerych, S.K.; Moran, J.F.; Newman, G.E.; Douglas, J.M.; Sabiston, D.C. Jr.; Jones, R.H.

    1980-01-01

    This study introduces a new method for calculating actual left ventricular volumes and cardiac output from data recorded during a single transit of a radionuclide bolus through the heart, and describes in detail current radionuclide angiocardiography methodology. A group of 64 healthy adults with a wide age range were studied to define the normal range of hemodynamic parameters determined by the technique. Radionuclide angiocardiograms were performed in patients undergoing cardiac catherization to validate the measurements. In 33 patients studied by both techniques on the same day, a close correlation was documented for measurement of ejection fraction and end-diastolic volume. To validate the method of volumetric cardiac output calcuation, 33 simultaneous radionuclide and indocyanine green dye determinations of cardiac output were performed in 18 normal young adults. These independent comparisons of radionuclide measurements with two separate methods document that initial transit radionuclide angiocardiography accurately assesses left ventricular function

  10. Radionuclides in thyroid cancer

    International Nuclear Information System (INIS)

    Mahadev, V.

    1980-01-01

    The three main areas of application of radionuclides in thyroid disease will be reviewed. Firstly thyroid radionuclide imaging in thyroid swellings, in relationship to lumps in the neck and ectopic thyroid tissue such as retrosternal goitre, and lingual goitre will be described. Future developments in the field including tomographic scanning, using the coded aperture method, and fluorescent scans and ultrasound are reviewed. The second area of application is the assessment and evaluation of thyroid function and the therapy of Grave's Disease and Plummer's Disease using radioiodine. The importance of careful collection of the line of treatment, results of treatment locally and the follow-up of patients after radioiodine therapy will be described. The third area of application is in the diagnosis and therapy of thyroid cancer. Investigation of thyroid swelling, and the diagnosis of functioning metastases are reported. The therapeutic iodine scan as the sole evidence of functioning metastatic involvement is recorded. Histological thyroid cancer appears to be increasingly encountered in clinical practice and the plan of management in relation to choice of cases for therapeutic scanning is discussed with case reports. Lastly the role of whole body scanning in relationship to biochemical markers is compared. In the changing field of nuclear medicine radionuclide applications in thyroid disease have remained pre-eminent and this is an attempt to reassess its role in the light of newer developments and local experience in the Institute of Radiotherapy, Oncology and Nuclear Medicine. (author)

  11. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    Science.gov (United States)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  12. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  13. Genitourinary imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The application of radionuclide studies in nephrology, urology, and gynecology has reached a measurable degree of maturity in recent years. However, the utilization of these techniques continues to be less frequent than the clinical advantages would seem to warrant, probably because of the complexities of renal physiology. This complexity has been resulted in the availability of large number of agents for renal studies. It is the functional nature of nuclear medicine studies that provides their tremendous potential for use in evaluation of the kidney, where the pathology of which is so often related to functional derangements rather than to anatomic problems. A familiarity with various measures of renal function and with the effects of these parameters on the handling of the commonly used radiopharmaceuticals is essential to the appropriate use of radionuclide studies. The types of studies commonly used include renal perfusion studies, renal imaging solely for anatomic information, and renal imaging combined with an estimate of renal function. Radionuclide techniques serve a complementary role to radiography, ultrasonography, and computed tomography in the morphologic diagnosis of renal diseases. Urethral abnormalities, bladder diverticula, and minimal distal urethral reflux are better demonstrated with radiographic than nuclear technique, but radionuclide cystography can be helpful for follow-up evaluations. Radionuclide testicular imaging is extremely useful in the differential diagnosis of testicular torsion

  14. Nanobody: The “Magic Bullet” for Molecular Imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  15. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera

    International Nuclear Information System (INIS)

    Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F.; Erlandsson, Kjell; Waddington, Wendy A.; Ell, Peter J.; Sharir, Tali; Roth, Nathaniel; Berman, Daniel S.

    2010-01-01

    We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5±11.8 years of age, 16 men) were injected with 74 MBq of 201 Tl (rest) and 250 MBq 99m Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest 201 Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress 99m Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest 201 Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest 201 Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p 201 Tl D-SPECT acquisition. (orig.)

  16. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    Science.gov (United States)

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  17. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    Monoclonal antibodies (MAbs), with high specificity and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C{sub H}3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering

  18. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C H 3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  19. Preparation of proton rich radionuclides in support of radiochemical analysis

    International Nuclear Information System (INIS)

    Jerome, Simon; Larijani, Cyrus; Parker, David

    2012-01-01

    The production of proton rich radionuclides supports a wide range of radiochemical analyses via radioactive yield tracers ( 95m Tc and 236 Pu). In recent years, NPL and the University of Birmingham cyclotron have collaborated to produce these, and other, radionuclides. - Highlights: ► In this paper we options for the production of Tc and Pu tracers. ► The irradiation and measurement of targets producing Tc-95 m and Pu-236 are described. ► Options for production are discussed. ► The results of this study and future work needed are described.

  20. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  1. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  2. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  3. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Science.gov (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  4. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Science.gov (United States)

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  5. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  6. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  7. Design and implementation of typical target image database system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  8. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  9. Clinical significant of three phase radionuclide bone scan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hee; Suh, Jin Suck; Park, Chang Yun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-04-15

    Three phase radionuclide bone scan, consisting of a radionuclide angiogram, an immediate postinjection blood pool image, and 4hr delayed images, was randomly performed in 182 patients, who had been suffered from either local pain or tenderness. Authors analysed 3 phase bone scan in 74 patients with correct diagnosis proven surgically or clinically, from July 1987 to August, 1988. The results were as follows: 1. Overall sensitivity of 3 phase bone scan was 85.4%: sensitivity in patients with an osseous lesion was 90.4% as opposed to 72.7% in patients with a nonosseous lesion. 2. There was no difference in the detection rate of the osseous lesions between the 3 phase bone scan and the delayed image bone scan. However, because the detection rate was higher on the 3 phase bone scan than it was on only the delayed image bone scan (55%) in instance of the nonosseous lesion, we would suggest that 3 phase bone scan might be obtained in cases suspected of the nonosseous lesions. 3. When the presumptive diagnosis was a bone tumor, sensitivity and specificity for malignancy were 67%, 100% respectively. 4. In differentiating osteomyelitis from cellulitis, sensitivity was 94%, specificity was 100%. 5. 3 phase bone scan was able to provide the precise information about either vasculaturity or localization of lesion in some cases of soft tissue mass and avascular necrosis of hips.

  10. Test Targets 2.0 and Digital Imaging

    Directory of Open Access Journals (Sweden)

    Robert Chung

    2003-04-01

    Full Text Available Current color management systems, based on a modular approach, enable color portability and mass customization of digital images for print. Because of the non-specific nature of the workflow, implementation of ICC-based color management becomes the responsibility of the user. As such the performance of ICC-based CMS is often unknown and has caused much confusion and slow adoption in the printing and publishing industries. To demonstrate how ICC-based color management can be implemented in a number of workflows, this paper describes a project, called Test Targets 2.0. A description of the test targets and how they were used for device calibration, device profiling, and color imaging applications under different workflows, e.g., from scanner to press, or digital camera to press, are introduced. Color management should work equally well for color matching applications. Thus, a continuation of the project focuses on device gamut and profile accuracy assessment.

  11. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  12. SAR image dataset of military ground targets with multiple poses for ATR

    Science.gov (United States)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  13. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: Emerging opportunities challenges

    Energy Technology Data Exchange (ETDEWEB)

    Bakht, Martin K.; Oh, So Won; Youn, Hye Won; Cheon, Gi Jeong; Kwak, Cheol; Kang, Keon Wook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-09-15

    Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer.

  14. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: Emerging opportunities challenges

    International Nuclear Information System (INIS)

    Bakht, Martin K.; Oh, So Won; Youn, Hye Won; Cheon, Gi Jeong; Kwak, Cheol; Kang, Keon Wook

    2017-01-01

    Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer

  15. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  16. Chemistry and radiochemistry of As, Re and Rh isotopes relevant to radiopharmaceutical applications: high specific activity radionuclides for imaging and treatment.

    Science.gov (United States)

    Feng, Yutian; Phelps, Tim E; Carroll, Valerie; Gallazzi, Fabio; Sieckman, Gary; Hoffman, Timothy J; Barnes, Charles L; Ketring, Alan R; Hennkens, Heather M; Jurisson, Silvia S

    2017-10-31

    The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77 As, 186,188 Re and 105 Rh are discussed.

  17. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  18. The evolution of radionuclide imaging

    International Nuclear Information System (INIS)

    Rollo, F.D.; Patton, J.A.; Cassen, B.

    1984-01-01

    This chapter briefly describes the evolution of scintillation imaging through the early 1980s. It is difficult, if not impossible, to evaluate the practical roles of current developments with any perspective, historical or otherwise. Waves of enthusiasm come and go. A simple analysis by Cassen of the factors entering into an overall performance index of any scanning or imaging system clearly shows that appreciable advances in instrumentation depend upon more efficient utilization of available gamma photons, and that future advances will depend upon the availability of agents having a greater photon yield and a smaller potential radiation dose. Further, the needs of the referring physician and improvements in other diagnostic modalities will have an impact on the future of nuclear medicine imaging requirements. For example, the availability of 201 T1 for myocardial imaging significantly increased the demand for spatial resolution of the scintillation camera. Likewise, the introduction of gated blood-pool imaging increased the requirements for count rate capabilities and spatial resolution. The need to evaluate the myocardium in the intensive care unit resulted in the development of the portable scintillation camera and computer. On the other hand, the introduction of CT for evaluating the brain had a significant impact on the value of nuclear medicine brain imaging. The impact of digital radiology and nuclear magnetic resonance can only be speculated at this point. If anything, they will probably serve as complements to nuclear medicine procedures in the diagnostic process, with nuclear medicine serving as the primary method of establishing functional information

  19. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  20. submitter Preclinical in vivo application of $^{152}$Tb-DOTANOC: a radiolanthanide for PET imaging

    CERN Document Server

    Müller, Cristina; Johnston, Karl; Köster, Ulli; Schmid, Raffaella; Türler, Andreas; van der Meulen, Nicholas P

    2016-01-01

    Background:Terbium has attracted the attention of researchers and physicians due to the existence of four medically interesting radionuclides, potentially useful for SPECT and PET imaging, as well as for α- and $β^−$-radionuclide therapy. The aim of this study was to produce $^{152}$Tb $(T_{1/2} = 17.5 h, E_{β+av} = 1140 keV)$ and evaluate it in a preclinical setting in order to demonstrate its potential for PET imaging. For this purpose, DOTANOC was used for targeting the somatostatin receptor in AR42J tumor-bearing mice. Methods: $^{152}$Tb was produced by proton-induced spallation of tantalum targets, followed by an online isotope separation process at ISOLDE/CERN. After separation of $^{152}$Tb using cation exchange chromatography, it was directly employed for radiolabeling of DOTANOC. PET/CT scans were performed with AR42J tumor-bearing mice at different time points after injection of $^{152}$Tb-DOTANOC which was applied at variable molar peptide amounts. 177Lu-DOTANOC was prepared and used...

