WorldWideScience

Sample records for radiometric measurement system

  1. Complex optimization of radiometric control and measurement systems

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1995-01-01

    Fundamentals of a new approach to increase in the accuracy of radiometric systems of control and measurements are presented in succession. Block diagram of the new concept of radiometric system optimization is provided. The approach involving radical increase in accuracy and envisages ascertaining of controlled parameter by the totality of two intelligence signals closely correlated with each other. The new concept makes use of system analysis as a unified one-piece object, permitting euristic synthesis of the system. 4 refs., 3 figs

  2. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  3. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  4. Basing of principles and methods of operation of radiometric control and measurement systems

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1995-01-01

    Six basic stages of optimization of radiometric systems, methods of defining the preset components of total error and the choice of principles and methods of measurement are described in succession. The possibility of simultaneous optimization of several stages, turning back to the already passed stages, is shown. It is suggested that components of the total error should be preset as identical ones for methodical, instrument, occasional and representativity errors and the greatest of the components should be decreased first of all. Comparative table for 64 radiometric methods of measurement by 11 indices of the methods quality is presented. 2 refs., 1 tab

  5. Unibert - PC software for radiometric level gauging - the LB440 measuring system

    International Nuclear Information System (INIS)

    Mann, H.; Bickert, M.

    2001-01-01

    In almost all industrial branches radiometric measuring systems are being used today for a lot of different tasks. The most common field of this application are level gauging measurements by use of gamma radiation, i.e. for level detection as well as for level gauging over ranges of up to several meters. For our level gauge measuring system LB440 we developed a clearly arranged PC software, which allows starting, measuring and service of the level gauge. Over the RS232-interface the industrial computer can be connected with a Laptop or PC. The software is a supplemental or even a substitute for the operation over the frontpanel. The measuring system can be completely controlled by the Unibert PC-Software, realised by LabVIEW 5.1.1, which offers an interactive graphical user interface. The same functionality as in the ''embedded - software'' is available, completed with some additional functions. (orig.) [de

  6. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  7. Radiometric measuring method for egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  8. Radiometric densimeter for measuring and automatic control of liquid density

    International Nuclear Information System (INIS)

    Wajs, J.

    1982-01-01

    A performance rule of the radiometric densimeter produced by ''POLON ''Works is presented. A simplified analysis of the correction of density indication changes due to liquid temperature variations is described. A method of replacing the measuring pipe carrying the liquid being measured by suitable standards is given. The method is for automatic systems control. (A.S.)

  9. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    Science.gov (United States)

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  10. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    Science.gov (United States)

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  11. Radiometric Measurements by the MIDAS III System at Key West. Volume I. Cloud Backgrounds.

    Science.gov (United States)

    1979-09-01

    13 13.3 System Relative Spectral Response - Filter No. 2 5(4.4-4.77 pim ) ............................................. 14 3.4 System Relative Spectral...Response - Filter No. 5 (3.8-4.2 pim ) .............................................. 15 3.5 System Relative Spectral Response - Filter No. 6 (3.4-4.3...5 dat a was recorded dirtxet l ott t he recordinig osc ml logrtt1 Witereis tilt- 8-13 data was recorded on t tiet I ape, recorders i xst itd laxter p

  12. Radiometric measurement independent of profile. Belt weighers

    International Nuclear Information System (INIS)

    Otto, J.

    1986-01-01

    Radiometric measuring techniques allow contactless determination of the material carried by belt conveyors. Data defining the material is obtained via attenuation of gamma rays passing through the material on the belt. The method applies the absorption law according to Lambert-Beer, which has to be corrected by a build-up factor because of the stray radiation induced by the Compton effect. The profile-dependent error observed with conventional radiometric belt weighers is caused by the non-linearity of the absorption law in connection with the simultaneous summation of the various partial rays in a detector. The scanning method allows separate evaluation of the partial rays' attenuation and thus yields the correct data of the material carried, regardless of the profile. The scanning method is applied on a finite number of scanning sections, and a residual error has to be taken into account. The stochastics of quantum emission and absorption leads to an error whose expectation value is to be taken into account in the scanning algorithm. As the conveyor belt is in motion during the process of measurements, only part of the material conveyed is irradiated. The resulting assessment error is investigated as a function of the autocorrelation function of the material on the belt. (orig./HP) [de

  13. Inverting radiometric measurements with a neural network

    Science.gov (United States)

    Measure, Edward M.; Yee, Young P.; Balding, Jeff M.; Watkins, Wendell R.

    1992-02-01

    A neural network scheme for retrieving remotely sensed vertical temperature profiles was applied to observed ground based radiometer measurements. The neural network used microwave radiance measurements and surface measurements of temperature and pressure as inputs. Because the microwave radiometer is capable of measuring 4 oxygen channels at 5 different elevation angles (9, 15, 25, 40, and 90 degs), 20 microwave measurements are potentially available. Because these measurements have considerable redundancy, a neural network was experimented with, accepting as inputs microwave measurements taken at 53.88 GHz, 40 deg; 57.45 GHz, 40 deg; and 57.45, 90 deg. The primary test site was located at White Sands Missile Range (WSMR), NM. Results are compared with measurements made simultaneously with balloon borne radiosonde instruments and with radiometric temperature retrievals made using more conventional retrieval algorithms. The neural network was trained using a Widrow-Hoff delta rule procedure. Functions of date to include season dependence in the retrieval process and functions of time to include diurnal effects were used as inputs to the neural network.

  14. Radiometric system for clinical applications in the National Health System

    International Nuclear Information System (INIS)

    Mesa Perez, G.; Arteche Diaz, R.; Camejo Batista, A.; Fonfria Bragado, C.

    2013-01-01

    In this paper it is presented the radiometric detection system SRNIC-02, manufactured at CEADEN. The system has three major components: a well-type Nal(TI) scintillator detector with its collimator, a measurement module, and the application software, which allows fixing the working parameters of the system, as well as the acquisition and processing of data. The system has two main applications in the National Health System, one for the quality control in Radiopharmacy, and in RIA/IRMA blood tests. There are 16 systems installed, in 13 provinces of the country up to this date. (Author)

  15. High speed radiometric measurements of IED detonation fireballs

    Science.gov (United States)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  16. RapidEye constellation relative radiometric accuracy measurement using lunar images

    Science.gov (United States)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  17. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  18. Pukaki 1-01 : initial luminescence dating and radiometric measurements

    International Nuclear Information System (INIS)

    Rieser, U.

    2001-01-01

    Core from Pukaki 1-01 was sampled for luminescence dating and radiometric measurements on 14 March 2001 in the dark room laboratory at Victoria University. Seven samples were taken to get an overview of the crater history, and laboratory work was completed in August 2001. (author). 2 figs., 3 tabs

  19. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  20. On the lower of limit detection of radiometric systems

    International Nuclear Information System (INIS)

    Kamburov, H.; Boneva, S.

    1983-01-01

    The existing definitions of the quantity Asub(min), the lower detection limit, introduced as a characteristic of the sensitivity of radiometric systems are reviewed. A convenient way is found for comparing the different definitions by showing that each definition is connected with a specific value of the probability a of Type I error. The detection limits are calculated for a normal and Poisson distributions of the measured quantities. A criterion is proposed for the applicability of the normal distiribution to the problem of determining the lower detection limit

  1. Radiometric measurement of ceramic material moisture

    International Nuclear Information System (INIS)

    Kominek, A.; Sojka, J.; Votava, P.

    1975-01-01

    Water content measurement using a neutron moisture meter has a long tradition in the CSSR. The method of water content determination using neutron and gamma radiation was developed by the Research Institute of Building Materials in Brno for a number of materials, as e.g. coke, brown coal semi-coke, anthracite, glass sand, dolomite, soda, gravel, aggregates, cement sludge, slag, brick clay, intermediate products of the ceramics industry, refractory building materials, etc. The water content measurement of ceramic materials for the manufacture of wall tiles was performed in a special equipment by detection of the slowed-down neutrons with an accuracy of +-0.6% water (within the range from 5 to 11%) and of materials for the manufacture of floor tiles by means of neutron and gamma radiation with an accuracy of +-0.4% water (within the range from 5 to 8%). (author)

  2. A new radiometric unit of measure to characterize SWIR illumination

    Science.gov (United States)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  3. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  4. Process system of radiometric and magnetometric aerial information

    International Nuclear Information System (INIS)

    Bazua Rueda, L.F.

    1985-01-01

    The author has been working first in the National Institute of Nuclear Energy (Mexico) and then in URAMEX (Uranio Mexicano) since 1975 to 1983, integrated to radiometric and magnetometric aerial prospecting projects in computerized processing of information aspects. During this period the author participated in the work out of computing systems, information processing and mathematical procedures definition for the geophysical reduction of the calibration equipment data. With cumulated experience, in this thesis are presented aspects concerning to management and operation of computerized processing of information systems. Operation handbooks of the majority of modules are presented. Program lists are not included. (Author)

  5. Study and characterization of porous germanium for radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A new radiometric instrument designed to measure the parameters of bituminous coal on transport belts

    International Nuclear Information System (INIS)

    Kubicek, P.

    1993-01-01

    A new radiometric instrument developed in Czechoslovakia, for the measurement of ash content of bituminous coal, and for the determination of approximate values of moisture and weight is described. (Author)

  7. Global Positioning Radiometric Scanner System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The US DOE continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE OST sponsors the Large Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D and D tasks. One of the stated needs was for developing technologies that would reduce costs and shorten DDOE/EM--0552DOE/EM--0552 and D schedules by providing radiological characterizations to meet the free-release criteria. The Global Positioning Radiometric Scanner (GPRS system shown in Figure 1) utilizes a detection system; a portable computer, a differential global positioning system (d-gps), and a four wheel drive vehicle. Once the survey data has been collected, a software program called GeoSofttrademark generates a graphical representation of the radiological contamination extent. Baseline technology involves gridding the area and hand surveying each grid. This demonstration investigated the associated costs and the required time to evaluate the radiological characterization data from the GPRS with respect to the baseline technology. The GPRS system performs in-situ, real-time analyses to identify the extent of radiological contamination. Benefits expected from using the new innovative technology (GPRS) include: Reduced labor hours associated with performing the survey; Increased number of survey data points; Reduced

  8. Preliminary results of radiometric measurements of clear air and cloud brightness (antenna) temperatures at 37GHz

    Science.gov (United States)

    Arakelyan, A. K.; Hambaryan, A. K.; Arakelyan, A. A.

    2012-05-01

    In this paper the results of polarization measurements of clear air and clouds brightness temperatures at 37GHz are presented. The results were obtained during the measurements carried out in Armenia from the measuring complex built under the framework of ISTC Projects A-872 and A-1524. The measurements were carried out at vertical and horizontal polarizations, under various angles of sensing by Ka-band combined scatterometric-radiometric system (ArtAr-37) developed and built by ECOSERV Remote Observation Centre Co.Ltd. under the framework of the above Projects. In the paper structural and operational features of the utilized system and the whole measuring complex will be considered and discussed as well.

  9. Virtual and remote experiments for radiometric and photometric measurements

    International Nuclear Information System (INIS)

    Thoms, L-J; Girwidz, R

    2017-01-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net. (paper)

  10. Virtual and remote experiments for radiometric and photometric measurements

    Science.gov (United States)

    Thoms, L.-J.; Girwidz, R.

    2017-09-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.

  11. Measurement of particle emission in automobil exhaust - application of continuous radiometric aerosol measurement to the emission of diesel engines

    International Nuclear Information System (INIS)

    Krasenbrink, A.; Georgi, B.

    1989-01-01

    The well-known method of measuring continuously dust by β-absorption is transferred to the problem of particle emission in automobile exhaust. With two similar dust-monitors FH62 having different sampling air flow rates and two low-pressure impactors the reliability of radiometric mass determination was verified. First static experiments with diesel soot showed the necessity of a dilution system, a new mass calibration with regard to the changed β-absorptivity and a quicker calculation of concentration for realtime measurements. (orig.) [de

  12. Signature modelling and radiometric rendering equations in infrared scene simulation systems

    CSIR Research Space (South Africa)

    Willers, CJ

    2011-09-01

    Full Text Available The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction...

  13. Investigation of Pre- and Post-Flight Radiometric Calibration Uncertainties from Surface Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heath, D.F.; Wei, Z.Y.; Ahman, Z.

    1997-06-01

    A new technique has been developed for inferring column ozone amounts and aerosol optical depths from zenith sky observations. A new radiometric calibration technique for large aperture remote sensing instruments observing the earth through space has been validated which subsequently increased the accuracy of remote sensing measurements of ozone and vertical profiles using measurements of back-scattered ultraviolet solar radiation.

  14. Empirical Radiometric Normalization of Road Points from Terrestrial Mobile Lidar System

    Directory of Open Access Journals (Sweden)

    Tee-Ann Teo

    2015-05-01

    Full Text Available Lidar data provide both geometric and radiometric information. Radiometric information is influenced by sensor and target factors and should be calibrated to obtain consistent energy responses. The radiometric correction of airborne lidar system (ALS converts the amplitude into a backscatter cross-section with physical meaning value by applying a model-driven approach. The radiometric correction of terrestrial mobile lidar system (MLS is a challenging task because it does not completely follow the inverse square range function at near-range. This study proposed a radiometric normalization workflow for MLS using a data-driven approach. The scope of this study is to normalize amplitude of road points for road surface classification, assuming that road points from different scanners or strips should have similar responses in overlapped areas. The normalization parameters for range effect were obtained from crossroads. The experiment showed that the amplitude difference between scanners and strips decreased after radiometric normalization and improved the accuracy of road surface classification.

  15. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2017-02-01

    Full Text Available On-orbit radiometric characterization of the multispectral (MS imagery of the Korea Aerospace Research Institute (KARI’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT, vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S radiative transfer model. The characteristics of radiometric tarps, the atmospheric optical depth from multi-filter rotating shadowband radiometer (MFRSR measurements, and sun–sensor–geometry were carefully considered, in order to calculate the exact top of atmosphere (TOA radiance received by KOMPSAT-3A MS bands. In addition, the bidirectional reflectance distribution function (BRDF behaviors of the radiometric tarps were measured in the laboratory with a two-dimensional hyperspectral gonioradiometer, to compensate for the geometry discrepancy between the satellite and the ASD FieldSpec® 3 spectroradiometer. The match-up datasets between the TOA radiance and the digital number (DN from KOMPSAT-3A were used to determine DN-to-radiance conversion factors, based on linear least squares fitting for two field campaigns. The final results showed that the R2 values between the observed and simulated radiances for the blue, green, red, and near-infrared (NIR bands, are greater than 0.998. An approximate error budget analysis for the vicarious calibration of KOMPSAT-3A showed an error of less than 6.8%. When applying the laboratory-based BRDF correction to the case of higher viewing zenith angle geometry, the gain ratio was improved, particularly for the blue (1.3% and green (1.2% bands, which exhibit high sensitivity to the BRDF of radiometric tarps during the backward-scattering phase. The calculated gain ratio between the first and second campaigns showed a less than 5% discrepancy, indicating that

  16. Radiometric analyzer

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring the characteristic values of a sample by radiation includes a humer of radiation measuring subsystems having different ratios of sensitivities to the elements of the sample and linearizing circuits having inverse function characteristics of calibration functions which correspond to the radiation measuring subsystems. A weighing adder operates a desirable linear combination of the outputs of the linearizing circuits. Operators for operating between two or more different linear combinations are included

  17. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  18. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  19. Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations

    Science.gov (United States)

    Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh

    2018-05-01

    Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.

  20. Multipurpose radiometric equipment provided with a microcontroller for use in industrial applications (e.g., measurements of level, density, thickness, etc.)

    International Nuclear Information System (INIS)

    Kluger, A.; Popescu, C.; Patrascu, S.

    1998-01-01

    The goal of this research was to modernize the radiometric equipment used for the control and automation of technological processes. A microcontroller-equipped electronic block was designed and realized, capable of performing all the tasks of a radiometric system, regardless of the application range (i.e. measurement of density, thickness, level, composition, etc.) or the detector type employed. In this work, the experimental model for the multipurpose radiometric equipment was devised. The electronic unit was designed using a high performance controller 80C552 and was provided with low-power transceivers for RS-232 and RS-485 communication with a PC. The results of the measured parameters are displayed using a graphic liquid crystal display, LCD G 242 C, that allows both graphics and character display. (authors)

  1. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  2. Image sensors for radiometric measurements in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.

    the sensors at a stabilised moderately cool temperature of 15 deg. C and to intelligently control the exposure time of the device, so as to reliably measure flux levels in the range 1 W/m super(2)/nm to 10/6 W/m super(2)/nm commonly encountered in the ocean...

  3. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    Science.gov (United States)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  4. Digital image integration technique of multi-geoscience information dominated by aerial radiometric measurements

    International Nuclear Information System (INIS)

    Liu Dechang; Sun Maorong; Zhu Deling; Zhang Jingbo; He Jianguo; Dong Xiuzhen

    1992-02-01

    The geologic metallogenetic environment of uranium at Lian Shan Guan region has been studied by using digital image integration technique of multi-geoscience information with aerial radiometric measurements. It includes the classification of uranium-bearing rock, recognizing patterns of ore-forming and geologic mapping in ore field. Some new tectonic structure was found in this region that gives significant information for further exploring of uranium ore. After multi-parameters screening of aerial radiometric data, patterns recognizing and multi-geoscience information integration analysis, four prospective metallogenetic zones were predicted, and the predication was proved by further geologic survey. Three of the four zones are very encouraging, where ore-forming structures, hydrothermal deposits, wall-rock alteration, primary and secondary uranium ore and rich uranium mineralization are discovered. The department of geologic exploring has decided that these zones will enjoy priority in the examination for further prospecting of uranium ores

  5. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  6. Microwave radiometric measurements of soil moisture in Italy

    Directory of Open Access Journals (Sweden)

    G. Macelloni

    2003-01-01

    Full Text Available Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz. The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz, is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture

  7. Fundamentals of gamma-ray measurements and radiometric analyses

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1990-01-01

    There are four primary modes of radioactive decay. All can be measured using various types of detectors and are the basis of many analytical techniques and much of what we know about the nucleus and its structure. Alpha particle emission occurs mostly in heavy nuclei of atomic number, Z, greater than 82 like Po, Ra, Th, and U, etc. Beta particles are simply electrons. They are emitted from the nucleus with a distribution of energies ranging from 0--3 MeV. Gamma-rays are photons with energies ranging from a few keV to 10 MeV or more. They usually follow alpha or beta decay, and depending on their energy, can have considerable range in matter. Neutrons are emitted in fission processes and also from a few of the highly excited fission product nuclei. Fission neutrons typically have energies of 1--2 MeV. Like gamma-rays, they have long ranges. The energies involved in nuclear decay processes are much higher than anything encountered in, say, chemical reactions. They are at the very top of the electromagnetic spectrum -- about a million times more energetic than visible light. As a result, these particles always produce ionization, either directly or indirectly, as they pass through matter. It is this ionization which is the basis of all radiation detectors

  8. Radiometric dating

    International Nuclear Information System (INIS)

    Das, N.R.

    2017-01-01

    Since the discovery of natural radioactivity in uranium, in the last decade of the nineteenth century, the nuclear property of radioactive decay of radionuclides at immutable rates has been effectively utilized in dating of varieties of naturally occurring geological matrices and the organisms which constantly replenish their "1"4C supply through respiration when alive on earth. During the period, applications of radiometric dating techniques have been extensively diversified and have enabled the geologists to indicate the absolute time scales of geological formations and the evolution of the solar system, the earth, meteorites, lunar rocks, etc. and the archaeologists to record the facts of history of several important events like dinosaur era, Iceman, the Shroud in Turin and many other ancient artefacts. In the development of dating methods, varieties of naturally occurring radio-isotopic systems with favorable half-lives ranging from about 10 years to over 100 billion years have been used as radiometric clocks. (author)

  9. State of the art and trends of radiometric methods for measuring the mass per unit area

    International Nuclear Information System (INIS)

    Bernhardt, R.

    1984-01-01

    The determination of the mass per unit area by means of transmission or backscattering methods is one of the traditional radioisotope applications. Microelectronics have essentially contributed to the noticeable progress achieved in the development of radiometric instruments for mass per unit area measurements. The use of microcomputers led to both a reliable solution of the main problem of processing the measured data - the correlation of the mass per unit area value with the detector signal under nonlinear calibration conditions - and a considerable increase in the efficiency of the measuring equipment

  10. Radiometric probe design for the measurement of heat flux within a solid rocket motor nozzle

    Science.gov (United States)

    Goldey, Charles L.; Laughlin, William T.; Popper, Leslie A.

    1996-11-01

    Improvements to solid rocket motor (SRM) nozzle designs and material performance is based on the ability to instrument motors during test firings to understand the internal combustion processes and the response of nozzle components to the severe heating environment. Measuring the desired parameters is very difficult because the environment inside of an SRM is extremely severe. Instrumentation can be quickly destroyed if exposed to the internal rocket motor environment. An optical method is under development to quantify the heating of the internal nozzle surface. A radiometric probe designed for measuring the thermal response and material surface recession within a nozzle while simultaneously confining the combustion products has been devised and demonstrated. As part of the probe design, optical fibers lead to calibrated detectors that measure the interior nozzle thermal response. This two color radiometric measurement can be used for a direct determination of the total heat flux impinging on interior nozzle surfaces. This measurement has been demonstrated using a high power CO2 laser to simulate SRM nozzle heating conditions on carbon phenolic and graphite phenolic materials.

  11. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer

    Directory of Open Access Journals (Sweden)

    C. Monte

    2014-01-01

    Atmosphere is an airborne, imaging, infrared Fourier transform spectrometer that applies the limb-imaging technique to perform trace gas and temperature measurements in the Earth's atmosphere with three-dimensional resolution. To ensure the traceability of these measurements to the International Temperature Scale and thereby to an absolute radiance scale, GLORIA carries an on-board calibration system. Basically, it consists of two identical large-area and high-emissivity infrared radiators, which can be continuously and independently operated at two adjustable temperatures in a range from −50 °C to 0 °C during flight. Here we describe the radiometric and thermometric characterization and calibration of the in-flight calibration system at the Reduced Background Calibration Facility of the Physikalisch-Technische Bundesanstalt. This was performed with a standard uncertainty of less than 110 mK. Extensive investigations of the system concerning its absolute radiation temperature and spectral radiance, its temperature homogeneity and its short- and long-term stability are discussed. The traceability chain of these measurements is presented.

  12. Large-scale clinical comparison of the lysis-centrifugation and radiometric systems for blood culture

    International Nuclear Information System (INIS)

    Brannon, P.; Kiehn, T.E.

    1985-01-01

    The Isolator 10 lysis-centrifugation blood culture system (E. I. du Pont de Nemours and Co., Inc., Wilmington, Del.) was compared with the BACTEC radiometric method (Johnston Laboratories, Inc., Towson, Md.) with 6B and 7D broth media for the recovery of bacteria and yeasts. From 11,000 blood cultures, 1,174 clinically significant organisms were isolated. The Isolator system recovered significantly more total organisms, members of the family Enterobacteriaceae, Staphylococcus spp., and yeasts. The BACTEC system recovered significantly more Pseudomonas spp., Streptococcus spp., and anaerobes. Of the Isolator colony counts, 87% measured less than 11 CFU/ml of blood. Organisms, on an average, were detected the same day from each of the two culture systems. Only 13 of the 975 BACTEC isolates (0.01%) were recovered by subculture of growth-index-negative bottles, and 12 of the 13 were detected in another broth blood culture taken within 24 h. Contaminants were recovered from 4.8% of the Isolator 10 and 2.3% of the BACTEC cultures

  13. Measuring two-phase and two-component mixtures by radiometric technique

    International Nuclear Information System (INIS)

    Mackuliak, D.; Rajniak, I.

    1984-01-01

    The possibility was tried of the application of the radiometric method in measuring steam water content. The experiments were carried out in model conditions where steam was replaced with the two-component mixture of water and air. The beta radiation source was isotope 204 Tl (Esub(max)=0.765 MeV) with an activity of 19.35 MBq. Measurements were carried out within the range of the surface density of the mixture from 0.119 kg.m -2 to 0.130 kg.m -2 . Mixture speed was 5.1 m.s -1 to 7.1 m.s -1 . The observed dependence of relative pulse frequency on the specific water content in the mixture was approximated by a linear regression. (B.S.)

  14. Measuring instrument for the determination of dust concentrations. [air filter with. beta. radiometric gage

    Energy Technology Data Exchange (ETDEWEB)

    Dresia, H; Spohr, F

    1975-05-22

    The measuring instrument enables a continuous determination of the dust concentration or total dust content in gases on the basis of the radiometric mass determination of dusts. The partial current method is employed, with the gas fetched through a filter cell with a topped intake by a suction pump. A filter band to take up the dust deposit is continuously driven through the filter cell. The filter point and the measuring point with a ..beta..-radionuclide and a detector are both inside the filter cell. The filter cell is sealed all around, at the entrance and exit of the filter band. The band itself acts as a seal. The filter band also has borders strengthened with, e.g., plastic strips which engage the drive. The widths of the slits are adjustable in height.

  15. Improved detection of Mycobacterium avium complex with the Bactec radiometric system

    International Nuclear Information System (INIS)

    Hoffner, S.E.

    1988-01-01

    A reconsideration of the laboratory methods used for primary isolation of mycobacteria other than Mycobacterium tuberculosis is needed due to the increasingly recognized importance of such mycobacterial infections in immunocompromised patients. One example of this is the severe opportunistic infections caused by Mycobacterium avium complex among AIDS patients. In this study, the Bactec radiometric system was compared to conventional culture on solid medium for the detection of M. avium complex in 3,612 selected clinical specimens, mainly of extrapulmonary origin. Of a total number of 63 M. avium complex isolates, the Bactec system detected 58 (92%), compared to 37 (59%) for conventional culture. A much more rapid detection was attained with radiometric technique than with conventional culture. The mean detection time for the cultures positive with both methods was 7.1 and 28.3 days, respectively. The Bactec radiometric system achieves a rapid and significantly more sensitive detection and seems to be an excellent complement to conventional culture in the laboratory diagnosis of infections with the M. avium complex

  16. Development and application of a radiometric method of measurement (Heger probe) for characterizing clastic rock strata in exposures

    International Nuclear Information System (INIS)

    Koch, G.

    1984-01-01

    The radiometric image of a stratigraphic exposure profile was to be logged. The method of measurement was tested on clastic sediments of the Tertiary (Saudi Arabia) and Bunter (Northern Germany). The well-tried scintillometer technique was supplemented by modern technological means supplied by a prospecting company (Gewerkschaft Brunhilde). The probe applied was specifically developped for stratigraphic purposes. (orig./HP) [de

  17. Challenges in the implementation of a quality management system applied to radiometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila C.S.; Bonifacio, Rodrigo L.; Nascimento, Marcos R.L.; Silva, Nivaldo C. da; Taddei, Maria Helena T., E-mail: danilacdias@gmail.com [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    The concept of quality in laboratories has been well established as an essential factor in the search for reliable results. Since its first version published (1999), the ISO/IEC 17025 has been applied in the industrial and research fields, in a wide range of laboratorial analyses. However, the implementation of a Quality Management System still poses great challenges to institutions and companies. The purpose of this work is to expose the constraints related to the implementation of ISO/IEC 17025 applied to analytical assays of radionuclides, accomplished by studying the case of the Pocos de Caldas Laboratory of the Brazilian Commission for Nuclear Energy. In this lab, a project of accreditation of techniques involving determination of radionuclides in water, soil, sediment and food samples has been conducted since 2011. The challenges presented by this project arise from the administrative view, where the governmental nature of the institution translates into unlevelled availability resources and the organizational view, whereas QMS requires inevitable changes in the organizational culture. It is important to point out that when it comes to accreditation of analysis involving radioactive elements, many aspects must be treated carefully due to the their very particular nature. Among these concerns are the determination of analysis uncertainties, accessibility to international proficiency studies, international radioactive samples and CRM transportation, the study of parameters on the validation of analytical methods and the lack of documentation and specialized personnel regarding quality at radiometric measurements. Through an effective management system, the institution is overcoming these challenges, moving toward the ISO/IEC 17025 accreditation. (author)

  18. Challenges in the implementation of a quality management system applied to radiometric analysis

    International Nuclear Information System (INIS)

    Dias, Danila C.S.; Bonifacio, Rodrigo L.; Nascimento, Marcos R.L.; Silva, Nivaldo C. da; Taddei, Maria Helena T.

    2015-01-01

    The concept of quality in laboratories has been well established as an essential factor in the search for reliable results. Since its first version published (1999), the ISO/IEC 17025 has been applied in the industrial and research fields, in a wide range of laboratorial analyses. However, the implementation of a Quality Management System still poses great challenges to institutions and companies. The purpose of this work is to expose the constraints related to the implementation of ISO/IEC 17025 applied to analytical assays of radionuclides, accomplished by studying the case of the Pocos de Caldas Laboratory of the Brazilian Commission for Nuclear Energy. In this lab, a project of accreditation of techniques involving determination of radionuclides in water, soil, sediment and food samples has been conducted since 2011. The challenges presented by this project arise from the administrative view, where the governmental nature of the institution translates into unlevelled availability resources and the organizational view, whereas QMS requires inevitable changes in the organizational culture. It is important to point out that when it comes to accreditation of analysis involving radioactive elements, many aspects must be treated carefully due to the their very particular nature. Among these concerns are the determination of analysis uncertainties, accessibility to international proficiency studies, international radioactive samples and CRM transportation, the study of parameters on the validation of analytical methods and the lack of documentation and specialized personnel regarding quality at radiometric measurements. Through an effective management system, the institution is overcoming these challenges, moving toward the ISO/IEC 17025 accreditation. (author)

  19. On the radiometric measurement of the density distribution occuring at the horizontal hydraulic transport of solid matter

    International Nuclear Information System (INIS)

    Goedde, E.; Weber, M.

    1977-01-01

    In order to estimate the phenomena of the flow in horizontal hydraulic transport of solid matter, measuring the density structure along the vertical pipe diameter is of vital interest for basic investigations. The measurement technology in mixed flows of solid matter and water is very difficult and therefore only few publications on characteristic flow profiles in horizontal pipes are known. In a research programme advanced by the Deutsche Forschungsgemeinschaft investigations were made on the possibility to measure the density profile by means of plain measuring equipment based upon radiometrics. In this paper a combination of a nuclear radiometric polar and parallel scanning method is shown to be suitable for this kind of measurements. (orig.) [de

  20. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  1. A STUDY ON THE EFFECTS OF VIEWING ANGLE VARIATION IN SUGARCANE RADIOMETRIC MEASURES

    Directory of Open Access Journals (Sweden)

    Érika Akemi Saito; Moriya

    Full Text Available Abstract: Remote Sensing techniques, such as field spectroscopy provide information with a large level of detail about spectral characteristics of plants enabling the monitoring of crops. The aim of this study is to analyze the influence of viewing angle in estimating the Bidirectional Reflectance Distribution Function (BRDF for the case of sugarcane. The study on the variation of the spectral reflectance profile can help the improvement of algorithms for correction of BRDF in remote sensing images. Therefore, spectral measurements acquired on nadir and different off-nadir view angle directions were considered in the experiments. Change both anisotropy factor and anisotropy index was determined in order to evaluate the BRDF variability in the spectral data of sugarcane. BRDF correction was applied using the Walthall model, thus reducing the BRDF effects. From the results obtained in the experiments, the spectral signatures showed a similar spectral pattern varying mainly in intensity. The anisotropy factor which showed a similar pattern in all wavelengths. The visual analysis of the spectral reflectance profile of sugarcane showed variation mainly in intensity at different angles. The use of Walthall model reduced the BRDF effects and brought the spectral reflectance profiles acquired on different viewing geometry close to nadir viewing. Therefore, BRDF effects on remote sensing data of vegetation cover can be minimized by applying this model. This conclusion contributes to developing suitable algorithms to produce radiometrically calibrated mosaics with remote sensing images taken by aerial platforms.