  1. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    International Nuclear Information System (INIS)

    Guo Bao-Feng; Wang Jun-Ling; Gao Mei-Guo

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. (paper)

  2. Astrophysical targets of the Fresnel diffractive imager

    Science.gov (United States)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with

  3. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on 177Lu for radionuclide therapy'

    International Nuclear Information System (INIS)

    2006-01-01

    Radionuclide therapy (RNT) employing radiopharmaceuticals labelled with emitting radionuclides is fast emerging as an important part of nuclear medicine. Radionuclide therapy is effectively utilized for bone pain palliation, thus providing significant improvement in quality of life of patients suffering from pain resulting from bone metastasis. Targeting primary diseases by using specific carrier molecules labelled with radionuclides is also widely investigated and efficacious products have been emerging for the treatment of Lymphoma and Neuroendocrine tumours. In order to ensure the wider use of radiopharmaceuticals, it is essential to carefully consider the choice of radionuclides that together with the carrier molecules will give suitable pharmacokinetic properties and therapeutic efficacy. The criteria for the selection of a radionuclide for radiotherapy are suitable decay characteristics and amenable chemistry. However, the practical considerations in selecting a radionuclide for targeted therapy are availability in high radionuclidic purity as well as high specific activity and low production cost and comfortable delivery logistics. 177 Lu is one of the isotopes emerging as a clear choice for therapy. Worldwide, the isotope is under investigation for approximately 30 different clinical applications, including treatment of colon cancer, metastatic bone cancer, non-Hodgkin's lymphoma, and lung cancer. 177 Lu decays with a half-life of 6.71 d by emission of particles with E max of 497 keV (78.6%), 384 keV (9.1%) and 176 keV (12.2%). It also emits photons of 113 keV (6.4%) and 208 keV (11%), that are ideally suited for imaging the in-vivo localization and dosimetric calculations applying a gamma camera. The physical half-life of 177 Lu is comparable to that of 131 I, the most widely used therapeutic radionuclide. The long halflife of 177 Lu provides logistic advantage for production, QA/QC of the products as well as feasibility to supply the products to places

  4. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  5. Influence of break structures on the distribution of radionuclides in bottom sediments of the Kyiv reservoir

    International Nuclear Information System (INIS)

    Shestopalov, V.M.; Lyal'ko, V.I.; Fedorovskij, A.D.; Sirenko, L.A.; Khodorovskij, A.Ya.

    2000-01-01

    We study the distribution of radionuclides in bottom sediments of the Kyiv reservoir on the basis of research of adjacent territory break - block structures with deciphering space-born images and ground measurements and forecast the occurrence of extreme situations due to the redistribution of bottom water flows and sediments of radionuclides

  6. Chromatographic purification of neutron capture molybdenum-99 from cross-contaminant radionuclides

    International Nuclear Information System (INIS)

    Mostafa, M.A.M.

    2011-01-01

    Technetium-99m is called the work horse, for many reasons, in nuclear medicine diagnostic purposes. It is produced as the β - decay of 99 Mo radionuclide. Molybdenum-99 gel type generators are considered as a suitable alternative of the conventional chromatographic alumina columns loaded with fission molybdenum-99. 99 Mo neutron-capture is cross-contaminated with radionuclides originated from activation of chemical impurities in the Mo target such 60 C0, 65 Zn, 95 Zr, 175 Hf, 181 Hf, 86 Rb, 134 Cs, 141 Ce, 152 Eu, 140 La, 51 Cr, 124 Sb, 46 Sc, 54 Mn, 59 Fe and / or fast neutrons interactions with the stable isotopes of molybdenum such as 92m Nb, 95 Nb and 95 Zr. To prevent contamination of the eluted 99m Tc, successive purification methods were made. After complete dissolution of the irradiated target wrapped with thin Al foil in 5 M NaOH solution, hydrogen peroxide was added to start precipitation of Fe(OH) 3 . The formed Fe (III) minerals allow complete elimination of some radio contaminants from the molybdate solute such as 152 Eu, 140 La, 141 Ce, 45 Mn and 92m Nb in addition to partial elimination of 46 Sc, 60 Co and 59 Fe radionuclides. The remaining supernatant was acidified by concentrated nitric acid to ph 9.5 for precipitation of Al(OH) 3 with complete elimination of radio contaminants such as 95 Zr 175 Hf, 181 Hf, 65 Zn, 124 Sb, 51 Cr, 46 Sc, 60 Co and 59 Fe. 134 Cs and 86 Rb radionuclides were not affected by precipitation of Fe(OH) 3 or Al(OH) 3 . Chromatographic column of potassium nickel hexacyanoferrate (II) (KNHCF) has high affinity towards elimination of 134 Cs and 86 Rb radionuclides. Highly pure molybdate- 99 Mo solution was processed for preparation of zirconium molybdate gel generator with 99m Tc eluate of high radionuclidic, radiochemical and chemical purity suitable for use in medical purposes.

  7. Concentration factors of radionuclides in the marine organisms

    International Nuclear Information System (INIS)

    1996-03-01

    Parameters related to the bioconcentration of radionuclides in the marine were shown by 'Assessment and guideline to the target value of dose in the environment of the power light water reactor facilities' (Nuclear Safety Commission), but the guideline data did not contain Ru and Ce relating to the reprocessing plant. So that more new data than these of 'Technical Reports Series No. 247' (published by IAEA in 1985) were mainly collected. Especially the data of nuclides with poor data of concentration factors (CF) and natural radionuclides (Po-210, Pb-210) were gathered. These data were pigeonholed and many tables (element, kinds of organisms, experimental methods) were made by separating the general remarks from the original experimental reports. The contents of this report are given as under, history of concentration factor (CF), determination method of CF, CF calculation method, calculation models related to CF, tables of metabolic parameters, tables of CF, the present conditions of studies for uptake of radionuclides with long half-life into the marine organisms, CF abstract tables and trial calculation of human exposure by eating the marine organisms. (S.Y.)

  8. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  9. The influence of radionuclides on synovitis and its assessment by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Shortkroff, S

    2000-06-01

    Radionuclide synovectomy uses radiation attached to a carrier injected directly into the joint space to ablate excess synovial tissue in a rheumatoid joint. This procedure has met with criticism since its inception and remains controversial today. The main concern has been the potential for leakage of radioactivity from the joint space to nontarget organs. With persistent immune driven inflammation and increasing evidence of an altered fibroblastic population persistent in the rheumatoid joint, there is renewed impetus to reassess this treatment as an alternative to surgical intervention. Until novel treatments can be devised to target these altered, invasive fibroblasts, their removal is of primary significance to safeguarding the rheumatoid joint from destruction. On the premise that a micron size particle will decrease leakage to non-target organs, the initial aim of this thesis was to assess leakage rates of a number of potential biodegradable carriers for radionuclide synovectomy, as alternatives to {sup 90}Y-silicate. Analyses of a new carrier, hydroxyapatite (HA) labeled with {sup 90}Y, were performed. In vitro experiments indicated that despite cellular absorption of HA, the majority of the radioactivity remained associated with the particle and/or the cell, consistent with the leakage results. In vivo studies investigated short-term effects of radionuclides injected into the joint and the potential of magnetic resonance imaging for a non-invasive estimation of the degree of inflammation. The antigen induced arthritis (AIA) rabbit model was used to compare histology with joint diameter measurements and MRI analysis before and three days after treatment with {sup 90}Y-HA, intra-articular corticosteroid or both. Joint diameters decreased by 75% with corticosteroid and with combined treatment but remained unchanged for {sup 90}Y-HA. Similarly, the histologic inflammatory scores were 1.6, 2.0 and 2.9 for steroid, steroid/{sup 90}Y-HA and {sup 90}Y

  10. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    Science.gov (United States)

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  11. Nuclear medicine imaging in podiatric disorders

    International Nuclear Information System (INIS)

    Karl, R.D. Jr.; Hammes, C.S.

    1988-01-01

    Radionuclide scanning is a valuable diagnostic tool based on metabolic and anatomic imaging. When used in the appropriate clinical setting, radionuclide imaging is a sensitive, minimally invasive imaging modality that detects and differentiates skeletal from nonskeletal pathology in the painful foot. Isotopic scanning is of particular value in the evaluation of the diabetic foot and in the subsequent follow-up of response to therapy.72 references

  12. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib

    NARCIS (Netherlands)

    J. Nonnekens (Julie); M. van Kranenburg (Melissa); C.E.M.T. Beerens (Cecile); M. Suker (Mustafa); M. Doukas (Michael); C.H.J. van Eijck (Casper); M. de Jong (Marcel); D.C. van Gent (Dik)

    2016-01-01

    textabstractMetastases expressing tumor-specific receptors can be targeted and treated by binding of radiolabeled peptides (peptide receptor radionuclide therapy or PRRT). For example, patients with metastasized somatostatin receptor-positive neuroendocrine tumors (NETs) can be treated with

  13. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  14. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross section...

  15. Impact of 4D image quality on the accuracy of target definition

    DEFF Research Database (Denmark)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas

    2016-01-01

    that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal...

  16. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  17. The use of radionuclide skeleton visualization method in hygienic studies

    International Nuclear Information System (INIS)

    Likutova, I.V.; Bobkova, T.E.; Belova, E.A.; Bogomazov, M.Ya.

    1984-01-01

    Inhalation, intragastric and combined effect of two cadmium compounds on rats is studied. Investigations are performed by biochemical methods and the method of radionuclide visualization of the skeleton which was performed delta hours after RPP introduction in gamma-chamber with computer tape recording for the following mathematical treatment of the image. Using the method of radionuclide skeleton visualization pronounced quantitative characteristics of changes in the bone tissue are obtained, it is found that dose dependence of these changes is especially important when estimating the complex effect. Biochemical methods, are used to find alterations, however they have not been assessed quantitatively

  18. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  19. Macrocyclic complexes of radionuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Majkowska, A.; Bilewicz, A.

    2008-01-01

    The use of radiometal-labeled small complexes and biomolecules as diagnostic and therapeutic agents is a relatively new area of medical research. Radiopharmaceuticals are radiolabeled molecules designed to deliver ionizing radiation doses to specific disease sites. Between the targeting biomolecule and a radionuclide a bifunctional ligand is inserted, one end of which is covalently attached to the targeting molecule either directly or through a linker whereas the other strongly coordinates a metallic radionuclide. Selection of a bifunctional ligand is largely determined by the nature and oxidation state of a metal ion. The metal chelate can significantly affect the tumor uptake and biodistribution of radiopharmaceuticals based on small biomolecules. This is because in many cases the metal chelate contributes greatly to the overall size and lipophilicity of the radiopharmaceutical. Therefore, the design and selection of the ligand is very important for the development of a clinically useful therapeutic agent. The requirement for high thermodynamic and kinetic stability of the metal complex is often achieved through the use of macrocyclic ligands with a functionalized arm for covalent bonding to the biomolecule. In this review synthesis of bifunctional macrocyclic ligands and properties of radionuclide macrocyclic complexes used in nuclear medicine are presented. We describe results in two areas: substituted macrocyclic aza ligands for chelation of hard metal cations, and macrocycles containing sulphur for complexation of soft metal cations. Special attention was paid to stability of the complexes as well as to their lipophilicity, which affect biological properties of the formed radiopharmaceuticals. We also include a forecast of the near-term opportunities that are likely to determine practice in the next few years. (authors)

  20. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  1. RGD peptide-targeted polyethylenimine-entrapped gold nanoparticles for targeted CT imaging of an orthotopic model of human hepatocellular carcinoma

    Science.gov (United States)

    Zhou, Benqing; Wang, Meng; Zhou, Feifan; Song, Jun; Qu, Junle; Chen, Wei R.

    2018-02-01

    We report the synthesis and characterization of arginine-glycine-aspartic acid (RGD) peptide-targeted polyethylenimine (PEI)-entrapped gold nanoparticles (RGD-Au PENPs) for targeted CT imaging of hepatic carcinomas in situ. In this work, PEI sequentially modified with polyethylene glycol (PEG), and RGD linked-PEG was used as a nanoplatform to prepare AuNPs, followed by complete acetylation of PEI surface amines. We showed that the designed RGD-Au PENPs were colloidally stable and biocompatible in the given concentration range, and could be specifically taken up by αvβ3 integrin-overexpressing liver cancer cells in vitro. Furthermore, in vivo CT imaging results revealed that the particles displayed a great contrast enhancement of hepatic carcinomas region, and could target to hepatic carcinomas region in situ. With the proven biodistribution and histological examinations in vivo, the synthesized RGD-Au PENPs show a great formulation to be used as a contrast agent for targeted CT imaging of different αvβ3 integrin receptoroverexpressing tumors.

  2. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    Directory of Open Access Journals (Sweden)

    Xiaozhou Fan

    Full Text Available To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45, and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles.

  3. Target acquisition performance : Effects of target aspect angle, dynamic imaging and signal processing

    NARCIS (Netherlands)

    Beintema, J.A.; Bijl, P.; Hogervorst, M.A.; Dijk, J.

    2008-01-01

    In an extensive Target Acquisition (TA) performance study, we recorded static and dynamic imagery of a set of military and civilian two-handheld objects at a range of distances and aspect angles with an under-sampled uncooled thermal imager. Next, we applied signal processing techniques including

  4. Diagnostic imaging of the diabetic foot

    International Nuclear Information System (INIS)

    Ranachowska, C.; Lass, P.; Korzon-Burakowska, A.; Dobosz, M.

    2010-01-01

    Diabetic foot syndrome is a significant complication of diabetes. Diagnostic imaging is a crucial factor determining surgical decision and extent of surgical intervention. At present the gold standard is MRI scanning, whilst the role of bone scanning is decreasing, although in some cases it brings valuable information. In particular, in early stages of osteitis and Charcot neuro-osteoarthropathy, radionuclide imaging may be superior to MRI. Additionally, a significant contribution of inflammation-targeted scintigraphy should be noted. Probably the role of PET scanning will grow, although its high cost and low availability may be a limiting factor. In every case, vascular status should be determined, at least with Doppler ultrasound, with following conventional angiography or MR angiography. (authors)

  5. Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection

    OpenAIRE

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [59Fe]-superparamagnetic iron oxide nanoparticles ([59Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. 59Fe was incorporated into Fe3O4 nanoparticle cry...

  6. Introduction: the changing face of accelerator target physics and chemistry

    International Nuclear Information System (INIS)

    Sunderland, J.J.

    1992-01-01

    The explosive growth of the small accelerator industry, an offshoot of the expansion of both clinical and research PET imaging, is driving a changing perspective in the field of accelerator targetry. To meet the new demands placed on targetry by the increasingly active and demanding PET institutions it has become necessary to design targets capable of producing large amounts of the four common positron-emitting radionuclides ( 15 O, 13 N, 11 C, 18 F) with unfailing reliability and simplicity. The economic clinical and research survival of PET absolutely relies upon these capabilities. In response to this perceived need, the lion's share of the effort in the field of target physics and chemistry is being directed toward the profuse production of these four common radioisotopes. (author)

  7. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  8. Biomedical research and application utilizing cyclotron produced radionuclides. Progress report, January 1 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.

    1977-01-01

    Progress is reported on cyclotron production of short-lived positron-emitting radionuclides ( 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, and 48 Cr) for use in the preparation labelled compounds for metabolic research in patients and animals. The chemical preparation of radiopharmaceuticals labelled with cyclotron-produced radionuclides for pancreas and tumor scanning is discussed. The imaging capabilities of a total organ kinetic imaging monitor (TOKIM) gamma camera system operated in the positron coincidence mode were improved with the addition of computerized iterative correction procedures

  9. Excretion of radionuclides in human breast milk after nuclear medicine examinations. Biokinetic and dosimetric data and recommendations on breastfeeding interruption

    Energy Technology Data Exchange (ETDEWEB)

    Liepe, K. [GH Hospital Frankfurt/Oder, Department of Nuclear Medicine, Frankfurt an der Oder (Germany); Becker, A. [GH Hospital Frankfurt/Oder, Department of Internal Medicine, Frankfurt an der Oder (Germany)

    2016-05-15

    Since the 1990s the advantages of breastfeeding have been emphasized and the number of women who nurse their infant has increased significantly. Although women in this population are generally healthy and relatively rarely need radionuclide imaging or radionuclide therapies, the issue of radiation protection of breastfed children arises because of their higher radiosensitivity. Approximately 55 papers on excretion of radionuclides in human breast milk after radionuclide imaging or therapy have been published. Unfortunately, most of them are case reports or include only a small number of cases. In 1955 the first report was published about a breastfeeding woman after radioiodine treatment of thyrotoxicosis. This early study showed a higher concentration of radioiodine in breast milk than in plasma and investigated the risk to the infant, especially to the thyroid gland.

  10. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  11. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Allen, S.E.; Horrill, A.D.; Howard, B.J.; Lowe, V.P.W.; Parkinson, J.A.

    1983-07-01

    The subject is discussed under the headings: concentration and spatial distribution of radionuclides in grazed and ungrazed saltmarshes; incorporation of radionuclides by sheep grazing on an estuarine saltmarsh; inland transfer of radionuclides by birds feeding in the estuaries and saltmarshes at Ravenglass; radionuclides in contrasting types of coastal pastures and taken up by individual plant species found in west Cumbria; procedures developed and used for the measurement of alpha and gamma emitters in environmental materials. (U.K.)

  12. Report of the consultants' meeting on comparative laboratory evaluation of therapeutic radionuclides and radiopharmaceuticals

    International Nuclear Information System (INIS)

    1999-12-01

    Therapeutic radiopharmaceuticals consist of two components - the radionuclide and the biological carrier. With regard to the radionuclide, an advantage of targeted radiotherapy is that there are a wide variety of radionuclides with different physical half-lives and radiation qualities that can be applied for this purpose. An important task is to select a radionuclide that is compatible with the needs of a particular clinical application. The identification of the ideal targeted radiotherapeutic for each potential clinical application is a difficult task because of the multitude of variables that must be considered, some relating to the radioisotope, and others to the biological carrier. Hence it is recommended that a Co-ordinated Research Programme be established by the Agency to enable participants to acquire and intercompare the methodological expertise to evaluate the relative merit of therapeutic radiopharmaceuticals. These studies will be performed using a model system selected either from those described in this report or a promising agent that has emerged in the time since this meeting. The molecular carrier will be labelled with 131 I, 125 I as well as other therapeutic radionuclides available to the participant (for example, 90 Y, 186 Re, 188 Re, 153 Sm, 166 Ho, 165 Dy). The potential radiopharmaceuticals will then be compared in a progression of studies evaluating biological integrity after labelling, internalisation and residualization of radioactivity in the tumour cell, in vitro cytotoxicity, tissue distribution, normal organ toxicity (determination of the maximum tolerated dose) and finally, therapeutic efficacy

  13. Radionuclide data

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Chapter 8 presents tables on selected alpha, beta, gamma and x-ray emitters by increasing energy; information on specific activity for selected radionuclides; naturally occurring radionuclides; the natural decay series; and the artificially produced neptunium series. A table of alpha emitters is listed by increasing atomic number and by energy. The table of β emitters presented is useful in identifying β emitters whose energies and possibly half-lives have been determined by standard laboratory techniques. It is also a handy guide to β-emitting isotopes for applications requiring specific half-lives and/or energies. Gamma rays for radionuclides of importance to radiological assessments and radiation protection are listed by increasing energy. The energies and branching ratios are important for radionuclide determinations with gamma spectrometry detectors. This section also presents a table of x-ray energies which are useful for radiochemical analyses. A number of nuclides emit x-rays as part of their decay scheme. These x-rays may be counted with Ar proportional counters, Ge planar or n-type Ge co-axial detectors, or thin crystal NaI(T1) scintillation counters. In both cases, spectral measurements can be made and both qualitative and quantitative information obtained on the sample. Nuclear decay data (energy and probability by radiation type) for more than one hundred radionuclides that are important to health physicists are presented in a schematic manner

  14. Evaluation of residual radioactivity and dose rate of a target assembly in an IBA cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Kim, Young Ju; Lee, Seung Wook [School of Mechanical Engineering, Pusan National University (Korea, Republic of)

    2016-12-15

    When a cyclotron produces 18F-, accelerated protons interact with metal parts of the cyclotron machine and induces radioactivity. Especially, the target window and chamber of the target assembly are the main parts where long-lived radionuclides are generated as they are incident by direct beams. It is of great importance to identify radionuclides induced in the target assembly for the safe operation and maintenance of a cyclotron facility. In this study, we analyzed major radionuclides generated in the target assembly by an operation of the Cyclotron 18/9 machine and measured dose rates after the operation to establish the radiation safety guideline for operators and maintenance personnel of the machine. Gamma spectroscopy with HPGe was performed on samples from the target chamber and Havar foil target window to identify the radionuclides generated during the operation for production of 18F-- isotope and their specific activity. Also, the dose rates from the target were measured as a function of time after an operation. These data will help improve radiological safety of operating the cyclotron facilities.

  15. Development of radionuclide inventory estimation method using scaling factor for the Korean NPPs: scope and status

    International Nuclear Information System (INIS)

    Hwang, Ki Ha; Lee, Sang Chul; Kang, Sang Hee; Lee, Kun Jai; Jeong, Chan Woo; Ahn, Sang Myeon; Kim, Tae Wook; Kim, Kyoung Doek; Herr, Y. H.

    2003-01-01

    Regulations and guidelines for radionuclide waste disposal require detailed information about the characteristics of radioactive waste drums prior to the transport to the disposal sites. Therefore, it is important to know the accurate radionuclide inventory of radioactive waste. However, estimation of radionuclide concentrations on drummed radioactive waste is difficult and unreliable. In order to overcome these difficulties, scaling factors have been used to assess the activities of radionuclides which could not be directly analyzed. A radionuclides assay system has been operated at Korean nuclear power plant (KORI site) since 1996 and consolidated scaling factor concept has played a dominant role in determination of radionuclides concentrations. For corrosion product radionuclides, generic scaling factors were used due to the similar trend and better-characterized properties of Korean analyzed data compared to the worldwide database. It is not easy to use the generic scaling factors for fission product and TRU radionuclides. Thus simple model reflecting the history of the operation of power plant and nuclear fuel condition is applied. However, some problems are still remained. For examples, disparity between the actual and ideal correlation pairs, inaccuracy of analyzed sample values, uncertainty in representative of derived scaling factor values and so on. As a result, the correlation ratios are somewhat dispersive. So it is planned to establish an assay system using more improved scaling factors. In this study, the scope of research is expanded and planned such as following. 1) Considering more assay target nuclides, 2) Considering more target NPPs, 3) More reliable sampling and measurement techniques, 4) Improvement of accuracy and representativeness of derived scaling factor values and 5) Conformation of correlation pairs based on Korean analyzed data. As this study progresses, it is possible to get more accurate and reliable prediction for the information of

  16. Potassium cardioplegia: early assessment by radionuclide ventriculography

    International Nuclear Information System (INIS)

    Ellis, R.J.; Born, M.; Feit, T.; Ebert, P.A.