  2. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems

    Directory of Open Access Journals (Sweden)

    Eero Ahokas

    2010-08-01

    Full Text Available Reliable and optimal exploitation of rapidly developing airborne imaging methods requires geometric and radiometric quality assurance of production systems in operational conditions. Permanent test sites are the most promising approach for cost-efficient performance assessment. Optimal construction of permanent radiometric test sites for high resolution airborne imaging systems is an unresolved issue. The objective of this study was to assess the performance of commercially available gravels and painted and unpainted concrete targets for permanent, open-air radiometric test sites under sub-optimal climate conditions in Southern Finland. The reflectance spectrum and reflectance anisotropy and their stability were characterized during the summer of 2009. The management of reflectance anisotropy and stability were shown to be the key issues for better than 5% reflectance accuracy.

  3. Geochemical and radiometric surveys of Sabkhet Al-Jaboul area by investigating trace elements, radon measurements and gamma spectrometry

    International Nuclear Information System (INIS)

    Jubeli, Y.; Aissa, M.; Al-Hilal, M.

    1999-08-01

    Radiometric and geochemical surveys were carried out over various geological formations in Sabkhet Al-Jaboul and its surrounding environment for evaluating the levels of radioactivity in the area. Therefore, a number of exploration techniques were used in this study such as gamma ray spectrometry, geochemical exploration and soil radon measurements. Although the results of this survey indicate some slight variations of which might be useful to distinguish between various lithological units, most of the obtained data do not reveal any significant radiometric values that could be considered important from the exploration point of view. However, these data were successfully handled to estimate the natural background of radioactivity throughout the geological units of the region. The results also showed the importance of the sedimentary transition contact zone where the continental fresh and salt favourable geochemical environment for uranium precipitation when other fundamental geological requirements for developing such concentrations are available. (author)

  4. Comparison of accelerator and radiometric radiocarbon measurements obtained from Late Devensian Lateglacial lake sediments from Llyn Gwernan, North Wales, UK

    International Nuclear Information System (INIS)

    Lowe, J.J.; Lowe, S.; Fowler, A.J.

    1988-01-01

    Accelerator mass spectrometry measurements of the radiocarbon activity of various chemical fractions prepared from Late Devensian Lateglacial lake sediments from the site of Llyn Gwernan, near Cader Idris. North Wales are presented and assessed. These are compared with radiocarbon measurements obtained by radiometric (decay) counting which were reported earlier from the same site and are considered in the light of pollen-stratigraphic information. The potensial advantages of accelerator radiocarbon measurements to the assessment of the chronology and correlation of Lateglacial lake sediments are evaluated

  5. Radiometric measurements on the fabrication of non-destructive assay standards for WIPP-Performance Demonstration Program

    International Nuclear Information System (INIS)

    Wong, A.S.; Marshall, R.S.

    1997-04-01

    The Inorganic Elemental Analysis Group of LANL has prepared several different sets of working reference materials (WRMs). These WRMs are prepared by blending quantities of nuclear materials (plutonium, americium, and enriched uranium) with diatomaceous earth. The blends are encapsulated in stainless steel cylinders. These WRMs are being measured as blind controls in neutron and gamma based non-destructive assay (NDA) instruments. Radiometric measurements on the blending homogeneity and verification on a set of sixty three plutonium based WRMs are discussed in this paper

  6. Quality control of gamma radiation measuring systems

    International Nuclear Information System (INIS)

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  7. Automation of radiometric testing

    International Nuclear Information System (INIS)

    Chekalin, A.S.; Temnik, A.K.; Butakova, G.E.; Goncharov, V.I.

    1983-01-01

    The main prerequisites for creation of automatic systems of radiometric testing as the means to increase the testing objectivity and quality have been considered, principles of their design being developed. The operating system is described for testing complex configuration products using RD-10R gamma flow detector as a sensor of initial information

  8. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  9. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  10. Radiometric mass flow probes for belt weighers - the state of the art and possibilities of application

    International Nuclear Information System (INIS)

    Glaeser, M.

    1986-01-01

    The setup of radiometric belt weighers is described in principle and compared with conventional ones. Fields of application are mentioned and a list is given of equipment comercially available. The comparison shows that the radiometric systems are advantageous in general, but in special cases (measuring error lower than 1%, chemical composition varies several 10%) gravimetric systems are indispensable

  11. Radiometric compensation for cooperative distributed multi-projection system through 2-DOF distributed control.

    Science.gov (United States)

    Tsukamoto, Jun; Iwai, Daisuke; Kashima, Kenji

    2015-11-01

    This paper proposes a novel radiometric compensation technique for cooperative projection system based-on distributed optimization. To achieve high scalability and robustness, we assume cooperative projection environments such that 1. each projector does not have information about other projectors as well as target images, 2. the camera does not have information about the projectors either, while having the target images, and 3. only a broadcast communication from the camera to the projectors is allowed to suppress the data transfer bandwidth. To this end, we first investigate a distributed optimization based feedback mechanism that is suitable for the required decentralized information processing environment. Next, we show that this mechanism works well for still image projection, however not necessary for moving images due to the lack of dynamic responsiveness. To overcome this issue, we propose to implement an additional feedforward mechanism. Such a 2 Degree Of Freedom (2-DOF) control structure is well-known in control engineering community as a typical method to enhance not only disturbance rejection but also reference tracking capability, simultaneously. We theoretically guarantee and experimentally demonstrate that this 2-DOF structure yields the moving image projection accuracy that is overwhelming the best achievable performance only by the distributed optimization mechanisms.

  12. Comparison of radiometric and conventional culture systems in detecting Haemophilus influenzae type b bacteremia in rats

    International Nuclear Information System (INIS)

    Mitchell, M.J.; Zwahlen, A.; Elliott, H.L.; Ford, N.K.; Charache, F.P.; Moxon, E.R.

    1985-01-01

    To compare the efficiency of detecting Haemophilus influenzae type b bacteremia by the BACTEC radiometric system and a conventional Trypticase soy broth blood culture system, the authors developed an in vivo model of bacteremia in rats. After intravenous injection of 50 to 200 CFU into adult rats, there was a linear logarithmic increase in CFU per milliliter of rat blood during the first 10 h (r = 0.98), allowing accurate prediction of the level of bacteremia with time. Culture bottles were inoculated with 0.5 ml of blood obtained by cardiac puncture and processed as clinical samples in the microbiology laboratory with RS and conventional protocols. They found the following. (i) The first detection of bacteremia by RS was similar to that by TSB if a Gram stain of the TSB was done on day 1 and was superior if that smear was omitted (P less than 0.01). (ii) The detection times in both systems were comparable at different magnitudes of bacteremia (10(1) to 10(4) CFU/ml). (iii) Supplementation of inoculated bottles with 2 ml of sterile rat blood interfered with Gram stain detection in TSB but resulted in increased 14 CO 2 production in RS. (iv) No difference in detection time was found between RS and TSB for four different clinical isolates. These studies show that, in a biologically relevant model, the detection of positive blood cultures for H. influenzae type b by RS was comparable to or better than detection by TSB when blood was processed analogously to clinical specimens

  13. Ensuring validity of radiometric temperature measurements obtained in the field using infrared imagers

    CSIR Research Space (South Africa)

    Mudau, AE

    2010-11-01

    Full Text Available When a military aircraft becomes the target of an approaching infrared seeker missile, it relies on infrared counter-measures to serve as decoys and to confuse the missile. The Optronic Sensor Systems (OSS) group at CSIR-DPSS is involved in computer...

  14. Interpretation of UV radiometric measurements of spectrally non-uniform sources

    International Nuclear Information System (INIS)

    Murphy, P.J.; Gardner, D.G.

    1988-01-01

    Narrow bandpass UV radiometers are used in a variety of high-temperature measurement applications. Significant systematic errors, in the form of an apparent wavelength shift in the system response curve, may be introduced when interpreting data obtained from spectrally nonuniform sources. Theoretical calculations, using transmission curves from commercially available narrow bandpass filters, show that the apparent shift in the system spectral response is a function of temperature for a blackbody source. A brief comparison between the theoretical analysis and experimentaal data is presented

  15. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  16. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  17. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    Science.gov (United States)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  18. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2014-02-01

    Full Text Available Combinations of unmanned aerial platforms and multispectral sensors are considered low-cost tools for detailed spatial and temporal studies addressing spectral signatures, opening a broad range of applications in remote sensing. Thus, a key step in this process is knowledge of multi-spectral sensor calibration parameters in order to identify the physical variables collected by the sensor. This paper discusses the radiometric calibration process by means of a vicarious method applied to a high-spatial resolution unmanned flight using low-cost artificial and natural covers as control and check surfaces, respectively.

  19. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    Science.gov (United States)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity

  20. MSFIA-LOV system for {sup 226}Ra isolation and pre-concentration from water samples previous radiometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Rogelio [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136 (Mexico); Borràs, Antoni [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Leal, Luz [Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136 (Mexico); Cerdà, Víctor [Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Ferrer, Laura, E-mail: laura.ferrer@uib.es [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain)

    2016-03-10

    An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of {sup 226}Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO{sub 2} and the BaSO{sub 4} co-precipitation, achieving more selectivity especially in water samples with low radium levels. Radium is adsorbed on MnO{sub 2} deposited on macroporous of bead cellulose. Then, it is eluted with hydroxylamine to transform insoluble MnO{sub 2} to soluble Mn(II) thus freeing Ra, which is then coprecipitated with BaSO{sub 4}. The {sup 226}Ra can be directly detected in off-line mode using a low background proportional counter (LBPC) or through a liquid scintillation counter (LSC), after performing an on-line coprecipitate dissolution. Thus, the versatility of the proposed system allows the selection of the radiometric detection technique depending on the detector availability or the required response efficiency (sample number vs. response time and limit of detection). The MSFIA-LOV system improves the precision (1.7% RSD), and the extraction frequency (up to 3 h{sup −1}). Besides, it has been satisfactorily applied to different types of water matrices (tap, mineral, well and sea water). The {sup 226}Ra minimum detectable activities (LSC: 0.004 Bq L{sup −1}; LBPC: 0.02 Bq L{sup −1}) attained by this system allow to reach the guidance values proposed by the relevant international agencies e.g. WHO, EPA and EC. - Highlights: • Automatic, rapid and selective method for {sup 226}Ra extraction/pre-concentration from water. • MSFIA-LOV system performs a sample clean-up prior to {sup 226}Ra radiometric detection. • {sup 226}Ra sample preparation allows using two radiometric detectors (LBPC and LSC). • Environmental levels of {sup 226}Ra are easily quantified. • High sensitivity and selectivity are achieved, reaching the

  1. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    Science.gov (United States)

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  2. Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors

    Directory of Open Access Journals (Sweden)

    Mhd. Suhyb Salama

    2010-08-01

    Full Text Available A Bayesian model is developed to match aerospace ocean color observation tofield measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  3. Results of radiometric and geochemical measurement for the natural radioactivity map of Slovenia

    Directory of Open Access Journals (Sweden)

    Mišo Andjelov

    1994-12-01

    Full Text Available In 1990, a program was initiated to cover Slovenia with portable gamma-ray spectrometer measurements on a 5 x 5 km grid. The measurements were performed with a four channel Scintrex GAD-6 spectrometer. Five gamma-ray measurements were taken at each of 816 locations. Samples of the upper 10 cm of soil profile were collected for laboratory analysis. Uranium in samples was determinedby delayed neutron method (DNC. Other 35 elements: Ag, Al, As, Au, Ba, Be,Bi, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Se, Sn, Sr, Th, Ti,U, V, W, Y, Zn and Zr were analyzed by plasma-coupled emission spectrometry (ICP. The field gamma-ray measurements were converted to ground concentrationsof potassium, uranium and thorium. These show good correlation with the laboratory analyses of soil samples. Regardless of the wide spaced sampling, the produced maps show relatively good correlation with main geological units. They demonstrated that the methodology can be successfully implemented for environmental monitoring, geological mapping and mineral exploration. The product ofthis project is the frist natural background radioactivity map of Slovenia covering the entire country.

  4. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  5. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  6. Models for calibration of radiometric probes for measurement of natural radioactivity of rocks

    International Nuclear Information System (INIS)

    Czubek, J.A.; Lenda, A.

    1978-01-01

    The physical problems connected with the depth of investigation in the natural gamma-ray log measurements in the rocks are solved. The primary and the scattered radiation from gamma-ray lines of potassium, uranium and thorium series have been considered. The scattered radiation has been taken into account using the build-up factor approximation. The dimensions of rock models are calculated assuming the cylindrical form. Some recommendations for the realization of such models using the concrete mixtures are given. (author)

  7. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples.

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  8. Determination of uranium in phosphorite by radiometric measurements and activation analysis

    International Nuclear Information System (INIS)

    Santos Amaral, R. dos.

    1987-01-01

    Uranium was determined by passive gamma ray counting in phosphate rocks in the range from 50 to 400 ppm U 3 O 8 . The measurements were carried out focusing on the 186 KeV gamma ray from the 235 U nuclide. The radioactive equilibrium of the 226 Ra in the uranium decay chain was investigated due its contribution in the 186 KeV compound 226 Ra 235 U photopeak. Therefore a simulataneous uranium determination through the 234 Th radionuclide demonstrate the equilibrium conditions. The results of the uranium analysis by the following methods: spectrophotometry, XRF and delayed neutrons from three independent laboratories were compared to evaluate the accuracy of the radioanalytical results. The uranium content was also determined by neutron activation analysis, followed by gamma measurement of the 239 Np formed by the 238 U (n,γ) 239 U reaction and 239 U beta decay and the fission products of 235 U. By the correlation of 239 Np, 99 Mo, 143 Ce, 131 I, and 133 I photopeak was measured the 238 U/ 235 U isotopic ratio. (author) [pt

  9. Radiometric characterization of six soils in the microwave X-range through complex permittivity measurements

    International Nuclear Information System (INIS)

    Palme, U.W.

    1987-10-01

    Estimating and monitoring up-to-date soil moisture conditions over extensive areas through passive (or active) microwave remote sensing techniques requires the knowledge of the complex relative permittivity (ε r * ) in function of soil moisture. X-band measurements of ε r * for different moisture conditions were made in laboratory for soil samples of six important Soils (PV 2 , LV 3 , LR d , LE 1 , SAP and Sc). Using a theoretical model and computational programmes developed, these measurements allowed estimates of the emissive characteristics of the soils that would be expected with the X-Band Microwave Radiometer built at INPE. The results, new, for soils from tropical regions, showed that only the physical characteristics and properties of the soils are not sufficient to explain the behaviour of ε r * in function of soil moisture, indicating that the chemical and/or mineralogical properties of the soils do have an important contribution. The results also showed thast ε r * in function of soil moisture depends on soil class. (author) [pt

  10. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this

  11. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  12. Use of the radiometric method at creation cell test-systems for pre-screening of anticancer preparations

    International Nuclear Information System (INIS)

    Kuznetsova, N.N.; Khashimova, Z.S.; Sadikov, A.A.

    2004-01-01

    Full text: Development of cancer chemotherapy is tightly bound with investigation of biological activity of different compounds on in vitro test systems. Our research has been directed on definition of sensitivity of the cell line KML removed by us from passed of mice melanoma B-16. We had been investigated action of 18 clinical antineoplastic preparations of different classes: alkylating - sarcolysinum, thiophosphamide, dopan, fhthordopan; antimetabolites - cytararibinum, methotrexatum, 6-mercaptopurinum, 5-fhthorouracilum, fhthorafur; antineoplastic antibiotics- adriamycinum, neomycinum, rubomycinum, bruneomycinum, carminomycinum, olivomycinum; plant substances - vinblastinum, colchaminum (component of ointment which used at treatment of skin cancer) and other - carboplatin. Cytotoxic effect of preparations estimated two methods - radiometric on inclusion of 3H - timidine in cells and spectrophotometric by definition of total amount nucleic acids and protein. For this purpose KML cells passed in quantity of 120 thousand in 3 ml of nutrient medium RPMI 1640, 10 % calf embryo serum in bottles and after 24 hours entered substances in dozes from 0,01 up to 100 μg/ml. Contact of substances to cells was 24 hours, then 10 μ Ci 3 H - timidine was injected on bottles at 1 hour. Cells transferred on GFC-filters, washed from not connected label. Filters transferred in scintillation liquid and a level of a radio-activity determined on β-counter. All tested clinical preparations appeared active within the criteria of activity, thus the radiometric method was more sensitive, than spectrophotometric. Thus, testing results of model have shown that stable cell line KML was sensitive to action of 18 clinical preparations with various mechanisms of action by different estimations of damaging action. This model can be used for biological activity of new potential cancerolytics pre-screening. This work was supported by the Center of Science and Technology of the Republic of

  13. Environmental radiometric

    International Nuclear Information System (INIS)

    Gaeta C, R.

    1986-07-01

    This document stresses the importance of measuring the radioactivity of the environment in order to evaluate the radiological exposure of the population. The document emphasizes the necessity of detecting very low levels of radioactivity and the difficulties that it implies. The various components of its basis and the means for its reduction are mentioned. Information on the instruments required to identify and quantify the activities of the different radionuclides is given

  14. Comparative evaluation of Oxoid Signal and BACTEC radiometric blood culture systems for the detection of bacteremia and fungemia

    International Nuclear Information System (INIS)

    Weinstein, M.P.; Mirrett, S.; Reller, L.B.

    1988-01-01

    The Oxoid Signal blood culture system is a newly described, innovative method for visually detecting growth of microorganisms. We did 5,999 paired comparisons of equal volumes (10 ml) of blood in the Oxoid Signal and BACTEC radiometric blood culture systems at two university hospitals that use identical methods of obtaining and processing specimens. Overall, more microorganisms were detected in the BACTEC system (P less than 0.001), in particular, streptococci (P less than 0.01), fungi (P less than 0.001), and nonfermentative gram-negative rods, especially Acinetobacter species (P less than 0.001). Trends favoring the BACTEC system for detection of Pseudomonas aeruginosa, Haemophilus species, and Neisseria species were noted. There were no differences in the yield of staphylococci, members of the family Enterobacteriaceae, and anaerobic bacteria. When both systems detected sepsis, the BACTEC did so earlier (P less than 0.001). This advantage was most notable at 24 h (70% of BACTEC positives detected versus 48% of Oxoid positives). The proportion of positives detected after 48 h, however, was similar (BACTEC, 84%; Oxoid, 78%). Revisions in the Oxoid Signal system itself or in the processing of Oxoid bottles appear to be necessary to improve its performance in detecting certain microorganism groups, especially fungi

  15. Effect of agitation and terminal subcultures on yield and speed of detection of the Oxoid Signal blood culture system versus the BACTEC radiometric system

    International Nuclear Information System (INIS)

    Weinstein, M.P.; Mirrett, S.; Reimer, L.G.; Reller, L.B.

    1989-01-01

    In an initial evaluation, we found the Oxoid Signal blood culture system inferior to the BACTEC radiometric system for detection of some microorganisms causing septicemia. To determine whether modified processing of the Oxoid Signal blood culture system could improve its yield and speed of detecting positive cultures relative to the BACTEC radiometric system, we agitated all Oxoid bottles during the first 24 to 48 h of incubation and performed aerobic and anaerobic subcultures of all Oxoid bottles negative after 7 days of incubation. These modifications improved the overall performance of the Oxoid system, particularly with regard to the yield of streptococci, members of the family Enterobacteriaceae, and Haemophilus, Neisseria, and Acinetobacter spp. The speed of detecting positive cultures also was improved, especially within the first 24 h of incubation. However, the BACTEC system still detected more positive cultures (P less than 0.005), especially of obligate aerobes such as Pseudomonas aeruginosa (P less than 0.05) and yeasts (P less than 0.005). The BACTEC system also detected positive cultures earlier than the Oxoid system (e.g., at 24 h of incubation, 70.5% of BACTEC positive cultures detected versus 62.1% of Oxoid positive cultures detected). Further modifications of the Oxoid system which might include a revised medium, additional processing modifications, altered headspace atmosphere, or a complementary second broth medium should be considered, since the system is attractive in concept and is easy to use in the clinical laboratory

  16. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  17. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  18. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  19. The Radiometric Bode's law and Extrasolar Planets

    National Research Council Canada - National Science Library

    Lazio, T. J; Farrell, W. M; Dietrick, Jill; Greenlees, Elizabeth; Hogan, Emily; Jones, Christopher; Hennig, L. A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation the radiometric Bode's law determined from the five "magnetic" planets in the solar system...

  20. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  1. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  2. Radiometric analysis of UV to near infrared LEDs for optical sensing and radiometric measurements in photochemical systems

    Czech Academy of Sciences Publication Activity Database

    Noori, A.; Mahbub, P.; Dvořák, Miloš; Lucieer, A.; Macka, M.

    2018-01-01

    Roč. 262, JUN (2018), s. 171-179 ISSN 0925-4005 Institutional support: RVO:68081715 Keywords : light emitting diodes ( LED s) * optical sensing * LED characterisation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.401, year: 2016

  3. Radiometric analysis of UV to near infrared LEDs for optical sensing and radiometric measurements in photochemical systems

    Czech Academy of Sciences Publication Activity Database

    Noori, A.; Mahbub, P.; Dvořák, Miloš; Lucieer, A.; Macka, M.

    Roč. 262, JUN ( 2018 ), s. 171-179 ISSN 0925-4005 Institutional support: RVO:68081715 Keywords : light emitting diodes (LEDs) * optical sensing * LED characterisation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.401, year: 2016

  4. Radiometric determination of dilute inhomogeneous solids loading in pneumatic conveying systems

    International Nuclear Information System (INIS)

    Yong Yan; Byrne, Ben; Coulthard, John

    1994-01-01

    The application of γ-ray attenuation methods to non-intrusive measurement of the solids content in pneumatic flow lines is discussed. An instrument employing a broad single-beam interrogation geometry and a single-element detector with uniform sensitivity profile is described. It is designed primarily for metering pulverized coal, where the solids concentration is typically very low, and also often highly inhomogeneous. A detailed analysis of the factors affecting measurement accuracy is presented, together with results obtained from laboratory tests. (author)

  5. Radiometric calibration of wide-field camera system with an application in astronomy

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika

    2017-09-01

    Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.

  6. Radiometric calipers for borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Wylie, A.W.; Jarrett, R.G.

    1976-01-01

    Two versions of a radiometric-type caliper for measuring borehole diameter are described. One, based on the bow-spring principle, is suitable for percussion (exploration) drill holes. The other, which utilizes hemispherical wall contactors actuated by springs, is suitable for blast holes. Both utilize low-power radioactive sources and employ a scintillation detector to measure the 'inverse-square law' response of the device to changes in borehole radius. The performance of the device is examined and examples of its use are illustrated. (author)

  7. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.

  8. Tasmanian tin and tungsten granites - their radiometric characteristics

    International Nuclear Information System (INIS)

    Yeates, A.N.

    1982-01-01

    A radiometric survey of Tasmanian granites has shown, with one exception, that tin and tungsten-bearing granites have high radioactivity, largely owing to increased uranium. Many have a high uranium/thorium ratio as well. Radiometric measurements can also delineate different granite types within composite bodies

  9. 3D Numerical study of the external flow effect on the heat transfer in a radiometric calorimeter dedicated to nuclear heating measurements

    International Nuclear Information System (INIS)

    Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.

    2013-06-01

    Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)

  10. Application of microcomputer to X-ray radiometric ore separation

    International Nuclear Information System (INIS)

    Neverov, A.D.; Aleksandrov, P.S.; Kotler, N.I.

    1988-01-01

    The practical use of microcomputers as universal means for converting information for solving applied problems of X-ray radiometric ore separation method is considered. Laboratory tests of two metals - tungsten and tin manifested high efficiency of the developed system. X-ray radiometric separator software is developed

  11. Panay carborne radiometric and geochemical surveys

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-09-01

    A carborne radiometric survey and stream sediments collection were conducted in Panay and Guimaras Islands. An area in Nabas, Aklan, situated in the northwestern tip of Panay (Buruanga Peninsula) which indicated 2 to 3 times above background radioactivity was delineated. Uranium content in the stream sediment samples collected from Buruanga Peninsula was generally higher than those obtained in other parts of the island. Radioactivity measurements and uranium content in stream sediments were found to be within background levels. It is recommended that follow-up radiometric and geochemical surveys be undertaken in Buruanga Peninsula and additional stream sediments samples be collected in Panay to achieve better sampling density and coverage. (author)

  12. RADIOMETRIC BLOCK ADJUSMENT AND DIGITAL RADIOMETRIC MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    A. Pros

    2013-05-01

    Full Text Available In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF. In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  13. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  14. Discrepancy between growth of Coccidioides immitis in bacterial blood culture media and a radiometric growth index

    International Nuclear Information System (INIS)

    Ampel, N.M.; Wieden, M.A.

    1988-01-01

    Spherules of Coccidioides immitis grew readily after inoculation in vented trypticase soy broth, biphasic brain heart infusion media, and aerobic tryptic soy broth bottles used in a radiometric system (BACTEC). However, visible growth was not accompanied by a significant radiometric growth index. Growth of C. immitis can be visually detected in routine bacterial blood culture media while the radiometric growth index remains negative

  15. Radiometric diagnosis of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Laszlo, A.

    1986-01-01

    The results of this study confirm that rapid radiometric diagnostic tests such as the NAP selective inhibition test for the M. tuberculosis complex followed by the radiometric drug susceptibility tests are extremely reliable and compare favourably with conventional methodologies. This study also shows that referred cultures growing on solid medium can be processed by radiometric procedures without prior subculture. This circumstance by itself shortens the time needed for reporting. (Auth.)

  16. An alternative method for the estimation of sedimentation rates using radiometric measurements in an intertidal region (sw of spain)

    Science.gov (United States)

    Ligero, Rufino; Casas-Ruiz, Melquiades; Barrera, Manuel; Barbero, Luis

    2010-05-01

    The techniques for the direct measurement of the sedimentation rate are reliable but slow and imprecise, given that the time intervals of measurement cannot be very long. Consequently it is an extremely laborious task to obtain a representative map of the sedimentation rates and such maps are available for very few zones. However, for most environmental studies, it is very important to know the sedimentation rates. The high degree of accuracy of the gamma spectrometric techniques together with the application of the model describes in this work, has allowed the determination of the sedimentation rates in a wide spatial area such of the Bay of Cadiz to be obtained with precision and consuming considerably less time in comparison to the traditional techniques. Even so, the experimental conditions required for the sample cores are fairly restrictive, and although the radiological method provides a quantitative advance in measurement, the experimental difficulty in the execution of the study is not greatly diminished. For this reason, a second model has been derived based on the measurement of the inventory, which offers economies in time and financial cost, and which allows the sedimentation rate in a region to be determined with satisfactory accuracy. Furthermore, it has been shown that the application of this model requires a precise determination of 137Cs inventories. The sedimentation rates estimated by the 137Cs inventory method ranged from 0.26 cm/year to 1.72 cm/year. The average value of the sedimentation rate obtained is 0.59 cm/year, and this rate has been compared with those resulting from the application of the 210Pb dating technique. A good agreement between the two procedures has been found. From the study carried out, it has been possible for the first time, to draw a map of sedimentation rates for this zone where numerous physical-chemical, oceanographic and ecological studies converge, since it is situated in a region of great environmental interest

  17. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  18. Sterility test by radiometric technique

    International Nuclear Information System (INIS)

    Faruq, Muhammad

    1980-01-01

    Sterility test of pharmaceuticals can be carried out by the application of pharmacopoeia and radiometric technique. In Indonesia the application of pharmacopoeia technique is carried out through liquid germination for aerobacteria and for fungus and yeast. Radiometric technique is applied to autotrop and heterotrop bacteria. (SMN)

  19. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  20. Radiometric method for the rapid detection of Leptospira organisms

    International Nuclear Information System (INIS)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  1. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  2. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  3. Characterization of filters cartridges from the water polishing system of IEA-R1 reactor: radiometric methods

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula G.; Vicente, Roberto

    2015-01-01

    The acceptance of radioactive waste in a repository depends primarily on knowledge of the radioisotopic inventory of the material, according to regulations established by regulatory agencies. The primary characterization is also a fundamental action to determine further steps in the management of the radioactive wastes. The aim of this work is to report the development of non-destructive methods for primary characterization of filters cartridges discarded as radioactive waste. The filters cartridges are used in the water polishing system of the IEA-R1 reactor retaining the particles in suspension in the reactor cooling water. The IEA-R1 is a pool type reactor with a thermal power of 5 MW, moderated and cooled with light water. It is located in the Energy and Nuclear Research Institute (IPEN-CNEN), in São Paulo, Brazil. The cartridge filters become radioactive waste when they are saturated and do not meet the required flow for the proper operation of the water polishing system. The activities of gamma emitters present in the filters are determined using gamma spectrometry, dose rate measurements and the Point Kernel Method to correlate results from both measurements. For the primary characterization, one alternative method is the radiochemical analysis of slices taken from each filter, what presents the disadvantage of higher exposures personnel and contamination risks. Another alternative method is the calibration of the measurement geometry of a gamma spectrometer, which requires the production of a standard filter. Both methods are necessary but can not be used in operational routine of radioactive waste management owing to cost and complexity. The method described can be used to determine routinely the radioactive inventory of these filters and other radioactive wastes, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  4. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  5. Radiometric enrichment of nonradioactive ores

    International Nuclear Information System (INIS)

    Mokrousov, V.A.; Lileev, V.A.

    1979-01-01

    Considered are the methods of mineral enrichment based on the use of the radioation of various types. The physical essence of enrichment processes is presented, their classification is given. Described are the ore properties influencing the efficiency of radiometric enrichment, methods of the properties study and estimation of ore enrichment. New possibilities opened by radiometric enrichment in the technology of primary processing of mineral raw materials are elucidated. A considerable attention is paid to the main and auxiliary equipment for radiometric enrichment. The foundations of the safety engineering are presented in a brief form. Presented are also results of investigations and practical works in the field of enrichment of ores of non-ferrous, ferrous and non-metallic minerals with the help of radiometric methods

  6. Transportable high sensitivity small sample radiometric calorimeter

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-01-01

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most 238 Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size

  7. Off-line radiometric analysis of Planck-LFI data

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, M; Mennella, A; Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Galeotta, S; Maris, M [LFI-DPC INAF-OATs, Via Tiepolo 11, 34131 Trieste (Italy); Lowe, S R [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL (United Kingdom); Mendes, L [Planck Science Office, European Space Agency, ESAC, P.O. box 78, 28691 Villanueva de la Canada, Madrid (Spain); Leonardi, R; Meinhold, P [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Villa, F; Sandri, M; Cuttaia, F; Terenzi, L; Valenziano, L; Butler, R C [INAF-IASF Bologna, Via Gobetti, 101, 40129, Bologna (Italy); Cappellini, B [INAF-IASF Milano, Via E. Bassini 15, 20133 Milano (Italy); Gregorio, A [Department of Physics, University of Trieste, Via Valerio, 2 Trieste I-34127 (Italy); Salmon, M J [Departamento de IngenierIa de Comunicaciones, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander (Spain); Binko, P [ISDC Data Centre for Astrophysics, University of Geneva, ch. d' Ecogia 16, 1290 Versoix (Switzerland); D' Arcangelo, O, E-mail: tomasi@lambrate.inaf.i [IFP-CNR, Via Cozzi 53, Milano (Italy)

    2009-12-15

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features of LIFE is its ability to run the same data analysis codes both using ground test data and real flight data as input. The LIFE software suite has been successfully used during the RCA/RAA tests and the Planck Integrated System Tests. Moreover, the software has also passed the verification for its in-flight use during the System Operations Verification Tests, held in October 2008.