    1978-01-01

    Left ventricular function was evaluated by single pass /sup 99m/Tc radionuclide ventriculography when potassium cardioplegia was combined with hypothermia. In 35 patients undergoing myocardial revascularization (3 CABG/patient) in which potassium cardioplegia at 4 0 C was used, no patient developed a myocardial infarction either by electrocardiogram or /sup 99m/Tc pyrophosphate imaging in the postoperative period. In 22 patients, aortic cross-clamp time was greater than 60 min, and the ejection fraction by the single pass radionuclide technique was 50% preoperatively and 53% postoperatively (NS). Wall motion in the single RAO view was not worse postoperatively. No patient required any inotropic agents in the immediate postoperative period. It appears that no significant ventricular impairment occurred in the immediate postoperative period (48 to 72 hours) when potassium cardioplegia combined with hypothermia was used for a 60-minute period

  17. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  18. Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Antonio Plaza

    2010-01-01

    Full Text Available Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the spectral domain, and this information can be used to address detection tasks in many applications. In many surveillance applications, the size of the objects (targets searched for constitutes a very small fraction of the total search area and the spectral signatures associated to the targets are generally different from those of the background, hence the targets can be seen as anomalies. In hyperspectral imaging, many algorithms have been proposed for automatic target and anomaly detection. Given the dimensionality of hyperspectral scenes, these techniques can be time-consuming and difficult to apply in applications requiring real-time performance. In this paper, we develop several new parallel implementations of automatic target and anomaly detection algorithms. The proposed parallel algorithms are quantitatively evaluated using hyperspectral data collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS system over theWorld Trade Center (WTC in New York, five days after the terrorist attacks that collapsed the two main towers in theWTC complex.

  19. Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Paz Abel

    2010-01-01

    Full Text Available Abstract Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the spectral domain, and this information can be used to address detection tasks in many applications. In many surveillance applications, the size of the objects (targets searched for constitutes a very small fraction of the total search area and the spectral signatures associated to the targets are generally different from those of the background, hence the targets can be seen as anomalies. In hyperspectral imaging, many algorithms have been proposed for automatic target and anomaly detection. Given the dimensionality of hyperspectral scenes, these techniques can be time-consuming and difficult to apply in applications requiring real-time performance. In this paper, we develop several new parallel implementations of automatic target and anomaly detection algorithms. The proposed parallel algorithms are quantitatively evaluated using hyperspectral data collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS system over theWorld Trade Center (WTC in New York, five days after the terrorist attacks that collapsed the two main towers in theWTC complex.

  20. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  1. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  2. Radionuclide patterns of femoral head disease

    Energy Technology Data Exchange (ETDEWEB)

    Webber, M M; Wagner, J; Cragin, M D [California Univ., Los Angeles (USA). Dept. of Radiological Sciences

    1977-12-01

    The pattern of uptake of bone marrow specific radio-sup(99m)Tc sulfur colloid and the pattern of uptake of bone mineral specific radio-sup(99m)Tc pryophosphate may be valuable in assessing bone vascularity in diseases suspected of causing impaired blood supply, or indicate the presence of reactive bone formation. The low energy of the technetium label has been shown to be superior to /sup 18/F and /sup 85/Sr, and leads to greater imaging detail on the scans. Femoral head scanning with mineral and/or marrow specific radionuclides offers the clinician a method of evaluating the status of the femoral head and possibly an early diagnosis of avascular necrosis before roentgenographic changes occur. This study, which reports on a 5-year experience using radionuclide scanning to assess femoral head vascularity, begins with baseline or normal studies followed by variations of the normal pattern. Typical scan patterns of hip pathology described above are also presented.

  3. What is the role of the bystander response in radionuclide therapies?

    Directory of Open Access Journals (Sweden)

    Darren eBrady

    2013-08-01

    Full Text Available Radionuclide therapy for cancer is undergoing a renaissance, with a wide range of radionuclide and clinical delivery systems currently under investigation. Dosimetry at the cellular and subcellular level is complex with inhomogeneity and incomplete targeting of all cells such that some tumour cells will receive little or no direct radiation energy. There is now sufficient preclinical evidence of a bystander response which can modulate the biology of these unirradiated cells with current research demonstrating both protective and inhibitory responses. Dependence upon fraction of irradiated cells has also been found has and the presence of functional gap junctions appears to be import for several bystander responses. The selection of either high or low LET radionuclides may be critical. While low LET radionuclides appear to have a bystander response proportional to dose, the dose-response from high LET radionuclides are more complex. In media transfer experiments a U shaped response curve has been demonstrated for high LET treatments. However this U shaped response has not been seen with co-culture experiments and its relevance remains uncertain. For high LET treatments there is a suggestion that dose rate effects may also be important with inhibitory effects noted with 125I labelling study and a stimulatory seen with 123I labelling in one study.

  4. Eccentricity in Images of Circular and Spherical Targets and its Impact to 3D Object Reconstruction

    Directory of Open Access Journals (Sweden)

    T. Luhmann

    2014-06-01

    Full Text Available This paper discusses a feature of projective geometry which causes eccentricity in the image measurement of circular and spherical targets. While it is commonly known that flat circular targets can have a significant displacement of the elliptical image centre with respect to the true imaged circle centre, it can also be shown that the a similar effect exists for spherical targets. Both types of targets are imaged with an elliptical contour. As a result, if measurement methods based on ellipses are used to detect the target (e.g. best-fit ellipses, the calculated ellipse centre does not correspond to the desired target centre in 3D space. This paper firstly discusses the use and measurement of circular and spherical targets. It then describes the geometrical projection model in order to demonstrate the eccentricity in image space. Based on numerical simulations, the eccentricity in the image is further quantified and investigated. Finally, the resulting effect in 3D space is estimated for stereo and multi-image intersections. It can be stated that the eccentricity is larger than usually assumed, and must be compensated for high-accuracy applications. Spherical targets do not show better results than circular targets. The paper is an updated version of Luhmann (2014 new experimental investigations on the effect of length measurement errors.

  5. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    Science.gov (United States)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  6. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  7. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    Science.gov (United States)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  8. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  9. Spin-image surface matching based target recognition in laser radar range imagery

    International Nuclear Information System (INIS)

    Li, Wang; Jian-Feng, Sun; Qi, Wang

    2010-01-01

    We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coefficient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. (classical areas of phenomenology)

  10. Radionuclide diagnosis of splenic rupture in infectious mononucleosis

    International Nuclear Information System (INIS)

    Vezina, W.C.; Nicholson, R.L.; Cohen, P.; Chamberlain, M.J.

    1984-01-01

    Spontaneous splenic rupture is a rare but serious complication of infectious mononucleosis. Although radionuclide spleen imaging is a well accepted method for diagnosis of traumatic rupture, interpretation can be difficult in the setting of mononucleosis, as tears may be ill-defined and diagnosis hampered by inhomogeneous splenic uptake. Four proven cases of spontaneous rupture are presented, three of which illustrate these diagnostic problems

  11. Magnetically responsive microparticles for targeted drug and radionuclide delivery

    International Nuclear Information System (INIS)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-01-01

    system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan

  12. A dual-reservoir remote loading water target system for 18F and 13N production with direct in-target liquid level sensing

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-01-01

    This report describes our universal water target loading system that serves both [ 18 F] and [ 13 N] production targets, and a radionuclide delivery system that is specific for [ 18 F] fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with [ 18 O] enriched water for [ 18 F] fluoride production from the 18 O(p,n) 18 F reaction and natural abundance water for [ 13 N] nitrate/nitrite production from the 16 O(p,α) 13 N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of [ 18 F] fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water

  13. The administered activity of radionuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Nakamura, Mototoshi; Koga, Sukehiko; Kondo, Takeshi

    1993-01-01

    A survey of 104 hospitals was conducted to determine the administered activity of radionuclides. Eighty-five hospitals responded, and reported a total of 119,614 examinations in one year. The examinations included: bone scintigraphy, 26.4%; thallium-201 ( 201 Tl) myocardial scintigraphy, 15.5%; gallium-67 ( 67 Ga) scintigraphy, 13.3%; N-isopropyl-p-[ 123 I] iodoamphetamine (IMP) brain perfusion scintigraphy, 7.0%. The administered activity was corrected by body weight only for children at more than 80% of the responding hospitals. The number of hospitals that reported over-administration of radionuclide varied according to the type of scintigraphy performed: bone, 76%; inflammatory ( 67 Ga), 93%; myocardial ( 201 Tl), 89.2%; brain (IMP), 8.5%. The administered activity of IMP was closer to the upper limits specified in the Recommendations on Standardization of Radionuclide Imaging by the Japan Radioisotope Association (1987), because IMP is very expensive and is supplied as single vials. The highest average effective dose was for myocardial scintigraphy, the second-highest for inflammatory scintigraphy, and the third-highest for bone scintigraphy. In 201 Tl and 67 Ga scintigraphy, the entire contents of the vial may be administered two days before the expiration date, because the ratio of (true patient administered activity) to (declared patient administered activity) is similar to the ratio of (radioactivity on the day of supply) to (radioactivity on the day of expiration). The factors that influence administered activity are through put, price of the radionuclide, and whether the radionuclide is sold as a single vial. In order to decrease the effective dose, it is necessary to establish a close cooperation between medical personnel, the makers of radiopharmaceuticals, and manufactures of gamma cameras. (author)

  14. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Baum, R.P.

    2015-01-01

    Full text of publication follows. 68 Gallium is a positron emitter (t 1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68 Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177 Lutetium or 90 Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses

  15. Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation.

    Science.gov (United States)

    Robar, James L; Connell, Tanner; Huang, Weihong; Kelly, Robin G

    2009-09-01

    The purpose of this study is to investigate the improvement of megavoltage planar and cone-beam CT (CBCT) image quality with the use of low atomic number (Z) external targets in the linear accelerator. In this investigation, two experimental megavoltage imaging beams were generated by using either 3.5 or 7.0 MeV electrons incident on aluminum targets installed above the level of the carousel in a linear accelerator (2100EX, Varian Medical, Inc., Palo Alto, CA). Images were acquired using an amorphous silicon detector panel. Contrast-to-noise ratio (CNR) in planar and CBCT images was measured as a function of dose and a comparison was made between the imaging beams and the standard 6 MV therapy beam. Phantoms of variable diameter were used to examine the loss of contrast due to beam hardening. Porcine imaging was conducted to examine qualitatively the advantages of the low-Z target approach in CBCT. In CBCT imaging CNR increases by factors as high as 2.4 and 4.3 for the 7.0 and 3.5 MeV/Al beams, respectively, compared to images acquired with 6 MV. Similar factors of improvement are observed in planar imaging. For the imaging beams, beam hardening causes a significant loss of the contrast advantage with increasing phantom diameter; however, for the 3.5 MeV/Al beam and a phantom diameter of 25 cm, a contrast advantage remains, with increases of contrast by factors of 1.5 and 3.4 over 6 MV for bone and lung inhale regions, respectively. The spatial resolution is improved slightly in CBCT images for the imaging beams. CBCT images of a porcine cranium demonstrate qualitatively the advantages of the low-Z target approach, showing greater contrast between tissues and improved visibility of fine detail. The use of low-Z external targets in the linear accelerator improves megavoltage planar and CBCT image quality significantly. CNR may be increased by a factor of 4 or greater. Improvement of the spatial resolution is also apparent.

  16. Radiochemical schemes of obtaining 89Sr and 90Y radionuclides

    International Nuclear Information System (INIS)

    Usarov, Z. O.

    2010-03-01

    Key words: strontium-89, yttrium-90, extraction and extraction-chromatographic purification of radionuclides, radiopharmaceuticals. Subjects of research: strontium-89 and yttrium-90 radionuclides and their chloride forms. Purpose of work is developing of radiochemical technologies on obtaining of 89 Sr and 90 Y on the WWR-SM reactor with high radionuclide purity. Methods of research: extraction and extraction-chromatographic methods of radionuclides separation, beta- and gamma-spectrometric methods of activity measuring. The results obtained and their novelty: Were determined the conformity to laws of Y and Sr distribution in two-phase systems TBP-HNO 3 , TBP-NH 4 NO 3 , TBP-HCI, HDEHP-NO 3 , HDEHP-NH 4 NO 3 and HDEHP-HCI. Were determined the conformity to laws of Y and Sr distribution in systems with craun ethers DB-18K-6 and DTBDB-18K-6 from water solutions of HNO 3 . Radiochemical technologies on obtaining of 89 Sr and 90 Y radionuclides including radiochemical process of yttrium target with using the systems TBP-HNO 3 and HDEHP/Teflone were developed. Practical value: the radiochemical technology of obtaining 89 Sr with high radionuclide purity was developed. The method of preparation a chloride compound of 89 SrCl 2 which is used as a drug form for preparation of 89 Sr- 'Metastron' was developed. The relatively simple method of on the way obtaining 90 Y in the reactor with high radionuclidic purity that is useful for follow using in medical practice was offered. Degree of embed and economic effectivity: the developed technologies have approbation in manufacturing conditions in Radiopreparat Enterprise of INP AS RU and were offered for receiving of domestic preparations against of import foreign analogues. The statement about using the invention by obtained patent is attached to dissertation. Field of application: the received results will be introduced in manufacture at Radiopreparat Enterprise of INP AS RU for receiving of domestic preparations

  17. Identification of Ambiguous Activities in Radionuclide Cisternography Using SPECT/CT: Aspirated and Ingested CSF Rhinorrhea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yun; Kim, Jae Seung [Univ. of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2014-03-15

    A 2 year-old little girl underwent Tc-99m diethylenthriamine pentaacetic acid (DTPA) radionuclide cisternography to evaluate CSF rhinorrhea (Fig. 1). Cisternography clearly showed consecutive tracer activity in the nasal cavity and nasal tip, reflecting cerebrospinal fluid (CSF) leakage. However, several unexpected activities appeared on the bilateral mid- and unilateral lower thorax on delayed images, respectively. We performed additional SPECT/CT to delineate the CSF leakage tract and identify the unexpected activities. Through SPECT/CT, we could confirm that the mid-thoracic activity was in the lung parenchyma, while the lower thoracic activity was in the stomach. Thus, we speculated that these unexpected activities were the result of aspirated and ingested CSF rhinorrhea. CSF rhinorrhea occurs when there is a fistula between the dura mater and the skull base and discharge of CSF from the nose. A spinal fluid leak from the intracranial space to the nasal respiratory tract is potentially very serious because of the risk of an ascending infection that could produce fulminant meningitis. Therefore, identification of the fistulous tract is helpful for patient management. Radionuclide cisternography is an important imaging modality to detect the site of leakage in patients with CSF rhinorrhea. The combination of radionuclide cistenography and SPECT/CT has led to a major improvement in the diagnostic accuracy for localization of CSF leakage. This case also shows an important role for SPECT/CT fusion imaging in radionuclide cisternography not only for localizing the primary CSF fistula tract, but also for evaluating ambiguous radiotracer activities in planar imaging; these ultimately turned out to be aspirated and ingested CSF rhinorrhea.

  18. Identification of Ambiguous Activities in Radionuclide Cisternography Using SPECT/CT: Aspirated and Ingested CSF Rhinorrhea

    International Nuclear Information System (INIS)

    Lee, Dong Yun; Kim, Jae Seung

    2014-01-01

    A 2 year-old little girl underwent Tc-99m diethylenthriamine pentaacetic acid (DTPA) radionuclide cisternography to evaluate CSF rhinorrhea (Fig. 1). Cisternography clearly showed consecutive tracer activity in the nasal cavity and nasal tip, reflecting cerebrospinal fluid (CSF) leakage. However, several unexpected activities appeared on the bilateral mid- and unilateral lower thorax on delayed images, respectively. We performed additional SPECT/CT to delineate the CSF leakage tract and identify the unexpected activities. Through SPECT/CT, we could confirm that the mid-thoracic activity was in the lung parenchyma, while the lower thoracic activity was in the stomach. Thus, we speculated that these unexpected activities were the result of aspirated and ingested CSF rhinorrhea. CSF rhinorrhea occurs when there is a fistula between the dura mater and the skull base and discharge of CSF from the nose. A spinal fluid leak from the intracranial space to the nasal respiratory tract is potentially very serious because of the risk of an ascending infection that could produce fulminant meningitis. Therefore, identification of the fistulous tract is helpful for patient management. Radionuclide cisternography is an important imaging modality to detect the site of leakage in patients with CSF rhinorrhea. The combination of radionuclide cistenography and SPECT/CT has led to a major improvement in the diagnostic accuracy for localization of CSF leakage. This case also shows an important role for SPECT/CT fusion imaging in radionuclide cisternography not only for localizing the primary CSF fistula tract, but also for evaluating ambiguous radiotracer activities in planar imaging; these ultimately turned out to be aspirated and ingested CSF rhinorrhea

  19. Harvard--MIT research program in short-lived radiopharmaceuticals. Progress report, September 1, 1977--April 30, 1978. [/sup 99m/Tc, positron-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, S.J.; Brownell, G.L.

    1978-05-01

    Progress is reported on the following studies: chemistry studies designed to achieve a more complete understanding of the fundamental chemistry of technetium in order to facilitate the design of future radiopharmaceuticals incorporating the radionuclide /sup 99m/Tc; the development of new radiopharmaceuticals intended to improve image quality and lower radiation doses by the use of short-lived radionuclides and disease-specific agents; the development of short-lived positron-emitting radionuclides which offer advantages in transverse section imaging of regional physiological processes; and studies of the toxic effects of particulate radiation.

  20. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  1. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Wiebke Sihver

    2014-03-01

    Full Text Available The epidermal growth factor receptor (EGFR has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.

  2. Implementation of sum-peak method for standardization of positron emission radionuclides

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceicao de Farias; Oliveira, Mercia Liane de; Lima, Fernando Roberto de Andrade

    2015-01-01

    Positron Emission Tomography (PET) is being increasingly recognized as an important quantitative imaging tool for diagnosis and assessing response to therapy. As correct dose administration plays a crucial part in nuclear medicine, it is important that the instruments used to assay the activity of the short-lived radionuclides are calibrated accurately, with traceability to the national or international standards. The sum-peak method has been widely used for radionuclide standardization. The purpose of this study was to implement the methodology for standardization of PET radiopharmaceuticals at the Regional Center for Nuclear Sciences of the Northeast (CRCN-NE). (author)

  3. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    International Nuclear Information System (INIS)

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique

  4. Radionuclide cardiography in medical practice

    International Nuclear Information System (INIS)

    Strangfeld, D.; Mohnike, W.; Schmidt, J.; Heine, H.; Correns, H.J.

    1986-01-01

    This publication is a compendium on all aspects of radionuclide diagnostics concerning cardiovascular system diseases. Starting with introductory remarks on the control of cardiovascular diseases the contribution of radionuclide cardiology to functional cardiovascular diagnostics as well as pathophysiological and pathobiochemical aspects of radiocardiography are outlined. Radiopharmaceuticals used in radiocardiography, physical and technical problems in application of radionuclides and their measuring techniques are discussed. In individual chapters radionuclide ventriculography, myocardial scintiscanning, circulatory diagnostics, radionuclide diagnostics of arterial hypertension, of thrombosis and in vitro diagnostics of thrombophilia are treated in the framework of clinical medicine

  5. Use of radionuclide techniques for assessment of splenic function and detection of splenic remnants

    International Nuclear Information System (INIS)

    Ganguly, S.; Sinha, S.; Sarkar, B.R.; Basu, S.; Ghosh, S.

    1998-01-01

    Full text: The spleen is often involved in hematological malignancies; it is also the site of RBC destruction in thalassemia and ITP. In latter cases, splenectomy is often performed and postoperatively, detection of functioning splenic remnants affect the prognosis adversely. In this study, we assessed the usefulness of radionuclide techniques in : a) assessment of splenic function in primarily non-splenic diseases (benign or malignant), and b) detection of splenic remnant after splenectomy. 12 patients of splenomegaly and 5 patients after splenectomy underwent splenic imaging; imaging was performed using both 99m Tc-sulphur colloid (with first pass) and 99m Tc labelled heat denatured RBCs as tracers. Thus splenic perfusion, morphology and RBC trapping functions were all assessed. The colloid images usually matched the RBC images except in 2 cases where photogenic areas (presumably infarcts) were visualized on RBC scans that were missed on colloid scans. Three of the post splenectomy cases revealed functioning splenic remnants, which was also better visualized on RBC scans. It is concluded that radionuclide imaging could be used regularly for assessing function of spleen, or detecting splenic remnants

  6. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    Science.gov (United States)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  7. Metabolism of radionuclides in domestic animals

    International Nuclear Information System (INIS)

    Wirth, E.; Leising, C.