  8. Off-line radiometric analysis of Planck-LFI data

    International Nuclear Information System (INIS)

    Tomasi, M; Mennella, A; Bersanelli, M; Galeotta, S; Maris, M; Lowe, S R; Mendes, L; Leonardi, R; Meinhold, P; Villa, F; Sandri, M; Cuttaia, F; Terenzi, L; Valenziano, L; Butler, R C; Cappellini, B; Gregorio, A; Salmon, M J; Binko, P; D'Arcangelo, O

    2009-01-01

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features of LIFE is its ability to run the same data analysis codes both using ground test data and real flight data as input. The LIFE software suite has been successfully used during the RCA/RAA tests and the Planck Integrated System Tests. Moreover, the software has also passed the verification for its in-flight use during the System Operations Verification Tests, held in October 2008.

  9. Radiometric determination in situ of the face grades in Witwatersrand gold and uranium mines

    International Nuclear Information System (INIS)

    Smit, C.J.B.

    1985-01-01

    A prototype collimated radiometric face scanner was tested in the Harmony Gold Mine. The results obtained during the pilot study indicate that in situ radiometric uranium assays are statistically indistinguishable from those obtained conventionally from channel chip samples. In addition, the study demonstrated that reasonably reliable gold estimates can be deduced from the radiometric measurements, by use of the ratio of gold to uranium within a mine. The instrumentation, calibration procedures, and background determination are described briefly

  10. Enhanced radiometric detection of Mycobacterium paratuberculosis by using filter-concentrated bovine fecal specimens

    International Nuclear Information System (INIS)

    Collins, M.T.; Kenefick, K.B.; Sockett, D.C.; Lambrecht, R.S.; McDonald, J.; Jorgensen, J.B.

    1990-01-01

    A commercial radiometric medium, BACTEC 12B, was modified by addition of mycobactin, egg yolk suspension, and antibiotics (vancomycin, amphotericin B, and nalidixic acid). Decontaminated bovine fecal specimens were filter concentrated by using 3-microns-pore-size, 13-mm-diameter polycarbonate filters, and the entire filter was placed into the radiometric broth. Comparison of the radiometric technique with conventional methods on 603 cattle from 9 Mycobacterium paratuberculosis-infected herds found that of 75 positive specimens, the radiometric technique detected 92% while conventional methods detected 60% (P less than 0.0005). Only 3.9% of radiometric cultures were contaminated. To measure the effect of filter concentration of specimens on the detection rate, 5 cattle with minimal and 5 with moderate ileum histopathology were sampled weekly for 3 weeks. M. paratuberculosis was detected in 33.3% of nonfiltered specimens and 76.7% of filtered specimens (P less than 0.005). Detection rates were directly correlated with the severity of disease, and the advantage of specimen concentration was greatest on fecal specimens from cattle with low-grade infections. Detection times were also correlated with infection severity: 13.4 +/- 5.9 days with smear-positive specimens, 27.9 +/- 8.7 days with feces from cows with typical subclinical infections, and 38.7 +/- 3.8 days with fecal specimens from cows with low-grade infections. Use of a cocktail of vancomycin, amphotericin B, and nalidixic acid for selective suppression of nonmycobacterial contaminants was better than the commercial product PANTA (Becton Dickinson Microbiologic Systems, Towson, Md.) only when specimens contained very low numbers of M. paratuberculosis

  11. PV radiometrics workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R.

    1995-09-01

    This report documents presentations and discussions held at the Photovoltaics Radiometeric Measurements Workshop conducted at Vail, Colorado, on July 24 and 25, 1995. The workshop was sponsored and financed by the Photovoltaic Module and Systems Performance and Engineering Project managed by Richard DeBlasio, Principal Investigator. That project is a component of the National Renewable Energy Laboratory (NREL) Photovoltaic Research and Development Program, conducted by NREL for the US Department of Energy, through the NREL Photovoltaic Engineering and Applications Branch, managed by Roland Hulstrom. Separate abstracts have been prepared for articles from this workshop.

  12. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Alireza G. Kashani

    2015-11-01

    Full Text Available In addition to precise 3D coordinates, most light detection and ranging (LIDAR systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  13. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    Science.gov (United States)

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  14. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  15. Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products

    Directory of Open Access Journals (Sweden)

    Wai-Yeung Yan

    2011-09-01

    Full Text Available LiDAR (Light Detection And Ranging systems are capable of providing 3D positional and spectral information (in the utilized spectrum range of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spectral information. This paper presents a practical approach for the geometric calibration of LiDAR systems and radiometric correction of collected intensity data while investigating their impact on the quality of the derived products. The proposed approach includes the use of a quasi-rigorous geometric calibration and the radar equation for the radiometric correction of intensity data. The proposed quasi-rigorous calibration procedure requires time-tagged point cloud and trajectory position data, which are available to most of the data users. The paper presents a methodology for evaluating the impact of the geometric calibration on the relative and absolute accuracy of the LiDAR point cloud. Furthermore, the impact of the geometric calibration and radiometric correction on land cover classification accuracy is investigated. The feasibility of the proposed methods and their impact on the derived products are demonstrated through experimental results using real data.

  16. Itinerant radiometric laboratory (IRL-76)

    International Nuclear Information System (INIS)

    Dolgirev, E.I.; Domaratskij, V.P.; Kostikov, Yu.I.

    1978-01-01

    A mobile radiometric laboratory for routine radiation monitoring of the environment, personnel, and population is described. As compared to the previous models, this one incorporates a number of new features and is more informative and versatile. The design and main technical and operating characteristics of the laboratory are detailed

  17. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  18. Radiometric assessment of the sensitivity to antituberculotics of Mycobacterium avium-intracellulare and Mycobacterium xenopi

    International Nuclear Information System (INIS)

    Kubin, M.; Lindholm-Levy, P.; Heifets, L. B.

    1994-01-01

    The macrodilution radiometric method using Middlebrook's 7H12 liquid medium enriched with 14 C-palmitic acid, where the growth activity is monitored by measuring liberated 14 CO 2 , was applied to 25 strains of the Mycobacterium avium complex and to 20 strains of Mycobacterium xenopi to determine the minimal inhibitory concentrations of the following chemotherapeutical agents: ciprofloxacine, clofazimine, rifampin, cycloserine, kanamycin, etionamide, ethambutol, and amikacin. In the case of the M. avium complex, slightly or completely resistant strains were found for the majority of drugs. The sensitive strain proportion was highest with clofazimine and amikacin. The M. xenopis strains exhibited generally lower minimal inhibitory concentrations than the avian mycobacteria for all drugs except for cycloserine and ethambutol. The radiometric method using the BACTEC system was found suitable for the determination of the sensitivity of mycobacteria to chemotherapeutic agents: the results are obtained rapidly, within 8 days following inoculation, and the minimal inhibitory concentrations can be evaluated quantitatively. 1 tab., 8 refs

  19. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  20. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  1. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  2. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    2017-01-01

    We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall...... of components of SES to predict emerging systemic risk during the financial crisis of 2007–2009....

  3. Evidence of cracks in austenitic pipe weldings with a radiometric inspection system; Nachweis von Rissen in austenitischen Rohrleitungsnaehten mit einem radiometrischen Pruefsystem

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.J.; Wuensch, W. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1999-08-01

    The paper reports the development of a radiometric prototype device and its application to inspection of austenitic weldings with intercrystalline crack defects. The device initially was intended to be used for supplemental inspection for clarification of contradictory or unclear testing results, but the results obtained justify to consider the possibility of using it as an independent, full-scope testing instrument. (orig./CB) [Deutsch] Berichtet wird ueber die Entwicklung eines Prototypes eines Radiometrie-Geraetes zur Pruefung von austenitischen Schweissnaehten mit interkristalliner Rissbildung, zunaechst als Entscheidungshilfe bei unklaren bzw. sich widersprechenden Pruefresultaten. Zwischenzeitlich wird auch daran gedacht, ein solches Geraet fuer eine vollstaendige Pruefung weiter zu entwickeln. (orig./DGE)

  4. Pressure Measurement Systems

    Science.gov (United States)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  5. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  6. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  7. Measurement and modelling in anthropo-radiometry

    International Nuclear Information System (INIS)

    Carlan, Loic de

    2011-01-01

    In this HDR (Accreditation to supervise researches) report, the author gives an overview of his research activities, gives a summary of his research thesis (feasibility study of an actinide measurement system in the case of lungs), and proposes a research report on the different aspects of anthropo-radiometric measurement: context (principles, significance, sampling phantoms), development of digital phantoms (software presentation and validation), interface development and validation, application to actinide measurement in lung, taking biokinetic data into account for anthropo-radiometric measurement

  8. Radiometric installations for automatic control of industrial processes and some possibilities of the specialized computers application

    International Nuclear Information System (INIS)

    Kuzino, S.; Shandru, P.

    1979-01-01

    It is noted that application of radioisotope devices in circuits for automation of some industrial processes permits to obtain the on-line information about some parameters of these processes. This information being passed to a computer, controlling the process, permits to obtain and maintain some optimum technological perameters of this process. Some elements of the automation stem projecting are given from the poin of wiev of the radiometric devices tuning, calibration of the radiometric devices with the purpose to get a digital answer in the on-line regime with the preset accuracy and thrustworthyness levels for supplying them to the controlling computer; determination of the system's reaction on the base of the preset statistical criteria; development, on the base of the data obtained from the computer, of an algorithm for the functional checking of radiometric devices' characteristics, - stability and reproductibility of readings in the operation regime as well as determination of the value threshold of an answer, depending on the measured parameter [ru

  9. Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands

    Science.gov (United States)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.

    2017-10-01

    Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  10. RADIOMETRIC CORRECTION OF MULTITEMPORAL HYPERSPECTRAL UAS IMAGE MOSAICS OF SEEDLING STANDS

    Directory of Open Access Journals (Sweden)

    L. Markelin

    2017-10-01

    Full Text Available Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  11. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  12. Radiometric weighing devices. Part 1 and 2

    International Nuclear Information System (INIS)

    Glaeser, M.

    1985-01-01

    Proceeding from the physical and mathematical fundamentals and from the types of radiometric weighing devices presently available, the radiation protection problems arising from the application of radiometric gages in industry and agriculture are discussed. Nuclear weighing devices have been found to be effective from economic point of view but in some cases gravimetric conveyor weighers are indispensable. Information and guidance is given especially for users of radiometric weighing devices. 91 refs., 69 figs., and 8 tabs

  13. Spectrometric devices of itinerant radiometric laboratory

    International Nuclear Information System (INIS)

    Dolgirev, E.I.; Moroz, G.L.; Shchedrin, D.A.

    1978-01-01

    Scintillation gamma-spectrometer is described designed for mobile radiometric laboratory for individual monitoring of internal γ-radiation of members of the general population and service personnel as well as for analysis of the isotopic composition of radiocontaminants in the environment. Description and technical features of device are given. The detection unit consists of detectors made on the basis of NaI(Tl) monocrystals 63 x 63 mm in size. The unit permits measurement of various levels of gamma-emitting nuclides throughout the body and in the thyroid and lungs of man. Provision is made for measuring samples with high specific activities (more than 10 -5 Cu/g) and for examining individuals having high levels of incorporated radionuclides

  14. Calorimetric measuring systems

    DEFF Research Database (Denmark)

    Ritchie, Andrew Ewen; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    in the system. If the switching speed can be increased, improvements may be possible (e.g., current ripple in an electrical machine or physical size of passive components may be reduced). On the other hand, increased switching speed may cause additional losses in a power electronic system and increase...... the system cooling requirement. A common problem is that high-frequency phenomena like proximity effect, skin effect, hysteresis losses, and eddy current losses appear in the systems. These losses are very difficult to treat both theoretically and in practice. It is often difficult to measure the effect...

  15. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    International Nuclear Information System (INIS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable

  16. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    Science.gov (United States)

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  17. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  18. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Jack; Lee, Shihyan; Schwarting, Tom

    2015-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 kilometers) cross-track scanning radiometer with spatial resolutions of 370 and 740 meters at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 microns to 12.01 microns]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  19. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

    Science.gov (United States)

    Cox, C. J.; Morris, S. M.

    2017-12-01

    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  20. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution's leverage and with its expected loss in the tail of the system's loss distribution. Institutions internalize their externality if they are ‘taxed’ based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  1. A new semiquantitative radiometric opsonin assay

    International Nuclear Information System (INIS)

    Yamamura, M.; Valdimarsson, H.

    1978-01-01

    A new semiquantitative radiometric opsonin assay is described. It was found that the opsonin activity generated by incubating brewer's yeast, Saccharomyces cerevisiae, in medium containing less than 5% human serum was exclusively complement dependent. In contrast, C.albicans was effectively opsonized in the absence of complement. Antibodies and the early classical complement pathway did not contribute to the opsonization of S.cerevisiae and neither did C5-9. The brewer's yeast assay can therefore be used for measuring selectively the opsonizing capacity of the alternative pathway. Sera from approximately 7% of apparently healthy adult controls consistently failed to generate significant opsonin activity while 8 out of 26 patients with suspected immune deficiency of unknown cause were defective in this assay. All opsonin deficient sera so far tested had haemolytically normal alternative pathway and Factor B activity. (author)

  2. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse

    We present a simple model of systemic risk and we show that each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution’s leverage and with its expected loss in the tail of the system’s loss distribution. Institutions internalize their externality if they are “taxed” based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  3. Enterprise performance measurement systems

    Directory of Open Access Journals (Sweden)

    Milija Bogavac

    2014-10-01

    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  4. A radiometric method for the characterization of particulate processes in colloidal suspensions. II

    International Nuclear Information System (INIS)

    Subotic, B.

    1979-01-01

    A radiometric method for the characterization of particulate processes is verified using stable hydrosols of silver iodide. Silver iodide hydrosols satisfy the conditions required for the applications of the proposed method. Comparison shows that the values for the change of particle size measured in silver iodide hydrosols by the proposed method are in excellent agreement with the values obtained by other methods on the same systems (electron microscopy, sedimentation analysis, light scattering). This shows that the proposed method is suitable for the characterization of particulate processes in colloidal suspensions. (Auth.

  5. Microsomal aryl hydrocarbon hydroxylase comparison of the direct, indirect and radiometric assays

    International Nuclear Information System (INIS)

    Denison, M.S.; Murray, M.; Wilkinson, C.F.

    1983-01-01

    The direct fluorometric assay of aryl hydrocarbon hydroxlyase has been compared to the more commonly used indirect fluorometric and radiometric assays. Although rat hepatic microsomal activities measured by the direct assay were consistently higher than those obtained by the other assays, the relative changes in activity following enzyme induction and/or inhibition were similar. The direct assay provides an accurate and rapid measure of aryl hydrocarbon hydroxylase activity and avoids several problems inherent in the indirect and radiometric assays. 2 tables

  6. Radon integral measurement system

    International Nuclear Information System (INIS)

    Garcia H, J.M.

    1994-01-01

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  7. Radiometric geochronology of the Himalaya

    International Nuclear Information System (INIS)

    Saini, H.S.

    1982-01-01

    The radiometric age data obtained by different dating methods have been interpreted in terms of possible orogenic activities prevailing in the Himalaya. In general, the age data confirm four main events, the Precambrian, the Late Precambrian-Cambrian Assyntian (Caledonian), the Late Palaeozoic-Hercynian and the Late Cretaceous-Tertiary Himalayan orogeny. The mineral dates are particularly significant in delineating different phases of the last i.e. the Himalayan orogeny which indicates main activity of the young Himalayan metamorphism around 70 to 50 Ma and followed by a momentous phase of major uplift during 25 to 10 Ma, which was responsible for the rise of the deeper part of the Himalaya into great folds and thrust slices and the formation of nappe structures. (author)

  8. Gamma radiometric survey of Jamaica

    International Nuclear Information System (INIS)

    Lalor, G.C.; Robotham, H.; Miller, J.M.; Simpson, P.R.

    1989-01-01

    The results of a total gamma radiometric survey of Jamaica, carried out with car-borne instrumentation, are presented and the data compared with the contents of potassium, thorium and uranium in rocks and in surface (soil, stream-sediment, pan concentrate and water) samples obtained at six sites selected to be representative of the principal rock types and surface environments of Jamaica. The work formed part of an orientation study for a regional geochemical survey of the CARICOM countries of the Caribbean. The initial results indicate that enhanced gamma activity is correlated with enrichment in uranium and thorium, but not potassium, in terra rossa soils and/or bauxite deposits in limestone. Elsewhere, gamma levels are increased on the Above Rocks Cretaceous basement Inlier, where they correlate generally with the presence of volcanogenic sediments and a granodiorite intrusion. The lowest radioactivity was recorded in the vicinity of ultrabasic rocks in the Blue Mountains Inlier. (author)

  9. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  10. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    Science.gov (United States)

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  11. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment

    Directory of Open Access Journals (Sweden)

    Eija Honkavaara

    2018-02-01

    Full Text Available Unmanned airborne vehicles (UAV equipped with novel, miniaturized, 2D frame format hyper- and multispectral cameras make it possible to conduct remote sensing measurements cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is covered by multiple, overlapping, small-format 2D images, which provide redundant information about the object. Radiometric correction of spectral image data is important for eliminating any external disturbance from the captured data. Corrections should include sensor, atmosphere and view/illumination geometry (bidirectional reflectance distribution function—BRDF related disturbances. An additional complication is that UAV remote sensing campaigns are often carried out under difficult conditions, with varying illumination conditions and cloudiness. We have developed a global optimization approach for the radiometric correction of UAV image blocks, a radiometric block adjustment. The objective of this study was to implement and assess a combined adjustment approach, including comprehensive consideration of weighting of various observations. An empirical study was carried out using imagery captured using a hyperspectral 2D frame format camera of winter wheat crops. The dataset included four separate flights captured during a 2.5 h time period under sunny weather conditions. As outputs, we calculated orthophoto mosaics using the most nadir images and sampled multiple-view hyperspectral spectra for vegetation sample points utilizing multiple images in the dataset. The method provided an automated tool for radiometric correction, compensating for efficiently radiometric disturbances in the images. The global homogeneity factor improved from 12–16% to 4–6% with the corrections, and a reduction in disturbances could be observed in the spectra of the object points sampled from multiple overlapping images. Residuals in the grey and white reflectance panels were less than 5% of the

  12. Thyroid Uptake Measurement System

    International Nuclear Information System (INIS)

    Nguyen Duc Tuan; Nguyen Thi Bao My; Nguyen Van Sy

    2007-01-01

    The NED-UP.M7 is a complete thyroid uptake and analysis system specifically designed for nuclear medicine. Capable of performing a full range of studies this system provides fast, accurate results for Uptake Studies. The heart of the NED-UP.M7 is a microprocessor-controlled 2048 channel Compact Multi-Channel Analyzer, coupled to a 2 inch x 2 inch NaI(Tl) detector with a USB personal computer interface. The system offers simple, straight-forward operation using pre-programmed isotopes, and menudriven prompts to guide the user step by step through each procedure. The pre-programmed radionuclides include I-123, I-125, I-131, Tc-99m and Cs-137. The user-defined radionuclides also allow for isotope identification while the printer provides hard copy printouts for patient and department record keeping. The included software program running on PC (Windows XP-based) is a user friendly program with menudriven and graphic interface for easy controlling the system and managing measurement results of patient on Excel standard form. (author)

  13. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  14. Modified and reverse radiometric flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-06-01

    Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.

  15. Determining total sulfur content in coal by MSC radiometric sulfur meter

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T; Golebiowski, W

    1976-01-01

    The MSC radiometric sulfur meter is used to determine total sulfur content in brown and black coals. Sulfur content is determined by measuring intensity of radiation beam which has travelled through a coal sample with the optimum constant surface mass. Construction of the MSC, consisting of a measuring head and the electronic measuring system, is shown in a scheme. AM-241 (with activity of 50 mCi) is the source of radiation. Energy of 25.3 keV (tin disc) is selected as the optimum. The SSU-70 probe with NaJ/Tl crystal is the radiation detector. The black coal sample weighs 10 g and the brown coal sample weighs 18 g. Duration of sulfur determination is 10 min. Error of sulfur determination ranges from plus or minus 0.2% to 0.3%. The results of operational tests of MSC radiometric sulfur meters in black and brown coal mines are discussed. Accuracy of measurement is shown in 5 tables. (8 refs.)

  16. RADIOMETRIC CALIBRATION OF AIRBORNE LASER SCANNING DATA

    OpenAIRE

    Pilarska Magdalena

    2016-01-01

    Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 106 4 and 1550 nm) th...

  17. Training course on radiometric prospecting techniques

    International Nuclear Information System (INIS)

    1979-01-01

    A training course on radiometric prospecting techniques was presented by the Atomic Energy Board in collaboration with the South African Geophysical Association and the Geological Society of South Africa. Various aspects related to uranium prospecting were discussed e.g. the uranium supply and demand position, the basic physics of radioactivity, uranium geochemistry, mineralogy and mobility, the instrumentation and techniques used in uranium exploration, for example, borehole logging, radon emanometry and airborne radiometric surveys and also data processing and interpretation methods

  18. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  19. Radiometric-microbiologic assay fo vitamin B-6: analysis of plasma samples

    International Nuclear Information System (INIS)

    Guilarte, T.R.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for the analysis of vitamin B-6 in plasma was developed. The method is based on the measurement of 14CO2 generated from the metabolism of DL-l-14C-valine (L-l-14C-valine) by Kloeckera brevis. The assay is specific for the biologically active forms of the vitamin, that is, pyridoxine, pyridoxal and pyridoxamine, and their respective phosphorylated forms. The biologically inert vitamin B-6 metabolite (4-pyridoxic acid) did not generate a response at concentrations tested. The radiometric technique was shown to be sensitive to the 1 nanogram level. Reproducibility and recovery studies gave good results. Fifteen plasma samples were assayed using the radiometric and turbidimetric techniques. The correlation coefficient was r . 0.98. Turbid material or precipitated debris did not interfere with the radiometric microbiologic assay, thus allowing for simplification of assay procedure

  20. Medidas radiométricas em casas de vegetação com cobertura plástica na região de Campinas - SP Radiometric measurement of greenhouses with plastic cover at Campinas region- SP

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2011-06-01

    Full Text Available Com o objetivo de caracterizar as relações e alterações radiométricas em três casas de vegetação, cobertas com filme transparente de polietileno de baixa densidade (PEBD de camada simples com 150µm de espessura, tratado contra raios ultravioleta, sob ambientes distintos, foram realizados os experimentos durante o cultivo hidropônico de alface, cultivar Vera, na região de Campinas - SP, em diferentes períodos do ano, visando ao uso de dados experimentais de postos meteorológicos em substituição à necessidade de adquirir equipamentos de radiação para medições internas. As casas de vegetação eram de estrutura metálica de aço, de forma e volume idênticos. Coletaram-se a radiação solar global interna e externa (RSGI e RSGE, W m-2, a radiação fotossinteticamente ativa (RFA, µmol m-2 s-1 e a radiação ultravioleta, em 254; 312 e 365 nm (RUV, W m-2. Os resultados mostraram que as equações de regressão linear são estimativas aceitáveis na obtenção da radiação fotossinteticamente ativa em função da radiação solar global externa. Em ambientes fechados e climatizados, existe maior correlação entre a radiação fotossinteticamente ativa e a radiação solar global externa. A orientação das casas de vegetação não climatizadas não influencia no espalhamento interno da radiação fotossinteticamente ativa.The objective of this study was to characterize the radiometric relationship and changing in three greenhouses covered with transparent low density polyethylene film (PEBD with a 150µm single layer of low density polyethylene film, treated with compounds that inhibit rapid degradation by ultraviolet radiation, under effects of different environments. The experiments were conducted during hydroponics lettuce production of Vera variety at Campinas region-SP in different periods of the year, aiming the use of experimental data from meteorological stations in substitution of the needs to pursue radiometric

  1. Report on the feasibility of the in situ radiometric determination of uranium grade in Witwatersrand gold and uranium mines

    International Nuclear Information System (INIS)

    Smit, C.J.B.; Wesolinski, E.S.; Corner, B.

    1982-08-01

    The chip-sampling technique currently employed by the South African gold and uranium-mining industry, for the prediction of face grade, has several drawbacks, namely: 1) it is labour-intensive; 2) sample volumes are often unrepresentative and prone to human error; and 3) the uranium mineralisation may be very erratic along the reef. In situ radiometric assaying for uranium along the reef, on the other hand, is a rapid, essentially one-man operation, enabling a much larger and hence a more representative sample volume to be measured. The high radiometric background inherent in any uranium mine necessitates some form of high-density shielding in order to facilitate quantitative in situ assaying. This report, therefore, briefly outlines the origin, nature, detection and shielding of gamma rays. Results obtained with a frontally shielded total-count instrument showed that radiometric estimates of uranium grade are comparable to those obtained by batch mining and can be used for the prediction of face grades, provided that the ore is in radiometric equilibrium and that thorium and potassium are either not present, or vary sympathetically with the uranium grade. Spectral analysis showed, however, that these circumstances will also permit the use of a collimated (side-shielded) detector of acceptable weight, provided that only the low-energy portion of the spectrum is measured. The advantages of a collimated detector over a frontally shielded detector are also noteworthy, viz.: 1) only one reading is taken per sample point rather than two, as is the case with the frontally shielded system, thus improving counting statistics; and 2) the shielding is permanently fixed to the detector. Comprehensive design considerations for a compact, portable instrument are suggested and methods for determining background radiation as applicable to a collimated detector are described

  2. Study of a new radiometric sterility test in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Sanchez P, A.R.

    1976-01-01

    A new radiometric method is studied for the determination of sterility. It is based on a culture marked with carbon-14 and the measurement by liquid scintillation of the radioactivity of the gaseous products released after a short period of incubation. The studied samples consisted in nonradioactive solutions and different radiopharmaceuticals, through a regulated current of nitrogen there is a transportation of gaseous and volatile products produced in each flask, which were received in a liquid scintillation vial. The experimental data permit to conclude that through the radiometric method the results can be obtained after 24 hours or less of incubation, instead of a period of several days which was necessary with the traditional process. Due to the sensitivity of the method it is possible to inoculate a minimum volume of sample, this is important in the case of the preparation of little parts for injection as it occurs generally with the pharmaceuticals. (author)

  3. Radiometric and dosimetric characteristics of HgI2 detectors

    International Nuclear Information System (INIS)

    Zaletin, V.M.; Krivozubov, O.V.; Torlin, M.A.; Fomin, V.I.

    1988-01-01

    The characteristics of HgI 2 detectors in x-ray and gamma detection in applications to radiometric and dosimetric monitoring and as portable instruments for such purposes was considered. Blocks with mosaic and sandwich structures were prepared and tested against each other and, for comparative purposes, against CdTe detectors for relative sensitivities at various gamma-quanta energies. Sensitivity dependencies on gamma radiation energy were plotted for the detector materials and structures as were current dependencies on the dose rate of x rays. Results indicated that the mercury iodide detectors could be used in radiometric and dosimetric measurements at gamma quantum energies up to and in excess of 1000 KeV

  4. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites

    Science.gov (United States)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.

    2017-12-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  5. Study of the use of a Phoswich detector for aerial radiometric surveys

    International Nuclear Information System (INIS)

    Schneid, E.J.; Lagin, L.J.

    1981-09-01

    Large volume, actively shielded Phoswich detector configurations were investigated for application in airborne radiometric survey systems in order to increase the sensitivity to ground-level potassium, uranium, and thorium compared to conventional NaI detectors of similar sizes. One Phoswich configuration was fabricated and flight tested. The flight measurements with the Phoswich detector and a conventional NaI detector utilized the Bendix Field Engineering Corporation - US Department of Energy/Grand Junction Office Walker Field Aerial Radiometric Survey Calibration Facility, the DOE dynamic test range, and a region in the southwest portion of the Lubbock, Texas, Quadrangle. The tests demonstrated that the Phoswich detector can function in an operational environment and does provide greater sensitivity to ground-level potassium, uranium, and thorium concentration than the conventional NaI detector. The multicrystal configuration for the Phoswich detector provided the capability to simultaneously measure the atmospheric radon background without the need of heavy lead shields. The flight tests indicated that the Phoswich detector has directional discrimination capability not available with conventional NaI detector systems. This directional capability can be used to distinguish the location, relative to the aircraft, of localized strong sources of radiation

  6. Laboratory-Based BRDF Calibration of Radiometric Tarps

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  7. Experiences with radiometric solid matter determination in the WOLPRYLA-65 fibre production

    International Nuclear Information System (INIS)

    Butz, M.; Traeber, K.

    1977-01-01

    Proceeding from the technology of WOLPRYLA-65 fibre fabrication the applicability of radiometric density measurements for acrylonitrile determination in a dimethylformamide bath has been studied. The measuring equipment and measuring positions are described and further details, such as calibration procedures, measuring accuracy, benefit of continuous and contactless measurements, maintenance efforts, and radiation protection measures are outlined

  8. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  9. Radiometric assays for the measurement of PSA

    International Nuclear Information System (INIS)

    Venkatesh, M.

    1997-01-01

    Prostate Specific Antigen, a serine protease enzyme, of M.W. ∼ 26-33 kDa, is widely considered to be a very useful marker for prostate cancer. It satisfies nearly all the requirements of an ideal 'Tumour Marker' and has hence attracted a lot of attention in the past decade. PSA is present in multiple forms in serum, with an appreciable fraction bound to the protease inhibitor α-1-antichymotrypsin (ACT) and to a small extent to other proteins such as α-2-macroglobulin (AMG) leaving the rest in the free form. The total PSA levels have been reported to have 80% sensitivity and 60% specificity towards the detection of prostate cancer. The lack of specificity occurs mainly due to the high levels of t-PSA in benign prostatic hypertrophy(BPH) apart from the cancer. The concept of free PSA has been introduced in the recent past and the ratio of free/total PSA levels have been shown to be advantageous in the differential diagnosis of BPH from prostate cancer. The f/t ratio is considered to be particularly useful in the grey zones of decision making (t-PSA levels 4-20 ng/mL). The need for the development of assays for total and free PSA is felt due to: a. the high incidence of prostate cancers being detected currently; b. the high cost of tests (higher for free PSA assay, and the cost becomes an important parameter when a patient has to be regularly monitored after therapy) that is not affordable for many patients; c. the potential for research in the area of prostate cancer management where the PSA (total and free) assays will be of great help

  10. Effects of integration time on in-water radiometric profiles.

    Science.gov (United States)

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito

    2018-03-05

    This work investigates the effects of integration time on in-water downward irradiance E d , upward irradiance E u and upwelling radiance L u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (Fst); 2) the end of each integration interval (Lst); 3) the averages of Fst and Lst values (Avg); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (Wgt). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the Wgt depth definition and the fair applicability of the Avg one. Instead, both the Fst and Lst depths should not be adopted since they may introduce pronounced biases in E u and L u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products.