    1986-01-01

    The reactor accident at Chernobyl has shown that shortly after the contamination of the environment radionuclides can be found in animal products. The main contamination pathways of domestic animas are: uptake of radionuclides by foodstuffs; uptake of radionuclides by contaminated drinking water; uptake of radionuclides by inhalation; uptake of radionuclides through skin; uptake of radionuclides by ingestion of soil particles. Generally the uptake of radionuclides by food is the dominant exposure pathway. In rare cases the inhalation of radionuclides or the uptake by drinking water may be of importance. The metabolism of incorporated radionuclides is comparable to the respective metabolism of essential mass or trace elements or heavy metals. Radioisotopes of essential elements are for instance iron 55, manganese 54, cobalt 58 and cobalt 60. Other elements are typical antagonists to essential elements, e.g. strontium 90 is an antagonist to calcium or cesium 137 to potassium. Lead 210 and plutonium 239 behave similarly as heavy metals. Generally the knowledge of the metabolism of trace and mass elements, of antagonistic and synergistic elements and heavy metals can be applied to these radionuclides

  8. PET imaging of T cells: Target identification and feasibility assessment.

    Science.gov (United States)

    Auberson, Yves P; Briard, Emmanuelle; Rudolph, Bettina; Kaupmann, Klemen; Smith, Paul; Oberhauser, Berndt

    2018-06-01

    Imaging T cells using positron emission tomography (PET) would be highly useful for diagnosis and monitoring in immunology and oncology patients. There are however no obvious targets that can be used to develop imaging agents for this purpose. We evaluated several potential target proteins with selective expression in T cells, and for which lead molecules were available: PKC , Lck, ZAP70 and Itk. Ultimately, we focused on Itk (interleukin-2-inducible T cell kinase) and identified a tool molecule with properties suitable for in vivo imaging of T cells, (5aR)-5,5-difluoro-5a-methyl-N-(1-((S)-3-(methylsulfonyl)-phenyl)(tetrahydro-2H-pyran-4-yl)methyl)-1H-pyrazol-4-yl)-1,4,4a,5,5a,6-hexahydro-cyclopropa[f]-indazole-3-carboxamide (23). While not having the optimal profile for clinical use, this molecule indicates that it might be possible to develop Itk-selective PET ligands for imaging the distribution of T cells in patients. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  10. Role of radionuclide imaging in the diagnosis of chondrosarcoma

    International Nuclear Information System (INIS)

    McLean, R.G.; Choy, D.; Hoeschl, R.; Nayanar, V.; Murray, I.P.

    1985-01-01

    The diagnosis of chondrosarcoma may be difficult if there is an atypical radiographic appearance or an inconclusive biopsy. Radionuclide bone scans of 13 patients with chondrosarcoma were reviewed to assess if a pattern of scan features could be recognized in association with this tumor. A combination, including increased blood pool activity, moderate intensity of uptake, patchy uptake with cortical predominance of activity, minimal distortion of bony outline, and a well-defined scintigraphic margin, occurred regularly in the series. Recognition of this characteristic pattern of scintigraphic features in cases of suspected chondrosarcoma may assist in the diagnostic assessment

  11. Osteogenic sarcoma : imaging advances

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, C A [California Univ., San Francisco, CA (United States)

    1996-12-31

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.).

  12. Osteogenic sarcoma : imaging advances

    International Nuclear Information System (INIS)

    Gooding, C.A.

    1995-01-01

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.)

  13. Airborne remote sensing of estuarine intertidal radionuclide concentrations

    International Nuclear Information System (INIS)

    Rainey, M.P.

    1999-08-01

    The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Pic.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafield-derived 137 Cs and 241 Am and clay content (r 2 = 0.93 and 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5μm) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r 2 = 0.81). Subsequently, the established relationships between 137 Cs and 241 Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92 km 2 ) to be mapped at a geomorphic scale (1.75 m). The accuracy of these maps

  14. Radionuclide bone imaging in suspected skeletal metastasis: does it contribute to diagnosis or treatment ?

    International Nuclear Information System (INIS)

    Reddy, K.G.; Subbarao, K.; Kumaresan, K.; Murthy, V.S.; Kishore, L.T.

    1988-01-01

    A retrospective analysis of 47 patients with suspected bone metastases is performed to evaluate the role of bone scan in diagnosis or treatment and to compare radionuclide images with radiographs. Scan revealed solitary lesions in 27.7 per cent, multiple lesions in 44.7 per cent and was normal in 10.6 per cent of patients studied. In 11 patients the scan was +ve and x-ray was -ve and scan was false negative in one patient. Role of bone scan is evaluated by a scoring method. Scan contributed to correct diagnosis in 25.5 per cent, altered the management in 21.3 per cent of patients. However, scan by itself did not contribute to final management in 48.6 per cent of patients. Scan had misled the diagnosis because of false positive result in 4.3 per cent of patients. It is highlighted that though bone scan is non-specific, it has contributed considerably to the management of majority of patients. (author). 10 refs., 3 tabs., 4 figs

  15. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  16. Effects on the pouch of different digestive tract reconstruction modes assessed by radionuclide scintigraphy

    OpenAIRE

    Li, Dong-Sheng; Xu, Hui-Mian; Han, Chun-Qi; Li, Ya-Ming

    2010-01-01

    AIM: To determine the effect of three digestive tract reconstruction procedures on pouch function, after radical surgery undertaken because of gastric cancer, as assessed by radionuclide dynamic imaging.

  17. Nominal Range Sensitivity Analysis of peak radionuclide concentrations in randomly heterogeneous aquifers

    International Nuclear Information System (INIS)

    Cadini, F.; De Sanctis, J.; Cherubini, A.; Zio, E.; Riva, M.; Guadagnini, A.

    2012-01-01

    Highlights: ► Uncertainty quantification problem associated with the radionuclide migration. ► Groundwater transport processes simulated within a randomly heterogeneous aquifer. ► Development of an automatic sensitivity analysis for flow and transport parameters. ► Proposal of a Nominal Range Sensitivity Analysis approach. ► Analysis applied to the performance assessment of a nuclear waste repository. - Abstract: We consider the problem of quantification of uncertainty associated with radionuclide transport processes within a randomly heterogeneous aquifer system in the context of performance assessment of a near-surface radioactive waste repository. Radionuclide migration is simulated at the repository scale through a Monte Carlo scheme. The saturated groundwater flow and transport equations are then solved at the aquifer scale for the assessment of the expected radionuclide peak concentration at a location of interest. A procedure is presented to perform the sensitivity analysis of this target environmental variable to key parameters that characterize flow and transport processes in the subsurface. The proposed procedure is exemplified through an application to a realistic case study.

  18. Model of metastatic growth valuable for radionuclide therapy

    International Nuclear Information System (INIS)

    Bernhardt, Peter; Ahlman, Haakan; Forssell-Aronsson, Eva

    2003-01-01

    The aim was to make a Monte Carlo simulation approach to estimate the distribution of tumor sizes and to study the curative potential of three candidate radionuclides for radionuclide therapy: the high-energy electron emitter 90 Y, the medium-energy electron emitter 177 Lu and the low-energy electron emitter 103m Rh. A patient with hepatocellular carcinoma with recently published serial CT data on tumor growth in the liver was used. From these data the growth of the primary tumor, and the metastatis formation rate, were estimated. Assuming the same tumor growth of the primary and all metastases and the same metastatis formation rate from both primary and metastases the metastatic size distribution was simulated for various time points. Tumor cure of the metastatic size distribution was simulated for uniform activity distribution of three radionuclides; the high-energy electron emitter 90 Y, the mean-energy electron emitter 177 Lu and the low-energy electron emitter 103m Rh. The simulation of a tumor cure was performed for various time points and tumor-to-normal tissue activity concentrations, TNC. It was demonstrated that it is important to start therapy as early as possible after diagnosis. It was of crucial importance to use an optimal radionuclide for therapy. These simulations demonstrated that 90 Y was not suitable for systemic radionuclide therapy, due to the low absorbed fraction of the emitted electrons in small tumors ( 103m Rh was slightly better than 177 Lu. For high TNC values low-energy electron emitters, e.g., 103m Rh was the best choice for tumor cure. However, the short half-life of 103m Rh (56 min) might not be optimal for therapy. Therefore, other low-energy electron emitters, or alpha emitters, should be considered for systemic targeted therapy

  19. SPECT/CT: can it be helpful in the evaluation of the distribution of the radionuclide in the joint following radio-synovectomy?

    International Nuclear Information System (INIS)

    Ozulker, F.; Kucukoz Uzun, A.; Ozulker, T.

    2015-01-01

    Full text of publication follows. Planar control scintigraphies have been used for the detection of any possible extra articular leakage after radio-synovectomy in patients with haemophilic arthropathy. In this study we aimed at assessing whether utilization of SPECT-CT for the same purpose can provide additional information. Patients who fulfilled the following prerequisites were included for radio synovectomy application: (1) more than four hemorrhagic episodes in six months, (2) at least a Stage II haemophilic arthropathy according to the classification of Arnold and Haltering, and (3) persistent synovitis. Six male patients (5 hemophilia A, 1 hemophilia B) who suffered from haemophilic arthropathy with a mean age of 10.5 (range between 8-15) were included in this study. We administered 148-185 MBq Yttrium 90 silicate (Y-90) to 5 knee joints, 74 MBq Rhenium 186 (Re-186) to 1 elbow joint and 74 MBq Re-186 to two ankle joints of these patients. The median number of bleedings into the target joints was 10.1 ± 1.4 in the six months prior to the procedure. All patients were admitted to the hospital and treated with factor replacement so as to raise the factor level of the patient to 80% the following morning and 50% for three days thereafter. The effusion in the joint was evacuated before the injection of the radiocolloid. Intra-articular injections in ankle and elbow joints were done under fluoroscopic guidance. The joint was moved rapidly a few times to distribute the radiocolloid, after which a plaster of paris cast was applied for 72 hours. One hour after the RS, planar images of the treated joints and the regional lymph nodes were obtained with gamma camera and SPECT-BT acquisitions were obtained from treated joints to confirm the appropriate distribution of the radionuclide in the joint. Distribution of the radionuclide in joint spaces was normal and we haven't encountered any extra articular leakage. In one patient there was loculation at activity in

  20. Chapter 2. Radionuclides in the biosphere

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with role of radionuclides in the biosphere. Chapter consists of next parts: (1) Natural radionuclides in biosphere; (2) Man-made radionuclides in the biosphere; (3) Ecologically important radionuclides; (4) Natural background; (5) Radiotoxicity and (6) Paths of transfer of radionuclides from the source to human

  1. Multimodality molecular imaging - from target description to clinical studies

    International Nuclear Information System (INIS)

    Schober, O.; Rahbar, K.; Riemann, B.

    2009-01-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. (orig.)

  2. Relationship between deep venous thrombosis and pulmonary embolism by radionuclide techniques in 150 patients

    International Nuclear Information System (INIS)

    Shi, R.F.; Wang, X.M.; Liu, X.J.; Fang, W.

    2002-01-01

    Objective: This study was to evaluate the relationship between deep venous thrombosis and pulmonary embolism assessed by radionuclide imaging. Methods: One hundred and fifty patients with pulmonary embolism from September 1997 to September 2001 were included. Pulmonary perfusion/ventilation imaging and deep venous radionuclide venography was performed in all patients. There were 87 men, and 63 women, with an average age 39±18 years. Of them, 26 underwent pulmonary arteriography. Eleven patients had X Ray phleography of lower extremities, 18 patients had Impedence plethymography (IPG), and 36 patients had lower limb ultrasound study. Results: Out of 150 patients with pulmonary embolism, 128 (85.5%) had lower limb venous pathological changes. Among them, 100 patients had risk factors of deep venous thrombosis (78.3%). 120 patients had proximal vein (80.0%). The agreement between radionuclide venography and X Ray phleography of lower extremities UCG and IPG was 90.9%, 70.2% and 80.0% respectively. Conclusions: Our results indicate that DVT was one of most important cause for acute pulmonary embolism, and thrombosis is mostly located in the proximal veins

  3. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  4. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Li, Zhaohui; Liu, Misha; Hu, Dehong; Lin, Yuehe; Li, Jinghong

    2017-08-29

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeled single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.

  5. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target

    DEFF Research Database (Denmark)

    Persson, Morten; Kjaer, Andreas

    2013-01-01

    modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we...... will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker....

  6. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  7. Radionuclide transit in esophageal varices

    International Nuclear Information System (INIS)

    Yeh, S.H.; Wang, S.J.; Wu, L.C.; Liu, R.S.; Tsai, Y.T.; Chiang, T.T.