  11. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    Science.gov (United States)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  12. The importance of geoprocessing tools in radiometric monitoring of large areas

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila Carrijo da Silva [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da; Alberti, Heber Luiz Caponi; Guerrero, Eder Tadeu Zenun, E-mail: ncsilva@cnen.gov.b, E-mail: heber@cnen.gov.b, E-mail: edertzg@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Throughout history, the natural tendency of men to physically characterize their different surroundings has played an important role on the evolution of societies. Today, that tendency combined to the development of computer technologies, has allowed the accelerated growth of the Geographical Information Systems, which permits the analysis and manipulation of spatial data from diverse sources, producing geo referenced databases. The gamma radiation, one of the main contributors of human exposure to natural radiation, is known for its high penetration energy. Today, the environmental gamma radiation is measured through radiometric tracking mobile units, allowing large scale samplings and precise assessments. As a geo processing case study, a radiometric monitoring work was conducted in the town of Aguas da Prata-SP using a tracking mobile system, composed by a scintillator detector, a GPS and a computer, all installed in a vehicle. The data made of collected points and their respective doses and geographical references were captured and stored in a computer software and then inserted and treated in a GIS environment. After a cartographic base was created using a digitalized map of Aguas da Prata, the sampled points were plotted and interpolated with the cartographic base, producing two maps that demonstrate the tracking route and the gamma radiation dose range throughout the monitored area. Geo processing tools have shown great efficiency in this study, allowing agile manipulation and management of a large quantity of data, thus promoting a spatial analysis of natural radiation levels in the studied region. (author)

  13. The importance of geoprocessing tools in radiometric monitoring of large areas

    International Nuclear Information System (INIS)

    Dias, Danila Carrijo da Silva; Comissao Nacional de Energia Nuclear; Silva, Nivaldo Carlos da; Alberti, Heber Luiz Caponi; Guerrero, Eder Tadeu Zenun

    2011-01-01

    Throughout history, the natural tendency of men to physically characterize their different surroundings has played an important role on the evolution of societies. Today, that tendency combined to the development of computer technologies, has allowed the accelerated growth of the Geographical Information Systems, which permits the analysis and manipulation of spatial data from diverse sources, producing geo referenced databases. The gamma radiation, one of the main contributors of human exposure to natural radiation, is known for its high penetration energy. Today, the environmental gamma radiation is measured through radiometric tracking mobile units, allowing large scale samplings and precise assessments. As a geo processing case study, a radiometric monitoring work was conducted in the town of Aguas da Prata-SP using a tracking mobile system, composed by a scintillator detector, a GPS and a computer, all installed in a vehicle. The data made of collected points and their respective doses and geographical references were captured and stored in a computer software and then inserted and treated in a GIS environment. After a cartographic base was created using a digitalized map of Aguas da Prata, the sampled points were plotted and interpolated with the cartographic base, producing two maps that demonstrate the tracking route and the gamma radiation dose range throughout the monitored area. Geo processing tools have shown great efficiency in this study, allowing agile manipulation and management of a large quantity of data, thus promoting a spatial analysis of natural radiation levels in the studied region. (author)

  14. Recent advances in airborne radiometric technology

    International Nuclear Information System (INIS)

    Jobst, J.E.

    1985-01-01

    Since its inception, the DOE Remote Sensing Laboratory has made dramatic innovations in airborne radiometric technology. In the past few years there have been at least four major changes in operational philosophy. (1) The helicopter is now the prime radiation survey vehicle. Surveys are conducted at low speed and low altitude, with lines spaced only a few hundred feet apart. Radiation anomalies and subtle changes in background can be readily identified. (2) Much greater emphasis is now placed on accurate, detailed analysis and interpretation of radiation data. Dramatic improvements in survey hardware and software provide much more data of considerably better quality. (3) Recent Laboratory research has been concentrated on error-free, positive identification of point radiation sources. In the past, the extent and magnitude of dispersed sources were the major concerns. (4) Integrated remote sensing has been strongly emphasized at the Laboratory in recent years. This involves the simultaneous use of radiation detectors, aerial cameras, and the multispectral scanner imagery. The synergistic effects of such data correlation are of significantly greater value in analyzing the terrestrial environment. Many of the changes in operational philosophy are directly traceable to new or dramatically improved hardware and software employed at the Laboratory. Six items have been instrumental in the above technological advances: (1) the UHF Transponder System and its predecessor, the Microwave Ranging System; (2) Model IC of the REDAR data acquisition system; (3) the development of the search algorithm; (4) continued improvements in the REDACA data analysis system; (5) deployment of polyscin sodium iodide radiation detectors; and (6) development of the Graphic Overview System

  15. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  16. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  17. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  18. Measuring name system health

    NARCIS (Netherlands)

    Casalicchio, Emiliano; Caselli, Marco; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet

    2012-01-01

    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  19. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  20. RADIOMETRIC TECHNIQUES IN HEAVY MINERAL EXPLORATION AND EXPLOITATION

    NARCIS (Netherlands)

    DEMEIJER, RJ; TANCZOS, IC; STAPEL, C

    1994-01-01

    In recent years the Environmental Research Group of the KVI has been developing a number of radiometric techniques that may be employed in mineral sand exploration. These techniques involve: radiometric fingerprinting for assessing sand provenances and mineralogical composition; thermoluminescence

  1. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    Science.gov (United States)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  2. Microbial ecology measurement system

    Science.gov (United States)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  3. A report of airbone radiometric and magnetic test survey

    International Nuclear Information System (INIS)

    Koo, J.H.; Park, Y.S.; Woo, S.M.

    1982-01-01

    By the end of Oct. 1981, a complete set of GeoMetrics' air-borne radiometric and magnetic survey system was purchased by KIER using the ADB loan, and it took one week from Nov. 11 1981 to install the system on a Bell 206 B helicopter (HL 9102) owned by Asia Aeroservice Company. The test survey was flown over an area including Hongseong, Daecheon, Seosan and Manripo Sheets, from Nov. 19 to Dec. 14 1981. A Hongseong air-strip was used as the base. (Author)

  4. KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2016-06-01

    Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  5. Automated gamma spectrometry and data analysis on radiometric neutron dosimeters

    International Nuclear Information System (INIS)

    Matsumoto, W.Y.

    1983-01-01

    An automated gamma-ray spectrometry system was designed and implemented by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory (HEDL) to analyze radiometric neutron dosimeters. Unattended, automatic, 24 hour/day, 7 day/week operation with online data analysis and mainframe-computer compatible magnetic tape output are system features. The system was used to analyze most of the 4000-plus radiometric monitors (RM's) from extensive reactor characterization tests during startup and initial operation of th Fast Flux Test Facility (FFTF). The FFTF, operated by HEDL for the Department of Energy, incorporates a 400 MW(th) sodium-cooled fast reactor. Aumomated system hardware consists of a high purity germanium detector, a computerized multichannel analyzer data acquisition system (Nuclear Data, Inc. Model 6620) with two dual 2.5 Mbyte magnetic disk drives plus two 10.5 inch reel magnetic tape units for mass storage of programs/data and an automated Sample Changer-Positioner (ASC-P) run with a programmable controller. The ASC-P has a 200 sample capacity and 12 calibrated counting (analysis) positions ranging from 6 inches (15 cm) to more than 20 feet (6.1 m) from the detector. The system software was programmed in Fortran at HEDL, except for the Nuclear Data, Inc. Peak Search and Analysis Program and Disk Operating System (MIDAS+)

  6. Radiometric method for the characterization of particulate processes in colloidal suspensions. II. Experimental verification of the method

    Energy Technology Data Exchange (ETDEWEB)

    Subotic, B. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-09-15

    A radiometric method for the characterization of particulate processes is verified using stable hydrosols of silver iodide. Silver iodide hydrosols satisfy the conditions required for the applications of the proposed method. Comparison shows that the values for the change of particle size measured in silver iodide hydrosols by the proposed method are in excellent agreement with the values obtained by other methods on the same systems (electron microscopy, sedimentation analysis, light scattering). This shows that the proposed method is suitable for the characterization of particulate processes in colloidal suspensions. (Auth.).

  7. THE EUROSDR PROJECT "RADIOMETRIC ASPECTS OF DIGITAL PHOTOGRAMMETRIC IMAGES" – RESULTS OF THE EMPIRICAL PHASE

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2012-09-01

    Full Text Available This article presents the empirical research carried out in the context of the multi-site EuroSDR project "Radiometric aspects of digital photogrammetric images" and provides highlights of the results. The investigations have considered the vicarious radiometric and spatial resolution validation and calibration of the sensor system, radiometric processing of the image blocks either by performing relative radiometric block equalization or into absolutely reflectance calibrated products, and finally aspects of practical applications on NDVI layer generation and tree species classification. The data sets were provided by Leica Geosystems ADS40 and Intergraph DMC and the participants represented stakeholders in National Mapping Authorities, software development and research. The investigations proved the stability and quality of evaluated imaging systems with respect to radiometry and optical system. The first new-generation methods for reflectance calibration and equalization of photogrammetric image block data provided promising accuracy and were also functional from the productivity and usability points of view. The reflectance calibration methods provided up to 5% accuracy without any ground reference. Application oriented results indicated that automatic interpretation methods will benefit from the optimal use of radiometrically accurate multi-view photogrammetric imagery.

  8. Radiometric calibration of a polarization-sensitive sensor

    International Nuclear Information System (INIS)

    Ahmad, S.P.; Markham, B.L.

    1992-01-01

    The radiometric accuracy of a sensor is adversely affected by scene polarization if its optical system is sensitive to polarization. Tests performed on the reflective bands of the NS001 Thematic Mapper simulator, an aircraft multispectral scanner, show that it is very sensitive to the polarization state of the incoming radiations. For 100 percent linearly polarized light, errors in the measured intensity vary from -40 to +40 percent, depending on the scan angle and spectral band. To estimate polarization-induced errors in the intensity measured at aircraft level, the intensity and polarization of the atmospheric radiances were simulated using a realistic earth-atmosphere radiative transfer model. For the polarization of atmospheric radiances in the solar meridian plane over a vegetated target, intensity errors may range from -10 to + 10 percent. The polarization-induced errors are highest in the shortest NS001 spectral band (0.450-0.525 microns) because of large atmospheric polarizations contributed by Rayleigh particles and small diluting effects caused by the small contributions of weakly polarized radiations coming from aerosols and the surface. Depending on the illumination and view angles, the errors in derived surface reflectance due to the radiance errors can be very large. In particular, for large off-nadir view angles in the forward scattered direction when the sun is low, the relative errors in the derived surface reflectance can be as large as 4 to 5 times the relative error in the radiances. Polarization sensitivity errors cannot be neglected for the shorter wavelengths when the surface reflectance contribution to atmospheric radiances is very small. 40 refs

  9. Notes on the radiometric and geochemical survey of Leyte Island

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1982-01-01

    Radioactivity measurements using the Scintrex GIS-4 portable scintillometer were conducted along the periphery of the island. These radiometric readings as well as sediments were obtained along the streams draining into the sea. A total of 174 stream sediments samples were collected. Minus 80 mesh sediment fraction was analyzed for mobile or extractable uranium. Results indicated that the background values of radioactivity and uranium in stream sediments were 25 counts per second (cps) and 0.3 ppm, respectively. The San Isidro and Vilaba areas which are located in the northern part of Leyte have greater than 3 times above background radioactivity and uranium in the stream sediments. (author)

  10. RADIOMETRIC CALIBRATION OF MARS HiRISE HIGH RESOLUTION IMAGERY BASED ON FPGA

    Directory of Open Access Journals (Sweden)

    Y. Hou

    2016-06-01

    Full Text Available Due to the large data amount of HiRISE imagery, traditional radiometric calibration method is not able to meet the fast processing requirements. To solve this problem, a radiometric calibration system of HiRISE imagery based on field program gate array (FPGA is designed. The montage gap between two channels caused by gray inconsistency is removed through histogram matching. The calibration system is composed of FPGA and DSP, which makes full use of the parallel processing ability of FPGA and fast computation as well as flexible control characteristic of DSP. Experimental results show that the designed system consumes less hardware resources and the real-time processing ability of radiometric calibration of HiRISE imagery is improved.

  11. Determination of degree of compacting and of moisture content by radiometric probes

    International Nuclear Information System (INIS)

    Martinec, J.; Paul, P.

    1977-01-01

    A survey is given of radiometric probes used for measuring bulk density and moisture content. Surface probes are used in depths of up to 20 cm with an accuracy of 10%, drive-in probes are used to depths of up to 50 cm with a 4% error, depth probes are used for measuring in depths of 30 to 50 cm with an accuracy of roughly 5% and bulk density in depths of 10 to 150 cm may be measured with an accuracy of 2% using a lysimeter. Changes in the bulk density and soil moisture of the subsoil of an airport runway were studied radiometrically in dependence on time and depth. The dependence is represented graphically. The results of radiometric measurements were compared with the conventional method using a lysimeter probe; the comparison showed that the results were lower by about 7% for the moisture content and higher by about 8% for the bulk density. Radiometric measurements for determining bulk density and soil moisture are advantageous in that they allow the measurement of a great number of sites without any major disturbance of the measured material and results are available immediately on measurement. The economic effect is significant in a large number of measurements carried out on a surface having the same chemical composition and similar grain size which does not necessitate calibration of the instruments to be made more than once a week. The NZK-201 probe by Tesla does not provide sufficiently accurate information on the moisture and density of the earths probed

  12. Proton gyromagnetic precision measurement system

    International Nuclear Information System (INIS)

    Zhu Deming; Deming Zhu

    1991-01-01

    A computerized control and measurement system used in the proton gyromagnetic precision meausrement is descirbed. It adopts the CAMAC data acquisition equipment, using on-line control and analysis with the HP85 and PDP-11/60 computer systems. It also adopts the RSX11M computer operation system, and the control software is written in FORTRAN language

  13. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  14. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  15. Air Kerma above environmental radiometric calibration facility for field equipment

    International Nuclear Information System (INIS)

    Conti, C.C.; Sachett, I.A.; Bertelli, L.; Lopes, R.T.

    2000-01-01

    The use of gamma ray spectrometers broadened the aims of gamma ray surveys, stead of measuring only the gross radiation, as was done with the GM tubes, it is now possible to be used for uranium exploration, geological mapping as an aid to the exploration of non radioactive ores like gold and tin, radiation background measurements to identify hot spots for radiation hazard evaluation and environmental monitoring of fallout from radiological and nuclear accidents. It became necessary to carefully and precisely calibrate the field equipment to be used to get all the information from such uses. There is an environmental radiometric calibration facility for field equipment, consisting of eight radioactive concrete sources, at the Institute of Radioprotection and Dosimetry - IRD (CNEN/Brazil). These sources are cylindrical with 3 m diameter, 0.5 m thick and weigh about 7.5 tons each. The amount and type of the radioactive material, 238 U and 232 Th and 40 K ores in secular radioactive equilibrium, added to the concrete to simulate rock outcrops, varies in order to obtain different gamma fields, varying in both energy and intensity. These different radiation fields were measured with a HPGe portable detector, specifically calibrated for spectrum stripping, and the air kerma energy distribution was determined for each concrete source and compared with the total air kerma calculated from the nuclide concentration and by others radiometric methods. (author)

  16. Physical properties and radiometric age estimates of surficial and fracture-fill deposits along a portion of the Carpetbag fault system, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Shroba, R.R.; Muhs, D.R.; Rosholt, J.N.

    1988-07-01

    Surficial deposits and fracture-fill deposits (fracture fillings that consist chiefly of calcium carbonate-cemented, pebbly sand) were studied along a 2.5-km-long portion of the Carpetbag fault system in an area characterized by prominent, explosion-produced scarps and a shallow graben that formed during and subsequent to the 1970 Carpetbag nuclear event in the northwestern part of Yucca Flat, Nevada Test Site. The surficial deposits are fluvial and slopewash deposits and mixed eolian sediment that range in grain size from pebble gravel to silty sand. These deposits have been modified by the accumulation of varying amounts of pedogenic silt, clay, calcium carbonate, and probably opaline silica. Despite the occurrence of ancient fractures and linear features on aerial photographs, that are near and parallel to subsurface faults of the Carpetbag system, no other evidence for prehistoric surface faulting was observed in the study area. The lack of prehistoric fault scarps and the lack of offset of stratigraphic contacts exposed in trench excavations suggest that no significant vertical surface displacement has occurred on the Carpetbag system during the past 125,000 years and possible during the past 350,000 years. 39 refs., 12 figs., 8 tabs

  17. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    Science.gov (United States)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  18. The construction of a radiometric calibration facility at Lanseria Airport, Republic of South Africa

    International Nuclear Information System (INIS)

    Corner, B.; Smit, C.J.B.

    1983-08-01

    The construction of standard sources suitable for the calibration of airborne and truck-mounted gamma-spectrometer systems is described. Four sources were built, three of which were doped with preselected quantities of uranium, thorium or potassium. A fourth source was left barren so as to provide a measure of the background radiation in the area. The sources are 8 m in diameter, 0,35 m thick and are recessed into the disused northern portion of runway 17 at Lanseria Airport, north of Johannesburg. Adopted concentrations of the major radioelements in the sources are: 6,10 % k 2 O in the potasssium source, 67,0 ppm U 3 O 8 in the uranium source (radiometric), 158 ppm ThO 2 in the thorium source

  19. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  20. Detecting payload performance based on relative radiometric characteristic: case of the optical sensors

    Science.gov (United States)

    Han, Jie; Li, Shengyang; Zhang, Tao; Qin, Bangyong

    2016-10-01

    In this paper, we propose a novel algorithm for accurately estimating the degree of radiometric non-uniformity in remote sensing images. The algorithm was tested on high-quality images and heavily striping images, and quantitative analyses were conducted to evaluate the performance for each band by measuring the radiometric non-uniformity of the images. The results demonstrated that the proposed algorithm exhibits high accuracy and stability compared with traditional algorithms. The radiometric performance of TianGong-1 short-wave infrared images was calculated using this new method, and it was highly correlated with the solar angle, pitch angle and refrigerator thermal according to the Apriori algorithm. Based on these results, we have proposed a strategy for restricting increases in striping.

  1. Automated measuring systems. Automatisierte Messsysteme

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Microprocessors have become a regular component of automated measuring systems. Experts offer their experience and basic information in 24 lectures and 10 poster presentations. The focus is on the following: Automated measuring, computer and microprocessor use, sensor technique, actuator technique, communication, interfaces, man-system interaction, distrubance tolerance and availability as well as uses. A discussion meeting is dedicated to the theme complex sensor digital signal, sensor interface and sensor bus.

  2. Substoichiometric method in the simple radiometric analysis

    International Nuclear Information System (INIS)

    Ikeda, N.; Noguchi, K.

    1979-01-01

    The substoichiometric method is applied to simple radiometric analysis. Two methods - the standard reagent method and the standard sample method - are proposed. The validity of the principle of the methods is verified experimentally in the determination of silver by the precipitation method, or of zinc by the ion-exchange or solvent-extraction method. The proposed methods are simple and rapid compared with the conventional superstoichiometric method. (author)

  3. Radiometric characterization of Landsat Collection 1 products

    Science.gov (United States)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  4. Radiometric relations of a sugarcane crop

    International Nuclear Information System (INIS)

    Machado, E.C.; Pereira, A.R.; Camargo, M.B.P. de; Fahl, J.I.

    1985-01-01

    The radiometric relations of a sugarcane crop, cv. NA56-79, are studied during the period of maximum leaf area index. The coefficients of reflection, transmission and absorption of the incoming solar radiation were function of solar elevation and the waveband considered. The photosynthetically active radiation was always less reflected and transmitted but more absorved than the near infrared radiation. (M.A.C.) [pt

  5. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  6. Evaluation of a radiometric method for studying bacterial activity in the presence of antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.R.; Wilson, P.; Clarke, F.V. (Newham District Microbiology Labs., St. Andrews Hospital, London (UK))

    1989-06-01

    In a study involving 2760 tests, the BACTEC semi-automatic radiometric method which measures bacterial metabolic activity and produces a BACTEC growth index, was compared with two conventional methods commonly used for determining growth, absorbance and viable counts. In 92% of radiometry tests the suppression of growth was inversely related to the antibiotic concentration. This compared with 83% for absorbance and 63% for viable counts. The radiometric method was found to be more rapid, easier to use and more reproducible in determining the effect of antibiotics on the activity of bacteria than viable counting or absorbance methods. (author).

  7. Radiometric survey in mammography: problems and challenges; Levantamento radiometrico em mamografia: problemas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.V.T.; Navarro, V.C.C.; Garcia, I.F.M.; Ferreira, M.J.; Macedo, E.M., E-mail: navarro@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    In addition to being mandatory, the radiometric survey is a necessity, especially in the Brazilian reality with the construction of smaller and smaller rooms. However, calibration conditions, the instrumentation and its use, can produce underestimated factors. Measures made at Labprosaud/IFBA, with five different instruments and the ISO N 25 radiation quality, show the possibility of the values presented in the radiometric surveys are underestimated by up to 10 times. The results indicate the need for meters to be calibrated in ISO N qualities, in mammography energy range, in integrated dose mode and exposure times shorter or equal to 1 s. (author)

  8. Evaluation of a radiometric method for studying bacterial activity in the presence of antimicrobial agents

    International Nuclear Information System (INIS)

    Cutler, R.R.; Wilson, P.; Clarke, F.V.

    1989-01-01

    In a study involving 2760 tests, the BACTEC semi-automatic radiometric method which measures bacterial metabolic activity and produces a BACTEC growth index, was compared with two conventional methods commonly used for determining growth, absorbance and viable counts. In 92% of radiometry tests the suppression of growth was inversely related to the antibiotic concentration. This compared with 83% for absorbance and 63% for viable counts. The radiometric method was found to be more rapid, easier to use and more reproducible in determining the effect of antibiotics on the activity of bacteria than viable counting or absorbance methods. (author)

  9. Lack of clinical relevance in routine final subcultures of radiometrically negative BACTEC blood culture vials

    International Nuclear Information System (INIS)

    Plorde, J.J.; Carlson, L.G.; Dau, M.E.

    1982-01-01

    During a 38-month period, 10,106 blood specimens were received in the laboratory for culture. These were inoculated into 26,424 vials and processed using the BACTEC radiometric detection system. Of these vials, 1,914 were eventually found to be microbiologically positive. Isolates from 836 vials were judged to be contaminants. In the remaining 1,078 vials, growth was first detected visually or radiometrically in 1,062 and by final subculture in 16. Growth from these sixteen bottles represented 12 clinically significant bacteremic episodes in as many patients. In nine of these episodes, other culture vials from the same patient were positive radiometrically. Therefore, 358 of 361 (99.2%) bacteremic episodes were detected without the benefit of routine final subcultures. The three patients whose bacteremia was missed were diagnosed clinically and placed on appropriate therapy prior to the detection of the bacteremias by final subculture

  10. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  11. Establishing System Measures of Effectiveness

    Science.gov (United States)

    2001-03-01

    Halpin, 1991] Andriole, Stephen J. and Stanley M. Halpin, editors. Information Technology for Command and Control: Methods and Tools for Systems...Systems with Models and Objects, New York: Mc Graw -Hill, 1997. [Pawlowski, 1993a] Pawlowski, Thomas J. III, LTC. C3IEW Measures of Effectiveness

  12. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  13. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  14. Nuclear systems of level measurement

    International Nuclear Information System (INIS)

    Lara, A.J.; Cabrera, M.J.

    1992-01-01

    In the industry there are processes in which is necessary to maintain the products level controlled which are handled for their transformation. The majority of such processes and by the operation conditions, they do not admit measure systems of level of invasive type then the application of nuclear techniques for level measurement results a big aid in these cases, since all the system installation is situated beyond frontiers of vessels that contain the product for measuring. In the Department of Nuclear Technology Applications of Mexican Petroleum Institute was developed a level measurement system by gamma rays transmission which operates in the Low Density Polyethylene plant of Petrochemical Complex Escolin at Poza Rica, Veracruz, Mexico. (Author)

  15. Engineering aspects of radiometric logging

    International Nuclear Information System (INIS)

    Huppert, P.

    1982-01-01

    Engineering problems encountered in the development of nuclear borehole logging techniques are discussed. Spectrometric techniques require electronic stability of the equipment. In addition the electronics must be capable of handling high count rates of randomly distributed pulses of fast rise time from the detector and the systems must be designed so that precise calibration is possible under field operating conditions. Components of a logging system are discussed in detail. They include the logging probe (electronics, detector, high voltage supply, preamplifier), electronic instrumentation for data collection and processing and auxiliary equipment

  16. Synthesis, radiometric determination of functional groups, complexation

    International Nuclear Information System (INIS)

    Pompe, S.; Bubner, M.; Schmeide, K.; Heise, K.H.; Bernhard, G.; Nitsche, H.

    2000-01-01

    The interaction behavior of humic acids with uranium(VI) and the influence of humic substances on the migration behavior of uranium was investigated. A main focus of this work was the synthesis of four different humic acid model substances and their characterization and comparison to the natural humic acid from Aldrich. A radiometric method for the determination of humic acid functional groups was applied in addition to conventional methods for the determination of the functionality of humic acids. The humic acid model substances show functional and structural properties comparable to natural humic acids. Modified humic acids with blocked phenolic OH were synthesized to determine the influence of phenolic OH groups on the complexation behavior of humic acids. A synthesis method for 14 C-labeled humic acids with high specific activity was developed. The complexation behavior of synthetic and natural humic acids with uranium(VI) was investigated by X-ray absorption spectroscopy, laser-induced fluorescence spectroscopy and FTIR spectroscopy. The synthetic model substances show an interaction behavior with uranium(VI) that is comparable to natural humic acids. This points to the fact that the synthetic humic acids simulate the functionality of their natural analogues very well. For the first time the influence of phenolic OH groups on the complexation behavior of humic acids was investigated by applying a modified humic acid with blocked phenolic OH groups. The formation of a uranyl hydroxy humate complex was identified by laserspectroscopic investigations of the complexation of Aldrich humic acid with uranium(VI) at pH 7. The migration behavior of uranium in a sandy aquifer system rich is humic substances was investigated in column experiments. A part of uranium migrates non-retarded through the sediment, bound to humic colloids. The uranium migration behavior is strongly influenced by the kinetically controlled interaction processes of uranium with the humic colloids

  17. Radiometric calibration of digital cameras using neural networks

    Science.gov (United States)

    Grunwald, Michael; Laube, Pascal; Schall, Martin; Umlauf, Georg; Franz, Matthias O.

    2017-08-01

    Digital cameras are used in a large variety of scientific and industrial applications. For most applications, the acquired data should represent the real light intensity per pixel as accurately as possible. However, digital cameras are subject to physical, electronic and optical effects that lead to errors and noise in the raw image. Temperature- dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels are examples of such effects. The purpose of radiometric calibration is to improve the quality of the resulting images by reducing the influence of the various types of errors on the measured data and thus improving the quality of the overall application. In this context, we present a specialized neural network architecture for radiometric calibration of digital cameras. Neural networks are used to learn a temperature- and exposure-dependent mapping from observed gray-scale values to true light intensities for each pixel. In contrast to classical at-fielding, neural networks have the potential to model nonlinear mappings which allows for accurately capturing the temperature dependence of the dark current and for modeling cameras with nonlinear sensitivities. Both scenarios are highly relevant in industrial applications. The experimental comparison of our network approach to classical at-fielding shows a consistently higher reconstruction quality, also for linear cameras. In addition, the calibration is faster than previous machine learning approaches based on Gaussian processes.

  18. Radiometric titration of thallium(III) with EDTA

    International Nuclear Information System (INIS)

    Rao, V.R.S.; Pulla Rao, Ch.; Tataiah, G.

    1978-01-01

    Radioactive solutions containing very small amounts of thallium(III) can be determined by radiometric titration using ammonia as hydrolysing agent. Aqueous solution of thallium(I) (both inactive and radioactive) is treated with bromine water till the appearance of the brown colour of bromine, and the solution is warmed to 80 deg C to expel the excess bromine. By this procedure all thallium(I) is quantitatively oxidised to thallium(III). An aqueous solution of ammonia is added to precipitate thallium(III) as thallic oxide. It is then filtered, washed with water to free it from bromide and then dissolved in 2N HCl and the solution is then standardised. 2 ml of this solution is transferred to a 20 ml volumetric flask, 1 ml of radioactive thallium(III) solution to be standardised is added as well as incremental amounts of EDTA solution and mixed thoroughly. Uncomplexed thallium(III) is then precipitated by the addition of an ammonia solution and diluted to 20 ml. Required amount of this mixture is centrifuged. The beta activity of the supernatant aliquot is measured using a GM counter. Quantitative determination of Tl(III) in the range of 1-10 μM can be carried out. The interference of cations such as Au(III), iron(III), Ga(III) can be eliminated by pretreatment of the Tl(III) solution before carrying out radiometric titration. The results obtained are reproducible and accurate to +-3%. (T.I.)

  19. The Pelindaba facility for calibrating radiometric field instruments

    International Nuclear Information System (INIS)

    Corner, B.; Toens, P.D.; Van As, D.; Vleggaar, C.M.; Richards, D.J.

    1979-04-01

    The tremendous upsurge in uranium exploration activity, experienced in recent years, has made the need for the standardisation and calibration of radiometric field instruments apparent. In order to fulfill this need, construction of a calibration facility at the National Nuclear Research Centre, Pelindaba, was commenced in 1972 and has since been extended according the the requirements of the mining industry. The facility currently comprises 11 surface standard sources suitable for the calibration, in terms of radio-element concentration, of portable scintillometers and spectrometers, and single uranium and thorium model-borehole sources which make possible the accurate calibration of borehole logging instruments both for gross-count and spectrometric surveys. Portable potassium, uranium and thorium sources are also available for the purposes of establishing airborne-spectrometer stripping ratios. The relevant physico-chemical properties of the standards are presented in this report and calibration procedures and data reduction techniques recommended. Examples are given of in situ measurements, both on surface and down-the-hole, which show that the derived calibration constants yield radiometric grades which are, on average, accurate to within 5% of the true radio-element concentrations. A secondary facility comprising single borehole- and surface-uranium sources has also been constructed in Beaufort West in the southern Karoo [af

  20. Retrieval of effective cloud field parameters from radiometric data

    Science.gov (United States)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2017-06-01

    Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.

  1. Blood culture cross contamination associated with a radiometric analyzer

    International Nuclear Information System (INIS)

    Griffin, M.R.; Miller, A.D.; Davis, A.C.

    1982-01-01

    During a 9-day period in August 1980 in a New Jersey hospital, three pairs of consecutively numbered blood cultures from different patients were identified as positive for the same organism, for each pair, both cultures were positive in the same atmosphere, both organisms had the same sensitivities, and the second of each pair grew at least 2 days after the first and was the only positive blood culture obtained from the patient. When the hospital laboratory discontinued use of its radiometric culture analyzer for 15 days, no more consecutive pairs of positive cultures occurred. Subsequent use of the machine for 9 days with a new power unit but the original circuit boards resulted in one more similar consecutive pair (Staphylococcus epidermidis). After replacement of the entire power unit, there were no further such pairs. Examination of the machine by the manufacturer revealed a defective circuit board which resulted in inadequate needle sterilization. Laboratories which utilize radiometric analyzers should be aware of the potential for cross contamination. Recognition of such events requires alert microbiologists and infection control practitioners and a record system in the bacteriology laboratory designed to identify such clusters

  2. A COMPARISON OF LIDAR REFLECTANCE AND RADIOMETRICALLY CALIBRATED HYPERSPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Roncat

    2016-06-01

    Full Text Available In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a “single-wavelength reflectometer” to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  3. Radiometric maps of Israel - Partial contribution to the understanding of potential radon emanations

    International Nuclear Information System (INIS)

    Vulkan, U.; Shirav, M.

    1997-01-01

    An airborne radiometric survey over parts of Israel was carried out in 1981. The system was comprised from 10 Nal 4 inch x 4 inch x 16 inch detectors, arranged in 4,4 and 2 sensors, with total volume of 1560 inch 3 , and one 4 inch x 4 inch x 16 inch uplooking Nal detector. Flight nominal height was 400 feet. It was found that the Mount Scopus Group (of Senonian origin) is the main source for high uranium - phosphorite rocks of this group contain up to 150 ppm U. Comparing the eU radiometric map with a map of potential radon emanation from rock units, reveals a fair correlation - high radon emanation usually follow the distribution of the Mount Scopus Group in Israel. The correlation between the two maps is excellent over arid terrain where soil cover is missing, whereas over semi-arid - humid areas (western and northern Israel), where soil and cultivation covers are developed, the eU levels over Mount Scopus Group's outcrops are much lower due to absorption of the radiation, and do not depict the full radon potential. Detailed mapping of radon hazards usually exhibit poor correlation between airborne eU data and direct pore radon measurements, even in arid terrain. This phenomenon is attributed to the fact that a radon ''source rock'' (e.g. phosphorite) could be covered with a few up to some tenths of meters of uranium-barren rock. About 0.5 meter cover is enough to absorb all radiation, causing very low airborne eU readings, while the radon free way in this rock is about 10 meters, yielding high pore radon levels when directly measured

  4. The radiometric industries of the countries of the European Community

    International Nuclear Information System (INIS)

    Roeper, Burkhardt

    1975-01-01

    The economic development of the radiometric industries in the EEC and the USA since 1960 is studied on the basis of sales statistics. The study covers the supply and the use of radioisotopes, the application of radiometric techniques, the scope and the development of the foreign trade as well as the structure of the firms concerned. The future need for radiometric apparatus is estimated as regards radiation protection, laboratories, industry, nuclear power plants and medicine

  5. Liquid scintillation vial for radiometric assay of lymphocyte carbohydrate metabolism in response to mitogens

    International Nuclear Information System (INIS)

    Tran, N.; Wagner, H.N. Jr.

    1978-01-01

    We have demonstrated that mitogens--i.e., PHA and Con.A--stimulate lymphocyte carbohydrate metabolism using a liquid-scintillation vial with conventional liquid-scintillation detectors. The results showed that this enclosed system can be useful for development of rapid in vitro tests of lymphocytes immune responsiveness, as well as for radiometric detection of bacterial growth in various gaseous atmospheres

  6. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  7. Radiometric microassay for ornithine decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L; Oppenheim, R W [North Carolina Univ., Chapel Hill (USA). School of Medicine

    1978-01-01

    A simple method for purifying (/sup 3/H)L-ornithine and incubation conditions suitable for estimating L-ornithine decarboxylase activity are described. Routine and recycle cation exchange procedures for separating putrescine from ornithine are outlined. Blanks using the routine cation exchange method average approx. 0.04% of the radioactivity contained in the substrate; product recovery is approx. 94%. The L-ornithine decarboxylase assay is proportional to time for at least 8 h. The relationship between substrate purity and the sensitivity of the cation exchange procedures is assessed. Radiochemical purity is the critical determinant of sensitivity for recycled assays. The cation exchange method is compared with the commonly used CO/sub 2/-trapping method. The cation exchange method is more specific and approximately three orders of magnitude more sensitive than the CO/sub 2/-trapping method. L-ornithine decarboxylase activity can be measured reliably in samples of embryonic neural tissues having wet-weights of approx. 1 ..mu..g. L-ornithine decarboxylase activity in the lumbar spinal cord of the chick embryo decreases 25-30 fold from day 5 to day 18 of embryonic development. A cation exchange procedure for estimating L-lysine decarboxylase activity is also described. Failure to detect L-lysine decarboxylase activity in the chick embryo lumbar spinal cord is contrasted with the previous report of high cadaverine levels in chick embryos.

  8. Accelerator physics and radiometric properties of superconducting wavelength shifters

    International Nuclear Information System (INIS)

    Scheer, Michael

    2008-01-01

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  9. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  10. Development of a portable ambient temperature radiometric assaying instrument

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.; Paulus, T.J.

    1995-01-01

    There is a strong need for portable radiometric instrumentation that can accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need, the authors are developing a hand-held, non-cryogenic, low-power gamma- and X-ray measurement and analysis instrument that can both search and then accurately verify the presence of nuclear materials. The authors report on the use of cadmium zinc telluride detectors, signal processing electronics, and the new field-portable instrument based on the MicroNOMAD Multichannel Analyzer from EG and G ORTEC. They will also describe the isotopic analysis that allows uranium enrichment measurements to be made accurately in the field. The benefits of this work are realized in a wide spectrum of applications that include Arms Control, Nuclear Safeguards, Environmental Management, Emergency Response, and Treaty Verification

  11. Radiometric survey in sampling areas of Itataia mine ore and radiometric monitoring in Itataia project sites

    International Nuclear Information System (INIS)

    1982-07-01

    This radiometric survey was done by CDTN, in Itataia sites, on July/82 and it aimed fundamentally to evaluate local radiological conditions, as for aspect of occupational radiation protection. Besides of results obtained, this report has informations of general aspects that ought to serve as subsidies for elaboration of radiological protection program of local. (author) [pt

  12. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  13. Measurement system for large motions

    International Nuclear Information System (INIS)

    Noyes, R.; Davies, L.; Kalinowski, J.; Stubbs, T.

    1979-05-01

    The system used to measure the response of geologic media to stress waves generated during and after underground tests performed by the Lawrence Livermore Laboratory (LLL) at the Department of Energy's Nevada Test Site (NTS) is described. Included are descriptions of the system transducers and accelerometers, the procedures used in calibrating and packaging the system at the North Las Vegas Facility of EG and G, Inc., the positioning of equipment during fielding activities at NTS, and the procedures used at LLL's facilities in California to reduce and analyze the data recorded on magnetic tape at NTS during an underground nuclear explosion. In summarizing, the authors give the system high marks, attributing its success to good basic design, careful installation, and rigorous calibration and data analysis techniques applied with good judgement on the part of the instrumentation engineers and data analysts. 10 figures

  14. Analysis of the radiometric survey during the Argonauta reactor operation

    International Nuclear Information System (INIS)

    Oliveira, Eara de S.L.; Cardozo, Katia K.M.; Silva, Joao Carlos P.; Santos, Joao Regis dos

    2013-01-01

    The Argonaut reactor at the Institute of Nuclear Engineering-IEN/CNEN, operates normally, the powers between 1.7 and 340 W on neutrongraphy procedures, production of radionuclides and experimental reactor physics lessons to postgraduate courses. The doses from neutrons and gamma radiation are measured when the reactor is critical, inside the reactor hall and surrounding regions. A study of the data obtained was performed to evaluate the daily need of this survey in the reactor hall. Taking into account the principle ALARA, which aims to optimize and minimize the dose received by the individual, we propose, in this work, through an analysis of the acquired data in occupational radiometric surveys, a reformulation of the area monitoring routine practiced by the team of radiological protection of the Institute of Nuclear Engineering - IEN/CNEN-RJ, whereas other monitoring routines regarding the radiological protection are also applied in the routine of the reactor. The operations under review occurred with the reactor operating 340 W power at intervals of 60, 120 and 180 minutes, in monitoring points in controlled areas, supervised and free. The results showed significant dose values in the output of the J-Channel 9 when the operation occurs with this open. With 180 minutes of operation, the measured values of dose rate were lower than the values at 60 min and 120 operations min. At the point in the supervised area, offsite to the reactor hall, situated in the direction of the J-Channel 9, the value reduces more than 14% in any operating time in relation to the dose rate measured at the point opposite the canal. There is a 50% reduction in the dose rates for operations with and J-9 closed. The results suggest a new frequency of radiometric survey whose mode of operation is maintained in similar conditions, since combined with other relevant practices of radiation protection

  15. TRU assay system and measurements

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1984-02-01

    The measurement of the transuranic content of nuclear products or process residues has become increasingly important for the recovery of fissionable material from spent fuel elements, the identification of commercial fuel elements which have not yet reached full burnup, the measurement and recovery of transuranics from discarded or stored waste materials, the determination of the transuranic content in high gamma activity waste material scheduled for disposal, compliance with 10CFR61 by land burial operators/shippers, and the satisfaction of accountability requirements. Active neutron interrogation techniques measure either the prompt neutrons or the beta delayed neutrons from fission products following induced fission. These techniques normally only measure fissile transuranics ( 235 U, 239 Pu, and 241 Pu) and are commonly applied only to contact handleable waste. Passive neutron interrogation techniques, on the other hand, are capable of measuring all transuranics except 235 U with adequate sensitivity and will work on both contact handleable and high gamma activity wastes. Since the passive techniques are senstitive to a wider spectrum of transuranic isotopes than the active techniques, substantially less complex and less expensive than the active systems, and they have proven techniques for measuring small quantities of TRU in high gamma activity packages, the passive neutron TRU assay technology was chosen for development into the instruments discussed in this paper

  16. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  17. A simple radiometric in vitro assay for acetylcholinesterase inhibitors

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Burns, H.D.; Dannals, R.F.; Wagner, H.N. Jr.

    1983-01-01

    A radiometric method for screening acetylcholinesterase inhibitors has been described. The method is based on the production of [ 14 C]carbon dioxide from the hydrolysis of acetylcholine. The inhibitory concentration at 50% (IC50) values for several known acetylcholinesterase inhibitors were in agreement with literature values. The new radiometric method is simple, inexpensive, and has the potential for automation

  18. New age radiometric ore sorting - the elegant solution

    International Nuclear Information System (INIS)

    Gordon, H.P.; Heuer, T.

    2000-01-01

    Radiometric ore sorting technology and application are described in two parts. Part I reviews the history of radiometric sorting in the minerals industry and describes the latest developments in radiometric sorting technology. Part II describes the history, feasibility study and approach used in the application of the new technology at Rossing Uranium Limited. There has been little progress in the field of radiometric sorting since the late 1970s. This has changed with the development of a high capacity radiometric sorter designed to operate on low-grade ore in the +75mm / -300mm size fraction. This has been designed specifically for an application at Rossing. Rossing has a long history in radiometric sorting dating back to 1968 when initial tests were conducted on the Rossing prospect. Past feasibility studies concluded that radiometric sorting would not conclusively reduce the unit cost of production unless sorting was used to increase production levels. The current feasibility study shows that the application of new radiometric sorter technology makes sorting viable without increasing production, and significantly more attractive with increased production. A pilot approach to confirm sorter performance is described. (author)

  19. Field radiometric methods of prospecting and exploration for uranium ores

    International Nuclear Information System (INIS)

    Gorbushina, L.V.; Savenko, E.I.; Serdyukova, A.S.

    1978-01-01

    The textbook includes two main chapters which describe gamma- and emanation field radiometric methods. The textbook is intended for geology and geophysics students having training practice in field radiometric methods and is additional to the course of lectures. The textbook can be used in the''Radiometry'' course which is studied in appropriate geological and technical colleges

  20. Use of Radiometric Survey Data for Environmental Study: The Case of Northern Sumatera

    International Nuclear Information System (INIS)

    Tjokrokardono, S; Ramadanus; Sustarman, H

    1998-01-01

    The convertion of old radiometric data obtained from former uranium exploration activities in northem sumatra into radiation exposure has been evaluated. The objective of the study is to find an alternative way for cheaper and faster compilation of radiation exposure database for environmental study purposes. The old radiometric data measure from the outcrops has been plotted 1;250.000, 1;100.000, and 1;50.000 map scales. The data are translated into 1;1000.000 map scale before they are converted into 1;1000.000 radiation exposure rate map using a graphic method. The radiation exposure rate in northem sumatera falls between 25 R/hour to 40 R/hour. The benefit offered using this method is that it provides a cheaper and faster production of radiation exposure rate map from old radiometric map. However, the problems arising from such a production is that the radiometric data provide unhomogeneous data distributions and densities among the area. As a conclusion it is recommended to recollect some of the data at designated area using well calibrated SPP2NF and gamma ray spectrometer instruments

  1. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  2. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  3. Aerial radiological measuring system program

    International Nuclear Information System (INIS)

    Doyle, J.F.; Boyns, P.K.

    1972-01-01

    The present ARMS aircraft has an effective survey time of four hours. Typical survey altitudes are 300 to 500 feet for terrain surveys and up to 20,000 feet for cloud tracks. A number of special airframe modifications have been made to accommodate the various sensor systems. The ARMS radiation measurement system consists of fourteen 4-inch diameter by 4-inch thick sodium iodide (NaI) detectors, a summing network for the detector signals, single and multichannel analyzers, analog computers, digital display and recording equipment, a doppler radar position computer, and strip chart recorders. Major subsystems include meteorology sensors, multispectral camera systems, and an infrared scanner for thermal mapping. Additional radiation detectors include an alpha spectrometer and a beta counter, used to count filter samples taken from a 150 cfm air sampler, which is a permanent part of the aircraft. A small lead shield houses a 1 / 2 -in. x 3-in. NaI crystal for beta and gamma counting of air filter samples. Several BF 3 neutron detectors are also available for neutron counting. The raw data from the gross gamma count and the gamma spectral measurements are permanently recorded on paper tape, and they must undergo reduction and analysis for final characterization of the radiological properties of the surveyed area. (U.S.)

  4. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  5. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  6. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  7. Radiometric ratio characterization for low-to-mid CPV modules operating in variable irradiance conditions

    Science.gov (United States)

    Vorndran, Shelby; Russo, Juan; Zhang, Deming; Gordon, Michael; Kostuk, Raymond

    2012-10-01

    In this work, a concentrating photovoltaic (CPV) design methodology is proposed which aims to maximize system efficiency for a given irradiance condition. In this technique, the acceptance angle of the system is radiometrically matched to the angular spread of the site's average irradiance conditions using a simple geometric ratio. The optical efficiency of CPV systems from flat-plate to high-concentration is plotted at all irradiance conditions. Concentrator systems are measured outdoors in various irradiance conditions to test the methodology. This modeling technique is valuable at the design stage to determine the ideal level of concentration for a CPV module. It requires only two inputs: the acceptance angle profile of the system and the site's average direct and diffuse irradiance fractions. Acceptance angle can be determined by raytracing or testing a fabricated prototype in the lab with a solar simulator. The average irradiance conditions can be found in the Typical Metrological Year (TMY3) database. Additionally, the information gained from this technique can be used to determine tracking tolerance, quantify power loss during an isolated weather event, and do more sophisticated analysis such as I-V curve simulation.

  8. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  9. Radiometric sorting of Rio Algom uranium ore

    International Nuclear Information System (INIS)

    Cristovici, M.A.

    1983-11-01

    An ore sample of about 0.2 percent uranium from Quirke Mine was subjected to radiometric sorting by Ore Sorters Limited. Approximately 60 percent of the sample weight fell within the sortable size range: -150 + 25 mm. Rejects of low uranium content ( 2 (2 counts/in 2 ) but only 7.6 percent of the ore, by weight, was discarded. At 0.8-0.9 counts/cm 2 (5-6 counts/in 2 ) a significant amount of rejects was removed (> 25 percent) but the uranium loss was unacceptably high (7.7 percent). Continuation of the testwork to improve the results is proposed by trying to extend the sortable size range and to reduce the amount of fines during crushing

  10. Importance of radiometric survey in radiodiagnosis installationscalculated

    International Nuclear Information System (INIS)

    Leyton, Fernando; Alarcon, Luis; Zapata, Victor H.; Ortega, Dulia; Ramirez, Alfredo; Aravena, Gonzalo; Ubeda, Carlos; Oyarzun, Carlos; Inzulza, Alonso

    2005-01-01

    A radiometric survey was conducted in two services of imaging with a total of 7 evaluated radiology rooms. The Quality Control Protocol methodology was used in Radiology ARCAL (Regional Agreement of cooperation for the promotion of nuclear science and technology in Latin America and the Caribbean) XLIX of the International Atomic Energy Agency (IAEA). The effective dose in different positions of interest rates were calculated, from the point of view of radiation protection. All evaluated rooms have rates of effective doses that meet the values limits set in the Protocol ARCAL XLIX, for 82% of the positions evaluated. However operators located in the position A (controlled area) exceed on average 370% with a range of [1-870] the limit proposed by ARCAL XLIX

  11. Radiometric monitoring outdoor municipality Pocinhos-PB

    International Nuclear Information System (INIS)

    Cardinalli Araujo Costa, Michelle; Araujo dos Santos Junior, Jose; Dos Santos Amaral, Romilton

    2015-01-01

    Studies on human exposure to terrestrial radionuclides are important for human health. Therefore, this investigation presents aimed at making radiometric dosimetry Pocinhos municipality in the state of Paraiba. Monitoring was performed in 50 points in urban and rural areas Pocinhos. The estimated external effective dose rate in outdoor environments was obtained in triplicate using a portable gamma spectrometer, to 1.0 m away from the Earth's surface and time set acquisition in terms of environmental radiation levels. The values of these dose rates outdoor environments ranging from 0.53 to 3.94 mSv.y -1 . the arithmetic mean was 0.79 mSv.y -1 , which exceeds the value 0.07 mSv.y -1 corresponding to the global average in outdoor environments. In the city, found a higher radioactivity in rural areas that were uninhabited at the time of the survey. (Author)

  12. ANALYSIS OF THE RADIOMETRIC RESPONSE OF ORANGE TREE CROWN IN HYPERSPECTRAL UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. N. Imai

    2017-10-01

    Full Text Available High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013 presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems – RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  13. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  14. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  15. System for optimizing activation measurements

    International Nuclear Information System (INIS)

    Antonov, V.A.

    1993-01-01

    Optimization procedures make it possible to perform committed activation investigations, reduce the number of experiments, make them less laborious, and increase their productivity. Separate mathematical functions were investigated for given optimization conditions, and these enable numerical optimal parameter values to be established only in the particular cases of specific techniques and mathematical computer programs. In the known mathematical models insufficient account is taken of the variety and complexity of real nuclide mixtures, the influence of background radiation, and the wide diversity of activation measurement conditions, while numerical methods for solving the optimization problem fail to reveal the laws governing the variations of the activation parameters and their functional interdependences. An optimization method was proposed in which was mainly used to estimate the time intervals for activation measurements of a mononuclide, binary or ternary nuclide mixture. However, by forming a mathematical model of activation processes it becomes possible to extend the number of nuclides in the mixture and to take account of the influence of background radiation and the diversity of the measurement alternatives. The analytical expressions and nomograms obtained can be used to determine the number of measurements, their minimum errors, their sensitivities when estimating the quantity of the tracer nuclide, the permissible quantity of interfering nuclides, the permissible background radiation intensity, and the flux of activating radiation. In the worker described herein these investigations are generalized to include spectrally resolved detection of the activation effect in the presence of the tracer and the interfering nuclides. The analytical expressions are combined into a system from which the optimal activation parameters can be found under different given conditions

  16. Integral measurement system for radon

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Pena E, R.

    1996-01-01

    The Integral measurement system for Radon is an equipment to detect, counting and storage data of alpha particles produced by Radon 222 which is emanated through the terrestrial peel surface. This equipment was designed in the Special Designs Department of the National Institute of Nuclear Research. It supplies information about the behavior at long time (41 days) on each type of alpha radiation that is present into the environment as well as into the terrestrial peel. The program is formed by an User program, where it is possible to determine the operation parameters of a portable probe that contains, a semiconductor detector, a microprocessor as a control central unit, a real time clock and calendar to determine the occurred events chronology, a non-volatile memory device for storage the acquired data and an interface to establish the serial communications with other personal computers. (Author)

  17. Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray

    International Nuclear Information System (INIS)

    Jang, Ji Hoon; Kim, Byung Joo; Cho, Kyung Shik; Kim, Gi Dong

    2002-01-01

    By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval

  18. True mean rate measuring system

    International Nuclear Information System (INIS)

    Eichenlaub, D.P.

    1980-01-01

    A digital radiation-monitoring system for nuclear power plants uses digital and microprocessor circuitry to enable rapid processing of pulse information from remote radiation monitors. The pulse rates are analyzed to determine whether new pulse-rate information is statisticaly the same as that previously received and to determine the best possible averaging time, which can be changed so that the statistical error remains below a specified level while the system response time remains short. Several data modules each process the pulse-rate information from several remote radiation monitors. Each data module accepts pulse data from each radiation monitor and measures the true average or mean pulse rate of events occurring with a Poisson distribution to determine the radiation level. They then develop digital output signals which indciate the respective radiation levels and which can be transmitted via multiplexer circuits for additional processing and display. The data modules can accept signals from remote control stations or computer stations via the multiplexer circuit to change operating thresholds and alarm levels in their memories. A check module scans the various data modules to determine whether the output signals are valid. It also acts as a redundant data module and will automatically replace an inoperative unit. (DN)

  19. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  20. Radiometric studies on the oxidation of (I-14C) fatty acids by drug-susceptible and drug-resistant mycobacteria

    International Nuclear Information System (INIS)

    Camargo, E.E.; Kopajtic, T.M.; Hopkins, G.K.; Cannon, N.P.; Wagner Junior, H.N.

    1987-01-01

    A radiometric assay system has been used to study oxidation patterns of (l - 14 C) fatty acids by drug-susceptible and drug-resistant organisms of the genus Mycobacterium (M. tuberculosis - H 37 Rv and Erdman, M. bovis, M. avium, M. intracellulare, M.Kansasii and M. chelonei). The organisms were inoculated in sterile reaction vials containing liquid 7H9 medium, 10% ADC enrichment and 1.0 uli of one of the (l- 14 C) fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic). Vials were incubated at 37 0 C and the 14 CO 2 envolved was measured daily for 3 days with a Bactec R-301 instrument. (M.A.C.) [pt

  1. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  2. Radiometric detection of yeasts in blood cultures of cancer patients

    International Nuclear Information System (INIS)

    Hopfer, R.L.; Orengo, A.; Chesnut, S.; Wenglar, M.

    1980-01-01

    During a 12-month period, 19,457 blood cultures were collected. Yeasts were isolated from 193 cultures derived from 76 cancer patients. Candida albicans or Candida tropicalis accounted for 79% of isolates. Of the three methods compared, the radiometric method required 2.9 days to become positive, blind subculture required 2.6 days, and Gram stains required 1 day. However, the radiometric method was clearly superior in detecting positive cultures, since 73% of all cultures were first detected radiometrically, 22% were detected by subculture, and only 5% were detected by Gram stain. Although 93% of the isolates were detected by aerobic culture, five (7%) isolates were obtained only from anaerobic cultures. Seven days of incubation appear to be sufficient for the radiometric detection of yeasts

  3. Radiometric dating by alpha spectrometry on uranium series nuclides

    NARCIS (Netherlands)

    Wijk, Albert van der

    1987-01-01

    De Engelse titel van dit proegschrift \\"Radiometric Dating by Alpha Spectometry on Uranium Series Nuclides\\" kan in het Nederlands wellicht het best worden weergegeven door \\"ouderdomsdbepalingen door stralingsmeting aan kernen uit de uraniumreeks met behulp van alfaspectometrie\\". In dit laatste

  4. Radiometric flow injection analysis with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.

  5. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Les P.; Mogaard, John Olav

    2000-07-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  6. Radiometric Performance of the TerraSAR-X Mission over More Than Ten Years of Operation

    Directory of Open Access Journals (Sweden)

    Marco Schwerdt

    2018-05-01

    Full Text Available The TerraSAR-X mission, based on two satellites, has produced SAR data products of high quality for a number of scientific and commercial applications for more than ten years. To guarantee the stability and the reliability of these highly accurate SAR data products, both systems were first accurately calibrated during their respective commissioning phases and have been permanently monitored since then. Based on a short description of the methods applied, this paper focuses on the radiometric performance including the gain and phase properties of the transmit/receiver modules, the antenna pattern checked by evaluating scenes acquired over uniformly distributed targets and the radiometric stability derived from permanently deployed point targets. The outcome demonstrates the remarkable performance of both systems since their respective launch.

  7. Monitoring of plutonium contaminated solid waste streams. Chapter II: principles and theory of radiometric assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.; Notea, A.; Segal, Y.

    1977-01-01

    The interpretation of a count rate distribution obtained from radiometric assay of a given waste items population in terms of source strength distribution is discussed. A model for the evaluation of errors, arising from non uniform source density distribution (Pu) within the item volume and heterogeneity of matrix materials, is presented. Points concerning calibration procedures and representativity of reference materials are dealt with. Qualification procedures for possible monitoring systems are outlined on the basis of comparison with reference systems. The latter are composed of reference monitors based on high resolution gamma spectrometry and passive and active neutron techniques. The importance of information upon the elemental composition and density distribution of matrix materials for the interpretation of radiometric assay of solid wastes is stressed

  8. Indicators System for Poverty Measurement

    Directory of Open Access Journals (Sweden)

    Constantin Mitrut

    2006-10-01

    Full Text Available Poverty represents a life aspect which is focusing the attention of both the macroeconomic analysis and the international comparisons. In order to measure the level being recorded by this phenomenon, there is a system of indicators which are used in order to underline, in a correlated manner, a number of aspects which are characterizing, quality and quantity wise, the evolution of the poverty in a specific country or, to a larger extent, through comparative surveys, at international level. Despite the fact that they are not the only instrument being used within the process of comparison of the stages of social and economic development at the international level, however the poverty indicators are providing a clear significance to the worked out surveys. In fact, the very purpose of the economic activity consists of increasing welfare and, as much as possible, at least reducing, if not eradicating, the poverty. The present work is broadly presenting the methodology as well as, both theoretical and practical, the way of computing the poverty, making a synthesis of the specific used indicators.

  9. Radiometric determination of monoethanolamine with 65ZnSo4

    International Nuclear Information System (INIS)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S.

    1984-01-01

    Determination of milligram amounts of monoethanolamine (MEA) with zinc(II) by radiometric titration is described. When MEA is added to a zinc(II) solution containing sulphate ions at 25 degC, a white solid complex is formed. The formation of this complex is employed for the radiometric determination of MEA with 65 Zn. The amount of MEA is directly proportional to the activity of the complex formed. The method is simple, rapid and accurate. (author)

  10. Radiometric detection of metabolic activity of Paracoccidiodes brasiliensis and its susceptibility to amphotericin B and Diethylstilbestrol

    International Nuclear Information System (INIS)

    Camargo, E.E.; Sato, M.K.; Del Negro, G.M.B.; Lacaz, C.S.

    1987-01-01

    A radiometric assay system has been applied to study the metabolic activity and the effect of drugs (amphotericin B and diethylstilbestrol) on the fungus Paracoccidiodes brasiliensis ''in vitro''. The Y form of the yeast, grown in liquid Sabouraud medium was inoculated into sterile reaction vials containing the 6B aerobic medium along with 2.0μCi of 14 C-substrates. (M.A.C.) [pt

  11. measurements by Thomson scattering system

    Indian Academy of Sciences (India)

    oirity in measuring the electron temperature (Te) and density (ne) in fusion plasma devices like tokamaks. ... by the plasma electrons is used for the measurements. .... will be in the photon integration mode and will be acquired by a computer.

  12. Calibrated infrared ground/air radiometric spectrometer

    Science.gov (United States)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  13. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  14. Radiometric--microbiologic assay of vitamin B-6: application to food analysis

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Shane, B.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for vitamin B-6 was applied to food analysis. The method was shown to be specific, reproducible and simpler than the standard turbidimetric microbiologic technique. The analysis of seven commercially available breakfast cereals was compared to a high performance liquid chromatography method. Three out of the seven cereals agreed when assayed with both methods (P greater than 0.1). Four cereals, however, differed in value considerably (P less than 0.05). Further studies are required to determine whether these differences were due to different extraction procedures used. The study showed that the new radiometric-microbiologic method can be used to measure total vitamin B-6 or, combined with a column separation procedure, to analyze for specific forms of the vitamin

  15. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  16. Dosimetric system for measurement of radioactive contaminations

    International Nuclear Information System (INIS)

    Litynski, Z.; Pienkos, J.P.; Witkowski, J.; Zadrozny, S.

    1985-01-01

    A dosimetric system for personnel dosimetry and monitoring measuring a contamination without time delay and dead time is described. The system ensures many-point measurement and minimalization of background radiation influence. 1 fig. (A.S.)

  17. Application in measurements of SKODA-OZES mobile measuring system

    International Nuclear Information System (INIS)

    Grof, V.; Drab, F.; Icha, K.

    A mobile digital measuring system was built at SKODA - Energeticke strojirenstvi based on digital information system CIS 3000 with the ADT 4100 computer. The system can operate in the BCS or in the RTE-C mode. Two programs are briefly described written for the purpose of measurements. The following applications of the system were tried: testing the reactivity meter on the reactor model, demonstration measurement of the temperature of the medium and display of values on the monitor, measurement of the temperature of the lid of the pressure vessel of the WWER-440 reactor during overlaying and measurement and the adaptive control of band thickness on a KVARTO 200 rolling mill. The measurement system is expected to be used in nuclear power plants and experimental reactors. (M.D.)

  18. Brush seal performance measurement system

    OpenAIRE

    Aksoy, Serdar; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk; Duran, Ertuğrul Tolga; Duran, Ertugrul Tolga

    2009-01-01

    Brush seals are rapidly replacing conventional labyrinth seals in turbomachinery applications. Upon pressure application, seal stiffness increases drastically due to frictional bristle interlocking. Operating stiffness is critical to determine seal wear life. Typically, seal stiffness is measured by pressing a curved shoe to brush bore. The static-unpressurized measurement is extrapolated to pressurized and high speed operating conditions. This work presents a seal stiffness measurement syste...

  19. Radiometric, SEM and XRD investigation of the Chituc black sands, southern Danube Delta, Romania

    International Nuclear Information System (INIS)

    Margineanu, R.M.; Blebea-Apostu, Ana-Maria; Celarel, Aurelia; Gomoiu, Claudia-Mariana; Costea, C.; Dumitras, Delia; Ion, Adriana; Duliu, O.G.

    2014-01-01

    The black sand of the Chituc marine sand bank, northern of the city of Navodari (Romania), presents anomalous high radioactivity. Field measurements recorded in some places dose rate up to 200 nSv/h, significantly overpassing the average value of 44 ± 20 nSv/h along the entire Southern sector of Romanian Black Sea shore. Gamma ray spectrometry performed on both Slanic-Prahova Underground Low Background Laboratory and Geological Institute of Romania Radiometric Facilities showed with clarity the dominance of 228 Ac radioisotope in the 50 microns fraction together with the 226 Ra and traces of 40 K. No significant amount of anthropogenic 137 Cs was identified. Based on radiometric as well as on SEM–EDAX and XRD determinations we come to the conclusion that the evidenced radioactivity could be attributed to both uranium and thorium series in the zircon and monazite fractions and to a lesser extent to potassium in the feldspars. - Highlights: • High background radioactivity (up to 200 nSv/h) evidenced. • Radiometric measurements showed a maximum radioactivity of U and Th confined to 50–100 μm fraction. • XRD and SEM–EDAX data revealed the presence of k-feldspars, ilmenite, zircone, monazite and garnets

  20. Radiometric survey in the sites of Regional office in Fortaleza, research gallery and camp in Itataia, CE (Brazil)

    International Nuclear Information System (INIS)

    1982-02-01

    The radiometric survey in Regional officer sites in Fortaleza, Brazil, research gallery and camp in Itataia is presented. The measurings to be done, the instrumentation used and results obtained are described as well as the conclusions and recommendations. (C.M.) [pt

  1. Unmanned aerial vehicles ('drones') as tools for small scale radiometric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Luff, R.; Stöhlker, U.; Bossew, P., E-mail: rluff@bfs.de [German Federal Office for Radiation Protection, Salzgitter (Germany)

    2017-07-01

    An UAV has been developed by the Federal Office for Radiation Protection (BfS) and tested in the Chernobyl exclusion zone in September 2016. A commercially available hexacopter has been equipped with a 1.5 cm³ CZT gamma spectrometric detector (μSPEC), GPS, data processing unit (Rasperry PI with Linux) and Wi-Fi for data transmission to the ground base. Optionally a camera can be carried. The system records gamma dose rate every 2 seconds and gamma spectra every 10 minutes. The total cost of the system is significantly below 10k€ which includes the detector (6k€), data acquisition system (0.2k€) and the UAV (1.2k€). The system is very mobile, easy to set up and to operate in the field. Results are plausible and easy to interpret, spatial resolution of the gamma dose rate on the ground is surprisingly high. Measurement results from the Chernobyl exclusion zone show that the sensitivity of the detector allows radiation survey in areas where the dose rate level is above 0.3 μSv/h. Limitation of the small system are the relatively short operation range of a few 100 m and the lack of an altimeter to assure constant flight altitude above ground. Among the results of the exercise were that a high gamma dose rate gradient in the field can be well identified and the observation that the measured gamma dose rate depends relatively little on the flight altitude between 3 and about 15 meters above ground, for a large scale contamination field. As a conclusion, the use of UAVs for radiometric surveys is a promising and viable complement to traditional air-borne reconnaissance for small areas, and an alternative to ground-based surveys in case of high radiation levels or difficult access. (author)

  2. Unmanned aerial vehicles ('drones') as tools for small scale radiometric surveys

    International Nuclear Information System (INIS)

    Luff, R.; Stöhlker, U.; Bossew, P.