    1985-01-01

    This study assessed esophageal motility in patients with esophageal varices by radionuclide transit studies. Data were acquired in list mode after an oral dose of 0.5 mCi Tc-99m sulfur colloid in 10 ml of water in the supine position above a low-energy all-purpose collimator of a gamma camera. The condensed image (CI) superimposed with a centroid curve was also produced in each case. Twenty-five normal subjects (N) and 32 patients (pts) with esophageal varices by endoscopy (large varices in Grades IV and V in 8 and small varices in Grade III or less in 24) were studied. TMTT, RTT, RF, and RI were all significantly increased in pts as compared to N. Especially, the transit time for the middle third (6.7 +- 2.6 sec vs 3.5 +- 0.9 sec in N, rho < 0.005) had the optimal sensitivy and specificity of 88% each at the cutoff value of 4.2 sec as determined by ROC analysis. In summary, radionuclide transit disorders occur in the majority of pts with esopageal varices. The middle RTT and CI are both optimal in sensitivity and specificity for detecting the abnormalities

  8. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  9. Geomorphological applications of environmental radionuclides

    International Nuclear Information System (INIS)

    Quine, T.A.; Walling, D.

    1998-01-01

    Geomorphologists have shown increasing interest in environmental radionuclides since pioneering studies by Ritchie and McHenry in the USA and Campbell, Longmore and Loughran in Australia. Environmental radionuclides have attracted this interest because they provide geomorphologists with the means to trace sediment movement within the landscape. They, therefore, facilitate investigation of subjects at the core of geomorphology, namely the rates and patterns of landscape change. Most attention has been focussed on the artificial radionuclide caesium-137 ( 137 Cs) but more recently potential applications of the natural radionuclides lead-210 ( 210 Pb) and beryllium-7( 7 Be) have been investigated (Walling et al., 1995; Wallbrink and Murray, 1996a, 1996b). The origin, characteristics and applications of these radionuclides are summarised. These radionuclides are of value as sediment tracers because of three important characteristics: a strong affinity for sediment; a global distribution and the possibility of measurement at low concentration. Geomorphological applications of environmental radionuclides provide unique access to detailed qualitative data concerning landscape change over a range of timescales

  10. Radionuclide Imaging of Musculoskeletal Injuries in Athletes with Negative Radiographs.

    Science.gov (United States)

    Nagle, C E; Freitas, J E

    1987-06-01

    In brief: Radionuclide bone scans can be useful in the diagnostic evaluation of musculoskeletal injuries in athletes. Bone scans can detect shinsplints, stress fractures, and muscle injuries before they are detectable on radiographs. Prognosis can be accurately assessed, allowing appropriate treatment to proceed without delay. The authors discuss the use of bone scans and identify musculoskeletal injuries that are associated with specific sports, such as stress fracture of the femur (soccer), tibia (running), scapula (gymnastics), and pars interarticularis (football or lacrosse).

  11. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  12. Artifacts in Radar Imaging of Moving Targets

    Science.gov (United States)

    2012-09-01

    CA, USA, 2007. [11] B. Borden, Radar imaging of airborne targets: A primer for Applied mathematicians and Physicists . New York, NY: Taylor and... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 21 September 2012 3. REPORT TYPE AND DATES COVERED...CW Continuous Wave DAC Digital to Analog Convertor DFT Discrete Fourier Transform FBP Filtered Back Projection FFT Fast Fourier Transform GPS

  13. Converter target chemistry - A new challenge to radioanalytical chemistry.

    Science.gov (United States)

    Choudhury, Dibyasree; Lahiri, Susanta

    2018-07-01

    The 1-2 GeV proton induced spallation reaction on the high Z materials like Hg, or lead bismuth eutectic (LBE), popularly known as converter targets, will produce strong flux of fast neutrons which would further react with fissile materials to produce intense radioactive ion beam (RIB). LBE offers suitability for use as converters over Hg but it suffers from the demerit of radiotoxic polonium production. These targets may be viewed as a store house of clinically important and other exotic radionuclides. For application of those radionuclides, radiochemical separation from bulk target material is of utmost importance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Foodstuffs, radionuclides, monitoring

    International Nuclear Information System (INIS)

    Denisikov, A.I.

    2000-01-01

    Radionuclide contamination of water and food stuffs as a result of the Chernobyl accident and permissible contents of 90 Sr and 137 Cs are considered in brief. A method of radiation monitoring of food stuffs and water for the radionuclides mentioned is suggested. The method permits employment of the simplest and cheapest radiometric equipment for analysis, whole the high degree of radionuclide concentration using fiber sorbents permits using the instrumentation without expensive shields against external radiation. A description of ion-exchange unit for radiation monitoring of liquid samples of food stuffs or water, is provided [ru

  15. Generator for radionuclide

    International Nuclear Information System (INIS)

    Weisner, P.S.; Forrest, T.R.F.

    1985-01-01

    This invention provides a radionuclide generator of the kind in which a parent radionuclide, adsorbed on a column of particulate material, generates a daughter radionuclide which is periodically removed from the column. This invention is particularly concerned with technetium generators using single collection vials. The generator comprises a column, a first reservoir for the eluent, a second reservoir to contain the volume of eluent required for a single elution, and means connecting the first reservoir to the second reservoir and the second reservoir to the column. Such a generator is particularly suitable for operation by vacuum elution

  16. Process for encapsulating radionuclides

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.

    1976-01-01

    Radionuclides are immobilized in virtually an insoluble form by reacting at a temperature of at least 90 0 C as an aqueous alkaline mixture having a solution pH of at least 10, containing a source of silicon, the radionuclide waste, and a metal cation. The molar ratio of silicon to the metal cation is on the order of unity to produce a gel from which complex metalosilicates crystallize to entrap the radionuclides within the resultant condensed crystal lattice. The product is a silicious stone-like material which is virtually insoluble and nonleachable in alkaline or neutral environment. One embodiment provides for the formation of the complex metalo-silicates, such as synthetic pollucite, by gel formation with subsequent calcination to the solid product; another embodiment utilizes a hydrothermal process, either above ground or deep within basalt caverns, at greater than atmospheric pressures and a temperature between 90 and 500 0 C to form complex metalo-silicates, such as strontium aluminosilicate. Another embodiment provides for the formation of complex metalo-silicates, such as synthetic pollucite, by slurrying an alkaline mixture of bentonite or kaolinite with a source of silicon and the radionuclide waste in salt form. In each of the embodiments a mobile system is achieved whereby the metalo-silicate constituents reorient into a condensed crystal lattice forming a cage structure with the condensed metalo-silicate lattice which completely surrounds the radionuclide and traps the radionuclide therein; thus rendering the radionuclide virtually insoluble

  17. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  19. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy †

    Science.gov (United States)

    Sihver, Wiebke; Pietzsch, Jens; Krause, Mechthild; Baumann, Michael; Steinbach, Jörg; Pietzsch, Hans-Jürgen

    2014-01-01

    The epidermal growth factor receptor (EGFR) has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a) chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b) with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment. PMID:24603603

  20. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  1. Development of Radiolabeled compounds using reactor-produced radionuclides

    International Nuclear Information System (INIS)

    Choi, Sun Ju; Park, K. B.; Park, S. H.

    2007-06-01

    To establish a robust technology for radiopharmaceutical development, we focused on the configuration of fundamental development of radiolabeled compounds for radioimmunotherapy and drug delivery as well as the development of bifunctional chelating agents and radiolabeling methods for the radiopharmaceuticals with highly specific activity to deliver sufficient number of radionuclides to the target site. In this project, we aim to improve the quality of life and the public welfare by fostering the medical application of radioisotopes for the effective treatment of malignant diseases and by developing efficient radiolabeling methods of specific bio-active materials with radioisotopes and new candidates for radiopharmaceutical application. We have established the procedure for the preparation of radiolabeled antibody and biotin with radioisotopes such as 166 Ho, 131 I, 90 Y and 111 In for tumour targeting. In the future, these technologies will be applicable to development of radioimmunotherapeutic drug. The combination treatment of radioisotope with anti-cancer agents or chemotherapeutic agents may produce a synergistic static effects in the tumour and this synergism would be exerted via gene level through the activation of a cell death pathway. The combination therapy may be very beneficial for cancer treatment and this can overcome not only the hazards of unnecessary exposure to high radiation level during therapy, but also the tendency for drug resistance caused by chemotherapy. To develop new drug delivery system suitable for CT imaging agent, a chitosan derivative and radiolabed Folate-targeted polymer with 131 I were synthesized. We also carried out the development of DTPA derivatives for CT imaging agent, radiolabeled precursor, and established a highly efficient radiolabeling methodology with lanthanide nuclide. In order to develop neuroreceptor targeting compounds, we synthesized WAY-100635 compound and 99m Tc(CO) 3 precursor from Chrysamine G derivatives

  2. The application of radionuclides in medicine

    International Nuclear Information System (INIS)

    Boyd, R.E.; Murray, I.P.C.; Sorby, P.J.; Hetherington, E.L.R.

    1977-01-01

    The authors of this article describe the history of nuclear medicine from its beginning at the end of the 19th century when radioactivity was discovered, basic considerations which describe briefly the properties of radionuclides with special reference to the ones which are suited to medical applications and in general terms the diagnostic techniques that are current. The article also includes a segment on the radionuclide technetium 99m, explaining why it is ideal for organ imaging and how it is utilised in a range of radiopharmaceuticals for investigations into many areas of the human body. The radiation risk to the patient, including tabulated radiation exposures for a few of the more common nuclear medicine studies, is dealt with. The article explains that a greater risk to life from not having the test performed is used as the criterion for justifying whether a nuclear medicine procedure is performed or not. The article finally describes the scope of the techniques and the areas of the body which are routinely examined and are exemplified with numerous illustrations. (J.R.)

  3. Radionuclides and the normal bone scan

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Monsein, L.; Rosenberg, R.D.

    1988-01-01

    Recently, Eisenhut and co-workers have described development of iodine-131 labeled diphosphonates for palliative treatment of bone metastases. The compound labeled was alpha-amino (4-hydroxybenzylidene) diphosphonate (BDP3). Other beta-emitting radionuclides have been used for treatment of intractable pain secondary to bone metastases. These include strontium-89, which has some difficulties, particularly in terms of disposal of the excretions due to the long physical half-life of the life of the radionuclide. Yttrium-90 has also been used but has a relatively high hepatic uptake. Phosphorus-32 labeled compounds have also been used. Although palliation has been described, bone marrow depression has also occurred. Rhenium-186 also has been suggested, however, high renal uptake is a problem. At present, the iodine-131 labeled BDP3 appears to be the best of the available therapeutic radiopharmaceuticals. One of the major disadvantages in use of this compound is the production of gamma photons. While undesirable from a dosimetry viewpoint, gamma photons do, however, permit imaging if desired

  4. Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics

    Science.gov (United States)

    Yi, Weisong; Zhang, Jian; Jiang, Houmin; Zhang, Niya

    2014-09-01

    Gastric cancer is one of the leading causes of cancer death in the world due to its high morbidity and mortality. Hyperspectral imaging (HSI) is an emerging, non-destructive, cutting edge analytical technology that combines conventional imaging and spectroscopy in one single system. The manuscript has investigated the application of near-infrared hyperspectral imaging (900-1700 nm) (NIR-HSI) for gastric cancer detection with algorithms. Major spectral differences were observed in three regions (950-1050, 1150-1250, and 1400-1500 nm). By inspecting cancerous mean spectrum three major absorption bands were observed around 975, 1215 and 1450 nm. Furthermore, the cancer target detection results are consistent and conformed with histopathological examination results. These results suggest that NIR-HSI is a simple, feasible and sensitive optical diagnostic technology for gastric cancer target detection with chemometrics.