    2017-01-01

    An UAV has been developed by the Federal Office for Radiation Protection (BfS) and tested in the Chernobyl exclusion zone in September 2016. A commercially available hexacopter has been equipped with a 1.5 cm³ CZT gamma spectrometric detector (μSPEC), GPS, data processing unit (Rasperry PI with Linux) and Wi-Fi for data transmission to the ground base. Optionally a camera can be carried. The system records gamma dose rate every 2 seconds and gamma spectra every 10 minutes. The total cost of the system is significantly below 10k€ which includes the detector (6k€), data acquisition system (0.2k€) and the UAV (1.2k€). The system is very mobile, easy to set up and to operate in the field. Results are plausible and easy to interpret, spatial resolution of the gamma dose rate on the ground is surprisingly high. Measurement results from the Chernobyl exclusion zone show that the sensitivity of the detector allows radiation survey in areas where the dose rate level is above 0.3 μSv/h. Limitation of the small system are the relatively short operation range of a few 100 m and the lack of an altimeter to assure constant flight altitude above ground. Among the results of the exercise were that a high gamma dose rate gradient in the field can be well identified and the observation that the measured gamma dose rate depends relatively little on the flight altitude between 3 and about 15 meters above ground, for a large scale contamination field. As a conclusion, the use of UAVs for radiometric surveys is a promising and viable complement to traditional air-borne reconnaissance for small areas, and an alternative to ground-based surveys in case of high radiation levels or difficult access. (author)

  3. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  4. Analysis of differential method for compensating fluctuations in product thickness when radiometric testing

    International Nuclear Information System (INIS)

    Pokrovskij, A.V.; Kvasnitsa, M.S.

    1979-01-01

    Given are the estimates of information capabilities of the differential method for measuring radiation flux in radiation defectoscopy as well as efficiency of application of automatic radiation facilities to control taking into account the statistical regularities of product thickness fluctuations. Dependences of signal to noise ratio on the regularities of product thickness fluctuations have been found and optimization, on this basis, of the design and parameters of processing instrumentation was carried out. It is shown, that with 60-80 mm interval of product thickness fluctuations correlation (welded joints) it is expedient to use two radiation beams with their crossing on a mean product plane. When the interval of correlation of thickness fluctuations is great it is effective to use the geometry of radioscopy with parallel radiation beams. This permits to use only one radiation source without significant reducing the compensation efficiency, that in most cases simplifies the development and application of radiometric systems. Thus the efficiency of applying the differential method for radiation beam detection to compensate product thickness fluctuations is primarily determined by statistical regularities of the given fluctuations. The account of the regularities in the development of the processing instrumentation results in the most complete extraction of useful information, containing in the radiation beams being detected

  5. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  6. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  7. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  8. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  9. Evaluation of element migration from food plastic packagings into simulated solutions using radiometric method

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez; Saiki, Mitiko; Wiebeck, Helio

    2005-01-01

    In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10 12 n cm -2 s -1 and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)

  10. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  11. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique. Keywords ... Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors for measurement of ... omagnetic prospecting, detection of gravity waves etc. Judging the importance ...

  12. Radiometric analyses of floodplain sediments at the Savannah River Plant

    International Nuclear Information System (INIS)

    Lower, M.W.

    1987-09-01

    A Comprehensive Cooling Water Study to assess the effects of reactor cooling water discharges and related reactor area liquid releases to onsite streams and the nearby Savannah River has been completed at the US Department of Energy's Savannah River Plant (SRP). Extensive radiometric analyses of man-made and naturally occurring gamma-emitting radionuclides were measured in floodplain sediment cores extracted from onsite surface streams at SRP and from the Savannah River. Gamma spectrometric analyses indicate that reactor operations contribute to floodplain radioactivity levels slightly higher than levels associated with global fallout. In locations historically unaffected by radioactive releases from SRP operations, Cs-137 concentrations were found at background and fallout levels of about 1 pCi/g. In onsite streams that provided a receptor for liquid radioactive releases from production reactor areas, volume-weighted Cs-137 concentrations ranged by core from background levels to 55 pCi/g. Savannah River sediments contained background and atmospheric fallout levels of Cs-137 only. 2 refs., 5 figs

  13. Iodine sorption of bentonite - radiometric and polarographic study

    International Nuclear Information System (INIS)

    Konirova, R.; Vinsova, H.; Koudelkova, M.; Ernestova, M.; Jedinakova-Krizova, V.

    2003-01-01

    The experiments focused on kinetics of iodine retardation on bentonite, influence of aqueous phase pH, buffering properties of bentonite, etc. were carried out by batch method. Distribution coefficient KD was the criterion applied for evaluation of iodine interaction with solid phase. High sorption potential of bentonite to cationic forms of various radionuclides, resulting from relatively high cation exchange capacity, is generally known. On the other hand the inorganic anions are not adsorbed strongly to mineral surface of clays thus uptake of iodine (occurring mainly at iodide (I - ) or iodate (IO 3 - ) form under oxoic conditions) is limited. The distribution coefficients of iodine anions' sorption on bentonite R reach order of magnitude 10 -1 mL/g. In order to increase the sorption capacity of the solid phase, several additives were added to bentonite. Most of them didn't provide satisfactory results except of the addition of activated carbon, which has high surface area. Electromigration and polarographic methods were used for investigation of the redox state of iodine in aqueous phase and determination of KD values as well. Acquired results were compared with data obtained by radiometric measurements. (authors)

  14. Radiometric determination of uniformity of putting paraffin on textile threads

    International Nuclear Information System (INIS)

    Ridel', Z.; Kherrmann, Eh.; Shefer, I.; Tseiner, A.

    1979-01-01

    To improve processing of the natural and synthetic fiber threads on stocking-frames, they are treated by paraffin. Paraffin is applied in the amounts nearly equal to 0.1 -1.0 g for 10 4 m of the thread's length. To determine amount of paraffin on thread and to determine uniformity if its application, a radiometric method has been developed. As a radioactive label, didocilephosphate of rare earths was used. This compound has good solubility in hydrocarbons and does not change physical properties of paraffin in the investigated field of its application as well as its concentration. It is possible to add to paraffin this radioactive label or a non-active label with subsequent its activation. Amount of paraffin, applied on a thread is determined by means of measurement of activity of thread samples of different length. Information about uniformity of paraffin application on thread have been obtained by means of autoradiography. It has been found that paraffin in mainly applied on the thread's bulges [ru

  15. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  16. Total neutron-counting plutonium inventory measurement systems (PIMS) and their potential application to near real time materials accountancy (NRTMA)

    International Nuclear Information System (INIS)

    Driscall, I.; Fox, G.H.; Orr, C.H.; Whitehouse, K.R.

    1988-01-01

    A radiometric method of determining the inventory of an operating plutonium plant is described. An array of total neutron counters distributed across the plant is used to estimate hold-up at each plant item. Corrections for the sensitivity of detectors to plutonium in adjacent plant items are achieved through a matrix approach. This paper describes our experience in design, calibration and operation of a Plutonium Inventory Measurement System (PIMS) on an oxalate precipitation plutonium finishing line. Data from a recent trial of Near-Real-Time Materials Accounting (NRTMA) using the PIMS are presented and used to illustrate its present performance and problem areas. The reader is asked to consider what role PIMS might have in future accountancy systems

  17. Design, manufacture, and calibration of infrared radiometric blackbody sources

    International Nuclear Information System (INIS)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 μm. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 μm, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following

  18. A precise, efficient radiometric assay for bacterial growth

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, C.; Kirchner, P.T.

    1984-01-01

    The two-compartment radiometric assay for bacterial growth promised major advantages over systems in clinical use, but poor reproducibility and counting efficiency limited its application. In this method, 14-CO/sub 2/ produced by bacterial metabolism of C-14-glucose is trapped and counted on filter paper impregnated with NaOH and fluors. The authors sought to improve assay efficiency and precision through a systematic study of relevant physical and chemical factors. Improvements in efficiency (88% vs. 10%) and in precision (relative S.D. 5% vs. 40%) were produced by a) reversing growth medium and scintillator chambers to permit vigorous agitation, b) increasing NaOH quantity and using a supersaturated PPO solution and c) adding detergent to improve uniformity of NaOH-PPO mixture. Inoculum size, substrate concentration and O/sub 2/ transfer rate affected assay sensitivity but not bacterial growth rate. The authors' assay reliably detects bacterial growth for inocula of 10,000 organisms in 1 hour and for 25 organisms within 4 1/2 hours, thus surpassing other existing clinical and research methods

  19. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; Mcintire, Jeffrey; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2015-01-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 m to 12.01 m, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  20. Identification of invariant measures of interacting systems

    International Nuclear Information System (INIS)

    Chen Jinwen

    2004-01-01

    In this paper we provide an approach for identifying certain mixture representations of some invariant measures of interacting stochastic systems. This is related to the problem of ergodicity of certain extremal invariant measures that are translation invariant. Corresponding to these, results concerning the existence of invariant measures and certain weak convergence of the systems are also provided

  1. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5×105 for 20 g soil compared to the level reported in the literature......, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference......Pu. However, it is impossible to measure 238Pu using ICP-MS in environmental samples even a decontamination factor as high as 106 for uranium was obtained by chemical separation....

  2. Emittance measuring system on the UNILAC

    International Nuclear Information System (INIS)

    Ehrich, A.; Glatz, J.; Strahl, P.

    A description is given of one of the beam emittance measuring systems designed for the UNILAC at GSI. The measuring system mechanics and the detector system are detailed, and the associated electronics are discussed. Computer programming and data processing and evaluation are described

  3. An instrument for collecting and processing data from radiometric experiments carried out in field and industrial conditions

    International Nuclear Information System (INIS)

    Mirowicz, J.; Owczarczyk, A.; Pienkos, J.; Swistowski, E.; Urbanski, P.

    2002-01-01

    The FIR-1 radiometer is designed to collect and process radiometric measurements carried out in industrial and field environment. A specialized software of the radiometer enables use of the collected measuring results for further processing e.g. modelling of dynamics of the objects. The main unit of the radiometer is the control block. The task of the block is control of the measuring cycles and its analysis as well as displaying and store of the measuring results. The investigated processes can be watched at LCD screen, the measuring results can be stored in the memory and can be sent for further processing to external PC. The radiometer is equipped with 4 pulse channels to which scintillation or GM detection probes can be connected depending on the measurements to be carried out. Additionally, the radiometer is equipped with the spectrometric channel with 256 channel analyser. The radiometer is powered from 6 V accumulator. The radiometer is based on up-to-date technology with large scale integrated circuits. Thanks to microprocessor system used in the radiometer the measurements can be highly automated. The software of the radiometer is based on MATLAB. (author)

  4. System tuning and measurement error detection testing

    International Nuclear Information System (INIS)

    Krejci, Petr; Machek, Jindrich

    2008-09-01

    The project includes the use of the PEANO (Process Evaluation and Analysis by Neural Operators) system to verify the monitoring of the status of dependent measurements with a view to early measurement fault detection and estimation of selected signal levels. At the present stage, the system's capabilities of detecting measurement errors was assessed and the quality of the estimates was evaluated for various system configurations and the formation of empiric models, and rules were sought for system training at chosen process data recording parameters and operating modes. The aim was to find a suitable system configuration and to document the quality of the tuned system on artificial failures

  5. Measurement system as a subsystem of the quality management system

    OpenAIRE

    Ľubica Floreková; Ján Terpák; Marcela Čarnogurská

    2006-01-01

    Each measurement system and a control principle must be based on certain facts about the system behaviour (what), operation (how) and structure (why). Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirem...

  6. Measuring situation awareness in complex systems: Comparison of measures study

    OpenAIRE

    Salmon, PM; Stanton, NA; Walker, GH; Jenkins, DP; Ladva, D; Rafferty, L; Young, MS

    2008-01-01

    Situation Awareness (SA) is a distinct critical commodity for teams working in complex industrial systems and its measurement is a key provision in system, procedural and training design efforts. This article describes a study that was undertaken in order to compare three different SA measures (a freeze probe recall approach, a post trial subjective rating approach and a critical incident interview technique) when used to assess participant SA during a military planning task. The results indi...

  7. Bluetooth-based distributed measurement system

    International Nuclear Information System (INIS)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng

    2007-01-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit

  8. Bluetooth-based distributed measurement system

    Science.gov (United States)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  9. Bluetooth-based distributed measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng [Department of Mechatronics, College of Mechanical Engineering, Chongqing University, Chongqing, 400030 (China)

    2007-07-15

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  10. Particle measurement systems and methods

    Science.gov (United States)

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  11. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  12. Urease testing of mycobacteria with BACTEC radiometric instrumentation

    International Nuclear Information System (INIS)

    Damato, J.J.; Collins, M.T.; McClatchy, J.K.

    1982-01-01

    A total of 140 mycobacterial isolates from patients treated at Fitzsimons Army Medical Center or the National Jewish Hospital and Research Center and from animal specimens submitted to the National Veterinary Services Laboratory were tested by using a urease procedure modified for use with a BACTEC model 301. Mycobacterial suspensions were prepared by using Middlebrook 7H10 Tween broth. Of the 98 mycobacteria isolates which were urease positive utilizing standard methodology, all were positive using the radiometric procedures. Similarly, all 42 urease-negative isolates were also negative employing the new methodology. Although maximum radiometric readings were observed at 48 h, all positive strains were readily identified 24 h after inoculation without sacrificing either test sensitivity or specificity. Thus, urease testing of mycobacteria, using the modified BACTEC radiometric methodology, was as sensitive, as specific, and more rapid than conventional methods

  13. A compact soft x-ray (0.1–1.2 keV) calibration bench for radiometric measurements using an original versatile Rowland circle grazing incidence monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr

    2017-05-21

    This paper describes an original Rowland circle grazing incidence spectrometer used as a monochromator for a soft x-ray Manson source in order to calibrate both the source and detectors over the 0.1–1.2 keV spectral range. The originality of the instrument lies on a patented vacuum manipulator which allows the simultaneous boarding of two detectors, one (reference) for measuring the monochromatic radiation and the second to be calibrated. In order to achieve this, the vacuum manipulator is able to interchange, in vacuum, one detector with the other in front of the exit slit of the monochromatizing stage. One purpose of this apparatus was to completely eliminate the intrinsic bremsstrahlung emission of the x-ray diode source and isolate each characteristic line for quantitative detector calibrations. Obtained spectral resolution (Δλ/λ<10{sup −2}) and spectral purity (>98%) fully meet this objective. Initially dimensioned to perform calibration of bulky x-ray cameras unfolded on the Laser MégaJoule Facility, other kinds of detector can be obviously calibrated using this instrument. A brief presentation of the first calibration of an x-ray CCD through its quantum efficiency (QE) measurement is included in this paper as example. Comparison with theoretical model for QE and previous measurements at higher energy are finally presented and discussed.

  14. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  15. A shielded measurement system for irradiated nuclear fuel measurements

    International Nuclear Information System (INIS)

    Mosby, W.R.; Aumeier, S.E.; Klann, R.T.

    1999-01-01

    The US Department of Energy (DOE) is driving a transition toward dry storage of irradiated nuclear fuel (INF), toward characterization of INF for final disposition, and toward resumption of measurement-based material control and accountability (MC and A) efforts for INF. For these reasons, the ability to efficiently acquire radiological measurements of INF in a dry environment is important. The DOE has recently developed a guidance document proposing MC and A requirements for INF. The intent of this document is to encourage the direct measurement of INF on inventory within DOE. The guidance document reinforces and clarifies existing material safeguards requirements as they pertain to INF. Validation of nuclear material contents of non-self-protecting INF must be accomplished by direct measurement, application of validated burnup codes using qualified initial fissile content, burnup data, and age or by other valid means. The fuel units must remain intact with readable identification numbers. INF may be subject to periodic inventories with visual item accountability checks. Quantitative measurements may provide greater assurance of the integrity of INF inventories at a lower cost and with less personnel exposure than visual item accountability checks. Currently, several different approaches are used to measure the radiological attributes of INF. Although these systems are useful for a wide variety of applications, there is currently no relatively inexpensive measurement system that is readily deployable for INF measurements for materials located in dry storage. The authors present the conceptual design of a shielded measurement system (SMS) that could be used for this purpose. The SMS consists of a shielded enclosure designed to house a collection of measurement systems to allow measurements on spent fuel outside of a hot cell. The phase 1 SMS will contain 3 He detectors and ionization chambers to allow for gross neutron and gamma-ray measurements. The phase 2 SMS

  16. Validation of the measurement detection system for thyroid uptake (DETEC-PC)

    International Nuclear Information System (INIS)

    Alonso Abad, Dolores; Arista Romeu, Eduardo; Bolanos Perez, Lourdes; Arteche Diaz, Raul; Alonso Abad, Ariel

    2008-01-01

    Diseases caused by a malfunction of the Thyroid gland are very common. Any general hospital assists dozens of such cases weekly and there are some places where these diseases are endemic. A measurement detection system was designed and developed to allow carrying out Thyroid Uptakes functional studies. It has been taken in account the requirements of easiness of use and the good medical practices. The system consists of a Personal Computer connected with a radiometric block based on a UnI052 board, for the acquisition of counts to be processed. The application software is responsible for the control and monitoring of the equipment operation as well as the statistical analysis. It also includes a database where the information of the patient under study is stored. The software was designed according to the principles of Object Oriented Programming (OOP) with a graphic user interface (GUI) under 'MS-Windows' environment. The software has several functions that allow making important quality controls about the correct operation of the system. Quality control tests, according to international standards, have been performed to the equipment. The tests of acceptance, of reference, of routine and of operational or daily control were made. They showed a satisfactory performance under real conditions of operation. Then, the metrological certification was obtained. This is the requirement necessary for doing the case study for obtaining the Medical Registration, which certifies the introduction in the National System of Health. (author)

  17. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  18. Radiometric microbiologic assay for the biologically active forms of niacin

    International Nuclear Information System (INIS)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-01-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced 14 CO 2 from L-[U- 14 C] malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 μg niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays

  19. Testing of X-ray radiometric enrichnment of polymetallic ores

    International Nuclear Information System (INIS)

    Eliseev, N.I.; Panova, N.I.; Kirbitova, N.V.; Shramm, E.O.; Efremov, Yu.G.

    1987-01-01

    Testing of X-ray radiometric method of sorting of polymetallic ores using the developed X-ray radiometric device was conducted. It was shown that introduction of preliminary concentration at the factory made the method of fragment separation to be the perspective one, enabling to elevate the factory production with respect to commercial ore and reduce the cost of ore processing. In the case of preliminary concentration, conducted at the mine, it is advisable to perform ore sorting in the flow formed to monolayer

  20. Automatic system for ionization chamber current measurements

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro S.; Koskinas, Marina F.

    2004-01-01

    The present work describes an automatic system developed for current integration measurements at the Laboratorio de Metrologia Nuclear of Instituto de Pesquisas Energeticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design

  1. Superconducting property measuring system by magnetization method

    International Nuclear Information System (INIS)

    Ikisawa, K.; Mori, T.; Takasu, N.

    1988-01-01

    Superconducting property measuring system (CMS-370B) for high temperature oxide superconductor has been developed. This system adopts magnetization measurement. The superconducting properties are able to be measured automatically and continuously changing the temperature and external magnetic field. The critical current density as a function of temperature and magnetic field of high temperature superconductor YBa 2 Cu 3 O 7-y (YBCO) has been measured. This paper reports how it was confirmed that this system having the high performance and the accuracy gave the significant contribution to the superconducting material development

  2. Control measurement system in purex process

    International Nuclear Information System (INIS)

    Mani, V.V.S.

    1985-01-01

    The dependence of a bulk facility handling Purex Process on the control measurement system for evaluating the process performance needs hardly be emphasized. process control, Plant control, inventory control and quality control are the four components of the control measurement system. The scope and requirements of each component are different and the measurement methods are selected accordingly. However, each measurement system has six important elements. These are described in detail. The quality assurance programme carried out by the laboratory as a mechanism through which the quality of measurements is regularly tested and stated in quantitative terms is also explained in terms of internal and external quality assurance, with examples. Suggestions for making the control measurement system more responsive to the operational needs in future are also briefly discussed. (author)

  3. Performance measurement for information systems: Industry perspectives

    Science.gov (United States)

    Bishop, Peter C.; Yoes, Cissy; Hamilton, Kay

    1992-01-01

    Performance measurement has become a focal topic for information systems (IS) organizations. Historically, IS performance measures have dealt with the efficiency of the data processing function. Today, the function of most IS organizations goes beyond simple data processing. To understand how IS organizations have developed meaningful performance measures that reflect their objectives and activities, industry perspectives on IS performance measurement was studied. The objectives of the study were to understand the state of the practice in IS performance techniques for IS performance measurement; to gather approaches and measures of actual performance measures used in industry; and to report patterns, trends, and lessons learned about performance measurement to NASA/JSC. Examples of how some of the most forward looking companies are shaping their IS processes through measurement is provided. Thoughts on the presence of a life-cycle to performance measures development and a suggested taxonomy for performance measurements are included in the appendices.

  4. Dynamic Properties of Impulse Measuring Systems

    DEFF Research Database (Denmark)

    Pedersen, A.; Lausen, P.

    1971-01-01

    After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...... the interaction between the generator and the measuring circuit is of paramount importance to the voltage across the test object. Based on the measured values the determination of the applied voltage is considered....

  5. Airborne radiometric: Data evaluation and calibration

    International Nuclear Information System (INIS)

    Wendt, I.; Sengpiel, K.P.; Lenz, H.

    1984-01-01

    The airborne geophysical system of the BGR (German Geological Survey) consists of a helicopter equipped with an electromagnetic system with two transmittors and two receivers, a proton resonance magnetometer and a 16 L NaJ-crystal with four channel recording. All these data together with navigation data and flight altitude above ground are recorded each second on a nine track magnetic tape for further data evaluation. Different corrections have to be applied to the rough data such as: smoothing by means of a digital filter to reduce statistical noise, altitude correction, Compton-correction, and drift correction (cross-profile evaluation). Then the corrected measuring data are combined with the navigation data in order to be able to produce iso-line maps. The final results are presented as: line plots for U, Th, and K (and EM-data and magnetometer data); actual flight line plots; iso-line maps for U, Th, and K; iso-line maps for conductivity; depth of conducting layer; and magnetometry maps. The procedures of correction and evaluation of the above mentioned data as well as the calibration of the NaJ-detector in terms of ppm U, Th, and %K are dicussed in the paper. (author)

  6. Determination of molybdenite leaching degree by x-ray radiometric analysis

    International Nuclear Information System (INIS)

    Bibinov, S.A.; Gladyshev, V.P.; Yarmolik, A.S.; Kim, A.Ch.; Sokur, N.P.

    1984-01-01

    A express chemical X-ray radiometric method for determination of leaching degree and analysis of molybdenite products is developed. The method comprises chemical preparation and the following X-ray radiometric determination of molyb bdenum. Total duration of the analysis is 1-1.5 h. The best reproductivity is btained at X-ray radiometric analysis as compared with the chemical one

  7. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  8. A review of recent developments in radiometric calibration facilities

    International Nuclear Information System (INIS)

    Corner, B.

    1984-01-01

    Two new developments concerning radiometric calibration facilities are described in this presentation. The first is the result of the international programme for the monitoring and cross-reference of existing calibration facilities, sponsored by the International Atomic Energy Agency. The second development that is discussed concerns the accuracy of the stripping ratios derived at Pelindaba and has important implications for in situ assaying

  9. Assessment of Aero-radiometric Data of Southern Anambra Basin ...

    African Journals Online (AJOL)

    High-resolution aero-radiometric data from three radio-elements (Uranium, Potassium and Thorium) were used and processed independently to investigate the Southern Anambra basin for the prospect of producing radiogenic heat. The rock types in the study area were outlined while processing the elements in each rock ...

  10. PLEIADES-HR INNOVATIVE TECHNIQUES FOR RADIOMETRIC IMAGE QUALITY COMMISSIONING

    Directory of Open Access Journals (Sweden)

    G. Blanchet

    2012-07-01

    Full Text Available The first Pleiades-HR satellite, part of a constellation of two, has been launched on December 17, 2011. This satellite produces high resolution optical images. In order to achieve good image quality, Pleiades-HR should first undergo an important 6 month commissioning phase period. This phase consists in calibrating and assessing the radiometric and geometric image quality to offer the best images to end users. This new satellite has benefited from technology improvements in various fields which make it stand out from other Earth observation satellites. In particular, its best-in-class agility performance enables new calibration and assessment techniques. This paper is dedicated to presenting these innovative techniques that have been tested for the first time for the Pleiades- HR radiometric commissioning. Radiometric activities concern compression, absolute calibration, detector normalization, and refocusing operations, MTF (Modulation Transfer Function assessment, signal-to-noise ratio (SNR estimation, and tuning of the ground processing parameters. The radiometric performances of each activity are summarized in this paper.

  11. preliminary geological and radiometric studies of granitoids of zing

    African Journals Online (AJOL)

    DJFLEX

    laboratory of Geology Department, Federal University of. Technology, Yola where they were thin sectioned and petrographically studied using a high magnification polarising microscope. Canada balsam was used as the mounting medium. Radiometric survey was carried out using a McPhar model TC-33A portable gamma ...

  12. Radiometric Calibration of Osmi Imagery Using Solar Calibration

    Directory of Open Access Journals (Sweden)

    Dong-Han Lee

    2000-12-01

    Full Text Available OSMI (Ocean Scanning Multi-Spectral Imager raw image data (Level 0 were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function and the solar incidence angle (¥â,¥è of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  13. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    Science.gov (United States)

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  14. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  15. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  16. Entropy Measurement for Biometric Verification Systems.

    Science.gov (United States)

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.

  17. Evaluation of the MADAM waste measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-03-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software.

  18. Evaluation of the MADAM waste measurement system

    International Nuclear Information System (INIS)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-01-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software

  19. INFORMATION SECURITY IN MOBILE MODULAR MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. N. Tkhishev

    2017-01-01

    Full Text Available A special aspect of aircraft test is carrying out both flight evaluation and ground operation evaluation in a structure of flying aids and special tools equipment. The specific of flight and sea tests involve metering in offshore zone, which excludes the possibility of fixed geodetically related measuring tools. In this regard, the specific role is acquired by shipbased measurement systems, in particular the mobile modular measuring systems. Information processed in the mobile modular measurement systems is a critical resource having a high level of confidentiality. When carrying out their functions, it should be implemented a proper information control of the mobile modular measurement systems to ensure their protection from the risk of data leakage, modification or loss, i.e. to ensure a certain level of information security. Due to the specific of their application it is difficult to solve the problems of information security in such complexes. The intruder model, the threat model, the security requirements generated for fixed informatization objects are not applicable to mobile systems. It was concluded that the advanced mobile modular measuring systems designed for flight experiments monitoring and control should be created due to necessary information protection measures and means. The article contains a diagram of security requirements formation, starting with the data envelopment analysis and ending with the practical implementation. The information security probabilistic model applied to mobile modular measurement systems is developed. The list of current security threats based on the environment and specific of the mobile measurement system functioning is examined. The probabilistic model of the information security evaluation is given. The problems of vulnerabilities transformation of designed information system into the security targets with the subsequent formation of the functional and trust requirements list are examined.

  20. Stationary point of the radiometric control of cesium contamination of agricultural animals

    International Nuclear Information System (INIS)

    1997-01-01

    Stationary point of the radiometric control of cesium contamination of an agricultural animals. Is intended for vital measurements of the contents of radiocesium in muscular tissue of a cattle. Can be used on cattle-breeding farms, providing points, in meat factories and personal facilities. As a base means for accommodation of the control point the motor-car is used. Design of the car allows to automate operations on deployment of the control point on a place and translation of one to a transport mode. Limits of measured specific activity of cesium contamination of a cattle is up 5*10 -9 to 5*10 -6 Ci/kg. The basic error on the bottom limit of measurement at confidence coefficient 0,95 is no more than 30%. Measurement time for the bottom limit of determined specific activity is no more than 30 s. There is automatic measurement mode. Type of a power is 220 V, 50 Hz. Range of working temperatures is up -15 to +35 centigrade. Relative humidity is no more than 98% at 25 centigrade. External gamma background is till 0.035 mR/h. Time of installation and dismantle of stationary control point is no more than 1,5 hours. The direct radiometric control in divo allows to fulfil and to use biotechnological process of removing of cesium isotopes from body of animals for decrease of levels of radioactive contamination

  1. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  2. Radiometric determination of density of fresh shielding concrete (in situ) in the nuclear industry

    International Nuclear Information System (INIS)

    Honig, A.

    1985-01-01

    Methods of radiometric determination of density have been in recent years elaborated in detail and successfully. But on the market no instruments are available for measuring fresh concrete when it is possible to repair inhomogeneities, if any, even before hardening, and thus to guarantee safety of biological protection of nuclear reactors. The paper describes an analog and digital radiation density meter and their application in the inspection of radiation protection concrete walls. By repairing defective, insufficiently dense locations still in the course of concrete placement it is possible to attain a laboratory quality of the concrete even under on-site conditions

  3. THE FUTURE SPACEBORNE HYPERSPECTRAL IMAGER ENMAP: ITS IN-FLIGHT RADIOMETRIC AND GEOMETRIC CALIBRATION CONCEPT

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-07-01

    Full Text Available The German Aerospace Center DLR – namely the Earth Observation Center EOC and the German Space Operations Center GSOC – is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program. The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles, the improvements of the interior orientation (view vector and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other

  4. The Future Spaceborne Hyperspectral Imager Enmap: its In-Flight Radiometric and Geometric Calibration Concept

    Science.gov (United States)

    Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.

    2012-07-01

    The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations

  5. Device for continuous radiometric determination of the calcium and iron content in raw slurry for cement

    International Nuclear Information System (INIS)

    Wasilewska, M.; Ostachowicz, J.; Lankosz, M.; Molodynska, W.

    1975-01-01

    The characteristic iron and calcium-K series were excited using a Cd-109 isotope source. In order to determine the calcium and iron content in dry slurry, the Compton-effect scattered radiation of the Cd-109 source in the sample was used. A numerical process was worked out which allowed the elimination of the influence of changing contents of iron and water on the results of the calcium content determinations, and a device for continuous radiometric determination of calcium and iron in raw slurry was designed and constructed. The device was installed in the cement plant 'Przyjazn' under technical measuring conditions and its applicability was tested. (orig./LH) [de

  6. Titan Density Reconstruction Using Radiometric and Cassini Attitude Control Flight Data

    Science.gov (United States)

    Andrade, Luis G., Jr.; Burk, Thomas A.

    2015-01-01

    This paper compares three different methods of Titan atmospheric density reconstruction for the Titan 87 Cassini flyby. T87 was a unique flyby that provided independent Doppler radiometric measurements on the ground throughout the flyby including at Titan closest approach. At the same time, the onboard accelerometer provided an independent estimate of atmospheric drag force and density during the flyby. These results are compared with the normal method of reconstructing atmospheric density using thruster on-time and angular momentum accumulation. Differences between the estimates are analyzed and a possible explanation for the differences is evaluated.

  7. A radiometric technique for the measurement of adenylosuccinate lyase

    International Nuclear Information System (INIS)

    Park, K.W.; Tyagi, A.K.; Cooney, D.A.

    1980-01-01

    When radioactive adenylosuccinic acid (AMP-S) is metabolized to AMP and fumaric acid by the enzyme adenylosuccinate lyase (EC 4.3.2.2), a proton is released to the solvent as 3 H 2 O. This removal is believed to be stereospecifically identical to that catalyzed by the enzyme, L-aspartase, and therefore entails the loss of a proton from C-3 of the dicarboxylic acid moiety of the nucleotide. Advantage has been taken of this fact in the design of a facile assay for this enzyme. The assay permits the simultaneous estimation of the lyase activity in a large battery of samples; it is not interfered with by opalescent or proteinaceous suspensions; it is accurate and outstandingly sensitive. (Auth.)

  8. Radiometric methods in the measurement of particle-laden flows

    Czech Academy of Sciences Publication Activity Database

    Zych, M.; Hanus, R.; Vlasák, Pavel; Jaszczur, M.; Petryka, L.

    2017-01-01

    Roč. 318, August (2017), s. 491-500 ISSN 0032-5910 Institutional support: RVO:67985874 Keywords : particle-laden flow * radiotracer * gamma absorption * cross-correlation * polymetallic nodules Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.942, year: 2016

  9. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  10. Measurement and evaluation systems for NPP commissioning

    International Nuclear Information System (INIS)

    Elko, Marek

    2006-01-01

    Standard core monitoring and information systems are designed with an emphasis on normal operation of nuclear power plant. Their purpose is to provide necessary support for reactor operators and other operating personnel during the fuel cycle. After each fuel reloading, and to the larger extent during the plant commissioning, a variety of start-up tests need to be carried out and evaluated. Sampling periods, accuracy and communication delays of standard systems are not always suitable for test performance and evaluation. For technical and safety reasons, the access to standard monitoring and information systems is very limited. Non-Standard Measurement and Evaluation Systems are highly specialized devices designed with an emphasis on start-up tests performance and evaluation. They are capable of high frequency sampling, processing and communication of hundreds of technological signals with required accuracy and low communication delay. All technological signals needed for the test performance and evaluation are collected from various systems, concentrated in one system and fully accessible to a test leader, a reactor physicist or other users. In addition, Non-Standard Measurement and Evaluation Systems can perform other tasks like data storing and presentation, data distribution to other systems or external computers via network, reactivity calculations, etc. Structure of such systems can vary, but generally it is a mixture of two basic concepts: a mobile system and a stationary system. A basic description of hardware structure and software equipment of Non-Standard Measurement and Evaluation Systems is given in the paper (Authors)

  11. A transuranic aerosol measurement system: Preliminary results

    International Nuclear Information System (INIS)

    Prevo, C.T.; Kaifer, R.C.; Rueppel, D.W.; Delvasto, R.M.; Biermann, A.H.; Phelps, P.L.

    1986-10-01

    We have completed the design, fabrication, and assembly of a computer-based prototype system for the measurement of transuranic aerosols in the workplace and environment. This system (called WOTAMS for Workplace Transuranic Aerosol Measurement System) incorporates two detectors: (1) an in-line solid-state alpha detector that sends out an alarm the moment a transuranic release occurs, and (2) an in-vacuum detector that increases off-line-analysis sensitivity. The in-line sensitivity of the system is better than 5.0 MPC-h, and the in-vacuum sensitivity exceeds 0.5 MPC-h. 5 refs., 8 figs., 1 tab

  12. Analysis of measurement system as the mechatronics system

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V [Institute of Geodesy, Vilnius Gediminas Technical University, Vilnius, Lithuania, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Grattan, K T V [School of Engineering and Mathematical Sciences Electrical, Electronic and Information Eng, City University, Northampton Square, London EC1V 0HB (United Kingdom); Rybokas, M [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Brucas, D, E-mail: gi@ap.vtu.l, E-mail: k.t.v.grattan@city.ac.u, E-mail: MRybokas@gama.l, E-mail: domka@ktv.l, E-mail: vg@ai.vgtu.l [Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Vilnius, Lithuania Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania)

    2010-07-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  13. Analysis of measurement system as the mechatronics system

    International Nuclear Information System (INIS)

    Giniotis, V; Grattan, K T V; Rybokas, M; Brucas, D

    2010-01-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  14. Measurement system as a subsystem of the quality management system

    Directory of Open Access Journals (Sweden)

    Ľubica Floreková

    2006-12-01

    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  15. A system for pulse Hall effect measurements

    International Nuclear Information System (INIS)

    Orzechowski, T.; Kupczak, R.

    1975-01-01

    Measuring system for fast Hall-voltage changes in an n-type germanium sample irradiated at liquid nitrogen temperature with a high-energy electron-beam from the Van de Graaff accelerator is described. (author)

  16. A radiometric mass flow probe for determining the screen overflow of potato harvesters

    International Nuclear Information System (INIS)

    Glaeser, M.

    1976-01-01

    A radiometric conveyor balance based on the principle of gamma attenuation is described. Being independent on the electric network, it is suitable for nonstationary operation. Cesium 137 is used as radiation source. Detection is performed through a special system of halogen and ordinary counters. First tests were made under field conditions in order to determine the passing mass (potatoes and soil) and to find out the sieving capacity of the potato harvesters. The maximum throughput is about 50 tons per hour. Potatoes and soil up to about 2 tons may be weighed by means of this balance with a relative error of +- 3.5 %. (author)

  17. Telemetric measurement system of beehive environment conditions

    Science.gov (United States)

    Walendziuk, Wojciech; Sawicki, Aleksander

    2014-11-01

    This work presents a measurement system of beehive environmental conditions. The purpose of the device is to perform measurements of parameters such as ambient temperature, atmospheric pressure, internal temperature, humidity and sound level. The measured values were transferred to the MySQL database, which is located on an external server, with the use of GPRS protocol. A website presents the measurement data in the form of tables and graphs. The study also shows exemplary results of environmental conditions measurements recorded in the beehive by hour cycle.

  18. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  19. Automated statistical modeling of analytical measurement systems

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1992-01-01

    The statistical modeling of analytical measurement systems at the Idaho Chemical Processing Plant (ICPP) has been completely automated through computer software. The statistical modeling of analytical measurement systems is one part of a complete quality control program used by the Remote Analytical Laboratory (RAL) at the ICPP. The quality control program is an integration of automated data input, measurement system calibration, database management, and statistical process control. The quality control program and statistical modeling program meet the guidelines set forth by the American Society for Testing Materials and American National Standards Institute. A statistical model is a set of mathematical equations describing any systematic bias inherent in a measurement system and the precision of a measurement system. A statistical model is developed from data generated from the analysis of control standards. Control standards are samples which are made up at precise known levels by an independent laboratory and submitted to the RAL. The RAL analysts who process control standards do not know the values of those control standards. The object behind statistical modeling is to describe real process samples in terms of their bias and precision and, to verify that a measurement system is operating satisfactorily. The processing of control standards gives us this ability

  20. From SED HI concept to Pleiades FM detection unit measurements

    Science.gov (United States)

    Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex

    2017-11-01

    The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.

  1. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Y. Zybtsev

    2011-01-01

    Full Text Available The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed as well as the methods of metrological checking of measuring system canals.

  2. Measurement trends for future safeguards systems

    International Nuclear Information System (INIS)

    Baloga, S.M.; Hakkila, E.A.

    1980-01-01

    Safeguards for future commercial-scale nuclear facilities may employ three materials control and accounting concepts: classical accounting, dynamic materials balancing, and independent verification of inventories and materials balances. Typical measurement needs associated with the implementation of these concepts at high-throughput facilities are discussed. Promising measurement methods for meeting these needs are described and recent experience is cited. General directions and considerations for meeting advanced safeguards systems needs through measurement technology development over the next decade are presented

  3. CITYkeys Smart city performance measurement system

    NARCIS (Netherlands)

    Huovila, A.; Airaksinen, M.; Pinto-Seppa, I.; Piira, K.; Bosch, P.R.; Penttinen, T.; Neumann, H.M.; Kontinakis, N.

    2017-01-01

    Cities are tackling their economic, social and environmental challenges through smart city solutions. To demonstrate that these solutions achieve the desired impact, an indicator-based assessment system is needed. This paper presents the process of developing CITYkeys performance measurement system

  4. Telerobotic system performance measurement - Motivation and methods

    Science.gov (United States)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  5. Internal Performance Measurement Systems: Problems and Solutions

    DEFF Research Database (Denmark)

    Jakobsen, Morten; Mitchell, Falconer; Nørreklit, Hanne

    2010-01-01

    This article pursues two aims: to identify problems and dangers related to the operational use of internal performance measurement systems of the Balanced Scorecard (BSC) type and to provide some guidance on how performance measurement systems may be designed to overcome these problems....... The analysis uses and extends N rreklit's (2000) critique of the BSC by applying the concepts developed therein to contemporary research on the BSC and to the development of practice in performance measurement. The analysis is of relevance for many companies in the Asia-Pacific area as an increasing numbers...

  6. APPROXIMATIONS TO PERFORMANCE MEASURES IN QUEUING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kambo, N. S.

    2012-11-01

    Full Text Available Approximations to various performance measures in queuing systems have received considerable attention because these measures have wide applicability. In this paper we propose two methods to approximate the queuing characteristics of a GI/M/1 system. The first method is non-parametric in nature, using only the first three moments of the arrival distribution. The second method treads the known path of approximating the arrival distribution by a mixture of two exponential distributions by matching the first three moments. Numerical examples and optimal analysis of performance measures of GI/M/1 queues are provided to illustrate the efficacy of the methods, and are compared with benchmark approximations.

  7. Computerized system for measuring cerebral metabolism

    International Nuclear Information System (INIS)

    McGlone, J.S.; Hibbard, L.S.; Hawkins, R.A.; Kasturi, R.

    1987-01-01

    A computerized stereotactic measurement system for evaluating rat brain metabolism was developed to utilize the large amount of data generated by quantitative autoradiography. Conventional methods of measurement only analyze a small percent of these data because these methods are limited by instrument design and the subjectiveness of the investigator. However, a computerized system allows digital images to be analyzed by placing data at their appropriate three-dimensional stereotactic coordinates. The system automatically registers experimental data to a standard three-dimensional image using alignment, scaling, and matching operations. Metabolic activity in different neuronal structures is then measured by generating digital masks and superimposing them on to experimental data. Several experimental data sets were evaluated and it was noticed that the structures measured by the computerized system, had in general, lower metabolic activity than manual measurements had indicated. This was expected because the computerized system measured the structure over its volume while the manual readings were taken from the most active metabolic area of a particular structure

  8. NKS MOMS. Final report. [Mobile Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)

    2013-02-15

    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  9. Investigations with a simplified method for radiometric determination of vitamin B12 in body fluids and feeding stuffs

    International Nuclear Information System (INIS)

    Menke, K.H.; Kohlberger, G.; Koenemund, A.

    1979-01-01

    A modified method for radiometrical determination of vitamin B 12 is described, which in difference to the known methods is based on measurement of free B 12 after absorption to albumin-coated charcoal instead of measurement of intrinsic factor B 12 -complex. The conditions for extraction from serum, milk, rumen-liquor and urine have been investigated and the effect of pH on IF-B 12 -binding in presence of these body fluids examined. Parallel microbiological determinations (O.m.- and L.1.-test) were in good correlation (r = 0,93-0,97) to radiometrically determined B 12 -contents in milk and rumen-liquor, but not to that in serum of dairy cows (r = 0,54-0,82). The analytical procedures are given in detail. (orig.) [de

  10. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  11. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS)

    International Nuclear Information System (INIS)

    Steffen, Matthias; Leonhardt, Steffen; Heimann, Konrad; Bernstein, Nina

    2008-01-01

    Non-contact heart and lung activity monitoring would be a desirable supplement to conventional monitoring techniques. Based on the potential of non-contact magnetic induction measurements, requirements for an adequate monitoring system were estimated. This formed the basis for the development of the presented extendable multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Special focus was given to the dynamic behaviour and simultaneous multichannel measurements, so that the system allows for up to 14 receiver coils working simultaneously at 6 excitation frequencies. Moreover, a real-time software concept for online signal processing visualization in combination with a fast software demodulation is presented. Finally, first steps towards a clinical application are pointed out and technical performance as well as first in vivo measurements are presented. This paper covers some aspects previously presented in Steffen and Leonhardt (2007 Proc. 13th Int. Conf. on Electrical Bioimpedance and the 8th Conf. on Electrical Impedance Tomography, Graz 2007)

  12. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    Science.gov (United States)

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  13. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  14. Results from the radiometric validation of Sentinel-3 optical sensors using natural targets

    Science.gov (United States)

    Fougnie, Bertrand; Desjardins, Camille; Besson, Bruno; Bruniquel, Véronique; Meskini, Naceur; Nieke, Jens; Bouvet, Marc

    2016-09-01

    The recently launched SENTINEL-3 mission measures sea surface topography, sea/land surface temperature, and ocean/land surface colour with high accuracy. The mission provides data continuity with the ENVISAT mission through acquisitions by multiple sensing instruments. Two of them, OLCI (Ocean and Land Colour Imager) and SLSTR (Sea and Land Surface Temperature Radiometer) are optical sensors designed to provide continuity with Envisat's MERIS and AATSR instruments. During the commissioning, in-orbit calibration and validation activities are conducted. Instruments are in-flight calibrated and characterized primarily using on-board devices which include diffusers and black body. Afterward, vicarious calibration methods are used in order to validate the OLCI and SLSTR radiometry for the reflective bands. The calibration can be checked over dedicated natural targets such as Rayleigh scattering, sunglint, desert sites, Antarctica, and tentatively deep convective clouds. Tools have been developed and/or adapted (S3ETRAC, MUSCLE) to extract and process Sentinel-3 data. Based on these matchups, it is possible to provide an accurate checking of many radiometric aspects such as the absolute and interband calibrations, the trending correction, the calibration consistency within the field-of-view, and more generally this will provide an evaluation of the radiometric consistency for various type of targets. Another important aspect will be the checking of cross-calibration between many other instruments such as MERIS and AATSR (bridge between ENVISAT and Sentinel-3), MODIS (bridge to the GSICS radiometric standard), as well as Sentinel-2 (bridge between Sentinel missions). The early results, based on the available OLCI and SLSTR data, will be presented and discussed.

  15. A Critique of Health System Performance Measurement.

    Science.gov (United States)

    Lynch, Thomas

    2015-01-01

    Health system performance measurement is a ubiquitous phenomenon. Many authors have identified multiple methodological and substantive problems with performance measurement practices. Despite the validity of these criticisms and their cross-national character, the practice of health system performance measurement persists. Theodore Marmor suggests that performance measurement invokes an "incantatory response" wrapped within "linguistic muddle." In this article, I expand upon Marmor's insights using Pierre Bourdieu's theoretical framework to suggest that, far from an aberration, the "linguistic muddle" identified by Marmor is an indicator of a broad struggle about the representation and classification of public health services as a public good. I present a case study of performance measurement from Alberta, Canada, examining how this representational struggle occurs and what the stakes are. © The Author(s) 2015.

  16. Radioactive Contamination Estimation from micro-copters or helicopter Airborne survey: Simulation and real measurements

    International Nuclear Information System (INIS)

    Halevy, I.; Ghelman, M.; Yehuda-Zada, Y.; Manor, A.; Dadon, S.; Sharon, A.; Yaar, I.

    2014-01-01

    One of the main advantages of acquiring aero-radiometric measurements lies in the high collection rate of data over large areas and rough terrain. Typical aero-radiometric system records and saves gamma ray spectrum, correlated with the GPS derived location information in regular time intervals of one to two seconds. Such data can be used to locate radiation anomalies on the ground, map ground contamination or track a radioactive airborne plume. Acquiring spectral data of this type allows separation of natural radioactivity from that of man-made sources and identification of specific isotopes, natural or man-made

  17. Radioactive Contamination Estimation from Micro-Copters or Helicopter Airborne Survey: Simulation and Real Measurements

    International Nuclear Information System (INIS)

    Halevy, I.; Ghelman, M.; Yehuda-Zada, Y.; Manor, A.; Sharon, A.; Yaar, I.

    2014-01-01

    One of the main advantages of acquiring aero-radiometric measurements lies in the high collection rate of data over large areas and rough terrain. Typical aero-radiometric system records and saves gamma ray spectrum, correlated with the GPS derived location information in regular time intervals of one to two seconds. Such data can be used to locate radiation anomalies on the ground, map ground contamination or track a radioactive airborne plume. Acquiring spectral data of this type allows separation of natural radioactivity from that of man-made sources and identification of specific isotopes, natural or man-made

  18. Procedure and device for the radiometric determination of the quantity, quality and foreign substances in moved bulk materials

    International Nuclear Information System (INIS)

    Krone, C.; Jentsch, G.; Berger, J.

    1987-01-01

    This invention has to do with a procedure and device for the simultaneous radiometric determination of quantity, quality and foreign substances in moved bulk materials in particular lignite at one measuring point. The section of the bulk material discharge is transmitted by nuclides for soft and hard gamma radiation in pairs. The pulse rates are registered in pairs by means of detectors and evaluated in real-time operation

  19. Detection of corrosion by a radiometric technique

    International Nuclear Information System (INIS)

    Charlton, J.S.; Ross, J.F.

    1975-01-01

    A method is described for the detection and measurement of corrosion in metal tube bundles using a radioisotope technique. The method is stated to be accurate and quick, and dismantling is unnecessary. A radioactive source is inserted into one of the tubes of the bundle and radiation detectors are inserted into the remainder of the tubes, which may be up to six in number with the apparatus described. The radiation absorption by the walls of each pair of tubes is compared with a standard measurement representing a known thickness of the material of the tubes. Simultaneous measurements may be made. Suitable apparatus is described in detail. (U.K.)

  20. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    Science.gov (United States)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  1. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  2. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  3. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  4. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  5. A study on the radiometric method for evaluating element migration from plastic packagings to its contents

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez

    2008-01-01

    Over the past few years, problems related to food contamination by substances or elements that can be a risk to human health have became a concern, not only to government authorities, but to the general population as well. Within this context, plastic packaging can constitute a source of food contamination since plastic manufacturing processes involve the use of catalysts and different types of additives that may contain toxic elements. When food comes into contact with this packaging, components of the package may migrate to the food. In order to control the material used as food packaging, the National Health Surveillance Agency (ANVISA) in Brazil, has established boundary values of migrant substances and procedures to determine migration from plastic packagings to food. In this study the radiometric method was evaluated for element migration determination from plastic packaging to food simulating or to the food itself. This radiometric method consisted in irradiating plastic packaging samples with a thermal neutron flux from the IEA-R1 nuclear research reactor in order to produce radionuclides of elements present in the packagings. The irradiated plastic was then exposed to food simulant or food for element migration. Gamma ray spectrometry was used to measure radioactivity in the simulant or food in order to quantify the migration. The food simulating types and experimental conditions were established according to the ANVISA regulations. Element migration was studied for plastic packaging used for soft drinks, drinking water, milk, dairy products, juices and fatty foods. In the instrumental neutron activation analysis of these packagings the presence of As, Cd, Cr, Co and Sb II was verified. Results obtained from the migration experiments by the radiometric method indicated that Cd, Co, Cr and Sb present in these plastics migrated to the simulant or to the food. In some packagings, the migration of only some of these elements was observed. In these cases the

  6. Detection and recovery of mycobacteria by a radiometric procedure

    International Nuclear Information System (INIS)

    Takahashi, H.; Foster, V.

    1983-01-01

    During a 6-month period, 5,375 clinical specimens were cultured on Middlebrook-Cohn 7H10 medium, on Lowenstein-Jensen medium, and in Middlebrook 7H12 medium containing [ 14 C]palmitic acid. More mycobacteria were recovered when all three media were used than when either the conventional method with 7H10 agar and Lowenstein-Jensen slants or the radiometric method with 7H12 broth was used alone

  7. Processing data collected from radiometric experiments by multivariate technique

    International Nuclear Information System (INIS)

    Urbanski, P.; Kowalska, E.; Machaj, B.; Jakowiuk, A.

    2005-01-01

    Multivariate techniques applied for processing data collected from radiometric experiments can provide more efficient extraction of the information contained in the spectra. Several techniques are considered: (i) multivariate calibration using Partial Least Square Regression and Artificial Neural Network, (ii) standardization of the spectra, (iii) smoothing of collected spectra were autocorrelation function and bootstrap were used for the assessment of the processed data, (iv) image processing using Principal Component Analysis. Application of these techniques is illustrated on examples of some industrial applications. (author)

  8. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  9. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    International Nuclear Information System (INIS)

    Sperling, M.; Shreve, D.C.

    1978-01-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code

  10. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, M.; Shreve, D.C.

    1978-12-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code.

  11. Differential Measurement Periodontal Structures Mapping System

    Science.gov (United States)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  12. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  13. Multielemental X-ray radiometric analysis of ferromanganese concretions

    International Nuclear Information System (INIS)

    Metelev, A.Yu.; Grigor'ev, A.I.; Rakita, K.A.; Mamaenko, M.V.; Ivanenko, V.V.

    1994-01-01

    Ferromanganese concretions are promising mineral resources of the ocean. Most often, they are analyzed by atomic-absorption, spectra, X-ray spectral, neutron-activation, and X-ray radiometric methods. Note that X-ray radiometric analysis (XRRA) allows the sufficiently rapid determination of a great number of elements in ferromanganese concretions. The possibility of using XRRA with saturated and thin layers was shown; however, the data on the precision and accuracy of the technique was not given. The purpose of this study is to evaluate the basic performance characteristics of the multielemental X-ray radiometric analysis of ferromanganese concretions (Pacific Ocean). Determinations for K,Ca and Ti content were made using a 55 Fe source and for Mn, Fe, Ni, Cu, Zn, Pb, Sr, Y, Zr, Nb, and Mo contents by using a 109 Cd source. The precision and accuracy of the method was investigated by using reference concretions; it was found the confidence intervals overlap for all of the elements except Ca and Pb. The relative standard deviation was 1-5%, indicating the high precision of the method. The described technique is successfully used on research vessels of the Far East Division of the Russian Academy of Sciences and in South Pacific Ocean geological expeditions of PO open-quotes Dal'morgeologiyaclose quotes

  14. A portable nondestructive assay measurement control system

    International Nuclear Information System (INIS)

    Palmer, M.E.

    1984-01-01

    Portable nondestructive assay (NDA) of plutonium processing hoods, solvent extraction columns, glove boxes, filters, and other items is required for both nuclear materials accountability and criticality control purposes. The Plutonium Finishing Plant has hundreds of such items that require routine portable NDA measurement. Previous recordkeeping of NDA measurements consisted of boxes of papers containing results and notebooks containing notes for each item to be measured. If the notes for any item were lost, new measurement parameters had to be calculated for that item. As a result, subsequent measurements could no longer be directly compared with previous results for that item due to possible changes in measurement parameters. The new portable NDA management system keeps all the necessary information in a computerized data base. Technicians are provided with a computer-generated drawing of each item to be measured, which also contains comments, measurement points, measurement parameters, and a form for filling in the raw data. After the measurements are made, the technician uses the computer to calculate and print out the results

  15. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  16. Analysis of L-band radiometric data over the Mediterranean Sea from the SMOS Validation Rehearsal campaign

    Science.gov (United States)

    Gabarro, C.; Talone, M.; Font, J.

    2009-04-01

    L-band radiometric data obtained with a real aperture airborne radiometer during SMOS validation Rehearsal campaign (April-May 2008) over the NW Mediterranean Sea have been analysed. EMIRAD, a fully polarimetric radiometer developed by the Technical University of Denmark operating in the 1400 - 1427 MHz band, was mounted on board a Skyvan aircraft from the Helsinki University of Technology. Two antennas were used: one facing nadir with 37.6° full aperture at half-power; and one placed towards the rear of the aircraft at 40° zenith angle with 30.6° full aperture at half-power. Two transit flights over the sea from Marseille to Valencia (19 April 2008) and from Valencia to Marseille (3 May 2008) have been studied. Two meteorological and oceanographic buoys were moored 40 Km offshore in front of Tarragona and were overflown during these transits. Additionally, information on sea surface temperature (SST) and sea surface salinity (SSS) was obtained from operational model outputs (Mediterranean Forecasting System - Mediterranean Operational Oceanography Network) and wind speed from QuikSCAT. Measured brightness temperatures (Tb) have been compared with modelled Tb, using a semi-empirical emissivity model: Klein and Swift model is used to define the dielectric constant and Hollinger model for the rough sea emissivity contribution. Comparisons show that in general measured Tb variability fits with modelled variability, although a bias is observed in the aft V channel.

  17. Intelligent nuclear measuring system for multi detectors

    International Nuclear Information System (INIS)

    Gujgiczer, A.; Solymosi, J.; Zsille, O.; Illes, Z.; Barnabas, I.; Ranga, T.; Lakatos, T.

    1998-01-01

    The measuring system can be used for recording gamma spectra and/or experimental beta-dispersion. Several environmental samples can be examined simultaneously, and the instrument can be used in the laboratory or in the field. Low cost multichannel analyzers using NaI(Tl) or plastic scintillators are interfaced to an IBM PC/AT, which controls the measurement, data processing, and data transmission and archiving. (M.D.)

  18. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  19. An USB-based time measurement system

    International Nuclear Information System (INIS)

    Qin Xi; Liu Shubin; An Qi

    2010-01-01

    In this paper,we report the electronics of a timing measurement system of PTB(portable TDC board), which is a handy tool based on USB interface, customized for high precision time measurements without any crates. The time digitization is based on the High Performance TDC Chip (HPTDC). The real-time compensation for HPTDC outputs and the USB master logic are implemented in an ALTERA's Cyclone FPGA. The architecture design and logic design are described in detail. Test of the system showed a time resolution of 13.3 ps. (authors)

  20. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  1. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    Kilgore, J.J.; Tripp, H.A.; Hunt, C.L. Jr.

    1991-01-01

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  2. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  3. Measurement system for SSRF pulsed magnets

    International Nuclear Information System (INIS)

    Peng Chengcheng; Gu Ming; Liu Bo; Ouyang Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF. The system consists of magnetic probes, analog active integrator, oscilloscope, stepper motor and a controller. An application program based on LabVIEW has been developed as main control unit. After the magnetic field mapping of a septum magnet prototype, it is verified that the test results accord with the results of theoretical calculation and computer simulation. (authors)

  4. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  5. Measurement techniques of LC display systems

    Science.gov (United States)

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  6. Characteristics of a simple blackbody measurement system

    International Nuclear Information System (INIS)

    Fu, C.; Anger, N.H.; Kaehms, R.; Jaeger, K.B.

    1988-01-01

    An axially symmetric blackbody (BB) measurement system with a circular aperture and a circular detector is considered. The BB can be of a right circular conical shape, a right cylindrical shape, or a combination of these two shapes. Assuming that the BB is ideal, the power received by the detector is calculated. 8 references

  7. ASUPT Automated Objective Performance Measurement System.

    Science.gov (United States)

    Waag, Wayne L.; And Others

    To realize its full research potential, a need exists for the development of an automated objective pilot performance evaluation system for use in the Advanced Simulation in Undergraduate Pilot Training (ASUPT) facility. The present report documents the approach taken for the development of performance measures and also presents data collected…

  8. Distance Measures for Information System Reengineering

    NARCIS (Netherlands)

    Poels, G.; Viaene, S.; Dedene, G.; Wangler, B.; Bergman, L.

    2000-01-01

    We present an approach to assess the magnitude and impact of information system reengineering caused by business process change. This approach is based on two concepts: object-oriented business modeling and distance measurement. The former concept is used to visualize changes in the business layer

  9. SIMS: The SLAC Industrial Measurement System

    International Nuclear Information System (INIS)

    Bell, B.

    1990-01-01

    Kern was the first survey company to market an Industrial Measurement System when it released ECDS (Electronic Coordinate Determination System) in the mid-1980s. Originally written for the PDP-11, a version was later released for the PC (ECDS-PC). SLAC purchased this system in 1986 and immediately began to use it for the alignment of the SLC (Stanford Linear Collider). Although ECDS enabled SLAC to perform tasks with a speed never before achieved, they experienced limitations in the software. Since Kern proved unresponsive and SLAC was unable to purchase the source code for any amount of money, they set about writing their own portions of code. They first wrote a system of menus tailored for their specific alignment tasks, and disabled much of the ECDS menu structure. Due to dissatisfaction with the ECDS bundle adjustment program, they wrote their own bundle adjustment in 1988. A further step towarad having their own complete IMS was to develop a data capture program, a task which has been underway since the beginning of this year. They do not yet have data analysis features that are fully integrated, but they do have stand-alone packages that have been written at SLAC. When they first started tinkering with ECDS there was no intention of developing a complete system, but they now have all the elements of such a system - SIMS, the SLAC Industrial Measurement System

  10. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  11. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  12. Ten years of radiometric monitoring in water samples in Uruguay potables plants

    International Nuclear Information System (INIS)

    Perruni, P.

    2000-01-01

    The work exposes the summary of having been radiometrics obtained during the last 10 years in several water treatment plants of the national territory, with the purpose of determining if in the total dose to the one that this exposed one naturally the population of the country, is important the contribution of polluting radioactives in the drinkable water, in function of the geographical area and the time of the year. The investigation is framed inside the Program of Control Radiometrics of Products of Fission in waters, floors, foods and aerosols of the Uruguay developed by the Radiochemistry Department, of the Nuclear Research Center, Montevideo (UY) The samples of water filter, they process and they analyze according to laboratory protocols, had duplicated by each plant, parallel with radio-active, white bottom measures and standards. The results net average obtained for each factory, gave below the one it limits of detection: 2 BQ/Kg for geometry Marinelli and 0.02 BQ/g for plane geometry, with 99,3% of dependability (standard 3 deviations), very below the maximum values admitted by International Organisms (WHO, FAO, ICRP) [es

  13. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  14. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    Science.gov (United States)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  15. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  16. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  17. System for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    Gross, V.

    1980-01-01

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs

  18. Automated System of Area Radiation Measurement (ASARM)

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2013-10-01

    The realized activities in nuclear facilities involve the determination of the presence of ionizing radiation fields in the workspaces. The instruments designed to detect and to measure these radiation fields provide useful information (specific type of radiation, intensity, etc.) to take the appropriate radiological protection measures, with the purpose of reducing to the minimum the workers exposition and the people in general. The radiological protection program of Reactor TRIGA Mark III contains the instructions and procedures to implement a periodic radiological monitoring, surveillance, rising of contamination levels, type and number of the instruments required for the radiological monitoring of areas and personal. The ana logical monitoring system model Rms II used to detect and measuring exposition speed and neutron radiation fields in several areas of the installation, provides the information in a logarithmic scale measurer of 4 or 5 decades located in a shelf where the previously mentioned measurement channels are centralized. Also inside the reactor monitoring system are two monitors of radioactive material concentration in the air: The particles continuous monitor and the gaseous effluents monitor which present the referred information of the diverse detectors through ana logical readers. These monitors when operating with an ana logical indication does not present the possibility to generate historical files electronically of each monitor previously mentioned neither to generate visual and audible indications of the alarms. This work presents the Automated System of Area Radiation Measurement which potentiated the functionality of the area monitors for gamma and neutron radiation, as well as of the particles continuous monitor and the gaseous effluents of reactor TRIGA Mark III, when being developed a computer system that captures in real time the information of all the monitors, generating this way an electronic binnacle, a visual and audible alarm

  19. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  20. Measuring the Balance Control System – Review

    Directory of Open Access Journals (Sweden)

    Jitka Jančová

    2008-01-01

    Full Text Available Past studies of postural control during standing have employed wide range of procedures including the outcome measures use to quantify postural control, the duration of the sample collected, sampling frequency and methods for data processing. Due to these differences there remains little, if any, common grounds for comparisons between studies to establish a concrete understanding of the features and bouns which characterize normal healthy postural control. This article deals with terms such as reliability and repeatability of stabilometric measurements, stabilometric data quantification and analysis. To clear up those terms is suggested, by the author of this paper, very important. The stabilometric measurements remain, nevertheless, different when dealing with aging adults. Though, we notes some alterations of the aging systems, this article is not entirely dedicated to the seniors population. Measurements of COP and technical notes remain the main axis of present paper.

  1. Modern systems for environmental radioactivity measurements

    International Nuclear Information System (INIS)

    Cimpean, A.; Borodeanu, C.