  5. Targeted alpha therapy: Applications and current status

    International Nuclear Information System (INIS)

    Bruchertseifer, Frank

    2017-01-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides 223 Ra, 211 At and 212 Pb/ 212 Bi the alpha emitters 225 Ac and 213 Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with 225 Ac and 213 Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  6. Automated method and system for the alignment and correlation of images from two different modalities

    Science.gov (United States)

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  7. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.

    1998-01-01

    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  8. Effect of Body Temperature on the Radionuclide Evaluation of Cerebral Blood Flow

    International Nuclear Information System (INIS)

    Mustafa, S. . E- mail: seham@hsc.edu.kw; Elgazzar, A.H.; Gopinath, S.; Mathew, M.; Khalil, M.

    2006-01-01

    Changes in regional cerebral blood flow (rCBF) may reflect physiological correlates of the disease state. In neuro-imaging studies, some diseases have frequently been reported to be associated with reduced or increased rCBF. In a previous study we had shown evidence of heat induced vasoconstriction of the carotid artery, which is the main vessel supplying blood to the brain. This vasoconstriction may lead to a decrease in cerebral blood flow in hyperthermic patients. Most radionuclide studies used to assess cerebral blood flow are routinely performed without taking into consideration patients' body temperature. In this regard it may be noted that results of radionuclide cerebral perfusion studies may be affected by hyperthermia, which could lead to false positive studies or misinterpretation of results when they are performed on patients suffering from various cerebrovascular diseases. The objective of the present study was to investigate the importance of body temperature and its effect on the results of radionuclide cerebral perfusion studies. Cerebral blood flow was assessed using Tc-99m hexamethylpropyleneamineoxime (Tc-99m HMPAO) imaging. Baseline scintigraphic images of the brain were obtained in 10 rabbits using a gamma camera equipped with a low energy parallel hole and high resolution collimator interfaced with a computer. Repeat brain studies were performed on the same rabbits at 3 and 6 days after raising the body temperature by 2 deg. C and 4 deg. C respectively using the same imaging protocol. The counts per pixel were determined on control and hyperthermia images. The uptake of Tc-99m HMPAO in the brain was found to be significantly reduced following hyperthermia implying reduction in blood flow. This decrease in cerebral perfusion appears to be variable from region to region, being more in the cerebral hemispheres, frontal areas (olfactory lobes) than in the cerebellum. Based on the results, the authors conclude that a rise in body temperature might

  9. Radionuclide diagnosis of emergency states

    International Nuclear Information System (INIS)

    Ishmukhametov, A.I.

    1985-01-01

    Solution of emergency state radionuclide diagnostics from the technical point of view is provided by the application of the mobile quick-operating equipment in combination with computers, by the use of radionuclides with acceptable for emergency medicine characteristics and by development of radionuclide investigation data propcessing express-method. Medical developments include the study of acute disease and injury radioisotope semiotics, different indication diagnostic value determining, comparison of the results, obtained during radionuclide investigation, with clinicolaboratory and instrumental data, separation of methodical complex series

  10. Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow

    International Nuclear Information System (INIS)

    Mitchell, D.G.; Tobin, M.; LeVeen, R.; Tomaczewski, J.; Alavi, A.; Staum, M.; Kundel, H.

    1988-01-01

    To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using 113 Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney

  11. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  12. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  13. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  14. Radionuclide daughter inventory generator code: DIG

    International Nuclear Information System (INIS)

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs

  15. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  16. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on {sup 177}Lu for radionuclide therapy'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Radionuclide therapy (RNT) employing radiopharmaceuticals labelled with emitting radionuclides is fast emerging as an important part of nuclear medicine. Radionuclide therapy is effectively utilized for bone pain palliation, thus providing significant improvement in quality of life of patients suffering from pain resulting from bone metastasis. Targeting primary diseases by using specific carrier molecules labelled with radionuclides is also widely investigated and efficacious products have been emerging for the treatment of Lymphoma and Neuroendocrine tumours. In order to ensure the wider use of radiopharmaceuticals, it is essential to carefully consider the choice of radionuclides that together with the carrier molecules will give suitable pharmacokinetic properties and therapeutic efficacy. The criteria for the selection of a radionuclide for radiotherapy are suitable decay characteristics and amenable chemistry. However, the practical considerations in selecting a radionuclide for targeted therapy are availability in high radionuclidic purity as well as high specific activity and low production cost and comfortable delivery logistics. {sup 177}Lu is one of the isotopes emerging as a clear choice for therapy. Worldwide, the isotope is under investigation for approximately 30 different clinical applications, including treatment of colon cancer, metastatic bone cancer, non-Hodgkin's lymphoma, and lung cancer. {sup 177}Lu decays with a half-life of 6.71 d by emission of particles with E{sub max} of 497 keV (78.6%), 384 keV (9.1%) and 176 keV (12.2%). It also emits photons of 113 keV (6.4%) and 208 keV (11%), that are ideally suited for imaging the in-vivo localization and dosimetric calculations applying a gamma camera. The physical half-life of {sup 177}Lu is comparable to that of {sup 131}I, the most widely used therapeutic radionuclide. The long halflife of {sup 177}Lu provides logistic advantage for production, QA/QC of the products as well as feasibility to

  18. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images.

    Science.gov (United States)

    Kim, Sohyun; Jang, Gwang-Il; Kim, Sungho; Kim, Junmo

    2018-03-27

    This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

  19. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images

    Directory of Open Access Journals (Sweden)

    Sohyun Kim

    2018-03-01

    Full Text Available This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS and airborne EO/IR system.

  20. Radionuclide angiocardiography in the diagnosis of congenital heart disorders

    International Nuclear Information System (INIS)

    Jones, R.H.; Austin, E.H.; Peter, C.A.; Sabiston, D.C. Jr.

    1981-01-01

    Radionuclide angiocardiography provides a noninvasive assessment of cardiac function and blood flow through the heart and lungs. During the past three years, this procedure has been used at the Duke University Medical Center for evaluation of 343 patients with congenital heart disorders. A review of this experience shows tat the resulting data were frequently useful in the surgical management of these patients. In patients with abnormal blood flow patterns, noninvasive imaging of blood flow was useful before and after operative correction. Radionuclide measurements of left-to-right intracardiac shunts were sufficiently accurate for use in the initial evaluation of patients with murmurs and to document the absence of shunt after operative closure of intracardiac septal defects. Moreover, measurements of right-to-left cardiac shunts were of benefit in the management of children with cyanotic heart disease. Measurements of left ventricular function obtained during rest and exercise were most useful in patients with origin of the left coronary artery from the pulmonary artery and in patients with congenital valvular insufficiency. This experience demonstrates that radionuclide angiocardiography provides important measurements of central hemodynamics and cardiac function which are useful in the management of patients with congenital heart disorders

  1. TH-AB-206-01: Advances in Radionuclide Therapy - From Radioiodine to Nanoparticles

    International Nuclear Information System (INIS)

    Humm, J.

    2016-01-01

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  2. TH-AB-206-01: Advances in Radionuclide Therapy - From Radioiodine to Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Humm, J. [Memorial Sloan-Kettering Cancer Center (United States)

    2016-06-15

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  3. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Afshar-Oromieh, Ali; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Eiber, Matthias [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Technical University of Munich, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A. [Johns Hopkins University School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD (United States)

    2017-11-15

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  4. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    International Nuclear Information System (INIS)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P.; Afshar-Oromieh, Ali; Haberkorn, Uwe; Eiber, Matthias; Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A.

    2017-01-01

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  5. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  6. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  7. History of medical radionuclide production.

    Science.gov (United States)

    Ice, R D

    1995-11-01

    Radionuclide production for medical use originally was incidental to isotope discoveries by physicists and chemists. Once the available radionuclides were identified they were evaluated for potential medical use. Hevesy first used 32P in 1935 to study phosphorous metabolism in rats. Since that time, the development of cyclotrons, linear accelerators, and nuclear reactors have produced hundreds of radionuclides for potential medical use. The history of medical radionuclide production represents an evolutionary, interdisciplinary development of applied nuclear technology. Today the technology is represented by a mature industry and provides medical benefits to millions of patients annually.

  8. Radionuclide salivary imaging usefulness in a private otolaryngology practice

    International Nuclear Information System (INIS)

    Schall, G.L.; Smith, R.R.; Barsocchini, L.M.

    1981-01-01

    Radionuclide salivary gland scans were performed on 44 patients using sodium pertechnetate Tc 99m. The accuracy of the scans and their usefulness in the clinical treatment of the patients were reviewed. The scan provided helpful information in 31 of 38 cases in which adequate follow-up data were available, although it proved diagnostic in only six patients. It was particularly useful in the evaluation of primary salivary gland neoplasms, acute and chronic sialadenitis, and sialolithiasis, as well as in the differential diagnosis of xerostomia. The value of this procedure in the elucidation of a variety of morphologic and functional diseases of these glands warrants its greater application in private otolaryngologic practices

  9. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1992--July 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M.; Finn, R.D.

    1995-07-17

    This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995 will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.

  10. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1992--July 15, 1995

    International Nuclear Information System (INIS)

    Larson, S.M.; Finn, R.D.

    1995-01-01

    This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE's mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995 will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics

  11. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation

    Science.gov (United States)

    Davies, Helena S.; Cox, Filipa; Robinson, Clare H.; Pittman, Jon K.

    2015-01-01

    Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of 238U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi–plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted. PMID:26284096

  12. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  13. Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting

    Science.gov (United States)

    Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing

    2018-02-01

    Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.

  14. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  15. Whole body imaging system mechanism

    International Nuclear Information System (INIS)

    Carman, R.W.; Doherty, E.J.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)

  16. Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy

    Science.gov (United States)

    Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan

    2018-02-01

    Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.

  17. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  18. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    Energy Technology Data Exchange (ETDEWEB)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.; Jakopin, J.; Fidler, V.; Turk, J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combined electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.

  19. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    International Nuclear Information System (INIS)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.; Jakopin, J.; Fidler, V.; Turk, J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combined electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates

  20. Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs

    International Nuclear Information System (INIS)

    Wang, Ying; Li, Zhaohui; Liu, Misha; Xu, Jinjin; Hu, Dehong; Lin, Yuehe; Li, Jinghong

    2017-01-01

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labelled single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis. - Graphical abstract: Schematic illustration of simultaneously multiple mRNAs monitoring inside single living breast cancer cell based on GO nanocarrier. In particular, the fluorescent signals could be monitored when Mn-SOD probe (red) and β-actin probe (green) hybridizes with their mRNA targets inside the living cells. Random probe (orange) was regarded as control probe for the sensing strategy. - Highlights: • A multiple-targeted GO nanocarrier was used for mRNAs imaging and expression changes after drug treatment can be monitored successfully. • Sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) m