    1995-01-01

    The system for environmental radioactivity measurements with automatic data transmission represents a better solution for nuclear safety assurance. The 'intelligent probe' will be of real use for surveying the environmental radioactivity. The probes work independently. They measure the dose rate and store the data in their internal memory. Many such probes can be spread all over a large area. They are able to measure dose rate from the background level up to high catastrophic levels. A central computer 'asks' periodically the probes to send their stored data. This computer stores the data from many probes over a long time. It can show in 'windows' manner the dose rate from any probe (either in a numerical or graphical way), the position on a map of every probe and the corresponding results of the measurements. In can alert, if an alarm threshold is crossed or it can print on a printer the data for any single probe. (author)

  2. The SPS Individual Bunch Measurement System

    CERN Document Server

    Guerrero, A; Jones, R; Savioz, J J

    2001-01-01

    The Individual Bunch Measurement System (IBMS) allows the intensity of each bunch in an LHC batch to be the measured both in the PS to SPS transfer lines and in the SPS ring itself. The method is vased on measuring the peak and valley of the analogue signal supplied by a Fast Beam Current Transformer at a frequency of 40 MHz. A 12 bit acquisition system is required to obtain a 1% resolution for the intensity range of 5X10`9 to 1.7X10`11 protons per bunch, corresponding to the pilot and ultimate LHC bunch intensities. The acquisition selection and external trigger adjustment system is driven by the 200MHz RF, which is distributed using a single-mode fibre-optic link. A local oscilloscope, controlled via a GPIB interface, allows the remote adjustment of the timing signals. The low-level software consists of a real-time task and a communication server run on a VME Power PC, which is accessed using a graphical user interface. This paper describes the system as a whole and presents some recent uses and results fro...

  3. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  4. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  5. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  6. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  7. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  8. Radiometric analysis of Chinese commercial granites

    International Nuclear Information System (INIS)

    Xinwei, L.; Lingqing, W.; Xiaodan, J.

    2006-01-01

    Due to the widespread use of granites as building and ornamental materials, measurements of 226 Ra, 232 Th and 40 K activities in commercial granites have been carried out using a NaI(Tl) γ-ray spectrometer with a matrix-inversion-based spectral stripping technique. The concentrations of 226 Ra, 232 Th and 40 K in Chinese commercial granite range from 14.5 to 204.7 Bq x kg -1 , 16.7 to 186.7 Bq x kg -1 and 185.7 to 1745.6 Bq x kg -1 , respectively. The mean values of the activity concentrations of 226 Ra, 232 Th and 40 K in red and pink commercial granites are all higher than those in black and gray commercial ones. The radium equivalent activity (Ra eq ), the external hazard index (H ex ), the internal hazard index (H in ) and the annual gonadal dose equivalent (AGDE) were also calculated and compared to the international recommended values. Six types of red commercial granites (CBR, MLR, QXR, PBR, JXR, LQR, YDR and TSR) of China do not satisfy the universal standards. (author)

  9. A study of elemental migration from poly(ethylene terephthalate) of food packagings to simulated solutions by radiometric method

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez; Saki, Mitiko; Silva, Leonardo G.A.

    2007-01-01

    Brazilian plastic production for food packagings, in recent years, has grown in the same proportion as food consumption. Considering that the plastic manufacturing involves catalytic processes and the use of additives, when the foods are in direct contact with these materials, the components present in plastics may migrate to the food. The Brazilian Health Surveillance Agency (ANVISA) has established boundary-values of migrants as well as procedures to evaluate migration of elements and substances from plastic packaging to food. In this study elemental composition of poly (ethylene terephthalate) - PET - packaging and results of elemental migration were obtained. Instrumental Neutron Activation Analysis (INAA) was used to determine elemental concentrations in PET packagings and the radiometric method was applied for elemental migration determination. This radiometric method consisted of irradiating the PET samples with neutrons, followed by migration exposition and radioactivity measurement in food-simulated solution. Experimental conditions used for migration were 10 days exposure period at 40 deg C. Migration was evaluated for soft drink, juice and water PET packaging. The analytical results indicated that PET packagings contain Co and Sb and those elements are transferred to the simulated solutions. However, these migration results were lower than the maximum tolerance values established by ANVISA. The migration detection limits also indicated high sensitivity of the radiometric method. (author)

  10. Thermodynamics of Weakly Measured Quantum Systems.

    Science.gov (United States)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  11. Noncontacting Optical Measurement And Inspection Systems

    Science.gov (United States)

    Asher, Jeffrey A.; Jackson, Robert L.

    1986-10-01

    Product inspection continues to play a growing role in the improvement of quality and reduction of scrap. Recent emphasis on precision measurements and in-process inspection have been a driving force for the development of noncontacting sensors. Noncontacting sensors can provide long term, unattended use due to the lack of sensor wear. Further, in applications where, sensor contact can damage or geometrically change the part to be measured or inspected, noncontacting sensors are the only technical approach available. MTI is involved in the development and sale of noncontacting sensors and custom inspection systems. This paper will review the recent advances in noncontacting sensor development. Machine vision and fiber optics sensor systems are finding a wide variety of industrial inspection applications. This paper will provide detailed examples of several state-of-the-art applications for these noncontacting sensors.

  12. Accelerator physics and radiometric properties of superconducting wavelength shifters; Beschleunigerphysik und radiometrische Eigenschaften supraleitender Wellenlaengenschieber

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, Michael

    2008-11-17

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  13. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  14. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  15. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  16. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, J.D. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom)], E-mail: jda@bgs.ac.uk; Miles, J.C.H.; Green, B.M.R. [Health Protection Agency (HPA) - Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Larmour, R. [Environment and Heritage Service, Department of the Environment, Belfast BT7 2JA (United Kingdom)

    2008-10-15

    The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.

  17. Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment

    Science.gov (United States)

    Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.

    2012-08-01

    We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.

  18. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  19. Waste assay measurement integration system user interface

    International Nuclear Information System (INIS)

    Mousseau, K.C.; Hempstead, A.R.; Becker, G.K.

    1995-01-01

    The Waste Assay Measurement Integration System (WAMIS) is being developed to improve confidence in and lower the uncertainty of waste characterization data. There are two major components to the WAMIS: a data access and visualization component and a data interpretation component. The intent of the access and visualization software is to provide simultaneous access to all data sources that describe the contents of any particular container of waste. The visualization software also allows the user to display data at any level from raw to reduced output. Depending on user type, the software displays a menuing hierarchy, related to level of access, that allows the user to observe only those data sources s/he has been authorized to view. Access levels include system administrator, physicist, QA representative, shift operations supervisor, and data entry. Data sources are displayed in separate windows and presently include (1) real-time radiography video, (2) gamma spectra, (3) passive and active neutron, (4) radionuclide mass estimates, (5) total alpha activity (Ci), (6) container attributes, (7) thermal power (w), and (8) mass ratio estimates for americium, plutonium, and uranium isotopes. The data interpretation component is in the early phases of design, but will include artificial intelligence, expert system, and neural network techniques. The system is being developed on a Pentium PC using Microsoft Visual C++. Future generations of WAMIS will be UNIX based and will incorporate more generically radiographic/tomographic, gamma spectroscopic/tomographics, neutron, and prompt gamma measurements

  20. LFI Radiometric Chain Assembly (RCA) data handling ``Rachel''

    Science.gov (United States)

    Malaspina, M.; Franceschi, E.; Battaglia, P.; Binko, P.; Butler, R. C.; D'Arcangelo, O.; Fogliani, S.; Frailis, M.; Franceschet, C.; Galeotta, S.; Gasparo, F.; Gregorio, A.; Lapolla, M.; Leonardi, R.; Maggio, G.; Mandolesi, N.; Manzato, P.; Maris, M.; Meharga, M.; Meinhold, P.; Morisset, N.; Pasian, F.; Perrotta, F.; Rohlfs, R.; Sandri, M.; Tomasi, M.; Türler, M.; Zacchei, A.; Zonca, A.

    2009-12-01

    Planck's Low Frequency Instrument is an array of 22 pseudo-correlation radiometers at 30, 44, and 70 GHz. Before integrating the overall array assembly, a first set of tests has been performed for each radiometer chain assembly (RCA), consisting of two radiometers. In this paper, we describe Rachel, a software application which has been purposely developed and used during the RCA test campaign to carry out both near-realtime on-line data analysis and data storage (in FITS format) of the raw output from the radiometric chains.

  1. LFI Radiometric Chain Assembly (RCA) data handling 'Rachel'

    International Nuclear Information System (INIS)

    Malaspina, M; Franceschi, E; Butler, R C; Mandolesi, N; Battaglia, P; Franceschet, C; Lapolla, M; Binko, P; Meharga, M; D'Arcangelo, O; Fogliani, S; Frailis, M; Galeotta, S; Gasparo, F; Maggio, G; Manzato, P; Maris, M; Gregorio, A; Leonardi, R; Meinhold, P

    2009-01-01

    Planck's Low Frequency Instrument is an array of 22 pseudo-correlation radiometers at 30, 44, and 70 GHz. Before integrating the overall array assembly, a first set of tests has been performed for each radiometer chain assembly (RCA), consisting of two radiometers. In this paper, we describe Rachel, a software application which has been purposely developed and used during the RCA test campaign to carry out both near-realtime on-line data analysis and data storage (in FITS format) of the raw output from the radiometric chains.

  2. Measurement system for ultrahigh temperature thermophysical properties

    International Nuclear Information System (INIS)

    Fukuyama, Hiroyuki

    2015-01-01

    Properties and Simulations Probed with Electromagnetic Containerless Technique (PROSPECT) is a measurement system for ultrahigh temperature thermophysical properties to be able to measure thermophysical properties with high precision by combining AC magnetic field (electromagnetic levitation device) and DC magnetic field (superconducting magnet) to realize the static floating state of metallic melt, in other words, the state of suppressing the surface vibration of droplets, translational motion, and internal convection. The electromagnetic levitation method is a method to obtain a floating force due to the Lorentz force generated by the interaction between high-frequency current flowing in the coil and the induced current generated in a sample, and to heat/melt the sample with the Joule heat generated by its induced current. This paper roughly explains the element technologies of PROSPECT with a focus on the laser modulation calorimetry (laser periodic heating method), normal spectral emissivity measurement method, density measurement, and surface tension measurement method. Furthermore, as the application of PROSPECT to new research deployment, it introduces the observation of phase separation structure in the supercooled solidification structure of Cu-Co alloy. (A.O.)

  3. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Science.gov (United States)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  4. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    Science.gov (United States)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  5. Laboratory experience with radiometric detection of bacteremia with three culture media

    International Nuclear Information System (INIS)

    Wicher, K.; Koscinski, D.

    1984-01-01

    In two long-term studies, the BACTEC radiometric system for detection of bacteremia was evaluated with three culture media each: (i) BACTEC media 6A (for aerobes) and 7B (for anaerobes) plus a thioglycolate medium and (ii) BACTEC media 6A, 7B, and 8A (hypertonic). In study 1, clinically significant isolates were identified in 1,873 (13.9%) of 13,432 blood cultures with all three media. The thioglycolate medium revealed 143 (1.1%) organisms not recovered from the 6A and 7B media. In study 2, isolates were identified in 1,135 (12.9%) of 8,759 cultures with all three media; 104 (1.2%) organisms were isolated only from the hypertonic medium. The increased yield of positive cultures in the three-medium system is likely due to the larger volume of blood cultured

  6. Improvement an enterprises marketing performance measurement system

    Directory of Open Access Journals (Sweden)

    Stanković Ljiljana

    2013-01-01

    Full Text Available Business conditions in which modern enterprises do business are more and more complex. The complexity of the business environment is caused by activities of external and internal factors, which imposes the need for the turn in management focus. One of key turns is related to the need of adaptation and development of new business performance evaluation systems. The evaluation of marketing contribution to business performance is very important however a complex task as well. The marketing theory and practice indicates the need for developing adequate standards and systems for evaluating the efficiency of marketing decisions. The better understanding of marketing standards and ways that managers use is a very important factor that affects the efficiency of strategic decision-making. The paper presents the results of researching the way in which managers perceive and apply marketing performance measures. The data that were received through the field research sample enabled the consideration of the managers' attitudes on practical ways of implementing marketing performance measurement and identifying measures that managers imply as used mostly in business practice.

  7. EAST machine assembly and its measurement system

    International Nuclear Information System (INIS)

    Wu, S.T.

    2005-01-01

    The EAST (HT-7U) superconducting tokamak consists of a superconducting poloidal field magnet system, a toroidal field magnet system, a vacuum vessel and in-vessel components, thermal shields and a cryostat vessel. The main parts of the machine have been delivered to ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) successionally from 2003. For its complicated constitution and precise requirement, a reasonable assembly procedure and measurement technique should be defined carefully. Before the assembly procedure, a reference frame has been set up with reference fiducial targets on the wall of the test hall by an industrial measurement system. After the torus of TF coils is formed, a new reference frame will be set up from the position of the TF torus. The vacuum vessel with all inner parts will be installed with reference of the new reference frame. The big size and mass of components, special configuration of the superconducting machine with tight installation tolerances of the HT-7U (EAST) machine result in complicated assembly procedure. The procedure had begun with the installation of the support frame and the base of cryostat vessel last year. In this paper, the requirements of the assembly precise for some key components of the machine are described. The reference frame for the assembly and maintenance is explained. The assembly procedure is introduced

  8. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  9. Automatic actinometric system for diffuse radiation measurement

    Science.gov (United States)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  10. Ground Radiometric Method as a Tool for Determining the Surface Boundary of a Buried Bauxitic Karst

    Directory of Open Access Journals (Sweden)

    Kamal Kareem Ali

    2011-12-01

    Full Text Available Forty two ground radiometric measurements along nine traverses within a rectangular network area were taken across a bauxitic karst within the Ubaid Formation (Lower Jurassic in the Western Desert of Iraq. A 4-Channel Gamma Ray Spectrometer (GAD-6 with sodium iodide NaI (Tl crystal (GSP-4S was used in the field to measure the total radioactivity of the surface soil. Soil samples collected from the surface at each measurement point and core samples collected from a test well penetrating the karst were analyzed by Gamma ray spectrometer. The main objective of this study was to detect the hidden bauxitic karst and determine its surface boundary. The radioactivity on the surface of the karst was ranging between 60 and 80 count per second (c/s, while the background radioactivity of the Ubaid Formation, which hosts the karst, was ranging between 100 and150 c/s. Chemical weathering, especially dissolution and leaching moved uranium (238U and thorium(232Th from the overburden downward. Accordingly, these elements have been adsorbed on the surface of clay minerals and bauxite buried at a depth of about 5m causing enrichment with radioactivity. The leached overburden lack radioelements, so its radioactivity was less than background radioactivity level. The gamma ray spectroanalysis showed that the radioactivity of 238U and 232Th in the overburden was 0.5 and 3 Bq/Kg, whereas, in the bauxite and flint clay bed, it was 240 and 160 Bq/Kg respectively. Based on the radioactivity anomaly contrast on the surface, an isorad map was plotted and the karst diameter which represents low anomaly was determined to be ranging from 150 to 200m. The current study demonstrates that the ground radiometric method is quite useful for detecting the bauxitic karst and inferring its surface boundaries.

  11. Transmission Quality Measurements in DAB+ Broadcast System

    Directory of Open Access Journals (Sweden)

    Gilski Przemysław

    2017-12-01

    Full Text Available In the age of digital media, delivering broadcast content to customers at an acceptable level of quality is one of the most challenging tasks. The most important factor is the efficient use of available resources, including bandwidth. An appropriate way of managing the digital multiplex is essential for both the economic and technical issues. In this paper we describe transmission quality measurements in the DAB+ broadcast system. We provide a methodology for analysing parameters and factors related with the efficiency and reliability of a digital radio link. We describe a laboratory stand that can be used for transmission quality assessment on a regional and national level.

  12. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Directory of Open Access Journals (Sweden)

    Sigrid Roessner

    2011-06-01

    Full Text Available The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared and Hawk SWIR (Short Wave Infrared scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  13. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  14. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Science.gov (United States)

    Rogaß, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  15. The Technology of Measurement Feedback Systems.

    Science.gov (United States)

    Bickman, Leonard; Kelley, Susan Douglas; Athay, Michele

    2012-12-01

    Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems tm (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

  16. Fiber-optic voltage measuring system

    Science.gov (United States)

    Ye, Miaoyuan; Nie, De-Xin; Li, Yan; Peng, Yu; Lin, Qi-Qing; Wang, Jing-Gang

    1993-09-01

    A new fibre optic voltage measuring system has been developed based on the electrooptic effect of bismuth germanium oxide (Bi4Ge3O12)crystal. It uses the LED as the light source. The light beam emitted from the light source is transmitted to the sensor through the optic fibre and the intensity of the output beam is changed by the applied voltage. This optic signal is transmitted to the PIN detector and converted to an electric signal which is processed by the electronic circuit and 8098 single chip microcomputer the output voltage signal obtained is directly proportional to the applied voltage. This paper describes the principle the configuration and the performance parameters of the system. Test results are evaluated and discussed.

  17. Dual-goniometer system for channeling measurements

    International Nuclear Information System (INIS)

    Linden, M.; Hellborg, R.

    1986-03-01

    This paper describes a two-goniometer system for obtaining azimuthally averaged measurements in channeling experiments. The system consists of a tri-axial master goniometer and a bi-axial goniometer. Both goniometers are controlled by stepping motors. The alignment goniometer has a target holder, which permits the beam spot to be placed anywhere in a 6 x 6 mm 2 square on the target crystal without loosing the target orientation. The design, construction and operation of the goniometers as well as stepping motor control units and programs for computer control of the goniometers are described. Two control programs cover orientation of the target crystal and a number of other normal experimental conditions. (author)

  18. Radiometric titration of diethanolamine with 65ZnSO4 and determination of mono and diethanolamines in a mixture by a radiometric method

    International Nuclear Information System (INIS)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S.

    1984-01-01

    Radiometric titration of diethanolamine with 65 ZnSO 4 is reported. Determination of individual amounts of mono- and diethanolamines in a mixture is described. The procedure is simple, rapid and accurate. (author)

  19. Radiometric titration of diethanolamine with /sup 65/ZnSO/sub 4/ and determination of mono and diethanolamines in a mixture by a radiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1984-08-16

    Radiometric titration of diethanolamine with /sup 65/ZnSO/sub 4/ is reported. Determination of individual amounts of mono- and diethanolamines in a mixture is described. The procedure is simple, rapid and accurate.

  20. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    Science.gov (United States)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  1. Paleomagnetic, paleontologic and radiometric study of the Uquia Formation (Plio-Pleistocene) in Esquina Blanca (Jujuy)

    International Nuclear Information System (INIS)

    Walther, Ana M.; Orgeira, Maria J.; Vilas, Juan F.A.; Kelley, Shari; Jordan, Teresa

    1998-01-01

    A multidisciplinary study of the Uquia Formation has been performed. The results of the paleontologic, paleomagnetic, radiometric and stratigraphic analyses suggest that the superior levels of the formation are equivalent to the 'Marplatense Superior', while the basic ones should be considered older. Radiometric ages have been determined by fission tracks in zircons

  2. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time

    Science.gov (United States)

    Chen, X.; Vierling, Lee; Deering, D.

    2005-01-01

    Satellite data offer unrivaled utility in monitoring and quantifying large scale land cover change over time. Radiometric consistency among collocated multi-temporal imagery is difficult to maintain, however, due to variations in sensor characteristics, atmospheric conditions, solar angle, and sensor view angle that can obscure surface change detection. To detect accurate landscape change using multi-temporal images, we developed a variation of the pseudoinvariant feature (PIF) normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on June 9, 1990 (Landsat 4), June 20, 2000 (Landsat 7), and August 26, 2001 (Landsat 7) to analyze boreal forests near the Siberian city of Krasnoyarsk using the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and reduced simple ratio (RSR). The temporally invariant cluster (TIC) centers were identified via a point density map of collocated pixel VIs from the base image and the target image, and a normalization regression line was created to intersect all TIC centers. Target image VI values were then recalculated using the regression function so that these two images could be compared using the resulting common radiometric scale. We found that EVI was very indicative of vegetation structure because of its sensitivity to shadowing effects and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. Conversely, because NDVI reduced the radiometric influence of shadow, it did not allow for distinctions among these vegetation types. After normalization, correlations of NDVI and EVI with forest leaf area index (LAI) field measurements combined for 2000 and 2001 were significantly improved; the r 2 values in these regressions rose from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI "cancellation effect" where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a

  3. Radiometric analysis of P/sub 2/O/sub 5/ content in phosphorites from common radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, M A; Anderzhanov, V N; Ermolaeva, G M [Gosudarstvennyj Nauchno-Issledovatel' skij Inst. Gornokhimicheskogo Syr' ya, Moscow (USSR)

    1983-01-01

    A radiometric analysis of P/sub 2/O/sub 5/ content in phosphorites from natural radioactivity is described. A correlation between contents of phosphorus and uranium in phosphorites is a principle of the method. Potassium and thorium are interfering elements. Total radioactivity is proposed to be measured in the 0.1 to 0.6 MeV gamma radiation channel. Measurements in the channel provide a decrease in the potassium and thorium contributions to the total radioactivity, which increases an accuracy of P/sub 2/O/sub 5/ quantitative determination.

  4. Design and use of concrete pads for the calibration of radiometric survey instrumentation

    International Nuclear Information System (INIS)

    Loevborg, L.

    1984-10-01

    A gamma-ray spectrometer for use in geological exploration possesses four stripping ratios and three window sensitivities which must be determined to make the instrumentation applicable for field assay or airborne measurement of potassium, uranium, and thorium contents in the ground. Survey organizations in many parts of the world perform the instrument calibration using large pads of concrete which simulate a plane ground of known radioelement concentration. Calibration and monitoring trials with twelve facilities in ten countries prove that moisture absorption, radon exhalation, and particle-size effects can offset a radiometric grade assigned to concrete whose aggregate contains an embedded radioactive mineral. These and other calibration problems are discussed from a combined theoretical and practical viewpoint

  5. Fitting straight lines and planes with an application to radiometric dating

    International Nuclear Information System (INIS)

    Kent, J.T.; Watson, G.S.; Onstott, T.C.

    1990-01-01

    Conventional practice in geochronology is to fit a straight line or ''isochron'' to data consisting of two isotopic ratios by a method that takes into account that fact that both ratios are measured with error. In this paper we use matrix algebra to lay out a general method for fitting linear relations between any number of variables, all subject to errors with known variances and covariances and the well-known Newton-Raphson method to do the optimization. This leads to a good computational algorithm which may also be used e.g. to check whether coefficients in several linear relations are the same. In many fields of science one needs to fit linear relations so our method is of wide utility; its use is in no way restricted to radiometric data. (orig.)

  6. A radiometric method for the determination of NADH in subpicomole amounts

    International Nuclear Information System (INIS)

    Weber, G.; Rosenthal, W.; Oberdisse, E.

    1988-01-01

    A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [/sup 32/P]orthophosphate from [gamma-/sup 32/P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-/sup 32/P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [/sup 32/P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-/sup 32/P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10/sup 4/-fold excess of NAD over NADH

  7. NBS measurement system for natural argon-37

    International Nuclear Information System (INIS)

    Currie, L.A.; Lindstrom, R.M.

    1973-01-01

    A project to determine the cosmic-ray production rate and the natural levels of 35-day half-life 37 Ar in the atmosphere has been underway at the National Bureau of Standards for about the past year. The prime objective of this project is to determine the spatial dependence of 37 Ar production in the atmosphere, and the spatial distribution of the naturally-produced 37 Ar (observed concentrations). The results of this study are to be used, in cooperation with L. Machta (National Oceanographic and Atmospheric Administration), to derive information about atmospheric mixing. The purpose of this communication, however, is to present a general description of the various components of the measurement system. As the lowest concentrations of interest are but approximately equal to 10 -3 dpm ( 37 Ar)/l-Ar, very high sensitivity measurement techniques are required. Among the techniques which we have adopted are: quantitative separation of the noble gases from about 1 m 3 of air, using a CaC 2 reactor; gas chromatographic separation of the argon fraction; isotopic enrichment (by a factor of approximately equal to 100) of purified argon; use of specially selected low-level gas proportional counters together with massive shielding and anticoincidence meson cancellation; and the application of pulse discrimination based upon both amplitude (energy) and pulse shape. Finally, on-line computer techniques are being applied for data acquisition and system control

  8. The development and application of quantitative methods for the determination of in-situ radiometric uranium grade on the Witwatersrand gold and uranium mines

    International Nuclear Information System (INIS)

    Symons, G.

    1985-12-01

    A detailed investigation of background radiation levels near the reef zone in the uranium section of the Western Areas Mine was conducted using a collimated radiometric face scanner. This study demonstrated that these radiation levels can be high; 25% or more of the counts measured when sampling a reef face may originate from a background source, especially from uranium ore rubble on the footwall close to the reef face. A method using a 20mm frontal shield was devised to obtain an accurate background correction. Three calibration schemes, the Area method, the Gamlog method, and the Deconvolution method were implemented for the production of accurate in-situ radiometric uranium grades. This involved the construction of a step-response calibration pad at Pelindaba together with the establisment of appropriate software and underground radiometric sampling procedures. Radiometric grades generated by these calibration procedures from 60 channel sections were on average 10% below those procured from conventional chip sampling. A correlation between gold and uranium grades was also evident. Crushed rock samples were collected to investigate the thorium problem and are still undergoing analysis at the time of writing. Refinements in the design of the collimated face scanner are also described

  9. Radiometric analyzer for boron content determination in glass and silicon containing compounds

    International Nuclear Information System (INIS)

    Irmer, K.

    1979-01-01

    A radiometric analyzer is described working on the principle of the thermal neutrons transfere. The device consists of two units: of the measuring gage into which the samples to be measured, are introduced; and of the measuring disk where the sygnals from the gage are processed. The measuring gage consists of the isotopic neutron source having the neutrons yield of 10 7 neutron/sec; BE 3 - scintillation counter and shield. The sample measured has a shape of cylinder and surrounds the counter. The neutron source is located in the paraffin moderator. The moderator with the neutron source in it, is rotating around a sample measured and, due to the rotation of the neutron source, uniform average neutron flux in the sample is obtained. Effective length of the proportional counter is limited by the cadmium neutron absorbers. Due to such design of the analyzer, unevenness of the radiation level of the sample measured do not affect measurement accuracy. The thermal neutrons transfer affects through the neutros capture by boron atoms and elastic interaction with the hydrogen atoms nuclei. Influence of hydrogen can be taken into account if the chemical composition of the boron containing compound is known. Due to simplicity, the device described is handy for industrial application. In the industrial conditions the device is repaid after 4 years of continious exploitation. Accuracy of measurements by this device is of 0.05% with time of measurement up to one minute [ru

  10. Flavor release measurement from gum model system.

    Science.gov (United States)

    Ovejero-López, Isabel; Haahr, Anne-Mette; van den Berg, Frans; Bredie, Wender L P

    2004-12-29

    Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio-scaled using the signal from acetone in the breath of subjects. Next, APCI-MS and sensory TI curves are smoothed by low-pass filtering. Principal component analysis of the individual curves is used to display graphically the product differentiation by APCI-MS or TI signals. It is shown that differences in gum composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory adaptation and sensitivity differences of human perception versus APCI-MS detection might explain the divergence between the two dynamic measurement methods.

  11. Map of natural gamma radiation in Spain: radiometric characterization of different types of surfaces

    International Nuclear Information System (INIS)

    Suarez Mahou, E.; Fernandez Amigot, J.A.; Botas Medina, J.

    1997-01-01

    The gamma radioactivity flowing from ground and rocks is due to the presence in these of uranium, thorium and potassium-40. The method of radiometric characterization depends on the purpose of the undertaking. Radiometric characterization can be realized on big surfaces (tens or hundreds of square kilometres studied on a national scale), medium size surfaces (50 to 1000 square kilometres, for example, in epidemiological or biological studies in areas with a determined radiometric background) small surfaces of less than 50 square kilometres (industrial sites, pre-operational studies, etc.). This article considers aspects of radiometric characterization on surfaces of interest and describes the contribution of the MARNA (Natural Provisional Radiation Map of Spain) Project selection and radiometric characterization

  12. Infrared Radiometric Scanning System for Flexible Package Seal Defects

    Science.gov (United States)

    1973-12-01

    spotted. Pccfcarres tasted Two types of packages currently used for therm- ally processed foods were tested. Both had an outer layer of 0.5-mil...polyester and a middle layer of 0.35- mil aluminum foil. The inner, heat-seal layer was either 3-mil high-dtnsity polyethylene or 3-mil mod- ified...a variety ol causes—including urease . moisture, occluded food fibres or particles, threads, voids and wrinkles. Defects as small as 0.5 mg. of free

  13. Wide Band and Wide Azimuth Beam Effect on High-resolution Synthetic Aperture Radar Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Hong Jun

    2015-06-01

    Full Text Available Passive corner reflectors and active transponders are often used as man-made reference targets in Synthetic Aperture Radar (SAR radiometric calibration, With the emergence of new radar systems and the increasing demand for greater accuracy, wide-band and wide-beam radars challenge the hypothesis that the Radar Cross Section (RCS of reference targets is constant. In this study, the FEKO electromagnetic simulation software is used to obtain the change curve of the target RCS as a function of frequency and aspect angle while incorporating high-resolution point-target SAR simulation, and quantitatively analyzing the effect of the modulation effect on SAR images. The simulation results suggest that the abovementioned factors affect the SAR calibration by more than 0.2 dB within a fractional bandwidth greater than 10% or azimuth beam width of more than 20°, which must be corrected in the data processing.

  14. Characterisation of radioactive contaminated materials by combined radiometric and spectrometric methods

    International Nuclear Information System (INIS)

    Dulama, C.; Toma, A.; Dobrin, R.; Ciocîrlan, C.; Stoica, S.; Valeca, M.; Popescu, I. I.

    2013-01-01

    In the present paper, a combined analytical methodology is described, for characterization of radioactive contaminated materials. The subject of testing activities was a set of solutions provided by the Cernavoda NPP, which are originating from processes of radiological survey of workplaces in the plant. In the introduction section, a theoretical approach was given to the origin and nature of main radionuclides occurring in the primary cooling system of the nuclear power plant, with the aim to establish selection criteria and performance requirements for the analytical methods to be used in the development of the characterization methodology. A combination of radiometric and spectrometric methods was selected, based on gross beta counting, high resolution gamma-ray spectrometry and liquid scintillation counting. (authors)

  15. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  16. Radiometric detection in flow-injection analysis; Radiometric flow-injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Han, B; Myoe, K M; Kywe, A; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Braatislava (Slovakia). Dept. of Environmental Science

    1994-05-17

    A single line system with a detector of radioactivity was used for the determination of [sup 60]Co. In the determination, no additional chemistry is involved and limited dispersion is desirable. For this application, the FIA system is used only as a transport system for the sample up to the detector. (author) 7 refs.; 4 figs.

  17. Measurement and control systems using nuclear radiation

    International Nuclear Information System (INIS)

    Melo, Jose Altino Tupinamba; Madi Filho, Tufic

    2007-01-01

    Non-destructive Assay is applied to machines and components quality tests. These elements would not have a good performance if they were conceived without concern about the mechanical project quality, used materials, manufacture processes and inspection and maintenance methodology. In this work, a measure and control system of non destructive processes was developed, using a radioactive source with a defined energy in function of the material to be analyzed. This system involves: interface of input/output (I/O) (hardware) and graphical interface (software). In the non destructive analysis, it is made the comparison of the signal proceeding from the sensor with a signal preset (set point) or analogical signal of reference (Base Line), which is adjusted in the I/O interface. Analyzed the signal, the system will make the decision: to reject or to accept the analyzed material. The I/O interface is implemented by electronic equipment with a MCS51. The purpose of this interface is to supply conditions to exchange information, using serial RS232, between the sensor and the microcomputer. The graphical interface (software) is written in visual C++ language. (author)

  18. Extreme Low Frequency Acoustic Measurement System

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2017-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  19. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA DC-8 Meteorological Measurement System consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft,...

  20. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Meteorological Measurement System (MMS) was collected by the MMS, which consists of three major systems: an air-motion sensing system to measure air...